1. Introduction

Les verres de silicates constituent la plus grande partie de la production industrielle verrière et les verres de phosphates font depuis quelques années l'objet d'études approfondies. En effet grâce à leurs propriétés physicochimiques, ils sont de bons candidats pour différentes applications [1].

Comme la silice, l'anhydride phosphorique " P_2O_5 " est un excellent formateur de verre dont l'entité structurale est le tétraèdre PO₄. La penta valence du phosphore requiert l'existence, dans chaque tétraèdre PO₄, d'au moins un oxygène non pontant pour satisfaire l'électro neutralité. P_2O_5 possède une structure beaucoup moins rigide que SiO₂, puisqu'au maximum trois oxygènes sont pontant, soit un de moins que dans la silice. Ceci va engendrer une différence importante des propriétés physicochimiques.

L'entité structurale P_2O_5 est appelée " groupe de branchement " et constitue l'une des quatre entités structurales élémentaires, définies par Van Wazer, permettant de décrire toutes les configurations possibles des atomes de phosphore et d'oxygènes [2]. Lippma et al. [3]ont proposé une notation de type Q^n , permettant de rendre compte du degré de polymérisation de chaque tétraèdre PO₄. Dans cette notation, n représente le nombre d'atomes d'oxygènes pontant par tétraèdre Q. Le tableau 3. 1 donne la correspondance entre la notation de type Q^n et les entités définies par Van Wazer.

Structure			0 -0-P-0- 0	0 -0-P-0- 0
Van Wazer	Groupe point de branchement	Groupe intermédiaire	Groupe terminal	Groupe isolé
Lippma et al	Q^3	Q^2	Q^1	Q^0

Tableau 3. 1. Approche structurale des phosphates

Les verres de phosphates présentent deux propriétés physicochimiques remarquables : des températures caractéristiques basses, ainsi que des coefficients de dilatation thermique élevés.

En effet, la plus faible réticulation du réseau due à la penta valence du phosphore explique ce défaut de rigidité et donc ces propriétés.

Les températures caractéristiques basses des phosphates présentent un atout majeur puisqu'elles permettent d'élaborer ces verres dans des gammes de températures bien plus faibles que celles des verres de silicates et de fluorures, ce qui simplifie la mise en œuvre technologique en réalisant une économie d'énergie non négligeable.

Néanmoins, les verres de phosphates sont également caractérisés par une faible résistance chimique comparée à celle des silicates. La présence d'entités structurale contenant des oxygènes non pontants est la principale cause de la nature hygroscopique de ces verres. En effet, ces atomes vont interagir avec l'humidité de l'air pour former l'acide phosphorique [4-5].

La faible durabilité chimique des verres de phosphates est d'autant plus marquée que la liaison π est uniquement localisée sur l'une des quatre liaisons P-O. En toute rigueur, il est incorrect de parler de liaison π car le phosphore respecte la règle de l'octet et par conséquent, ne peut accepter de double liaison. Il est plus juste de décrire la liaison terminale comme étant assez polaire, ce qui explique la plus faible longueur de liaison entre cet oxygène et le phosphore. Cette composante caractéristique des sites Q³, explique le caractère très hygroscopique de P₂O₅. Il est tout de même intéressant de noter que le caractère hydrophile des verres de phosphates a conduit à des applications dans le domaine des détergents [6-7]

Depuis les années 60, les verres de phosphates ont suscité un intérêt croissant dans le domaine de l'optique [9]. Les premiers lasers eurent d'abord recours aux verres de silicates. Néanmoins les verres de phosphates ont vu leur importance croître, puisqu'ils ont la particularité de pouvoir incorporer des concentrations relativement importantes d'ions terres rares [10]. Ils sont également complémentaires des silicates car ils peuvent aboutir à des matériaux transmettant dans l'UV en les associant à des fluorures [11]. Les verres de phosphates dopés par Er³⁺ sont utilisés couramment comme amplificateurs dans les systèmes lasers [12] et dans les fibres optiques [13]; bien que la présence de groupes OH dans la matrice soit préjudiciable pour les performances optiques [14]. Il est à noter également l'utilisation de pyrophosphates dopé au prométhium, pour l'application laser à 933 et 1098 nm [15]. Certains verres de phosphates à base de zinc ont fait l'objet de brevets pour le moulage de lentilles optiques [16]. Plus récemment, des études ont été menées sur des pyrophosphates d'étain en tant que matériaux candidats pour le moulage d'éléments optiques et les fibres optiques [17].

Les verres de phosphates sont utilisés dans les applications de confinement des déchets puisqu'ils présentent des températures d'élaboration et de ramollissement basses par rapport aux verres de borosilicates et également des viscosités de bain plus faibles. Ainsi, la perte de radionucléides (Ru, Cs) par volatilisation est limitée [18-19]. Cependant, en règle générale, la résistance chimique des verres de phosphates est faible comparée à celle des silicates. Récemment, des études sur des verres de phosphates de fer ont montré qu'ils possédaient des propriétés intéressantes pour le confinement des déchets nucléaires avec des résistances chimiques comparables à celle des silicates [20-22].

Les biomatériaux ont été développés dans le domaine médical afin de servir de comblement osseux pour remplacer temporairement ou définitivement des déficits osseux d'origine traumatique ou pathologique. Ils permettent également de diminuer les risques de transmission d'agents infectieux (virus, prions) et sont disponibles en quantité non limitée [23].

Les matériaux à base de phosphates de calcium, tels que l'hdroxyapatite, le phosphate di calcique ou tricalcique ont des compositions similaires à la partie minérale de l'os [24]. Certains verres et vitrocéramiques de phosphates peuvent servir de matériaux de comblement résorbables mais également de revêtement pour certains alliages ou métaux [25]. Une étude récente a également montré le potentiel des verres de phosphates pour différentes applications en tant que biomatériaux [26].

Les verres de phosphates peuvent être utilisés pour le scellement de verres, céramiques, métaux et composites. En effet, ces verres possèdent de basses températures de fusion, de faibles viscosités et de grands coefficients de dilatation thermique, ce qui est adapté aux matériaux de scellement. Dans ce domaine, Donald [27] a listé un grand nombre de compositions vitreuses pouvant être candidates à l'application de scellement.

Il existe un grand nombre de classifications pour différencier les verres de scellement. L'une d'entre elles est basée sur les propriétés thermiques de ces matériaux. On distingue deux types de verres [27] : les verres " hard " et les verres " soft ". Les verres " hard " ont une température de travail comprise entre 1000 et 1300°C et un coefficient de dilatation thermique inferieur à 50. $10^{-7\circ}C^{-1}$. Les verres " soft " forment une classe de matériaux importants puisqu'ils sont utilisés pour le scellement des tubes cathodiques de moniteurs de contrôle, téléviseurs et écrans plats. Pour des raisons technologiques, ces verres peuvent contenir une grande quantité de plomb (jusqu'à 80% en masse). Cependant, la présence de plomb engendre des problèmes environnementaux et est néfaste pour la santé. Les verres de phosphates, grâce à leurs propriétés physicochimiques, sont adaptés aux applications de scellement à basse température.

Par exemple, en remplacement des verres traditionnels des systèmes PbO-ZnO- B_2O_3 et PbO-ZnO-SiO₂, Morena [28] a étudié le système SnO-ZnO- P_2O_5 .

On peut également citer l'utilisation des verres de phosphates pour la réalisation de scellement et revêtement entre verre et métaux ou alliage [29]. Lors de la réalisation de soudure verre/métal, on peut avoir une céramisation de matériaux vitreux qui va permettre d'améliorer les propriétés mécaniques de la jonction.

Les conducteurs ioniques ont été très étudiés au cours de ces dernières décennies [30]. Les électrolytes solides vitreux présentent de nombreux avantages, par rapport, aux autres électrolytes, tels que l'absence de joints de grain, un large choix de compositions chimiques et une facilité de mise en forme. La conduction ionique est assurée, dans la plupart des verres, par le mouvement d'une espèce ionique, tels que Li⁺, Na⁺, Ag⁺.

Les verres de phosphates sont des candidats potentiels pour être utilisés comme électrolytes solides dans les dispositifs électrochimiques (batteries, capteurs) on peut citer par exemple, les verres de phosphates de lithium [31-32] pour ce type d'application. Il a été montré que la nitruration, c'est-à-dire, la substitution d'oxygène par l'azote dans du LiO₃ augmente la valeur de la conductivité [32-33]. Des verres de phosphates de sodium dans lesquels la conduction ionique est assurée par Na⁺ ont aussi été étudiés [34].

Les phosphates de type " NaSICON " (Na-super Ionique Conducteur) sont des composés pouvant présenter une importante conductivité ionique appelée super conductivité ionique. Ils ont été étudiés comme électrolytes solides pour diverses applications : capteurs pour la détection du CO₂ [35], d'enzymes [36]. Sobha et Rao ont également étudiés des verres de phosphates de type NaSICON [37].

Les verres de sulfates présentent eux aussi des propriétés physicochimiques remarquables, des températures caractéristiques basses, ainsi que des coefficients de dilatation thermique élevés. L'exemple le plus utile des verres de sulfates est $ZnSO_4$ - K_2SO_4 dans lequel la quantité de ZnSO₄ est comprise entre40 et 70 (% mol) (Ishii et Akawa 1965, Angell 1965, Kolesova 1975) [38-40]. Les propriétés physiques de ce système vitreux ont été étudiées de manière détaillée par Narasimham et Rao en (1978) [41]. Des verres dont la composition de ZnSO₄ est de 60 (% mol) ont été également employés dans des études de transmission optique (UV) par Angell (1968) [42] et Duffy (1968) [43].

D'autres verres à base de sulfates ont été étudiés : TlSO₄-ZnSO₄ (Ishii et Akawa 1965) [44], (NH₄)₂SO₄-ZnSO₄ (Wong 1970) [45].

Notons que l'hydrogénosulfate de potassium (KHSO₄) est le premier verre à base de sulfate synthétisé par Forland et Weyl en (1950) [44].

La formation vitreuse peut être augmentée par l'addition de chlorures, ce qui a été observé par Angell en 1965, lors de son étude des solutions K₂SO₄-CoCl₂ [39].

Récemment, des études ont été menées sur des verres phosphosulfates en tant que matériaux conducteurs ioniques et pour des utilisations plus spécifiques.

Le système P₂O₅-ZnSO₄-K₂SO₄-Li₂SO₄, a été exploré en vue d'une utilisation plus spécifique de ces matrices comme solvant de molécules ou polymères organiques [46].

La conductivité électrique (ionique, électronique ou mixte) de ces matériaux a été étudiée en fonction de la température dans la gamme 25-400°C [46].

L'étude de l'influence de la pression isostatique (1- 5000 bars) a mis en évidence une différence de comportement pour les verres à conduction ionique et électronique [46]. Ces verres sont caractérisés par une basse température de transition vitreuse.

Une étude récente sur la durabilité chimique et les propriétés thermiques a été menée par P. A. Bingham (2009) du système $[(1-x).(0,6P_2O_5-0,4Fe_2O_3)]$. xR_ySO_4 avec une valeur de x comprise entre 0 et 0,5 et R=Li, Na, K, Mg, Ca, Ba, Pb et y=1, 2 [47]. Ce système est utilisé aussi dans les applications de confinement des déchets nucléaires avec des résistances chimiques comparables aux silicates [48].

Les propriétés spectroscopiques des ions Nd^{3+} dans le système (88-x) P_2O_5 -x Na_2SO_4 -10BaF₂-2NdF₃ ont été étudiées par G. A. Kumar (2002) en utilisant la méthode de Judd-Ofelt [49].

Dans ce chapitre on s'est intéressé à la recherche de nouveaux système vitreux basés sur l'association de KHSO₄/NaPO₃.

La première étape de ce travail est centrée sur l'étude du système binaire KHSO₄-NaPO₃ et la détermination des propriétés physiques.

La seconde étape de cette étude consiste à associer des acétates (CH₃COOLi) et des sels halogénés (NaCl, NaBr, KCl, KBr) au système binaire KHSO₄-NaPO₃, pour obtenir des systèmes ternaires, et déterminer les propriétés physiques des nouvelles compositions vitreuses synthétisées.

2. Procédure expérimentale

L'origine et la qualité des divers produits de départ, sont décrits dans le chapitre 1. Les quantités de produits nécessaires à la synthèse d'un mélange de 5g sont calculées, pesées, mélangées et broyées intimement pour une meilleure homogénéisation puis placées dans un creuset de silice. On procède d'abord à la fusion complète du mélange. Le mélange fondu est homogénéisé sous agitation mécanique pendant quelques minutes. Puis le mélange est coulé

dans un moule en laiton préchauffé à une température voisine de la transition vitreuse Tg. On Obtient des échantillons d'épaisseur de 1cm. Un recuit thermique des échantillons vitreux est réalisé pendant plusieurs heures afin d'éliminer toutes les contraintes mécaniques résultant de la coulée.

3. Etude des systèmes vitreux

3. 1. Système binaire NaPO₃-KHSO₄

La figure 3. 1 représente le domaine vitreux du système NaPO₃-KHSO₄. La limite de la zone vitreuse exprimée en pourcentage molaire de KHSO₄ est 0-40%. Des échantillons de 1 cm d'épaisseur sont obtenus par coulée dans des moules en laiton préchauffé à une température voisine de la température de transition vitreuse. Ces verres sont très stables vis-à-vis de la cristallisation, mais ils présentent l'inconvénient d'être très sensibles à l'humidité.

Figure 3. 1. Zone vitreuse dans le système binaire KHSO₄ - NaPO₃

3. 2. Systèmes ternaires

On s'est intéressé à l'influence de quelques substituants sur le système NaPO₃-KHSO₄. Notre choix s'est porté sur l'acétate de lithium $C_2H_3O_2Li$ et les halogénures alcalins.

3. 2. 1. Système NaPO₃-KHSO₄-C₂H₃O₂Li

La figure 3. 2 représente le domaine vitreux du système NaPO₃-KHSO₄-C₂H₃O₂Li. Il s'agit d'un verre stable obtenu par coulée. Les échantillons vitreux ont une épaisseur de 1cm, et sont

moins sensibles à l'humidité que ceux de NaPO₃-KHSO₄. Le tableau 3. 1 rassemble les limites correspondantes de la zone vitreuse du système NaPO₃-KHSO₄-C₂H₃O₂Li, exprimées en pourcentage molaire.

Tableau 3. 1. Limites de la zone vitreuse en % molaire du ternaire NaPO₃- KHSO₄-C₂H₃O₂Li.

NaPO ₃	KHSO ₄	$C_2H_3O_2Li$
75 - 100	0 - 55	0 - 35

Figure 3. 2. Zone vitreuse dans le système NaPO₃- KHSO₄- C₂H₃LiO₂

3. 2. 2. Système NaPO₃-KHSO₄-NaCl

Les limites de la zone vitreuse sont indiquées dans le tableau 3. 2. La figure 3.3 présente le domaine vitreux de ce système. Remarquons que la zone vitreuse de ce verre est un peu réduite par rapport à celle du système contenant de l'acétate du lithium. Notons aussi que ces verres sont plus sensibles à l'humidité que ceux d'acétates. Des échantillons de 1cm

d'épaisseur sont obtenus par coulée. Ils ont une vitesse de cristallisation faible au refroidissement, démontrant ainsi une grande résistance vis-à-vis de la dévitrification.

Tableau 3. 2. Limites de la zone vitreuse en % molaire du ternaire NaPO₃-KHSO₄-NaCl

NaPO ₃	KHSO ₄	NaCl
55 - 100	0 - 52	0 – 30

Figure 3. 3. Zone vitreuse dans le système NaPO₃- KHSO₄- NaCl

3. 2. 3. Système NaPO₃-KHSO₄-NaBr

La zone vitreuse de ce système est présentée dans la figure 3. 4. Les limites correspondantes au domaine vitreux sont rassemblées au tableau 3. 3. La zone vitreuse de ce système apparait réduite par rapport à celle des verres contenant de l'acétate, mais un peu élargie par rapport à celle du système avec NaCl. Ces verres présentent la même sensibilité à l'humidité que ceux de NaCl.

Figure 3. 4. Zone vitreuse dans le système NaPO₃- KHSO₄- NaBr

3. 2. 4. Système NaPO₃-KHSO₄-KCl

La figure 3. 5 et le tableau 3. 4 représentent respectivement la zone vitreuse du système $NaPO_3$ -KHSO₄-KCl et les limites correspondantes. Cette zone vitreuse est plus réduite que celles des verres précédents (C₂H₃O₂Li, NaCl, NaBr).

Des échantillons sont obtenus par coulée sous une épaisseur de 1cm environ. Ces verres montrent une bonne stabilité thermique vis-à-vis de la dévitrification, mais restent sensibles à l'humidité.

NaPO ₃	KHSO ₄	KCl
55 - 100	0 - 52	0 - 20

Tableau 3. 4. Limites de la zone vitreuse en % molaire du ternaire

Figure 3. 5. Zone vitreuse dans le système NaPO₃- KHSO₄- KCl

3. 2. 5. Système NaPO₃-KHSO₄-KBr

La zone vitreuse de ce système est un peu plus large que celle du système qui contient KCl, tandis qu'elle est réduite par rapport à celles des systèmes contenant ($C_2H_3O_2Li$, NaCl, NaBr). Le domaine vitreux et les limites correspondantes sont représentés par la figure 3. 6 et le tableau 3. 5. Ces verres sont également, comme les verres précédents, sensibles à l'humidité.

	NaPO ₃ -KHSO ₄ -KBr	
NaPO ₃	KHSO ₄	KBr
55 - 100	0 - 52	0 - 25

Tableau 3. 5. Limites de la zone vitreuse en % molaire du ternaire

Figure 3. 6. Zone vitreuse dans le système NaPO₃- KHSO₄- KBr

4. Caractérisations

4.1. Températures caractéristiques

4.1.1. Présentation

Les températures caractéristiques d'un verre marquent l'apparition de phénomènes thermodynamiques exothermiques ou endothermiques tels que le ramollissement, la cristallisation, et la fusion. Ces températures sont définies de la manière suivante :

- Tg : température de transition vitreuse ou de ramollissement
- Tx : température à laquelle débute la cristallisation
- Tp : température au sommet de l'exotherme de cristallisation
- Tf : température de fusion.

Notons que Tg correspond au passage entre l'état solide et l'état liquide.

Les températures caractéristiques ont été déterminées systématiquement pour tous les systèmes étudiés. Les mesures sont faites avec environ 5 à 10 mg de produit, à l'aide d'un calorimètre différentiel D.S.C. S220 SEIKO Instruments. La loi de chauffe régissant la montée en température du four d'analyse est de 10K.min⁻¹ jusqu'à 500°C.

A partir des températures caractéristiques, on calculera S, facteur numérique exprimant la stabilité du verre synthétisé [50]. S est défini comme suit :

$$S = (Tp-Tx). (Tx-Tg)/Tg$$

Ce critère tient compte de la différence de température entre la transition vitreuse et le début de cristallisation. Plus cette différence est grande, plus le verre sera stable. L'allure du pic de cristallisation est également à prendre en considération. Plus le pic est large, c'est-à dire (Tp-Tx) grand, plus le verre sera stable vis-à-vis à la dévitrification.

4.1.2 Résultats

Les tableaux 3. 6, 3. 7, 3. 8, 3. 9, 3. 10, 3. 11 rassemblent en fonction de la composition les températures caractéristiques et les valeurs de S calculées pour les différents systèmes. L'incertitude sur les valeurs des températures mesurées Tg et Tx, est égale à 1°C et celle sur Δ T est estimée à 2°C.

Composition (%mol)	Tg (°C)	Tx (°C)	Tp (°C)	Tx-Tg (°C)	S (K)
50KHSO ₄ 50NaPO ₃	127	187	217	59.5	14
40KHSO ₄ 60NaPO ₃	137	197	237	60	17.7
30KHSO ₄ 70NaPO ₃	162	211	253	49	12.7
20KHSO ₄ 80NaPO ₃	185	242	272	57	9.2
10KHSO ₄ 90NaPO ₃	217	267	297	50	7

 Tableau 3. 6. Températures caractéristiques et valeurs de S du binaire

 KUSO
 NaBO

Composition (%mol)	Tg (°C)	Tx (°C)	Tp (°C)	Tx-Tg (°C)	S (K)
40N50K10C	123	163	193	40	9.7
45N45K10C	134	174	208	40	10
50N40K10C	146	198	244	52	16.4
55N35K10C	150	234	263	84	16.2
60N30K10C	173	256	294	83	18.2
65N25K10C	178	267	300	89.5	16.6
70N20K10C	189	280	310	91	14.5
75N15K10C	201	289	312	88.5	9.9
80N10K10C	210	295	316	85	8.7
70N10K20C	219	299	318	80	6.9
60N20K20C	197	286	333	89	21.2
50N30K20C	175	241	259	66	6.65
40N40K20C	153	221	251	68	13
30N50K20C	135	167	192	32	5.9
40N30K30C	184	227	240	43	3
50N20K30C	202	241	281	39	7.7
60N10K30C	217	267	296	50	6.8

Tableau 3. 7. Températures caractéristiques et valeurs de S du ternaire NaPO₃- KHSO₄-C₂H₃O₂Li

Avec : $N = NaPO_3$; $K = KHSO_4$; $C = C_2H_3O_2Li$

Composition (%mol)	Tg (°C)	Tx (°C)	Tp (° C)	Tx-Tg (°C)	S (K)
80N10K10NaCl	236	336	381	99.5	18.9
70N20K10NaCl	208	308	358	100	23.7
60N30K10NaCl	163	245	265	81.5	9.9
50N40K10NaCl	152	244	273	92	17.5
75N10K15NaCl	224	284	338	60	14.4
65N20K15NaCl	200	332	369	132	24.4
55N30K15NaCl	181	239	260	58	6.7
70N10K20NaCl	227	300	336	73	11.4
60N20K20NaCl	198	267	287	69	6.9
65N10K25NaCl	225	295	324	70	9
55N20K25NaCl	196	260	277	63.5	5.5

Tableau 3. 8. Températures caractéristiques et valeurs de S du ternaire NaPO₃- KHSO₄-NaCl

Composition (%mol)	Tg (° C)	Tx (° C)	Tp (° C)	Tx-Tg (°C)	S (K)
80N10K10NaBr	238	302	364	64	16.7
70N20K10NaBr	203	276	307	73	11.2
60N30K10NaBr	188	245	266	57.5	6.3
50N40K10NaBr	179	235	255	56	6.15
40N50K10NaBr	140	214	233	74	10
75N10K15NaBr	227	335	399	108	30
65N20K15NaBr	200	269	301	69	11
55N30K15NaBr	191	235	247	44	2.9
70N10K20NaBr	224	303	335	79	11.3
60N20K20NaBr	199	259	331	60	21.7
65N10K25NaBr	216	300	318	83.8	7

Composition (%mol)	Tg (° C)	Tx (° C)	Tp (° C)	Tx-Tg (°C)	S (K)
80N10K10KC1	276	371	404	95	11.36
70N20K10KC1	255	350	370	95	7.45
60N30K10KC1	235	291	307	56	3.82
50N40K10KC1	164	257	275	93	10.21
75N10K15KCl	290	390	410	100	6.90
65N20K15KCl	273	352	372	79	5.79
55N30K15KCl	254	291	305	37	2.04

Tableau 3. 10. Températures caractéristiques et valeurs de S du ternaire NaPO₃- KHSO₄-KCl

Tableau 3. 11. Températures caractéristiques et valeurs de S du ternaire

NaPO₃-KHSO₄-KBr

Composition (%mol)	Tg (°C)	Tx (°C)	Tp (°C)	Tx-Tg (°C)	S (K)
80N10K10KBr	213	293	346	80	19.91
70N20K10KBr	191	257	291	66	11.75
60N30K10KBr	161	231	265	70	14.78
50N40K10KBr	149	219	241	70	10.34
75N10K15KBr	215	282	353	67	22.13
65N20K15KBr	195	263	308	68	15.69
55N30K15KBr	208	283	312	75	10.46
70N10K20KBr	209	282	308	73	9.08
60N20K20KBr	185	255	289	70	12.86

D'une manière générale, on observe d'après les tableaux précédents que la substitution de NaPO₃ par KHSO₄, $C_2H_3O_2Li$, NaCl, et NaBr, entraine une décroissance de la température de transition vitreuse. C'est l'inverse qui est observé avec KCl et KBr. Par contre la substitution de KHSO₄ par $C_2H_3O_2Li$, NaCl, NaBr, KCl, KBr entraine une augmentation de la température de transition vitreuse.

4.1.3. Evolution des températures caractéristiques

a. Système binaire : KHSO₄-NaPO₃

La figure 3. 7 représente l'évolution de la température de transition vitreuse Tg en fonction de la teneur de NaPO₃ (%mol).

Figure 3. 7. Evolution de Tg en fonction du % mol de NaPO3 dans le binaire NaPO3 – KHSO4

L'examen de la figure 3. 7 montre une évolution linéaire de la température de transition vitreuse, qui augmente avec le % de NaPO₃. Elle atteint sa valeur maximale (217° C) à une concentration de 90% de NaPO₃.

b. Systèmes ternaires

b. 1. Système : NaPO₃-KHSO₄-C₂H₃O₂Li

Les figures 3. 8, 3. 9, 3. 10 présentent l'évolution de la Tg en fonction de x (concentration de KHSO₄) pour les verres : (90-x)NaPO₃-x KHSO₄-10 C₂H₃LiO₂ ; (80-x) NaPO₃-x KHSO₄-20 C₂H₃LiO₂ et (70-x) NaPO₃-x KHSO₄-30 C₂H₃LiO₂.

Figure 3. 8. Evolution de Tg en fonction de x dans le verre (90-x)NaPO₃-x KHSO₄-10 C₂H₃LiO₂

Figure 3. 9. Evolution de Tg en fonction de x dans le verre (80-x)NaPO₃-x KHSO₄-20 C₂H₃LiO₂

Figure 3. 10. Evolution de Tg en fonction de x dans le verre (70-x)NaPO₃-x KHSO₄-30 C₂H₃LiO₂

Les courbes précédentes montrent clairement une évolution linéaire décroissante de la Tg avec la teneur de KHSO₄. Signalons que la substitution de NaPO₃ par KHSO₄ ou $C_2H_3O_2Li$, entraine une diminution de la température de transition vitreuse.

b. 2. Système : NaPO₃-KHSO₄-NaCl

Dans le but de préciser l'influence de la composition sur la température de transition vitreuse on a défini à titre d'exemple une loi de composition basé sur la substitution de NaPO₃ par NaCl. On a suivi l'évolution de la température de transition vitreuse en fonction de x (% mol de NaCl).

La loi de composition est : (80-x) NaPO₃ -20K- xNaCl $10 \le x \le 25$

L'évolution de Tg en fonction de x est donnée par la figure 3. 11. On note la décroissance linéaire de Tg avec l'augmentation de x.

Figure 3. 11. Evolution de Tg en fonction de X dans le ternaire (80-x) N 20K x NaCl x=10,15 ,20 ,25.

b. 3. Système : NaPO₃-KHSO₄-NaBr

De la même manière que précédemment, on définit une loi de composition basée sur la substitution de NaPO₃ par NaBr. On a suivi l'évolution de Tg en fonction de x (%mol de NaBr).

La loi de composition est définie comme suit :

(90-x) NaPO₃-10K-xNaBr avec $10 \le x \le 25$

La figure 3. 12 présente l'évolution de la température de transition vitreuse en fonction de x. L'examen de cette courbe montre clairement, que l'addition de NaBr provoque une diminution de la Tg. Notons également que la Tg atteint sa valeur maximale pour les compositions riches en NaPO₃.

On peut remarquer aussi que les températures de transition vitreuses de ce système sont supérieures à celles du système contenant NaCl. Ceci peut être expliqué par la différence de taille entre les anions Br⁻ et Cl⁻.

Figure 3. 12. Evolution de Tg en fonction de X dans le ternaire (90-x) N 10K x NaBr x=10,15 ,20 ,25.

b. 4. Système : NaPO₃-KHSO₄-KCl

Pour montrer l'influence de la composition sur la température de transition vitreuse, on a choisi la loi de composition (90-x) NaPO₃-xKHSO₄-10KCl avec x = 10, 20, 30, 40.

On a suivi l'évolution de Tg en fonction de x (% mol de KHSO₄). La figure 3. 13 présente l'évolution de Tg en fonction de x.

Les mêmes constatations que dans le binaire NaPO₃-KHSO₄, la substitution de NaPO₃ par KHSO₄ en présence d'une quantité de 10% de KCl provoque une diminution de la Tg. L'étude des systèmes ternaires montre que les plus hautes températures de transition vitreuses sont atteintes dans ce système qui contient KCl. Ceci peut être expliqué par la différence de taille entre les cations K^+ et Na⁺.

Figure 3. 13. Evolution de Tg en fonction de x dans le ternaire (90-x) N xK 10 KCl x=10,20 ,30 ,40.

b. 5. Système : NaPO₃-KHSO₄-KBr

Pour suivre l'évolution de la Tg, on a choisi la loi de composition (90-x) NaPO₃-xKHSO₄-10KBr avec x = 10, 20, 30, 40.

La figure 3. 14 présente l'évolution de la température de transition vitreuse en fonction de x. L'examen de la courbe Tg = f(x), indique une décroissance quasi linéaire de la Tg lorsque la teneur de KHSO₄ augmente. Cependant on peut noter que ce système se comporte comme le binaire NaPO₃-KHSO₄ tant que la quantité de KBr demeure invariable. Si on augmente la quantité de KBr de 15% par exemple et on continue à substituer NaPO₃ par KHSO₄, on observe toujours une décroissance de la Tg, néanmoins les températures sont supérieures à celles dans le cas de 10% de NaBr.

Figure 3. 14. Evolution de Tg en fonction de x dans le ternaire (90-x) NaPO₃ xKHSO₄ 10 KBr x=10,20 ,30 ,40.

4. 2. Masse volumique

4.2.1. Présentation

Bien que la masse volumique du verre ne constitue pas une caractéristique majeure pour la plupart des applications, il convient cependant pour de nombreuses raisons fondamentales de définir l'influence de la composition sur la densité des verres synthétisés.

Plusieurs méthodes sont utilisées pour la mesure de la masse volumique, les plus courantes sont :

- La méthode de poussée hydrostatique
- La pycnométrie

Nous avons utilisé cette dernière pour la mesure de la masse volumique de nos verres (la méthode de mesure est détaillée dans le chapitre 1)

4.2.2. Résultats expérimentaux

Les verres de phosphosulfates ont une masse volumique faible deux à trois fois inférieure à celle des verres fluorés. La masse volumique du verre est lié directement à celles des constituants qui le composent. Les tableaux 3.12 - 17 rassemblent les masses volumiques ρ des verres des systèmes étudiés.

Composition (%mol)	ρ (g/cm ³)
50KHSO ₄ 50NaPO ₃	2.34
40KHSO ₄ 60NaPO ₃	2.39
30KHSO ₄ 70NaPO ₃	2.49
20KHSO ₄ 80NaPO ₃	2.36
10KHSO ₄ 90NaPO ₃	2.45

Tableau 3. 12. Masse volumique du verre KHSO₄-NaPO₃

Tableau 3. 13. Masse volumique du verre NaPO₃ KHSO₄-C₂H₃O₂Li

Composition (%mol)	ρ (g/cm ³)
40N50K10C	2.43
45N45K10C	2.32
50N40K10C	2.44
55N35K10C	2.45
60N30K10C	2.43
65N25K10C	2.44
70N20K10C	2.40
75N15K10C	2.48
80N10K10C	2.49
70N10K20C	2.51
60N20K20C	2.49
50N30K20C	2.41
40N40K20C	2.43
30N50K20C	2.42
40N30K30C	2.40
50N20K30C	2.49
60N10K30C	2.48

Composition (%mol)	ρ (g/cm ³)
80N10K10NaCl	2.45
70N20K10NaCl	2.46
60N30K10NaCl	2.49
50N40K10NaCl	2.40
75N10K15NaCl	2.47
65N20K15NaCl	2.44
55N30K15NaCl	2.48
70N10K20NaCl	2.40
60N20K20NaCl	2.43
65N10K25NaCl	2.48
55N20K25NaCl	2.35

Tableau 3. 14. Masse volumique du verre NaPO₃- KHSO₄-NaCl

Tableau 3. 15. Masse volumique du verre NaPO₃- KHSO₄-NaBr

Composition (%mol)	ρ (g/cm ³)
80N10K10NaBr	2.57
70N20K10NaBr	2.45
60N30K10NaBr	2.44
50N40K10NaBr	2.43
40N50K10NaBr	2.27
75N10K15NaBr	2.56
65N20K15NaBr	2.44
55N30K15NaBr	2.36
70N10K20NaBr	2.53
60N20K20NaBr	2.45
65N10K25NaBr	2.50

Composition (%mol)	ρ (g/cm ³)
80N10K10KCl	2.58
70N20K10KC1	2.57
60N30K10KC1	2.56
50N40K10KC1	2.53
75N10K15KCl	2.52
65N20K15KCl	2.83
55N30K15KCl	2.65

Tableau 3. 16. Masse volumique du verre NaPO₃-KHSO₄-KCl

Tableau 3. 17. Masse volumique du verre NaPO₃- KHSO₄-KBr

Composition (%mol)	ρ (g/cm ³)
80N10K10KBr	2.59
70N20K10KBr	2.57
60N30K10KBr	2.55
50N40K10KBr	2.50
75N10K15KBr	2.57
65N20K15KBr	2.55
55N30K15KBr	2.57
70N10K20KBr	2.64
60N20K20KBr	2.54

4.2.3. Evolution de la masse volumique

Dans le but de quantifier l'influence de la composition sur la masse volumique, on a choisi à titre d'exemple des lois de compositions basées sur la substitution NaPO₃ d'une part par KHSO₄ et d'autre part par NaCl ou NaBr.

Les lois de compositions sont :

- (80-x) NaPO ₃ -20 KHSO ₄ - xNaCl	$10 \le x \le 25$
- (90-x) NaPO ₃ -10 KHSO ₄ - xNaBr	$10 \le x \le 25$
- (90-x) NaPO ₃ -x KHSO ₄ -10KCl	$10 \le x \le 40$
- (90-x) NaPO ₃ -x KHSO ₄ -10KBr	$10 \le x \le 40$

Les figures 3. 15- 20 présentent l'évolution de la masse volumique en fonction de x des verres étudiés.

Figure 3. 15. Evolution de la masse volumique ρ en fonction de x (% mol) dans le ternaire (90-x)NaPO₃-xKHSO₄-10C₂H₃LiO₂

Figure 3. 16. Evolution de la masse volumique $\rho\,$ en fonction de x (% mol) dans le ternaire (80-x) NaPO_3-xKHSO_4-20C_2H_3LiO_2

Figure 3. 17. Evolution de la masse volumique ρ en fonction de x dans le ternaire (80-x)NaPO₃-20KHSO₄-xNaCl, $10 \le x \le 25$

Figure 3. 18. Evolution de la masse volumique ρ en fonction de x dans le ternaire (90-x)NaPO₃-10KHSO₄-xNaBr, $10 \le x \le 25$

Figure 3. 19. Evolution de la masse volumique ρ en fonction de x dans le ternaire (90-x)NaPO₃-xKHSO₄-10KCl, $10 \le x \le 40$

Figure 3. 20. Evolution de la masse volumique ρ en fonction de x dans le ternaire (90-x)NaPO₃-xKHSO₄-10KBr, $10 \le x \le 40$

D'après les figures et les tableaux précédents, on remarque clairement une évolution quasi linéaire de la masse volumique pour tous les systèmes étudiés. Elle décroit linéairement avec la teneur de KHSO₄, dans les verres, (90-x)NaPO₃-xKHSO₄-10C₂H₃LiO₂, (80-x) NaPO₃-xKHSO₄-20C₂H₃LiO₂, (90-x) NaPO₃-x KHSO₄-10KCl , (90-x) NaPO₃-x KHSO₄-10KBr et avec la teneur de NaCl et NaBr dans les verres (80-x) NaPO₃ -20 KHSO₄- xNaCl, (90-x) NaPO₃-10 KHSO₄- xNaBr.

D'une manière générale la masse volumique d'un verre est liée directement à celles des constituants qui le composent.

4. 3. Coefficient de dilatation thermique linéaire

4.3.1. Présentation

Lorsque la température d'un matériau augmente, l'amplitude de vibration des atomes, qui le compose, augmente. En général, cela entraine une augmentation des distances entre atomes, il se produit alors une dilatation du matériau caractérisé par le coefficient de dilatation thermique α , dont la formule est donnée ci-après [51]:

$$\alpha = \frac{\Delta L}{L_0 \Delta T}$$
 exprimé en K⁻¹

avec $L_0 =$ longueur initiale de l'échantillon

 ΔL , ΔT = variation respective de longueur et de température

Les coefficients de dilatation thermique sont mesurés à l'aide d'un dilatomètre SEIKO TMA/SS, avec une de chauffe de 2K/min et une force appliquée de 0,1N. Un soin particulier est apporté à la préparation des échantillons. En effet, les faces en contact avec la canne en silice, permettant la mesure de l'élongation, et le support doivent être parallèles. La précision liée à la mesure de α est estimée à $\pm 2.10^{-7}$ K⁻¹.

La figure 3. 21 montre l'allure générale de l'élongation d'un verre de phosphosulfate en fonction de la température.

Figure 3. 21. Allure générale de l'élongation d'un verre de phophosulfate en fonction de la température

En général, l'élongation ne suit pas une loi linéaire en fonction de la température. Ainsi, dans notre cas, le coefficient de dilatation thermique, noté α , est calculé pour un intervalle de température ou l'élongation est linéaire à la température. Il sera défini ici entre 60 et 160°C. Cette restriction est nécessaire afin de comparer rigoureusement l'influence de la composition sur le paramètre étudié.

4. 3. 2. Résultats expérimentaux

Les valeurs du coefficient de dilatation thermique α des verres étudiés sont regroupées dans le tableau 3. 18.

Composition (%mol)	$\alpha .10^{-6} (K^{-1})$
80N10K10C	22.8
75N15K10C	19
70N20K10C	17.7
60N30K10C	17
60N20K20C	20.7
40N30K30C	18.2
80N10K10NaCl	26,6
75N10K15NaCl	26,9
70N10K20NaCl	27
65N10K25NaCl	27,3
80N10K10NaBr	29.1
75N10K15NaBr	27.3
70N10K20NaBr	25.9
65N10K25NaBr	25.7
80N10K10KC1	26,7
70N20K10KCl	25,3
60N30K10KCl	24,9
50N40K10KCl	25,1
75N10K15KCl	25,8
80N10K10KBr	21,3
70N20K10KBr	20,8
60N30K10KBr	19,7
50N40K10KBr	22
75N10K15KBr	21,7

Tableau 3. 18. Valeurs du coefficient de dilatation thermique des verres étudiés

Les valeurs de α sont assez élevées et sont supérieures à celles des verres fluorés. Cette observation expérimentale peut être expliquée par la faible énergie de liaison anion-cation qui est plus facilement perturbée par l'agitation thermique. L'accroissement des longueurs de liaison interatomique se traduit à l'échelle macroscopique par une augmentation de volume du matériau.

4. 3. 3. Evolution du coefficient de dilatation thermique

Les figures 3. 22- 24 présentent l'évolution du coefficient de dilatation thermique en fonction de x des verres (90-x)NaPO₃-x KHSO₄-10 C₂H₃LiO₂, (90-x)NaPO₃-10KHSO₄-xNaCl et (90-x)NaPO₃-10KHSO₄-xNaBr.

Figure 3. 22. Evolution du coefficient de dilatation thermique α en fonction de x (% mol) dans le ternaire (90-x)NaPO₃-x KHSO₄-10 C₂H₃LiO₂

Figure 3. 23. Evolution du coefficient de dilatation thermique α en fonction de x dans le ternaire (90-x)NaPO₃-10KHSO₄-xNaCl, $10 \le x \le 25$

Figure 3. 24. Evolution du coefficient de dilatation thermique α en fonction de x dans le ternaire (90-x)NaPO₃-10KHSO₄-xNaBr, 10 ≤ x ≤ 25

On observe une certaine dispersion des valeurs de α en fonction du taux de substitution. La dilatation thermique d'un verre dépend de son histoire thermique [52]. Un recuit du matériau un peu en dessous de la transition vitreuse permet d'homogénéiser sa structure par l'élimination des contraintes mécaniques internes. Malgré les précautions que nous avons prises, une dispersion des valeurs de α subsiste.

L'examen de la figure 3. 22, montre une diminution notable de α quand la teneur de KHSO₄ croit, autrement dit, α augmente avec le taux de NaPO₃, tout en gardant la quantité d'acétate fixe (10%).

Cependant, on remarque un comportement nettement différent entre les systèmes contenant NaCl et NaBr. Le coefficient de dilatation thermique croit quand le taux de NaCl augmente (Figure 3. 23), tandis qu'il décroit lorsque la teneur de NaBr augmente (Figure 3. 24). L'introduction d'un élément monovalent dans la structure diminue le nombre de liaison. Les cations alcalins Li⁺, Na⁺, K⁺, peuvent être considérés comme modificateurs de réseau, ils provoquent alors une élongation des liaisons P-O. La force de ces liaisons s'en trouve amoindrie. Macroscopiquement, on observe une augmentation du coefficient de dilatation thermique.

4. 3. Indice de réfraction n_D

4.3.1. Présentation

Les mesures de l'indice de réfraction ont été effectuées à l'aide d'un réfractomètre d'Abbe. La longueur d'onde de référence est celle de la raie D du sodium ($\lambda = 589,3$ nm). Seules les compositions permettant d'obtenir des échantillons convenables présentant au moins deux faces perpendiculaires susceptibles d'être polies sont retenues pour les mesures de l'indice de réfraction. La précision de la mesure est 0, 005.

Le caractère hygroscopique de nos verres ne nous a pas permis d'utiliser l'appareil " METRICON MODELE 2010 Prism coupler ", avec lequel on avait effectué la mesure de l'indice des verres de fluorohafnate. Donc on s'est contenté d'utiliser un réfractomètre d'Abbe.

4. 3. 2. Résultats expérimentaux

Les valeurs de l'indice de réfraction des verres sélectionnées sont rassemblées dans les tableaux 3. 19-22.

- ···- 05 04		
Composition (%mol)	n _D	
90N10K	1.488	
80N20K	1.486	
70N30K	1.485	
60N40K	1.483	
50N50K	1.481	

Tableau 3. 19. Valeurs de l'indice de réfraction n_D du bir	naire
NaPO3-KHSO4	

Tableau 3. 20. Valeurs de l'indice de réfraction du verre (90-x)NaPO₃-10KHSO₄-x C₂H₃LiO₂

Composition (%mol)	n _D
80N10K10C	1.496
75N10K15C	1.495
70N10K20C	1.493
65N10K25C	1.494
60N10K30	1.491

Tableau 3. 21. Valeurs de l'indice de réfraction n_D du verre (90-x) NaPO₃-10KHSO₄- xNaCl

Composition (%mol)	n _D
80N10K10NaCl	1.478
75N10K15NaCl	1.477
70N10K20NaCl	1.475
65N10K25NaCl	1.473

Composition (%mol)	n _D
80N10K10NaBr	1.477
75N10K15NaBr	1.478
70N10K20NaBr	1.476
65N10K25NaBr	1.474

Tableau 3. 22. Valeurs de l'indice de réfraction n_D du verre (90-x) NaPO₃-10KHSO₄-x NaBr

4.3.3. Evolution de l'indice de réfraction

La figure 3. 25 représente l'évolution de l'indice de réfraction en fonction de la teneur des substituants, des systèmes, NaPO₃-KHSO₄-C₂H₃LiO₂, NaPO₃-KHSO₄- NaCl et NaPO₃-KHSO₄- NaBr.

Figure 3. 25. Evolution de l'indice de réfraction n_D en fonction de x

L'examen de la figure 3. 25 montre que l'indice de réfraction diminue lorsque la concentration en $C_2H_3O_2Li$, NaCl et NaBr augmente.

D'une manière générale l'indice de réfraction dépend de deux facteurs : la polarisabilité des ions et des liaisons, et le nombre d'éléments polarisables par unité de volume. La substitution d'un ion par un autre ion moins polarisable entraine en général une diminution de l'indice de réfraction.

Nous remarquons une corrélation entre les variations de l'indice de réfraction et celles de la masse volumique en fonction de la composition.

4. 4. Transmission optique

La fenêtre de transmission optique (UV+visible+proche IR) constitue l'une des caractéristiques physiques déterminant les applications potentielles d'un verre. Cette fenêtre optique qui, dans le visible, correspond à la sensibilité spectrale de l'œil humain, est due à ce que les transitions électroniques de la bande de valence vers la bande de conduction correspondent à la coupure dans l'ultraviolet alors que les vibrations propres des ions constituants du réseau produisent leurs effets dans l'infrarouge.

4.4.1. Transmission UV-Visible

Les spectres UV-visible des systèmes étudiés sont représentés sur les figures 3. 26 -31.

Figure 3. 26. Spectre de transmission UV-visible du binaire KHSO₄-NaPO₃

Figure 3. 27. Spectre de transmission UV-visible du ternaire KHSO₄-NaPO₃-C₂H₃O₂Li

Figure 3. 28. Spectre de transmission UV-visible du ternaire KHSO₄-NaPO₃-NaCl

Figure 3. 29. Spectre de transmission UV-visible du ternaire KHSO₄-NaPO₃-NaBr

Figure 3. 30. Spectre de transmission UV-visible du ternaire KHSO₄-NaPO₃-KCl

Figure 3. 31. Spectre de transmission UV-visible du ternaire KHSO₄-NaPO₃-KBr

L'examen des figures précédentes montre un niveau maximum de transmission d'environ 85%. Ce niveau est inférieur à celui qui correspond aux pertes par réflexion sur les faces d'entrée et de sortie. La source principale des pertes optiques réside dans les défauts de surface, eux-mêmes liés à l'attaque par l'humidité atmosphérique. Il est atteint dans la composition 75N10K15NaCl. Il n'y a pas de différence significative entre les différents verres étudiés. Ils présentent de limite de transmission UV vers 300 nm. Ces verres sont presque opaques au rayonnement ultraviolet.

4.4.2. Transmission Infrarouge

Les spectres de transmission IR ont été effectués à l'aide d'un spectromètre BRUKER VECTOR 22. Dans les verres, la longueur d'onde de coupure multi phonon limite de la transmission IR, est due aux vibrations de liaisons. Cette longueur d'onde d'absorption est donnée par la relation :

$$\lambda = 2\pi c \left(\frac{\mu}{k}\right)^{\frac{1}{2}}$$

Avec c : célérité de la lumière

- μ : masse réduite des vibrateurs
- k : constante de force de liaison.

Donc pour augmenter la transparence du matériau, il faut diminuer l'énergie de phonon, c'est-à-dire qu'il faut synthétiser des verres comportant des éléments lourds et de faibles charges.

Les figures 3. 32 et 3. 33 présentent la transmission des verres (en poudre + KBr) des systèmes KHSO₄-NaPO₃ et KHSO₄-NaPO₃-C₂H₃O₂Li.

Figure 3. 32. Spectre de transmission IR du binaire KHSO₄-NaPO₃

Figure 3. 33. Spectre de transmission IR du ternaire KHSO₄-NaPO₃-C₂H₃O₂Li

En examinant les figures précédentes, nous remarquons que ces verres sont transparents jusqu'à 7,8 – 8 μ m (1280 – 1250 cm⁻¹). La transmission infrarouge d'un matériau est très sensible à la présence d'impuretés. Les spectres présentent plusieurs bandes d'absorption :

-Une bande à 3464 cm⁻¹ (2,9 μ m), de forte intensité, due aux vibrations du groupe hydroxyle OH. Elle est liée à la contamination des produits de départs et aussi aux conditions de la synthèse.

-Une bande à 3464 cm⁻¹ (3,5 μ m), suivie d'une autre à 2343 cm⁻¹ (4 μ m), nous pouvons attribuer ces bandes à une limite d'absorption de deux phonons due aux vibrations des tétraèdres PO₄.

Ce comportement est classique dans les verres de phosphate, leur transmission est en général limitée à 2500 cm^{-1} qui est un comportement caractéristique de ce type de verres [53 - 54].

-Une bande à 1645 cm⁻¹ (6 μ m) de faible intensité, à l'eau moléculaire à la surface de l'échantillon.

4.5. Modules élastiques

Les mesures des modules d'élasticité E, G, K et μ ont été réalisées par échographie ultrasonore en utilisant la méthode pulse-écho. Le principe de la méthode est basé sur la mesure des vitesses de propagation longitudinale V_L et transversale V_T d'une onde ultrasonore dans le matériau étudié (les détails de la méthode et les définitions des modules étudiés sont donnés au chapitre 1).

Les valeurs des vitesses de propagation longitudinales, transversales, du module de Young E, du module de cisaillement G, du module de compression K et du coefficient de poisson μ des verres des systèmes NaPO₃-KHSO₄-C₂H₃O₂Li, NaPO₃-KHSO₄-NaCl, NaPO₃-KHSO₄-KCl, NaPO₃-KHSO₄-NaBr et NaPO₃-KHSO₄-KBr, sont regroupés dans les tableaux 3. 23 – 27.

			- 5				
Composition (%mol)	ρ (Kg/m ³⁾	V _L (ms ⁻¹)	V _T (ms ⁻¹)	E (GPa)	G (GPa)	K (GPa)	μ
80N10K10C	2490	4621	2295	35.1	13.2	35.7	0.3363
70N20K10C	2400	4073	2253	31.2	12.2	23.5	0.2794
60N30K10C	2430	4125	2378	34.4	13.7	23	0.2509
50N40K10C	2440	3859	2027	26.3	10.1	22.9	0.3100
40N50K10C	2430	4004	2223	30.7	12.1	22.9	0.2800
70N10K20C	2510	4895	2549	42.8	16.3	38.4	0.3139
60N20K20C	2490	5058	2578	43.8	16.5	41.6	0.3250
75N10K15C	2470	4290	2290	33.7	12.6	28.2	0.3008
55N30K15C	2460	3866	2166	29.4	11.5	21.4	0.2700

Tableau 3. 23. Valeurs des modules élastiques du verre NaPO₃-KHSO₄-C₂H₃O₂Li

Composition (%mol)	ρ (Kg/m ³⁾	V _L (ms ⁻¹)	V _T (ms ⁻¹)	E (GPa)	G (GPa)	K (GPa)	μ
80N10K10NaCl	2453	4490	2449	37.9	14.7	29.8	0.288
70N20K10NaCl	2320	4031	2163	28.2	10.9	23.2	0.297
60N30K10NaCl	2494	3715	1990	25.6	9.9	21.2	0.299
50N40K1ONaCl	2400	3800	2065	26.4	10.2	21	0.290
75N10K15NaCl	2470	4470	2432	37.7	14.6	29.8	0.289
65N20K15NaCl	2445	4448	2444	37	14.6	28.9	0.269
55N30K15NaCl	2480	4250	2346	34.9	13.6	26.6	0.281
70N10K20NaCl	2404	4389	2373	35	13.5	28.2	0.293
65N10K25NaCl	2481	4346	2379	36.1	14	28.1	0.286

Tableau 3. 24. Valeurs des modules élastiques du verre

NaPO₃-KHSO₄-NaCl

Tableau 3. 25. Valeurs des modules élastiques du verre

NaPO ₃ -KHSO ₄ -	KCl
--	-----

Composition (%mol)	ρ (Kg/m ³⁾	V_{L} (ms ⁻¹)	V _T (ms ⁻¹)	E (GPa)	G (GPa)	K (GPa)	μ
80N10K10KC1	2574	4492	2416	38.97	15.03	31.9	0.296
70N20K10KC1	2442	3965	2122	28.58	10.99	23.7	0.299
60N30K10KC1	2567	4242	2260	34.14	13.11	28.7	0.301
50N40K10KC1	2532	3867	2044	27.63	10.57	23.7	0.306
75N10K15KCl	2517	4018	2227	31.92	12.48	23.9	0.278
65N20K15KCl	2836	4424	2298	39.04	14.98	35.5	0.303
55N30K15KC1	2653	3987	2358	36.02	14.75	22.5	0.231

Composition (%mol)	ρ (Kg/m ³⁾	V_L (ms ⁻¹)	V _T (ms ⁻¹)	E (GPa)	G (GPa)	K (GPa)	μ
80N10K10NaBr	2364	4335	2283	32.23	14.32	27.9	0.310
70N20K10NaBr	2452	4472	2332	35.04	13.34	31.2	0.313
60N30K10NaBr	2441	4361	2292	33.6	12.83	29.3	0.309
50N40K10NaBr	2434	4100	2202	30.64	11.81	25.2	0.297
40N50K10NaBr	2270	4145	2319	31.06	12.2	22.7	0.272
75N10K15NaBr	2568	3839	2049	28.06	10.78	23.5	0.301
65N20K15NaBr	2445	4300	2304	33.72	12.98	27.9	0.298
55N30K15NaBr	2365	4298	2325	33.08	12.79	26.6	0.293
70N10K20NaBr	2532	4260	2316	35.05	13.58	27.8	0.290
60N20K20NaBr	2452	4234	2252	32.39	12.43	27.4	0.303
65N10K25NaBr	2500	4157	2280	33.40	12.99	25.8	0.285

Tableau 3. 26. Valeurs des modules élastiques du verre NaPO₃-KHSO₄-NaBr

Tableau 3. 27. Valeurs des modules élastiques du verre

NaPO₃-KHSO₄-KBr

Composition (%mol)	ρ (Kg/m ³⁾	V _L (ms ⁻¹)	V _T (ms ⁻¹)	E (GPa)	G (GPa)	K (GPa)	μ
80N10K10KBr	2520	3890	2089	28.53	10.95	23.5	0.2974
70N20K10KBr	2570	4095	2155	31.25	11.94	27.2	0.3080
60N30K10KBr	2550	4565	2466	40.14	15.51	32.5	0.2938
50N40K10KBr	2500	5315	2949	55.58	21.75	41.6	0.2774
75N10K15KBr	2570	3983	2380	35.58	14.55	21.4	0.2220
65N20K15KBr	2550	4843	2463	41.01	15.47	39.2	0.3256
55N30K15KBr	2570	3717	1955	25.73	9.83	22.4	0.3080
70N10K20KBr	2640	4110	2229	33.88	13.11	27.1	0.2920
60N20K20KBr	2540	3727	2019	26.76	10.35	21.5	0.2922

L'examen des tableaux précédents montre que la substitution de NaPO₃ par KHSO₄ diminue le module de Young E et le module de cisaillement G dans tous les systèmes étudiés à l'exception du système contenant KBr les fait augmenter. On remarque aussi dans cette étude, que ces modules E et G, augmentent avec la teneur des substituants C₂H₃O₂Li, KCl et KBr, par contre ils diminuent quand le taux de NaCl et NaBr augmente. L'incertitude sur les valeurs de E, G et K étant de \pm 1GPa.

L'augmentation des valeurs du module de Young avec le taux des substituants est liée à une modification de structure [55].

D'une manière générale les valeurs des modules élastiques de nos verres (E = 34GPa, G = 13GPa, K = 28GPa et μ = 0,30) sont très proches de celles des verres de phosphate (E = 31GPa, G = 12GPa et μ = 0,29) [56].

Si on compare ces verres avec leurs homologues de silice, considérés comme verres rigides (E = 94GPa, μ = 0,17) [57], on peut confirmer que nos verres sont des verres mous.

4. 6. Micro dureté Vickers

Les mesures de la micro dureté Hv ont été réalisées à l'aide d'un microduremètre Matsuzawa MXT 70(la méthode de mesure est détaillée dans le chapitre 1). On applique une charge de 50g pendant 10 secondes.

Le tableau 3. 28 présente les valeurs de Hv en fonction de la composition. L'incertitude sur ces valeurs, Δ Hv, est égale à 1%.

Composition	H _V
(%mol)	(Kg/mm ²)
80N10K10C	47
60N20K20C	50
55C30K15N	51
80N10K10NaCl	79
60N30K10NaCl	81
50N40K10NaCl	157
65N10K25NaCl	122
50N40K10KC1	67
75N10K15KCl	71
55N30K15KCl	115
70N20K10NaBr	54
50N40K10NaBr	74
75N10K15NaBr	124
70N20K10KBr	98
50N40K10KBr	123

 Tableau 3. 28. Micro dureté Vickers pour une charge de 50g pendant 10 s

On ne peut pas discerner l'influence de la nature du substituant sur la valeur de H_V . Toutefois, le verre 50N40K10NaCl présente la plus grande valeur de H_V (157 Kg/mm²), la plus basse valeur est atteinte par le verre 80N10K10C.

D'une manière générale, la micodureté de ces verres est très basse, de 5 à 7 fois moins que celle des verres de silicate ($500 - 700 \text{ Kg/mm}^2$), et de 2 à 3 fois moins que les verres de fluorures ($250 - 350 \text{ Kg/mm}^2$). Cela correspond à la différence des forces de liaisons. Ceci confirme donc que ces verres de phosphosulfates sont des verres mous.

5. CONCLUSION

De nouveaux systèmes vitreux à base de KHSO₄ et NaPO₃ ont été identifiés et caractérisés. La préparation aisée de ces verres a permis d'obtenir des échantillons massifs et stables à plus de 50% molaire de KHSO₄.

Les propriétés thermiques, mécaniques et optiques de ces verres ont été étudiées. L'incorporation de l'acétate de lithium et de sels d'halogénures d'alcalins à la matrice de base, entraine une variation parfois linéaire des différentes propriétés physiques. L'étude des propriétés thermiques a montré que la substitution de NaPO₃ par $C_2H_3O_2Li$, NaCl et NaBr diminue la Tg, tandis que KCl et KBr l'augmente. Par contre la substitution de KHSO₄ par les différents substituant augmente la Tg.

Ces verres ont un coefficient de dilatation élevé et un indice de réfraction faible inférieur à 1,5.

L'étude des propriétés mécaniques a montré :

-une masse volumique faible qui diminue lorsqu'on substitue NaPO₃ par les différents substituant.

-les valeurs des modules élastiques (E =34GPa, G = 13GPa, K = 28GPa et μ = 0,30), sont très inférieures à celles des verres fluorés et des verres de silice.

-une dureté très faible.

L'étude des propriétés optiques de ces verres a révélé qu'ils présentent une limite de transmission UV entre 200 et 300 nm et ils transmettent jusqu'à $7,8 - 8 \mu m$ dans l'infrarouge.

Ces résultats nous permettent de confirmer que ces verres, sont mous et très sensibles à l'humidité ; ce qui rend très difficile l'étude de leur caractérisation.

Bibliographie du chapitre 3

[1] S. Chenu, Thèse Université de Rennes 1 (2009)

[2] J.R. Van Wazer, "Phosphorous and its compounds", Interscience, New York,1(1958) 831.

[3] E. Lippma, M. Magi, A. Samosan, and al., "Structural studies of silicates by solid state high resolution Si NMR", *J. Amer. Chem. Soc.*, 102 (1980) 4889.

[4] A.K. Varshneya, "Fundamentals of Inorganic glasses", Academic Press, New York, 1 (1994)112.

[5] G.D. Khattak, E.E. Khawaja, L.E. Wenger, and al., "Composition-dependent loss of phosphorus in the formation of transition-metal phosphate glasses", Journal of Non-Crystalline Solids, 194 (1996) 1-12.

[6] G.S. King, US Patent 2.395.126, (1946).

[7] R.C. Hall and G.J. Munter, US Patent 2.426.974, (1947).

[8] A.G. Pincus, US Patent 2.434.674, (1948).

[9] R.K. Brow, "Review: the structure of simple phosphate glasses", Journal of Non-Crystalline Solids, 263-264 (2000)1-28

[10] J.H. Campbell and T.I. Suratwala, "Nd-doped phosphate glasses for high-energy/high-peak-power lasers", Journal of Non-Crystalline Solids, 263-264 (2000) 318-341

[11] D. Ehrt and W. Seeber, "Glass for high performance optics and laser technology", Journal of Non-Crystalline Solids, 129 (1991)19-30

[12] A.F. Obaton, C. Parent, G. Le Flem, and al., "Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm", Journal of Alloys and Compounds, 300 (2000) 123-130

[13] S. Jiang, T. Luo, B.-C. Hwang, and al., "Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length", Journal of Non-Crystalline Solids, 263-264 (2000) 364-368

[14] H. Ebendorff-Heidepriem, W. Seeber and D. Ehrt, "Spectroscopic properties of Nd3+ ions in phoshate glasses", Journal of Non-Crystalline Solids, 183 (1995)191-200

[15] W.F. Krupke, M.D. Shinn, T.A. Kirchoff, and al., "Promethium-doped phosphate glass laser at 933 and 1098 nm", Applied physics letters, 51(1987) 2186

[16] B.G. Aitken, "Phosphate glasses for glass molds", US Patent 5.022.921 (1991)

[17] H. Takebe, W. Nonaka, T. Kubo, and al., "Preparation and properties of transparent SnO-

P₂O₅ glasses", Journal of Physics and Chemistry of Solids, 68 (2007) 983-986

[18] A.M. Bevilacqua, N.B. Messi de Bernasconi, D.O. Russo, and al., "Immobilization of simulated high-level liquid wastes in sintered borosilicate, aluminosilicate and aluminoborosilicate glasses", Journal of Nuclear Materials, 229 (1996) 187-193

[19] M.J. Plodinec, "Borosilicate glasses for nuclear waste immobilisation", Glass Technology, 41(2000)186-192

[20] D.E. Day, C.S. Ray, G.K. Marasinghe, and al., "An alternative host matrix based on iron phosphate glasses for the devitrification of specialized waste forms", (1996)1-39

[21] G.K. Marasinghe, M. Karabulut, C.S. Ray, and al., "Properties and structure of vitrified iron phosphate nuclear wasteforms", Journal of Non-Crystalline Solids, 263-264 (2000) 146-154

[22] D.E. Day, Z. Wu, C.S. Ray, and al., "Chemically durable iron phosphate glass wasteforms", Journal of Non-Crystalline Solids, 241 (1998) 1-12

[23] L.L. Hench, "Bioceramics: From Concept to Clinic", Journal of American ceramic society, 74 (1991) 1487-1510

[24]M.Zoulgami, "Nouvelles préparations pour biomatériaux, ciment d'hydroxyapatite et association de phosphates inorganiques avec un géopolymère de type polysialate-siloxo", Thèse de l'université de Rennes 1 (2001).

[25] J. Vogel, P. Wangep and P. Hartmann, "Phosphate glasses and glass-ceramics for medical applications", Glass science and technology, 70 (1997) 220-223

[26] E.A. Abou Neel, D.M. Pickup, S.P. Valappil, and al., "Bioactive functional materials: a perspective on phosphate-based glasses", Journal of Materials Chemistry, 19 (2009) 690 – 701.

[27] I.W. Donald, "Preparation, properties and chemistry of glass and glass-ceramic-to-metal seals and coatings", Journal of materials science, 28 (1993) 2841-2886

[28] R. Morena, "Phosphate glasses as alternatives to Pb-based sealing frits", Journal of Non-Crystalline Solids, 263-264 (2000) 382-387

[29] T.Y. Wei, Y. Hu and L.G. Hwa, "Structure and elastic properties of low-temperature sealing phosphate glasses", Journal of Non-Crystalline Solids, 288 (2001) 140-147

[30] S.W. Martin, "Ionic conduction in phosphate glasses", Journal of American Ceramic Society, 74 (1991) 1767-1784.

[31] J. Fu, "Fast Li+ ion conduction in Li2O–(Al2O3 Ga2O3)–TiO2–P2O5 glass–ceramics", Journal of materials science, 33 (1998) 1549-1553

[32] J.B. Bates, N.J. Dudney, G.R. Gruzalski, and al., "Electrical properties of amorphous lithium electrolyte thin films", Solid State Ionics, 53-56 (1992) 647-654

[33] F. Muñoz, A. Durán, L. Pascual, and al., "Increased electrical conductivity of LiPON glasses produced by ammonolysis", Solid State Ionics, 179 (2008) 574-579

[34] A. Bhide and K. Hariharan, "Sodium ion transport in NaPO₃-Na₂SO₄ glasses", Materials Chemistry and Physics, 105 (2007) 213-221

[35] M. Zhou and A. Ahmad, "Synthesis, processing and characterization of nasicon solid electrolytes for CO₂ sensing applications", Sensors and Actuators B: Chemical, 122 (2007) 419-426

[36] F. Lisdat, N. Miura and N. Yamazoe, "NASICON-based solid-electrolyte cell as transducer for enzyme sensors", Sensors and Actuators B: Chemical, 30 (1996) 195-200

[37] K.C. Sobha and K.J. Rao, "ac conductivity and transport studies in phosphate glasses with NASICON-type chemistry", Solid State Ionics, 81 (1995) 145-156

[38] A. Ishii and K. Akawa, Reports of the Research Laboratory Asahi Glass Co. 1 (1965) 15.

[39] C. A. Angell, J. Am. Ceram. Soc. 48 (1965) 540.

[40] V. A. Kolesova, Fiz. Khim. Stekla, 1 (1975) 296.

- [41] P. S. L. Narasimham and K. J. Rao, J. Non-Cryst. Solids 27 (1978) 225.
- [42] C. A. Angell, J. Am. Ceram. Soc. 51(1968) 124.
- [43] M. D. Ingram and J. A. Duffy, J. Chem. Soc. A (1968) 2575.
- [44] T. Forland and W. A. Weyl, J. Am. Ceram. Soc. 33 (1950) 186
- [45] J. Wong, Ph. D. Thesis, Purdue University (1970).
- [46] B. U. Maria-Camelia, Thèse Université de Grenoble (2001)
- [47] P. A. Bingham, J. Non-Cryst. Solids 355 (2009) 1526-1538
- [48] P. A. Bingham, R. J. Hand, Mat. Res. Bul 43 (2008) 1679-1693
- [49] G. A. Kumar et al., Journal of Luminescence 99 (2002) 141-148
- [50] M. Saad and M. Poulain, Mat. Sci. Forum 19-20 (1987) 11
- [51] H. Scholze, " Le Verre, nature, structure et propriétés ", Ed. Institut du Verre, (1980) 148-160
- [52] A. G. Clara and J. M. Parker, Phys. Chem. Glasses 30 (1989) 205-210
- [53] M. A. Bunuel, R. Alcada and R. Cases, J. Phys. Matter. 10 (1998) 9343-9358
- [54] N. Duhamel, Thèse de doctorat, Université de Rennes 1 (1995)

[55] J. E. Shelby, " Introduction to glass science and technology ", the Royal Society of Chemistry Paperbacks (Cambridge, United Kingdom), (1977) 196

[56] K. H. Chang, T.H. Lee & L. G. Hwa, " structure and elastic properties of iron phosphate glasses ", Chinese. Journal. of. Physics. , Vol 41 (4) (2003) 414-421.

[57] H. Scholze, " le Verre, nature, structure et propriétés", Institut du Verre (Paris), (1974)119.