CHAPITRE II

TRAVAUX ANTÉRIEURS SUR LES DEBITS D'EXHAURE DES FOUILLES ET PHÉNOMÈNE DE RENARD

II-1 INTRODUCTION

Les rabattements de nappe à l'abri d'une enceinte étanche sont particulièrement favorables à l'apparition du renard par l'écoulement vertical ascendant qu'ils induisent. Le terme renard couramment utilisé recouvre en fait deux phénomènes distincts. La boulance et le soulèvement généralisé, le second, accident brutal pouvant avoir des conséquences dramatiques, est heureusement assez rare car souvent précédé par la boulance. Celle-ci, phénomène de surface souvent localisé, apparaît plus fréquemment, parfois même sous l'effet d'écoulement naturel, ne mettant pas en cause brutalement la stabilité d'ensemble du fond de fouille, ces incidents n'en ont pas moins des conséquences parfois importantes pour le chantier lui-même (difficultés de circulation des engins, débits très importants pouvant conduire à l'arrêt du chantier, injections d'étanchement), comme pour son environnement (tassement dû à l'entraînement d'horizons de sable fin).

Le phénomène élémentaire provoquant le renard est bien connu et expliqué par la notion de gradient hydraulique critique. Par contre, l'application de cette notion au problème de l'écoulement autour d'un écran étanche est complexe, cet écoulement n'étant pas uniforme de plus, le frottement interne du sol s'oppose partiellement au soulèvement généralisé. En pratique, le problème est encore compliqué par l'hétérogénéité marquée du sol vis à vis de la perméabilité.

La conception des excavations profondes est souvent dominée par l'écoulement de l'eau autour des écrans de soutènement. L'infiltration d'eau vers le fond de fouille, liée à la mise hors d'eau, influe sur la stabilité globale de l'écran et la stabilité du fond de fouille où un soulèvement ou une boulance peuvent apparaître.

La détermination du débit d'exhaure des batardeaux a été considérée par plusieurs chercheurs. Au début, des abaques de détermination du débit d'exhaure ont été présentés. Ces abaques sont basés sur des solutions numériques (McNamee 1949) ou des modèles physiques (Marsland 1953). Après, des solutions analytiques ont été publiées par plusieurs chercheurs. Le problème d'écoulement au contournement des batardeaux fichés dans un milieu fini ou semi-infini, a été développé par Harr (1962) et Davidenkoff (1965).

II-2 L'APPROCHE EXPERIMENTALE DU PHENOMENE DE RENARD

C'est à TERZAGHI (1922) que l'on doit les premiers résultats importants concernant le soulèvement du sol sous l'effet d'un écoulement vertical ascendant. Ses essais ont mis en évidence deux processus différents conduisant au renard :

- La boulance qui est un phénomène de surface se manifestant souvent sous la forme ponctuelle d'éruptions de sable.
- Le soulèvement général et simultané du sol en masse.

Ces expérimentations ont permis à TERZAGHI d'introduire la notion du gradient critique tel que le poids des grains est annulé par les forces d'écoulement, expliquant ainsi le soulèvement du sol. BAZANT (1949) et SCHMIDBAUER (1950) ont examiné dans leur expérience le processus du déplacement des grains et du gonflement d'un massif de sable sous l'effet de gradients égaux ou supérieurs au gradient critique.

MARSLAND (1953) s'est l'intéressé plus spécifiquement au renard provoqué par l'écoulement autour des écrans étanches. Ses expériences ont été effectuées sur un modèle réduit de batardeau avec fiche et largeur variable. Il utilisait un sable de granulométrie uniforme, soit à l'état lâche (n = 0.42) soit à l'état dense (0.37). Après avoir provoqué le renard dans son modèle, il compare la perte de charge totale critique H_c correspondante aux valeurs H_{c1} et H_{c2} tels que :

 \blacktriangleright Le gradient soit critique en fond de fouille contre le rideau H_{c1}

Le gradient moyen entre l'extrémité de la palplanche et le fond de fouille soit critique H_{c2} . Cette seconde valeur est toujours inférieure à H_{c1} dans les sols homogènes.

Lors de ses expériences sur sable lâche, MARSLAND constate que le renard se déclenche pour une valeur de H_c comprise entre H_{c1} et H_{c2} , généralement plus proche de H_{c2} . La rupture se traduit par un soulèvement simultané d'une masse de sol située devant la fiche.

Au contraire, dans les sables denses, le phénomène se déclenche en surface pour une perte de charge égale voire supérieur à H_{c1} . En fait, une observation plus fine indique qu'il se produit dans tous les cas un gonflement presque imperceptible en surface dès que $H_{c1} = H_{c.}$ C'est donc par la boulance que se manifeste le renard dans les sables denses.

MARSLAND a également réalisé quelques expériences sur des sols sableux multicouches. Ces essais indiquent que la stratification provoque une diminution de la stabilité dans certains cas.

L'expérimentation de MARTIN (1971) montre que la notion de gradient critique, comme la loi de DARCY n'est applicable qu'à l'échelle macroscopique, c'est à dire en considérant des volumes incluant un nombre suffisant de grains. Il a examiné en particulier le cas de l'écoulement autour d'un cylindre partiellement enterré (figure II.1) Lorsque $\frac{R}{d} > 1$ le gradient au point E est théoriquement infini. Dans ces conditions, le moindre écoulement devrait provoquer la boulance. En fait le renard n'apparaît pas avant que le gradient moyen, compté sur une distance correspondant à plusieurs grains, ne soit critique.

Figure II.1 : Expérience de MARTIN

En fin KALIN (1977) a soumis des échantillons de sols stratifiés à un écoulement vertical uniforme. Il montre que dans ce cas l'apparition du renard n'est déterminée ni par le gradient en fond de fouille ni par le gradient moyen compté sur toute la hauteur (i_m) , mais par la valeur maximale de $i_m(x)$, gradient moyen compté sur une distance x à partir de la surface du sol figure (II.2)

Figure II.2 : Principe de l'expérimentation de KALIN

Ce résultat met en évidence la difficulté de prévision du renard en vraie grandeur. Les sols naturels étant généralement stratifiés.

II-3 ETUDE EXPERIMENTALE DU RENARD SUR MODELE REDUIT

Pour le problème précis du renard lié à l'écoulement autour d'un écran étanche, les résultats les plus intéressants sont ceux de MARSLAND (1953) qui montre bien l'influence de l'état de densité du sol sur le déclenchement de la rupture. Ainsi dans le sable dense, le renard apparaît lié à la valeur du gradient de sortie i_e , encore que certaines expériences aient fait apparaître une perte de charge supérieure à la valeur théorique ainsi déterminée. MARSLAND attribue cette différence au frottement du sol sur les parois du modèle. Pour les sables lâches, le critère contrôlant la rupture apparaît moins bien défini, MARSLAND parle d'un soulèvement généralisé, parfois d'une rupture en coin, ce qui contredirait le schéma de TERZAGHI.

Afin de préciser ces résultats et de cerner l'influence de la densité (i.e de la résistance au cisaillement du sable) sur le critère de rupture, KASTNER (1982) a réalisé une série d'expériences en milieu homogène sur un modèle réduit de batardeau. Il est représenté schématiquement sur la figure (II.3) il s'agit d'une cuve de 2.00m x 0.60m x 0.60m dont les deux parois latérales sont constituées d'épaisses plaques de verre. Afin de réduire les frottements tout en permettant une bonne observation, les deux palplanches sont constituées de plaques de DURAL de 2cm d'épaisseur, leur position est réglable tant verticalement que latéralement. L'une des palplanches a été équipée de seize prises de pression situées à divers niveaux côté fouille et côté extérieur. Reliées à des piézomètres, ces prises permettent de connaître à chaque instant la répartition de la charge hydraulique le long de l'écran étanche. Le niveau d'eau extérieur au batardeau est maintenu constant à l'aide de déversoirs alors que le rabattement dans la fouille est obtenu par un système de pompage équipé d'un débitmètre. Le sable utilisé est une silice fine de granulométrie serrée (0.06mm < d < 0.32mm).

Figure II.3 : Support expérimental

L'évolution de la perméabilité et de l'angle de frottement interne de ce sol en fonction de la densité sèche est donnée par les courbes de la figure II.4. La courbe $K = f(\gamma_d/\gamma_w)$ peut être approchée par la relation $K = 1,385.10^{-2}e^{3.69}$ qui indique une variation plus rapide que celle admise classiquement (du type $K = \frac{ce^3}{1+e}$).

Quant à l'angle de frottement interne, il varie linéairement avec la densité sèche sur l'intervalle étudié.

Figure II.4 : Variation de la perméabilité et de l'angle de frottement interne du sable utilisé avec sa densité.

KASTNER (1982) a réalisé une série d'essais avec un sable homogène, soit à l'état lâche obtenu par déversement du sable dans l'eau, soit à l'état dense obtenu par compactage plus au moins énergique.

Les essais sur sable de densité moyenne à forte montrent qu'au moment de la rupture, il apparaît que le gradient de sortie i_e est assez nettement inférieur au gradient critique. Par contre, l'extrapolation des mesures faites avant la rupture conduit à une hauteur critique inférieure à la hauteur critique expérimentale.

Cela indique qu'il y a eu modification de l'écoulement au voisinage du fond de fouille. MARSLAND avait noté dans des expériences similaires un gonflement du sol en fond de fouille. Selon lui, l'allégement du sable qui en résulte aurait dû provoquer une accélération du renard contrariée par le frottement sur les parois de l'écran. En fait, l'évolution de la courbe piézométrique montre que ce gonflement, se traduit par une chute du gradient au voisinage de la surface du sol qui peut être attribuée à une forte augmentation locale de la perméabilité. Ainsi ces mesures confirment que lorsque le gradient de sortie i_e atteint sa valeur critique $i_c = \gamma' / \gamma_w$, il y a bien un début de renard qui consiste en un léger gonflement du sol.

Sous l'effet de ce gonflement, la couche de sable superficielle voit sa perméabilité croître brutalement. Elle joue alors le rôle d'un tapis drainant qui retarde la propagation du soulèvement en profondeur. Le gradient moyen compté sur toute la fiche n'est alors égal qu'à 1.4.

Il se produit un soulèvement généralisé lorsque ce même gradient moyen atteint une valeur assez forte. Il semble donc que le soulèvement en masse dans le sable dense dépend de la valeur du gradient moyen qui doit être assez fort.

Les différents essais sur sable lâche ont conduit à des résultats très différents. Le soulèvement généralisé se produit alors que le gradient moyen est voisin de 1.3, valeur bien inférieure à celle constatée lors des essais sur sable dense.

L'analyse approfondie d'une belle série d'essais réalisés par SKEMPTON et BROGAN (1994) sur des sols granulaires au sujet des risques d'entraînement et les travaux de SHULER (1995) ont permis à MONNET (1998) de mettre en évidence. L'existence d'un gradient critique de renard. Ce gradient, est indépendant du gradient critique de TERZAGHI.

C'est la raison pour laquelle il est nécessaire d'imaginer un autre mécanisme de rupture qui ne soit pas en contradiction avec les conditions générales d'équilibres.

Il est certain que le critère de stabilité défini par le gradient critique de TERZAGHI est insuffisant et que sa validité est limitée au cas de sols qui tout à la fois, présentent une compacité suffisante et ne présentent pas de risque d'entraînements. Si des entraînements apparaissent, la compacité du sol va diminuer et sa perméabilité va augmenter. La valeur du gradient critique de TERZAGHI va diminuer légèrement, le diamètre efficace va augmenter légèrement et la perméabilité probablement beaucoup plus. Au total, la valeur de gradient critique d'apparition du renard va diminuer rapidement. A partir de la valeur de l, MONNET a pu définir un gradient de renard. En effet, pour un grain au sein d'un massif, sa force stabilisatrice reste la même que la boulance. En revanche la force déstabilisatrice va rester proportionnelle au diamètre du grain et à la vitesse de l'écoulement. C'est pourquoi on peut définir le gradient de renard comme une fonction du rapport de ces deux forces et il s'écrit :

$$i_{e} = 0.01 \left[\frac{d_{15}^{2}}{k} \right] i_{ct}$$
 (II.1)

Avec :

 i_{ct} : gradient crique de TERZAGHI

k: la perméabilité expérimentale du sol

Il sera donc possible de prévoir le comportement sous écoulement des sols qui ne sont pas sujets aux entraînements en plaçant leur point représentatif (d_{15} (mm), k (m/s) sur le diagramme de stabilité (figure II.5)

Figure II.5 : Diagramme de stabilité (d'après MONNET 1998)

1. Si le point représentatif se place à droite de la limite, la rupture sera obtenue par boulance, pour le gradient critique de TERZAGHI, i_{ct}

2. Si le point représentatif se place à gauche de la limite, la rupture sera obtenue par renard lorsque le gradient atteindra la valeur $i_R = 0.01 \left[\frac{d_{15}^2}{k} \right] i_{ct}$

II-4 LES METHODES DE CALCUL

II-4-1 Méthodes de calcul négligeant le frottement

TERZAGHI (1922), a introduit la notion de gradient critique conduisant, pour un écoulement unidirectionnel vertical, au soulèvement en masse du sol. De nombreux auteurs ont adapté cette notion à l'écoulement autour d'un écran étanche : ils considèrent qu'il y aura renard si, en un point du fond de fouille, le gradient vertical atteint sa valeur critique. Il s'agit en fait d'un critère de boulance. En milieu homogène, le point de plus fort gradient est le point E au contact de la palplanche (figure II.6). MC NAMEE, (1949) GRAY et NAIR (1967) ont donné des abaques permettant le calcul du gradient en ce point appelé gradient de sortie pour certaines configurations de batardeaux. KRIZEK (1968) et REDDY (1971) ont calculé i_e dans le cas d'une palplanche inclinée : Cette solution s'applique au cas où la direction de la perméabilité principale du sol serait inclinée sur l'horizontale. L'écran étanche vertical apparaîtra incliné après application de la transformation géométrique classique qui permet de se ramener, pour le calcul, à un sol isotrope.

Cependant, il est vite apparu que cette notion de gradient de sortie est insuffisante, le renard pouvant se déclancher avant qu'il y ait boulance. BOUMGART et DAVIDENKOFF (1929) repris par DAVIDENKOFF (1954) ont calculé les forces d'écoulement s'exerçant sur le prisme de sol EFGH situé au contact de la fiche (figureII.6) négligeant le frottement du sol sur les faces EF et GH, ils montrent que le prisme le plus défavorable correspond à une largeur FG très faible.

Dans ces conditions, il y a renard lorsque le gradient moyen compté sur FG est critique. Pour les sols homogènes, le point F le plus défavorable est le pied de palplanche P.

Figure II.6 : Schémas de soulèvement en masse de DAVIDENKOFE, BOUMGART et TERZAGHI

Sur la base de ses expériences, TERZAGHI (1943) propose que le prisme ait une largeur l égal à F/2, la charge hydraulique diminuant lorsque l'on va de F à G, cette règle de calcul conduit à des résultats plus favorables que la précédente. L'adoption de cette largeur 1 = F/2 apparaît comme une prise en compte détournée du frottement sur les faces verticales du prisme.

MANDEL (1951) modifie le schéma de DAVIDENKOFF en s'inspirant des travaux de CAQUOT et KERISEL sur la force portante des fondations, négligeant les forces de frottement sur les faces verticales, il rajoute aux forces d'écoulement l'effet du sol situé coté extérieur (figure II.7) qui se traduit par la relation suivante :

$$\sigma'_{1} < \sigma'_{2} e^{\pi t g \phi} . t g^{-2} (\frac{\pi}{4} + \frac{\phi}{2})$$
 (II.2)

Où:

 σ'_1 et σ'_2 sont les contraintes effectives s'exerçant sur une facette horizontale de part et d'autre du pied de l'écran, et ϕ le frottement interne du sol. Cette règle de calcul, négligeant d'une part le frottement du sol de part et d'autre du rideau au-dessus du pied de palplanche et d'autre part la variation rapide de la charge hydraulique en pied d'écran conduit à des résultats très pessimistes si on les compare aux données expérimentales.

Figure II.7 : Schémas de calcul de MANDEL

II-4-2 Méthodes de calcul considérant le frottement

BAZANT (1963) prend en compte le frottement en considérant une rupture circulaire se développant à partir du pied de l'écran sous l'effet des forces d'écoulement (figure II.8). Assimilant les lignes de courant à des ellipses, il a construit des abaques donnant la hauteur critique relative H_c/f en fonction du potentiel en pied d'écran H_p et de l'angle de frottement interne du sol. Notons qu'à leur limite, lorsque $\phi = 0$, ces abaques indiquent une perte de charge critique nulle, ce qui signifierait que le renard se déclenche dès qu'il y a écoulement.

Ce résultat est erroné de toute évidence, le renard ne pouvant se déclencher que lorsque les forces d'écoulement équilibrent le poids de l'élément de sol EIP (Figure II.8) (KASTNER 1982).

Sur la base de ses expérimentations et des observations antérieures, KASTNER (1982) a développé deux schémas de rupture qui se révèlent complémentaires :

- soulèvement d'un prisme rectangulaire
- soulèvement d'un prisme triangulaire

Figure II.8 : Schéma de rupture de BAZANT

II-5 COMPARAISON DES ESSAIS ET DES DIFFERENTES METHODES DE CALCUL

HARR (1962) avec nombre d'autres auteurs américains, pense que le critère de dimensionnement le plus significatif est celui du gradient de sortie. Les essais de KASTNER (1982) confirment que ce critère doit être absolument respecté, son dépassement ayant toujours été accompagné de désordres :

- Soit début de soulèvement du sable en masse.
- Soit gonflement du sol en fond de fouille mise en évidence par la modification de la courbe piézométrique. Dans le cas d'une fouille réelle, cela se traduirait par l'instabilité du fond de fouille et vraisemblablement par des entraînements de fines, le critère de TERZAGHI, bien que plus proche de la réalité, ne donne pas des résultats satisfaisants dans la mesure où il ne dépend que de facteurs géométriques alors que tous les résultats expérimentaux montrent l'influence de la densité du sol. Les résultats de BAZANT (1963) à l'inverse, dépendent du frottement interne du sol mais non de la géométrie du batardeau. Ils sous-estiment fortement la valeur du gradient moyen déclanchant le soulèvement en masse.

Aucun des critères examinés ne permet la prévision correcte du soulèvement généralisé. Cela s'explique si l'on remarque qu'un seul, prend en compte le frottement interne du sol et qu'aucun n'adopte le schéma de rupture en coin généralement observé, cela a conduit KASTNER (1982) à concevoir de nouveaux schémas de calcul prenant en compte le frottement du sol.

II-6 ETUDE DE L'ECOULEMENT AUTOUR DES ECRANS ETANCHES

La géométrie de l'enceinte, la forme de l'écran étanche (paroi mince, paroi moulée, rideaux d'injection épais), la stratigraphie du sol et le contraste de perméabilité entre les diverses couches, ne permet pas de donner à ce problème une solution générale. KASTNER et autres auteurs ont sélectionné quelques cas schématiques représentant un grand nombre de cas réels.

Les configurations étudiées et les conditions aux limites sont représentées sur les schémas de la figure II.9

a)Batardeau plan sans fouille.

b) Batardeau plan avec fouille –paramètres $f_1 \cdot e_2 \cdot e_1 \cdot B$

Figure II .9 Configurations étudiées

Ce problème a été étudié par divers auteurs qui ont proposé des méthodes de calcul du débit reposant :

- Ø Soit sur des relations analytiques approchées (MANDEL, 1951; BRILLANT, 1975; SCHNEEBELI, 1966; CAMBEFORT, 1980);
- Ø Soit sur des abaques : (HARR ,1962 ; POLUBORINOVA KOCHINA, 1962 ;
 DAVIDENKOFF et FRANKE, 1965 ; VUEZ, 1969 ; CARDINAL et DECAZENOVE, 1971).

L'étude et la comparaison de ces résultats mettent en évidence :

- Ü L'imprécision de certaines relations et certains abaques ;
- ü Une définition souvent très floue du domaine d'application.

En particulier, les recoupements entre ces méthodes, à leurs frontières sont souvent mauvais dans des zones très utiles pour les applications pratiques.

II-6-1 Notion de débit et perte de charge adimensionnelle

Dans le cas des sols homogènes et anisotropes que nous envisageons ici, l'étude de l'écoulement est effectuée dans le domaine isotrope équivalent obtenu par les transformations affines classiques (figure II.10).

$$X = x \sqrt{\frac{k}{k_h}} \qquad \qquad \text{Où} \quad R = r \sqrt{\frac{k}{k_x}}$$

$$Y = y_{\sqrt{\frac{k}{k_{v}}}}$$

Figure II.10 : Domaine isotrope équivalent

Le débit contournant l'écran étanche est alors directement proportionnel à la perméabilité équivalente du milieu fictif ($K = \sqrt{Kv.Kh}$) et à la perte de charge totale H soit :

$$Q = \sqrt{K_{\nu}.K_h}$$
. $H.\xi$

Où ξ est un facteur qui ne dépend que de la géométrie du domaine d'écoulement et non de son échelle. Pour les écoulements en milieu homogène étudiés ici, ξ dépend des rapports géométriques adimentionnels tels que f/e, $b/e \sqrt{K_h/K_v}$. Il est ainsi possible de définir des pertes de charge et des débits adimensionnels, qui ne dépendent que de facteurs géométriques adimensionnels afin de généraliser les résultats obtenus :

$$\rho = \frac{H\sqrt{k_v k_h}}{Q}$$
$$\overline{Q} = \frac{Q}{H\sqrt{k_v k_h}}$$

II-6 -2 Débit d'exhaure des batardeaux plans sans fouille

II-6-2-1 Débit d'exhaure des batardeaux plans sans fouille dans un milieu fini

Pour un écran unique fiché dans une couche d'épaisseur limitée, MANDEL (1939) propose deux relations dont il montre qu'elles donnent le débit avec une erreur inférieure à 3%

$$\frac{f}{e} < 0.5 \qquad \qquad \frac{Q}{H\sqrt{Kv.Kh}} = \frac{1}{\pi}\ln 2\cot g \frac{\pi}{4} \frac{f}{e}$$

(II.3)

$$\frac{f}{e} > 0.5 \qquad \qquad \frac{Q}{H\sqrt{KvKh}} = \frac{\pi}{4} \frac{1}{\ln 2 \cot g(\frac{\pi}{4}(1-\frac{f}{e}))}$$

Partant de certaines simulations de KASTNER (1974), CAMBFORT (1980) propose comme DAVIDENKOFF de calculer séparément les pertes de charges extérieures H' et intérieur H''. H' peut être obtenue par les relations de MANDEL (II.3). Pour H'', il propose l'approximation suivante :

$$\frac{H''K}{Q} = \left[\left(0.14 + \frac{0.8}{arctg\left(\frac{b}{e}\right)} \right) \ln \left(\frac{e}{e - f} + \sqrt{\left(\frac{e}{e - f}\right)^2 - 1} \right) \right]$$
(II.4)

DAVIDENCOFF et FRANKE ont proposé un abaque basé sur le calcul des pertes de charges partielles et vérifié par quelques analogies électriques. Les résultats obtenus recoupent les résultats de KASTNER mais couvrent un domaine plus réduit, insuffisant en pratique.

KASTNER (1982) a étudié systématiquement les débits d'exhaure sur deux modèles analogiques à réseau de résistances couvrant les domaines suivants.

Réseau (a)

 $5.10^{-2} < b/e \sqrt{Kh/Kv} < \infty$ $0,125 < \frac{f}{e} < 0,875.$ **Réseau (b)** $0,375 < b/e \sqrt{Kh/Kv} < 0,625$ $0,03 < \frac{f}{e} < 0,19.$ Les deux réseaux ont été conçus avec un maillage permettant d'obtenir une précision d'environs 1% dans les cas les plus défavorables, confirmée par les résultas dans la zone de recouvrement des deux modèles et par comparaison avec des relations analytiques exactes dans quelques cas particuliers.

Les résultats de simulations de KASTNER sont résumés (figure II.11) sous forme de variation du débit en fonction de la fiche et de la largeur du batardeau.

Figure II.11 : Variation du débit en fonction de la largeur du batardeau dans un milieu fini (D'après KASTNER1982)

On considère que le batardeau est large et que le débit n'augmente plus avec sa largeur dés que le rapport $\frac{b}{e}\sqrt{\frac{k_v}{k_h}}$ est supérieur à 3 (KASTNER 1982).

Lorsque le batardeau est très large, le flux d'eau reste concentré au voisinage de l'écran étanche, les trois quarts du débit débouchent dans la fouille dans une bande de largeur $e \sqrt{\frac{k_v}{k_h}}$ (figure II.12), ce débit dépend alors à parts égales de la perméabilité verticale et horizontale.

Figure II.12 : Batardeau large

Pour les batardeaux étroits, l'écoulement est quasi uniforme en fond de fouille dés que:

Dans ce cas, les pertes de charge dues à l'écoulement vertical entre les écrans sont prépondérantes et le débit dépend plus de la perméabilité verticale que de la perméabilité horizontale.

Lorsque simultanément la fiche et la largeur relative sont faibles, le débit ne dépend pratiquement plus de l'épaisseur de la couche perméable mais uniquement du rapport, là encore, le débit dépend surtout de la perméabilité verticale (figure II.12).

De manière générale, les constatations de KASTNER (1982) indiquent l'importance de la perméabilité du sol le long du tracé de l'écran et plus particulièrement l'influence de la perméabilité verticale.

II-6-2-2 Débit d'exhaure des batardeaux plans sans fouille dans un milieu semi infini

A partir des résultats théoriques concernant l'écoulement autour d'un écran unique fiché dans un milieu semi-infini, SCHNEEBLI (1966) a proposé les deux relations suivantes :

$$e^{\lambda}\sqrt{f^{2}+b^{2}} \qquad \qquad \frac{q}{KH} = \frac{2}{\pi}\ln\left[\frac{b}{f}+\sqrt{\left(\frac{b}{f}\right)^{2}+1}\right]$$

$$b^{\lambda}\sqrt{\frac{e^{2}}{f^{2}}} \qquad \qquad \frac{q}{KH} = \frac{2}{\pi}\ln\left[\frac{e}{f}+\sqrt{\left(\frac{e}{F}\right)^{2}-1}\right]$$

$$(II.5)$$

Pour les fouilles protégées par un écran fiché dans un milieu semi infini, $(\frac{f}{e}; \ddot{O}), \frac{f}{b} faible)$ BRILLANT (1975) a proposé la relation :

$$\frac{Q}{H.\sqrt{Kv.Kh}} = \frac{1}{\pi} \ln \frac{2b}{f}$$
(II.6)

L'abaque de CARDINAL et DECAZENOVE, présenté figure II.13, s'applique théoriquement aux fouilles étroites dans un milieu semi infini.

Figure II.13 : Abaque de CARDINAL et DECAZENOVE

 $H = H_1 + H_2$

 H_1 : Perte de charge entre AB et CD (abaque)

 H_2 : Perte de charge entre CD et EF

$$H_2 = \frac{2 Q}{Kv} \cdot \frac{f}{b}$$

Les résultats de simulations de KASTNER (1982) sont résumés (figue II.14) sous forme de la variation du débit en fonction de la fiche et de la largeur du batardeau.

Figure II.14 : Variation du débit en fonction de la fiche du batardeau dans un milieu semi infini (D'après KASTNER 1982).

II-6-3 Débit d'exhaure des batardeaux plans avec fouille

En raison de l'introduction d'un paramètre géométrique supplémentaire (e_2) (figure II.9.b) ce problème ne conduit pas, en général, à des solutions simples.

Cependant l'abaque de CARDINAL et De CAZENOVE (figure II.13) est applicable aussi à ce cas pour peu que la fouille soit étroite.

Un groupe d'ingénieurs de NEYRPIC (1955) a étudié le problème dans le cas particulier des batardeaux très larges par la méthode des transformations conformes et a proposé un abaque donnant le débit en fonction de la fiche relative pour quelques valeurs du rapport e_1/e_2 . DAVIDENKOFF et FRANKE (1965) proposent de découper l'écoulement global

complexe en écoulement partiel pour lesquels la perte de charge est susceptible d'évaluation simple, même approchée. KASTNER adopte ce principe pour compléter leurs résultats en particulier à partir de ses simulations analogiques. Il faut noter cependant que ce découpage n'est licite théoriquement que si la séparation entre les écoulements élémentaires est une ligne équipotentielle. Comme ce n'est pas généralement possible, les solutions obtenues ne sont qu'approchées mais l'erreur est négligeable lorsque la séparation est choisie convenablement.

Figure II.15 : Batardeau de grande largeur

Pour les batardeaux de grande largueur (figure II.15), On considère les deux écoulements séparés par le segment \overline{ab} qui prolonge la palplanche. La perte de charge partielle de chacun de ces écoulements est obtenue à partir des relations de MANDEL:

Si
$$f < e/2$$
 $\rho = \frac{H\sqrt{Kv.Kh}}{Q} = \frac{\pi}{2\ln(2\cot g(\pi f/4e))}$

(II.7)

Si
$$f > e/2$$
 $\rho = \frac{H\sqrt{KvKh}}{Q} = \frac{2\ln 2\cot g(\frac{\pi}{4}(1-\frac{f}{e}))}{\pi}$

Le débit de l'écoulement global est alors donné par la relation :

$$\frac{Q}{H/\sqrt{Kv.Kh}} = \frac{1}{\rho_1 + \rho_2}$$
(II.8)

Les résultats obtenus ainsi sont en très bonne concordance avec les résultats indiqués pour quelques cas par NEYRPIC, l'écart ne dépassant pas 2%. Ceci s'explique par le fait que le segment \overline{ab} reste proche d'une ligne équipotentielle.

En ce qui concerne les batardeaux de largeur finie (Figure II.16) (B/2) 0,05 et 0,125 $\langle f/e_2 \rangle \langle 0,875 \rangle$. La perte de charge de l'écoulement (1) est donnée par MANDEL (II.7) pour l'écoulement (2), KASTNER a mesuré la perte de charge partielle par simulations analogiques. Cependant la comparaison du débit ainsi obtenu avec le résultat de simulation d'écoulement complet a révélé une concordance médiocre.

Figure II.16 : Batardeau de largeur fini

Ceci conduit à déterminer la perte de charge partielle H_2 par différence avec celle de l'écoulement complet sans fouille (figure II.17)

Soit :
$$\rho_2 = \rho - \rho_1$$

Où ρ_1 est obtenue par les relations de MANDEL et ρ par simulation analogique

Figure II.17 : Ecoulement complet sans fouille

La valeur de la perte de charge calculée est transcrite sur les abaques de la figure II.18 (a, b).

Figure II.18.a : Variation de la perte de charge en fonction de la largeur relative (D'après KASTNER 1982)

Figure II.18.b : Variation de la perte de charge en fonction de la largeur relative (D'après KASTNER 1982)

Pour la configuration des batardeaux a fiche relative faible $(f_1/e_1 < 0.125)$ KASTNER propose un découpage diffèrent suivant une ligne horizontale \overline{bc} qui se développe du coté semi-infini (figure II.19)

Figure II.19 : Batardeau à fiche relative faible

La perte de charge dans la zone (1) est donnée, suivant la valeur de f/b par la relation de BRILLANT.

Des études antérieures (KASTNER 1974), ont permis d'établir que la perte de charge dans la zone (2) peut être approximée par la relation :

$$\rho_{2} = \frac{2(e_{1} - e_{2})}{3e_{2}} \sqrt{k_{h} \cdot k_{v}}$$
(II.9)

Cette solution acceptable pour e_1/e_2 voisin de 2, devient très précise dés que e_2/e_1 est inférieur à 4/3.

II-7 CONCLUSION

L'étude sur modèle réduit du renard provoqué par l'écoulement autour d'un écran tanche a confirmé qu'il peut se présenter sous deux formes :

Ø La boulance, qui intervient dés que le gradient en fond de fouille atteint la valeur critique $i_c = \frac{\gamma'}{\gamma_w}$;

- Ø Le soulèvement généralisé qui dépend non seulement du gradient moyen mais aussi de la résistance au cisaillement du sol et l'appui de la fiche. Les schémas de calcul proposés par KASTNER montrent bien que le soulèvement provoqué par l'écoulement ne puisse être séparé de l'effet de butée de la fiche.
- Ø Il est certain que le critère de stabilité défini par le gradient critique de TERZAGUI est insuffisant et que sa validité est limitée au cas des sols qui, tout à la fois, présentent une compacité suffisante et ne représentent pas de risque d'entraînements. L'introduction par MONNET (1998) d'une seule hypothèse supplémentaire, l'existence d'un gradient critique de renard, permet de quantifier toutes les ruptures observées dans les essais de SKEMPTON et BROGAN (1994).

Sur la base des travaux antérieurs, deux critères apparaissent importants pour le déclenchement du renard :

- Le gradient de sortie i_e qui détermine à coup sur l'apparition de la boulance.
- Le gradient moyen qui permet d'estimer la butée disponible.

L'hétérogénéité importante des sols naturels pose le problème de la valeur à donner au coefficient de sécurité. Cette question, importante pour le praticien, pourrait être résolue par l'approche numérique du renard dans les sols stratifiés.