منخص

بلغت كميات الفوسفات في مياه الصرف الحضري و الصناعي في منطقة عنابة مستوى جد حساس حيث يتجاوز غالبا الحد المسموح به. الطلب المتزايد على إستخدام الفوسفات جعل منها موردا طبيعيا نادرا لذلك أصبح من الضروري إستخلاص هذه المواد من مياه الصرف. مقابل طرق المعالجة التقليدية تقدم تقنية النانوتر شيح بديلا مهما في هذا السياق يندرج عمل هذه الأطروحة للمساهمة في فهم أفضل لآليات إنتقال الفوسفات عبر غشاء مشحون من فئة نانو ماكس-50-. تبحث الدر اسة الحالية في القدرة الإنتقائية لمسك أيونات الأر ثوفوسفات _HPO4²⁻ H2O4 في محاليل تخليقية من خلال هذا الغشاء الجزء الأول من هذا البحث هو إستعراض. للتراكم المعرفي الحالي للتقنيات الأغشية و نماذج النقل فضلا عن إشكاليات تفريغ مياه الصرف المحملة بالفوسفات بصفة عامة و الصناعية بصفة خاصة في الوسط الطبيعي. يستعرض الجزء الثاني من هذه الدراسة الجهاز التجريبي مع تشخيص نظامي للغشاء المستخدم في تجارب الترشيح و أثار مصفوفة العوامل التجريبية على الإنتقائية. النتائج المستخلصة تبين أن الغشاء مشحون سلبيا اعتبار ا من pH 5 < pH مع نصف قطر مسامي قدر ها $Pa^{-1}.s^{-1}.m$ و قابلية نفوذ هيدروليكية تساوى $Pa^{-1}.s^{-1}.m$ $10^{-12}.24.6$. قيم نسب مسك أيونات الفوسفات تتراوح من 93 % لأيونات H2PO4⁻² و98 % لأيونات -HPO4². نسب مسك أيونات الفوسفات و خاصبة أحادية التكافؤ لها علاقة بالعوامل الكيميائية (التراكيز الإبتدائية, القوة الأيونية و الأس الهيدروجيني) والعوامل الفيزيائية (الضعط المطبق على الغشاء). في الجزء الثالث نطبق نماذج النقل لسبيجلر - كادم التي تعتمد على ترموديناميك التحولات الغير عكوسة . نتائج النمذجة عبارة عن مقاربة للقيم التجريبية. تحليل نتائج النموذج المستعمل يؤدي إلى تقييم معاملات النقل لأيونات الأرثوفوسفات علي غرار معامل الإنعكاس (ح) و قابلية نفوذ (Ps) المذاب

الكلمات المفتاحية: أغشية مشحونة ; النانو ترشيح ; الفوسفات ; آليات الإنتقال ; نموذج سبيجلر-كادم.

Abstract

The levels of phosphates in urban and industrial wastewater in the Annaba region have reached a very alarming level and too often exceed the accepted standard. The increasing demand for the use of phosphates is that it becomes a scarce natural resource. For this the recovery of these species of water is essential. Against conventional methods of treatment, nanofiltration could present an interesting alternative. It is in this context that we conducted our thesis work to contribute to a better understanding of the mechanisms of transport of phosphate through a charged membrane of type Nanomax-50. Indeed the present study examines the potential of selective retention of orthophosphate anions $H_2PO_4^-$, HPO_4^{2-} and PO_4^{3-} in synthetic solutions through this membrane. The first part of this research is a review of literature on the current understanding of membrane techniques and models of transport as well as issues of discharges sewage phosphates in general and industrial in particular in the natural environment. The second part of this study presents the experimental device with a systematic characterization of the membrane used in our testing of filtration and the effects of the experimental matrix on the selectivity of the membrane. The results obtained shows that the membrane is negatively charged for pH > 5, its pore radius is around 0.45 nm and its hydraulic permeability is 24.6.10⁻¹²m.s⁻¹.Pa⁻¹. The retentions of orthophosphate anions are in the order of 93% for $H_2PO_4^-$ and 98% for HPO_4^{2-} . The rejection of orthophosphate anions, particularly the monovalent species, depend on the chemical parameters (feed concentration, ionic strength, and pH) and physical (transmembrane pressure). The third part applies and confronts Spiegler-Kedem transfer models and derivatives based on the Thermodynamics of irreversible processes. Modelling results are adjusted to the experimental values .The data were analyzed using the model and the transport parameters of orthophosphate anions, i.e., the reflection coefficient (σ) and solute permeability (Ps) have been determined.

Keywords: Charged membranes, Nanofiltration, Phosphates, Transfer mechanisms, Spiegler-Kedem model.

Résumé

Les teneurs en phosphates dans les eaux résiduaires urbaines et industrielles dans la région d'Annaba ont atteint un niveau très préoccupant et dépassent trop souvent la norme admise. D'un autre côté, la demande croissante de l'utilisation des phosphates fait que celle-ci devient une ressource naturelle rare. Pour cela, la récupération de ces espèces des eaux de rejet s'avère indispensable. Face aux méthodes de traitements conventionnelles, la nanofiltration pourrait présenter une alternative intéressante. C'est dans ce contexte que nous avons mené notre travail de thèse pour contribuer à une meilleure compréhension des mécanismes de transport des phosphates à travers une membrane chargée de type Nanomax-50. En effet, la présente étude examine le potentiel de rétention sélective des anions ortophosphates $H_2PO_4^{-2}$, HPO_4^{-2-2} et PO_4^{-3-2} dans des solutions synthétiques par cette membrane. La première partie de cette recherche est une revue de littérature sur les connaissances actuelles des techniques membranaires et les modèles de transport ainsi que les problématiques des eaux de rejets chargées en phosphates en général et industriels en particulier en milieu naturel. La deuxième partie de cette étude présente le dispositif expérimental avec une caractérisation systématique de la membrane utilisée dans nos essais de filtration et les effets de la matrice expérimentale sur la sélectivité de la membrane. Les résultats obtenus montrent que la membrane est chargée négativement aux pH >5, avec un rayon de pore de l'ordre de 0.45 nm et une perméabilité hydraulique de l'ordre de 24.6. 10⁻¹²m.s⁻¹.Pa⁻¹. Les valeurs des taux de rejet des anions orthophosphates sont de l'ordre de 93 % pour $H_2PO_4^-$ et 98% pour HPO_4^{-2} . Les taux de rejet des anions orthophosphates et en particulier les monovalents dépendent des paramètres chimiques (concentration, force ionique, pH) et physiques (pression transmembranaire). La troisième partie applique et confronte les modèles de transfert de Spiegler-Kedem et dérivés basés sur la thermodynamique des processus irréversibles. Les résultats de modélisation ont été ajustés aux valeurs expérimentales et les paramètres de transports des anions ortophosphates, c.-à-d le coefficient de réflexion σ et la perméabilité du soluté Ps, ont donc pu être déterminés.

Mots-clés: Membranes chargées, Nanofiltration, phosphates, mécanismes de transfert, modèle de Spiegler-Kedem.

Liste des Tableaux

Tableau I-1 : Nom, abréviations et formule chimique de différents polymères constitutifs de membranes organiques 8
Tableau I-2 : Nom, abréviations et formule chimique de différents solvants utilisés dans les collodions
Tableau I-3 : Procédés concurrents aux différentes techniques membranaires
Tableau I-4 : Abattements de l'acide orthophoqphorique H ₃ PO ₄ en nanofiltration en fonction de sa concentration par différentes membranes
Tableau II.1 : Comparatif des avantages et des inconvénients entre les méthodesdu phosphore par voie biologique et par voie physico-chimique
Tableau III-1 : Données du fournisseur sur la membrane Nanomax-50
Tableau III-2 : Caractéristiques des ions étudiés
Tableau III-3 : La masse molaire M _w , rayon de stokes r _s et cœfficient de diffusion D des anions étudiés
Tableau III-4 : Epaisseurs des différentes couches constituant la membrane Nanomax-50
Tableau III-5 : Caractéristiques des sucres (rs calculés à partir de la relation de Stokes-Einstein
Tableau III-6 : Evaluation de σ par le modèle de Spiegler et Kedem pour les deux solutés neutres

Tableau IV-1: Valeurs des taux de rétention des solutions des sels d'orthophosphate
NaH_2PO_4 et Na_2HPO_4 à une pression de 6 bar pour plusieurs
concentrations
Tableau IV-2 : Valeurs des taux de rétention des solutions de NaH2PO4 et NaCl lorsque NaCl
est ajouté à une solution de NaH ₂ PO ₄ 100 mg (PO ₄ ³⁻).L ⁻¹ à une pression de
6 bar
Tableau IV-3 : Valeurs des taux de rétention des solutions de NaH ₂ PO ₄ et NaCl lorsque NaCl
est ajouté à une solution de Na ₂ HPO ₄ 100 mg(PO ₄ ³⁻).L ⁻¹ à une pression de
6 bar
Tableau V-1 : Evaluation du coefficient de réflexion σ et la perméabilité spécifique P _a par le
modèle de Spiegler et Kedem pour les deux solutés neutres 112
modele de Spiegier et Redem pour les deux solutes heutres
Tableau V-2 : Evaluation du coefficient de réflexion σ et la perméabilité spécifique P _s par le
modèle de Spiegler et Kedem pour les sels: Na ₂ SO ₄ , NaCl, CaCl ₂
Tableau V-3 : Evaluation du coefficient de réflexion σ et la perméabilité spécifique P _s par le
modèle de Spiegler et Kedem pour les sels: NaH ₂ PO ₄ , Na ₂ HPO ₄
(C ₀ =20 ppm)118
Tableau V-4 : Evaluation du coefficient de réflexion σ et la perméabilité spécifique P ₂ par le
modèle de Spiegler et Kedem pour les sels: NaH_2PO_4 , Na_2HPO_4
$(C_{0}=100 \text{ ppm})$ 119
(C ₀ -100 ppm)117
Tableau V-5 : Evaluation du coefficient de réflexion σ et la perméabilité spécifique Ps par le
modèle de Spiegler et Kedem pour les sels: NaH ₂ PO ₄ ,Na ₂ HPO ₄
(C ₀ =1000 ppm)121
Tableau V-6 : Evaluation du coefficient de réflexion σ et la perméabilité spécifique P _s par le

modèle de Spiegler et Kedem pour les sels: NaH₂PO₄, Na₂HPO₄.....125

Liste des Figures

Figure I-1 : Procédé de séparation membranaire tangentiel
Figure I-2 : Schéma d'une membrane organique plane et asymétrique6
Figure I-3 : Flux de perméat de l'eau en fonction de la pression transmembranaire12
Figure I-4 : Domaines d'applications des différentes techniques à membranes18
Figure I-5 : Schéma de la filtration frontale19
Figure I-6 : Schéma de la filtration tangentielle20
Figure I-7 : Schéma du module plan Ray-Flow X 100 (Orelis)21
Figure I-8 : Schéma du module spiral22
Figure I-9 : Module tubulaire
Figure I-10: Module fibres creuses
Figure I-11: Représentation des phénomènes de transport dans le rétentat et au travers de la membrane. C _m , C _p et C _o représentent respectivement la concentration en soluté au niveau de la membrane, au sein de la solution d'alimentation et dans le perméat
Figure I-12: Mécanisme de transfert à travers une membrane de nanofiltration chargée négativement en milieu aqueux
Figure I-13 : Représentation schématique du phénomène de polarisation de concentration31

Figure II-1: Diagramme de prédominance des différentes formes de l'acide
orthophosphorique en fonction du pH en solutions aqueuses40
Figure II-2: Carte de localisation des points de rejets et des stations de prélèvements49
Figure II-3 : Concentration en orthophosphates(en mg Γ^1) des Eaux résiduaires industrielle
de Fertial-Annaba à différentes stations de prélèvement de février 2007
à janvier 200854
Figure III-1: Photographie du pilote de nanofiltration Millipore Proscale
Figure III.2: Schéma synoptique du pilote de nanofiltration
Figure III-3 : Photographie de la membrane Nanomax-50
Figure III-4: Structure du support mécanique de la membrane Nanomax-50
Figure III-5 : Structure de la couche active de la membrane Nanomax-50
Figure III-6 : Photographie de la chaîne de chromatographie ionique (DIONEX)65
Figure III-7 : Evolution du flux de l'eau en fonction de la pression
Figure III-8 : Photographies de la coupe transversale de la membrane Nanomax-50 à deux
agrandissements.1 cm = 45 μ m et 1 cm = 13 μ m70
Figure III-9 : Photographie de la vue superficielle de la couche active de la membrane
Nanomax-5071
Figure III-10 : Evolution du taux de rétention du glucose et du saccharose en fonction du flux
volumique. Les lignes représentent l'ajustement du modèle de Spiegler et
Kedem aux valeurs expérimentales73

Figure III-11 : Récapitulatif des différentes étapes suivies dans la détermination de la taille de pore d'une membrane selon la méthode proposée par Shaep et al.(1998).....74

Figure III-12 : Evolution du taux de rétention des sels Na ₂ SO ₄ , NaCl et CaCl ₂ en fonction du
flux volumique à pH (5.5-6.5)77
Figure IV-1 : Effet de trois débits de recirculation (200, 300 et 400 L.h ⁻¹) sur le taux de rétention d'une solution de Na ₂ HPO ₄ (100 mg (PO ₄ ³⁻).L ⁻¹)80
Figure IV-2 : Effet de trois débits de recirculation (200, 300 et 400 L.h ⁻¹) sur le taux de rétention d'une solution de NaH ₂ PO ₄ (100 mg(PO ₄ ³⁻).L ⁻¹)81
Figure. IV-3 : Effet de trois débits de recirculation (200, 300 et 400 L.h ⁻¹) sur le flux du perméat d'une solution de NaH ₂ PO ₄ (100 mg (PO ₄ ³⁻).L ⁻¹)82
Figure. IV-4 : Effet de trois débits de recirculation (200, 300 et 400 L.h ⁻¹) sur le flux du perméat d'une solution de Na ₂ HPO ₄ (100 mg (PO ₄ ³⁻).L ⁻¹)82
Figure. IV-5 : Taux de rétention des anions phosphates H ₂ PO ₄ ⁻ à différentes concentrations. Effet de la pression
Figure. IV-6 : Taux de rétention des anions phosphates HPO ₄ ²⁻ à différentes concentrations. Effet de la pression
Figure.V-7 : Représentation schématique de quelques forces expliquant l'influence de la pression sur la rétention d'un sel de phosphate par la membrane Nanomax-50
Figure.IV-8 : Effet de la concentration sur la rétention des orthophosphates
Figure.IV-9 : Variation du taux de rétention des ions $H_2PO_4^-$ en fonction de la pression pour trois concentrations différentes en PO_4^{3-}

Figure.IV-10 : Variation du taux de rétention des ions HPO ₄ ²⁻ en fonction de la pression
pour trois concentrations différentes en PO ₄ ³⁻ 8
Figure IV 11 , Deprésentation sobématique du phénomène d'éconstage qui evolique
Figure. 1V-11: Representation schematique du phenomene d'écrantage qui explique
l'influence de la concentration sur la rétention d'un sel de phosphate par la
membrane Nanomax-5088
Figure.IV-12 : Taux de rétention des anions orthophosphates $H_2PO_4^-$.
Effet de la force ionique
Figure.IV-13 : Taux de rétention des anions orthophosphates HPO_4^{2-} .
Effet de la force ionique90
Figure IV 14: Tour de rétention des anions orthonhosphetes H DO - on fonction de flux
Figure.1v-14. Taux de fetention des anions orthophosphates H_2PO_4 en fonction de nux.
Effet de la force ionique90
Figure. IV-15 : Taux de rétention des anions orthophosphates HPO_4^{2-} en fonction de flux.
Effet de la force ionique91
Figure. IV-16: Evolution du taux de rétention des phosphates sur le diagramme de
prédominance des espèces. Effet de pH92
Figure. IV-17: Taux de rétention des différentes espèces de phosphates
en fonction de pH93
Figure. IV-18 : Effet de la pression sur les taux de rétention de Cl ⁻ et $H_2PO_4^-$ à une
concentration en masse de Cl ⁻ inférieure à celle de PO ₄ ³⁻
pour un pH = 5.596
Element IV 10. Effet de la magazion que las tours de sétentien de Citet II DO Dess
Figure 1v-19 : Effet de la pression sur les taux de retention de CI et H_2PO_4 a une
concentration en masse de CI egale à celle de PO43- pour un $pH = 5.597$

Figure. IV-20:	Effet de la pression sur les taux de rétention de Cl ⁻ et $H_2PO_4^-$ à une	
	concentration en masse de Cl ⁻ supérieure à celle de PO ₄ ³⁻	
	pour un pH = 5.5	.97

Figure. IV-21: Effet de la pression et de la concentration sur le taux de rétention des solutions de NaCl pour le système [NaCl, NaH₂PO₄] à pH = 5.5......98

Figure.IV-22: Effet de la pression sur les taux de rétention de Cl⁻ et HPO_4^{2-} à une concentration en masse de Cl⁻ inférieure à celle de PO_4^{3-} pour un pH =8.5......99

Figure. IV-24: Effet de la pression sur les taux de rétention de Cl⁻ et HPO_4^{2-} à une concentration en masse de Cl⁻ supérieure à celle de PO_4^{3-} pour un pH = 8.5.....100

Figure. IV-25: Effet de la pression et de la concentration sur le taux de rétention des solutions de NaCl pour le système [NaCl, Na₂HPO₄] à pH = 8.5....100

 Figure IV-26:
 Diagramme de prédominance des différentes formes de l'acide

 Orthophosphorique en fonction du pH en solution aqueuses......102

Figure. IV-27: Taux de rétention des différentes espèces d'orthphosphates et chlorures dans une solution mixte en fonction de pH.....104

Figure. IV-28: Evolution du flux de perméat en fonction du pH d'une solution modèle mixte d'orthophosphates et de chlorures......105

Figure V-2 : Simulation de la rétention des sels (Na ₂ SO ₄ , NaCl , CaCl ₂) par
le modèle de Spiegler et Kedem114
Figure V-3 : Evolution du taux de rétention des sels Na ₂ SO ₄ , NaCl et CaCl ₂ en fonction du
flux volumique à pH (5.5-6.5). Les lignes représentent l'ajustement du modèle
de Spiegler et Kedem aux valeurs expérimentales115
Figure V-4 : Simulation de la rétention des sels (NaH ₂ PO ₄ et Na ₂ HPO ₄) par le modèle de
Spiegler et Kedem (C ₀ =20 ppm)117
Figure V-5 : Taux de rétention des sels NaH ₂ PO ₄ et Na ₂ HPO ₄ par la membrane Nanomax-50
(C ₀ =20 ppm). Les lignes représentent l'ajustement du modèle de Spiegler et
Kedem aux valeurs expérimentales117
Figure V-6 : Simulation de la rétention des sels (NaH ₂ PO ₄ et Na ₂ HPO ₄) par le modèle de
Spiegler et Kedem ($C_0=100$ ppm)118
Figure V-7 : Taux de rétention des sels NaH_2PO_4 et Na_2HPO_4 par la membrane Nanomax-50
(C ₀ =100 ppm). Les lignes représentent l'ajustement du modèle de Spiegler et
Kedem aux valeurs expérimentales119
Figure V-8 : Simulation de la rétention des sels (NaH ₂ PO ₄ et Na ₂ HPO ₄) par le modèle de
Spiegler et Kedem (C ₀ =1000 ppm)120
Figure V-9 : Taux de rétention des sels NaH ₂ PO ₄ et Na ₂ HPO ₄ par la membrane Nanomax-50
(C ₀ =1000 ppm). Les lignes représentent l'ajustement du modèle de Spiegler et
Kedem aux valeurs expérimentales121
Figure V-10 : Simulation de la rétention du sel NaH ₂ PO ₄ par
le modèle de Spiegler et Kedem. Effet de la concentration123
Figure V-11 : Effet de la concentration sur le taux de rétention du sel NaH ₂ PO ₄ par la
membrane Nanomax-50. Les lignes représentent l'ajustement du modèle de
Spiegler et Kedem aux valeurs expérimentales123

Figure V-12 : Simulation de la rétention du sel Na ₂ HPO ₄ par le modèle
de Spiegler et Kedem. Effet de la concentration124
Figure V-13 : Effet de la concentration sur le taux de rétention du sel Na ₂ HPO ₄ par la
membrane Nanomax-50. Les lignes représentent l'ajustement du modèle de
Spiegler et Kedem aux valeurs expérimentales124
Figure V-14 : Simulation de la rétention du sel NaH ₂ PO ₄ par le modèle
de Spiegler et Kedem. Effet de la force ionique126
Figure V-15 : Effet de la force ionique sur le taux de rétention du sel NaH ₂ PO ₄ par la
membrane Nanomax-50. Les lignes représentent l'ajustement du modèle de
Spiegler et Kedem aux valeurs expérimentales127
Figure V-16 : Simulation de la rétention du sel Na ₂ HPO ₄ par le modèle
de Spiegler et Kedem.Effet de la force ionique128
Figure V-17 : Effet de la force ionique sur le taux de rétention du sel Na ₂ HPO ₄ par la
membrane Nanomax-50. Les lignes représentent l'ajustement du modèle de
Spiegler et Kedem aux valeurs expérimentales129

Liste des abréviations

C _m	concentration en soluté à la surface de la membrane	$(mol.L^{-1})$
C _p	concentration en soluté dans le perméat	$(mol.L^{-1})$
Co	concentration en soluté dans la solution d'alimentation	$(mol.L^{-1})$
C _{rét}	concentration en soluté dans le rétentat	$(mol.L^{-1})$
Cs	concentration en soluté dans la membrane	$(mol.L^{-1})$
F_i	forces associées à l'espèce i	(—)
\mathbf{F}_{j}	forces non associées à l'espèce i	(—)
$\mathbf{J}_{\mathbf{i}}$	flux molaire de l'ion i	$(mol.m^{-2}.s^{-1})$
\mathbf{J}_{s}	flux molaire du soluté	$(mol.m^{-2}.s^{-1})$
$\mathbf{J}_{\mathbf{v}}$	flux volumique du solvant	$(m^3.m^{-2}.s^{-1})$
\mathbf{J}_{w}	flux volumique du solvant pur	$(m^3.m^{-2}.s^{-1})$
Ι	force ionique	$(mol.L^{-1})$
L _p	perméabilité hydraulique de la membrane	$(m.s^{-1}.Pa^{-1})$
L _{ij}	coefficient phénoménologique entre le flux	$(mol.m^{-2}.s^{-1}.Pa^{-1})$
	du soluté de type i et la force exercée par j	
ΔP	différence de pression	(Pa)
р	pression	(Pa)
$\overline{\mathbf{P}}$	Perméabilité locale du soluté	$(m^2.s^{-1})$
Ps	perméabilité du soluté (P = $\frac{\overline{P}}{\Delta x}$)	$(m.s^{-1})$
pI	point isoélectrique	(—)
r _s	rayon de Stokes du soluté	(m)
r _p	rayon de pores de la membrane	(m)
R	constante des gaz parfaits (8,314)	$(j.mol^{-1}.K^{-1})$
R_{f}	Résistance hydraulique de colmatage	(m^{-1})
$R_{\rm h}$	Résistance hydraulique de la membrane	(m^{-1})
R _m	Résistance hydraulique de la membrane	(m^{-1})
\mathbf{R}_{rev}	Résistance hydraulique du colmatage réversible	(m^{-1})
R _{irrev}	Résistance hydraulique de colmatage irréversible	(m^{-1})
\mathbf{R}^2	coefficient de corrélation	(—)

Т	température absolue	(K)
t	temps	(s)
Δt	intervalle de temps	(s)
TR	taux de rejet observé	(—)
ΔV	volume de solution prélevée	(m ³)
X	variable de distance	(m)
Δx	épaisseur de la membrane	(m)
CI	carbone inorganique	(—)
СОТ	carbone organique total	(—)
COD	carbone organique dissous	()
DCO	demande chimique en oxygène	(—)
MWCO	seuil de coupure de la membrane	$(g \text{ mol}^{-1})$
PES	polyéthersulfone	(—)
PVP	polyvinylpyrolidone	(—)
PTM	pression transmembranaire	(Pa)
UF	ultrafiltration	(—)
MF	microfiltration	(—)
NF	nanofiltration	(—)
OI	osmose inverse	(—)
MEB-EDX	Microscope électronique à balayage - Energy Dispersive Xray	()
$\Delta\pi$	Différence de pression osmotique	(Pa)
μ	viscosité dynamique	(Pa.s)
σ	Coefficient de réflexion	(—)

TABLES DES MATIERES

ملخص	i
ABSTRACT RESUME LISTE DES TABLEAUX	ii iii iv
LISTE DES FIGURES	vii
LISTE DES ABREVIATIONS	xiv
INTRODUCTION GENERALE ET	1

PROBLEMATQUE DE RECHERCHE

CHAPITRE I : SYNTHESE BIBLIOGRAPHIQUE.

	4
I.2 Généralités sur les membranes	4
I.2.1 Définition de la membrane	4
I.2.2 Classification des membranes	5
I.2.2.1 Les membranes minérales	5
I.2.2.2 Les membranes organiques	6
I.2.3 Caractéristiques des membranes	9
I.2.3.1 Grandeurs caractéristiques de filtration	9
 a) Pression transmembranaire : PTM b) Flux et perméabilité c) Flux de perméat Jv et grandeurs associées d) Perméabilité hydraulique de la membrane : Lp e) Résistance membranaire et colmatage f) Résistance hydraulique de la membrane : Rm g) Rétention (Rét) - Transmission (Tr) du soluté	9 10 10 10 12 13 13
h) Seuil de coupure (MWCO)	14

I.2.4 Domaines de filtration des procédés membranaires à gradient de pression	14
I.2.4.1 Microfiltration (MF) I.2.4.2 Ultrafiltration (UF) I.2.4.3 Nanofiltration (NF) I.2.4.4 Osmose inverse (OI)	15 15 16 17

I.2.5 Mise en oeuvre des membranes	19
1.2.5.1 Écoulement frontal	19 10
	19
1.2.6 Configuration des modules et mise en forme des membranes	20
I.2.6.1 Module plan	20
I.2.6.2 Module spiral	21
I.2.6.3 Modules tubulaires	22
I.2.6.4 Modules fibres creuses	23
I.2.7 Les mécanismes de transfert de matière en nanofiltration	24
I.2.7.1 Transport de matière et sélectivité	24
a) Mécanismes de transport	24
b) Transfert du solvant et des solutés	25
Transfert du solvant	25
Transfert du soluté	26
I.2.7.2 Mécanismes de sélectivité	26
a) L'effet d'exclusion stérique	26
b) L'effet de charge	27
c) L'effet mixte	29
I.2.8 Phénomènes limitant le transport de matière	30
I.2.8.1 Facteurs limitant le flux de perméat en nanofiltration	30
a) Phénomène de polarisation de concentration	30
b) Phénomène de colmatage	32
I.3 Influence de la matrice expérimentale sur la sélectivité des membranes de nanofiltration	33
I.4 La modélisation phénoménologique et le transport dans les membranes de nanofiltration	34
I.4.1 Historique de la modélisation phénoménologique	35
I.5 Nanofiltration des orthophosphates et point isoélectrique	36
L 6 CONCLUSION	37

CHAPITRE II : ETAT DES LIEUX ET PREVENTION DE LA CONTAMINATION PAR LES PHOSPHATES DES EAUX NATURELLES DE LA REGION D'ANNABA.

II.1 INTRODUCTION	39
II.2 Origine et effets de l'impact environnemental d'un apport	
Excessif des phosphates dans le milieu naturel	39
II.3 Traitements d'élimination des phosphates	41
II.3.1 La déphosphatation physico-chimique	42
II.3.1.1 Procédés classiques : Précipitation/décantation et/ou	42
coagulation-floculation/filtration	12
II.3.1.2 L'adsorption	43
II.3.2 La déphosphatation biologique	44
II.4 Travaux antérieurs récents sur l'évaluation de la quantité de phosphates	
rejetés sans traitement dans les eaux littorales de la région d'Annaba	46
II.5 Caractérisation physico-chimique du rejet de Fertial	47
II.5.1 Les paramètres physico-chimiques	48
II.5.2 Les indicateurs de la pollution organique	48
II.5.3 Les nutriments	48
II.5.4 Echantillonnage des rejets	48
II.5.5 Méthodes d'analyse	49
II.5.6 Typologie des sources de pollution	50
II.6 Compilation analytique et statistique	50
II.7 CONCLUSION	52

CHAPITRE III : MISE AU POINT DE L'ETUDE EXPERIMENTALE ET CARACTERISATION DE LA MEMBRANE NANOMAX-50.

	55
III.2 Matériels et méthodes	55
III.2.1 Pilote de filtration tangentielle	55
III.2.2 Membrane	57
III.2.3 Démarche expérimentale	59
III.2.4 Reproductibilité et incertitude des résultats	60
III.2.5 Protocole opératoire	61
III.2.5.1 Préparation des solutions	61
III.2.5.2 Méthodes physico-chimiques d'analyses	62
a) Mesure de pH	62
b) La conductimétrie	62
c) Analyse au MEB-EDX	63
d) Chromatographie ionique	63
e) COT mètre	66
III.3 Caractérisation de la membrane Nanomax-50	67
III.3.1 Perméabilité de la membrane Nanomax-50	67
III.3.2 Caractérisation par Microscopie électronique à balayage	68
III.3.3 Evaluation de la taille de pore	72
III.3.4 Détermination du Potentiel d'Ionisation Pi	75
III.3.5 Evaluation de la rétention des sels Na ₂ SO ₄ , NaCl, CaCl ₂	76
III.4 CONCLUSION	78

CHAPITRE IV : NANOFILTRATION TANGENTIELLE DES ORTHOPHOSPHATES. EFFET DE LA MATRICE EXPERIMENTALE.

IV.1 INTRODUCTION	79
-------------------	----

IV.2 Nanofiltration des orthophosphates dans des Solutions modèles simples	79
IV.2.1 Influence du débit de recirculation / la vitesse d'écoulement tangentiel	79
IV.2.2 Effet de la pression	83
IV.2.3 Effet de la concentration	85
IV.2.4 Effet de la force ionique	88
IV.2.5 Effet de pH	91
IV.3 Nanofiltration des orhophosphates dans des mélanges complexes	93
IV.3.1 Rétention des orthophosphates en mélanges ternaires	93
IV.3.1.1 Solutions modèles mixtes	94
a) Effet de la composition ionique	94
b) Effet de pH	101

IV.4 CONCLUSION	105
-----------------	-----

CHAPITRE V : MODELISATION PHENOMENOLOGIQUE DU TRANSFERT DES ORTHOPHOSPHATES A TRAVERS LA MEMBRANE NANOMAX-50.

	107
V.2 Détermination des paramètres du modèle de Spiegler et Kedem	107
V.3 Estimation des Paramètres et simulation de flux de perméat et le taux de rejet	110
V.4 Simulation de la rétention des solutés neutres (Saccharose et glucose) par le modèle de Spiegler et Kedem	111
V.5 Simulation de la rétention des sels (Na ₂ SO ₄ , NaCl, CaCl ₂) par le modèle de Spiegler et Kedem	113
V.6 Simulation de la rétention des sels (NaH ₂ PO ₄ et Na ₂ HPO ₄) par le modèle de Spiegler et Kedem. Effet de charge	116
V.7 Simulation de la rétention des sels NaH_2PO_4 et Na_2HPO_4 par le modèle de Spiegler et Kedem. Effet de la concentration	122
V.8 Simulation de la rétention du sel NaH ₂ PO ₄ par le modèle de Spiegler et Kedem. Effet de la force ionique	125
V.9 Principaux résultats	131
	133
CONCLUSION GENERALE ET PERSPECTIVES	134
REFERENCES BIBLIOGRAPHIQUES	138