Résumé :

Pour limiter les dégâts humains et matériels causés suite à un séisme, on peut utiliser des dispositifs pouvant servir à diffuser l'énergie induite lors de ce dernier avant qu'elle soit transférée à la structure. Généralement, on appelle ces dispositifs des isolateurs parasismiques.

Dans le but de mieux comprendre l'effet de ces dispositifs d'isolation sur les réponses des structures, deux études comparatives ont été effectuées dans ce travail. La première est la comparaison des réponses d'une structure avec et sans le système d'isolation et la deuxième est l'étude de l'effet de la hauteur d'une structure isolée sur ces réponses dynamiques.

L'incorporation d'un dispositif d'amortissement à l'isolateur permet de dissiper le maximum d'énergie, de contrôler les déformations qui sont localisées au niveau de ce dernier et réaliser un compromis satisfaisant entre la réduction des forces sismiques et l'accroissement des déformations dans l'isolateur parasismique. Donc, une étude paramétrique sur l'amortissement effectif du système d'isolation réalisée dans ce travail nous permet d'évaluer l'influence de l'amortissement de ce système d'isolation parasismique sur la réponse dynamique des structures isolées.

Abstract :

To limit the human damage and materials after a seism, one can use devices able to diffuse the energy induced at the time of the earthquake before its transfer to the structure. Generally, we call these devices « the seismic base isolation ». To well understand the effect of these devices of isolation on the responses of the structures, two comparative studies were carried out in this work. The first is the comparison between the responses of a structure with and without the seismic base isolation system and the second is the study of the effect of an isolated structure's height on these dynamic responses.

The incorporation of a damper device with the base isolation system allows to dissipate the maximum of energy, to control the distortions made on the seismic isolators and to carry out a satisfactory compromise between the reduction of the seismic forces and the increase of the distortions in the seismic isolators. Therefore, a parametric study on the effective damper of the seismic isolator system realized in this work allows us to evaluate the influence of the damper of a seismic base isolation system on the dynamic response of the base-isolated structures.

ملخص:

من أجل التقليل من الخسائر المادية و البشرية قدر الإمكان يمكن استخدام أجهزة تعمل على تبديد الطاقة الممتصة من قبل المنشأ أثناء حدوث الزلزال و بذلك تعول دون نقل هذه الطاقة إلى المنشأ ، تسمى هذه الأجهزة بأجهزة العزل الزلزالي.

بهدف توضيح تأثير هذه الأجهزة على استجابة المنشآت قمنا في هذا العمل بإجراء دراستي مقارنة ، الأولى متعلقة بمقارنة استجابة منشأ مع و بدون أنظمة العزل الزلزالي و الثانية متعلقة بدراسة تأثير ارتفاع المنشأ على استجابة المنشآت المعزولة.

يمكن إدراج جهاز تخامد داخل العازل الزلزالي من تبديد أكثر للطاقة و السيطرة على التشوهات والتي تكون في معظمها مركزة في مستوى العزل بالإضافة إلى تحقيق حل وسط بين خفض القوى الزلزالية و الزيادة في التشوهات . لذلك قمنا في هذا العمل بدراسة برا مترية على التخامد في العازل لتقييم تأثير قيمة التخامد في هذا الأخير على الاستجابة الديناميكية للمنشآت المعزولة.

Liste des tableaux

Chapitre I : Systèmes de contrôle pour l'isolation parasismique
- Tableau 01 : Les facteurs d'amortissements BD et BM
- Tableau 02 : Valeurs minimales de l'analyse dynamique données en fonction des valeurs
de l'analyse statique
Chapitre III : Etudes comparatives pour illustrer l'influence d'isolation parasismique
- Tableau 03 : les caractéristiques du système d'isolation LRB 67
- Tableau 04 : Les périodes et les pulsations pour les deux structures encastrée et isolée70
- Tableau 05 : Comparaison des résultats maximaux de la structure avec et sans le
système d'isolation
- Tableau 06 : Les dimensions des poteaux dans chaque structure
- Tableau 07 : Comparaison des périodes des différentes structures encastrées et isolées
dans les deux directions X et Y
- Tableau 08 : Comparaison des déplacements du dernier niveau des différentes
structures encastrées et isolées dans les deux directions X et Y
- Tableau 09 : Comparaison des efforts tranchants à la base des différentes structures
encastrées et isolées dans les deux directions X et Y

Chapitre IV : Etude Paramétrique

- Tableau 10 : Les réponses maximales de la structure isolée avec les différents
pourcentages d'amortissement effectif soumis à la composante d'El Centro du séisme
d'Imperial Valley
- Tableau 11 : Les réponses maximales de la structure isolée avec les différents
pourcentages d'amortissement effectif soumis à La composante D'Oakland Outer du
séisme de Loma Prieta
- Tableau 12 : Les réponses maximales de la structure isolée avec les différents
pourcentages d'amortissement effectif soumis à La composante de Lexington Dam du
séisme de Loma Prieta
- Tableau 13 : Les réponses maximales de la structure isolée avec les différents
pourcentages d'amortissement effectif soumis à La composante de Sylmar County du
séisme Northridge

Liste des figures

Chapitre I : Systèmes de contrôle pour l'isolation parasismique	
- Figure 01 : Appui en caoutchouc fretté	04
- Figure 02 : Appui en caoutchouc fretté avec amortisseur en barreau de plomb	05
- Figure 03 : Appui à friction	05
- Figure 04 : Appuis à pendule glissant	06
- Figure 05 : Appui utilisé par l'EDF	07
- Figure 06 : Appui proposé par N.Mostaghel	07
- Figure 07 : Appui à billes	08
- Figure 08 : Dispositifs amortisseurs métalliques proposés par Skinner et al (1975)	. 09
- Figure 09 : Dispositifs amortisseurs métalliques	10
- Figure 10 : Dispositifs amortisseurs à frottement	11
- Figure 11 : Dispositifs des amortisseurs viscoélastiques VE	12
- Figure 12 : Dispositifs amortisseurs fluide visqueux	13
- Figure 13 : Amortisseur de masse accordé installé sur la structure	14
- Figure 14 : Amortisseur de vibration dynamique	15
- Figure 15 : Les types du TMD	16
- Figure 16 : Les types du TLD	17
- Figure 17 : Le diagramme de système de contrôle actif	18
- Figure 18 : Schéma de comparaison entre l'amortisseur de masse actif (AMD) et	
l'amortisseur de masse accordée (TMD)	20
- Figure 19 : le schéma de système de câble actif	20
- Figure 20 : Système de contreventement actif avec actionneur hydraulique	21
- Figure 21 : Le TMD Semi actif	22
- Figure 22 : Amortisseurs semi actifs à frottement avec actionneur piézoélectriques	24
- Figure 23 : Amortisseurs semi actifs de vibration	25
- Figure 24 : Amortisseurs semi actifs à rigidité variable	25
- Figure 25 : Amortisseurs à fluide contrôlable	26
- Figure 26 : Amortisseur semi-actif de fluide visqueux	27
- Figure 27 : Amortisseur de masse hybride	28
- Figure 28 : Système hybride avec isolateurs à la base	29
- Figure 29 : Contrôle hybride amortisseur-actionneur de contreventement	.29
- Figure 30 : Dimensions en plan pour la détermination du déplacement total	.34

- Figure 31 : Déplacement du système d'isolation	.34
Chapitre II : Concepts théorique de l'isolation parasismique	
- Figure (32-a) : Modèle mathématique pour un appui en caoutchouc fretté	38
- Figure (32-b) : Le Modèle mathématique d'une structure à N DDL montée sur	un
système d'isolation en caoutchouc fretté	39
- Figure (33-a) : Modèle mathématique pour un système d'isolation en caoutchouc	
fretté avec amortisseur en barreau de plomb	39
- Figure (33-b) : Modèle mathématique d'une structure à N DDL montée sur un	
système d'isolation en caoutchouc fretté avec amortisseur en barreau de plomb	40
- Figure (34-a) : Modèle mathématique pour un système d'isolation à frottement pur	41
- Figure (34-b) : Modèle mathématique d'une structure à N DDL montée sur un	
système d'isolation à frottement pur	42
- Figure (35-a) : Modèle mathématique pour un système d'isolation résistant par	
frottement (R-FBI)	42
- Figure (35-b) : Modèle mathématique d'une structure à N DDL montée sur un	
Système d'isolation résistant par frottement	43
- Figure (36-a) : Modèle mathématique pour un système d'isolation d'électricité de	
France (EDF)	44
- Figure (36-b) : Modèle mathématique d'une structure à N DDL montée sur un	
système d'isolation d'électricité de France (EDF)	44
- Figure (37-a): Modèle mathématique pour un système d'isolation à frottement	
résistant par glissement (SR-F)	45
- Figure (37-b) : Modèle mathématique d'une structure à N DDL montée sur un	
système à frottement résistant par glissement (SR-F)	46
- Figure (38-a) : Modèle mathématique pour un système d'isolation en pendules	
glissantes (FPS)	47
- Figure (38-b) : Modèle mathématique d'une structure à N DDL montée sur un	
système en pendule glissant (FPS)	48
- Figure 39 : les forces équilibrées dans le cas d'une structure encastrée à un seul niveau.	.49
- Figure 40 : Paramètres d'une structure isolée à deux degrés de libertés	51
- Figure 41 : La forme des modes propres de la structure isolée à deux degrés de	
libertés	54

Chapitre III : Etudes comparatives pour illustrer l'influence d'isolation parasismie	que
- Figure 42 : Vue en 3D de la structure avec système d'isolation parasismique	
(Structure isolée)	. 66
- Figure 43 : Vue en 3D de la structure sans système d'isolation parasismique	
(Structure ancastrée)	. 66
- Figure 44 : Vue en plan de la structure	. 67
- Figure 45 : Accélérogramme de la composante 0 degré de Lexington Dam du	
séisme de Loma Prieta	. 68
- Figure 46 : Accélérogramme de la composante 90 degrés de Lexington Dam du	
séisme de Loma Prieta	. 68
- Figure 47 : Contenu fréquentiel de La composante 0 degré de Lexington Dam	
du séisme de Loma Prieta	69
- Figure 48 : Contenu fréquentiel de La composante 90 degrés de Lexington	
Dam du séisme de Loma Prieta	. 69
- Figure 49 : Comparaison des déplacements relatifs de la structure encastrée	
pour les niveaux 08, 04 et 01 dans la direction X	. 71
- Figure 50 : Comparaison des déplacements relatifs de la structure isolée pour les	
niveaux 08, 04 et 01dans la direction X	71
- Figure 51 : Comparaison des déplacements relatifs de la structure encastrée pour	
les niveaux 08, 04 et 01 dans la direction Y	. 71
- Figure 52 : Comparaison des déplacements relatifs de la structure isolée pour les	
niveaux 08, 04 et 01 dans la direction Y	. 71
- Figure 53 : Comparaison des déplacements absolus de la structure isolée pour les	
niveaux 08, 04 et 01 dans la direction X	. 72
- Figure 54 : Comparaison des déplacements absolus de la structure isolée pour les	
niveaux 08, 04 et 01 dans la direction Y	. 72
- Figure 55 : Comparaison des accélérations de la structure encastrée pour les niveaux	
08, 04 et 01 dans la direction X	. 72
- Figure 56 : Comparaison des accélérations de la structure isolée pour les niveaux	
08, 04 et 01 dans la direction X	. 72
- Figure 57 : Comparaison des accélérations de la structure encastrée pour les niveaux	
08, 04 et 01 dans la direction Y	. 72
- Figure 58 : Comparaison des accélérations de la structure isolée pour les niveaux	
08, 04 et 01 dans la direction Y	. 72

- Figure 59 : Déplacements du dernier niveau pour les deux structures encastrée et
isolée dans la direction X 73
- Figure 60 : Déplacements du dernier niveau pour les deux structures encastrée et
isolée dans la direction Y 73
- Figure 61 : Accélérations du dernier niveau pour les deux structures encastrée et
isolée dans la direction X
- Figure 62 : Accélérations du dernier niveau pour les deux structures encastrée et
isolée dans la direction Y 73
- Figure 63 : Les efforts tranchants pour les deux structures encastrée et isolée dans
la direction X
- Figure 64 : Les efforts tranchants pour les deux structures encastrée et isolée dans
la direction Y74
- Figure 65 : Diagrammes des énergies absorbées par la structure encastrée sous
l'excitation de la composante de Lexington Dam du Loma Prieta 75
- Figure 66 : Diagrammes des énergies absorbées par une structure isolée avec un système
d'isolation sous l'excitation de la composante de Lexington Dam du Loma Prieta 76
- Figure 67 : Variation du rapport (Tisolée/ Tencastrée) pour les différentes structures 79
- Figure 68 : Variation du rapport (Dencastrée / Disolée) pour les différentes structures 81
- Figure 69 : Variation du rapport (Vencastrée/ Visolée) pour les différentes structures82

Chapitre IV : Etude Paramétrique

- Figure 70 : Accélérogramme de la composante d'El Centro du séisme d'Imperial
Valley (1979)
- Figure 71 : Accélérogramme de La composante d'Oakland Outer du séisme de Loma
Prieta (1989)
- Figure 72 : Accélérogramme de La composante de Sylmar County du séisme de
Northridge (1994)
- Figure 73 : Contenu fréquentiel de la composante d'El Centro du séisme d'Imperial
Valley
- Figure 74 : Contenu fréquentiel de La composante d'Oakland Outer du séisme de
Loma Prieta
- Figure 75 : Contenu fréquentiel de La composante de Sylmar County du séisme de
Northridge

- Figure 76 : Comparaison des déplacements absolus du dernier niveau avec des
pourcentages d'amortissement effectif faible (8%) et élevé (35%) soumis à la
composante d'El Centro du séisme d'Imperial Valley94
- Figure 77 : Comparaison des déplacements absolus du dernier niveau avec des
pourcentages d'amortissement effectif faible (8%) et élevé (35%) soumis à la
composante d'Oakland Outer du séisme de Loma Prieta
- Figure 78 : Comparaison des déplacements absolus du dernier niveau avec des
pourcentages d'amortissement effectif faible (8%) et élevé (35%) soumis à La
composante de Lexington Dam du séisme de Loma Prieta
- Figure 79 : Comparaison des déplacements absolus du dernier niveau avec des
pourcentages d'amortissement effectif faible (8%) et élevé (35%) soumis à la
composante de Sylmar County du séisme Northridge
- Figure 80 : Comparaison des déplacements absolus du système d'isolation avec des
pourcentages d'amortissement effectif faible (8%) et élevé (35%) soumis à la
composante d'El Centro du séisme d'Imperial Valley
- Figure 81 : Comparaison des déplacements absolus du système d'isolation avec des
pourcentages d'amortissement effectif faible (8%) et élevé (35%) soumis à la
composante d'Oakland Outer du séisme de Loma Prieta
- Figure 82 : Comparaison des déplacements absolus du système d'isolation avec des
pourcentages d'amortissement effectif faible (8%) et élevé (35%) soumis à la
composante de Lexington Dam du séisme de Loma Prieta
- Figure 83 : Comparaison des déplacements absolus du système d'isolation avec des
pourcentages d'amortissement effectif faible (8%) et élevé (35%) soumis à la
composante de Sylmar County du séisme Northridge 97
- Figure 84 : Déplacements maximaux absolus du 8ème niveau avec les différents
pourcentages d'amortissement effectif
- Figure 85 : Déplacements maximaux absolus de la base avec les différents
pourcentages d'amortissement effectif
- Figure 86 : Les accélérations maximales du 8ème niveau avec les différents
pourcentages d'amortissement effectif
- Figure 87 : Les déplacements inter étages du 8ème niveau avec les différents
pourcentages d'amortissement effectif

- Figure 88 : Comparaison des diagrammes efforts-déformations d'un isolateur de centre pour des pourcentages d'amortissement effectif faible (08 %) et élevé (35 %) soumis à la composante d'El Centro du séisme d'Imperial Valley101 - Figure 89 : Comparaison des diagrammes efforts-déformations d'un isolateur de centre pour des pourcentages d'amortissement effectif faible (08 %) et élevé (35 %) soumis à La composante d'Oakland Outer du séisme de Loma Prieta102 - Figure 90 : Comparaison des diagrammes efforts-déformations d'un isolateur de centre pour des pourcentages d'amortissement effectif faible (08 %) et élevé (35 %) soumis à La composante de Lexington Dam du séisme de Loma Prieta102 - Figure 91 : Comparaison des diagrammes efforts-déformations d'un isolateur de centre pour des pourcentages d'amortissement effectif faible (08 %) et élevé (35 %) soumis à La composante de Sylmar County du séisme Northridge103 - Figure 92 : Diagrammes des énergies absorbées par une structure isolée avec un pourcentage d'amortissement effectif faible (08 %) sous l'excitation de la composante d'El Centro du séisme d'Imperial Valley103 - Figure 93 : Diagrammes des énergies absorbées par une structure isolée avec un pourcentage d'amortissement effectif faible (35 %) sous l'excitation de la composante d'El Centro du séisme d'Imperial Valley104 - Figure 94 : Diagrammes des énergies absorbées par une structure isolée avec un pourcentage d'amortissement effectif faible (08 %) sous l'excitation de la composante d'Oakland Outer du séisme de Loma Prieta104 - Figure 95 : Diagrammes des énergies absorbées par une structure isolée avec un pourcentage d'amortissement effectif faible (35 %) sous l'excitation de la composante - Figure 96 : Diagrammes des énergies absorbées par une structure isolée avec un pourcentage d'amortissement effectif faible (08 %) sous l'excitation de la composante de Lexington Dam du séisme de Loma Prieta105 - Figure 97 : Diagrammes des énergies absorbées par une structure isolée avec un pourcentage d'amortissement effectif faible (35 %) sous l'excitation de la composante de Lexington Dam du séisme de Loma Prieta106 - Figure 98 : Diagrammes des énergies absorbées par une structure isolée avec un pourcentage d'amortissement effectif faible (08 %) sous l'excitation de la composante

SOMMAIRE

Introduction générale	01
Chapitre I : Systèmes de contrôle pour l'isolation parasismique	
I-1- Introduction	
I-2- Système de contrôle passif	
I-2-1- Contrôle passif avec isolateurs à la base	
I-2-1-1- Appuis à déformation	04
I-2-1-2- Appuis à glissement	
I-2-1-2-1- Appuis à friction	
I-2-1-2-2- Appuis à pendule glissant	
I-2-1-3- Appuis à déformation et glissement	
I-2-1-3-1- Appui utilisé par l'EDF (Electricité de France)	
I-2-1-3-2- Appui proposé par N.Mostaghel	07
I-2-1-4- Appuis à roulement	
I-2-2- Contrôle passif avec dissipateurs d'énergie	
I-2-2-1- Amortisseurs métalliques	
I-2-2-2- Amortisseurs à frottement	
I-2-2-3- Amortisseurs viscoélastiques (VE)	
I-2-2-4- Amortisseurs fluides visqueux	
I-2-3- Contrôle passif avec systèmes inertiels couplés	14
I-2-3-1- Amortisseur de masse accordée TMD	14
I-2-3-2- Amortisseur liquide accordé TLD	14
I-3- Système de contrôle actif	
I-3-1- Système d'amortisseur de masse actif AMD	
I-3-2- Système de câble actif	
I-3-3- Système de contreventement actif	21
I-4- Système de contrôle semi actif	
I-4-1- Amortisseurs semi actifs de masse accordée	
I-4-2- Amortisseurs semi actifs de liquide accordé	
I-4-3- Amortisseurs semi actifs à frottement	23
I-4-4- Amortisseurs semi actifs de vibration	
I-4-5- Amortisseurs semi actifs à rigidité variable	
I-4-6- Amortisseurs à fluide contrôlable	25
I-4-7- Amortisseurs semi-actifs de fluide visqueux	

I-5- Système de contrôle hybride	
I-5-1- Amortisseurs de masse hybride (HMD)	
I-5-2- Système hybride avec isolateurs à la base	28
I-5-3- Contrôle hybride amortisseur-actionneur de contreventement	29
I-6- Méthodes de calcul des structures isolées	30
I-6-1- Méthode statique	30
I-6-1-1- Calcul des déplacements	
I-6-1-2- Calcul du déplacement total	33
I-6-1-3- Calcul des forces sismiques	34
I-6-1-4- Distribution verticale de la force sismique	35
I-6-1-5- Déplacements inter étages	35
I-6-2- Méthodes dynamiques	35
I-6-2-1- Calcul des déplacements	35
I-6-2-2- Calcul des forces sismiques	36
I-6-2-3- Déplacements inter étages	
I-7- Conclusion	

Chapitre II : Concepts théorique de l'isolation parasismique

II-1- Introduction	38
II-2- Modélisation mathématique des appuis parasismiques	38
II-2-1- Isolateur en caoutchouc fretté (Laminated rubber bearings) (RB)	38
II-2-1-1- Système d'isolation en caoutchouc fretté	38
II-2-1-2) Structure à N DDL montée sur système d'isolation (RB)	39
II-2-2- Isolateur en caoutchouc fretté avec amortisseur en barreau de plomb	
(Lead-rubber bearings) (LRB)	39
II-2-2-1- Système d'isolation en caoutchouc avec amortisseur en barreau de	
plomb (LRB)	39
II-2-2-2- Structure à N DDL montée sur système d'isolation (LRB)	40
II-2-3- Isolateur à frottement pur (Pure-friction system) (PF)	40
II-2-3-1- Système d'isolation à frottement pur (PF)	41
II-2-3-2- Structure à N DDL montée sur système d'isolation (PF system)	42
II-2-4- Isolateur résistant par frottement (Resilient-friction base isolator)(R-FE	3I).42
II-2-4-1- Système d'isolation résistant par frottement	42
II-2-4-2- Structure à N DDL montée sur ce système d'isolation	43

II-2-5- Isolateur d'électricité de France (EDF)	43
II-2-5-1- Système d'isolation EDF	44
II-2-5-2- Structure à N DDL montée sur un système d'isolation EDF	44
II-2-6- Isolateur à frottement résistant par glissement (Sliding resilient-fr	iction)
(SR-F)	45
II-2-6-1- Système d'isolation (SR-F)	45
II-2-6-2- Structure à N DDL montée sur un système d'isolation (SR-F)	46
II-2-7- Isolateur en pendules glissantes (Friction Pendulum System) (FPS)	47
II-2-7-1- Système d'isolation en pendule glissante (FPS)	47
II-2-7-2- Structure à N DDL montée sur un système d'isolation (FPS)	48
II-2-8- Contrôle hybride amortisseur-actionneur de contreventement pour u	n seul
niveau (Hybrid Damper-Actuator Bracing control) (HDABC)	49
II-3- Formulation des equations du mouvement des structures isolées avec une a	nalyse
linéaire d'isolation sismique	51
II-3-1- Analyse d'une structure à deux degrés de liberté	51
II-3-1-1- Les Equations du Mouvement	52
II-3-1-2- Formulation matricielle	52
II-3-1-3- Calcul des fréquences propres	52
II-3-1-4- Détermination des modes propres	53
II-3-1-5- Calcul des valeurs maximales du déplacement relatif	54
II-3-2- Analyse d'une structure à N degrés de liberté	59
II-3-2-1- Equation de mouvement	59
II-3-2-2- Les équations du mouvement du système combiné	60
II-3-2-3- Déterminations des fréquences du système combiné	60
II-3-2-4- Déterminations des modes propres du système combiné	62
II-3-2-5- Estimation des déplacements des structures isolées à N DDL	63
II-4- Conclusion	64

Chapitre III : Etudes comparatives pour illustrer l'influence d'isolation parasis	smique
III-1- Introduction	65
III-2- Comparaison des réponses d'une structure isolée avec et sans le	système
d'isolation	66
III-2-1- Description de la structure	66
III-2-2- Description du système d'isolation et de l'excitation sismique	67
III-2-3- Comparaison des résultats	70
III-2-3-1- Périodes et pulsations	70
III-2-3-2- Déplacements et accélérations	71
III-2-3-3- Les efforts tranchants	74
III-2-3-4- Les énergies	75
III-3- L'influence de la hauteur sur l'efficacité du système d'isolation	78
III-3-1- Les périodes des structures	78
III-3-2- Les déplacements relatifs	79
III-3-3- Les efforts tranchants	81
III-4- Conclusion	82

Chapitre IV : Etude Paramétrique

IV-1- Introduction
IV-2- Description de la structure isolée et de l'excitation sismique
IV-3- Comparaison des résultats
IV-3-1- Les réponses de la structure isolée (déplacements, accélérations et
déplacements inter étages)
IV-3-2- Description des résultats des réponses100
IV-3-2-1- Déplacements100
IV-3-2-2- Accélérations
IV-3-2-3- Déplacements inter étages100
IV-3-3- Energie absorbée101
IV-3-4- Description des résultats des énergies absorbées 109
IV-4- Conclusion
Conclusion générale
Annexe
Bibliographie