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Abstract 

In this work, different experimental current-voltage behaviours of several Al implanted 4H-SiC p-i-n 

diodes are investigated by means of numerical simulations in a wide range of currents and temperatures. 

Some devices for which recombination and tunnelling are the dominant current processes at all biases are 

classified as “leaky” diodes. The well-behaved diodes, instead, show good rectifying characteristics with a 

current conduction due to tunnelling below 1.7 V, recombination between 1.7 V and 2.5 V, and diffusion 

processes above 2.5 V. At higher current regimes, a series resistance in excess of 1mΩcm2 becomes the 

main current limiting factor. Depending on the relative weight between the contact resistances and the 

internal diode resistance, different temperature dependencies of the current are obtained. A good agreement 

between numerical and measured data is achieved employing temperature-dependent carrier lifetime and 

mobility as fitting parameters. 

 

Silicon carbide (SiC) provides an alternate solution as a radiation hard material, because of its wide 

bandgap and higher atomic displacement energies, for devices intended for radiation environment 

applications. However, the radiation tolerance and reliability of SiC-based devices needs to be understood 

by testing devices under controlled radiation environments. These kinds of studies have been previously 

performed on diodes and MESFETs, but multilayer devices such as bipolar modulated field effect transistors 

(BMFET) have not yet been studied. The implantation of defects on BMFET in the bulk of devices show 

that the degradation in device performance produced by high concentrations of traps, also, higher capture 

cross section has an effect on the output characteristics. Defects induced damage at the drift layer has also 

been examined in this thesis. It is found that damaging of the canal by ionizing radiation (induced defects) 

reduces the current gain as well. 

 

Additionally, measurements has been performed on fabricated 4H-SiC PiN concern optical 

performance, such as dark current, photocurrent and spectral response. The performance was improved 

regarding the signal to noise ratio, which is the same as photocurrent to dark current ratio in this case. 

 

Keywords: p-i-n diode, silicon carbide, device simulation, carrier lifetime, 4H-SiC, defects, BMFET, 

photocurrent. 
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Résume 

 Dans ce travail, différents mécanismes de transport ont été étudié. Des mesures expérimentales 

pour plusieurs diodes à base de 4H-SiC ont été utilisées avec implantation d’Aluminium. Ces derniers sont 

étudiés aussi au moyen de simulations numériques dans une large gamme de courants et de températures. 

Les diodes pour lesquels les courants de recombinaison et de tunnels sont les plus dominants sont classées 

comme " diodes de fuites ". Par contre les diodes " bien comportés ", montrant des bonnes caractéristiques 

de redressement avec un courant de conduction en raison d’un courant de tunnel au-dessous de  

1,7 V, recombinaison entre 1,7 V et 2,5 V, et les processus de diffusion supérieure à 2,5 V. Aux régimes ou 

le courant est plus élevées, une résistance série de plus de 1mΩcm2 devient le principal facteur de limitation 

de courant. En fonction du poids relatif entre les résistances de contact et la résistance interne de la diode, on 

obtient différentes dépendances de température du courant. Un bon accord entre les données numériques et 

mesurées est atteint par la dépendance entre la température et la durée de vie d’une part et la mobilité d’autre 

part des porteurs de charge comme paramètres d’ajustement. 

 Le carbure de silicium (SiC) fournit une solution de remplacement en tant que matériau résistant 

au rayonnement, en raison de sa large bande interdite et des énergies de déplacement atomiques plus élevé, 

des composants à base de SiC seront conçues pour des applications dans des environnements de 

rayonnement. Toutefois, la tolérance de rayonnement et la fiabilité de ces composants doit être compris par 

des essais dans des environnements de rayonnement contrôlées. Ces types d'études ont déjà été étudiés sur 

des diodes et des MESFETs, mais des composants multicouches tels que des transistors à effet de champ 

bipolaires modulé (BMFET) ne sont pas encore été étudiés. A cet effet l'implantation de certains défauts 

dans le substrat du BMFET montre que la dégradation des performances du composant produit par des 

concentrations élevées de défauts ainsi des sections de capture plus élevée a un effet négatif sur les 

caractéristiques de sortie. Les défauts induits par radiation à la couche active (canal) ont également été 

examinée dans cette thèse. Il a été montré aussi que le canal est endommagé par les radiations (défauts 

provoqués) ionisants provoque une réduction du gain en courant. 

 En outre, des mesures ont été effectuées sur des diodes à base de 4H-SiC pour étudier les 

performances optiques, tel que le courant d'obscurité, la réponse spectrale et photocourant. La performance a 

été améliorée en ce qui concerne le rapport signal à bruit, qui est le même dans le cas du rapport courant 

photoélectrique à d'obscurité. 

Mots clés : p-i-n diode, Shunt, carbure de silicium, simulation, durée de vie, 4H-SiC, défaut, photocourant.  
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Introduction 

 

Introduction 

 

Silicon carbide (SiC) is a wide band-gap semiconductor with interesting physical properties in order to 

realize electronic devices well suited to operate under high temperature, high-power, and/or high-radiation 

conditions. The potentialities of the 4H-SiC polytype, in particular, are expected to enable significant 

improvements to a far ranging variety of applications and systems [1-5]. However, since this is a relatively 

new technology, intensive efforts are still necessary to ascertain the detailed physics and the real design 

benefits that can be obtained by developing even simple SiC-based devices. 

 In short, SiC has been notoriously difficult to grow as pure and defect free as silicon. As time 

marches on, there are more and more breakthroughs in growing high quality SiC. However, there are still 

many problems in growing homoepitaxial, defect-free SiC. These defects are known to negatively affect 

devices that are fabricated on or near them. Micropipes, comets, and carrots are all defects that have been 

shown to negatively affect devices. Additional SiC morphology problems appear in the form of surface 

states on the substrate. These electrically active states can increase reverse leakage current. Better devices 

could be created if these states were eliminated. Thus, the study of SiC epitaxy and devices remains prudent 

to this day. 

 To this extent, in this thesis different forward I-V behaviours of several Al implanted 4H-SiC vertical 

p-i-n diodes are investigated by means of measurements and numerical simulations in a wide range of 

currents and temperatures. In details, diode experimental data and results of proprietary simulation software 

[6] are combined to extract key physical parameters, including temperature dependent carrier lifetime and 

mobility, which aid to differentiate the current transport mechanisms at different biases. This study could 

also turn useful in the design of more complex 4H-SiC power devices, such as the various JFET-based 

devices recently presented in literature [7-10], where p-i-n diodes are the embedded structures determining 

the device on and off-state characteristics. The effect of ion implantation or irradiation in SiC material has 

been extensively studied both electrically and structurally. However, studies for SiC devices, subjected to 

ion implantation or irradiation, are also needed to understand the mechanisms involved in the degradation of 

the electrical performance. Such studies provide information on device tolerance and threshold radiation 

doses, and they are important for rating devices and to improve the device design for specific applications.  

 

 

1 



Introduction 
 

In the present thesis, the effects of ionizing radiation on SiC based BMFETs have been studied. A 

theoretical investigation is conducted to quantify the effect of traps located at drift region in a SiC BMFET 

by the implantation of multiple traps with densities and cross section in a controlled region. Chapter 1 gives 

a background to silicon carbide and why its material properties give outstanding device performance for 

power devices compared to other semiconductor materials. Chapter 2 presents an overview of the PiN 

device. The important models and parameters used for simulation for the total forward drop of the device are 

presented in chapter 3. Electrical characterization and discussion are found in Chapter 4. Finally, this thesis 

work is concluded.  
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Chapter 1 

Material Properties and Technology  

Silicon carbide is a wide bandgap semiconductor, which has many advantages compared to the 

conventional semiconductors. In this chapter, the material properties of SiC is focused and show the 

advantages of using SiC over other semiconductor. 

 

1.1 Historical Background   

SiC was first observed in 1824 by Jacob Berzelius [11]. The properties and potential of the material 

were not understood at that time. The growth of polycrystalline SiC with an electric founding furnace was 

introduced by Eugene Acheson in 1886. He was also the first to recognize it as a silicide of carbon and gave 

it the chemical formula SiC. Later on, he used carbon and sand in a melting process that is still used today in 

an improved way known as the Acheson method. 

With its polycrystalline forms, silicon carbide has long been a well-proven material in high 

temperature, high-strength and abrasion resistant applications. In 1955[12], Jan Antony Lely proposed a new 

method for growing high quality crystals witch still bears his name. The interest in SiC as an electronic 

material began to increase slowly from this point on. The first SiC conference was held in Boston in 

1958.During the 60’s and 70’s SiC was mainly studied in the former Soviet Union.  

In the year 1978 the development of SiC saw a major step; the use of seeded sublimation growth 

technique also known as the modified the modified Lely technique [13]. This breakthrough led to the 

possibility for true bulk crystal growth. In 1987, Cree Research Inc., the first commercial supplier of SiC 

substrates, was founded [14]. In the 1990s, the semiconductor industry concentrated strongly on the 

realization of unipolar devices in SiC, especially Schottky diodes. Since then, device fabrication in SiC is 

rapidly growing. Today many types of devices, such as blue LED’s, MOSFET’s, MESFET’s, Schottky 

barrier diodes, bipolar transistors, thyristors, radiation detector and temperature sensors are possible. 
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1.2. Crystal Structure 

Silicon carbide is a wide bandgap semiconductor, which has many advantages compared to the 

conventional semiconductors. In this section, the material properties of SiC are focused. Some of the 

important parameters for device simulation and calculation are also presented with useful values, which are 

based on the recent literature and commercially available simulators. 

 

1.2.1 Crystal structure 

The common semiconductors occur in the diamond crystal structure (Si and Ge), the zinc blende 

crystal structure and the wurtzite crystal structure (for example, GaAs and other III-V compound 

semiconductors) even though there is a large number of different crystal structures possible in nature [15]. 

Silicon carbide has several stable Crystal structures. 

 

1.2.2 Polytypism of SiC  

SiC has equal parts silicon and carbon, both of which are group IV elements. The distance between 

neighboring silicon (a) or carbon atom is approximately 3.08 Å for all polytypes. Crystals can have many 

different structures; the most common are cubic and hexagonal. The carbon atom is situated at the center of 

mass of the tetragonal structure outlined by the four neighboring Si atoms Figure 1.1.1 The distance between 

the C atom and each of the Si atoms is approximately 2.52 Å. The height of the unit cell, called c, varies 

between the different polytypes. Therefore, the ratio of c/a differs from polytype to polytype. This ratio is 

1.641, 3.271, and 4.908 for the 2H, 4H, and 6H-SiC polytypes, respectively. The polytype is a variation of 

crystalline material in which the stacking order of planes in the unit cell is different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.1: The tetragonal bonding of a Carbon atom with the four nearest silicon. 
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Figure 1.1.2: Stacking sequences of the crystal structure of (a) 3C SiC (b) 4H SiC, and 

(c) 6H SiC [16].  

 

1.3 Production and doping of SiC single crystals 

The availability of high purity and defect free on large area wafers is of vital importance for industrial 

development. The feasibility to produce low cost, high volume large area SiC wafers has been one of the 

main reasons of his success and domination in microelectronic applications. Currently SiC has not reached 

yet the performance of Si in terms of material quality but recent breakthrough should be a step forward 

allowing the fully industrialization of SiC devices and systems. 

  

1.3.1 Bulk growth of SiC 

The production of large-area defect-free single crystalline SiC substrates, i.e. bulk crystals, with well-

controlled doping concentrations is one of the essential parts of realizing the full potential of SiC electronic 

applications. On such substrates, it is possible to grow so called epitaxial layers with uniform thicknesses 

and homogeneous doping over large areas. 

For SiC the dominating bulk growth technique is the so-called seeded sublimation growth, i.e. the modified 

Lely technique. Here in a closed system, a solid source consisting of SiC powder is used and a temperature 

gradient transports material from the source to the seed. The growth temperatures are very high, 2000 – 

25000 C. The size of commercially available wafers increase continually and in year 2005 wafers with a 

diameter of 4 inch are already on the market, however, the production of larger wafers has been also 

reported. In case of seeded sublimation growth the use of a solid source and the closed system makes it 

sensitive to depletion of the source, specifically for the Si component.  
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To overcome this problem the high temperature chemical vapor deposition (HTCVD) technique was 

developed [17]. Here gases, typically silane (SiH4) and ethylene (C2H4), containing Si and C are fed into the 

susceptor, then decompose as they are heated and form solid particles as a mixture of Si and C. As they are 

heated further they sublime in a similar manner as in the sublimation growth and are transported to the seed. 

Since here the purification of gases is easier, the benefit of HTCVD technique is the production of high-

purity material for specific applications. 

 

1.3.2 Epitaxial growth of SiC 

Bulk crystals of SiC are several cm thick thus here a trade-off between the growth rate and crystal 

quality must be done. The quality obtained is not good enough to be used as an active layer in a device. To 

solve this problem, thin layers in the 1-300 µm range are grown on top of the substrates by epitaxial growth. 

For this purpose, vapor phase epitaxy (VPE) is the only considered technique for SiC. This is commonly 

realized in a CVD reactor where the substrate is placed and source gases (SiH4, and C3H8 or C2H4), 

containing Si and C are fed through [18]. An off-orientation of the surface normal of the substrate to the c-

axis is preferred towards the <11-20> direction to be able to replicate the polytype [19]. An angle of 3.50
 is 

employed for 6H-SiC, while 80
 off-angle is needed for 4H-SiC. The lower requirement on growth rate 

allows the epitaxial growth to occur at a lower temperature of 1450–16500C and closer to equilibrium, 

leading to a higher crystalline quality [20] suitable for active layer fabrication in devices.  

Note that in principle, a perfect crystal is impossible to manufacture. Even if it does not contain any 

impurities as extrinsic defects, some amount of intrinsic crystal defects is always present to maintain the 

thermodynamic equilibrium. Generally, a major distinction is made between point defects and extended 

defects. In SiC the most important extended defects are dislocations, stacking faults and the so-called 

micropipes. These kinds of defects are discussed in part two of this chapter. 

 

1.3.3 Growth of different polytypes 

Even though there exist more than 200 different polytypes of SiC, they are not equally easy to grow. 

The seeded sublimation growth technique is primarily suitable for the production of 4H and 6H-SiC. The 

largest bandgap in a thermally stable polytype is 3.26 eV in 4H-SiC.  

The saturation drift velocity of carriers is higher in 4H than in 6H-SiC, making the propagation of 

electronic signals faster in 4H-SiC. Therefore, there is a strong emphasis on studying the properties of the 

4H polytype. The technology for growing large pieces of 4H for substrate production is also favorable, 

although the 6H polytype is easier to grow.  

3C-SiC allows highest saturation drift velocity and mobility, making it most suitable especially for fast 

switching power devices. Some efforts have been made to produce bulk crystals of 3C-SiC, but for  
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a long time no breakthrough has been achieved. This might be due to comparatively high temperatures 

needed for the sublimation, and that the 3C polytype is thermodynamically stable at lower temperatures. 

However, recently the production of 4-inch diameter, 200 m thick 3C bulk layers with good crystalline 

quality was reported [21]. The layers were deposited by CVD on Si substrates at relatively low temperature 

(T < 14500C), below the melting point of Si. 

 

2H-SiC is not thermally stable at common growth temperature [22] and cannot be grown in large-area 

stable pieces, therefore it could be only of scientific interest. Another frequently referred polytype is 15R-

SiC which usually appears in common growth conditions, but is not exposed to a great attention. 

This thesis deals with the 4H polytype, which are seem to be the most promising candidates for future 

applications. 

 

1.3.4 Doping of SiC  

When doping a semiconductor material during the crystal growth, large-area homogeneously doped 

wafers can be obtained with well-controlled doping concentration. However, in planar device structures a 

lateral separation between different parts has to be achieved. The dopants introduced during in situ SiC PVT 

epitaxial growth are aluminium and boron for p-type and nitrogen and phosphorus for n-type; with 

trimethylalminum ((CH3)3Al); diborate (B2H3), nitrogen gas N2 and phosphine (PH3), as the most common 

dopant precursors. In semiconductor processing ion implantation is the key technology for doping, besides 

crystal growth and thermal diffusion. Ion implantation means that electrically accelerated energetic ions are 

shooted into the crystal. The ion energy is usually in the range 100keV–1MeV. Implantation, as a thermally 

non-equilibrium process has the advantage that basically all stable elements of the periodic table can be 

implanted.  

Therefore, in case of SiC this is the only technique suitable for selective doping with N, Al, B or P. In 

addition, doping concentrations and doping profiles can be adjusted reproducibly and varied over a wide 

range. However, as a disadvantage, ion implantation causes damage to the crystal structure, depending on 

the ion mass, ion energy, the implanted fluence and the fluence rate (the number of implanted ions per unit 

area and unit time, ions cm-2s-1). To reduce the induced damage and to electrically activate the implanted 

dopant species, usually high-temperature post-irradiation annealing has to be performed. The high 

temperature stability of SiC is a disadvantage in this case since implantation also produces some high 

temperature stable defects. These will be very difficult to remove, by annealing, once they are created. 

As p-type dopant, aluminium is the most frequently used. It has a low diffusity in SiC over the 

temperature of interest; high incorporation efficiency and, compared to boron, lower acceptor ionisation 

energy (see Tab 1.1 ).The incorporation is almost linear to the flow of trimethylalminum and a maximum  
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doping level of about 2x1020cm-3 can be reached. Boron is less used, partly due to its higher acceptor 

ionisation energy and lower solubility in SiC. Boron has a higher diffusity than aluminium, and a tendency 

to stick to the reactor walls, and subsequently evaporate. Both of these effects lead to non-abrupt doping 

profiles.  

 

 

          Type                       Dopant                                         Ionisation energy (meV)    

                                                                                               _______________________________________________________ 

                                                                                         4H-SiC                            6H-SiC 

___________________________________________________________________________ 

          n                              N                                               42(hex) 82(cub)             82(hex) 137(cub)     

                                      P                                               53(hex) 93(cub)             82(hex) 115(cub)  

 

                                                      B                                                             300                           310 

         p                                         Al                                                             190                           225 

                                       Ga                                                             281                           290 

 

Table 1.1: Ionisation energies of the most common impurities in 4H-and 6H-SiC. 

As n-type dopant, nitrogen is preferred to phosphorus, even though the acceptor ionisation energy is 

practically the same for both. The dopant incorporation is proportional to the N2 flow, and saturates at 

around 1x1020cm-3.   

 

The dopants are incorporated into Si or C lattice site. A large dopant atom will preferably replace the 

larger Si atom in order not to distort the lattice. Aluminium and phosphorus, both with an equivalent radius 

comparable to that of silicon are hence regularly incorporated into Si sites. 

 As it can be seen from the previous sections, SiC research and processing is a complex field with 

many open questions. Every problem mentioned above – even more or less significant – has to be solved in 

order to be able to fabricate continuously operating, non-deteriorate and reliable structures. To accomplish 

this purpose a very important obstacle to be eliminated is to understand the structure and properties of point 

defects and to tailor the depth distribution of dopants and ion irradiation-induced damage in the material. 

Now we turn to the main scope of this thesis and first give a short introduction to the nature of point defects 

and defect creation mechanisms taking place during electron irradiation into SiC.  
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1.4 Contact creation 

 One of the key technical issues for a semiconductor device is the metal semiconductor (MS) contact. 

An ideal MS contact can either be a rectifying (Schottky) or non-rectifying (ohmic). Metal-semiconductor 

combinations generally upon preparation are rectifying due to the Schottky barrier at the metal- 

 

semiconductor interface. Schottky contacts are essential for current switching and rectification. Ohmic 

contacts may be considered a limiting case of Schottky contacts with a modified Schottky barrier. A good 

ohmic contact, usually formed by depositing a metal on the semiconductor, does not perturb device 

characteristics and is stable both electrically and mechanically. Based on the Schottky-Moll theory of metal-

semiconductor contacts the Schottky barrier high of a certain metal or its ohmic nature depends exclusively 

on its work function, once it is brought into intimate contact with SiC (deposited onto that). Based on the 

previous theory one may think that is possible to class the elemental metal layers into two groups: good 

ohmic or good Schottky contacts. However, the Schottky-Mott model needed a significant modification, 

what was done by Bardeen later by introducing the concept of surface states. It is not possible to sort the 

metallic contacts as Schottky or ohmic as their basic electrical behaviour depends not only on the work 

function of the metal, but also on several parameters, even on alloying temperature of the contacts. For 

example, Ni contacts on n type SiC annealed up to 600°C are Schottky contacts, however, the same contacts 

annealed at 900°C became ohmic [23]. 

 N-type SiC ohmic contacts have been developed to the point where specific contact resistances on 

heavily doped material is now available and that processes involving silicide formation using metals such as 

Ni appear to lead to lowered Schottky barrier heights at the metal-semiconductor interface. N-type contacts 

submitted to ageing at high temperatures for long times and then characterized at room temperature indicate 

good thermal stability [24]. Most of the elemental metal layers deposited on n-type SiC exhibit a Schottky 

contact at room temperature with high barrier height [25].  

 

 P-type ohmic contacts are not as well developed or understood as n-type contacts. The very large 

Schottky barrier height that exists at the metal-p-type SiC interface has led to the need for extremely heavy 

surface doping since sufficient barrier lowering to enable ohmic contacts formation has not been achieved. 

Enhanced doping for the formation of p-type ohmic contacts has been achieved either during epitaxial 

growth, by ion implantation, or it is generally believed, by contact processes using Al and Al based alloys. 

On that substrate Al/Ti contacts are commonly used for ohmic contacts deposited either subsequently (Al/Ti, 

Al layer over the Ti layer) or simultaneously (Al-Ti) [26-28]. For Schottky contact purposes on p-type SiC, 

tungsten is a promising candidate [29]. Table 1.2 Reports some selected results on ohmic contacts on n-type 

and p-type 4H-SiC material from literature.  
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n-type 

 or 

p-type 

    Metal          Doping(cm-3)       Contact resistance          Annealing             

ref 

                                                        ρc (Ωcm2)   

n-type 

p-type 

TiC                    1.3x1019                 4x10-5                                  950°C              

[30] 

TiC                   > 1020                    6x10-4                         950°C 

Ti                      > 1020                    8x10-4                         950°C 

n-type 

p-type 

Ni                     1x1019                    6x10-6                        1050°C 10min       

[31] 

Ni                    1x1021                    1.5x10-4                   1050°C 10min                                                                                                                                                                                                                                                                                                                                                                                              

n-type 

 

p-type 

Ni                      1x1019                   7x10-6                        950°C 30min        

[32] TiW                 1x1019                    3x10-5                     950°C 30min 

TiW                 6x1018                    1x10-4                               950°C 30min 

p-type Ni/Al                 3-9x1018                 5x10-3                      800°C 2min          

[33] 

Ni/Ti/Al           3-9x1018                6x10-5                    800°C 2min                      

p-type Ge/Ti/Al           4x1018                  1x10-4                      600°C 30min        

[34] 

p-type Al-Ti                   5x1018                      2x10-4                       1000°C 2min       

[29] 

n-type Ni/C                    3x1019                   1x10-6                        700°C 2h              

[35] 

Ni/C                    1x1017                   8x10-5                   900°C 2h 

 

Table1.2: Specific contact resistance measurements on 4H-SiC from literature.  

 

 

1.5 Oxidation   

As with the Si technology, SiC can be obtained in different ways such as thermal oxidation and CVD. 

SiC surfaces can be thermally oxidized using dry and wet oxygen at around 1000°C in the same way as Si. It 

has been also found that the oxidation of all SiC polytypes is much lower than that of Si. It normally takes a 

much longer time to get the same thickness on SiC than Si under the same conditions. Another unique 

characteristic in the oxidation rates are different between the silicon face and the carbon face .i.e. the  
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oxidation depend on the crystal orientation of SiC, thus SiC shows an anisotropic oxidation [36]. 

The SiO2 /Si interface plays a crucial role in the development of MOS devices. To build high performance 

MOS devices in SiC, The SiO2/Si needs to be improved. For years, the progress has been hampered by 

problems with the gate oxide, reflecting in very poor channel-carrier mobility and oxide reliability. A lot of 

research effort have been poured into the improvement of quality SiO2/Si interface in SiC. A figure of merit 

in MOS devices can be described in terms of their interface state and fixed charge densities. Dynamic 

improvement have recently been reported with nitrided SiO2-SiC interfaces [37,38], leading to improved 

reliability and to recently reported values for inversion-layer mobility in 4H-SiC of about 50cm2/vs [39].  

 

2. Major defects in SiC 

Ever since large electronic grade SiC substrates became available they have been plagued with 

persistent defects which limit performance or reliability and which have been difficult to remove. This 

includes both structural defects such as stacking faults, dislocations and micropipes, electrically active point 

defects and a poor quality of the interface between SiC and SiO2 and other candidate dielectrics for MOS 

devices. A steady improvement in the defect density control has been observed in the recent years, and 

nowadays wafers with diameters up to 3" or even 4" are commonly available from different suppliers, with a 

very low defect density in comparison with the first attempts to grow wafers with the same diameter. 

 

2.1 Crystal Imperfections 

2.1.1 Bulk defects 

2.1.1.1 Micropipe 

Micropipe defects are the major obstacles to the production of high performance SiC devices. 

Micropipes are defects unique to the growth of SiC. They are physical holes that penetrate through the entire 

crystal and replicate into the epitaxial layer. They become “killer defects” if they are found on the active 

region of the device [40]. Fig 1.2.1 is a picture of a micropipe defect, which was obtained using a Nikon 

AFX-II microscope with a 1000x lens [41]. 
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Figure 1.2.1: Micropipe defect [41] 

 

2.1.1.2 Dislocations 

Dislocations are one-dimensional line defects and they extend through the entire lattice. There are two 

main types of dislocations, with screw and edge character. The specification depends on the mechanism of 

their formation and the so-called Burgers vector b. The dislocation is a local distortion of the crystal and due 

to stress. It is required to move by one lattice constant. An edge dislocation is formed by removing from the 

crystal a half of atoms plane terminating on the dislocation line and then joining the two planes in the way to 

restore order in the crystal, see Fig1.2.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure1.2.2: Edge dislocation 
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A screw dislocation can be explained in the following manner. The crystal has been slipped above the 

dislocation line by a lattice vector parallel to the line and then rejoined to the part below the dislocation line 

to restore crystalline order, see Fig1..2.3. 

 

 

 

 

 

 

 

 

Figure1.2.3: Screw dislocation 

 

 

2.1.1.3 Stacking faults 

Stacking faults (SFs) are planar defects and they mostly exist in the primary slip plane, which, for SiC 

is {0001}.In principle, three types of SFs can exist in hexagonal system. 

 

2.1.1.4 Low angle grain boundaries 

Low-angle boundaries near the crystal periphery tend to form with the growth of large-diameter 

crystals grown under non optimized process conditions. In SiC substrates, low-angle boundaries are visible 

between the magnitude of this burgers as void-like linear crystallographic features extending radially inward 

from the wafer edge and generally following low-index planes. They can sometimes extend through the 

entire thickness of the wafer. Recent work has resulted in a dramatic reduction in these defects, current 

research and development substrates up to diameters of 100 mm are now produced without these low angle 

grain boundary defects. 

 

 

 

 

 

 

 

 

12 



Chapter 1: Material Properties and Technology  
_______________________________________________________________________________________ 

 

 

 
 

 

 
               (b)                                              (c)                                                     (d) 

 

Figure 1.2.4: Schematic diagram showing three types of domain misorientation. (a) Perfect crystal; (b) 

twisted grain boundary; (c) basal plane tilt boundary, (d) prismatic plane tilt boundary. 

 

2.1.1.5 Other planar defects 

  Defects with a triangular or hexagonal shape that can be created by inclusions of foreign polytype. 

They can be easily identified with an optical inspection because they show well– defined boundaries and 

color changes. Inclusions of the same polytype but with different orientation of the crystallographic axes 

have been reported [42, 43]. 

 

2.2 Epitaxial defects 

A detailed study has been performed on SiC epilayer, with optical microscope investigation and 

spectroscopic techniques, in a way similar to that followed for the bulk analysis. Two types of defect were 

identified: etch pits and comets. 

 

2.2.1 Etch pits 

Etch pits can be generated during the epitaxial growth by means of an H2 etching on the surface. They 

generally appear like holes, with a hemispherical depression on the surface. Etch pits have a diameter 

comprised between 1 and 10 micrometers, and the thickness is on the order of a few hundred nanometers. 

They can show a lighter color than micropipes, when observed by an optical microscope. 
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Wafers purchased recently from different suppliers are free from etch pits on the surface. A more 

refined polishing of the surface is generally the main reason of this improvement in the wafer’s quality. 

 

2.2.2 Comets (or carrots) 

This defect is like a comet constituted by a “head” and a “tail”. Comets are passing through the entire 

epilayer in a transversal direction. 

This defect can be originated during the growth by an aggregation of micropipes, or merely by micro 

particle detachments from the reactor walls, with their subsequent interaction with the growing surface. 

 

 

 

Figure.1.2.5: S.E.M and optical images of a group of comets. [44] 

 

2.3 Point Defects 

Three kinds of point defects can form in SiC, which are vacancies, interstitials and antisites. A 

vacancy is an unoccupied site for an atom or ion in a crystal [45], as shown in Figure 1.2.6X. In 4H-SiC, both 

Si and C-vacancies may form in different charged states (charge states of the atoms surrounding the 

unoccupied site) depending on whether the SiC is n–type or p-type. 

 

 

 

 

 

 

 

Figure 1.2.6: Schematic of a vacancy in a                   Figure 1.2.7: Schematic of an interstitial in a 2-D 

crystal.                                                              2-D crystal. 
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A crystal lattice can be modeled by spherical atoms or ions between which there is empty space [46]. An 

interstitial might be an impurity or self-interstitial, i.e. a C or Si interstitial in the SiC crystal, as shown in 

Figure1.2.7. An interstitial might be an impurity or self-interstitial, i.e. a C or Si interstitial in the SiC 

crystal. 

An antisite is a defect where, for a binary compound, a crystal site is occupied by the wrong species  

(Figure1.2.8X). For instance, if in SiC, a C lattice site is occupied by a Si atom, then this is called a Si antisite, 

and if in SiC, a Si lattice site is occupied by a C atom, and then this is called a C antisite. 

 

 

 

 

 

Figure 1.2.8: Schematic of an antisite in a 2-D crystal. 

 

 

2.4 Shallow and deep levels 

In addition to the classifications above, it is common to group defects according to the localized 

bandgap states they give rise too. States that have energies close to either the valence (EV) or conduction 

band edges (EC) are usually called shallow levels, whereas states with energies that are far from both the 

bands are called deep levels. 

The classical examples of shallow defects are impurities with (shallow) donor or (shallow) acceptor 

states, due to the loosely bound electron or hole around them. 

 

2.5 Defect charge states and formation energies 

Let us consider a deep center, with the energy level ET located in the bandgap and with a uniform 

concentration of NT defects cm-3 over the semiconductor material (see Fig.2.4). There are four processes 

describing the dynamic behavior of the deep state, namely the individual capture and emission processes of 

both electrons and holes, with corresponding emission and capture coefficients (probability per unit time) of 

en, ep, cn, and cp (see Fig. 2.9). 
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(a)                         (b)                     (c)                        (d) 

Figure 1.2.9: Emission and capture processes to and from a deep level located in the bandgap of a 

semiconductor. 

 

Let us mark the capture of an electron from EC to ET as event (a) and the emission of an electron from 

ET to EC as event (b). Similarly, the capture of a hole from EV to ET is event (c) and the emission of a hole 

from ET to EV is event (d). Now four different processes can be considered (see Fig.1. 2.9): 

1. Recombination: event (a) is followed by event (c) 

2. Generation: event (b) is followed by event (d) 

3. Trapping electrons: event (a) is followed by event (b) 

4. Trapping holes: event (c) is followed by event (d) 

The occupancy of the state ET is determined by competing emission and capture processes. Electrons can be 

emitted and holes can be captured at the nT states occupied by electrons and holes can be emitted and 

electrons can be captured at the (NT-nT) states occupied by holes. If the trap has a degeneracy factor g0 when 

empty and g1 when occupied by one electron, it can be shown that in thermal equilibrium the electron and 

hole emission is written as [47]: 

 

                                                        (2.1) 

 

Where EF is the Fermi level in the material and    are degeneresance factor. Roughly speaking, if 

EF > ET, cn>en and ep>cp so that the state is occupied by electrons, whereas when EF < ET the state is empty.  

Many defects can introduce more than one deep level in the bandgap. These are usually denoted 

+/++, 0/+, -/0, --/-, etc., where the first symbol represents the charge state of the defect when an electron is 

bound to it, and the second one is the charge state of the empty level. 
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The important property of deep levels is the ability to influence carrier lifetime significantly even at 

low concentrations. According to Shockley-Reed-Hall [48, 49] statistics, the minority carrier lifetime (for a 

single deep trap) is given by: 

 

                                                                                              (2.2) 

 

Here n0 and p0 are the electron and hole densities at thermal equilibrium, and n1 and p1 are the electron and 

hole densities for the case that the Fermi level EF is at the energy position ET of the deep level. 

 

It can be shown [50] that τdepends sensitively on the position ET of the deep level in the bandgap. If 

we consider two defect centers with energy level difference of 0.4 eV, the lifetime at room temperature will 

be determined by the deeper level even if its concentration is six orders of magnitude lower than the 

concentration of the shallower level. This is mainly due to the exponentially decreasing probability of 

thermal reemission from the defect for deeper levels. 

 

2.6 The role of deep levels 

Presence of deep-level defects as efficient carrier traps can seriously affect the performance of some 

semiconductor devices, which depend on long minority carrier lifetimes. 

 

2.7 Prominent 4H-SiC intrinsic defect centers 

2.7.1 Z1/2 

The so called Z1/2 center is, associated to EH6/7, the only deep level found in significant 

concentration in n-type as-grown 4H-SiC [51–53,54].. The concentrations of these two centers are both 

inversely related to the minority carrier lifetime, as well as the nitrogen donor concentration, and for a while 

it was uncertain which defect center was the dominant in limiting the lifetime [55,56].  Klein et al. 

performed DLTS and lifetime measurements on a series of 4H-SiC epitaxial layers of increasing thickness, 

and observed that the Z1/2 concentration was very strongly correlated with the inverse effective lifetime 

[57]. Moreover, this center has large, almost equal capture cross sections for both electrons and holes in the 

low 10−14 cm2 range making it an efficient recombination center. In contrast, the concentration of the EH6/7  
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center showed no such correlation. The lifetime is no longer limited by the Z1/2 center below a 

concentration of 1−2×1013cm−3 [58], and it has been speculated that structural defects or surface 

recombination may dominate in this regime. 

The Z1/2 center actually gives rise to two different centers and each yields two different DLTS peaks 

corresponding to two charge state transitions with closely spaced energy levels [59]. Due to their negative-U 

property only a direct transition from the neutral to the doubly defect(s) is then believed to migrate out from 

the irradiated spot and leave behind Z1/2 and other defects in a radial lateral distribution. During such 

experiments employing a low energy (< 300 Kev) electron beam, Steeds et al. [60] observed that photo 

luminescence lines corresponding to silicon vacancies stayed within the irradiated area, while interstitial-

related centres were observed to migrate outside the directly irradiated area. This, coupled with the low 

energy, which should only generate damage on the C-sublattice, points to the carbon vacancies as the 

migrating defect, in contradiction to that concluded in the context of oxidation enhanced annealing of Z1/2. 

 

2.7.2 EH6/7 

The EH6/7 levels, like theZ1/2 level, are typically found in as-grown material at concentrations of 

around 1012 − 1013 cm−3, which further increases greatly due to electron and proton irradiation, and ion 

implantation [51–53].They are positioned quite deeply in the band gap, about 1.65 eV below the conduction 

band edge, and have large electron capture cross sections estimated to approx. 10−13 −10−14 cm2 extrapolated 

from an Arrhenius plot, and larger than 5×10−15 cm2 when measured by varying the filling pulse width 

during DLTS measurements [61]. The EH6/7 levels have been argued to be acceptor-like due to the lack of 

observed temperature shift of the DLTS peak with different applied electric field [62,63], and a recent study 

has unambiguously shown that Z1/2 is a double acceptor level while EH6/7, or EH7, is donor-like [68]. 

The DLTS peak is rather broad and consists of two closely overlapping levels, EH6 and EH7. Because 

of this, and since they usually appear together, these overlapping levels are sometimes treated together, 

despite having different behavior, e.g. mainly EH7 is generated by low-energy (80-300 Kev) electron 

irradiation, while both are generated at higher energies, indicating that EH7 is most likely due to an 

elementary carbon-related point defect while EH6 is due to a more complex cluster [65]. In fact, the EH7 

and Z1/2 levels are now considered to be different charge states of the carbon vacancy, from a comparison 

of the energy levels of VC, Z 1/2 and EH7, and the fact that both VC and Z1/2 exhibit negative-U behavior  

[64]. 
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The evidence for the involvement of carbon in this level is compelling and mostly based on the same 

arguments as for Z1/2; its formation is suppressed by increasing the C/Si ratio during CVD growth [56], 

EH7 is observed after electron irradiation at energies below the threshold for damaging the Si sublattice [65, 

66] and both EH6 and EH7 exhibit highly enhanced annealing following either carbon implantation [67] or 

thermal oxidation [63, 68, 69]. These results indeed support the involvement of VC in the EH6/7 level. 

Some studies have also reported that the concentration of Z1/2 and EH6/7 increases with increasing 

C/Si ratio, and with increasing nitrogen content [70, 71], although most growth studies seem to agree on the 

opposite dependence on the C/Si ratio. 

As already mentioned, the EH6/7 levels are generated in similar concentrations (about 1:2) as the Z1/2 

center by radiation, and their annealing behavior is also very similar [65, 72]. Both have very high thermal 

stabilities, persisting up to 2000 ◦C, and anneal out in multiple stages. The final dissociation energy for 

EH6/7 has been estimated as at least 7.5 eV [72]. Although the EH6/7 levels are known to be intrinsic, they 

have also been observed to exhibit electric field assisted annealing following MeV ion implantation with 

either N or C, where the annealing changes character depending on the implanted species [73]. This 

manifests itself as an instability in the EH7 level when subjected to reverse bias at 700 K, e.g. during high- 

temperature DLTS measurements. EH7 irreversibly decreases in N-implanted and increases in C-implanted 

material, while little change is observed for the EH6 level. The EH6/7 levels have also been observed long 

distances from a point irradiation performed with protons, just like the Z1/2 and S1/S2.  

2.7.4 S1/S2 

The S1/S2 levels consist of the S1 level at Ec-0.45 eV and the S2 level at Ec-0.71 eV, with capture 

cross sections 8×10−17 and 3×10−15 cm2, respectively, measured by pulse width variation [16,19,20,62]  

[51,74,72,75]. David et al. found that they appear in a nearly 1:1 relationship following both low and high 

energy electron and proton irradiation, after a post-irradiation anneal at about 200◦C, both with formation 

energies established as about 1 eV [75]. Their decaying amplitudes also closely match during annealing, 

with an activation energy for the decay Ea =1.8 eV and a prefactor c0 =1×1011 s−1. No electric field 

dependence on the DLTS peak positions have been found, possibly indicating that the levels are acceptor-

like. Due to the 1:1 correspondence both in as-irradiated material and after annealing, David et al. argued 

that these levels most likely correspond to different charge states of the same defect center. This is further 

supported by the much smaller electron capture cross section for S1, which could indicate that the center is 

acceptor-like and capable of capturing two electrons since a capture of the first electron leads to a negatively 

charged center and therefore a much lower capture rate of the second electron due to columbic repulsion. 
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It has also been shown that these levels appear after annealing at room temperature for several months, 

and that the annealing is accelerated both by an applied reverse bias [74] and recombination enhanced 

during hole-injection either through a p+/n-junction or by illumination with above-band gap light [76].  

The recombination enhanced annealing is not entirely a thermal, as the annealing rate decreased with 

decreasing temperature below room temperature. The fact that both the S1 and S2 levels display these 

relatively rare properties was regarded as further evidence that they do correspond to different charge states 

of the same defect center. The levels start to anneal out at temperatures above 250 ◦C. 

Upon performing low-energy focused beam electron irradiation, Alfieri et al. observed the S1/S2 

levels, along with Z1/2, up to distances of several hundred μm away from the directly irradiated area [77].  
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Chapter 2 

Physics and basic equations of PiN-Diodes 

 
Most power diodes are pin-diodes, i.e. they possess a middle region with a much lower doping 

concentration than the outer p- and n-layers enclosing it. Compared with unipolar devices, pin-diodes have 

the advantage that the on resistance is strongly reduced by high-level injection in the base region, which is 

known as conductivity modulation. Hence pin-diodes can be used up to very high blocking voltages. The 

base region is not intrinsic, as suggested by the name. The intrinsic case – doping in the range of < 1010 

cm−3 – would not only be difficult to attain by technology, extremely low doping would cause essential 

disadvantages in the turn-off behavior and other properties. Power diodes usually have a p+n−n+ structure, 

hence the so-called i-layer is actually an n−layer. Since it is several orders of magnitude lower than the 

doping of the outer layers, the name pin-diode has become the usual denotation in almost every case. 

 

From the viewpoint of application, power diodes can be distinguished into two main types: 

Rectifier diodes for grid frequency of 50 or 60 Hz: the switching losses play a subordinate role, and there is 

a high carrier lifetime in the middle layer. 

Fast recovery diodes that work as freewheeling diodes for a switching device or that are in the output 

rectifier after a high-frequency transformer. They have to be generally capable of switching frequencies of 

up to 20 kHz and in switch-mode power supplies of 50–100 kHz and more. In fast diodes manufactured 

from silicon, the charge carrier lifetime in the middle low-doped layer has to be reduced to a defined low 

value. 

 

2.1 Structure of the pin-Diode 

With respect to structure and technology, pin-diodes can be classified into two types. For pin-diodes 

using epitaxial technology (epitaxial diodes, Fig. 2.1a), first, an n−-layer is deposited by epitaxy on a highly 

doped n+-substrate. Then, the p-layer is diffused. With this process a very small base width wB down to 

some micrometres can be created, whereby the silicon wafer is thick enough by the substrate to allow 

production with low wafer breaking and at high yield. By implementing recombination centers – in most 

cases by gold diffusion – very fast diodes can be realized. Since wB is kept very small, the voltage drop 

across the middle layer is low. Epitaxial (epi-) diodes are mainly applied for blocking voltages of between 

100 and 600 V; however, some manufacturers also produce 1200 V with epi-diodes. 

Because the costs of the epitaxy process are notable, diodes for higher blocking voltages – usually 
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1200 V and above – are fabricated by diffusion. For a diffused pin-diode (Fig. 2.1b), one starts with a 

low-doped wafer in which the p+-layer and the n+-layer are created by diffusion. The thickness of the wafer 

now is determined by the thickness wB of the middle n−-layer and the depths of the diffusion profiles. The 

required wB is small for lower voltages. With deep n+-and p+-layers the wafer thickness can be increased 

again, but deep p-layers have disadvantages regarding the reverse recovery behavior. The processing of such 

thin wafers is challenging. Infineon has introduced a technology for handling very thin wafers, down to a 

thickness of 80 μm in the manufacturing process. With this technology, also freewheeling diodes for 600 V 

with shallow p- and n+-border layers can be fabricated as diffused diodes. 

 

 

Figure 2.1: Structure of pin power diodes. (a) Epitaxial diode. (b) Diffused diode 

 

 

 

2.2 Forward Conduction Behavior 

The basic one-dimensional PiN rectifier structure is illustrated in Fig. 2.2 together with the electric 

field profile when reverse biased and the carrier distribution profile when it is forward biased. A punch-

through i-region design is favored for PiN rectifiers due to the conductivity modulation of the drift region in 

the on-state. The breakdown voltage for such regions is provided in reference [78]. When this junction is 

forward-biased by the application of a negative bias to the N-region, holes and electrons are injected into the 

drift-region as illustrated in Fig. 2.2. The carrier distribution n(x) can be obtained by solving the continuity  
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equation for the N-region: 

 

 

                                                                                                (2.1) 

 

Where Da is the ambipolar diffusion coefficient and τHL is the high level lifetime in the drift region. 
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Figure 2.2: Electric Field and Carrier Distribution for a PiN Rectifier. 

 

 

The solution for this equation using appropriate boundary conditions [78] yields: 

 

                                                               (2.2) 

 

The catenary carrier distribution described by this equation is illustrated in the figure 2.2. In this expression, 

the ambipolar diffusion length is given by: 
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                                                                                                                     (2.3) 

 

The forward current density JF can be related to the on-state voltage drop VF after taking into account 

voltage drops in the middle (i) region and the two junctions.  

The forward voltage drop of a pin junction rectifier consists of the drop across the middle region 

(Vm) and the drops across the two end junctions according to 

 

VF=VP+/i+Vm+Vi/N+                                                                                                          (2.4) 

 

Where VP+/i and Vi/N+ are the voltage drops across the anode and cathode junctions respectively and their 

sum can be expressed [79] as 

 

VP+/i + Vi/N+= (kT/q) ln (n (-d) n (+d) / ni
2)                                                                (2.5) 

 

Where n (-d) and n (+d) are the electron concentrations at the anode and cathode junctions respectively. The 

mid-region drop, Vm, depends strongly on carrier recombination lifetimes and can be expressed as 

transcendental functions of d/La [79], approximately, 

 

Vm= (3kT/q) (d/La)
 2                              for d < La                                                       (2.6.a) 

 

 Vm= (3kT/8q) exp (d/La)                  for d La                                                        (2.6.b) 

 

Where 2d is the middle drift layer width and La is the ambipolar diffusion length.  

Combining Eqs. (2.5) and (2.6), we can get [79] 

 

 JF= (2 q Da ni /d) F (d/La) exp (q V / 2 k T)                                                              (2.7) 

 

Where F (d/La) is a function of d/La and Vm but not a function of the current density [80], and no end 

recombination is assumed. We can observe that Eq. (2.7) has a strikingly resemble to the I-V relation of a 

conventional pn junction under high-level injection.  
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The off-state leakage current of a silicon junction rectifier is dominated by the space-charge generation 

current, which is 

 

Jgen= qniW / eff   ni V / eff                                                                                            (2.8) 

 

Where the effective generation lifetime eff contains both bulk space-charge generation lifetime, SC, and 

surface generation velocity, sg. Also, W becomes constant once the mid-region is completely depleted. The 

switching of the junction rectifier can be modeled with a charge-control model and unlike the low voltage 

diodes; the switching from the forward to reverse conditions usually goes through a constant di/dt ramp [80]. 

 

2.3 Emitter Recombination and Effective Carrier Lifetime 

To calculate the influence of emitter recombination on the forward characteristics of a pin-diode, we 

introduce an effective carrier lifetime τeff by [81] 

 

                                                                                                   (2.9) 

 

By this definition, τ eff is a mean carrier lifetime of the structure including the emitter recombination. The 

integration extends from a point deep in the p+-region (x = −∞) over the base to a point deep in the n+-layer 

(x=∞). In the base where the injection level is high, the excess hole concentration Δp is equal to p = n, and in 

the p+-region the recombination rate Δp/τp can be equated to the minority recombination rate Δn/τn(n+) ≈ 

n/τp. To realize the importance of the effective lifetime for device characteristics, we use the continuity 

equation which in one-dimensional form can be written as 

 

                                                                                                    (2.10) 

 

Since the hole current deep in the p+-region equals the total current (jp (−∞) = j), and deep in the n+-region 

is zero (jp (∞) =0), the integration of Eq. (2.10) yields   

 

                                                                             (2.11) 

 

Inserting Eq. (2.9) and multiplying with the area, one obtains 
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                                                                                                                     (2.12) 

 

Where I denotes the current and Q the stored charge of excess carriers: Q ≡ qA ∫Δpdx. Equation (2.12) is a 

generally valid equation of charge dynamics. For a stationary forward current IF, it takes the form: 

 

                                                                                                                   (2.13) 

 

Where QF is the stored charge for this special case. According to Eq. (2.13), the effective lifetime can be 

directly determined by measuring QF for a given forward current IF.  

We evaluate the effective lifetime now in dependence on device parameters and on the stored charge or the 

mean concentration .p in the base region. By splitting up the integration interval on the right-hand side of 

Eq. (2.9) into the three neutral regions with constant lifetime one obtains into the three neutral regions with 

constant lifetime one obtains (see Fig. 2.3) 

 

                                        (2.14) 

 

The equilibrium minority carrier concentrations and likewise the contributions of the space charge layers 

from xp to L and from R to xn are neglected on the right-hand side. Since the integrals are proportional to the 

respective stored charges, Eq. (2.14) can be written as 

 

                                                                                         (2.15) 

 

where QB denotes the stored charge in the base, Qn(p+), Qp(n+) are the stored charges of minority carriers in 

the p+- and n+-regions, respectively, and Q = QB + Qn(p+) + Qp(n+) denotes the total stored charge. Because 

of the low injection in the end regions and the relative small minority carrier diffusion length, the stored 

charges Qn(p+),Qp(n+) are small compared with the stored charge QB = q .wB. , if the base width is not too 

small and the injection level not extremely high.  
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Figure 2.3: pin-Diode with consideration of recombination in the border regions 

 

 

Equation (2.15) shows that in spite of the small stored charges Qn(p+),Qp(n+), the recombination in the end 

regions can be significant if the lifetimes τn(p+), τp(n+) are correspondingly smaller than τHL. The latter 

can be caused by Auger recombination, a high density of recombination centers in the outer layers or by a 

design of the end regions leading to high surface recombination [82, 83].Insertion of the exponential 

minority carrier distribution in the first and third integrals on the right side of Eq. (2.14) yields the 

connection with the emitter parameters (see [84], Eqs. (3.43), (3.100) and (3.101)) and neglecting the 

equilibrium density pn0: 

 

                                           (2.16) 

 

The bandgap narrowing ΔEg results in an enhancement of the minority carrier concentration pn
∗ and hence 

of the emitter parameter hn. The analogous equation holds for the recombination integral over the p+-region 

(first term on the right-hand side of Eq. (2.14)): 
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                                                 (2.17) 

 

If the integral on the left side in Eq. (2.14) is approximated by wB , neglecting the stored minority carrier 

charges in the end regions, one obtains from Eq. (2.14) 

 

                                                                         (2.18) 

 

To correlate the mean concentration  with the concentrations pL and pR at the boundaries, the carrier 

distribution is used in the form: 

 

                                                                                      (2.19) 

 One obtains 

                                                          (2.20) 

For simpler writing, we use again the letter d for wB/2. Using Eq. (2.20), Eq. (2.18) can be written as 

                                                                                     (2.21) 

Where  

                                                                                                                  (2.22) 
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Figure 2.4: Effective lifetime τeff of a forward-biased pin-diode and lifetime τHL in the base region as 

functions of the mean carrier concentration in the base [85]. 

 

With η  . The quantity H corresponds to a first approximation often independent of . 
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2.4 Reverse Blocking 

 

 

 

 

 

 

 

  

   

                                                            

                 

   

  

                                                                            

Figure 2.5: Band diagram of p-n junction under reverse bias condition 

 

The PiN diode is designed to be used in high voltage rating application. The capability of voltage 

blocking depends on the doping profile and the thickness of the drift region. Differ from the Schottky 

diodes, PiN diodes offer much lower reverse leakage current. As illustrated from Figure 2.4, there are 

mainly two types of leakage current: depletion region thermal R-G current given by [87] 

 

                                                                                    (2.23) 

Where  

                                                                                              (2.24) 

 

And ideal diffusion current given by [86] 

                                                                                                 (2.25) 

Where D is the diffusivity, L is the diffusion length. 

The leakage current caused by the above two mechanism is much smaller than the one caused by the 

thermionic emission current across the barrier height in Schottky diode. 
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2.5 Transient Characteristics 

 

When the diode is forward biased the excess carrier concentration builds up. Hence, when the device 

is turned off, the excess carrier must be removed before the junction goes to the blocking mode. The process 

of removing excess charge from the base and the resulting ability of the diode to block voltage is known as 

the reverse recovery phenomenon. The process consists of the sweeping out of stored charge due to the 

electric field, the diffusion of stored charge out of the base, and the recombination of stored charge. Once 

the junction can block voltage, the voltage begins to rise across the diode as the remaining stored charge 

decays. 

 

2.5.1 Forward recovery 

 

The lightly doped epilayer allows PiN diodes to support large reverse voltages, and has an important 

role during commutation between conducting state and blocking state, and vice-versa. It was shown in 

section 2.2 that the presence of epilayer during forward conduction increases on-state voltage drop with 

respect to signal diodes, since the epilayer behaves such as a variable series resistance connected to the 

diode. This resistance increases with the current density, considering the phenomena described in the last 

section, such as end region recombination, and so the voltage drop on the epilayer. The voltage drop due to 

the epilayer region is more or less in the range from 0.1 V to 1 V. Anyway, the presence of the carriers in the 

epilayer is the main reason that makes possible to the PiN diodes conducting high current densities. 
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Figure 2.6: PiN diode forward recovery 

 

For the sake of illustrating what would happen if the epilayer was unmodulated, the resistance of the 

epilayer is evaluated without the carriers injected in the same: 

 

                                                                                                                                      (2.26) 

 

Where W is the width of the epilayer, and ND is the epilayer doping. In order to clarify the order of the 

unmodulated region resistance, let us consider a general diode with an epilayer 50 µm wide and with doping 

ND = 1014 cm−3. One finds that its resistance is of the order of 10−1 Ω · cm2, which means that for forward 

density currents equal to 100 A/cm2, the voltage drop in the unmodulated epilayer should be in the order of 

101 V. 

This example makes clear that if a PiN diode is forced in the conducting state with a high di/dt, meaning 

that the current is increasing in a faster rate than the rate of carriers being injected into the epilayer, transient 

voltage drop will be much greater than steady stage voltage drop. This is due to the fact that during the first 

instants, when the epilayer is not modulated, its resistance is very high.  
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This voltage overshoot due to the fast switch from the blocking state to the conduction state through the 

forcing of a direct current, is called forward recovery. The voltage peak increases with increasing di/dt, and 

its value depends on how high the current has risen before conductivity modulation is fully effective. 

In Fig. 2.6 an example of PiN diode forward recovery is shown, which the simulated diode is the same 

used for generating Fig. 2.7. It can be observed that diode voltage reaches about 5 V while steady state on-

state voltage drop is about 1 V. Fig. 2.7 shows the behavior of excess carriers in the epilayer when the diode 

is turned on from zero current. It can be observed that excess carriers are initially injected into the regions 

closest to the P+N− and N−N+ junctions. From there, they diffuse into the center of the epilayer, and its 

resistance diminishes to its steady state value. 

 

 

 

 

      Figure 2.7: Excess carrier concentration profiles during the turn on process in 

               PiN diode 
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2.5.2 Reverse recovery 

A major limitation to the performance of PiN diodes at high frequencies is the loss that occurs during 

switching from the on-state to the off-state, which have a significant effect on the maximum operating 

frequency. During the reverse recovery, the charge stored in the epilayer during forward conduction must be 

removed. As can be seen in Fig. 1.10a, a large reverse transient current occurs in PiN diodes during reverse 

recovery. Since the voltage across the diode is also large following the peak in the reverse current, a large 

power dissipation occurs in the diode. In addition, the peak reverse current adds to the average current 

flowing through the switches that are controlling the current flow in the circuit. This not only produces an 

increase in the power dissipation in the switches, but also creates a high internal stress degrading their 

reliability. Moreover, reverse recovery also causes EMI phenomena. 

In the following the different phases of the reverse recovery are described, regarding Fig. 2.8. The 

widely used diode test circuit in Fig. 2.9 is used for a better understanding of the switching process, where 

DUT is the diode under test, LDUT is the parasitic inductance of the diode, L is the inductance of the circuit 

that can be considered as a constant current source, S1 is the switch, and VS is the supply voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: PiN diode reverse recovery: Reverse recovery current waveform 

 

During the first phase (0, t0) the switch in the circuit is open. The diode is in the forward conduction 

state, and the injected carriers are almost symmetrically distributed along the epilayer (see Fig. 2.8b, sample 

time t0).  
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The voltage drop on the diode has its steady state value corresponding to the conduction current density 

through the diode. 

 

 

At the time instant t0 the switch in the circuit is closed, and the reverse recovery takes place. From t0 until 

t3 the current through the diode is determined by the external circuit conditions and decreases with a constant 

di/dt, the so called turn-off di/dt. Hence, the charge profile in the  

 

epilayer during this phase is such that it is able to support an increase in current, in the reverse direction. 

As far as the diode is able to support this increasing current at a certain di/dt, there will be just a small 

forward voltage drop across the diode, which is determined primarily by the charge profile within the 

epilayer. The diode is still forward biased. During this second phase (t0, t3) the injected carriers in the 

epilayer are extracted from the diode, by diffusion and recombination, and there is a change in the slope of 

the injected carrier profile near the two junctions. This slope changes its sign due to the reversal in the 

current direction, as can be observed by time samples t1, t2 and t3 in Fig. 2.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: PiN diode reverse recovery: Dynamics of carrier concentration in the epilayer during reverse 

recovery 
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At the time instant t3, when sufficient charge has recombined, or has diffused out as reverse current, the 

carrier’s concentration at the P+N− junction reaches the levels of thermodynamic equilibrium, allowing the 

formation of a space charge region. Therefore, the voltage drop on the diode becomes negative and starts to 

increase. This is the beginning of the third phase (t3,t4), which lasts until the instant time when current 

through the diode reaches its peak negative value. Because of the depleting charge profile, after t3 the diode 

will be unable to support an increase 

 

 

 

 

 

 

Figure 2.10:Circuit used to emulate diode switching 

-in the current as determined by the circuit di/dt. However, it must be recognized that the diode may be able 

to support an increase in the current if the magnitude of the di/dt is reduced. At time t3, the diode starts 

determining the circuit boundary conditions, being controlled by the diffusion and recombination processes 

in the epilayer, and it is the voltage across the diode, rather than the current that is determined by the 

external circuit [86], [87]. The actual time difference between the voltage becoming negative and the diode 

current reaching its peak negative value, that is the duration of the third phase, depends very much on the 

circuit conditions as well as on the diode characteristics. It can also be deduced that the diode current 

waveform will become more rounded near its peak negative value, because di/dt through the diode will first 

decrease and then change sign, at time t4, when the charge carrier profile in the diode is no longer able to 

support any further increase in the current in the reverse direction. 
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During the fourth phase (t4,t5), after the di/dt has changed its sign, the depletion regions are advancing 

from both borders of the epilayer and the resulting reduced charge profile is just able to support lower 

currents. The reverse recovery di/dt during this phase induces an overshoot of the reverse voltage as the 

energy stored in the parasitic inductance LDUT, always present in practical circuits, is transferred into the 

diode (see Fig. 2.9). This is undesirable, and good circuit designers must minimize parasitic inductances. 

This phase lasts until time t5, when the diode is blocking the whole applied reverse voltage, and the reverse 

diode voltage reaches its peak value. If the turn on of S1 is controlled so that the current rises gradually, 

initially taking over the L inductor current and then drawing reverse current out of the diode, as the space 

charge layer is established in the diode the reverse voltage settles at the supply voltage with no significant 

overshoot. We call the attention to the fact that the reverse diode current adds to the total current carried by 

S1 and causes a transient peak, as already mentioned. 

 

The last phase of the recovery starts at time t5 and lasts until the moment in which the current reaches its 

saturation value. If there is a residual amount of excess charge present in the epilayer from this instant time 

recombination dominates the excess carrier absorption, resulting in a slow tail in the current waveform (see 

current waveform and excess charge during time sample t6 in Fig. 2.9). This last phase of the recovery is 

very critical, and some considerations must be done. The first consideration is with respect to the applied 

reverse voltage. If the applied reverse bias voltage is small, the space charge region will extend only slightly 

inside the epilayer. As a result, there will still be a lot of excess carriers remaining in the epilayer. These 

excess carriers can be removed only through recombination. Hence, if the applied reverse bias voltage is less 

than a second one operating in the same conditions, the recombination dominated regime will be quite 

prominent causing a significant tail near the end of the reverse recovery process [87]. This kind of recovery 

is the so called soft recovery, and a behavior like this is desirable for power electronics applications. 

 

The second and more serious consideration regards to the fact that at time instant t5, it is possible that the 

depletion regions can advance through the whole epilayer and the current that is still through the diode 

cannot be supported by any excess charge. This is the classic snappy recovery. Depending on the rate that 

excess carriers are extracted from the epilayer, the current goes rapidly to zero with very high reverse 

recovery di/dt because a stronger depletion from both sides happens before the current is ceased, resulting in 

oscillation. The snappy recovery is detrimental to the diode, as it increases the chance of its destruction due 

to the excessive electric field strength. Furthermore, the large-amplitude high-frequency oscillations cause 

excessive amounts of electromagnetic interference (EMI). 
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When the switching frequency of a power circuit increases, the turn-off di/dt must be increased. It has 

been found that this causes an increase in both the peak reverse recovery current and the ensuing di/dt, 

which in turn results in less recovery time.  

If the reverse recovery di/dt is large, an increase in the breakdown voltage of all the circuit components 

becomes essential, since the reverse recovery di/dt flows through parasitic inductances in the circuit causing 

the already mentioned voltage overshoot on the diode. Raising the breakdown voltage capability causes an 

increase in the forward voltage drop of power switches, which degrades circuit efficiency. Consequently, 

much of the recent work on PiN diodes has been focused upon improving the reverse recovery 

characteristics. 

However, a trade-off between the switching speed and the forward voltage drop is essential during PiN 

design. This trade-off is dependent upon a number of factors such as the epilayer width, the recombination 

center position in the energy gap, the distribution of the deep level impurities, and the doping profile. In 

section 2.3 it was found that end region recombination results in an increase of voltage drop and it could be 

assumed that a careful design should reduce this effect (increasing the emitter efficiency, that is reducing hp 

and hn). It would assure that also under high current conditions, end region recombination is small with 

respect to epilayer recombination. This assumption is not correct. Actual devices tend to increase end region 

recombination effects, that is, to reduce end region emitter efficiency (increasing hp and/or hn), since the 

increase of end region recombination results in an improvement of dynamic behavior [86], [88], [89]. This 

improvement is due to the fact that the reduced carrier’s concentration in the epilayer (see Fig. 2.8) takes to a 

faster extraction of the carriers during reverse recovery, considering the same operation conditions, resulting 

in less reverse current peak and faster reverse recovery, which is desirable in order to reduce switching 

power losses. It can be achieved through techniques like the lifetime control techniques described in section 

2.3. From eq. 2.16 and eq. 2.17 it can be observed that in order to increase hp and hn, that is to reduce the 

emitters efficiency, there are two other design techniques: the reduction of end region doping (increase of 

minority carrier equilibrium concentration p+
N0 and n+

P0) [86], [88], [89], and the reduction of end region 

thickness (WP+, WN+).  

It can be noticed that the reduction of end region doping is always effective, as the case of the weak 

anode diode ,while the reduction of end region thickness has a relevant effect only if WP+, WN+ are smaller 

than minority carrier diffusion length (LnP+, LpN+). 
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Chapter 3 

Modeling of 4H-SiC material properties 

This chapter will describe the specific properties of device materials enter the model equations (3.1-

3.5), in the form of physical parameters such as the effective intrinsic density, the transport coefficients, the 

electric permittivity, the heat capacity, and all the parameters appearing in (Generation-Recombination) 

models of SiC. Each of these parameters may depend on the state variables as well as external parameters. A 

widely favored pragmatic approach is to rely on phenomenological material parameter models which after 

careful calibration to experimental data makes it possible combine physically based predictive simulation 

with numerical practicability. 

 

3.1 Introduction 

 Numerical device modeling and simulation are essential for analyzing and developing semiconductor 

device. The help a design engineer, not only gain an increased understanding of the device operation, but 

also provide the ability to predict electrical characteristics, behavior, and parameter-effects influence of the 

device. With this knowledge and abilities, the designer can design a better structure. 

 The increasing complexity of the structure models demonstrates that more accurate modeling 

generally leads to increased computational difficulties. To consider additional features that important in 

device design (such as non-uniform doping profiles), numerical approach simulation with the help of 

computers is almost a necessity. Even with these added complications, computer aided simulation is 

especially helpful for the analysis of a device in which two-and three-dimensional effects can have practical 

significance. The increased availability of low-cost, high performance computing has made device 

simulation widely accessible e.g. ATLAS [90], MEDICI [91], PSCES [92]. 

 As any device simulator, any quantitative, or even qualitative, simulation of a device relies heavily 

on applicable device models and their parameter values. Although several models with their default 

parameters are available in many commercial simulators, some of their default parameters do not provide 

realistic characteristics of some semiconductor materials especially in SiC material, which exists in a host of 

polytypes.  

 It is the aim of this chapter to analyze the applicability of 4H-SiC material parameters from literature 

and to implement them into two-dimensional program ATLAS (Silvaco) as a way to calibrate the simulation 

process with the real device characteristics.  
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It starts with a brief introduction of Atlas, followed by reviewers of recently published material concerning 

bulk parameters of 4H-SiC that are applicable to ATLAS. Regardless which iteration method used, the 

solutions are carried out over the entire grid until a self-consistent potential (ψ) and free-carrier 

concentrations (n, p) are obtained. Once the potential (ψ) and free-carrier concentrations (n, p) have been 

calculated at a given bias, it is possible to determine the quasi-Fermi levels ( . 

 

3.2 Atlas device simulator 

ATLAS is a two-dimensional device simulator, which solves numerically the following five basic 

semiconductor device equations: 

The Poisson equation; 

                                                                 (3.1) 

The electron and hole continuity equations; 

                                                                                                   (3.2) 

 

                                                                                                   (3.3) 

 

And the electron and hole current equations; 

                                                                                                (3.4) 

 

                                                                                                 (3.5) 

Where ε is the dielectric permittivity, ψ is the electrostatic potential, n and p are electron and hole 

concentrations, and are the ionized donor and acceptor impurity concentrations, is the surface 

charge density which may be present due to the fixed charge in insulting materials or charge interface; 
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and are vectors of the electron and hole current density,  are the electron and hole 

recombination rates,  and  are the electron and hole mobility’s; and  and  are the quasi- Fermi 

potentials. 

 The numerical algorithms used in Atlas to solve the five basic device equations are based on the 

finite element method, which discretized these equations on a simulation grid. This discretization process 

yields a set of coupled non-linear algebraic equations that represent a number of grid points, for the 

unknown potentials and free-carrier concentrations. This set of coupled nonlinear algebraic equations in 

return must be solved by a nonlinear iteration method. Two iteration approaches, Gummel’s and Newton’s 

method are available (Appendix C and D) in ATLAS. Regardless which iteration method used, the solutions 

are carried out over the entire grid until a self-consistent potential (ψ ) and free-carrier concentrations (n, p) 

have been calculated at a given bias, it is possible to determine the quasi-Fermi levels (ɸ) and the hole and 

electron currents ( and ) from equations 3.4-3.5. 

The results of device simulations depend critically on the physical models and parameters used. A 

number of physical models are incorporated in ATLAS for accurate simulation, including models for 

recombination, impact ionization, energy gap narrowing, band-to-band tunneling, mobility and lifetime [90]. 

3.3 4H-SiC Bulk parameters 

The following sub-sections described the important bulk models and parameters of 4H-SiC in 

unipolar, devices: intrinsic carrier, energy gap narrowing, impact ionization, incomplete ionization and 

carrier mobility. 

3.3.1 Energy gap and intrinsic Carrier Concentration  

The intrinsic carrier concentration ni in a semiconductor is a fundamental parameter and high operating 

temperature limit. The relationship between ni, temperature, and energy band gap is given by [90]. 

                                                                                   (3.6) 

Where and is the effective density of states in the conduction and the valence band states, 

respectively given by  

                                                                     (3.7) 
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                                                                   (3.8) 

 

Where  and is 0.76  and 1.20  respectively [94]. . Using equations 3.6 and 3.8 respectively, 

the  and for 4H-SiC equal 1.66x1019 cm-3 and 3.19x1019 cm-3, respectively at room temperature 

(300K).The temperature dependent energy band gap is given by 

                                                                          (3.9) 

Where  and β are fitting parameters.The effective density of states in the conduction and valence band as 

well as the energy bandgap at room temperature is summarized in table 3.1[95]. 

 

 4H-SiC Si Ge GaAs 

(300)  

 

 eV 

α 

β 

1.66x1019 

3.19x1019 

3.26 

3.3x10-4 

0 

2.89x1019 

1.04x1019 

1.08 

4.73x10-4 

636 

1.04x1018 

6.00x1018 

0.66 

4.77x10-4 

239 

4.7x1017 

7.0x1018 

1.42 

5.41x10-4 

204 

 

Table 3.1: Calculated parameters for different semiconductors at 300K. 
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Figure 3.1: Intrinsic concentrations for Si and 4H-SiC semiconductors as a function of the temperature. 

 

From equations 3.6, 3.7, 3.8 and 3.9, the intrinsic carrier concentration as a function of the temperature for 

different semiconductors having a different energy bandgap based on the calculation (see Table 3.1) was 

plotted in Figure 3.1. For room temperature (300K), ni is equal to be approximately 7 10-7
 cm-3

 for 4H-SiC. 

As shown in Figure 3.1, the wider bandgap and thereby lower intrinsic carrier concentration allows SiC to 

maintain semiconducting behavior at much higher temperature than conventional Si and Ge semiconductors. 

 

3.2.2 Bandgap narrowing 

The modification of the density of states by heavy doping leads to an additional influence which is 

generally modelled by rigid shifts of the band edges, the so called "bandgap narrowing". Theoretical models 

for doping-induced band edge displacements and bandgap narrowing in both n-type and p-type 4H-SiC were 

presented by lindelfelt [96]. The model takes into account the three different electron effective mass 

components associated with hexagonal lattices (instead of two as in Si and Ge).The results for the band edge 

displacements are expressed in simple analytical form as function of doping concentration. 

 

 

The band edge displacements for n-type semiconductors can be summarized with the formulas 

                                                                            (3.10 a) 

                                                                          (3.10 a) 
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For p-type semiconductor we get  

                                                                            (3.11 a) 

                                                                            (3.11 b) 

  The resulting bandgap narrowing  then becomes 

                                                                                                          (3.12) 

In agreement with the convention used in device modelling, the bandgap narrowing defined here is a 

positive quantity. 

   

The coefficients Anc, Apc, Bnc, Bpc, Anv, Apv, Bnv, and Bpv can be adjusted in the device simulator model 

by introducing their values for the specific material. For 4H-SiC Lindefelt reported the values [96]: 

4H-SiC n-type      Anc=-1.51x10-2
;    Bnc = -2.9x10-3

;    Anv= 1.9x10-2
;     Bnv= 8.7x10-3 

4H-SiC p-type      Apc =-1.6x10-2
;      Bpc=-3.9x10-4

   ;     Apv=1.3x10-2
;       Bpv= 1.1x10-3

  

Giving the band edge displacements in eV.                    

                                                                             

Figure 3.2: Conduction band displacements and valence band displacements for 4H-SiC   vs ionized 

concentration, (a) donor (b) acceptor. 

 

  

45 

(a) (b) 



Chapter 3: Modeling of 4H-SiC material properties 

__________________________________________________________________________________ 

 

 Equation 3.10 and 3.11 with the parameter values given above, have been plotted in Fig 3.2.The 

bandgap narrowing is obtained as the energy distance between the balance band and the conduction band 

shifts. 

 

3.2.3 Incomplete ionization of dopants 

The controlled incorporation of shallow impurity levels acting as donors or acceptors is one of the key 

processes of semiconductor device technology and the resulting n-doped and p-doped regions are the basic 

functional components of semiconductor devices. One of the disadvantages with wide-bandgap 

semiconductors is that the dopant ionization levels are quite deep. Hence, the dopants are not fully ionized 

even at higher temperature. 

The most important dopant centers for 4H-SiC have been so far nitrogen (N) acting as donor as well as 

aluminum (Al) and boron (B) acting as acceptors. N and other donor impurities are assumed to occupy the 

carbon sites, Al atoms substitute only on the Si sublattice, whereas B may substitute on both sites [94]. The 

carrier concentration N+
D, A (i.e. the number of ionized donors or acceptors) can be calculated with the 

following equations [97, 98]: 

 

 

 

 

 

                                                                     (3.13) 

                                                                                (3.14) 

 

Where gC is the spin degeneracy (in this case 2 for donors and 4 for acceptors), NC (NV) is the density of 

states given by equation 3.14 with the effective density of states masses mC or mV (=1x m0) for electrons and 

holes, respectively, and ED and EA are the donors and acceptors levels mC or mV (=1x m0) for electrons and 

holes, respectively, and ED and EA are the donors and acceptors levels. 
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Figure 3.3: Ionization level of the donor (N) and acceptor (Al) as a function of doping concentration in 4H-SiC for 

different temperatures. 

 

Using equations 3.13 and 2.14, the calculated ionization aluminum and nitrogen in 4H-SiC at 300K 

and 700K is shown in Figure 3.3. According to the calculation, a doping concentration of  cm-3
 for 

aluminum at 300K would only result in a carrier concentration of 5  cm-3. Concentration 1% of the 

atoms have been replaced, and the bands are degenerate, resulting in much higher free carrier concentration. 

Therefore, the equations 3.12 and 3.14 are not quite valid for higher doping concentration than about 

cm-3. 

 

3.2.4 Recombination Models 

3.2.4.1 Shockley -Read-Hall (SRH) Recombination 

 The recombination through defects in the bandgap is a process, which is the dominant recombination 

mechanism in semiconductors with indirect forbidden bandgap, such as Silicon and Silicon Carbide. It 

results explicitly dependent on the number of imperfections in the crystal, caused by impurities or by 

crystallographic defects, such as vacancies and dislocations. These imperfections originate intermediate 

states (see Fig.3.4) within the bandgap that act as recombination centers, or traps, for the free carriers. The 

theory for recombination through these localized traps was for the first time analyzed by Shockley and Read 

[96] and then by Hall. Their analytical model which describes the recombination rate (SRH-rate) is given by 

[99]: 
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                                                                      (3.12) 

                                                                                                                      (3.13) 

                                                                                                                          (3.14) 

 

Where Nt is the density of state, νth is the electron thermal velocity, σn is called the capture cross section 

describing the effectiveness of the localized state in capturing an electron, σp is the capture cross section for 

holes. τn and τp are the lifetime of electrons and holes, respectively. 

For conventional semiconductors, the SRH carrier lifetimes in the above equations are modelled as functions 

of doping and temperature by the following [100]: 

 

                                                                                                     (3.15) 

 

Where τno and τpo are the intrinsic minority carrier lifetimes, γn,p, αn,p and  are empirical modelling 

parameters. 

At the present, poor contributes are avoidable in literature focused on the estimations of these values 

for Silicon Carbide, particularly for the 4H-SiC polytype. However, although for the intrinsic carrier 

lifetimes  there is not a convergence of opinions, for the  parameter it is typically used the 

extracted value for Silicon [101], i.e. =5x  cm-3.  

   

 

 

 

 

 

Figure 3.4: SRH recombination process. 
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3.2.4.2 Surface Recombination 

Surface recombination can be modeled in two different ways: 

 By specifying the surface recombination velocity parameter at the SiC/SiO2 interface (see Eq. 3.15), and 

then in a way similar to Shockley-Read-Hall (SRH) recombination. 

 By specifying the trap distribution in the SiC bandgap at the SiC/SiO2 interface 

 

Although the result is similar because the surface SRH model depends on the traps implicitly, the second 

method actually models the traps and consider the occupation and the space charge stored. If the first 

method is chosen, the following expression is implemented at the interface: 

 

                                                                                         (3.15)  

 

Where sn,p represents the surface recombination velocity, which depends on the traps implicitly. 

If the second method is chosen, the following trap types can be implemented: 

• Fixed charge, which are always completely occupied. 

• Acceptor, which are negatively charged when occupied and neutral when unoccupied. 

• Donor, which are positively charged when occupied and neutral when unoccupied. 

 

In addition, the trap distribution and concentration, and its capture-cross section can be defined. 

For a trap concentration Nt energetically localized at Etrap, the recombination rate can be expressed as: 

 

                                                                        (3.16) 

 

In Eq. 3.16, are the thermal velocities, σn,p are the capture-cross sections, gn,p are the degeneracy factors 

that are usually equal to one, and n1 and p1 can be expressed as: 
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3.2.4.3 Auger Recombination 

Auger recombination describes the direct recombination process of electrons and holes [102]. When 

excess carriers recombine in a region that has a high doping concentration the probability of direct 

recombination between holes and electrons may not be negligible compared to the probability of 

recombination through traps (SHR recombination).  

 

Figure 3.5: Auger recombination process. 

 

This direct recombination process is called Auger recombination. Auger recombination, involves three 

particles (one electron and two holes, or vice versa). It occurs when the energy released by the 

recombination of an electron-hole pair is transferred to a third free carrier, as shown in Fig. 3.5.In this 

process, at low injection level, the expression of the recombination rate is related to the excess carrier 

concentration and to doping density [103]:   

 

       For n-type material                                                                    (3.16) 

      For p-type material                                                                    (3.17) 

 

 

With Cn and Cp   the Auger coefficients for electrons and holes and Δn and Δp are the density of electrons 

and holes in excess per unit volume.  

Therefore, the Auger carrier lifetime at low injection level is given by:  

 

                                                                                                           (3.18) 
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Keeping in count that at high injection levels both carriers participate to the recombination process, the 

carrier lifetime at these regimes can be expressed as:  

 

 

                                                                                                                 (3.19) 

 

Where Ca = Cn + Cp is the ambipolar Auger recombination coefficient. 

 

The values we used for Cn and Cp is 5 and 210-31
 cm6/s, respectively for n-type 4H-SiC with a doping 

concentration of 11018
 cm-3

 at room temperature [104]. 

 

3.2.4.3 Radiative Recombination 

The radiative recombination consists of the annihilation of an electron-hole pair, which leads to the 

creation of a photon with energy close to that of the bandgap (see Fig.3.6). If the carrier has energy higher 

than that of the bandgap, the excess energy is released as thermal energy to the lattice.  

 

 

 

 

 

 

 

Figure 3.6: Radiative Recombination process 

 

The radiative recombination rate depends directly on the availability of electrons and holes and it is given 

by: 

                                                                                        (3.20) 

Where β is the radiative recombination coefficient. 

The radiative carrier lifetime results constant at low injection levels, while it is inversely proportional to the 

excess carrier density at high injection levels, as follows 
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                                                                                                                  (3.21 a) 

                                                                                                                 (3.21 b) 

 

Since the Silicon Carbide is an indirect semiconductor, like the Silicon, the radiative process must be 

assisted by a photon and a phonon in order to simultaneously preserve momentum and energy. 

This makes the radiative recombination for SiC much less probable respect to the others recombination 

mechanisms. 

 

3.2.4.4 Effective Lifetime 

With different intensity, depending on the semiconductor topology and technology, all the above 

recombination mechanisms conjunctly contribute to the final effective carrier lifetime, whose value can be 

evaluated by the following: 

 

                                                                                               (3.22) 

 

3.2.5 Impact Ionization 

The acceleration of free carriers within a high electric field finally results in generating free carriers by 

impact ionization. This process corresponds to the inverse process of Auger recombination. It is modelled by 

the reciprocal of the mean free path which is called the impact ionization coefficient. 

The corresponding avalanche generation rate can be expressed by [105, 106]  

 

                                                  (3.23) 

 

The impact ionization coefficients are modelled by:   

  

                                                                                            (3.24 a) 

                                                                                            (3.24 b) 
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The critical field with an impurity concentration of 1015cm-3 < ND <1 018cm-3
 can be calculated by: 

 

                                                                                                      (3.25) 

 

Presently, there is only one report available on measured impact ionization coefficients at different 

temperatures [103]. 

 

 

 an(cm-1) bn(v/cm) ap(cm-1) Bn(v/cm) 

4H-SiC 3.44x106 2.58x106 3.24x106 1.9x106 

 

Table 3.2: Average impact ionization coefficients of electrons and holes 4H-SiC. 

 

Generally, the impact ionization coefficients of electrons are significantly smaller than those of holes. 

A review of the published data on impact ionization coefficients has been first published by Ruff et al. 

[106,107]. The extracted average parameter set (Tab. 3.2) is exceeded by newer measurements [106, 108], 

which yield an about 20% larger critical electric field. 

It is important to note that the measured data rely on uniform avalanche breakdown with all possible 

influence of structural defects and edge termination excluded. There is experimental evidence that 

elementary screw dislocations reduce the breakdown voltage of a pn-junction [109, 110].  

Considering such findings and the spread of measured data, the average parameters seem to be a good 

base for numerical simulations which should be calibrated to the applied process technology. 

 

 

3.2.6 Mobility 

It is well known that an accurate I-V model is strongly based on physical and accurate mobility and 

velocity saturation. The free carrier mobilities are the transport parameters relating the gradient of the quasi-

Fermi potential to the corresponding current flow (see Eq. (3.4-3.5)). They are derived from relaxation times 

which describe the average time between the scattering events of free carriers. Assuming a single 

isotropic scattering process,  
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they can be defined by: 

 

                                                                                                                          (3.26) 

 

However, there are various scattering mechanisms (see Fig3.7) which determine the free carrier 

mobilities such as acoustical and optical phonon scattering, piezoelectric and polar scattering, ionized and 

neutral impurity scattering as well as scattering at vacancies, dislocations, and surfaces. Due to the complex 

nature of these mechanisms, phenomenological models have been developed for the various experimentally 

observed mobility phenomena in Si devices [111]. The contributions from different scattering processes can 

be combined using the simple Mathiesen rule [112]. 

 

                                                                                                                    (3.27) 

 

provided that they can be considered as independent mechanisms. Due to the diagonal form of the mobility 

tensor of αSiC, this concept can also be applied to its independent components in the principal axes 

system. However, a rigorous modeling of the anisotropic properties of αSiC will be a challenge to 

semiconductor transport theory. A first attempt to calculate the anisotropy of the Hall mobility in n-type 

αSiC based on detailed information about the band structure is reported in [113]. 

 

The transport parameters of semiconductors may significantly depend on the process technology. 

Therefore, reported mobility data from the period before wafers with a defined polytype in acceptable 

quality were available can hardly be used to investigate state-of-the-art devices. Hall measurements of the 

bulk epitaxial free carrier mobility tensor components of 4H- and 6H-SiC have been reported by Schaffer et 

al. [113] and Schadt et al. [114]. 
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Figure 3.7: Schematization of the principal scattering mechanisms  

 

Because of their crystallographic structure, the α-SiC polytype are characterized by an anisotropy of the 

principal electro thermal parameters. Although, in general, anisotropic parameters result expressed by 

second rank tensors, for 4H- and 6H- polytypes they are reduced to a diagonal form [115], so that it is 

possible to use the following convenient representation for the electron mobility: 

 

 

 

Actually an complete modelling of anisotropic properties does not exist; since the most of SiC devices 

are realized on wafers with surface orthogonal, or lightly rotated, to c-axis ([0001] direction), it is common 

rule to define an anisotropic ratio between base-plane and the [0001] direction. Following this observation, 

because the commonly measured mobility is orthogonal to c-axis (μ┴) while the parallel component is 

generally not equal, the ratio between these components is derived by experiment. 

 

3.2.6.1 Acoustic-phonon and ionized-impurity scattering 

The measurement results of Schaffer et al. [110] for  of n-type (N) and p-type (Al) 4H/6H-SiC 

within a large doping range at 300K are shown in Fig.3.8 Acoustic-phonon and ionized-impurity. 
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Figure 3.8: The n-type (N) and p-type (Al) mobility in -SiC as a function of the doping concentration. 

Acoustic-phonon and ionized-impurity scattering are not independent of each other. 

Thus, Eq. (3.26) cannot be used and a combined model is needed. The data of Fig.3.8 can be modelled using 

the phenomenological model of Caughey-Thomas [116]: 

 

        ν=n,p                                    (3.28) 

 

The parameters  represents the mobility of undoped or unitentially doped samples, where lattice 

scattering is the main scattering mechanism, while   is the mobility in highly doped material, where 

ionized impurity scattering is dominant.  is the doping concentration at which the mobility is halfway 

between   and  ,  N is the total doping concentration. , ,  and   are fitting parameters. 

The corresponding parameters are listed in Tab. 3.3. 

 

                                                                                   

        cm2/v. s        cm2/v. s             cm-3 

n        950              40                 2.00x1017                        -0.5             -2.40         0.76       -0.76 

p        125               15.9             1.76x1017                   -0.5             -2.15         0.34       -0.34 

 

Table 3.3: Values of low field mobility parameters for 4H-SiC, at T=300K [116]. 
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Although the mobility parameters depend on technology, this table can serve as a base for evaluating 

measured device characteristics. 

 

3.6.2.2 High field mobility 

The effect of strong electric fields causes the carrier velocity to be no longer proportional to the field, 

and thus no longer can be described by a field independent mobility. Field-dependant mobility model is 

derived to account for carrier heating and velocity saturation effects; and analytically expressed in terms of 

the drift velocity as a function of the electric field in the direction of current flow. The analytical expression 

used for this aim is analogue to that largely employed for Silicon [117]: 

 

                ν= n, p                                                                                  (3.29) 

 

Where  is the low field carrier mobility,  is the saturation velocity, E the electric field, and β is a 

fitting parameter. 

 

For 4H-SiC Khan et al [118] reported the values β=1.2 and   =2.2x107cm.s-1.The temperature 

dependence of  and β can be modelled by 

 

                                                                                                     (3.30 a) 

                                                                                                      (3.30 b) 

 

With =-0.44 and  =1 for 4H-SiC [119]. Fig3.9 shows the electron drift velocity versus the 

electric field for T=300K and T=293K. All measured refer to a current flow perpendicular to the c-axis 

(usual growth axis of epilayer).  
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Figure 3.9: Electron drift velocity as a function of electric field in 4H-SiC at T= 300K and T=593K. 

 

3.7 Dielectric constant 

Using data available on the refractive indices, their dispersion, and on phonon energies obtained by 

Raman scattering, Patrick et al. published 1970 the two tensor components of the static dielectric constant of 

6H-SiC [120]. They found a ratio of anisotropy  with  9.66 and 10.03. In a more 

recent investigation, Ninomiya et al. obtained   9.66   and  9.98 [121].Thus these values are well 

agreed upon within a very small error boundary. However, up to now, no values seem to be available for 

4H-SiC. Therefore, the values of 6H-SiC have to be used. Since 4H-SiC has a somewhat larger bandgap 

than 6H-SiC, one may expect the dielectric constants of this polytype to be somewhat smaller [95]. 

Additionally, the ratio of anisotropy may differ, as the anisotropy of 4H-SiC seems to be generally weaker. 

 

 

3.8 Critical field 

For power-device applications, perhaps the most notable and most frequently quoted property is the 

breakdown electric field strength, Emax. This property determines how high the largest field in the material 

may be before material breakdown occurs. This type of breakdown is obviously referred to as catastrophic 

breakdown. Curiously, the absolute value of Emax for SiC is frequently quoted as the relative strength of the 

Emax against that of Si. Most discussions on this subject note that Emax of SiC is 10 times that of Si. As with 

Si, there exists a dependence of Emax with doping concentration. Thus, for a doping of approximately 1016 

cm−3, Emax is 2.49 MV/cm, according to a study by Kostantinov et al. [122]. For Si, the value of Emax is 

about 0.401 MV/cm for the same doping [123].  
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As can be seen, the value for SiC is only about a factor of six higher than that of Si and not the often-

claimed 10 times higher critical field strength. Why the discrepancy? It is more correct to compare the 

critical strengths between devices made for the same blocking voltage. Thus, a Si device constructed for a 

blocking voltage of 1 kV would have a critical field strength of about 0.2 MV/cm, which should be 

compared with the 2.49 MV/cm of SiC.  

 

3.9 Thermal conductivity 

Another most important parameter for SiC material is the thermal conductivity. An increase in 

temperature generally leads to a change in the physical properties of the device, which normally affects the 

device in a negative way. Most important is the carrier mobility, which decreases with increasing 

temperature. Heat generated through various resistive losses during operation must thus be conducted away 

from the device and into the package. It is often quoted that the thermal conductivity of SiC is higher than 

that of copper at room temperature. There are even claims that it is better than any metal at room 

temperature [123]. The thermal conductivity of copper is 4.0 W/ (cm-K) [124]. That of silver is 4.18 W/ 

(cm-K) [125]. Values of the thermal conductivity as high as 5W/ (cm-K) have been measured by Slack [126] 

on highly perfect Lely platelets. More detailed studies have been made where the thermal conductivity in the 

different crystal directions have been determined for SiC (see Table 3.4 [127]). 

                 

Sample type         direction          carrier concentration             Thermal conductivity  

                                                                   (cm-3)                                    W/cm K                                   

                                                                                                     298K               378K 

_________________________________________________________________________ 

                      4H n                   // c                   2.0E18                        3.3                    2.5 

               4H n                    ⊥c                   5.0E15                        4.8                    2.9 

               6H n                    // c                   1.5 E18                       3.0                   2.3 

               6H n                    // c                   3.5 E17                       3.2                    2.3 

               6H n                    ⊥c                    3.5 E17                       3.8                   2.8 

               6H p                    ⊥c                    1.4 E16                       4.0                   3.2 

_________________________________________________________________________ 

 

Table 3.4: The Thermal Conductivity of SiC. 
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Chapter 4 

Results and Discussion 

  

4.1 Introduction 

In this chapter, simulations and measurements of SiC PiNs diodes are compared. A detailed 

investigation of the three main aspects, i.e., lifetime (τ), activation energies (Ea) and specific resistance (Ron) 

is presented. In addition, a brief overview of building factor is shown. Finally, an investigation of on the 

effect of some defect on the performance of a BMFET transistor is presented. 

 

4.2 Device structure  

 The schematic cross-sections (plot not in scale) of the investigated Al implanted p-i-n diodes and the 

calculated net doping profile along the vertical axis of symmetry of a device realized using a 5 m-thick and 

3×1015 cm-3-doped epilayer, are shown in figure 4.1. 

 

 

Figure 4.1: 4H-SiC p-i-n diode schematic cross-section and net doping profile of a device with      a 3×1015 

cm-3-doped epilayer. 

 

The diodes were provided by the CNR Institute for Microelectronics and Microsystems – Unit of Bologna 

(Italy). Details about the adopted technology were provided in [128] and references therein.  
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In short, starting from a commercially available <0001> 8° off-axis 4H-SiC n-type homoepitaxial wafer of 

elevated crystal quality [129], the diode structure consists of a n+ substrate with a doping concentration in 

the order of 1019 cm-3, a 3×1015 cm-3 n- epilayer and a p+ anode region obtained by Aluminium implant. As 

shown for the  
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device in figure 4.1 the anode region exhibits a smooth half-Gaussian shaped profile with a peak doping of 

6×1019  

cm-3 at the surface and a profile edge located at about 0.2 µm. The device ohmic contacts are made of a 

deposited Ni film on the back, while Ti/Al dots were deposited on the anode surface. As listed in table 4.1 

almost similar diodes (structure #2) realized using a wafer with an epilayer thickness of 16.5m have also 

been analysed. For all the samples the calculated active area is in the range 0.75-1×10-3 cm2.  

Details about the implantation process and the post–implantation annealing are again reported in 

[128]. There, in particular, mainly depending on different thermal treatments of the samples, two different 

contact resistances in the order of 1.25×10-3 ∙cm2 and 2×10-5 ∙cm2 were measured at room temperature 

for the structures labelled #1 and #2 in table 4.1, respectively. 

 

 
Structure  #1      

       (D1)  

       Structure #2 

              (D2) 

Anode thickness, Ya (m)        0.2 0.5 

Anode doping (cm-3) 61019          11020 

Base thickness, Ybase (m) 4.8 16 

Base doping (cm-3) 31015 31015 

Cathode thickness, Ysub (m) 300 350 

Cathode doping (cm-3) 51019 11019 

 

Table 4.1: Geometrical and doping parameters of different 4H-SiC p-i-n diodes 
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4.3 Equipment and Procedures 

A Micromanipulator probe station and a HP4156B parameter analyzer were used to obtain the I-V 

characteristics of the diodes. The sample was loaded on the chuck of the micromanipulator. A vacuum pump 

was used to create suction to hold the sample tightly to the chuck, so that the Nickel ohmic contacts on the 

backside of the sample could make electrical contact through the chuck. The micromanipulator setup was 

enclosed in a vibration-isolation chamber fig4.2. 

The I-V characteristics of these diodes were studied at forward. Typically, the forward bias on all 

diodes was ramped up to 4 Volts, with the current compliance set to 100mA. The Source and Measure Unit 

(SMU) of the HP4155 can limit the current to prevent damaging the device under test. This limit, specified 

as the Current-Compliance, has a maximum value of 100mA on the HP4156B parameter analyzer. The 

sampling interval was set to 16.67ms by choosing the medium integration-time setting on the analyzer.  

                    

                   

 

 

 

 

 

 

 

                               Heater block 

 

 

Figure 4.2: Experimental Set-up used for I-V-T measurements. 
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4.4. Results and Analysis 

4.4.1 Introduction 

The key to understanding a specific diode's shortcomings is to understand the current conduction 

mechanisms. In p-n diodes, several current transport mechanisms may occur at the same time. The ideal 

diode's dark current conduction, described by Shockley, is due only to diffusion [130]. This is generally not 

observed in experiment. No semiconductor is perfectly pure. As a result of impurities and lattice defects, 

energy levels will exist between the valence and conduction bands. These levels allow various other current 

conduction mechanisms to occur. It follows that fewer impurities and lattice defects give an I-V curve that 

more closely approximates Shockley's ideal case. 

 

Current conduction in Si due to two exponential terms was first reported by Wolf, and later referenced 

by Reinhardt [131]. Wolf identified the two exponential terms as diffusion and junction space-charge 

recombination of the Shockley-Read-Hall type (Sah et al., 1957:1228) [132]. It was later found that the 

inclusion of shunt and series resistance terms, Rsh and Rs, respectively, produced a current-conduction 

model, which more closely matched experimental results. 

The current-conduction model is given by [132] 

 

                                  (4.1) 

 

                                                                                                                         (4.1 a) 

 

                                                                              (4.1 b) 

 

Where Jtotal is the total current density, Jdif is the saturation current density for diffusion, and Jrec is the 

saturation current density for space-charge recombination. n1 and n2 are ideality factors. For the case of ideal 

diffusion, n1 =1. The value of n2 is dependent on the location of recombination centers within the bandgap. If 

these recombination centers are located near the center of the bandgap, n2 will have an approximate value of 

2. The third term accounts for current due to shunting.  
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When shunting is due to carrier tunneling and capture-emission, then the shunting resistance term can be 

better modeled by [133] 

 

Jsh = J0 exp (B V)                                                                                                                    (4.2) 

 

 

Where J0 is the reverse-saturation current density due to tunneling and B is a fitting parameter. The diode 

junction voltage, VD, is related to the applied voltage, V, the total current, and the series resistance by 

 

VD = V - ItotalRs                                                                                                                      (4.3) 

Tunneling current is due to carriers tunneling through the junction to the other side. The different possible 

tunneling paths are horizontal transitions are due to tunneling, while vertical transitions are due to capture 

and emission processes. A majority carrier can tunnel all the way through the junction. It can tunnel via 

states within the forbidden gap, or some combination of capture, emission, and tunneling can occur (Sze, 

1981:528). The tunneling current density, as reported by Sze, is given by [134] 

 

                                                                              (4.4) 

 

Where m* is the effective mass, and εs is the permittivity of SiC. 

 

4.4.2 Forward I-V 4H-SiC PiN diodes Measurements 

In Figure 4.3, the I-V characteristics for a well-behaved diode D1A, D1B, and leaky diode D1C are 

compared. Under forward bias, the well-behaved diodes are characterized by a sharp turn-on at a relatively 

high "threshold" voltage, and the current is dominated by carrier diffusion in a region (III) and 

recombination in a region (II). The diffusion and recombination current mechanisms produce a quick rise in 

slope, which is a characteristic of high quality, low resistance, and efficient operation. Conversely, the leaky 

diode conducts considerable current at much lower voltages in regions (I) and (II), which is characteristic of 

conduction through tunneling like leakage paths. Further, leakage currents showed exhibit a smaller slope 

after turn-on, which is also a characteristic of tunneling [136]. 
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Figure 4.3: Forward J-V characteristics of several 4H-SiC p-i-n diodes (structure #1 (a), structure #2 (b)) 

measured at 298K. 

Figure 4.3 also shows the effect of series resistance, Rs, at voltages greater than ~2.75 V as shown in 

region (IV). In this region, the forward voltage drop due to IRs becomes comparable to the applied voltage. 

Diode D1A and D1B in Figure 4.3 exhibits current due to tunneling, recombination, and diffusion, while 

diode D1C only exhibits current due to tunneling and recombination. In agreement with the theory, the 

tunneling currents shown by (II) in Figure 4.3 dominate at low voltages, while the recombination current (I) 

and diffusion current (III) dominate at mid-range and high voltages, respectively.  
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In the case of diode D1A and D1B, Eq. (4.1) describes the tunneling current well over the voltage 

range of 0-1.75 V. In the range of 1.75-2.85 V, values of the ideality factor  2 obtained for two diodes 

ranged between 1.85 and 2.10. As noted earlier, a value of 2~2 is characteristic of ideal recombination 

through traps at the center of the bandgap. An analogue analysis on the current transport mechanisms at 

different biases can be made for the samples D2 in figure 4.3(b). The well behaved diodes D1A and D2A 

were selected in order to fit with simulation results. 

 

Figure 4.4: Simulated (solid lines) and experimental (dotted lines) forward characteristics of the diode D1A 

at different temperatures. 

Interesting diode behaviours were obtained performing a high temperature analysis for both the  

D1 and D2 samples. Forward-bias I-V characteristics measured as a function of temperature (I-V-T) for 

diodes D1A and D2A are shown in Figures 4.3 and 4.11, respectively. 

 

As shown in Figure 4.3, the voltage at which diode D1A turns on decreases with increasing 

temperature from ~1.71 V at 298 K to ~1.43 V at 378 K [136]. Before the device turns on, the I-V curve is 

dominated by tunneling current. As predicted by Eq. (4.4), the magnitude of tunneling current is weakly 

dependent on temperature. After the device turns on, the forward current increases at a fixed voltage with 

increasing temperature.  Figure 4.3 and 4.4 shows that as the temperature increases the series resistance 

becomes a significant factor at lower voltages. 
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Considering the complete measured temperature range, it becomes obvious that there are significant 

differences between simulated and measured data at lower temperatures (Fig. 4.3 and fig.4.4). The activation 

energy, EA, for the  =2 recombination current for well-behaved SiC PiN diodes was calculated using Eq. 

(4.4)  

                                                                                             (4.4) 

 

                                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Plot of well-behaved recombination currents vs.1000/T. The average activation energy EA = 1.61 

eV has been obtained using Eq (4.4). 

 

Using an Arrhenius plot, a best-fit line was drawn through the Ln (Irec) vs. 1000/T data for the well-behaved 

diodes to yield a value for EA as shown in Fig 4.5. The average value of EA obtained was 1.61 eV, compared 

to a value of EA=Eg/2 =1.63 eV for ideal recombination current in 4H-SiC with Eg= 3.26 eV [136]. 
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Figure 4.6: Temperature dependence the measured ideality factor of the diode D1A between 2.5V and 2.8V.  

 

For an ideal PiN diode the carrier transport over the barrier is governed by thermionic emission.  The 

current density, J, is given by equation 4.1. In order to analyze the electrical characteristics, the ideality 

factor, n is extracted using eq.4.5 [137]. 

                                                                                                                       (4.5) 

 

Fig.4.6 shows, for higher voltages the curve shows a smaller ideality factor in the order of 1.0 ≤  ≤ 2.0 

before the high-injection regime is reached. The deviation from the theoretically predicted ideality factor of 

 = 1.0 can be explained by a generalized form of the Schottky-Noice-Sah theory [134] for the current 

transport through a junction. In this theory, the current transport is explained by means of carrier 

recombination through multiple deep and shallow levels in the band gap.  

 

 

The theory predicts an ideality factor of  

 

                                                                                                                                (4.6) 
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Where s is the number of discrete shallow levels and d is the number of discrete deep levels in the band gap, 

participating in the recombination process. According to this theory, the observed ideality factor of  ~ 1.33 

= 4/3 (fig 4.6) would thus be caused by the participation of d =1 deep and s = 2 shallow levels in the 

bandgap [138]. 

 

In the series resistance region, where only a limited current increase is observed in figure 4.3 for 

voltage biases higher than 3V, a good agreement between the simulated and experimental data was achieved 

simply considering a temperature dependence of the contact resistance Rc in the order of -5µ∙cm2∙K-1. A 

negative temperature coefficient of Rc for the investigated 4H-SiC p-i-n diodes was also experimentally 

observed in [128], pointing out a mixing of thermionic and field-effect conductions through the contact-

semiconductor interface.  

In the series resistance region, however, the structure #2 exhibits a different J-V-T behaviour, as shown in 

figure 4.11 for the diode D2A. In fact, although there are weak differences between the two diode structures 

in the current contributions due to the carrier recombination and considering Rs in the form Rs=2Rc+Ri, 

whereas for the structure #1 we can assume 2Rc > Ri, it is evident that for the diode D2A the Ri effect 

overcomes the Rc contributions at all temperatures limiting more and more the diode current capability as 

the carrier mobilities decrease increasing the temperature. In particular, Ri 1/qNn in fact, as a consequence 

of a higher dopant activated in the n+ region that tends to suppress the hole injection in the substrate, above 

the J-V curve knee the total diode current is dominated from the electron injection into the anode. As a 

proof, the incomplete ionization model predicts a 10 times lower saturation level of the ionized acceptor 

concentration.  

 

4.4.3 Simulation of 4H-SiC devices 

The simulation study of the 4H-SiC devices is based on the Atlas-Silvaco solid-state device 

simulator. The 4H-SiC physical parameters are set as in chapter 3, where a numerical analysis was focused 

on Al implanted 4H-SiC p +-i-n diodes and supported by experimental measures in a wide range of 

temperatures. In particular, a coincident carrier lifetime reference value for the implanted regions as low as 

10 ns is assumed at room temperature (RT) [136].  

Specific 4H-SiC physical models, including the SRH and Auger recombination processes 

incorporated with a concentration dependent carrier lifetime, the carrier mobility as function of doping, free 

carrier density and temperature, were taken into account during simulations both inside the epitaxial layer 

and implanted regions.  
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4.4.3.1 Statistical limit 

By defining Nmin = 100 carriers within the active volume V = AD1A.4.8.1×10-4 cm3 as the statistical 

limit for sample D1A, the density of free carriers determining the contact current at different operation 

conditions must be larger than nmin = Nmin /V = 2.7.105 cm-3. Using the analytical relation for the 

recombination current, Eq. (4.1), to estimate the minimum voltage needed for exceeding nmin, 

 

                                                                                                       (4.7) 

 

We obtain Umin ≈ 1.5 V at room temperature. This leads to Jmin ≈10-9Acm-2 (Fig. 4.3) which yield a 

minimum contact current of Imin = Jmin.AD1 ≈ 7.5.10-13A which is very close to the limits of the 

measurement setup. In Fig. 4.3, the internal distribution of the free carrier densities of the forward biased 

sample D1A (Fig. 4.7) at different operation points is plotted. At U = 1.5V, the current is clearly dominated 

by recombination within the depletion region which mainly occurs within a narrow region of about 200nm 

(Fig. 4.8). At this point, the free carrier densities determining the current are in the order of nmin confirming 

the estimation of Eq. (4.7). Umin increases with decreasing temperature because of the corresponding 

decrease of ni;eff. At a temperature as low as 150K, we obtain Umin ≈ 2.3V which again yields Jmin ≈10-

10Acm2. This is corroborated with the decrease of Ubi with increasing temperature, thus yielding a minimum 

current density Jmin approximately independent of temperature. 

 

4.3.3.2 Simulation of 4H-SiC pin diodes 

In this section, Diodes D1A and D2A structures are introduced and compared to simulated results. 

First, some analytical models are presented, and then some hybrid models are described. With the exception 

of the model presented, where lifetime is variable in the epilayer , the mobilities are dependent of carrier 

concentration and temperature, the other compact models analysed in literature have the following 

assumptions:  

• The problem is treated as two-dimensional in the space; 

• The temperature T is variable;  

• The P+N− and N−N+ are Gaussian;  

• The doping in the base region is constant ; 

• The lifetime τhl and the mobilities in the base are constant and independ of injection; 

• The carriers density in the epilayer is much larger than the doping density (high injection). 
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The well behaved diodes D1A and D2A were selected in order to fit with simulation results. The 

parts of the forward current characteristics due to recombination and diffusion phenomena are well suited as 

reference for the calibration of the carrier lifetime parameters. 

In fig 4.9 it is seen that up to 1.5V the device does not reach the high injection regime in the n- region and 

therefore in fact it behaves as a p+n- long diode. By comparison with fig 4.3, it also clear the change of the 

slope of J-V curve takes place around Vd = 2.9V marks the beginning of significant electrons and holes 

injection into the p+ and n- layers, respectively. 
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Figure 4.7: Electron and hole density distribution of forward of PiN diode at Ud=1V, 1.5Vand      2.4V 
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Figure 4.8: Localization of recombination rate at Ud = 1.5V. 
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On the other hand, the calculation of the carrier recombination depth profile shown in fig 4.8 reveals 

that, at biases of 1.5V, the recombination current, which is the dominant component of the current density, is 

largely concentrated inside a narrow region in the depletion layer. 

In order to better highlight the temperature dependence of the carrier mobility and to properly fit the 

measured  forward characteristics of the device D2A at highest current regimes, a simplified version of 

(3.28) in the form µn,p=µ0n,p(T/300) was also considered during the simulations. Assuming µ0p=6 cm2/V·s at 

T=300K as measured in, the best fit gives µ0n=30cm2/V·s and =-5.25. Such carrier mobilities should be 

considered as average values along the diode structure and predict a diode internal resistance in the order of 

10 m∙cm2. This result explains the limited maximum current handling of the samples D2 if compared to 

D1.Considering Fig. 4.3, there are two different recombination mechanisms, which may determine the 

recombination current of sample D1A: First bulk recombination within the depletion region along the 

junction and second surface related recombination as modeled by Eq. (3.16). While the surface 

recombination velocities vν do not influence the diffusion dominated part of the characteristics, the bulk 

recombination current is coupled to the diffusion current by the minority carrier lifetimes τν and to a minor 

extend by the free carrier mobilities as long as the diffusion lengths are smaller than the layer thickness of 

the diffusion regions [134]. The well behaved diodes D1A and D2A were selected in order to fit with 

simulation results. The parts of the forward current characteristics due to recombination and diffusion 

phenomena are well suited as reference for the calibration of the carrier lifetime parameters. 

 

 

 

 

 

 

 

 

 

Figure 4.9: Measured and simulated forward characteristics of sample D1A at 298K including lifetime. 
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In Fig.4.9, the default parameters, as outlined in eq. (3.15), have been used and the minority carrier 

lifetime parameters τ0n and λ of the Scharfetter relation have been adjusted such that the simulated 

recombination current at 298K agrees with the measured data. A fitting parameter τ0n=10 ns is in accordance 

with the experimental results measured by reverse recovery at T=300K on similar p-i-n diodes have been 

reported [137]. For the sample D2A, τ0n results 3 times lower probably due to the presence of deep-level 

defects as efficient carrier traps, which can seriously affect the performance of the semiconductor devices in 

the diode active area [138]. The most important two intrinsic point defects suspects to play a role in 

recombination lifetimes are the Z1/2 and EH6/7 [139].The concentrations of these two centers are both 

inversely correlated with the minority carrier lifetime, and for a while it was uncertain which defect center 

was the actual culprit in limiting the lifetime.  

 

 

 

 

 

 

 

 

 

Figure 4.10: Measured and simulated forward characteristics of sample D1A at several 

temperature including corresponding lifetime. 

Interesting diode behaviours were obtained performing an high temperature analysis both for the D1 

and D2 samples. The measured and simulated J-V characteristics of the diode D1A at various temperatures 

are shown in figure 4.10 in semi-log scale. As the testing temperature increases, the carrier lifetime 

increases. When the testing temperature is at 378K, the carrier lifetime values increases up to 30ns in the 

base region. Although an overall qualitative agreement is observed, deviations are observed at higher 

temperatures within the recombination and diffusion part of the characteristics, respectively.  
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Similar disagreement between measured and simulated data below a certain threshold voltage  

depending on temperature has been observed by other groups [140, 141].  

 

Assuming a power law for the temperature dependence of the SRH lifetimes, Eq. (3.15), with τ0n=10 

ns and λ=1.82, the simulated characteristics agree excellently with the measured data within the complete 

temperature range (Fig. 4.10) for both the recombination-dominated and diffusion-dominated part of the IV 

characteristics. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Simulated (solid lines) and experimental (dotted lines) forward characteristics of the diode D2A 

at different temperatures. 

A similar finding is obtained in case of sample D2. In Fig. 4.11, the simulated IV characteristics with 

τ0n = 3.65ns and λ = 1.6 are shown which again agree with the measured data within the recombination- and 

diffusion-dominated range. Other groups using the method described by Tien and Hu (reverse recovery 

measurement) [142]. There are several uncertainties among the material parameters, which may affect the 

quantities affecting the equation governing the IV characteristics. The diffusion current is underestimated 

due to larger bandgap and the corresponding lower intrinsic density, which may be partly compensated by a 

reduced concentration of ionized donors. Furthermore, the bandgap-narrowing parameters are only based on 

theoretical calculation [143].These most mentioned uncertainties would influence the simulated results 

compared to measured one. 
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4.5 Simulation of Trapping Effects in 4H-Silicon Carbide Bipolar Modulated Field Effect Transistor 

(4H-SiC BMFET) 

In this section, the degradation of BMFETs due to the formation of crystal defects as a result of 

interactions with energetic particles or as growth is investigated. The crystal defects result in deep states in 

the SiC forbidden energy gap where carriers recombine, thereby affecting the electrical properties of the 

device. The impact of defects on the SiC BMFET performance is studied by introducing traps of various 

energies and densities on fully functional devices. Due to the different stopping mechanisms for ions in 

matter, it has been possible to introduce a certain amount of defects at a specific location in the device. By 

analysing the degradation of the electrical performance of the devices exposed to Z1/2 EH6/7 traps, with 

selected energies, density and cross-section, it is possible to identify different mechanisms involved in the 

degradation. 

4.5.1 Device structure 

The schematic cross-section of the considered BMFET elementary cell is shown in Fig. 4.12. The 

device parameters (p+-gate junction depth, epilayer thickness, and its doping, channel width, source, drain, 

and p+-gate peak doping) are chosen based on reported results in literature [145] are tabulated in Table 4.2. 

By applying a forward gate-source voltage, we obtain an injection of minority carriers from the gate 

region into the epilayer that induces a conductivity modulation in the epilayer. Consequently, depending on 

the carriers injected by the gate, a large current can flow between source and drain. Otherwise, in the OFF-

state of the device, the drain-source current is inhibited by FET mode of operation; in fact, without applying 

a gate-source voltage, the channel under the source region is kept in pinch-off by the gate junction built-in 

voltage. 
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Figure 4.12: Schematic cross-sectional view of one-finger 4H-SiC BMFET transistor. 

 

Epilayer thickness, (µm) 10 

Gate junction depth, (µm) 2.7 

Gate distance, W(µm) 1.5 

Source depth, Ys (µm) 0.7 

Device area (µm2) 5.5 

Epilayer doping, Nepi (cm-3) 1015 

Gate doping, NA (cm-3) 2x1019 

Source doping, ND(cm-3)  1019 

Substrate doping, Nsub (cm-3) 5x1019 

Table4.2 BMFET parameters 

 

4.5.2 Simulation analysis 

The 2-D numerical simulations were performed using SILVACO [90] TCAD to obtain the dc 

characteristics of BMFET.  
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The various models activated in the simulations are Fermi–Dirac distribution for carrier statistics, 

Caughey-Thomas mobility model for dopant and temperature dependent low-field mobility, analytical field-

dependent mobility for high electric field, ionization-rate model for incomplete ionization, and Shockley–

Read–Hall (SRH) and Auger recombination models for minority-carrier recombination lifetime and 

lindelfelt model for Band Gap narrowing supported by C interpreter (see appendix B).  

The specification of meshes involves a trade-off between the requirement of accuracy and time in 

Silvaco. Accuracy requires a fine mesh that can resolve all significant features of the solution. Faster 

simulation requires a coarse mesh that minimizes the total number of grid points. This trade-off between 

accuracy and time is a source of problems for users. 

Fig 4.13 shows a base mesh in 2D on diffusion with dense meshing; such a dense meshing will use up 

a lot of CPU memory and will takes a long time to simulate. The result generated will be very accurate. 

When you increase the density of the mesh, it will definitively increase the simulation time. It is 

important that you only increase the density of the mesh in the critical area such on the pn junction. 

Subsequently is the to show of two different amount of mesh, one only denser in the critical area and the 

next was denser constantly throughout the area Fig.4.13.     

 

Figure 4.13: 2D an optimal meshing density of a 4H-SiC BMFET structure simulated using Silvaco atlas 

software. 
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The electron and hole concentrations in the n-drift region of the BMFET are shown in Fig.4.14. 

Fig.4.14 shows the thermal equilibrium hole and electron concentrations at zero-bias condition, i.e., at jG = 

0A and VDS = 0 V. It can be seen that the concentration of electrons at this bias is about 1015 cm−3, which is 

equal to the epilayer doping.  
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Figure 4 .14: Electron and hole concentration at JG=0A (VDS=0V). 

Fig. 4.15 shows the concentration of holes and electrons in the channel for different values of JG and 

VDS = 0 V. On forward biasing gate, i.e., for a positive gate current, the concentration of holes and electrons 

in the channel rises, resulting in a conductivity modulation of the drift region. This clearly demonstrates the 

ability of the gate to inject excess holes into the n-drift region. When the drain voltage is increased to VDS = 

5 V at JG = 7 A A.cm-2, the holes are pushed deeper toward the source, making the low- resistance 

conductivity-modulated region shorter, as shown in Fig. 4.16. The presence of the conductivity-modulated 

region and its variation with the drain voltage can also be observed by calculating the electric field in the 

drift region, as shown in Fig. 4.17. It can be seen that, for VDS = 1 V, the low-electric- field region (i.e., the 

conductivity-modulated region) is longer when compared to VDS = 5 V. 
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Figure 4 .15: Electron and hole concentration at different gate current (VDS=0V). 
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Figure 4 .16: Hole and electron concentrations in the channel from source to drain at  

                      JG =7 A.cm-2 and VDS = 1 V; VDS = 2 V; VDS =3V and VDS = 5 V. 
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Figure 4 .17: Electric-field variation in the channel for VDS = 1 V; 2V; 3V and 5 V. 

 

4.5.3 Output Characteristics 

The simulated output characteristics of the BMFET are shown in Fig. 4.18 for different gate currents. 

. It can be seen that, as the drain voltage is increased, the slope of the drain current curve reduces. However, 

with an increasing drain voltage, the drain current continues to increase, since the plasma region, which is 

responsible for the conductivity modulation of the drift region, is pushed away from the drain terminal 

Fig4.16. Due to the conductivity modulation of the drift region populated by holes and electrons, the 

saturation voltage is, however, extremely small. 

The transistor shows a behaviour very similar to normally-off bipolar transistor with an additionally 

gate-current dependent on-resistance and a similar to HBT with large offset voltage, which was discussed in 

silicon BMFET [146]. The values of the off-set voltage and the strong drain-voltage dependence on drain 

current in saturation are very similar to the normally-on GaAs BMFET [147]. 
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Figure 4 .18: BMFET forward J-V characteristics for different gate biases. 

 

4.5.4 I-V characteristics of 4H-SiC BMFETs with Multiple Deep Level Traps (DLT)  

Ionizing particles produces material defects mainly around their end of range due to the dominance 

of nuclear scattering processes. These defects lead to deep states in the forbidden energy gap where carriers 

recombine. It has also been shown that nitrogen donors in SiC are deactivated [149], as a result of energetic 

ions’ induced defects. Both of these effects lead to a reduction of charge carrier densities. Higher 

concentration of defects may also lead to reduced carrier mobility. As a result, a highly resistive layer in the 

material is produced [150]. The material defects can also be introduced during device fabrication (described 

in Section 1.2). These defects also have a negative influence on the device performance. In the device 

simulator, material defects can be modeled by introducing traps in the device to obtain an insight into the 

device behavior in the presence of defects/traps. Additionally, bipolar degradation could be understood from 

this type of study, which is mainly caused by stacking faults already present in the material. Stacking faults 

can also be induced due to ion irradiation and lead to the degradation of the device. A theoretical 

investigation is conducted to quantify the effect of traps located at drift region in a SiC BMFET.  

The mostly three deep level traps observed in 4H-SiC substrate are Z1/2, RD1/2, EH6/7 (Chapter 1). 

The study is conducted for different values of capture cross-sections for electrons and holes (σn,p = 1×10-12, 

1×10-13, 1×10-14 and 1×10-15 cm2), and traps concentrations ranging from 1×1013 to 1×1016 cm-3. The capture 

cross-section values are taken from previous experimental studies [151,150,152].  

81 

Normally off 

regime 



Chapter 4: Results and Discussion 
__________________________________________________________________________________ 

 

Most researchers report that the intrinsic deep levels observed by DLTS in the upper half of the band 

gap are acceptor like. These traps have been listed separately because of the differences in capture cross 

section coefficient, which is shown in table 4.2. 

Name of Trap Trap location 

(eV) 

Trap con(Nt) 

(cm-3) 

Trap c/s of 

electron (cm2) 

Trap c/s of hole 

(cm2) 

Z1/2 0.67 3.8x1015 2x10-14 3.5x10-14 

EH6/7 1.65 3x1015 2.4x10-15 3.5x10-15 

 

Table 4.3: Deep levels by DLTS reported in the literature in the upper half of the band gap of 4H-SiC with 

location of trap level from conduction band. 

 

4.5.4.1 Output characteristics of 4H-SiC BMFET with Z1/Z2 Trap Effects. 

 

The canal layer in a BMFET transistor plays an important role for the current-voltage properties of 

the device, for instance, for determining the on-state resistance. Therefore, carrier traps in this layer can 

influence the overall characteristics of the device. For this purpose, Nt with different concentrations is 

studied at the canal in the drift region. Figure 4.19 shows the IV characteristics output of the BMFET 

transistor with different densities of the Z1/Z2 defects for acceptor type with capture cross-section of σn 

=2×10-14 cm2 and σ p=3.5×10-14 cm2. Degradation due to traps in the canal is dependent on their 

concentrations. Simulations are performed for acceptor and donor type traps, but the degradation in device 

performance appears only due to acceptor type traps. The concentration of traps has been observed as an 

important parameter that controls the device output. In the present study, Nt concentrations was fixed to 

1x1013, 1x1014, 1x1015 and 1x1016 cm-3 respectively in the drift region from the source to the drain. It has 

been seen that the value of drain current is reduced to around 10A.cm-2 from 550A.cm-2 which is caused by 

increasing trap density. A maximum current decrease appears when the traps concentration is in the order of 

1x1016cm-3. The study reveals also that the traps do not strongly affect the device characteristics by trapping 

electrons at biases below 0.6 V exempt for trap density exceeding the epilayer doping.   
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Figure 4 .19: Effect of increasing concentration of Z1/Z2 traps in the canal with σn =2×10-14 cm2 σ p=3.5×10-

14 cm2 (capture cross-section for electrons and holes has been considered to be unchanged in all 

simulations). The gate current used in these   simulations is 7A/cm2. 

 

However, as Nt is increased  a region with increased resistance appears before saturation of the drain 

current at a certain gate current appears, and the effect becomes more prominent at a trap concentration of 

1x1015cm-3 (Figure 4.19). The main reason for this behavior is the barrier in the flow of electrons due to 

trapped electrons in accepter type traps in the canal, which increases the local recombination rate (Figure 

4.21) [155]. The effect of donor traps is negligible, since the excess carrier are only electrons (Figure 4.20). 
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Figure 4.20: Hole and electron concentrations in the channel from source to drain at  

                     JG =7A/cm2and VDS =1V at different Z1/Z2 Trap concentrations. 

 

If high basal plane dislocation (BPD) (see chapter 1) density is present. It is widely believed that 

stacking faults (SFs) are created by the recombination of electron-hole pairs at the BPDs, which acts as a 

nucleation site. When the BMFET operates in the quasi-saturation or saturation region, the source and the 

drain regions are flooded with electron-hole pairs, and their recombination convert the BPDs (basal plane 

dislocation) into SFs. These SFs degrade both the current gain and the on-resistance (RON). The gain is 

degraded because these SFs reduce the carrier lifetime, whereas the RON because they act as carrier traps in 

the canal introducing local high-resistive layer [154]. 
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Figure 4.21: Total recombination in BMFETs by introducing Nt with different concentrations in the canal. 

The recombination rate has been extracted by taking vertical cut for simulated structures. 

 

Moreover, the impact of electron and hole capture cross-sections on the canal characteristics is very 

evident, and the gain drops more for larger cross-section values, as shown in Figure 4.22. The excess 

carriers (electrons and holes) flowing through the canal at a certain bias voltage are trapped, giving rise to 

recombination rate in the trapped region and decreasing the local concentration of the carriers (Figure 4.23). 

In a similar way, when the concentration of traps is increased, i.e. more trapped electrons, a drop in the 

current gain occurs due to an increased rate of recombination in the canal. An important factor for the low 

degradation in gain is the emitter doping level which is of the order of ~1019 cm-3. Therefore, it can be 

deduced that the emitter region is less sensitive for the degradation of the BMFET due to the presence of 

traps. 

 

 

 

 

 

85 

Source Drift region 

Canal 



Chapter 4: Results and Discussion 
__________________________________________________________________________________ 

 

0 1 2 3 4 5 6

0

100

200

300

400

500

 

 

C
u
rr

e
n
t 
d
e
n
s
it
y
 (

A
.c

m
-2
)

Source to Drain Voltage V
DS

(V)

 Sig
p
=1x10

-15
cm

2

 Sig
p
=1x10

-12
cm

2

 Sig
p
=1x10

-14
cm

2

 Sig
p
=1x10

-13
cm

2

 Sig
p
=1x10

-16
cm

2

 

Figure 4.22: Effect of increasing cross section of Z1/Z2 traps in the canal with (Trap concentrations for 

holes has been considered to be same in all simulations Nt =1×1015cm-3). The gate current 

used in these simulations is 7A/cm2. 
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Figure 4.23: Hole and electron concentrations in the channel from source to drain at  

                     JG =7A/cm2and VDS =1V at different Z1/Z2 Trap cross sections. 
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4.5.4.2 Output characteristics of 4H-SiC BMFET with EH6 /EH7 Trap Effects 

The Output characteristics of the BMFET for different Nt values of EH6/EH7 are reported in Fig 

4.24. As can be seen, all curves exhibit a linear region at low biases (VF < 0.6 V), while their behaviour is 

dominated by a series resistance at higher voltage values. Moreover, as can be noticed, the linear region of 

the I-V curves becomes smaller and shifts toward higher voltages with increasing trap concentration. At the 

same time, the current decreases in the series resistance region too.  From the Simulation it appears clear that 

the trap concentration above 10x1014 cm-3 modifies the electrical properties of the device, i.e., to the current 

gain and the series resistance, where similar devices, although BJT instead of BMFET, reported from 

another group [156] showed  the same phenomena.   
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Figure 4 .24: Effect of increasing concentration of EH6/EH7 traps in the canal with σn =2×10-14 cm2 and σ 

p=3.5×10-14 cm2 (capture cross-section for electrons and holes has been considered to be 

unchanged in all simulations). The gate current used in these simulations is 7A/cm2. 

 

The results from simulations, presented in Figure 4.24 indicate also that the trap concentration above 

4×1015 cm-3 with electron and hole capture cross-section of σn =2×10-14   cm2 and σ p=3.5×10-14 cm2 follow 

the same trend as it has been obtained by Z1/Z2 trap in the canal region. This comparison suggests that the 

carrier concentration in the highly damaged. 
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Figure 4.25: Hole and electron concentrations in the channel from source to drain at  

                                   JG =7A/cm2and VDS =1V at different EH6/EH7 Trap concentrations. 

 

region (Nt =1016cm-3) in the canal is reduced after introducing traps Fig 4.25, although it is not possible to 

say if the lower carrier concentration is due to the deactivation of nitrogen dopants, or a high concentration 

of traps resulting in increased trapped electrons in the drift region and producing compensation of carriers. It 

has been seen in the simulations that the region, where traps are introduced, the flow of current through the 

canal is reduced and limits it to a certain level. As a result, a higher resistance is observed in the transistor 

characteristics. 

 

From fig 4.26, it is seen the effect of traps on the electrical field. The EH6/EH7 concentration traps 

leads to the apparition of a peak of the electrical field at Y=3.8µm in the drift region where the gas of holes 

and electrons is located for a source drain voltage of 1V. Being this induced EF in this region, it has to point 

out the disadvantage of this defect for a better reliability as long as the trap concentrations does not reach a 

certain value, above which the EF starts increasing. Indeed this is what our simulations revealed, i.e. further 

increasing the trap concentrations above 1015cm-3 the peak of the EF results by far higher than in the other 

cases. The modification of the EF results in a changing of the depletion region in the sense that wider is the 

electric field spread and wider is the depletion zone, as it is shown in fig 4.26. 
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Figure 4 .26: Effect of the EH6/EH7 trap concentration on the Electric Field distribution. Cut in the 2D drift 

region along the source to drain of the device. 

 

The results from simulations, presented in Fig 4.27 indicate that the electron and hole capture cross-

section follow the same trend as it can be obtained by introducing a the Z1 /Z2 traps. It is well shown that 

the capture cross-section of the EH6/EH7 traps in the drift region strongly affect the output. Fig 4.27 also 

show that the highest cross-section of the traps (1×10-12 cm2) reduces the gain down to about 67%. In 

general, when the epilayer is filled with traps, the trapped carriers increase the recombination rate in this 

region (Fig 4.28). As a result, the flow of current is reduced, which results in the degradation of the current 

gain. 
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Figure 4.27: Effect of increasing cross section of EH6/EH7 traps in the canal with (Trap concentrations for 

holes has been considered to be same in all simulations  

                        Nt =1×1015cm-3). The gate current used in these simulations is 7A/cm2. 
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Figure 4 .28: Total recombination by introducing EH6/EH7traps with different capture cross-section in the 

epilayer. The recombination rate has been extracted by taking vertical cut for simulated 

structures. 
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4.6 Optical characterisation 

4.6.1 Spectral Response for 4H-SiC D2A. 

The spectral responsivity of the D2A was measured by utilizing a Xe arc lamp and a monochrometer. 

The incident light was focused by a lens, and modulated with a chopper at 1 kHz. Its power was calibrated 

using a UV-enhanced silicon photodiode. The photocurrent was measured using a lock-in amplifier. Typical 

responsivity curves as a function of incident wavelength of 4H-SiC D2A is shown in Figure 4.29, with bias 

at 3Volts. 

 

The spectral response cut-off begins at 380 nm, corresponding to the 3.26-eV indirect bandgap of 4H-

SiC. This long-wavelength cut-off is not as sharp as that of direct bandgap semiconductors such as GaN 

[157]–[159]. Nevertheless, the responsivity drops by four orders of magnitude between 220 and 400 nm, 

providing acceptable visible-blind performance. 
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Figure 4.29: Spectral response for 4H-SiC D2A PiN diode. 

 

4H-SiC has its cut-off just around 375 nm. Cut-off wavelength for 4H-SiC should be around 384 nm 

and it probably is, it just does not show in the measurements since the noise is too high. The higher doping 

concentration in 4H-SiC seems to play a role in larger current. 
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4.6.2 Photo Response and I-V Characteristics 

I-V characteristics of dark current and photocurrent have been measured in darkness and by 

illuminating the sample D2A with different UV light sources respectively. Mainly UV-LEDs have been used 

since they gave better control, stability and higher intensity than a UV lamp. The photocurrents shown in 

this section come from illumination with a 365 nm UV-LED with a flux density of 0.5mW/cm-2 at a distance 

of about 6 cm between light source and diode. All measurements have been performed at room temperature. 

The electric current shown in fig 4.30 in this section is the absolute value of the actual current. Of course, a 

negative bias gives a negative current, but taking the absolute value gives a better idea of the characteristics. 
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Figure.4.30: Photocurrent of vertical 4H-SiC PiN D2A as a   function of the reverse bias, under dark 

conditions and under different illumination wavelengths. 

 

As mentioned before D2A devices were fabricated on 4H-SiC. I-V characteristics were done using a 

probe station with very sharp needles just touching contact pads of the devices on the top side (Appendix G). 

A voltage sweep from negative to positive bias was done to measure the current. Since the dark current was 

very low in 4H-SiC devices special equipment, shielded and with signal filters had to be used to achieve the 

dark current. Photocurrent could be measured by a manual probe station since the signals were well above 

the noise level of that equipment, 100 pA.  
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The I-V characteristics of D2A vertical diodes under dark condition and under different illuminations 

are shown in Fig. 4.30. The value of the leakage current, measured in dark conditions, was ~1pA at −1 V 

and below 10nA up to a reverse bias of −50 V. As can be seen in Fig. 4.30, a significant increase of the 

current of more than two orders of magnitude occurs under an illumination at 320nm. The increase of the 

photocurrent with the applied reverse bias can be ascribed to the rise of the depleted junction region within 

the open area, resulting into an increase of the optically active area. When contiguous depleted regions 

merge, the device operates in the surface pinch-off [160] regime and the optically active area is coincident 

with the open area. A further increase of the reverse bias, with respect to the pinch-off voltage, does not 

change the optically active area. For example similar devices, although horizontal instead of vertical, 

reported from an Italian group [161] showed a magnitude difference of two orders for the same 

measurements. On the other hand their doping concentration of SiC was nearly the same (Nd = 2.7 × 1015 

cm-3), so that could be one reason why D2A device need to be improved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93 



Conclusions and future outlook 

_______________________________________________________________________________________ 

 

Conclusions and future outlook 

The 4H-SiC PiN diodes characteristics were in general found to agree with established PiN junction 

I-V-T. Of the three diodes studied using I-V-T techniques, two were found to be well-behaved exhibiting a 

minimum amount of tunneling current. One classified as very poor, where recombination and tunneling were 

the dominant current processes at all voltages. For well-behaved diodes, forward I-V-T data showed current 

conduction due to tunneling below 1.75 V, recombination between 1.75 and 2.85 V, and diffusion processes 

above 2.85 V. Series resistance was found to be a limiting factor around 2.9V. Recombination currents 

yielded an activation energy of 1.61 eV and an ideality factor values of 2.02-2.12 compared to the ideal 

activation energy of 1.6 eV with n=2. An excellent agreement to the measurements has been achieved by a 

fine-tuning of the technology-dependent carrier lifetime and mobility parameters in the base region. The role 

of the diode resistance contributions in determining different temperature dependencies of the current 

behaviours has been pointed out. 

 

Moreover, BMFETs fabricated from SiC, for SiC radiation hardness are studied by exposure to high-

energy ion beams with selected energies and fluences. For this purpose, a Multiple Deep Level Traps (DLT) 

effect has been proposed. In this, different type of traps are presented. Among them, the Z1/2 and the EH6/7 

centers are the dominant and thermally stable defects commonly observed in all as-grown epilayer. An 

analytically based model of 4H-SiC BMFETs including trapping effects is developed. Then we explained 

the trapping process with the help of multi deep level trap by including various trap parameters like trap 

concentration and capture cross section played very important role for reducing of drain current. Therefore, 

BMFET output simulation lead to the Z1/2 defects, which a large capture cross-section for holes, dominate in 

limiting the minority carriers lifetimes in the n- epilayer.   

 

Contrary to silicon, SiC does not suffer from the influence of visible light, thanks to its wide band 

gap energy. This is surely a relevant strength for future possible applications of 4H-SiC BMFET as radiation 

detectors, which can work in harsh environments forbidden to other types of semiconductor detectors. 

 

PiN diodes have problems with ohmic contacts and low carrier lifetimes. Until these problems are 

solved, research on SiC is not complete. These fundamental problems need to be resolved. As SiC becomes 

more and more commercialized due to its superior material properties, there is a prevailing notion that it has 

matured past the research phase. This is not true by any stretch; much research remains for SiC. Further 

experimental and theoretical work is required for finally developing the simulation of SiC wide bandgap 

devices as far as state-of-the-art Si device simulation.  
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Deep level transient spectroscopy (DLTS) analysis is in progress in order to determine the density of 

trapping centres (in the range from 1014 to 1016 cm-3) which are responsible for the major reduction of the 

minority carrier lifetime (MCL) in n-doped 4H-SiC epitaxial layers. 

 

This thesis has been focused on modeling the dc characteristics of 4H-SiC BMFET for both the 

linear and saturation regions including multi deep level traps. So one may extend this work by taking ac 

characteristics (frequency dispersion) into account. Then buffer layer is also neglected between channel and 

substrate in this thesis, so this work can be extended by considering buffer layer. Finally, there is still some 

important work in this topic, which can be taken up as future work to improve the model of 4H-SiC 

BMFET. 
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Appendix A: 

Material parameters for 4H-SiC 

 Si 4H-SiC 6H-SiC 3C-SiC 

Bandgap energy 

[eV] 

1.12 3.26 3.03 2.4 

Relative dielectric  11.9 9.7 9.66 9.72 

Breakdown Field 

[MV/cm]3cm17=10D@NBE 

0.3 ||c-axis:3.0 ||c-axis:3.2 

┴ c-axis >1 

 

>1.5 

Thermal Conductivity κ 

[W/cm K] 

1.31 4.9 4.9 3.2 

Intrinsic Carrier 

]3-[cmntration Conce 

99.65x10 9-5x10 6-1.6x10 1-1.5x10 

 Electron Mobility 

/Vs]2[cm 

1430 ||c-axis:  900 

┴ c-axis : 800 

||c-axis:  60 

┴ c-axis: 400 

800 

 Hole Mobility 

/Vs]2[cm 

480 115 90 40 

Saturation Electron 

cm/s]7[10 vVelocity  

1 2 2 2.5 

Donors & Ionization 

energy [meV] 

P:45 

As:54 

N:50, 92 

P:54, 93 

N:85,140 

P:80, 110 

N:50 

Acceptors & Ionization 

energy [meV] 

B:45 

Al:67 

Al:200 

B:285 

Al:240 

B:300 

Al:270 
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Appendix B: 

Band gap narrowing C interpreter 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <ctype.h> 

#include <malloc.h> 

#include <string.h> 

#include <template.h> 

 

 

int bgn(double xcomp,double ycomp,double temp,double na,double nd,double 

*deg,double *ddegdt) 

{ 

        const To=300; const Nc_300=1.6626e19; const Nv_300=3.29868e19; 

const k=8.61738e-5;  

        const gD=2; const gA=4; double na_ion; double nd_ion;  

        double num1; double num2; double num3; double pow1; double pow2; 

double pow3; double pow4;  

        double Nc; double Nv; double DEc; double DEv;  

 

        num1=(temp/To); 

        pow1=1.5; 

        pow2=0.5; 

        pow4=0.25; 

        pow3=0.3333333; 

        Nc=pow(num1,pow1)*Nc_300; 

        Nv=pow(num1,pow1)*Nv_300; 

        if (na-nd > 0) 

        { 
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        na_ion=na*(-1+sqrt( 1+4*gA*(na/Nv)*exp(190e-3/(k*temp))  

))/(2*gA*(na/Nv)*exp(190e-3/(k*temp))); 

        /* printf("na_ion= %e \n",na_ion); */ 

        num2=(na_ion/1e18); 

         

        DEc=-1*(1.57e-2*pow(num2,pow4)+3.87e-4*pow(num2,pow2)); 

        DEv=1.3e-2*pow(num2,pow3)+1.15e-3*pow(num2,pow2); 

        *deg=DEv-DEc; 

 

  /* printf("pow(num2,pow4)=%e \n", pow(num2,pow4));*/ 

  /* printf("pow(num2,pow2))=%e \n",pow(num2,pow2)); */ 

  /*printf("in p+= %e \n",*deg);*/ 

  /* printf("Temp= %e \n",temp);*/ 

        }              

 else 

        { 

        nd_ion=nd*(-1+sqrt(1+4*gD*(nd/Nc)*exp(70e-

3/(k*temp))))/(2*gD*(nd/Nc)*exp(70e-3/(k*temp))); 

        /* printf("nd_ion= %e \n",nd_ion);*/ 

        num3=(nd_ion/1e18); 

        DEc=-1*(1.5e-2*pow(num3,pow3)+2.93e-3*pow(num3,pow2)); 

        DEv=1.9e-2*pow(num3,pow4)+8.74e-3*pow(num3,pow2); 

        *deg=DEv-DEc; 

 

        /* printf("DEcn=%e \n", DEc);*/ 

        /* printf("DEvn=%e \n",DEv);*/ 

        /*printf("in n+= %e \n",*deg);*/ 

  /*printf("Temp= %e \n",temp);*/ 

        } 

        *ddegdt=0; 

        return(0);  

} 
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Appendix C: 

Gummel iteration method  

Gummel’s method solves the equations with a decoupled procedure. If we choose the quasi-Fermi level 

formulation, we solve first a nonlinear Poisson’s equation. The potential obtained is substituted into the into 

the continuity equations, which are now linear, and are solved directly to conclude the iteration. The result in 

terms of quasi-Fermi levels is then substituted into Poison’s equations until convergence is reached [162]. 

In order to check for convergence, one can calculate the residual obtained by positioning all the terms to the 

left hand side of the equation and substituting the variables with iteration values. For exact solution values, 

the residual should be zero. Convergence is assumed when the residuals are smaller than a set to tolerance. 

The rate of convergence of the Gummel method is faster when there is little coupling between the different 

equations.  

The computational cost of one Gummel iteration is one matrix solution for each carrier type plus one 

iteration solution for linearization of Poisson’s equations is necessary, since the equilibrium Fermi level is 

constant and coincide with both quasi-Fermi levels. 

Let take in 1D case at equilibrium, solve the Poisson’s equation only as the exact expression for the carrier 

concentration are known. Substitute equation 5.1 and 5.2 into Poisson’s equation to give equation 5.3 [162]. 

                                                                                                               (5.1) 

                                                                                                               (5.2) 

                           (5.3) 

At equilibrium  (Fermi level taken as reference for potential energy). The equation have been scaled 

by using the (minimum) extrinsic Debye length for the space charge coordinate x, and thermal voltage  

for the potential V. Indicating with  and  for normalized potential and space charge [163].  

                                                                              (5.4) 

Eq.5.4 is now the Poisson’s equation at equilibrium. It can be solve using quasi linearization procedure. 

Below is the list of procedure. 

99 



Gummel iteration method 

_________________________________________________________________________________ 

 

1. Set initial guess for potential V. 

2. Potential at next iteration as , write Poisson’s equations for Vnew for substitution. 

                               (5.5) 

3. Use linearization exp ( δV) ≈1+ δV and discretize equation 5.5. This will give you equation 5.6 that 

solves for δV(i) and it as an equation has a triangular matrix. 

                                       (5.6) 

4. Next is to check for convergence. When the residual of equation 5.4 calculated, convergence is 

achieved when the nominal of the residual is smaller than a present tolerance. When the convergence 

is not achieved, return to step 2.In practice people usually check the nominal of the error stated in 

equation 5.7. 

 

                                                                           (5.7) 

 

For the solution of Poisson’s equation, boundary condition are refer to the equilibrium Fermi level. 

The boundary conditions are the contacts can be stated as tha separation between the Fermi level and 

intrinsic Fermi level at contacts. After the solution at equilibrium is achieved, increase the applied 

voltage in steps of  . Equation 5.8 shows the scaled nonlinear Poisson equation [162].  

 

                                    (5.8) 

 

The quasi-Fermi level are also been normalized. When the Einstein’s relation are valid, the 

continuity equations can be written in equation 5.9. 
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                                                                                    (5.9) 

Equation 5.9 can be compacted to form equation 5.10 and equation 5.11 show you the formula for the holes. 

The continuity equations is stated in equation 5.12. 

                                                                                                 (5.12 a) 

                                                                                                    (5.12 b) 

 

  

Slotboom variables have been used to simplify the notation. The inner derivative has been discretized with 

difference around the point (  of the interleaved mesh. Variables on the interleaved mesh must be 

determined very carefully, using consistent interpolation schemes for potential and carrier density, as 

discussed later. The continuity equations give the tridiagonal system, equation 5.13 shows the new electron 

continuity equation with Slotboom variables and equation 5.14 for holes. 

 

                                                                                     (5.13)  
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                                                                                     (5.14) 

 

Poisson equation in equation 5.8 is been solved with decoupled iteration initially with a guess for the quasi-

Fermi level. Voltage distribution obtained for the previous voltage is usually a good initial guess for the 

potential. Quasi-Fermi levels are use as the input for Poisson’s equation, the quasi-linearization procedure 

for equilibrium can be used again. The potential is been used to update the an(i) and ap(i). 

Equation 5.13and 5.14 are been used to solve in order to provide new quasi-Fermi level values for Poisson’s 

equations. This process was repeated until convergence was reached. The generation-recombination term 

would generally depends on electron and hole concentrations of the device; therefore, it has to be updated 

after each iteration. 

The result of equation 5.13 for the electron concentration and 5.14 for hole concentration that can update the 

generation-recombination term [162].   

These equation and examples given above are limited to the no degenerate case. If field depend mobility and 

diffraction coefficient are introduced, minimal change should be necessary, as long as it is still justified to 

use of Einstein’s relations. 

For equation 5.15 shows the 2D quasi-linearized Poisson’s equation.  

 

 

                                                                                                (5.15)  

The normalized size is h=  . The thermal voltage   has been used to normalize the potential V 

and the quasi-Fermi levels  and  included in the Slotboom variables  .  
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Equation 5.16 shows the form that the continuity equation will be [162].   

                                                                                                  (5.16) 

Equation 5.16 will be discretized to form 5.17 

 

 

                                                                                  (5.17) 

Gummel iteration typically converges relatively slowly, but the method will often tolerate relatively poor 

initial guesses. The Gummel algorithm cannot be used with lumped elements or current boundary condition. 

Two variants of Gummel’s method can improve its performance slightly. These booth limit the size of the 

potential correction that is applied during each Gummel loop [162]. 

The first method, called damping, truncates corrections that exceed a maximum allowable magnitude, it is 

used to overcome numerical ringing in the calculated potential when bias steps are large (greater than 1V for 

room temperature calculation). The maximum allowable magnitude of the potential correction must be 

carefully specified: too small a value slows convergence, while too large a value can lead to overflow. 

Specifying the damp parameter in method statement activate damping.  

The second method limits the number of linearized Poisson equations per Gummel iteration, usually to one. 

This leads to under-relaxation of the potential update. This “single-Poisson “solution mode extends to the 

usefulness of Gummel’s method to higher currents. It can be useful for performing low current bipolar 

simulation, and simulating MOS transistors in the saturation region. It is invoked by specifying the single 

Poisson parameter of the model statement.   
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Appendix D: 

Newton iteration method 

Newton method is a coupled procedure, which solves the equations simultaneously, through a generalized of 

a generalization of the newton-Raphson method for determining the roots of an equation. By writing the 

Poisson’s equation in 5.18 and the pair of continuity equation in 5.19 into residual form to give equation 

5.20 [163].  

                                                                                                    (5.18) 

                                                                                                      (5.19 a) 

                                                                                                 (5.19 b) 

WV(V, n, p)=0  Wn(V, n, p)=0   Wp(V, n, p)=0                                                                  (5.20) 

Starting from the initial guess V0, n0 and p0, the corrections V,  and  are calculated from the Jacobian 

system to form equation 5.21 

 = -                                                                                                  (5.21)  

Convergence is usually fast for the newton method, provided that the initial conditions is reasonably close to 

solution, and is in the neighborhood where the solution is unique. There are three equations for each mesh 

point on the grid and this is the main disadvantage of a full newton iteration. It is related to the 

computational cost of matrix inversion (one may estimate that a 3Nx3N matrix takes typically 20 times 

longer to invert than an analogue NxN matrix). Using Taylor’s expansion the solution is updated to form 

equation 5.22; k indicates the iteration number. A relaxation approach is also applied to avoid excessive 

variation of the solutions at each iteration step. [162]  
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                                               (5.22 a) 

                                                                                              (5 .22 b) 

                                                                                               (5.22 c) 

In the Newton-Richardson approach, the Jacobian matrix in equation 5.21 is updated when the nominal 

value of the error does not decrease according to a present criterion. Generally, the Jacobian matrix is not 

symmetric positive definitive, and fairly expensive solves are necessary. Iterative schemes have been 

proposed to solve each step of Newton’s method by reformulating equation 5.21 to form 5.23.  

  = -                                            (5.23) 

Since the matrix on the left hand side is lower triangular, one may solve decoupling into three systems of 

equations solved in sequence. Firs, one solves the block of equations (again, one for each grid point). 

                                                              (5.24) 

Results in eq5.24 is substituted into next block to form equation 5.25. 

                                                            (5.25) 

Results in eq5.25 is substituted into last block to form equation 5.26. 

                                                        (5.26) 

The procedure achieved a decoupling of equations as a block-Seidel iteration, and can be intended as a 

generalization of the Gummel method. A block-SOR method is obtained if the left hand sides are 

premultplied by a relaxation parameter. This iteration procedure has better performance if the actual 

variables are (V,  ,  ). [162] 

Newton method is the default for drift-diffusion calculation in atlas. There are several calculation for which 

atlas require that newton’s method is used. These are: DC calculation for which that involve lumped 

elements. Transient calculations, curve tracing; and when frequency-domain small-signal analysis is 

performed.  
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The Newton-Richardson method is a variant of the newton iteration that calculates a new version of the 

coefficient matrix only when slowing convergence demonstrates that this is necessary. An automated New-

Richardson is available in atlas, and improves performance significantly on most problems.   
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Appendix E: 

Experiment set up  
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