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Abstract

The aim of this thesis is to propose new estimators of copula-based measures

of multivariate association and extreme risks. The estimation of the distortion risk

premiums for heavy-tailed losses was proposed by Necir and Meraghni (2009). Their

considerations are based on the Hill estimator (Hill, 1975) of extreme tail index and

Weissman’s estimator (Weissman, 1978) of the high quantile. It is well known, in the

extreme value theory, that Hill’s estimator exhibits an important bias which leads

to an over/under estimation the aforementioned estimators of the distortion risk

premiums. Several reduced biased estimations of the tail index are now available in

the literature that solves this problem. In this thesis, we choose the kernel estimation

method to derive a new estimator of the distortion risk premiums for large claims

and establish its asymptotic normality. From the simulation study, it is clear that

the newly estimator has a reduced bias, vis-à-vis to the existing ones, for any choice

of the kernel function.

Keywords: Copula, Dependence, Measure of association, Extreme values theory,

Tail index, Kernel estimator, Heavy-tailed, Risk premium, Bias reduction, Asymp-

totic normality.
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Résumé

L’objectif de cette thèse est de proposer de nouveaux estimateurs de mesures

d’association multivariées et de risques extrêmes. L’estimation des primes de risque

de distorsion pour les distributions à queue lourdes a été proposée par Necir et

Meraghni (2009). Leurs considérations sont basées sur les estimateurs de Hill (Hill,

1975) de l’indice de queue et des quantiles extrêmes (Weissman, 1978). Il est bien

connu, dans la théorie des valeurs extrêmes, que l’estimateur de Hill présente un

biais important qui conduit à une sur/sous-estimation des estimateurs des primes de

risque de distorsion. Plusieurs estimateurs à biais réduits de l’indice de queue sont

maintenant disponibles dans la littérature qui permet de résoudre ce problème. Dans

cette thèse, nous choisissons la méthode du noyau pour obtenir un nouvel estimateur

des primes de risque de distorsion pour les grandes pertes et établir sa normalité

asymptotique. Une simulation, montre que notre estimateur à biais réduit, vis-à-vis

ceux qui existent déjà, pour tout choix du noyau.

Mots-clés: Copule, Dépendance, Mesure d’association, Théorie des valeurs ex-

trêmes, Indice de queue, Estimation à noyau, Queue lourde, Prime de risque, Réduc-

tion du biais, Normalité asymptotique.
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ـ�ــــ��ـ�ــ  

�ت ـ��ـــــدة ���ـد�ـــــھــــو ا��ــــراح ��ــــدرات � ا�طرو�ــــ
ا�
ــــدف �ــــن ھــــذه      

ــــــا�ر�� ـــــ�رو  �طـــ ��
ـــــ��� ا���ـــــ�ى. ا ا ـــــ�ط  ا���ـــــ������ ��
ـــــا� ��� ! 

�� و ا�%/ــــ�ھ& �'��ز�,ــــ�ت ذات ا
ذ�ــــ�ل ا�)��'ــــ& ا�%��ــــ�ح  ــــ� طــــ�ف "�ــــ

) و  �ـــــ�ر و��ــــــ%�ن 1975) �,�%ـــــ� 5'ـــــ4  �ــــــ�ر ھ�ـــــ3 (2009 �01ـــــ� (

ــــ3 ھــــ�1978( ــــ�: ا���ــــ�ى، أن  �ــــ�ر ھ� ــــ& ا��  ).  ــــ� ا�%,ــــ�وف، >ــــ� ";��

ـــ� ـــ=ا. > ـــ3 �<� �ـــ�رات أ ـــ�ة  � ـــ�اح 5 ��ـــ: ا ـــ�@ � �ـــAا ا� B� .=ـــ ـــ�ر  �<� ـــAه   � ھ

ــــ& ــــ�ر، " ا
ط�و� �D  &ــــ ــــ�طط��� ��
ــــ�  ��E ــــ�ر ــــ4  � ــــ�ل 5' ــــ�اة �'<�  ا�0

0ــــ� أن ��ز�,ــــK ا�%�ـــ�رب.  ــــ� �ــــIل ا�%<�Hــــ�ة، أ��F وإ�Fــــ�تا�%/ــــ�ھ&  ا�D�ـــ�

Lـــ "�H ـــ� %B  ـــ�دةE�%ـــ�رات ا� ـــ=ا  ـــ� ا�%� ـــ3 �<� �ـــ� أ ��Nـــ�ر"� ا� ـــ&  � ـــ دا� . ة�اا�0

                                                   


	���: دا�ـــ& ا�ر��ــ�ط، ا�ر��ــ�ط، ";ــ��& ا���ــ: ا���ـ�ى،  Pشـ� ا���ــ: ��
ا
���	ت ا

، &ــا�)��' ل�ـا
ذ� ذات �تــا���ز�, ،�اةــ��0ب ا���ــ��� ،���ــ��� ا���ــا���، �ىــا���

�ــS ا��ـ! �ـ�، ��'�ـ3 ا��<�ــ=، ا���ز�ــR ا����ــ,� ا�%�ــ�رب.� 
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Intorduction
The problem of measuring the amount of association between two or more variables

is an important issue in actuarial practices. Generally, the pairwise dependence is

measured by the canonical Pearson’s correlation coeffi cient. But this coeffi cient

may not be the best measure of dependence when dealing with extremes (see Joe,

1997) because it does not exist for heavy-tailed variables with infinite variance and

only involves a linear kind of dependence. Therefore, the copula models are becoming

increasingly popular to measure the relationship of dependences between two or more

variables.

The extreme events such as natural disasters, industrial catastrophes and financial

crashes are the worst thing that could occur in insurance. These extreme events

are responsible for the biggest losses of the insurance and reinsurance companies.

For this reason, the statistical methods that deal with extreme losses have become

necessary for actuaries. Extreme value theory (EVT) has become one of the main

theories in developing statistical models for extreme insurance losses. EVT is also

becoming widely used in many other disciplines such as hydrology, finance, structural

engineering and biostatistics, see Reiss and Thomas (2007), Beirlant et al. (2004)

and Castillo et al. (2005).

Historically, EVT was pioneered by Tippett that was employed by the British Cotton

Industry Research Association, where he worked to make cotton thread stronger. In

his studies, he realized that the strength of a thread was controlled by the strength of

its weakest fibres. With the help of Fisher, Tippet obtained three asymptotic limits

describing the distributions of extremes in 1928. In 1958, Gumbel codified the EVT

in his book "Statistics of Extremes".

xvii



INTRODUCTION                                                              xviii

Risk premiums are used to quantify insurance losses. In actuarial insurance

literature, there exist several premium calculation principles (see Goovaerts et

al., 1984, Denuit et al., 2005 and Furman and Zitikis, 2008). The net premium,

the expected value premium, the variance premium, the value at-risk, the conditional

tail expectation and the proportional-hazards transform are the most popular

premiums. Many of the premiums are a special cases of the distortion premium

(see Wang, 1996).

In this thesis, we are interested in the generalization and improvement of the

estimator of distortion risk premiums for a heavy-tailed losses by using the EVT.

Since, the classical estimators of these premiums are seriously biased under the

second order regular variation framework, many authors proposed the use of so-

called second order reduced bias estimators for both first order and second order

tail parameters to reduce the bias. We have generalized a kernel-type estimator

and present a number of results on its distributional behavior and compare its

performance with the performance of other estimators.

The organization of the thesis is as follows:

Chapter 1

Copulas are used to evaluate the relationship of dependences between two or

more variables. In this chapter, we introduce some basic notions concerning the

concepts of copulas and give the most important families of copulas: the elliptical

copulas and the Archimedean copulas. Also, we give the empirical copula and

weak convergence of the empirical copula process.
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Chapter 2

In the literature, several copula-based measures of multivariate association have

been proposed. This chapter constitutes a survey on these measures. Wolff

(1980) introduced a class of multivariate measures of association which is based

on the L1-, L2 and L∞-norms of the difference between the copula and the in-

dependence copula. Multivariate extensions of Spearman’s rho were considered

by Nelsen (1996) and Schmid and Schmidt (2006, 2007a, 2007b). Multivariate

version of Blomqvist’s beta was proposed by Úbeda-Flores (2005) and Schmid

and Schmidt (2007c) whereas a multivariate version of Gini’s gamma was pro-

posed by Behboodian et al. (2007). Gaißer et al. (2010) proposed a multivariate

version of Hoeffding’s phi-square.

Chapter 3

In this chapter, we present the concept of heavy-tailed distributions and different

classes of this type of distributions. The heavy tailed distribution allows to model

several phenomena encountered in different disciplines such as finance, hydrology

and geology. Several definitions were associated with these distributions as a

function of classiffi cation criteria. The characterization the most simple and one

based on comparison with the normal distribution. A distribution has a heavy

tail if and only if its kurtosis is higher than the normal distribution that is equal

to 3. We also provide an overview of the essential definitions and results of

univariate EVT.
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Chapter 4

The thickness of the tail of a distribution is measured by the so-called tail index

or extreme value index (EVI). The estimation of the EVI is a central problem

in EVT. Various estimators are available in the literature. In this chapter, we

describe analytically four semi-parametric methods of estimation of tail index:

Pickands (Pickands, 1975), Hill (Hill, 1975), moment (Dekkers et al., 1989) and

kernel-type estimators (Csörgő el al., 1985). High quantile and other related

estimations are also presented. The methods of selecting the optimal number of

upper order statistics to be used in estimation are given.

Chapter 5

Risk measures and premium calculation principles lie at the heart of actuarial

science. This chapter is devoted to the presentation of the concepts of risk

measures and premium calculation principles. We start this chapter by giving

a definition of risk measures and premium principles. Desirable properties of

premium calculation principles are discussed. We also list many well-known

premium principles and tabulate which of the properties they satisfy.

Chapter 6

In this chapter, we use the results of previous chapters to introduce a new kernel-

type estimators for the distortion risk premiums and reinsurance premium of

heavy-tailed loss distributions. Using a least-squares approach, a bias-reduced

version of these estimators is proposed. The asymptotic normality of the given

estimators is established under suitable assumptions. A simulation study is

carried out to illustrate the performance of our method.
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Chapter 1

Copulas

The term copula was first introduced by Sklar (1959) and is derived from the

latin word "copũlae", to connect or to join. Initially, copulas were mainly used

in the development of the theory of probabilistic metric spaces. Later, it used to

define non-parametric measures of dependence between random variables (rv’s),

and since then, they became an important tools in probability and mathemat-

ical statistics. For a comprehensive introduction on the theoretical aspects of

copulas, we refer to Joe (1997) and Nelsen (2006) and for a practical approach,

we refer to Salvadori et al. (2007) and Jaworski et al. (2010).

1.1 Definitions, properties and examples

Definition 1.1.1 (Copula)
A copula or d-dimensional copula C : [0, 1]d → [0, 1] is a multivariate distribution

function (df) on the unit cube with standard uniform marginals.

Definition 1.1.2 A copula is a function C : [0, 1]d → [0, 1] satisfying the con-

ditions:

1. For all (u1, . . . , ud) in [0, 1]d, if at least one component ui is zero, then

C (u1, . . . , ud) = 0.

2. For ui ∈ [0, 1] , C (1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, 2, . . . , d} .

2
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3. C is d-increasing, for all [u11, u12]×[u21, u22]×. . .×[ud1, ud2] d-dimensional

rectangles in [0, 1]d , the following inequality holds:

2∑
i1=1

. . .
2∑

id=1

(−1)i1+···+id C (u1i1 , . . . , udid) ≥ 0.

Examples

In the following examples, we give three simplest examples of copulas.

1. Independence Copula

The function Π : [0, 1]d → [0, 1] , given by

Π (u1, . . . , ud) =

d∏
i=1

ui, u1, . . . , ud ∈ [0, 1] ,

is called the independence copula. To see that actually is a copula, consider

a probability space (Ω,F ,P) supporting independent identically distrib-

uted (iid) rv’s U1, . . . , Ud with U1 ∼ U [0, 1] . The random vector (U1, . . . , Ud)

then has U [0, 1]-distributed margins and joint df

P (U1 ≤ u1, . . . , Ud ≤ ud) =
d∏
i=1

P (Ui ≤ ui) =
d∏
i=1

ui

= Π (u1, . . . , ud) , u1, . . . , ud ∈ [0, 1] .

2. Comonotonicity Copula

Considering a probability space (Ω,F ,P) supporting a single rv U ∼
U [0, 1], the random vector (U1, . . . , Ud) = (U, . . . , U) ∈ [0, 1]d has U [0, 1]-

distributed margins and joint df

P (U1 ≤ u1, . . . , Ud ≤ ud) = P (U ≤ min (u1, . . . , ud))

= min (u1, . . . , ud) , u1, . . . , ud ∈ [0, 1] .

Consequently, the function M : [0, 1]d → [0, 1], defined by

M (u1, . . . , ud) = min (u1, . . . , ud) , u1, . . . , ud ∈ [0, 1] ,

is a copula called the copula of complete comonotonicity (also called the

upper Fréchet-Hoeffding bound, see theorem 1.3.1).
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3. Countermonotonicity Copula

Considering a probability space (Ω,F ,P) supporting a single rv U ∼
U [0, 1], the bivariate random vector (U1, U2) = (U, 1− U) ∈ [0, 1]2 has

perfectly negatively associated components, i.e., if U1 is large then U2 is

small, and vice versa. This random vector has U [0, 1]-distributed margins

and joint df

P (U1 ≤ u1, U2 ≤ u2) = P (1− u2 ≤ U ≤ u1)

= (u1 + u2 − 1)1{1−u2≤u1}, u1, u2 ∈ [0, 1]

= max (u1 + u2 − 1, 0) , u1, u2 ∈ [0, 1] .

Consequently, the function W : [0, 1]2 → [0, 1], defined by

W (u1, u2) = max (u1 + u2 − 1, 0) , u1, u2 ∈ [0, 1] ,

is a bivariate copula called the copula of complete countermonotonicity

(also called the lower Fréchet-Hoeffding bound, see theorem 1.3.1). For

any d ≥ 3, we have the function W : [0, 1]d → [0, 1], defined by

W (u1, . . . , ud) = max (u1 + · · ·+ ud + d− 1, 0) , u1, . . . , ud ∈ [0, 1] ,

is not a copula.

Figure 1.1: Graphs of the bivariate (a) countermonotonicity copula, (b) inde-
pendence copula and (c) comonotonicity copula.
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Proposition 1.1.1 (Smoothness of a Copula)
Let C : [0, 1]d → [0, 1] be a copula.

1. For every (u1, . . . , ud), (v1, . . . , vd) ∈ [0, 1]d it holds that

|C (u1, . . . , ud)− C (v1, . . . , vd)| ≤
d∑
i=1

|ui − vi| .

In particular, C is Lipschitz continuous with the Lipschitz constant equal

to 1.

2. For k = 1, . . . , d and fixed (u1, . . . , uk−1, uk+1, . . . , ud) ∈ [0, 1]d−1, the partial

derivative uk 7→ ∂
∂uk

C (u1, . . . , ud) exists (Lebesgue) almost everywhere on

[0, 1] and takes values in [0, 1] .

1.2 Sklar’s theorem

Sklar’s theorem is the basic tool of copulas theory and is the foundation of most,

of the applications of that theory to statistics. Is show the role that copulas play

in the relationship between multivariate df’s and their univariate margins.

Theorem 1.2.1 (Sklar’s theorem)
Let F be a d-dimensional df with univariate marginal df’s F1, . . . , Fd. Then there

exists a d-dimensional copula C such that for all x = (x1, . . . , xd) in Rd,

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) . (1.1)

If F1, . . . , Fd are continuous, then C is unique. Conversely, if C is a d-dimensional

copula and F1, . . . , Fd are univariate df’s, then the right-hand side of (1.1) is a

d-dimensional df with univariate marginal df’s F1, . . . , Fd.

The proof is given in Sklar (1959). It follows from Sklar’s theorem that a mul-

tivariate df can be separated into the univariate (continuous) marginal df’s and

the multivariate dependence structure, which is represented by the copula. De-

heuvels (1978) refers to copulas as "dependence functions".
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Corollary 1.2.1 (Sklar’s inversion)
Let F be a d-dimensional df with univariate marginal df’s F1, . . . , Fd and corre-

sponding copula C satisfying (1.1). Assuming that F1, . . . , Fd are continuous, an

explicit representation of C is given by

C (u) = F
(
F−1

1 (u1) , . . . , F−1
d (ud)

)
, u ∈ [0, 1]d .

This result is a direct consequence from theorem 1.2.1 and is important for the

construction of copulas from multivariate distributions. If not stated otherwise,

we always assume that the univariate marginal df’s F1, . . . , Fd are continuous.

1.3 Fréchet-Hoeffding bounds

Each copula C is pointwise bounded from above by the comonotonicity cop-

ula M . This is intuitive, since the comonotonicity copula implies the strongest

positive association possible between components. In dimension d = 2, the coun-

termonotonicity copulaW is a pointwise lower bound. In contrast, in dimensions

d ≥ 3 there is no "smallest" copula. The explanation for this fact is the follow-

ing: for d = 2 that the two components in a random vector (U1, U2), defined

on (Ω,F ,P), are perfectly negatively associated. More clearly, it holds almost

surely that U1 = 1−U2, i.e. the minus sign implies that if one variable moves in

one direction, the other moves precisely in the opposite direction. However, for

d ≥ 3 there are at least three directions and it is not clear how to de ne three di-

rections to be perfect opposites of each other. Nevertheless, the following result

provides a sharp lower bound for arbitrary copulas.

Theorem 1.3.1 (Fréchet-Hoeffding bounds)
If C is any d-copula, then for every u ∈ [0, 1]d

W d (u) ≤ C (u) ≤Md (u) ,

where W d (u) = W (u1, . . . , ud) and Md (u) = M (u1, . . . , ud) .

Sometimes it is more convenient to describe the distribution of a random vector

(X1, . . . , Xd) by means of its survival function instead of its df. Especially when

the componentsXk are interpreted as lifetimes, this description is more intuitive.
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Let (U1, . . . , Ud) d-rv’s with joint df C. We denote by C the joint survival

function of C, then

C (u) = P (U1 > u1, . . . , Ud > ud) .

Analogously to Sklar’s theorem (see theorem 1.2.1), a d-dimensional survival

function can be decomposed into a copula and its marginal survival functions.

Theorem 1.3.2 (Survival analog of Sklar’s theorem)
Let F be a d-dimensional df with univariate marginal df’s F 1, . . . , F d. Then

there exists a d-dimensional copula C such that for all x = (x1, . . . , xd) in Rd, it
holds that

F (x1, . . . , xd) = C
(
F 1 (x1) , . . . , F d (xd)

)
. (1.2)

If F 1, . . . , F d are continuous, then C is unique. Conversely, if C is a d-dimensional

copula and F 1, . . . , F d are univariate survival functions, then the function defined

via (1.2) is a d-dimensional survival function.

1.4 Copulas and random vectors

In this section, we discuss some probabilistic properties of copulas that can be

inferred from Sklar’s theorem. These results appeared already in Joe (1997) (for

the proofs see Nelsen, 2006). First, we state the invariance of the copula of the

random vector X with respect to any increasing rescaling of the components of

X.

Proposition 1.4.1 Let X = (X1, . . . , Xd) be a random vector with continuous

joint df F and copula C. Let T1, . . . , Td be strictly increasing functions from R
to R. Then C is also the copula of the rv (T1(X1), . . . , Td(Xd)).

Thus, copulas that describe the dependence of the components of a random

vector are invariant under increasing transformations of each coordinate. The

next results characterize some special structures of rv’s in terms of the basic

copulas Π d = Π (u1, . . . , ud) , M
d and W 2.

Proposition 1.4.2 Let X = (X1, . . . , Xd) be a random vector with continuous

joint df F. Then the copula of (X1, . . . , Xd) is Πd if and only if X1, . . . , Xd are

independent.
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Proposition 1.4.3 Let (X1, . . . , Xd) be a random vector with continuous joint

df F. Then the copula of (X1, . . . , Xd)) is Md if, and only if, there exists a rv

Z and increasing functions T1, . . . , Td such that X = (T1(Z), . . . , Td(Z)) almost

surely.

Proposition 1.4.4 Let (X1, X2) be a random vector with continuous joint df

F. Then (X1, X2) has copula W 2 if, and only if, for some strictly decreasing

function T , X2 = T (X1) almost surely.

1.5 Families of copula

Copulas play an important role in the construction of multivariate df’s and, as

a consequence, having at one’s disposal a variety of copulas can be very useful

for building stochastic models having different properties that are sometimes

indispensable in practice such as heavy tails and asymmetries. Therefore, sev-

eral investigations have been carried out concerning the construction of different

families of copulas and their properties. In this section, we present just a few of

them, by focusing on the families that seem to be more popular in the literature.

Different families or construction methods are discussed in Nelsen (2006).

1.5.1 Elliptical copulas

Elliptical copulas are the copulas of elliptical distributions. The class of elliptical

copulas has an unfavorable property when talking about application in the field

of finance. The dependence structure in financial data cannot be represented

correctly. For instance, the asymmetry of the lower and upper tail of a distri-

bution cannot be described properly by an elliptical copula. This is because

elliptical copulas exhibit "radial symmetry" which has the property that

C (u, v) = C (v, u) and C (u, v) = C (u, v) = u+ v − 1 + C (1− u, 1− v) .

Another fact that elliptical copulas do not have closed form expressions. The

class of elliptical distributions provides a rich source of multivariate distribu-

tions which share many of the tractable properties of the multivariate normal

distribution and enables modelling of multivariate extremes and other forms of

non-normal dependences. Simulation from elliptical distributions is easy, and as
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a consequence of Sklar’s theorem so is simulation from elliptical copulas. Fur-

thermore, we will show that rank correlation and tail dependence coeffi cients

can be easily calculated. For further details on elliptical distributions, we refer

to Fang et al. (1990) and Cambanis et al. (1981).

Examples of elliptical copulas

1. Gaussian or Normal copulas

The copula of the d-variate normal distribution with linear correlation

matrix R is
CG (u) = Φd

R
(
Φ−1 (u1) , . . . ,Φ−1 (ud)

)
,

where Φd
R denotes the joint df of the d-variate standard normal df with

linear correlation matrix R, and Φ−1 denotes the inverse of the df of the

univariate standard normal distribution. Copulas of the above form are

called Gaussian copulas. Equivalently, the following definition is often

used:

The family of the d-dimensional Gaussian copulas is defined as

CG (u) =

∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
(2π)−

d
2 |R|−

1
2 exp

(
−xTR−1x

)
dx1 . . . dxd.

In the bivariate case the copula expression can be written as

CG (u) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π (1−R2
12)

exp

(
−x

2
1 − 2R12x1x2 + x2

2

2 (1−R2
12)

)
dx1dx2.

Note that R12 is simply the usual linear correlation coeffi cient of the cor-

responding bivariate normal distribution.

2. t-copulas

The family of d-dimensional t-copulas is defined by

Ct (u) = tΣ,ν
(
t−1
ν (u1) , . . . , t−1

ν (ud)
)
,

where tΣ,ν denotes the multivariate t-distribution with ν degrees of free-

dom, location vector zero and correlation matrix and corresponding uni-

variate marginal df tν with generalized inverse function t−1
ν . Equivalently,

the following definition is often used:

Ct (u) =

∫ t−1ν (u1)

−∞
. . .

∫ t−1ν (ud)

−∞

Γ ((ν + d) /2)
(
1 +wTΣ−1w/ν

)
|Σ|1/2 Γ (ν/2) (νπ)d/2

dw1 . . . dwd,
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where |Σ| stands for the determinant of Σ, w = (w1, . . . , wd) and Γ is the

Gamma function. For more details, see Hult and Lindskog (2002).

1.5.2 Archimedean copulas

In this subsection we focus on a very important class of copulas called Archimedean

copulas. The adventages of this class are

(i) Ease in construction.

(ii) Rich of great variety of families of copulas belonging to this class.

(iii) Nice properties of copula belonging to this class.

(iv) Reduce the study of a multivariate copula to a single univariate function.

The word Archimedean was employed the first time by Ling in 1965 for Archimedean

t-norms (every Archimedean copula is also an Archimedean t-norm). And the

term «Archimedean copula» was first appeared in the statistical literature in

two papers by Genest and Mackay (1986a, 1986b). Archimedean copulas also

appear in Schweizer and Sklar (1983) but without the name. For some back-

ground on bivariate Archimedean copulas and a discussion on other statistical

questions we refer to Genest and MacKay (1986b), Joe (1997) and Nelsen (2006).

Here we present the basic properties and examples of the Archimedean class of

copulas. Basically, we follow the approach in Nelsen (2006). First, we introduce

some notations.

Definition 1.5.1 (Pseudo-inverse)
Let ϕ be a continuous, strictly decreasing function from [0, 1] to [0, 1] such that

ϕ(1) = 0. The pseudo-inverse of ’ϕ is the function ϕ[−1]:[0,∞]→ [0, 1]given by

ϕ[−1] (t) =

{
ϕ−1 (t) , 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t ≤ ∞.

Note that ϕ[−1] is continuous and decreasing on [0,∞], and strictly decreasing

on [0, ϕ(0)]. Furthermore, ϕ[−1]ϕ(0) = u on [0,∞] and

ϕ
(
ϕ[−1] (t)

)
=

{
t, 0 ≤ t ≤ ϕ(0),

ϕ(0), ϕ(0) ≤ t ≤ ∞.

Finally, if ϕ(0) =∞, then ϕ[−1] = ϕ−1.
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Theorem 1.5.1 Let ϕ be a continuous, strictly decreasing function from [0, 1]

to [0, 1] such that ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse of ’ϕ. Let C be

the function from [0, 1]2 to [0, 1] given by

C (u, v) = ϕ[−1] (ϕ (u) + ϕ (v)) . (1.3)

Then C is a copula if and only if ϕ is convex.

Proof. See Nelsen (2006, p. 111).

Definition 1.5.2 (Archimedean copulas)
Copulas of the form (1.3) are called bivariate Archimedean copulas.

The function ϕ is called the generator of the copula C. If ϕ(0) =∞, the generator
ϕ is said to be strict. In this case, ϕ[−1] = ϕ−1and

C (u, v) = ϕ−1 (ϕ (u) + ϕ (v))

is said to be a strict Archimedean copula.

The approach in formula (1.3) can naturally be extended to d (d ≥ 2) dimensions

by imposing additional assumptions on ϕ. With continuous, strictly decreasing

function ϕ such that ϕ(1) = 0 and ϕ(0) = ∞, a d-dimensional Archimedean
copula is given by

C (u) = ϕ−1

(
d∑
i=1

ϕ (ui)

)
, u ∈ [0, 1]d ,

if and only if the inverse ϕ−1 is completely monotone on [0,∞), i.e., if it has

derivatives of all orders which alternate in sign, formally,

(−1)k
dk

dtk
ϕ−1 (t) ≥ 0,

for all t ≥ 0 and all k ∈ N.

Examples of Archimedean copulas

1. Clayton copula

The Clayton (1978) copula, originally studied by Kimeldorf and Sampson

(1975), takes the form:

CCl (u) =
(
u−θ1 + · · ·+ u−θd − d+ 1

)−1/θ
,
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where θ > 0 is the dependence parameter. The limiting case θ = 0 corre-

sponds to the independent case. This strict copula family has generator

ϕ (t) =

(
t−θ − 1

)
θ

.

2. Gumbel copula

The d-dimensional Gumbel copula (1960) takes the form:

CGu (u) = exp

{
−
[
(− lnu1)θ + · · ·+ (− lnud)

θ
]1/θ
}
,

where θ > 1 is the dependence parameter. Values of 1 and ∞ correspond

to independence and the Fréchet upper bound, but this copula does not

attain the Fréchet lower bound for any value of . The Gumbel copulas are

strict Archimedean with generator

ϕ (t) = (− ln t)θ .

3. Frank copula

The bivariate Frank (1979) copula function is defined as

CFr (u, v) = −1

θ
log

{
1 +

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

}
, −∞ < θ <∞.

For θ = 0, the Frank copula is the independence copula.

In general, there exist several methods to generate random numbers from a given

Archimedean copula, if needed, we use the method proposed by Marshall and

Olkin (1988). For the discussion of the general class of hierarchical Archimedean

copulas and related random number generation, we refer to Hofert (2008).
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1.6 Empirical copula

There exist three methods for the estimation of copula functions: paramet-

ric, semi-parametric and non-parametric methods. The parametric and semi-

parametric estimation methods are usually based on maximum-likelihood meth-

ods, see Genest et al. (1995), Joe and Xu (1996), Joe (2005), Malevergne and

Sornette (2005) and Kim et al. (2007). In this thesis, we solely consider non-

parametric estimation methods for which the joint and the marginal df’s are

assumed to be unknown. In particular, this method is not exposed to possible

misspecifications of the underlying distributions. Non-parametric estimation of

copulas was first considered by Rüschendorf (1976) and Deheuvels (1979) pro-

posed the so-called empirical copula as a non-parametric estimator.

1.6.1 Definition

Let X be a d-dimensional random vector with df F , continuous univariate mar-

ginal df’s Fi, i = 1, . . . , d, and copula C. Suppose that F , Fi and C are com-

pletely unknown and let X1, . . . ,Xn be a random sample from X. We can

construct the empirical copula in two steps. First, every univariate marginal df

Fi is estimated by its univariate empirical df, i.e.,

F̂i,n (x) =
1

n

n∑
j=1

1{Xij≤x}, for j = 1, . . . , n and x ∈ R.

Then, the estimated marginal df’s are used to obtain the so called pseudo-

observations Ûij,n = F̂i,n (Xij) with Ûj,n =
(
Û1j,n, . . . , Ûdj,n

)
, for i = 1, . . . , d

and j = 1, . . . , n. Second, an estimate of the copula C is given by the empirical

df of the sample Û1,n, . . . , Ûn,n. This is called the empirical copula and was in-

troduced by Deheuvels (1979) under the name "empirical dependence function".

Then, we have the following definition:

Definition 1.6.1 (Empirical copula)

Let X be a d-dimensional random vector with df F, continuous univariate mar-

ginal df’s Fi, i = 1, . . . , d, and copula C. Based on a random sample X1, . . . ,Xn

from X, the empirical copula is defined as

Ĉn (u) =
1

n

n∑
j=1

d∏
i=1

1{Ûij,n≤ui}, for u ∈ [0, 1]d ,
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where Ûij,n = F̂i,n (Xij) , for i = 1, . . . , d and j = 1, . . . , n, and

F̂i,n (x) =
1

n

n∑
j=1

1{Xij≤x}.

Since Ûij,n = 1/n(rank of Xij in Xi1, . . . , Xin), the empirical copula represents

a rankbased estimator for the copula C, i.e., only the (normalized) ranks of the

observations are included in the estimation. According to definition 1.1.1, the

empirical copula itself is a copula. In particular, it is invariant under strictly

increasing transformations of the margins (see proposition 1.4.2) due to the in-

variance property of the ranks with respect to such transformations. Accord-

ing to Genest and Favre (2007), the ranks associated with the random sam-

ple X1, . . . ,Xnare the statistics that retain the greatest amount of information

among all statistics fulfilling this invariance property.

1.6.2 Weak convergence of the empirical copula process

The weak convergence of the empirical copula process
√
n
(
Ĉn − C

)
can be

established by using the functional delta-method (see van der Vaart and Wellner,

1996, p. 389). This convergence has been investigated, e.g., by Rüschendorf

(1976) and Tsukahara (2005). Fermanian et al. (2004) established the weak

convergence in the following theorem.

Theorem 1.6.1 Let X1, . . . ,Xn be a random sample from the d-dimensional

random vector X with df F , continuous univariate marginal df’s F1, . . . , Fd, and

copula C. Under the assumption that the i-th partial derivatives DiC(u) of C

exist and are continuous for i = 1, . . . , d, we have
√
n
(
Ĉn (u)− C (u)

)
D→ GC (u) .

Weak convergence takes place in `∞
(

[0, 1]d
)
and

GC (u) = BC (u)−
d∑
i=1

DiC(u)BC
(
ui
)
.

The vector ui denotes the vector where all coordinates, except the ith coordinate

of u, are replaced by 1. The process BC is a tight centered Gaussian process on
[0, 1]d with covariance function

E (BC (u)BC (v)) = C (u ∧ v)− C (u)C (v) ,
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i.e., BC is a d-dimensional Brownian bridge.

The non-parametric estimation of the survival function, see (1.2), can be estab-

lished analogously. The following result is discussed and proven in Schmid and

Schmidt (2007a).

Theorem 1.6.2 Let X1, . . . ,Xn be a random sample from the d-dimensional

random vector X with df F, continuous univariate marginal df’s F1, . . . , Fd, and

copula C. Using the same notation as in theorem 1.3.1, a non-parametric esti-

mator for C is given by

Ĉn (u) =
1

n

n∑
j=1

d∏
i=1

1{Ûij,n>ui}, for u ∈ [0, 1]d .

Under the additional assumption that the i-th partial derivatives DiC(u) of C

exist and are continuous for i = 1, . . . , d, we have

√
n
(
Ĉn (u)− C (u)

)
D→ GC (u) ,

in `∞
(

[0, 1]d
)
and

GC (u) = BC (u)−
d∑
i=1

DiC(u)BC
(
ui
)
.

The vector ui denotes the vector where all coordinates, except the ith coordinate

of u, are replaced by 1. The process BC is a tight centered Gaussian process on
[0, 1]d with covariance function

E (BC (u)BC (v)) = C (u ∧ v)− C (u)C (v) .



Chapter 2

Copula-based measures of
multivariate association

Copulas are functions that capture the dependence structure between two or

more rv’s. However, when analyzing the strenght of association in a random

vector, this concept does not suffi ce. Measures of bivariate association, such as

Pearson’s linear correlation coeffi cient, fill this gap by aggregating the complete

dependence structure to a single numbre. Although measurement of bivariate

association has been thoroughly studied and is widely applied, generalizations

of the bivariate concepts and measures to dimensions d ≥ 3 have only recently

gained more attention. In this chapter, we introduce and discuss some important

measures and concepts of multivariate association. For more details, we refer the

interested reader to Joe (1997) and Nelsen (2006).

2.1 Proprieties of measures of multivariate as-

sociation

A measure of multivariate association quantifies the degree of association be-

tween the components of a d-dimensional (d ≥ 2) random vector X with df F

and copula C. We think of it as a map

δ : Cd→D ⊆ R,

which we denote by δ(C) or equivalently by δ(X) = δ(X1, . . . , Xd) where Cd
set of copulas. Desirable properties of bivariate measures of association are

16
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well-established and have been discussed, e.g., by Rényi (1959) and Scarsini

(1984). However, the extension of those properties to the multivariate case is

not always straightforward as the study of multivariate association is generally

more complex. An example is the fact that, in contrast to perfect positive

dependence, the notion of perfect negative dependence does not generalize to the

multivariate case. In this section, we confine ourselves to giving a selection of

various properties of measures of multivariate association, which are considered

desirable in the literature.

P1. Well-definedness: The measure δ is well-defined for every random vector

X = (X1, . . . , Xd) with continuous marginals and is a function of the copula

C ∈ Cd, i.e.δ(X1, . . . , Xd) = δ(C).

P2. Invariance with respect to permutations: For every permutation π we have

δ(X1, . . . , Xd) = δ
(
Xπ(1), . . . , Xπ(d)

)
.

P3. Normalization:

(a) If Π is the copula of X, then δ (X) = δ (Π ) = 0.

(b) If δ (X) = 0, then X has copula Π .

(c) If δ is the copula of X, then δ (X) = δ (M) = 1.

(d) If δ (X) = 1, then X has copula M or W in dimension d = 2. If

δ(X) = 1 then X has copula M in higher dimension.

Multivariate measures of association further support different notions of order-

ings in the set of copulas. Here, we consider the partial order ≺, where C1 ≺ C2

if and only if C1(u) ≤ C2(u) for all u ∈ [0, 1]d.

P4. Monotonicity and concordance:

If X has copula CX and Y has copula CY such that CX ≺ CY, then

δ (X) ≤ δ (Y).

P5. Behaviour under transformations:

For strictly increasing (or decreasing) and continuous transformations Ti
we have

δ(X1, . . . , Xd) = δ (T1 (X1) , . . . , Td (Xd)) .
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P6. Continuity:

If (Xn)n∈N is a sequence of random vectors with copulasCn and limn→∞Cn(u) =

C(u) for all u ∈ [0, 1]d and some copula C of the random vector X, then

limn→∞ δ(Xn) = δ(X).

P7. Addition of an independent component:

δ (X1, . . . , Xd) ≥ δ (X1, . . . , Xd, Xd+1) ifXd+1 is independent of (X1, . . . , Xd).

P8. If the joint distribution of X is multivariate normal and all pairwise corre-

lations ρij of Xi and Xj are either non-negative or non-positive, then δ(X)

is a strictly increasing function of the absolute value of each of the pairwise

correlations.

2.2 Spearman’s rho

Spearman’s correlation coeffi cient or Spearman’s rho was first studied by Spear-

man (1904) and represents one of the best-known measures to quantify the degree

of association between two rv’s. For the two rv’s X1 and X2 with bivariate df F

and continuous univariate margins F1, F2, Spearman’s rho is defined as

ρ (X1, X2) =
Cov (F1 (X1) , F2 (X2))√

V ar (F1 (X1))
√
V ar (F2 (X2))

.

If X1 and X2 have copula C, then this is equivalent to

ρ (C) =

∫
[0,1]2

u1u2dC (u1, u2)−
(

1
2

)2(
1
12

) = 12

∫
[0,1]2

C (u1, u2) du1du2 − 3

=

∫
[0,1]2

C (u1, u2) du1du2 −
∫

[0,1]2
Π (u1, u2) du1du2∫

[0,1]2
M (u1, u2) du1du2 −

∫
[0,1]2

Π (u1, u2) du1du2

, (2.1)

because
∫

[0,1]2
M (u1, u2) du1du2 = 1/3 and

∫
[0,1]2

Π (u1, u2) du1du2 = 1/4 where∫
[0,1]2

is
∫ 1

0

∫ 1

0
. Then, ρ (C) can be interpreted as the normalized average differ-

ence between the copula C and the independence copula Π .

Multivariate extensions of Spearman’s rho and their estimation have been dis-

cussed, by Wolff (1980), Nelsen (1996), Joe (1990) and Schmid and Schmidt
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(2007a). Motivated by equation (2.1), the following multivariate version of ρ

can be derived

ρ1 (C) =

∫
[0,1]d

C (u) du−
∫

[0,1]d
Π (u) du∫

[0,1]d
M (u) du−

∫
[0,1]d

Π (u) du

= hρ (d)

{
2d
∫

[0,1]d
C (u) du− 1

}
,

where

hρ (d) =
d+ 1

(2d − d− 1)
.

By using

ρ (C) =

∫
[0,1]2

C (u1, u2) du1du2 −
∫

[0,1]2
Π (u1, u2) du1du2∫

[0,1]2
M (u1, u2) du1du2 −

∫
[0,1]2

Π (u1, u2) du1du2

=

∫
[0,1]2

u1u2dC (u1, u2)−
∫

[0,1]2
u1u2dΠ (u1, u2)∫

[0,1]2
u1u2dM (u1, u2)−

∫
[0,1]2

u1u2dΠ (u1, u2)
,

another multivariate version of Spearman’s rho can be similarly defined, which

is given by

ρ2 (C) =

∫
[0,1]d

udC (u)−
∫

[0,1]d
udΠ (u)∫

[0,1]2
udM (u)−

∫
[0,1]d

udΠ (u)

= hρ (d)

{
2d
∫

[0,1]d
udC (u)− 1

}
.

In particular, ρ1 (C) and ρ2 (C) are the same if the copula C is radially symmet-

ric. Nelsen (1996) further considers the average of the two versions, i.e.,

ρ3 (C) =
ρ1 (C) + ρ2 (C)

2
.

All three measures satisfy P3(a), P3(c), P3(d), P4, and P7. In addition, P5 can

be verified for ρ3 (C), which, thus represents a multivariate measure of concor-

dance according to Taylor (2007).

Statistical inference for ρi (C), i = 1, 2, based on the empirical copula is in-

vestigated in Schmid and Schmidt (2007a). By replacing the copula C with
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the empirical copula Ĉn, we obtain the following non-parametric estimators for

ρi (C), i = 1, 2:

ρ̂1

(
Ĉn

)
= hρ (d)

{
2d
∫

[0,1]d
Ĉn (u) du− 1

}
= hρ (d)

{
2d

n

n∑
j=1

d∏
i=1

(
1− Ûij,n

)
− 1

}
,

and

ρ̂2

(
Ĉn

)
= hρ (d)

{
2d
∫

[0,1]d
udĈn (u)− 1

}
= hρ (d)

{
2d

n

n∑
j=1

d∏
i=1

Ûij,n − 1

}
.

Under the assumptions of the theorems 1.6.1 and 1.6.2, Schmid and Schmidt

(2007a) proved that
√
n
(
ρ̂i

(
Ĉn

)
− ρi (C)

)
D→ N

(
0, σ2

i

)
, i = 1, 2,

where

σ2
1 = 22dhρ (d)2

∫
[0,1]d

∫
[0,1]d

E (GC (u)GC (v)) dudv,

σ2
2 = 22dhρ (d)2

∫
[0,1]d

∫
[0,1]d

E (GC (u)GC (v)) dudv,

and Gaussian processes GC and GC as defined in the theorems 1.6.1 and 1.6.2.

Asymptotic normality of ρ̂3

(
Ĉn

)
can analogously be established based on the

joint weak convergence of the process
√
n
(
Ĉn − C, Ĉn − C

)
. If the copula C is

radially symmetric, it follows that σ2
1 = σ2

2. For a few copulas of simple form, the

asymptotic variances can be explicitly computed, e.g. in the case of stochastic

independence (i.e. C = Π ) Schmid and Schmidt (2007a) obtain

σ2
1 = σ2

2 =
(d+ 1)2

(
3 (4/3)d − d− 3

)
3 (1 + d− 2d)2 .

The asymptotic variances can consistently be estimated by a non-parametric

bootstrap method (see Schmid and Schmidt, 2006). Quessy (2009) investigated

statistical hypothesis tests for stochastic independence based on various mul-

tivariate versions of Spearman’s rho with regard to their asymptotic relative

effi ciency.
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2.3 Spearman’s footrule

Spearman’s footrule, named after Spearman (1906) is a non-parametric mea-

sure of association between two variables X1 and X2. This measure has been

used in several research areas such as bioinformatics, genomics, information sci-

ence, management science, litigation and aggregate rankings for search engines.

Spearman’s footrule is given by

ϕn = 1− 3

n2 − 1

n∑
i=1

|pi − qi| ,

where pi and qi denote the ranks of n observed values of two variates X1 and

X2, respectively.

If X1 and X2 have copula C, then

ϕ (C) = 1− 3

∫
[0,1]2
|u1 − u2| dC (u1, u2)

= −2 + 6

∫ 1

0

C (t, t) dt.

From the identity |u1 − u2| = u1 + u2 + 2 min (u1, u2), Genest et al. (2010) got

ϕn =
1

n− 1

n∑
i=1

J

(
pi

n+ 1
,

qi
n+ 1

)
− 2n+ 1

n− 1
,

where J (u1, u2) = 6 min (u1, u2) . Genest et al. (2010) showed that ϕn is asymp-

totically unbiased estimator of ϕ (C) .

By assuming that the bivariate copula C admits continuous partial derivatives

on (0, 1) , Genest et al. (2010) showed that

√
n (ϕn − ϕ (C))

D→ N
(
0, σ2

ϕ

)
, as n→∞,

where

σ2
ϕ = 36

∫
[0,1]2

cov {C (s, s) ,C (t, t)} dsdt, with C =
√
n
(
Ĉn − C

)
.

Various generalisations of Spearman’s footrule have been proposed. Cifarelli et

al. (1996) considered

ϕh (C) = h−1

(∫ 1

0

h (|u1 − u2|) dC (u1, u2)

)
,
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where h : [0, 1] → [0, 1] is a strictly increasing and continuous function. If

h (t) = t2, we obtain Spearman’s rho as special case. The asymptotic distribution

of the empirical version of ϕh (C) is studied by Cifarelli et al. (1996) and proved

how to estimate its variance by the jackknife method. But, it is not clear how h

should be chosen in practice.

Úbeda-Flores (2005) proposed another multivariate version of Spearman’s footrule

as follows

ϕd (C) =
d+ 1

d− 1

∫ 1

0

{
C (t, . . . , t) + C (t, . . . , t)

}
dt− 2

d− 1
,

where C is the df of 1−U withU = (U1, . . . , Ud) distributed as C. Úbeda-Flores

(2005) proved ϕd (C) = 0 at independence and ϕd (C) = 1 at the Fréchet—

Hoeffding upper bound.

For a random sample (X11, . . . , X1d) , . . . , (Xn1, . . . , Xnd) from some continuous

d-variate distribution and (R11, . . . , R1d) , . . . , (Rn1, . . . , Rnd) the associated vec-

tors of componentwise ranks, the empirical version of ϕd (C) was given by Úbeda-

Flores (2005) as follows

ϕdn = 1− d+ 1

d− 1

n∑
i=1

max (Ri1, . . . Rid)−min (Ri1, . . . Rid)

n2 − 1
.

By assuming that the d-variate copula C admits continuous partial derivatives

on (0, 1)d , Genest et al. (2010) showed that
√
n (ϕdn − ϕd (C))

D→ N
(
0, σ2

ϕd

)
, as n→∞,

where

σ2
ϕd =

(
d+ 1

d− 1

)2
{

Γ (D,D) + Γ (D,D) + 2
∑
A⊆D

(−1)|A| Γ (A,D)

}
,

where for arbitrary A,B ⊆ D, one has

Γ (A,B) =

∫
[0,1]2

cov {C (sA) ,C (tB)} dsdt,

and

Γ (A,B) =

∫
[0,1]2

cov
{
C (sA) ,C (tB)

}
dsdt,

with the process C is defined in theorems 1.6.2, |A| denote the cardinality of
any set A ⊆ D = {1, . . . , d} and tA is the vector (t1, . . . , td) such that tv =

t1{v∈A}) + t1{v/∈A}) for all v ∈ {1, . . . , d}, for example tD = (t, . . . , t).
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2.4 Kendall’s tau

The non-parametric correlation coeffi cient or measure of association known as

Kendall’s tau was first discussed by Fechner and others about 1900, and was

rediscovered, independently, by Kendall in 1938.

Let (X1, X2) and (Y1, Y2) be independent and identically distributed bivariate

random vectors with df F . The population version, τ , of Kendall’s tau is defined

as the probability of concordance minus the probability of discordance. Then

τ = P ((X1 − Y1) (X2 − Y2) > 0)− P ((X1 − Y1) (X2 − Y2) < 0) .

If C is the bivariate copula of F , then

τ (C) = 4

∫
[0,1]2

C (u, v) dC (u, v)− 1. (2.2)

Multivariate versions of Kendall’s tau are discussed in Nelsen (1996), Joe (1990),

and Taylor (2007). Formula (2.2) implies the following multivariate version:

τ (C) =
1

2d−1 − 1

{
2d
∫

[0,1]d
C (u) dC (u)− 1

}
.

A natural non-parametric estimator of τ is given by

τ̂
(
Ĉn

)
=

1

2d−1 − 1

{
2d
∫

[0,1]d
Ĉn (u) dĈn (u)− 1

}

=
1

2d−1 − 1

{
2d

n

n∑
j=1

n∑
k=1

d∏
i=1

1{Ûij,n≤Ûik,n} − 1

}
,

with empirical copula Ĉn. Non-parametric estimation and statistical inference

for τ based on the empirical copula process is the focus of an ongoing work.

For further non-parametric statistical analysis of Kendall’s tau, which is also

frequently considered in the context of tests for stochastic independence.

2.5 Blomqvist’s beta

Blomqvist’s beta or the medial correlation coeffi cient was introduced by Blomqvist

(1950). Let X1 and X2 be two continuous rv’s having medians x̃1 and x̃2, then

the population version of Blomqvist’s beta is given by

β = P ((X1 − x̃1) (X2 − x̃2) > 0)− P ((X1 − x̃1) (X2 − x̃2) < 0) .
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If X1 and X2 have copula C, then β can be expressed in terms of C as follows

β (C) = 2P ((X1 − x̃1) (X2 − x̃2) > 0)− 1 = 4C (1/2, 1/2)

=
C (1/2, 1/2)− Π (1/2, 1/2) + C (1/2, 1/2)− Π (1/2, 1/2)

M (1/2, 1/2)− Π (1/2, 1/2) +M (1/2, 1/2)− Π (1/2, 1/2)
. (2.3)

Blomqvist’s beta can be interpreted as a normalized difference between the

copula C and the independence copula at (1/2, 1/2). Various extensions of

Blomqvist’s beta to the multivariate case have been considered in Joe (1990),

Úbeda-Flores (2005) and Schmid and Schmidt (2007c). The following multivari-

ate version is motivated by equation (2.3)

β (C) =
C (1/2)− Π (1/2) + C (1/2)− Π (1/2)

M (1/2)− Π (1/2) +M (1/2)− Π (1/2)

= hβ (d)
{
C (1/2)− C (1/2)− 21−d} , (2.4)

where hβ (d) = 2d−1/
(
2d−1 − 1

)
and 1/2 = (1/2, . . . , 1/2) . The multivariate ver-

sion of β satisfies the properties P3(a), P3(c) and P5. Further, β (C) equals the

average of pairwise Blomqvist’s beta in dimension d = 3. Note that if the copula

C is radially symmetric, i.e. C = C, the expression in (1.8) reduces to

2dC (1/2)− 1

2d−1 − 1
,

which coincides with the multivariate version originally introduced in Nelsen

(1996). Schmid and Schmidt (2007c) studied more general extensions of Blomqvist’s

beta, which measure the association in the tail region of the copula and which

include β (C) as defined in (2.4).

A natural estimator for β (C) is obtained by replacing the copula C and the

survival function C in (2.4) with their empirical counterparts, i.e.

β̂
(
Ĉn

)
= hβ (d)

{
Ĉn (1/2)− Ĉn (1/2)− 21−d

}
.

Under weak assumptions on the copula C and the survival function C, Schmid

and Schmidt (2007c) established the asymptotic normality and consistency of

β̂
(
Ĉn

)
. Namely, if the i-th partial derivatives DiC and DiC exist and are

continuous at the point 1/2, we have

√
n
(
β̂
(
Ĉn

)
− β (C)

)
D→ N

(
0, σ2

)
,
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where

σ2 = hβ (d)2E
(
{GC (1/2) +GC (1/2)}2) ,

and Gaussian processes GC and GC as defined in the aforementioned theorems.

One main advantage of Blomqvist’s beta over other copula-based measures is that

the asymptotic variance of its estimator can explicitly be calculated whenever

the copula and its partial derivatives are of explicit form see Schmid and Schmidt

(2007c) for related examples. For example if C = Π , we have

σ2 =
1

2d−1 − 1
.

2.6 Gini’s gamma

Gini’s gamma was introduced by Gini (1910). If pi and qi denote the ranks in a

sample of size n of two continuous rv’s X and Y respectively, then

γ =
1

[n2/2]

{
n∑
i=1

|pi + qi − n− 1| −
n∑
i=1

|pi + qi|
}
.

If C is the bivariate copula of F , then

γ (C) = 2

∫
[0,1]2

(|u+ v − 1| − |u− v|) dC (u, v)

= 4

∫
[0,1]2
{M (u, v) +W (u, v)} dC (u, v)− 2. (2.5)

A multivariate extension of Gini’s gamma has been considered by Behboodian

et al. (2007). By defining the function A(u) = {M(u) +W (u)} /2, u ∈ [0, 1]d,

with corresponding survival function A, the expression in (2.5) is equal to

γ (C) = 4

(∫
[0,1]2

{
A (u, v) + A (u, v)

}
dC (u, v)

−
∫

[0,1]2

{
A (u, v) + A (u, v)

}
dΠ (u, v)

)
,

as A (u, v)+A (u, v) = 1−u−v+2A (u, v) for every (u, v) ∈ [0, 1]2. A multivariate

version of Gini’s gamma is then defined as

γ (C) =
1

b (d)− a (d)

(∫
[0,1]d

{
A (u) + A (u)

}
dC (u)− a (d)

)
, (2.6)
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where normalization constants a(d) and b(d) of the form

a (d) =

∫
[0,1]d

{
A (u) + A (u)

}
dΠ (u)

=
1

d+ 1
+

1

2 (d+ 1)!
+

d∑
i=0

(−1)d
(
d

i

)
1

2 (i+ 1)!
,

and

b (d) =

∫
[0,1]d

{
A (u) + A (u)

}
dM (u)

= 1−
d−1∑
i=1

1

4i
.

From the above definition we have γ (C) = 0 if C = Π and γ (C) = 1 if C = M ,

then, P3(a) and P3(c) hold. In the context of multivariate measures of concor-

dance, Taylor (2007) discussed another multivariate generalization. Behboodian

et al. (2007) also provide a sample version for γ (C) as defined in (2.6). In the

bivariaste case, a sample version based on the empirical copula is considered

in Nelsen (2006) which coincides with the traditional sample version of Gini’s

gamma. The latter plays an important role in the context of tets for stochastic

independence and has been discussed by many authors. Under suitable condi-

tions, Cifarelli et al. (1996) established the asymptotic normality of a generalized

class of bivariate statistics including Gini’s gamma. An asymptotic theory for

d ≥ 3 is not yet available to our knowledge.

2.7 Hoeffding’s phi-square

Hoeffding (1940) was the first to consider measures of association based on a

Lp-type distance between a copula C and the independence copula Π . His work

focuses on p = 2 and was extended by Schweizer and Wolff (1980) who introduce

L1- and L∞-based measures of bivariate association.

The Hoeffding’s phi-square (Hoeffding, 1940) measure of association between the

components of the two-dimensional random vector X with copula C is defined

by

Φ2 = 90

∫
[0,1]2
{C (u, v)− uv}2 dudv.
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Gaißer et al. (2010) introduced a multivariate version of Hoeffding’s Φ2 defined

by

Φ2 (C) = h2 (d)

∫
[0,1]d
{C (u)− Π (u)}2 du, (2.7)

where

h2 (d) =

 2

(d+ 1) (d+ 2)
− 1

2d
d!

d∏
i=0

(
i+ 1

2

) +

(
1

3

)d
−1

.

Due to their structure, all Lp-distance-based measures share a set of common

properties. Irrespective of the particular choice of p, the measures satisfy P1

and P2. They further possess the strong property that they are zero if and only

if Π is the copula of X, thus P3(a) and P3(b) hold. Normalizing by means of

the upper Fréchet-Hoeffding bound, P3(a) is assured. Consider a multivariate

normal random vector X for which all pairwise correlations ρij of Xi and Xj

are either non-negative or non-positive. Analogously to Wolff (1980), it can

be shown that all Lp-distance-based measures are a strictly increasing function

of the absolute value of each of the pairwise correlations. In general, the Lp-

distance-based measures further satisfy P4, P6 and P4.

In the particular case that an independent component Xd+1 is added to a d-

dimensional random vector X = (X1, . . . , Xd) with copula C, Φ2 (X1, . . . , Xd+1)

can be expressed as a function of the d-dimensional measure:

Φ2 (X1, . . . , Xd+1) =
1

3

h2 (d+ 1)

h2 (d)
Φ2 (X1, . . . , Xd) < Φ2 (X1, . . . , Xd) .

Thus, criterion P5 is satisfied, meaning that an independent variable Xd+1 re-

duces overall association in the enlarged vector.

A non-parametric estimator for Φ2 is obtained by replacing the copula C, in

formula (2.7), by the empirical copula Ĉn , that is

Φ2
(
Ĉn

)
= h2 (d)

∫
[0,1]d

{
Ĉn (u)− Π (u)

}2

du

= h2 (d)

{(
1

n

)2 n∑
j=1

n∑
k=1

d∏
i=1

(
1−max

{
Ûij,n, Ûik,n

})
− 2

n

(
1

2

)d n∑
j=1

d∏
i=1

(
1− Û2

ij,n

)
+

(
1

3

)d}
.
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The estimate is therefore easy to calculate even for large d. A bias reduction for

Φ2
(
Ĉn

)
has been suggested in Gaißer et al. (2010). Simulations have shown

that the estimator works well for various copula families. Obviously, we obtain

an estimator for the alternative measure Φ by Φ
(
Ĉn

)
= +

√
Φ2
(
Ĉn

)
.

The asymptotic theory for Φ2
(
Ĉn

)
is derived from the asymptotic behaviour of

the empirical copula process
√
n
(
Ĉn (u)− C (u)

)
as provided by theorem 1.6.1.

Then, asymptotic normality of the estimator Φ2
(
Ĉn

)
can be derived by means

of the functional delta method. Under the assumptions of theorem 1.6.1 and the

additional presumption that C 6= Π it follows that

√
n
(

Φ2
(
Ĉn

)
− Φ2 (C)

)
D→ N

(
0, σ2

Φ2

)
,

where

σ2
Φ2 = (2h2 (d))2

∫
[0,1]d

∫
[0,1]d

E ({C (u)− Π (u)}GC (u)GC (v) {C (v)− Π (v)}) dudv.

The proof is given in Gaißer et al. (2010). The above assumption C 6= Π

guarantees that the limiting rv is non-degenerate as implied by the form of the

variance σ2
Φ2 , the limiting behaviour of Φ2

(
Ĉn

)
in case C = Π is considered in

Gaißer et al. (2010).

2.8 Schweizer and Wolff’s sigma

Wolff (1980) generalized the L1-distance-based measure of Schweizer and Wolff

(1981) to the multivariate case. It is defined by

σ (C) = h1 (d)

∫
[0,1]d
|C (u)− Π (u)| du,

where the normalizing factor h1 (d) is given by

h1 (d) =

(
1

d+ 1
− 1

2d

)
.

The measure satisfies P3 (d). With regard to P8, an explicit form of the function

is derived in Schweizer and Wolff (1981) for the bivariate case. Except for taking

the absolute value, this functional form matches the one that can be derived for
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Spearman’s ρ, illustrating that the two measures are closely related. A similar

calculation shows that σ satisfies P4,

σ (X1, . . . , Xd+1) =
1

2

h1 (d+ 1)

h1 (d)
σ (X1, . . . , Xd) < σ (X1, . . . , Xd) .

The estimation of σ (C) has not yet been considered in detail. Various estimators

for this measure can be obtained by replacing C in the defining formulas with

the empirical copula Ĉn. However, no explicit expressions as e.g. for Φ2
(
Ĉn

)
are available and the estimate must be determined numerically, which can be

demanding for large dimension d.

2.9 L∞-distance-based measure

A L∞-distance-based multivariate measure is derived in Wolff (1980) and in-

vestigated in detail by Fernández-Fernández and González-Barrios (2004). This

measure is defined by

L∞(C) = h∞ (d) sup
u∈[0,1]d

|C (u)− Π (u)| .

Fernández-Fernández and González-Barrios (2004) do not normalize the popula-

tion version of the measure. An addition a normalization factor h∞ (d) in order

to assure comparability with alternative measures, which is given by

h∞ (d) =

((
1

d

) 1
d−1
(

1− 1

d

))−1

.

Wolff (1980) proved that this measure satisfies all normalization criteria except

for P3 (d). This is due to the fact that there exist other copulas than the upper

Frechet-Hoeffding bound for which the measure attains its maximal value. With

regard to P8, an explicit form of the function is derived in Schweizer and Wolff

(1981) for the bivariate case. With respect to the addition of further components,

the measure behaves differently than the measures discussed before. It generally

holds that

0 ≤ L∞(X1, X2) ≤ L∞(X1, X2, X3) ≤ · · · ≤ L∞(X1, . . . , Xd).

In particular, the measure satisfies P7 if an independent component is added to

a d-dimensional random vector X, i.e.

L∞(X1, . . . , Xd+1) = L∞(X1, . . . , Xd).
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The estimation of L∞(C) can analogously be performed by replacing all df’s

with their empirical counterparts

L∞(Ĉn) =
supu∈[0,1]

∣∣∣Ĉn (u)−
∏d

i=1 Un (ui)
∣∣∣

max0≤i≤n

{
i
n
−
(
i
n

)d} ,

where Un denotes the, univariate, df of a uniformly distributed rv on the set

{1/n, ..., n/n}. In order to reduce bias, the independence copula is replaced by
its discretized version

∏d
i=1 Un (ui). For the unnormalized statistic, Fernández-

Fernández and González-Barrios (2004) proved a strong law of large numbers.

While, the explicit asymptotic theory for L∞(Ĉn) is not available yet.

2.10 Tail dependence

Tail dependence is used in the modeling and measurement of association between

extreme values such as extremely negative asset returns and plays an important

role in financial theory, see Joe (1997). Let X1 and X2 be two rv’s with bivariate

df F and continuous univariate margins F1, F2 and let u be a threshold value,

then the upper tail coeffi cient, λU , is defined as

λU = lim
u↑1
P (F1 (X1) > u |F2 (X2) > u) ,

and the lower tail coeffi cient, λL, is defined as

λL = lim
u↓0
P (F1 (X1) ≤ u |F2 (X2) ≤ u) ,

provided that the above limits exists. Note that 0 ≤ λL, λU ≤ 1. If λU ∈ (0, 1],

X1 and X2 are asymptotically dependent in the upper tail and if λU = 0, X1 and

X2 are asymptotically independent in the upper tail.

The tail dependence coeffi cients λU and λL expressed in terms of copula function

C as follows

λU (C) = lim
u↑1

1− 2u+ C (u, u)

1− u ,

and

λL (C) = lim
u↓0

C (u, u)

u
.

The natural non-parametric estimator for λU and λL from a random sample

(X1, . . . ,Xn) of X is

λ̂L,k,n =
nĈn

(
k
n
, k
n

)
k

,
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with suitably chosen parameter k = k(n). The statistical properties of λ̂L,k,n
have been investigated by several authors using techniques from extreme value

theory (see chapter 3 in this thesis).

Various generalisations of tail dependence coeffi cients proposed. Frahm (2006)

considered the following multivariate generalization of λL

λL (C) = lim
u↓0

C (u1)

1− C (u1)
.

Schmid and Schmidt (2007a, 2007b) proposed, another multivariate generaliza-

tions of λL which are based on conditional versions of Spearman’s rho as follows

ρL (C) = lim
p↓0

ρp (C) = lim
p↓0

d+ 1

pd+1

∫
[0,1]d

C (u) du,

if the limit exists. The natural estimator for ρL (C) is

ρ̂L

(
Ĉn

)
= ρ̂ k

n

(
Ĉn

)
with appropriate value k = k(n), chosen by the statistician, and

ρ̂p

(
Ĉn

)
=

{
1

n

n∑
j=1

d∏
i=1

(
p− Ûij,n

)+

−
(
p2

2

)d}
/

{
pd+1

d+ 1
−
(
p2

2

)d}
,

where, x+ = max (x, 0) .

Under suitable conditions, Schmid and Schmidt (2007b) proved that

√
n
(
ρ̂p

(
Ĉn

)
− ρL (C)

)
D→ N

(
0, σ2

Λ

)
, as n→∞,

where

σ2
Λ = (d+ 1)

∫
[0,1]d

GΛ (u) du,

with GΛ is a centered tight continuous Gaussian random field (see Schmid and

Schmidt, 2007b). We can estimate the asymptotic variance σ2
Λ by using boot-

strap techniques. The tail dependence measures verify the following properties

P1, P3(a), P3(c) and P5.
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Chapter 3

Univariate heavy-tailed
distributions and extreme value
theory

In this chapter, we give the basic definitions and properties of heavy-tailed dis-

tributions and EVT. Heavy-tailed distribution are often used when, in a certain

phenomenon, the probability of events is relatively big. These distributions

was first noticed by Pareto in 1896 in income distribution. After that, many re-

searchers have argued that such distributions can be found not only in economics,

but also in other domains such as finance, insurance and network topology. EVT

is concerned with probabilistic and statistical questions related to very high or

very low values in sequences of rv’s and in stochastic processes. The subject has

a rich mathematical theory and also a long tradition of applications in a variety

of areas. Among many excellent books on the subject, Embrechts et al. (1997)

give a comprehensive survey of the mathematical theory with an orientation

toward applications in insurance and finance.

3.1 Heavy-tailed distributions

3.1.1 Definitions

Let X be an insured risk, a non-negative rv defined on a probability space

(Ω,A,P) with continuous df F = P (X ≤ x). We define the tail function F

33
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by

F (x) = 1− F (x) .

The tail of a distribution represents probability values for large values of the vari-

able. When large values of the variable appear in a data set, their probabilities

of occurrence are not zero.

Definition 3.1.1 A distribution F ≥ 0 is heavy-tailed if and only if

lim
x→∞

eλxF (x) =∞ for all λ > 0.

Definition 3.1.2 A distribution F is heavy-tailed if and only if it has no expo-

nential moment, i.e., ∫ ∞
0

eλxdF (x) =∞ for all λ > 0,

Definition 3.1.3 A distribution F is said to have a heavy tail if and only if

F (x) ∼ x−α as x→∞,

where the parameter α > 0 is called the tail index.

Remark 3.1.1 Any heavy-tailed distribution has right-unbounded support F (x) > 0

for all x.

3.1.2 Examples of heavy-tailed distributions

We mention, among other, the following distributions:

1. Pareto Distribution on R+

This distribution has tail function F given by

F (x) =

(
κ

x+ κ

)α
,

for some scale parameter κ > 0 and shape parameter α > 0. It is clear

that we have F (x) ∼ (x/κ)−α as x → ∞, for this reason the Pareto
distributions are sometimes referred to as the power law distributions. The

Pareto distribution has all moments of order p < α finite, while all moments

of order p ≥ α are infinite.
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2. Burr distribution on R+

This has tail function F given by

F (x) =

(
κ

xτ + κ

)α
,

for parameters α, κ, τ > 0. It is clear that we have F (x) ∼ καx−τα as x→
∞, then the Burr distribution is similar in its tail to the Pareto distribution,
of which it is otherwise a generalisation. The Burr distribution has all

moments of order p < τα finite, while all moments of order p ≥ τα are

infinite.

3. Weibull distribution on R+

This distribution has tail function F given by

F (x) = exp {− (x/κ)α} ,

for some scale parameter κ > 0 and shape parameter α > 0. This is a

heavy-tailed distribution if and only if α < 1. All moments of the Weibull

distribution are finite

4. Cauchy distribution on R

This distribution has tail function F given by

F (x) =
1

2
− arctanx

π
,

we have F (x) ∼ (πx)−1 as x → ∞, its tail goes to zero like the power
function x−1. All moments are infinite.

5. Log-normal distribution on R∗+
This is most easily given by its density function f where

f (x) =
1

σx
√

2π
exp

{
−(log x− µ)2

2σ2

}
,

for parameters σ and µ > 0. Then, the tail of the lognormal distribution

is

F (x) = Φ

(
log x− µ

σ

)
.

where Φ is the tail of the standard normal rv. All moments of the lognormal

distribution are finite.



3. Univariate heavy-tailed distributions and extreme value theory 36

There exist important classes of heavy-tailed distributions that are regularly

varying function, intermediate regularly varying and subexponential distribu-

tion. For more detail on these distributions see, Foss et al. (2011).

Definition 3.1.4 (Dominated-varying distribution)
We say that F is a dominated-varying distribution if there exists c > 0 such that

F (2x) ≥ cF (x) for all x.

Definition 3.1.5 (Intermediate regularly varying)
A distribution F on R is called intermediate regularly varying if

lim
ε↓0

lim
x→∞

inf
F (x (1 + ε))

F (x)
= 1.

Definition 3.1.6 (Subexponential distribution)
Let (Xn) be iid positive rv’s with df F with support (0,∞), the df F is a subex-

ponential distribution if

lim
x→∞

F n∗ (x)

F (x)
= n, for n ≥ 2,

where F n∗ (x) = P (X1 + · · ·+Xn > x), the tail of the n-fold convolution of F.

Remark 3.1.2 Any regularly varying distribution is intermediate regularly vary-
ing and any intermediate regularly varying distribution.

3.1.3 Regularly varying functions

In the heavy-tail analysis, one of the most important classes of distributions is

the regular variation class. This class has been widely used in modeling heavy-

tailed phenomena. The notion of regular variation was discovered by Karamata

(1930). In this subsection, we introduce these functions with some of their most

important properties. For further details on theory of regular variation and Π-

variation, we refer to Bingham et al. (1987) and Geluk et al. (1987). For the

connection between regular variation and EVT, we refer to de Haan (1970).
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Definition 3.1.7 (Regularly varying function)

• A Lebesgue measurable function h : R+ → R+ is regularly varying at infin-

ity with index ρ ∈ R, notation h ∈ RVρ, if and only if for any x > 0

lim
t→∞

h (xt)

h (t)
= xρ. (3.1)

The number ρ in the above definition is called the index of regular variation.

A function satisfying (1.1) with ρ = 0 is called slowly varying at infinity.

• We say that h is regularly varying at 0 with index ρ ∈ R, notation h ∈ RV0
ρ,

if and only if function h (1/x) is regularly varying at infinity with index

(−ρ) . In other words, regular variation at 0 is defined by replacing t→∞
by t→ 0 in (3.1).

• h is regularly varying at any point a > 0, notation h ∈ RVaρ, if h (a− 1/x) ∈ RVρ.

Example 3.1.1 The functions xρ, xρ log (1 + x) and (x log (1 + x))ρ are RVρ.
The functions positive constants, logarithms and iterated logarithms are slowly

varying.at infinity with index ρ. The functions 2 + sinx and exp (log x)are not

regularly varying.

If one only assumes that the limit in (3.1) exists and is positive for all x > 0,

then it can be shown that the limit is necessarily of the form xρ for some ρ ∈ R
(see Embrechts et al., 1997). The following (immediate) result is about writing

regularly varying functions in terms of slowly varying ones.

Proposition 3.1.1 (Regular and slow variations)
h ∈ RVρ if and only if h(x) = xρ`(x), where ` ∈ RV0

ρ.

The following theorems are used to restate the definition of regular variation and

to introduce a new concept called Π-variation.

Theorem 3.1.1 If h : (0,∞)→ R+ is measurable such that

lim
t→∞

h (tx)− h (t)

a (t)
,
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exists and is not constant, where x > 0 and a is a positive function, then

lim
t→∞

h (tx)− h (t)

a (t)
= c

xρ − 1

ρ
,

for some ρ ∈ R and c 6= 0, with the convention that the right hand side reads

c log x if ρ = 0.

Theorem 3.1.2 (Restatement of regular variation)
Assume that theorem 3.1.1 holds with ρ 6= R and c > 0.

1. If ρ > 0, then f ∈ RVρ.

2. If ρ < 0, then lim
t→∞

h (t) exists and
(

lim
t→∞

h (t)− h (x)
)
∈ RVρ.

Definition 3.1.8 (Π-varying function)
A Lebesgue measurable function h : R+ → R+ is Π-varying at infinity with

auxiliary function a > 0, notation h ∈ Π, if

lim
t→∞

h (tx)− h (t)

a (t)
= log x, x > 0.

h is said to be Π-varying at 0, notation h ∈ Π0, if h (1/x) is Π-varying at infinity.

Some of the basic properties of regularly varying functions are given in the fol-

lowing results.

Proposition 3.1.2 (Proprieties of regularly varying functions)

(i) If f ∈ RVρ, then log f (t) / log t→ ρ as t→∞. This implies

lim
t→∞

f (t) =

{
0 if ρ < 0,

∞ if ρ > 0.

(ii) If f ∈ RVρ and g ∈ RVβ then f + g ∈ RVζ where ζ = max(ρ, β).If

moreover limt→∞ g (t) =∞, then the composition f ◦ g ∈ RVρβ.

(iii) If f ∈ RVρ, then fk ∈ RVρk.

(iv) If f ∈ RVρ with ρ > 0 (ρ < 0) then f is asymptotically equivalent to

a strictly increasing (decreasing) differentiable function g with derivative

g′ ∈ RVρ−1 if ρ > 0 and −g′ ∈ RVρ−1 if ρ < 0.
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(v) If f ∈ RVρ with ρ > 0 and f is increasing, then the inverse function

f−1 ∈ RV1/ρ.

(vi) If f ∈ RVρ is integrable on finite intervals of R+ with ρ ≥ −1 then∫ t
0
f(s)ds ∈ RVρ+1. If f ∈ RVρ with ρ < 0, then

∫∞
t
f(s)ds exists for t

suffi ciently large and is regularly varying with exponent ρ+ 1.

(vii) Suppose that f ∈ RVρ. If δ1, δ2 > 0 are arbitrary, there exists t0 =

t0 (δ1, δ2) such that for t ≥ t0, tx ≥ t0,

(1− δ1)xρ min
(
xδ2 , x−δ2

)
<
f (tx)

f (t)
< (1 + δ1)xρ max

(
xδ2 , x−δ2

)
.

Note that conversely, if f satisfies the above property, then f ∈ RVρ.

(viii) If f ∈ RVρ with ρ ≥ 0 and f (t) = f (t0) +
∫ t
t0
ϕ(s)ds for t ≥ t0 with ϕ is

monotone, then

lim
t→∞

tϕ(t)

f (t)
= ρ.

Hence in case ρ > 0 we have ϕ ∈ RVρ−1. Moreover, if ρ ≤ 0, and∫∞
t
ϕ(s)ds <∞ with ϕ is non-increasing, then

lim
t→∞

tϕ(t)

f (t)
= −ρ.

Hence in case ρ < 0 we have ϕ ∈ RVρ−1.

Theorem 3.1.3 (Uniform convergence)

If f ∈ RVρ, then for 0 < a ≤ b <∞ relation (3.1) holds uniformly for

(i) x ∈ [a, b] if ρ = 0.

(ii) x ∈ [0, b] if ρ > 0.

(iii) x ∈ [a,∞] if ρ < 0.
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Theorem 3.1.4 (Karamata representation)
If h ∈ RVρ, then for x ≥ A

h(x) = c (x) exp

{∫ x

A

ε (t)

t
dt

}
,

where A > 0, c and ε are measurable functions whith

lim
x→∞

c (x) = c0 ∈ (0,+∞) and lim
x→∞

ε (x) = ρ.

The following result, known as Karamata’s theorem, says that one can take

slowly varying functions out of integrals.

Theorem 3.1.5 (Karamata’s theorem)
Let l ∈ RV0.be locally bounded in (A,∞) for some A > 0. Then

(i) for β > −1∫ x

A

tβl(t)dt ∼ (β + 1)−1 xβ+1l(x) as x→∞.

(ii) for β < −1∫ ∞
x

tβl(t)dt ∼ − (β + 1)−1 xβ+1l(x) as x→∞.

Finally, some of the results that are useful for the theory of extreme values are

summarized in the following proposition.

Proposition 3.1.3 (Regular variation for distribution tails)
Suppose that F is a continuous df (with pdf f) such that F (x) < 1 for all x ≥ 0.

(i) If lim
x→∞

xf (x) /F (x) = ρ > 0, then f ∈ RV−1−ρ and consequently F ∈ RV−ρ.
(ii) If f ∈ RV−1−ρ (ρ > 0) , then lim

x→∞
xf (x) /F (x) = ρ. and consequently F ∈

RV−ρ.The latter statement also holds if F ∈ RV−ρ and f is ultimately monotone.
(iii) If X is a non-negative rv with distribution tail F ∈ RV−ρ (ρ > 0), then

E (Xp) < ∞ if p < ρ,

E (Xp) = ∞ if p ≥ ρ.

(iv) If F ∈ RV−ρ (ρ > 0), then for υ ≥ ρ

lim
x→∞

xυF (x)∫ x
υ
tυdF (t)

=
υ − ρ
ρ

.
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3.2 Extreme value theory

EVT is a statistical and theoretical framework, which deals with modelling the

behaviour of sample extremes, such as the sample minimum and the sample

maximum. The behaviour of such order statistics may be assessed by their exact

df or by their limiting df, the asymptotic df, if we increase the sample size towards

infinity.

3.2.1 Order statistics

In EVT, the order statistics are very instrumental because they, more precisely

the upper ones, provide information on the distribution (right) tail. Despite the

fact that the definition of order statistics does not require common distribution

nor independence of the X ′is we will only consider the case where the X
′
is is are

elements of a sample (X1, . . . , Xn) from a rv X with df F . For a comprehensive

study, including a list of areas where order statistics might have a significant

role, we refer the reader to Arnold et al. (1992).

Definition 3.2.1 (Order statistics)
The order statistics of a random sample (X1, . . . , Xn)are the sample values placed

in ascending order. They are denoted by X1,n, . . . , Xn,n and the rv Xn−k+1,n is

called the kth upper order statistic for k = 1, 2, . . . , n. Order statistics satisfy

X1,n ≤ · · · ≤ Xn,n. Then

X1,n = min(X1, . . . , Xn) and Xn,n = max(X1, . . . , Xn).

Definition 3.2.2 (L-statistics)
L-statistic is a statistic that is a linear combination of order statistics; the "L"

is for "linear". For (a1, ..., an) ∈ Rn. The L-statistic is

Tn =

n∑
i=1

aiXi,n.

This statistic plays a major role in non-parametric statistics by providing ro-

bust estimators for location and scale parameters. For convenience in the study

of the asymptotic behavior of Tn, the weights ai are usually defined as ai =(
1
n

)
J
(

i
(n+1)

)
, where J is a real application on (0, 1) .
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By using order statistics, the empirical df of the sample (X1, ..., Xn) is evaluated

as follows

Fn (x) =


0 x < X1,n,

i/n Xi,n ≤ x < Xi+1,n, for i = 1, . . . , n− 1,

1 x ≥ Xn,n.

Definition 3.2.3 (Quantile and tail quantile functions)
The quantile function of df F is the generalized inverse function of F defined by

Q (s) = F← (s) = inf {x ∈ R : F (x) ≥ s} , 0 < s < 1,

with the convention that the infimum of the empty set is∞. In EVT, a function,
denoted by U and (sometimes) called tail quantile function, is used quite often.
It is defined by

U (t) = Q (1− 1/t) =
(
1/F

)←
(t) , 1 < t <∞.

Definition 3.2.4 (Empirical quantile and tail quantile functions)
The empirical quantile function of the sample (X1, . . . , Xn) is defined by

Qn(s) = F←n (s) = inf{x ∈ R, Fn(x) ≥ s}, 0 < s < 1.

The corresponding empirical tail quantile function is

Un (t) = Qn (1− 1/t) , 1 < t <∞.

The empirical quantile function Qn may be expressed as a simple function of

the order statistics pertaining to the sample (X1, . . . , Xn). Namely, we have, for

0 < s < 1

Qn (s) = Xi,n if
i− 1

n
< s ≤ i

n
, i = 1, . . . , n. (3.2)

Then, for 0 < s < 1,

Qn (s) = X[ns]+1,n.

Proposition 3.2.1 (Quantile transformation)
Let (U1, . . . , Un) be a sample from the standard uniform rv U and (U1,n, . . . , Un,n)

the corresponding ordered sample.
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(i) For any df F , we have

Xi,n = F← (Ui,n) , i = 1, . . . , n.

(ii) When F is continuous, we have

F (Xi,n) = Ui,n, i = 1, . . . , n.

In this case the rv’s F (X1), . . . , F (Xn) are iid standard uniform.

3.2.2 Limit law for maxima and GEVD

In this subsection, we will focus only on the results about the sample maximum,

since the corresponding results for the sample minimum can be obtained from

those of the sample maximum. Then, consider the sequence of maxima Mn =

Xn,n = max (X1, . . . , Xn) obtained from the sequence of iid rv’s X1, . . . , Xn. All

the results obtained for maxima of course lead to analogous results for minima

through the obvious relation

min (X1, . . . , Xn) = −max (−X1, . . . ,−Xn) .

The exact distribution of Mn can be obtained from the df F . Indeed, for all

x ∈ R,

FMn (x) = P (Mn ≤ x)

= P (X1 ≤ x, . . . , Xn ≤ x)

=
n∏
i=1

P (Xi ≤ x)

= (F (x))n .

But the interest of this thesis relies on the behaviour of the sample maximum,

when the sample size increases towards infinity.

Theorem 3.2.1 Let F be the underlying df of a sequence of rv’s and xF its right
endpoint, i.e., xF := sup {x : F (x) < 1} ≤ ∞ which may be infinite. Then

FMn (x)
P→ xF as n→∞.
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Therefore,Mn has a degenerate asymptotic distribution. So, in order to do some

kind of inference, we need to have a non-degenerate behaviour for Mn. Then,

as with the Central Limit Theorem (CLT), a normalization is required. This

theorem is concerned with the asymptotic behaviour of the sequence of sum

Sn =
∑n

i=1 Xi.

Theorem 3.2.2 (CLT)
Consider a sequence of iid. rv’sX1, . . . , Xn, with µ = E(X1) and σ2 = V ar(X1) <∞.
Therefore,

Sn − nµ
σ
√
n

D→ N (0, 1) as n→∞.

In order to look for an appropriate non-degenerate limiting distribution for the

sequence of sample maxima, we need a similar theorem, that is, we look for

normalizing sequences an > 0 and bn real such that

Mn − bn
an

D→ H as n→∞. (3.3)

with H non-degenerate, i.e.,

lim
n→∞

P (Mn ≤ anx+ bn) = lim
n→∞

F n (bn + anx) = H(x), x ∈ R. (3.4)

The first problem is to determine which df’s H may appear on the limit in (3.3).

These distributions are called extreme value distributions.

The problem of finding the extreme value distributions has been solved by Fisher

and Tippett (1928), completed by Gnedenko (1943) and later revived and stream-

lined by de Haan (1970). They demonstrate that, if (3.1) holds, the limiting

distribution H must be one of just three types. Formally,

Theorem 3.2.3 (Asymptotic distribution of the sample maximum)
If df F satisfies assumption (3.3), then df H is the same, up to location and

scale, as one of the following distributions:

Type I Λ (x) = exp (−e−x) , x ∈ R, γ = 0.

T ype II Ψγ (x) =

{
exp (−x−γ) x > 0

0 x ≤ 0
γ < 0.

T ype III Φγ (x) =

{
exp (− (−x)γ) x ≤ 0

1 x > 0
γ > 0.
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Definition 3.2.5 (Standard extreme value distributions)
The three df ’s of theorem 3.2.3 are called standard extreme value distributions.

Λ is known as Gumbel or double exponential type, Ψγ as Fréechet or heavy-tailed

type and Φγ as reverse Weibull type.

Proposition 3.2.2 (Relations between Λ, Ψγ and Φγ)

Let Z be a positive rv (Z > 0), then the following assertions are equivalent:

(i) Z ∼ Φγ

(ii) lnZγ ∼ Λ

(iii) −1/Z ∼ Ψγ.

Definition 3.2.6 (GEVD)
The GEVD is a df H defined, for all x ∈ R such that 1 + γx > 0, as follows

Hγ (x) =

{
exp

{
−(1 + γx)−1/γ

}
if γ 6= 0,

exp (−e−x) if γ = 0,
(3.5)

where the shape parameter is known as the extreme value index (EVI).

The parametrization in (3.5) is due to von Mises (1936) and Jenkinson (1955).

The corresponding location-scale family can be derived by replacing x in theorem

3.2.3 by (x− µ) /σ, which are given below

Hγ,µ,σ (x) =

{
exp

{
−(1 + γ x−µ

σ
)−1/γ

}
if γ 6= 0,

exp
(
−e−(x−µσ )

)
if γ = 0.

The corresponding pdf hγ,µ,σ and quantile Qγ,µ,σ are defined by

hγ,µ,σ (x) =

 Hγ

(
x− µ
σ

)(
1 +

x− µ
σ

γ

)−1/γ−1

if γ 6= 0, 1 + γx > 0,

exp
(
−
(
x−µ
σ

)
− exp

(
x−µ
σ

))
if γ = 0, x ∈ R.

and

Qγ,µ,σ (p) =

{
µ− σγ−1

(
1− (log p)−γ

)
if γ 6= 0,

µ− σ log(− log p) if γ = 0.
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Figure 3.1: (a) df’s of the Gumbel (solid line γ = 0), Fréchet (dotted line γ = 1)
and Weibull (dashed line γ = −1) distributions, (b) corresponding pdf’s and (c)
corresponding quantiles.

3.2.3 Domains of attraction

The second problem: assuming H as a possible limiting df for the sequence

(Mn − bn) /an, what are the necessary and suffi cient conditions that F must

satisfy in order to belong to the domain of attraction of H? von Mises (1936)

provided a set of conditions that ensures that F belongs to the domain of at-

traction of H. These conditions are known as von Mises’conditions.

Definition 3.2.7 (Domain of attraction)
We say that F belongs to the domain of attraction of of a non-degenerate df H,

denoted by F ∈ DA (H), if assumption (3.3) or (3.4) holds.

Proposition 3.2.3 (Characterization of DA (H))

The df F ∈ DA (H) with norming constants an ∈ R and bn > 0 if and only if

lim
n→∞

nF (bn + anx) = − logH(x), x ∈ R. (3.6)

When H(x) = 0, the right hand side is interpreted as ∞.

In addition to formulations (3.3), (3.4) and (3.6) for the domain of attraction

assumption, there exist other alternative assertions stated in the following propo-

sition. The first one illustrates the restriction on the upper distribution tail, the

second form is in terms of function Q and the third assertion is in terms of

function U.
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Proposition 3.2.4 (Characterizations of DA (Hγ))

For γ ∈ R and for all x > 0, the following assertions are equivalent.

(a) F ∈ DA (Hγ).

(b) For some positive function g and (1 + γx) > 0

lim
t→xF

F (t+ xg (t))

F (t)
=

{
(1 + γx)−1/γ if γ 6= 0,

e−x if γ = 0.

(c) For some positive function ã

lim
s→0

Q (1− sx)−Q (1− s)
ã (s)

=


x−γ − 1

γ
if γ 6= 0,

log x if γ = 0.

(d) For some positive function a (t) = ã (1/t)

lim
t→∞

U (tx)− U (t)

a (t)
=


xγ − 1

γ
if γ 6= 0,

log x if γ = 0.

(e) For y > 0, y 6= 1

lim
s→0

Q (1− sx)−Q (1− s)
Q (1− sy)−Q (1− s) =


x−γ − 1

y−γ − 1
if γ 6= 0,

log x

log y
if γ = 0.

(f) For y > 0, y 6= 1

lim
t→∞

U (tx)− U (t)

U (ty)− U (t)
=


xγ − 1

yγ − 1
if γ 6= 0,

log x

log y
if γ = 0.

(3.7)

von Mises (1936) provided a set of conditions that ensures that F belongs to the

domain of attraction of H. These conditions are known as von Mises’conditions.

Theorem 3.2.4 (von Mises’suffi cient conditions for F ∈ DA (Hγ))

Let F be an absolutely continuous df. Existing the pdf, f(x) = F ′(x), and the

second derivative F ′′(x), let h(x) = f(x)

F (x)
represent the hazard function or hazard

rate from Reliability Theory.
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1. Suppose h(x) 6= 0 and differentiable for x next to xF (or for large x, if

xF =∞). If

lim
x→xF

d

dx

(
1

h (x)

)
= 0,

then F ∈ DA (Λ) .

2. Suppose xF =∞ and F ′ exists. If, for some γ > 0,

lim
x→∞

xh (x) =
1

γ
,

then F ∈ DA (Φγ) .

3. Suppose xF <∞ and F ′ exists for x < xF . If, for some γ < 0,

lim
x→∞

(xF − x)h (x) = −1

γ
,

then F ∈ DA (Ψγ) .

These three conditions may be unified in a unique suffi cient condition for F to

belong to any of the only three domains of attraction, also derived in von Mises

(1936).

Theorem 3.2.5 (von Mises’suffi cient conditions for F ∈ DA (Hγ))

Under the conditions of theorem 3.2.4, if

lim
x→xF

(
1

h (x)

)′
= γ,

then F ∈ DA (Hγ).

von Mises’conditions are very easy to check, requiring only the existence of the

first or second derivative of F , but are only applicable to absolutely continu-

ous df’s F . These conditions are only suffi cient conditions, and not necessary.

Gnedenko (1943) given a set of necessary and suffi cient conditions for maximal

attraction to the three types of limit laws:
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Theorem 3.2.6 (Gnedenko’s necessary and suffi cient conditions for F ∈ DA (Hγ))

1. F ∈ DA (Λ) if and only if

xF ≤ ∞ and lim
x→xF

F (x+ tg (x))

F (x)
= e−t, x ∈ R,

where g(t)is a continuous and monotone positive function.

2. F ∈ DA (Φγ) if and only if, for γ > 0,

xF =∞ and lim
x→∞

F (tx)

F (x)
= t1/γ, t > 0.

3. F ∈ DA (Ψγ) if and only if, for γ < 0,

xF <∞ and lim
x→0+

F (xF − tx)

F (xF − x)
= t−1/γ, t > 0.

According to theorem 3.2.3, the Fréchet-type distribution Φγ only attracts df’s

where F (x) < 1, ∀x, i.e., where xF = ∞, and the Weibull-type distribution
Ψγ only attracts df’s where F (xF ) = 1, for xF < ∞, and F (x) < 1, ∀x < xF .

However, Gnedenko refers that the conditions for the Gumbel domain are neither

definitive nor convenient for practical use. For this case, the von Mises’condition

is better, but not necessary.

3.2.4 Choice of the normalizing sequences

The third and last problem is the choice of suitable normalizing sequences an
and bn for the basic limit relation (3.3). This choice is not unique. This is a

consequence of Khintchine’s theorem whose proof is to be found in, e.g., Resnick

(1987). The choice of such sequences depends on the df H that appears on the

limit. The most common choices are indicated in the following theorem.

Theorem 3.2.7 (Convergence to Types, Khintchine’s theorem)

1. Let W and W̃ be two rv’s with non-degenerate df’s G and G̃ respectively.

Suppose that {Xn}n∈N is a sequence of iid rv’s with df F and that we have
real sequences an, ãn > 0 and bn, b̃n ∈ R, such that

Xn − bn
an

D→ W and
Xn − b̃n
ãn

D→ W̃, as n→∞.
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Then, there exist constants A > 0 and B ∈ R such that

ãn
an
→ A,

b̃n − bn
an

→ B as n→∞,

and

G̃ (x) = G (Ax+B) ,

for every continuity point x of G and G̃.

2. Conversely,

if
ãn
an
→ A,

b̃n − bn
an

→ B and
Xn − bn
an

D→ W, as n→∞,

then
Xn − b̃n
ãn

D→ W −B
A

, as n→∞,

with G̃ (x) = G (Ax+B) and for every continuity point x of G and G̃.

Theorem 3.2.8 (Normalizing constants)
If F ∈ DA (Hγ), then

1. For γ = 0

lim
n→∞

F n (bn + anx) = exp (− exp (−x)) = Λ,

holds for all x ∈ R with

an = U (ne)− U (n) and bn = U (n) .

2. For γ > 0

lim
n→∞

F n (bn + anx) = exp
(
−x−

1
γ

)
= Φ 1

γ
,

holds for all x > 0 with

an = U (n) and bn = 0.

3. For γ < 0

lim
n→∞

F n (bn + anx) = exp
(
− (−x)−

1
γ

)
= Ψ− 1

γ
,

holds for all x < 0 with

an = xF − U (n) and bn = xF .
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von Mises’s suffi cient conditions also include normalizing sequences an and bn
for the general case F ∈ DA (Hγ), rewritten by de Haan (1970), with the tail

quantile function U.

Theorem 3.2.9 (Normalizing constants for F ∈ DA (Hγ))

Under the conditions of theorem 3.2.7, we have

bn = Q

(
1− 1

n

)
= U (n) ,

and

an =
1

h (bn)
=

1

nf (bn)
= nU′ (n) .

It must be emphasized that these latter sequences are distinct from the nor-

malizing sequences presented in theorem 3.2.8. They are used to normalize

the sample maximum Mn, when F belongs to the domain of attraction of the

GEVD. However, the sequences presented in theorem 3.2.8 are used to normalize

the sample maximum when F belongs to the domain of attraction of one of the

three standard types of theorem 3.2.3.



Chapter 4

Tail index and high quantile
estimation

Tail index or EVI measures the degree of heaviness of the distribution tail: the

heavier the tail, the larger γ. Various EVI estimators proposed after the work

of Pickands (1975) and Hill (1975). A summary of many existing tail index es-

timators and their properties can be found in Brazauskas and Serfling (2000),

Beirlant et al (2004) and Markovich (2007). In this chapter, we present some

of the most well-known estimators with their asymptotic properties. Also, we

review some of the classical methods to construct estimators for high quantiles

and distribution tails. These estimators are based on the number k of upper

statistics. We present some algorithms on how to determine this number. The

asymptotic normality of these estimators, require that the underlying df F sat-

isfies another condition, apart from those mentioned. This additional condition

is known as the second order regular variation condition.

4.1 Second order regular variation

In a semi-parametric approach, apart from the first order condition, we often

need a second order regular variation condition, to guarantee desirable properties

for the estimators of the EVI. The only assumption in this approach is that

F ∈ DA (Hγ), which is equivalent to assume that the first order extended regular

52
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variation property is satisfied, i.e., from proposition 3.2.4, we have

F ∈ DA (Hγ)⇐⇒ lim
t→∞

U (tx)− U (x)

a (t)
= Dγ (x) =

{
xγ−1
γ
, γ 6= 0,

log x, γ = 0,

for every x > 0 and some positive measurable auxiliary function a, where neces-

sarily we have a ∈ RVγ, according to definition of extended regular variation.

As mentioned before, an increase of the sample size implies an increase of k, the

number of intermediate order statistics used to estimate . However, this rise of

k may introduce some bias in the EVI-estimators, which can be controlled if we

have additional information about the tail of F , in order to control the speed of

convergence in the first order condition, i.e., the speed of convergence of the df of

the sample maximum, linearly normalized, towards the limit law H. Therefore,

the choice of k will also be decided by the second order condition. We must

then quantify the speed of convergence, imposing a precise rate. For that, we

need to assume that there exists a function A, not changing sign eventually, such

that limt→∞A (t) = 0, which measures not only the speed of convergence of the

sequence of maximum values to a non-degenerate limit law but also the bias of

the estimators. As A measures the speed of convergence of U(tx)−U(x)
a(t)

towards

Dγ (x)

lim
t→∞

U(tx)−U(x)
a(t)

−Dγ (x)

A (t)
, (4.1)

must exist, for all x > 0. Let be H(x) the limit function of (4.1). We can now

define the second order condition as follows:

Definition 4.1.1 (Second order condition)
The function U or the associated df F is said to satisfy the second order condition
if, for some positive function a and for some positive or negative function A, with

limt→∞A (t) = 0,

lim
t→∞

U(tx)−U(x)
a(t)

−Dγ (x)

A (t)
= H(x). (4.2)

As for the function a of the first-order condition, we call A the second order

auxiliary function.

Definition 4.1.2 (Second order regular variation assumption)
We say that, the tail of F ∈ DA

(
Φ1/γ

)
, γ > 0, is second order regularly varying

at infinity if it satisfies one of the following (equivalent) conditions:
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(a) There exist some parameter ρ ≤ 0 and a function A∗ tending to 0 and not

changing sign near infinity, such that

lim
t→∞

1

A∗(t)

(
1− F (tx)

1− F (t)
− x−1/γ

)
= x−1/γ x

ρ − 1

ρ
, for any x > 0. (4.3)

(b) There exist some parameter ρ ≤ 0 and a function A∗∗ tending to 0 and not

changing sign near zero, such that

lim
s→0

1

A∗∗(s)

(
Q (1− sx)

Q (1− s) − x
−γ
)

= x−γ
xρ − 1

ρ
, for any x > 0.

(c) There exist some parameter ρ ≤ 0 and a function A tending to 0 and not

changing sign near infinity, such that

lim
t→∞

1

A(t)

(
U (tx)

U (t)
− xγ

)
= xγ

xρ − 1

ρ
, for any x > 0. (4.4)

If ρ = 0 interpret
xρ − 1

ρ
as logx.

We need now to determine which functionsH(x) are eligible for the limit relation

in (4.2). Following de Haan and Ferreira (2006), we can then state the following

result for the function H(x):

Theorem 4.1.1 (de Haan and Ferreira, 2006)
Suppose relation (4.2) holds and the function H is not a multiple of Dγ (x) and

is not identically zero. Then, there exist functions a, positive, and A, positive or

negative and a parameter ρ ≤ 0 such that

lim
t→∞

U(tx)−U(x)
a(t)

−Dγ (x)

A (t)
= Hρ,γ(x)

=
1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
, for x > 0. (4.5)

ρ is a second order parameter controlling the speed of convergence of the first

order condition. For the cases γ = 0 and/or ρ = 0, Hρ,γ(x) is understood to be

equal to the respective limit in (4.5), by continuity arguments. Moreover, A(t)

is such that

lim
t→∞

A (tx)

A (t)
= xρ,

for x > 0, that is, |A| ∈ RVρ.
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Note that the second order condition implies the domain of attraction condition.

Dekkers and de Haan (1989) showed that the second order condition holds for

most of well-known df’s: Normal, Gamma, Exponential, Uniform and Cauchy.

Hall’s class of df’s.
Hall’s class of models (Hall and Welsh, 1985) is an example of heavy tailed

distributions satisfying the second order condition, where

F (x) = cx−1/γ
(
1 + dxρ/γ + o

(
xρ/γ

))
as x→∞,

or equivalently, in terms of functions Q and U,

Q (1− s) = cγx−γ
(
1 + γdcρs−ρ + o

(
x−ρ
))

as s→ 0,

and

U (t) = cγtγ (1 + γdcρtρ + o (tρ)) as t→∞.

This class contains most of the heavy-tailed models important in insurance math-

ematics, like Fréchet, Pareto, Burr and t-Student df’s. Straightforward compu-

tations show that, in the case of Hall model, functions A(t) and A∗(t) are re-

spectively equivalent to γdcρtρ and γdcρtρ/γ as t→∞, whereas function A∗∗(s)
is equivalent to γdcρs−ρ as s→ 0.

4.2 Tail index estimation

The EVI or tail index is an important measure to gauge the heavy-tailed behavior

of a distribution. Estimating this index in heavy-tailed distribution plays a

central role in EVT.

4.2.1 Pickands’Estimator

Pickands (1975) was the first to present a semi-parametric estimator for a real

EVI, γ ∈ R, and thus it can be used to estimate the shape parameter of any one
of the three types of extreme value distributions. But, as it is rather unworkable

in practise for small or moderate samples, several refinements were introduced

mainly by Drees (1996) and Segers (2005). The derivation of this estimator is
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based on an equivalent condition to F ∈ DA (Hγ), namely assertion (3.2), which

for x = 2 and y = 1/2 yields

lim
t→∞

U (2t)− U (t)

U (t)− U (t/2)
= 2γ.

Furthermore, for any positive function c such that limt→∞ c(t) = 2, we have

lim
t→∞

U (tc(t))− U (t)

U (t)− U (t/c(t))
= 2γ.

Combining this with some basic results related to the ordered (Y1,n, . . . , Yn,n )

from a standard Pareto rv Y with df FY (y) = 1−y, y ≥ 1, namely (k/n) /Yn−k+1,n
P→ 1

and Yn−k+1,n/Yn−2k+1,n
P→ 2 as n→∞ see e.g., Fraga Alves (1995), yields

lim
t→∞

U (Yn−k+1,n)− U (Yn−2k+1,n)

U (Yn−2k+1,n)− U (Yn−4k+1,n)
= 2γ.

Finally, we use the distributional identity

Xn−i+1,n
D
= U (Yn−i+1,n) , i = 1, . . . , n,

to get the following definition.

Definition 4.2.1 (Pickands’estimator)

γ̂Pn,k =
1

log 2
log

Xn−k+1,n −Xn−2k+1,n

Xn−2k+1,n −Xn−4k+1,n

.

The properties of γ̂Pn,k were mainly explored by Dekkers and de Haan (1989).

They showed, under certain conditions, weak and strong consistency, as well as

asymptotic normality.

Theorem 4.2.1 (Properties of γ̂Pn,k)

Suppose that F ∈ DA(Hγ), γ ∈ R, k →∞ and k/n→ 0 as n→∞.

(a) Weak Consistency:

γ̂Pn,k
P→ γ as n→∞.

(b) Strong consistency: If k/ log log n→∞ as n→∞

γ̂Pn,k
a.s.→ γ as n→∞.
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(c) Asymptotic normality: Assume that U has a positive derivative U′ and that
±t1−γU′ (t) is Π-varying at infinity with auxiliary function a > 0. If k =

o (n/g← (n)) , where g (t) = t3−2γ (U′ (t) /a (t))2, then
√
k
(
γ̂Pn,k − γ

) D→ N (0, σ2
)

as n→∞,

where

σ2 =


3

4 (log 2)4 if γ = 0,

(1 + 22γ+1) γ2

(2 (2γ − 1) log 2)2 if γ 6= 0.

Figure 4.1: Plot of Pickands’estimator, as a function of the number of extremes
(solid line) with 95%-confidence bounds (dashed lines), for the EVI of the stan-
dard uniform distribution (γ = −1) based on 100 samples of 3000 observations.

The Pickands estimator is quite volatile as a function of k, and its asymptotic

variance is large. Ways of improvement were therefore sought after and discov-

ered by many authors, all of whom realized somehow that this estimator is a

linear combination of log-spacings of order statistics. Among improvements, we

refer Fraga Alves (1995), Drees (1996) and Segers (2005).

Fraga Alves (1995) proposed a generalization of the Pickands estimator, with

the introduction of a tuning or control parameter M , defined as follows

γ̂Pn,k, M =
1

logM
log

Xl,n −XMl,n

XMl,n −XM2l,n

, l =

[
k + n

M2

]
, k = 1, . . . , n and M ∈ N\{0, 1} ,

which involves k + 1 of the top observations, for k ≥ M2 − 1. The traditional

Pickands estimator corresponds to γ̂Pn,M .
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4.2.2 Hill’s estimator

A few months after the publication of Pickands estimator, Hill (Hill, 1975) pro-

posed another estimator restricted to the Fréchet case γ > 0, i.e., this estimator

is applicable only to regular varying df’s. In other words, Hill’s estimator is only

suitable for data exhibiting heavy tails such as those encountered in (re)insurance

and finance. It is the most popular tail index estimator.

Definition 4.2.2 (Hill’s estimator: γ > 0)

γ̂Hn,k =
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n,

or, equivalently

γ̂Hn,k =
1

k

k∑
i=1

i (logXn−i+1,n − logXn−i,n) .

The original derivation of Hill’s estimator relied on the notion of conditional

maximum likelihood estimation method. Let F ∈ DA
(
Φ1/γ

)
and let Yu =(

X

u
| X > u

)
denote the relative excesses over a threshold u. The conditional

distribution of Yu satisfies

F Yu (y) = y−1/γL (u y)

L (u)
, y ≥ 1,

where L ∈ RV0. Then it immediately follows that

FYu (y)→ 1− y−1/γ as u→∞,

i.e., Yu is asymptotically Pareto(1/γ) distributed. Assuming that this approx-

imation holds for the k relative excesses Xn,n/u, . . . , Xn−k+1,n/u above a high

threshold u = Xn−k,n leads to the conditional maximum likelihood estimator

1

k

k∑
i=1

log

(
Xn−i+1,n

Xn−k,n

)
,

which is exactly γ̂Hn, k.

One of the appealing features of Hill’s estimator is that it can be derived even

if we start from very different motivation points. Apart from the likelihood ap-

proach described above, the Hill estimator can be derived via a regular variation
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approach (see Embrechts et al., 1997) as well as via a graphical approach using

mean excess function or QQ-plots (see Beirlant et al., 1996).

The regular variation approach is in the same spirit as the construction of

Pickands estimator, i.e. we base the inference of γ on a reformulation of F ∈
DA (Φγ) γ > 0. According to the characterization property of F ∈ DA (Φγ)

γ > 0 if and only if the tail of F , 1 − F, is regularly varying with index

−α = 1/γ > 0 , that means that

lim
t→∞

F (tx)

F (t)
= x−α.

Partial integration of the above and use of Karamata’s theorem (see chapter 1)

leads to the relationship

1

F (t)

∫ ∞
t

(log x− log t) dF (x)→ 1

α
, x→∞. (4.6)

To turn this into an estimator we replace F by the empirical df (X1, . . . , Xn)

Fn (x) =
1

n

n∑
k=1

1{Xk≤x},

and replace t by a high data dependent level Xk,n. Then

1

Fn(Xk,n)

∫ ∞
Xk,n

(log x− logXk,n) dFn (x) =
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n.

If k →∞ and k/n→ 0 as n→∞., then Xk,n
a.s.→ ∞. as n→∞ and by (4.6)

1

k

k∑
i=1

logXn−i+1,n − logXn−k,n
P→ 1

α
, n→∞.

This gives us the Hill’s estimator.

Hill did not investigate the asymptotic behavior of γ̂Hn,k in his paper.The weak

consistency was was proved by Mason (1982) while Deheuvels et al. (1988)

proved the strong consistency. The asymptotic normality was established by

several authors such as Csörgő and Mason (1985), Davis and Resnick (1984) and

Häusler and Teugels (1985). Beirlant et al. (2006) derived a local asymptotic

normality result showing that the asymptotic variance of Hill’s estimator attains

a lower bound.
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Theorem 4.2.2 (Properties of γ̂Hn,k)

Suppose that F ∈ DA (Φγ) γ > 0, k →∞ and k/n→ 0 as n→∞.

(a) Weak Consistency:

γ̂Hn,k
P→ γ as n→∞.

(b) Strong consistency: If k/ log log n→∞ as n→∞

γ̂Hn,k
a.s.→ γ as n→∞.

(c) Asymptotic normality: Suppose that F satisfies (2.4). If lim
n→∞

√
kA (n/k) = λ

as n→∞, then

√
k
(
γ̂Hn,k − γ

) D→ N ( λ

1− ρ, γ
2

)
as n→∞.

Figure 4.2: Plot of Hill’s estimator, as a function of the number of extremes (solid
line) with 95%-confidence bounds (dashed lines), for the EVI of the standard
Pareto distribution (γ = 1) based on 100 samples of 3000 observations.

4.2.3 Moment estimator

The moment estimator, denoted by γ̂Mn,k, was proposed by Dekkers et al. (1989)

as an adaptation of the Hill estimator for γ ∈ R and not only for γ > 0.
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Definition 4.2.3 (Moment estimator: γ ∈ R)

γ̂Mn,k = M (1)
n + 1− 1

2

1−

(
M

(1)
n

)2

M
(2)
n


−1

,

where

M (r)
n = M (r)

n (k) :=
1

k

n−k∑
i=1

(logXn−i+1,n − logXn−k,n)r , r = 1, 2. (4.7)

Weak and strong consistency, as well as asymptotic normality of γ̂Mn,k have been

proven by its creators Dekkers et al. (1989).

Theorem 4.2.3 (Asymptotic properties of γ̂Mn,k)

Suppose that F ∈ DA (Hγ) γ ∈ R, k →∞ and k/n→ 0 as n→∞.

(a) Weak Consistency:

γ̂Mn,k
P→ γ as n→∞.

(b) Strong consistency: If k/ (log n)δ →∞ as n→∞,for some δ > 0, then

γ̂Mn,k
a.s.→ γ as n→∞.

(c) Asymptotic normality: Suppose that F satisfies (4.3). If lim
n→∞

√
kQ (n/k) = 0,

then √
k
(
γ̂Mn,k − γ

) D→ N (0, η2
)

as n→∞,

where

η2 =

 1 + γ2 if γ ≥ 0,

(1− γ)2 (1− 2γ)

[
4− 8

1− 2γ

1− 3γ
+

(5− 11γ) (1− 2γ)

(1− 3γ) (1− 4γ)

]
if γ < 0.
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Figure 4.3: Plot of the moment estimator, as a function of the number of ex-
tremes (solid line) with 95%-confidence bounds (dashed lines), for the EVI of
Gumbel distribution (γ = 0) based on 100 samples of 3000 observations.

4.2.4 Kernel-type estimators for γ > 0

All the estimators of EVI are based on the k largest observations. A major

drawback of these estimators is the discrete character of the behavior of these

estimators: adding a single large-order statistic in the calculation of the esti-

mator, that is, increasing k by 1, can change the actual value of the estimate

considerably. Plotting these estimators as a function of the order statistics used

therefore often results in a zigzag figure. Using a kernel function K, Csörgő

el al. (1985) proposed a smoother version of Hill’s estimator, denoted by γ̂Kn,h
where h = h (n) is a bandwidth parameter. In the same paper, it was shown

that it is possible to improve on the asymptotic variance of the estimator by

choosing appropriate kernels. In this kernel-type estimator, the bandwidth h

plays a similar role as the number of order statistics k in the aforementioned

estimators: approximately nh order statistics will be used to calculate the es-

timate. Consequently, the estimator now depends in a continuous way on the

fraction of order statistics used. Hence, plotting the estimator as a function

of the bandwidth h then yields a smooth figure. Other attempts to construct

smoothed versions of the Hill estimator can be found in Schultze and Steinebach

(1996), Kratz and Resnick (1996) and Csörgő and Viharos (1998), which con-

sider classical least-squares estimators for the slope γ > 0 in a Pareto quantile

plot.
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To define the kernel-type estimators for γ > 0, we need the following conditions

about the kernel K.

Condition (K). Let K be a function defined on (0, 1].

KC1. K(s) ≥ 0 for 0 < s <∞.

KC2. K(·) is non-increasing and right continuous on (0,∞) .

KC3.
∫ 1

0
K(u)du = 1.

KC4.
∫ 1

0
u−1/2K(u)du <∞.

Then the estimator is defined as

γ̂Kn,h =

(∫ 1/h

0

log+Qn (1− hu) d (uK (u))

)
(∫ 1/h

0

K (u) du

) ,

where h > 0 is called bandwidth, Qn is the empirical quantile function and

log+ x = log (max (x, 1)). Routine manipulation show that γ̂Kn,h can be written

in the equivalent form

γ̂Kn,h =

(
n−1∑
i=1

i

nh
Kh

(
i

nh

)
(logXn−i+1,n − logXn−i,n)

)
(∫ 1/h

0

K (u) du

) , (4.8)

where X0,1 = 1. Notice that, using the uniform kernel K = 1(0,1) and h = k/n

in (4.8) yields Hill’s estimator γ̂Hn,k as a special case.

To be able to state the consistency and asymptotic normality of γ̂Kn, k, we will

need some additional conditions on the kernel K:

KC5. There exists an M1 <∞ such that K (u) = 0 for u > M1.

KC6. There exists an M2 <∞ such that the kernel K has a derivative k (u) for

u > M2 and such that limu→∞ u
3/2k (u) = 0.

Also, we will need these conditions on the df F :
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FC1. 1. The function Q (1− ·) is regularly varying at 0 with index −γ, i.e., the
quantile function satisfies the representation

Q (1− s) = s−γc (s) exp

(∫ 1

s

b (u)

u
du

)
, 0 < s < 1, (4.9)

where c is function with c (s) → c ∈ (0,∞) as s → ∞ and b a function

with b (s)→ 0 as s→∞.

2. With out loss of generality, Q (0) = 1.

FC2. 1. In the representation (4.9) , one has that either KC5 is satisfied and

c (s) = c (constant) for 0 < s < ε for some ε > 0 or c (s) = c (constant)

for 0 < s ≤ 1.

2. One has either KC6 is satisfied or the function b in (4.9) may be chosen

to be bounded on (0, 1) .

For a discussion of these conditions on F , we refer to Csörgő et al. (1985).

Theorem 4.2.4 (Properties of γ̂Kn, h)
Let KC1—KC4 and FC1 be satisfied. Then, as h = h (n) → 0 and nh → ∞ as

n→∞.

(a) Weak consistency:

γ̂Kn,h
P→ γ as n→∞.

(b) Asymptotic normality: Moreover, if in condition FC2 is satisfied, then, for

h = h (n)→ 0 and hn→∞ as n→∞.
√
nh
(
γ̂Kn,h − γ − βC (h)

) D→ N (0, γ2σ2
K

)
as n→∞,

with βC (h) and σ2
K given by

βC (h) =

(∫ 1/h

0

b (hu)K (u) du

)
/

(∫ 1/h

0

K (u) du

)
,

σ2
K =

∫ ∞
0

K2 (u) du.
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4.2.5 Kernel-type estimators for γ ∈ R
Unfortunately, the kernel estimator γ̂Kn,h is only valid for γ > 0. Groeneboom et

al. (2003) introduced a new kernel type estimator for γ ∈ R, denoted by γ̂Wn,h ,
that inherited the smooth behavior of γ̂Hn,k as well as the general applicability of

γ̂Mn,k. It should be emphasized that the estimator γ̂
W
n,h is not a smoothed version

of the moment estimator, but is based on the von Mises conditions

lim
x→xF

d

dt

(
F (t)

F ′ (t)

)
= γ.

The estimator of Groeneboom et al. (2003) for γ ∈ R is defined as follows

γ̂Wn,h = γ̂(pos)
n − 1 +

q
(2)
n,h

q
(1)
n,h

,

where

γ̂(pos)
n =

n−1∑
i=1

i

n
Kh

(
i

n

)
(logXn−i+1,n − logXn−i,n) ,

q
(1)
n,h =

n−1∑
i=1

(
i

n

)α
Kh

(
i

n

)
(logXn−i+1,n − logXn−i,n) ,

and

q
(2)
n,h =

n−1∑
i=1

d

du

[
uα+1Kh (u)

]
u=i/n

(logXn−i+1,n − logXn−i,n) ,

with Kh (u) = K (u/h) /h and α > 0. Here K : [0, 1] → R+ is a kernel function

satisfying the following conditions:

(CK1) K (u) = 0, whenever u /∈ [0, 1) and K(u) ≥ 0, whenever u ∈ [0, 1).

(CK2) K(1) = K ′(1) = 0.

(CK3)
∫ 1

0
K(u)du = 1 and .

∫ 1

0
uα−1K(u)du 6= 0.

(CK4) K, K ′ and K ′′ are bounded.

The full description of the way γ̂Wn,h is derived, is given by Groeneboom et al.

(2003) where weak consistency and asymptotic normality are established. More

recently, Necir (2006) proposed a functional law of the iterated logarithm for

this estimator and proved its strong consistency.
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Theorem 4.2.5 (Properties of γ̂Wn,h )

(a) Weak consistency: Assume that F ∈ DA (Hγ) for some γ ∈ R. Let K be

a kernel satisfying conditions (CK1)—(CK4) and for arbitrary α > 0. If

h = h (n) is such that h→ 0 and nh→∞ as n→∞, then

γ̂Wn,h
P→ γ as n→∞.

(b) Asymptotic normality: Let K be a kernel satisfying conditions (CK1)—(CK4).

Then, for any α > 1/2 and h = h (n) with h → 0 and (nh)−α log n =

O
(

(nh)−1/2
)
as n→∞,

√
nh
(
γ̂Wn,h − γ

) D→ N (0, γ2
W

)
,

where

γ2
W =

∫ 1

0

(
a0K̃ (u) + a1K̃

(2) (u)− a2K̃
(1) (u)

)2

du,

with

K̃ (u) =

∫ 1

u

t−1d (tK (t)) , u ∈ (0, 1] ,

K̃(i) (u) =

∫ 1

u

t−1−(γ∧0)dK(i) (t) , u ∈ (0, 1] ,

and

a0 = γ ∨ 0,

a1 = 1/

∫ 1

0

t−1−(γ∧0)K(1) (t) dt,

a2 = (1 + (γ ∧ 0)) a1.

4.2.6 Automatic bandwidth choice

In the case of kernel-type estimators, the problem becomes a matter of choos-

ing an optimal bandwidth hopt for which a consistent estimate ĥopt has to be

adaptively computed. For instance, Groeneboom et al. (2003) follow a similar

approach as in Draisma et al. (1999) and Cheng and Peng (2001). They base

their estimators γ̂W1
n,h and γ̂

W2
n,h on the following respective kernels:

K1 (u) =
15

8

(
1− u2

)2
1(0,1) (u) ,
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and

K2 (u) =
35

16

(
1− u2

)3
1(0,1) (u) .

The five steps algorithm leading to ĥopt is as follows:

• Step 1: Select a bootstrap sample X∗1 , . . . , X∗n1 of size n1 < n from the

original sample (X1, . . . , Xn) and compute γ̂W
∗
1

n,hand γ̂
W ∗
2

n,h in terms of the

order statistics X∗1,n1, < · · · < X∗n1,n1pertaining to the bootstrap sample.

Next compute

δ∗n1 = γ̂
W ∗
1

n,h − γ̂
W ∗
2

n,h .

• Step 2: Repeat step 1, r times independently. With the obtained sequence
δ∗n1,1, . . . , δ

∗
n1
compute

M̂SE
∗ (
δ∗n1
)

=
1

r

r∑
i=1

(
δ∗n1 ,i

)2
.

• Step 3: Compute

h∗ (n1) = arg min M̂SE
∗ (
δ∗n1
)
.

• Step 4: Repeat steps 1-3 independently with n2 = [
n21
n

] instead of n1.

Let

h∗ (n2) = arg min M̂SE
∗

(δ∗n2) .

• Step 5: Estimate the optimal bandwidth hopt by

ĥopt = ψ
(h∗ (n1))2

h∗ (n2)
,

where ψ is a function of h∗ (n1) and h∗ (n2) depending on kernels K1 and

K2 and sample sizes n1 and n2.

4.3 Optimal sample fraction selection

All the estimators of EVI are crucially depend on the choice of the sample fraction

k that is used for estimation, i.e., the number of extreme order statistics on which

the estimation is based. However, the choice of the optimal threshold is a diffi cult
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problem. If k is too large, then the estimators have a large bias, while on the

other hand, their variance is large if k is small. In this section, where we mostly

concentrate on Hill’s estimator γ̂Hn,k, we present some of the proposed methods

to balance between these two vices in order to get an optimal number k which

locates where the distribution tail really begins.

It seems reasonable that minimizing the MSE allows for a compromise between

the bias and variance components yielding the most accurate estimate possible.

That is, the optimal choice of k, denoted by kopt, corresponds to the smallest

MSE, i.e,

kopt = arg min
k
MSE (γ̂n)

= arg min
k
E∞ (γ̂n − γ)2 ,

where E∞ denotes the expectation with respect to the limit distribution.

Hall and Welsh (1985) proved that the asymptotic MSE of Hill’s estimator is

minimal for

kopt ∼ n2ρ/(2ρ+1)

(
C2ρ (ρ+ 1)2

2D2ρ3

)1/(2ρ+1)

.

Since parameters ρ > 0, C > 0 and D 6= 0 are unknown, this result cannot be

applied directly to estimate k.

4.3.1 Bootstrap method

The number kopt that are fitted to the tail corresponds to the minimum of MSE

MSE (γ̂n) = E∞ (γ̂n − γ)2

= bias2 (γ̂n) + V ar (γ̂n) ,

where the bias is given by

bias (γ̂n) = E∞ (γ̂n)− γ,

and the variance is determined by

V ar (γ̂n) = E∞
(
(γ̂n − E∞ (γ))2) .
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Since γ is unknown and MSE cannot be evaluated, the bootstrap approach pro-

poses replacing in the MSE by an average calculated over some amount of re-

samples. These resamples are drawn from the initial sample (X1, . . . , Xn). This

implies that some observations from (X1, . . . , Xn) will be represented in a re-

sample with repetitions and others will not be represented at all. As a result,

in order to estimate k one takes the value that minimizes a bootstrap empirical

estimate of the MSE. More precisely, the bootstrap estimate of the bias is given

by

b∗ (n1, k1) = E∞ (γ̂∗ (n1, k1) | (X1, . . . , Xn))− γ,

and the bootstrap estimate of the variance is determined by

V ar (γ̂n) = E∞

(
(γ̂∗ (n1, k1)− E∞ (γ̂∗ (n1, k1) | (X1, . . . , Xn)))

2 | Xn
)
.

To construct these estimates, a smaller sample size n1 ≤ n is used. It is de-

termined by the resample
(
X∗1 , . . . , X

∗
n1

)
drawn randomly from (X1, . . . , Xn)

with replacement, where X∗1,nn ≤ · · · ≤ X∗n1,n1 are the order statistics of the

sample
(
X∗1 , . . . , X

∗
n1

)
. In the bootstrap estimates considered (X1, . . . , Xn) is

fixed and the expectation is calculated among all theoretically possible resam-

ples
(
X∗1 , . . . , X

∗
n1

)
practice, the expectation is replaced by the average over the

underlying resamples. The reason for using smaller resamples is that the clas-

sical bootstrap with resamples of the same size n as the initial sample leads to

underestimates of the bias. Using a smaller sample size n1 ≤ n and k1 data may

help to avoid the situation where the bootstrap estimate of the bias is equal to

zero regardless of the true bias of the estimate.

4.3.2 Double bootstrap method

The double bootstrap, proposed in Danielsson et al. (1997), improves the boot-

strap method (Hall, 1990). Instead of estimation of the MSE we use the auxiliary

statistic

MSE (zn,k) = E
((
zn,k − z∗n,k

)2
)
,

where

zn,k = Mn,k − 2 (γ̂n)2 , Mn,k =
1

k

k∑
i=1

(logXn−i+1,n − logXn−k,n)2 ,

and and z∗n,k is a bootstrap estimate of zn,k. Since Mn,k/2γ̂n and γ̂n are con-

sistent estimates of γ, then zn,k → 0 as n → ∞. Therefore, the asymptotic
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MSE of zn,k is defined by AMSE (zn,k) = E
(
z2
n,k

)
. Hence, the value kopt of k,

which minimizes AMSE (zn,k), has the same order in n as kopt , the value that

minimizes MSE (γ̂n) .

The double bootstrap algorithm is as follows:

• Step 1: Draw B bootstrap subsamples of size n1 ∈ (n,
√
n) (e.g., n1 ∼ n3/4)

from the original sample and determine the value k̂∗n1 that minimizes the

MSE of zn1,k.

• Step 2: Repeat this for B subsamples of size n2 = bn2
1/nc and determine

the value k̂∗n2 that minimizes the MSE of zn2,k.

• Step 3: Calculate k̂opt by the formula

k̂opt =


(
k̂∗n1

)2

k̂∗n2

(
1− 1

ρ̂1

) 2
2ρ̂1−1

 ,
where

ρ̂1 =
log k̂∗n1

2 log
(
k̂∗n1/n1

) .
4.3.3 Sequential procedure

Drees and Kaufmann (1998) proposed the following algorithm:

• Step 1: Obtain an initial estimate γ̂0 = γ̂(H)
n (2

√
n) for the parameter γ by

Hill’s estimator.

• Step 2: For rn = 2.5γ̂0n
0.25, compute

k̂ (rn) = min

{
k ∈ 2, . . . , n− 1 : max

2≤i≤k

√
i
∣∣∣γ̂(H)
n (i)− γ̂(H)

n (k)
∣∣∣ > rn

}
.

If rn is too large and max2≤i≤k
√
i
∣∣∣γ̂(H)
n (i)− γ̂(H)

n (k)
∣∣∣ > rn is not satisfied,

it is recommended to repeatedly replace rn by 09rn until k̂ (rn) is well

defined.
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• Step 3: Compute, for ε = 0.7,

k̂opt =
1

3
(2γ̂0)1/3

 k̂ (rεn)(
k̂ (rn)

)ε
1/(1−ξ)

.

The method is sensitive to the choice of rn. For a complete description of

this sequential approach, we refer to Danielsson et al. (2001) where it is

mentioned that the procedure also works for a much broader class of tail

index estimators including Pickands’estimator, the moment estimator.

4.3.4 Cheng and Peng procedure

Byminimizing the absolute coverage error for confidence intervals of level (1− α),

Cheng and Peng (2001) proposed an optimal sample fraction as follows:

k̂opt =


n−ρ̂/(1−ρ̂)

(
(1 + 2z2

α)

3δ̂ (1− 2ρ̂)

)1/(1−ρ̂)

if δ̂ > 0,

n−ρ̂/(1−ρ̂)

(
(1 + 2z2

α)

−3δ̂

)1/(1−ρ̂)

if δ̂ < 0,

where zα is defined by P (N (0, 1) ≤ z) = 1−α, i.e., zα is the (1−α)-quantile of

the standard normal distribution,

ρ̂ = − 1

log 2


∣∣∣∣∣∣∣
M

(2)
n

(
n/
(
2
√

log n
))
− 2

{
M

(1)
n

(
n/
(
2
√

log n
))}2

M
(2)
n

(
n/
(√

log n
))
− 2

{
M

(1)
n

(
n/
√

log n
)}2

∣∣∣∣∣∣∣
 ,

and

δ̂ := (1 + ρ̂) (log n)−ρ̂
M

(2)
n

(
n/
(√

log n
))
− 2

{
M

(1)
n

(
n/
√

log n
)}2

−2ρ̂
{
M

(1)
n

(
n/
√

log n
)}2 ,

with, M (r)
n (k) , (r = 1, 2) , as defined by (4.7).

4.3.5 Reiss and Thomas approach

Reiss and Thomas (1997) proposed a heuristic method of choosing the optimal

number of upper extremes used in the computation of the tail index estimate.
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For Hall’s model, this methodology selects the value k̂opt of kopt which minimizes

the quantity

1

k

k∑
i=1

iθ |γ̂n (i)−median (γ̂n (1) , . . . , γ̂n (k))| , 0 ≤ θ ≤ 0.5.

Considering Hill’s and the moment estimators, Neves and Fraga Alves (2004)

discuss and evaluate the performance of this methodology by substantially re-

ducing the domain of variation of the weight θ of the penalty term iθ. Depending

on the prior information one might have about the value of the EVI, the authors

provide, for each estimator, suitable values of θ and indicate which expression,

out of the two above, to minimize. On the light of a thorough simulation study

they come up with the overall conclusion that the most proper choice for θ is 0.

4.3.6 Example

We apply the algorithms of Cheng and Peng (2001) and Reiss and Thomas

(1997) on 2000 simulated observations from the standard Pareto distribution.

The results are summarized in Table 3.1 and illustrated by Figure 3.4.

Algorithm # of extremes % of extremes Estimate EVI
Cheng and Peng 123 6.15 1.05
Reiss and Thomas 212 10.60 0.99

Table 4.1: Optimal numbers of upper order statistics used in the computation of
Hill’s estimate of the EVI of Pareto(1) distribution, based on 3000 observations.

4.4 High quantile estimation

This section discusses estimators of the high quantiles for heavy-tailed distribu-

tions, i.e, quantiles of order (1− p) with 0 < p < 1 and p tending to zero as the

sample size increases. The quantile of order (1− p) or (1− p)-quantile of df F
is defined to be the solution, denoted by xp, of the equation 1 − F (x) = p. We

define, by using the functions introduced in definition 3.2.3, the (1− p)-quantile
of F as

xp = Q (1− p) = U(1/p).
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Figure 4.4: Hill’s estimator of the EVI of the standard Pareto distribution, based
on 3000 observations. The horizontal line represents the true value of the tail
index whereas the vertical lines correspond to the optimal numbers of extremes
of Cheng and Peng (dashed) and Reiss and Thomas (solid).

The estimation of high quantiles great interest in many applications such as

insurance, finance, hydrology and statistical quality when the parametric form of

the underlying distribution is not available. The main diffi culty of this estimation

is due to the fact that when p is very small, the point xp is beyond the range of

the sample (X1, . . . , Xn) withdrawn from an unknown df F .

As we use asymptotic theory, p must depend on the sample size n, i.e., p = pn.

Two cases are possible for xp, within and outside the sample. If pn → 0 with

npn → c ∈ [1,∞] as n → ∞, the (1 − pn)-quantile is within the sample and

if pn → 0 with npn → c ∈ [0, 1) as n → ∞, the (1 − pn)-quantile is outside

the sample. In other words, the within-sample estimation is possible up to the

(1/n)-quantile whereas for p < 1/n, quantile estimates are beyond the range of

the data. The latter case is the most relevant for purposes of real-life applications.

For the first situation, we apply result (3.2) with s = 1 − p = 1 − (i − 1)/n for

i = 2, . . . , n and we get

Qn

(
1− i− 1

n

)
= Xn−i+1,n.

In the second case, we have to infer beyond the limits of the sample by extrapo-

lating from intermediate quantiles. Obviously, this cannot be done without some

kind of information on the tails of the distribution. An accurate modelling of

the distribution tails is then needed. In other words, a good estimate of the tail
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index is essential to the process of extreme quantile estimation. Since estimating

high quantiles is directly linked to estimating the EVI, one would expect to find,

in the literature, as many quantile estimators as there are tail index estimators.

Moreover, confidence intervals for the quantile estimates are easily constructed

since the proposed estimators are asymptotically normal. Finally, endpoints in

case they are finite are estimated as quantiles of order 1.

Here, we discuss the simple approach proposed by Weissman (1978) based on

the Hill estimator. If F ∈ DA (Hγ) with γ > 0, then

1− F (x) = x−1/γL (x) ,

where L is a slowly varying function at infinity, that is, L (tx) /L (t) → 1 as

t→∞, x > 0. In terms of the quantile, we have

Q (1− s) = sγL1 (s) ,

where L1 is a slowly varying function at infinity, that is, L (λs) /L (s) → 1 as

s→ 0, λ > 0. Which allows to obtain

Q (1− λs)
Q (1− s) = λγ,

then

Q (1− λs) = λγQ (1− s) .

By setting λs = p and s = k/n, we obtain

Q (1− p) = Q

(
1− k

n

)(np
k

)γ
.

Then, the quantile estimator is

x̂p = Q̂ (1− p)

= Q̂n

(
1− k

n

)(np
k

)γ̂Hn,k
.

Finally, the Weissman estimator is

x̂p = Xn−k,n

(np
k

)γ̂Hn,k
.
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4.5 Bias reduction

The problem with Hill’s estimator of the EVI, is that they usually exhibit a

substantial bias for large values of the number k of upper order statistics used in

the estimation. This bias arises from taking asymptotic approximations as exact

equalities, which is sometimes overoptimistic. To solve this problem, several bias-

reduced estimators have been introduced in recent literature mainly for heavy-

tailed distributions. The advantage of such estimators is that, not only they

reduce the bias to a large extent but they preserve the variance level with respect

to the classical estimators as well (see Feuerverger and Hall, 1999). Furthermore,

the following asymptotic distributional representation holds true for any one of

them (denoted by γ̂BCn )

γ̂BCn
D
= γ +

η√
k
Zk + oP (A (n/k)) as n→∞,

where Zk is an asymptotically standard normal rv, A is the function defined

in (4.3) and η2/
√
k is the asymptotic variance of the bias-corrected estimator

γ̂BCn . Hence, it is readily checked that if
√
kA (n/k) → λ, then

√
k
(
γ̂BCn − γ

)
is asymptotically normal with null mean value whatever λ, is (null or not).

For a review of some explicit bias-corrected estimators, one may consult Gomes

and Figueiredo (2006). As an example of such bias-corrected estimators, we

consider the so-called (refined) exponential regression estimator, first introduced

in Beirlant et al. (1999) and Feuerverger and Hall (1999).

Let, for intermediate k,

Uik = log
Xn−i+1,n

Xn−k,n
and Vi = i

(
log

Xn−i+1,n

Xn−i,n

)
, i = 1, . . . , k,

respectively be the log-excesses and the scaled log-spacings. It is shown in, e.g.,

Beirlant et al. (1999) that, under the second order framework (2.4), both Uik
and Vi approximately follow exponential regression models. More precisely, we

have

Uik ∼ γEk−i+1,n + A (n/k)
Y ρ
n−i+1,n − 1

ρ
and Vi ∼ γ

(
1 +

A (n/k) (k/i)ρ

γ

)
Ei,

where E1,n ≤ · · · ≤ En,n and Y1,n ≤ · · · ≤ Yn,n are the respective order statistics

pertaining to the standard exponential sample (E1, . . . , En) and the unit Pareto
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sample (Y1, . . . , Yn) . Beirlant et al. (1999) and Feuerverger and Hall (1999) ob-

tain simultaneous MLE’s for ρ and A(n/k), whereas Gomes and Martins (2002)

start with an external estimation of the second order parameter ρ and then

deduce an estimate for the first order parameter γ.

Weissman’s estimator of high quantiles for heavy-tailed distributions, known to

be largely biased. As a better alternative to Weissman’s estimators, several esti-

mators of extreme quantiles with reduced biases are proposed in the literature,

see e.g., Gomes and Martins (2004), Caeiro et al. (2009), Gomes and Figueiredo

(2006) and the references therein. We derive a new estimator for γ̂Hn,k with re-

duced bias by applying the results of Feuerverger and Hall (1999) and Beirlant et

al. (1999, 2002) who proposed, under (4.4), the following exponential regression

model for the log-spacings of order statistics

Zi ∼ γ + A
(n
k

)( i

k + 1

)−ρ
+ εi, 1 ≤ i ≤ k, (4.10)

where the εi are zero-centered error terms. We get the Hill estimator γ̂
H when

we ignore the term A (n/k) in (4.10) and by taking the mean of the left-hand

side of (4.10). We can exploit (4.10), using a least-squares approach, to propose

a reduced-bias estimator for γ in which ρ is substituted by a consistent estimator

ρ̂ = ρ̂(n, k) (see for instance Beirlant et al.,2002 and Fraga Alves et al., 2003) or

by a canonical choice, such as ρ = −1 (see e.g., .Feuerverger and Hall, 1999 or

Beirlant et al., 1999). The least-squares estimators for γ and A (n/k) are then

given by

γ̂LSn,k (ρ̂) =
1

k

k∑
i=1

Zi −
ÂLS (ρ̂)

1− ρ̂ = γ̂Hn,k −
ÂLS (ρ̂)

1− ρ̂ ,

ÂLS (ρ̂) =
(1− 2ρ̂) (1− ρ̂)2

ρ̂2

1

k

k∑
i=1

((
i

k + 1

)−ρ̂
− 1

1− ρ̂

)
Zi.

The main asymptotic properties of γ̂LSn,k (ρ̂) and ÂLS (ρ̂) as a function of Brownian

bridges have been established in Deme et al. (2013, Lemma 5). Note that γ̂LSn,k (ρ̂)

can be viewed as the kernel estimator

γ̂LSn,k (ρ̂) = γ̂Kρ =
1

k

k∑
i=1

Kρ

(
i

k + 1

)
Zi,
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where for 0 < u ≤ 1,

Kρ (u) =
1− ρ
ρ

K (u) +

(
1− 1− ρ

ρ

)
Kρ (u) ,

with K(u) = 1(0<u<1) and Kρ (u) =
(

1−ρ
ρ

)
(u−ρ − 1)1(0<u<1), both kernels sat-

isfying condition (K). On the contrary Kρ does not satisfy statement KC1 in

condition (K).

Now, using the second order refinements of assumption, we can construct the

following asymptotically unbiased estimator of the quantile

QLS
n (1− s) = (ns/k)−γ̂

LS(ρ̂) Xn−k,n

(
1− ρ̂−1ÂLS (ρ̂)

(
1− (ns/k)−ρ̂

))
.

The effect of the bias reduction on the MSE is illustrated in Figure 3.5 where we

show the MSE computed over 100 samples of size n = 1000 from the Burr(1,0.5,2)

distribution and s = 0.0002. We can observe that the MSE of the bias reduced

estimator QLS
n (1− s) is almost constant with respect to k.

Figure 4.5: (a) Bias and (b) MSE of QW
n (1− s) (dashed line) QLS

n (1− s) (solid
line) with s = 0.0002 for 100 simulated samples of size n = 1000 from the
Burr(1,0.5,2) distribution. The horizontal line indicates the true value ofQ(1−s).



Chapter 5

Risk measures and premium
principles

The concept of risk measures and premium principles have been studied from

various angles in the actuarial literature. For an insurance companies, any con-

tract of insurance brings a risk. A claim may occur some time in the future

and the amount of the claim is a non-negative rv which is called a risk. One

of the main tasks of actuaries is to calculate the risk premiums. The basis of

insurance is the hypothesis that claims can be compensated by fixed payments

called premiums. Premiums are calculated by a premium calculation principle.

In order to quantify risk, it is necessary to specify the probability distributions of

the risks involved and to apply a preference function to these probability distri-

butions. The first use of risk measures in actuarial science was the development

of premium principles. These were applied to a loss distribution to determine

an appropriate premium to charge for the risk. In this chapter, we focus on the

premium that accounts for the monetary payout by the insurer in connection

with insurable losses plus the risk loading that the insurer imposes to reflect

the fact that experienced losses rarely, if ever, equal expected losses. We give

the definition of risk measures and premium principle. We discuss some desir-

able properties of premium calculation principles. We also list many well-known

premium principles and tabulate which of the properties they satisfy.

78
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5.1 Risk measures

5.1.1 Definition

Risk measures are used to determine the amount of an asset or set of assets,

traditionally currency, to be kept in reserve. The aim of this reserve is to make

the risks taken by financial institutions, such as insurance companies, accept-

able to the regulator. Because in actuarial applications a risk is represented

by a non-negative rv, measuring risk is equivalent to establishing a correspon-

dence between the space of rv’s and non-negative real numbers R+. Thus, a

risk measure is a functional that assigns a non-negative real number to a risk.

It is essential to understand which aspect of the riskiness associated with the

uncertain outcome the risk measure attempts to quantify.

Definition 5.1.1 (Risk measure)
Let X be a set of a risks that is set of a non-negative rv’s on the probability space
(Ω,F ,P). A risk measure R is a functional mapping from X to the non-negative
real numbers R+, possibly infinite, i.e., R : X→R+ ∪ {∞} .

5.2 Premium principles

The premium calculation principle is one of the main objectives of study for

actuaries. Premium principles are the most important risk measures in actuarial

sciences and frequently the insurers are also interested in measuring the upper

tails of df’s. There are different methods that actuaries use to develop premium

principles (see, Denuit et al., 2005). In this section, we list some premium

principles and discuss their desirable properties.

Definition 5.2.1 (Premium principle)

A premium principle Π, is a risk measure, is a function from a set of insurance

risks X to the set of non-negative real numbers R+. It is possible that Π takes

the value ∞, in this case we say that the risk is unacceptable or non-insurable.
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5.2.1 Properties for premium principles

In this subsection, we list various properties that premium principles Π[X] may

or may not satisfy.

1. Law invariance (independence): For all X, Y ∈ X and ∀x ∈ R, a premium
principle Π is law invariant if

Π[X] = Π[Y ] when P (X ≤ x) = P (Y ≤ x) .

This property means that for a given risk X the premium Π[X] depends on

X only via the df P (X ≤ x). It states that the premium depends only on

the monetary loss of the insurable event and the probability that a given

monetary loss occurs, not the cause of the monetary loss.

2. Risk loading: A premium principle Π induces a risk loading if and only if

Π[X] ≥ E (X) for all X ∈ X .

This property is desirable because one generally requires a premium rule

to charge at least the expected payout of the risk X, namely E (X), in

exchange for insuring the risk. Otherwise, the insurer will lose money on

average.

3. No unjustified risk loading:

If a risk X ∈ X is identically equal to a constant c ≥ 0, almost everywhere,

then Π[X] = c.

This property means that, in contrast to property 2 (risk loading), if we

know for certain (with probability 1) that the insurance payout is c, then

we have no reason to charge a risk loading because there is no uncertainty

as to the payout.

4. Maximal loss (no rip-off ):

Π[X] ≤ max (X) , for all X ∈ X .

5. Translation equivariance (or translation invariance): For all X ∈ X and

for all a ≥ 0, Π is called translution invariunt if and only if

Π[X + a] = Π[X] + a.
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If we increase a risk X by a fixed amount a, then property 5 states that

the premium for X + a should be the premium for X increased by that

fixed amount a.

6. Scale equivariance (scale invariance): Π is called scale invariunt if and only

if

Π[bX] = bΠ[X] for all X ∈ X and for all b ≥ 0.

Note that properties 5 and 6 imply property 3 as long as there exists a

risk Y such that Π[Y ] < ∞. This property is also known as homogeneity
of degree one in the economics literature. This property essentially states

that the premium for doubling a risk is twice the premium of the single

risk. One usually uses a noarbitrage argument to justify this rule. Indeed,

if the premium for 2X were greater than twice the premium of X, then one

could buy insurance for 2X by buying insurance for X with two different

insurers, or with the same insurer under two policies.

7. Additivity: For all X, Y ∈ X , a premium principle Π is called additive if

and only if

Π[X + Y ] = Π[X] + Π[Y ].

This is a stronger form of property 6 (scale equivariance). One can use a

similar no-arbitrage argument to justify the additivity property.

8. Subadditivity: A premium principle Π is called subadditive if and only if

Π[X + Y ] ≤ Π[X] + Π[Y ] for all X, Y ∈ X .

Subadditivity is a reasonable property because the no-arbitrage argument

works well to ensure that the premium for the sum of two risks is not greater

than the sum of the individual premiums; otherwise, the buyer of insurance

would simply insure the two risks separately. However, the no-arbitrage

argument that asserts that Π[X + Y ] cannot be less than Π[X] + Π[Y ]

fails because it is generally not possible for the buyer of insurance to sell

insurance for the two risks separately.

9. Superadditivity:

Π[X + Y ] ≥ Π[X] + Π[Y ] for all X, Y ∈ X .
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Superadditivity might be a reasonable property of a premium principle if

there are surplus constraints that require that an insurer charge a greater

risk load for insuring larger risks. For example, we might observe in the

market that Π[2X] > 2Π[X] because of such surplus constraints. Note that

both properties 8 and 9 can be weakened by requiring only Π[bX] ≤ bΠ[X]

or Π[bX] ≥ bΠ[X] for b > 0, respectively. Next, we weaken the additivity

property by requiring additivity only for certain insurance risks.

10. Additivity for independent risks:

Π[X + Y ] = Π[X] + Π[Y ] for all X, Y ∈ X , such that X and Y are

independent.

Some actuaries might feel that property 7 (additivity) is too strong and

that the no-arbitrage argument only applies to risks that are independent.

They avoid the problem of surplus constraints for dependent risks.

11. Additivity for comonotonic risks:

Π[X + Y ] = Π[X] + Π[Y ] for all X, Y ∈ X , such that X andY are

comonotonic.

Additivity for comonotonic risks is desirable because if one adopts sub-

additivity as a general rule, then it is unreasonable to have Π[X + Y ] <

Π[X] + Π [Y ] because neither risk is a hedge against the other, that is,

they move together (see Yaari, 1987),. If a premium principle is additive

for comonotonic risks, then is it layer additive (see Wang, 1996). Note

that property 11 implies property 6, (scale equivariance), if Π additionally

satisfies a continuity condition. Next, we consider properties of premium

rules that require that they preserve common orderings of risks.

12. Monotonicity:

Let X, Y ∈ X , If X (ω) ≤ Y (ω) for all ω ∈ Ω, then Π[X] ≤ Π[Y ].

13. Preserves first stochastic dominance (FSD) ordering

If SX (t) ≤ SY (t) for all t ≥ 0, then Π[X] ≤ Π[Y ].
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14. Preserves stop-loss ordering (SL) ordering:

If E (X − d)+ ≤ E (Y − d)+ for all d ≥ 0, then Π[X] ≤ Π[Y ].

Property 1, (Independence), together with property 12, (Monotonicity),

imply property 13, (preserves FSD ordering). Also, if Π preserves SL or-

dering, then Π preserves FSD ordering because stop-loss ordering is weaker.

These orderings are commonly used in actuarial science to order risks be-

cause they represent the common orderings of groups of decision makers

(see, Kaas et al. 1994), for example.

15. Continuity:

Let X ∈ X , then,

lim
a→0+

Π [max (X − a) , 0] = Π[X] and lim
a→∞

Π [min (X, a)] = Π[X].

16. Iterativity:

Π[X + Y ] = Π [Π [X|Y ]] for all X, Y ∈ X .

The premium for X can be calculated in two steps. First, apply Π[X] to

the conditional distribution of X, given Y = y. The resulting premium is

a function h(y), say, of y. Then, apply the same premium principle to the

rv Π[X|Y ] = h(Y ).

Coherence

Several authors have selected some of these conditions to form a set of require-

ments that any risk measure should satisfy. The following definition is taken

from the seminal paper of Artzner et al. (1999).

Definition 5.2.2 (Coherence)
A coherent risk measure is a function that satisfies properties of monotonicity,

subadditivity, homogeneity and translational invariance.
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5.2.2 Various premium principles

We give some premium principles. For more details, we refer to Young (2004).

A. Net Premium Principle: The net premium principle is given by

Π[X] = E (X) .

This premium does not load for risk. It is the first premium principle

that many actuaries learn. It is widely applied in the literature because

actuaries often assume that risk is essentially non-existent if the insurer

sells enough identically distributed and independent policies.

B. Expected Value Premium Principle: The expected value principle is given

by

Π[X] = (1 + θ)E (X) , θ > 0.

This premium principle builds on the net premium principle, by including

a proportional risk load. It is commonly used in insurance economics and

in risk theory. The expected value principle is easy to understand and to

explain to policyholders.

C. Variance Premium Principle: The variance principle is given by

Π[X] = E (X) + αV ar(X), α > 0.

The loading is proportional to V ar(X). This principle counts two charac-

teristics of the risk - the mean value and the variance and is more sensible

to higher risks. The premium principle also build on the net premium prin-

ciple by including a risk load that is proportional to the variance (standard

deviation) of the risk. Bühlmann (1970) studied this premium principle in

detail.

D. Standard Deviation Premium Principle: This premium is given by

Π[X] = E (X) + β
√
V ar(X), β > 0.

The loading is proportional to the standard deviation of X. The loss can

be written as

Π[X]−X =
√
V ar(X)

(
β − X − E (X)√

V ar(X)

)
,
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or the loss is equal to the loading parameter minus a rv with mean value

0 and variance 1.

E. Exponential Premium Principle: This premium is defined by the equation

Π[X] =
1

θ
log(E (exp(θX))), θ > 0.

This premium principle arises from the principle of equivalent utility when

the utility function is exponential.

F. Esscher Premium Principle: For some θ > 0 and for some rv Z, Bühlmann

(1980) derived this premium principle when he studied risk exchanges

Π[X] =
E(Xexp(θZ))

E(exp(θZ))
.

G. Principle of Equivalent Utility: The equivalent utility premiumΠ is derived

by solving the following equation

u(w) = E [u (w −X + Π)] ,

where u is an increasing, concave utility of wealth (of the insurer), and w

is the initial wealth of the insurer.

H. Swiss Premium Principle: For a given non-negative and non-decreasing

function u on R and a given parameter p ∈ [0, 1], the Swiss premium Π is

the root of

E (u (X − pΠ)) = u ((1− p) Π) .

I. Proportional Hazards Premium Principle:

Π[X] =

∫ ∞
0

(
F (x)

)ρ
dx,

where ρ ≥ 0 is called a risk index or distortion parameter. This parame-

ter controls the amount of the risk loading included in the premium for

given riskiness of the loss variable X. Wang (1996) studied the many nice

properties of this premium principle.
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J. Distortion Risk Premium Principle:

Π[X] =

∫ ∞
0

g
(
F (x)

)
dx,

where g is an increasing function that maps [0, 1] onto [0, 1]. The function

g is called a distortion and g
(
F (x)

)
is called a distorted probability.

Distortion risk premium principles have their origin in Yaari’s (1987) dual

theory of choice under risk that consists in measuring the risks by applying

a distortion function g on the df F. The net premium principle and pro-

portional hazards premium principle are a special cases of distortion risk

premium principle with the distortions g given by g(s) = s and g(s) = sρ

respectively. We give some distortion functions in section 3 of chapter 6.

For the other distortions, see Wang (1996).

In the Table 5.1, we list the properties of precedents premium principles where

‘Y’indicates that the premium principle satisfies the given property whereas ‘N’

indicates that the premium principle does not satisfy.

Premium principle letter −→
Property number ↓ A B C D E F G H I J

1 Y Y Y Y Y Y Y Y Y Y
2 Y Y Y Y Y N Y Y Y Y
3 Y N Y Y Y Y Y Y Y Y
4 Y N N N Y Y Y Y Y Y
5 Y N Y Y N Y Y N Y Y
6 Y Y N Y N N N N Y Y
7 Y Y N N N N N N N N
8 Y Y N N N N N N Y Y
9 Y Y N N Y N N N N N
10 Y Y Y N N N N N N N
11 Y Y N N Y N N N Y Y
12 Y Y N N Y N Y N Y Y
13 Y Y N N Y N Y Y Y Y
14 Y Y N N Y N Y Y Y Y
15 Y Y Y Y Y Y Y Y Y Y
16 Y Y Y Y Y Y Y Y Y Y
Table 5.1: Properties of premium principles.



Chapter 6

Empirical estimation of the
distortion risk premiums for
heavy-tailed losses

In this chapter, we deal with the empirical estimation of the distortion risk pre-

miums for heavy tailed losses by making use of the EVT. However, this approach

has often a strong asymptotic bias in the estimation. Therefore we look at this

framework here and propose a bias-reduced of the classical estimators already

suggested in the literature. A simulation study is provided in order to prove the

effi ciency of our method.

6.1 Semi-parametric estimator for the distor-

tion risk premiums

As mentioned in chapter 5, the risk premiums are used to quantify insurance

losses. One of the most commonly used is the net premium

Π = E (X) =

∫ ∞
0

F (X) dx.

In order to avoid that the insurer loses money on average, premiums are required

to be greater than or equal to the net premium Π (see property 2, risk loading).

To achieve this goal Wang (1996) proposed the distortion risk premium, which

is defined by

Π (g) =

∫ ∞
0

g
(
F (X)

)
dx,

87
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where g : [0, 1] → [0, 1] is a non-decreasing function, called distortion function,

satisfying g (0) = 0 and g (1) = 1. In general, the function g is parametrized by

a one dimentional parameter called the distortion parameter or the risk aversion

index. This parameter controls the amount of the risk loading included in the

premium. Along this chapter, we assume that F is a continous loss distribution.

Changing variables and integrating by parts yield the following expression for

Π (g) , in terms of the quantile function Q,

Π (g) =

∫ 1

0

g′ (s)Q (1− s) ds, (6.1)

where, g′ denotes the Lebesgue derivative of g.

As mentioned in chapter 5, an example of such a distortion function g is g(x) =

x1/r, for r ≥ 1. Therefore, we obtain the Proportional Hazard Premium (PHP)

defined as follows

Πr (X) =

∫ ∞
0

(
F (x)

)r
dx.

Note that this quantity is not necessarily finite. The parameter r ≥ 1 represents

the distortion coeffi cient. When the parameter is at its minimal value, r = 1,

then Πr (X) is the net premium Π, and thus there is no loading. The risk loading

increases when r increases. This class of premium has been extensively studied

in the literature in particular as it can also be grounded in economics via Yaari’s

(1987) dual theory of expected utility.

For a high layer with retention level R > 0, the corresponding PHP or the

reinsurance premium is defined as

Πr,R =

∫ ∞
R

(
F (x)

)1/r
dx.

For recent literature on statistical inference for distortion premiums, we refer

to Peng et al. (2001) Jones and Zitikis (2003), Necir and Boukhetala (2004),

Centeno and Andrade (2005), Necir et al. (2007), Jones and Zitikis (2003, 2007),

Brazauskas et al. (2008), Necir and Meraghni (2009), Necir et al. (2010) Necir

and Zitikis (2011), Brahimi et al. (2012), Deme et al. (2013), Deme and Lo

(2013), Benkhelifa (2014a, 2014b) and the references therein.

To estimate Π (g) , we consider a random sample given by iid rv’s whose the

common df is that of the risk X and let X1,n, . . . , Xn,n be the corresponding
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order statistics. The empirical estimator of Π (g) is obtained by replacing the

true quantile Q on the right-hand side of formula (6.1) by the sample quantiles

Qn, see (3.2). Then, we obtain the following natural estimator

Π̂ (g) =

n∑
i=k+1

ai,n (g)Xn−i+1,n, (6.2)

whose right-hand side is an L-statistic with the coeffi cients

ai,n (g) = g

(
i

n

)
− g

(
i− 1

n

)
, i = 1, . . . , n.

Jones and Zitikis (2003) showed that, using the asymptotic theory for L-statistics

(see, e.g., Shorack and Wellner, 1986) for underlying distributions with a suffi -

cient number of finite moments and under certain regularity conditions on the

distortion function g, the asymptotic normality of Π̂ (g)

√
n
(

Π̂ (g)− Π (g)
)
D→ N

(
0, σ2

g

)
, (6.3)

provided that the variance

σ2
g =

∫ 1

0

∫ 1

0

(min (s, t)− st) g′ (s) g′ (t) dQ (1− s) dQ (1− t) <∞.

The same authors are also discussed the PHP estimators. In this case the as-

ymptotic normality (6.3) holds for any 1 < γ < 2, provided that

E (Xη) <∞ for some η > 2r/ (2− r) .

We assume that the distortion functions g are such that t 7→ g (t) are regularly

varying at zero with index 1/β ∈ (0, 1] , i.e.,

g (t) = t1/β`g (t) , (6.4)

where `g is a slowly varying function at zero satisfying `g (λt) /`g (t)→ 1 as t→ 0

for λ > 0. In this section, we present an asymptotically normal semi-parametric

estimator for the distortion risk premiums Π (g) of heavy-tailed claim amounts.

Moreover, we focus on the case γ ∈ (1/2, 1) and β ∈ [1, 1/γ) in order to ensure

that the Π (g) is finite and since in that case the results (6.3) of Jones and Zitikis

(2003) cannot be applied, the second moment of X, E (X2) , being infinite and

thus we need to seek another approach to handle this situation. By making use

of the EVT, Necir and Meraghni (2009) proposed an alternative estimator for

Π (g) and established its asymptotic normality for any γ ∈ (1/2, 1) .
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6.1.1 Defining the estimator

As above mentioned, the use of empirical quantiles to estimate risk premiums

Π (g) does not garantee the asymptotic normality when losses have a heavy-tailed

distribution. We have

Π (g) =

∫ 1

0

g′ (s)Q (1− s) ds,

then

Π (g) =

{∫ 1

k/n

g′ (s)Q (1− s) ds
}

+

{
g (k/n)Q (1− k/n)−

∫ k/n

0

g (s) dQ (1− s)
}

= Π1 (g) + Π2 (g) .

Note that Xn−k,n is the simple estimator of Q (1− k/n). Hence, coming back to

the quantile Q (1− s) we estimate it by using the empirical estimator Qn (1− s)
when s ∈ (k/n, 1) and by using the Weissman’s estimator QW

n (1− s) when
s ∈ (k/n, 1). Therefore, the estimator of Π1 (g) is

Π̃1 (g) =
n∑

i=k+1

ai,n (g)Xn−i+1,n,

where the coeffi cients ai,n (g) are those of the L-statistic Π̂ (g) defined in (6.2).

Since the distortion functions g satisfy the condition (6.4), with β ∈ [1, 1/γ) and

since γHn,k is a consistent estimator of γ (see Masson, 1982) then we have, for all

large values of n and P
(
γHn,k > 1/β

)
= o(1),

−
∫ k/n

0

g (s) dQW (1− s) = γHn,k

(
k

n

)γHn,k
Xn−k,n

∫ k/n

0

s−1−γHn,kg (s) ds

=
γHn,k

1

β
− γHn,k

g (k/n)Xn−k,n (1 + o(1)) .

Then, we may estimate Π2 (g) by

Π̃2 (g) = g (k/n)Xn−k,n +
γHn,k

1

β
− γHn,k

g (k/n)Xn−k,n

= g (k/n)
Xn−k,n

1− βγHn,k
.
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Finally, the estimator of Π (g) is

Π̃ (g) = g (k/n)
Xn−k,n

1− βγHn,k
+

n∑
i=k+1

ai,n (g)Xn−i+1,n, for γHn,k < 1/β. (6.5)

In a similar way, for a fixed r ≥ 1 and at an optimal retention level R =

Ropt = Q (1− k/n) , Necir et al. (2007) proposed the following semi-parametric

estimator for Πr,R

Π̃r,R̂opt
= (k/n)1/r r

1/γ̂Hn, k − r
Xn−k,n, for γ̂

H
n, k < 1/r.

Deme and Lo (2013) gave an universal estimator of the distortion risk premiums

Π (g) as follows

Π̃∗ (g) = Π̃ (g)1{σ2g=∞} + Π̃ (g)1{σ2g<∞},

where Π̃ (g) is as in (6.5). More precisely

Π̃∗ (g) = Π̃ (g)1{S(γ,β)} + Π̃ (g)1{S(γ,β)},

where

S (γ, β) =

{
(γ, β) ∈ (0,∞)× [1,∞) , γ ∈ (1/2, 1) and β <

1

γ

}
,

and S (γ, β) is its complementary in (0,∞)× [1,∞) .
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In the literature, a number of special cases that are covered by statistical infer-

ential theory for Π (g) have been investigated based on EVT. We refer to Peng

et al. (2001), Necir and Boukhetala (2004), Necir et al. (2010), Necir and Zitikis

(2011), Brahimi et al. (2012), Deme et al. (2013) and Benkhelifa (2014a). The

estimator Π̃ (g) is also used by Necir and Zitikis (2011) in order to introduce an

estimator of a coupled risk premiums for heavy-tailed losses.

6.1.2 Asymptotic normality

In the following theorems, Necir and Meraghni (2009) and Necir et al. (2007,

2010) established the asymptotic normality of the estimators Π̃ (g) and Π̃r,R̂opt

respectively.

Theorem 6.1.1 (Asymptotic normality of Π̃ (g): Necir and Meraghni, 2009)

Assume that F satisfies (2.4) with γ ∈ (1/2, 1) and its corresponding quantile

function Q (·) is continuously differentiable on [0, 1). Let For any differentiable

distortion function g satisfying (6.4) with 1 ≤ β < 1/γ and any sequence of

integer k = kn satisfying k →∞, k/n→ 0 and
√
kA(n/k)→ λ ∈ R as n→∞,

we have
√
k
(

Π̃ (g)− Π (g)
)

g (k/n)Q (1− k/n)

D→ N (λAB (γ, β, ρ) ,AV (γ, β)) , as n→∞,

where

AB (γ, β, ρ) =
βρ (γβ + β − 1)

(1− ρ) (βγ + ρβ − 1) (1− βγ)2 ,

and

AV (γ, β) =
γ2β (γβ + β − 1)2

(2γβ + β − 2) (1− γβ)4 .

Theorem 6.1.2 (Asymptotic normality of Π̃r,R̂opt
: Necir et al., 2007, 2010)

Fix r ≥ 1 and assume hat F satisfies (2.4) with t−1/rU (t) as t→∞. If k →∞,
k/n→ 0 and

√
kA(n/k)→ λ ∈ R as n→∞, then for 1 ≤ r < 1/γ, we have as

n→∞,

(k/n)−1/r
√
k

Xn−k,n

(
Π̃r,R̂opt

− Πr,Ropt

)
D−→ N

(
λ

rρ (rγ + r − 1)

(1− ρ) (rγ + rρ− 1) (1− rγ)2 ,

r2γ2 (γ2 + r2γ4 − 2rγ3 + 1)

(1− rγ)4

)
.
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6.2 Kernel-type estimators for reinsurance pre-

mium [11]

Abstract1. We generalize the classical estimator of the reinsurance premium for
heavy-tailed loss distributions with a kernel-type estimator. Because this estima-

tor exhibits a bias, we propose its bias-reduced version by using a least-squares

method. The asymptotic normality of the proposed estimators is established

under suitable assumptions. A small simulation study is carried out to prove the

performance of our approach.

6.2.1 Introduction

The major worry for the insurance and reinsurance companies is to determine

the adequate premium. In the insurance literature, there exist several premium

principles such as: expected value, variance and value-at-risk. For more details

on premium principles and their properties, we refer to Goovaerts et al. (1984).

Wang (1996) proposed a premium principle named proportional hazard premium

(PHP) of an insured risk X, a non-negative rv defined on a probability space

(Ω,A,P) with continuous df F , depends on the hazard function F and a para-

meter r ≥ 1 called the risk aversion index or the distortion parameter. The PHP

is defined as follows

Πr =

∫ ∞
0

(
F (x)

)1/r
dx.

In some actuarial problems, as in the reinsurance treaty, one is interested in the

estimation of a premium for a given retention level R > 0 notation Πr,R, that is,

a reinsurance premium of the high layer [R,∞). This type of problem can be

found whenever the insured represents a dangerous level of risk for the insurance

company, and decides to give a part of this loss to another reinsurance company,

because it may not have suffi cient capital to cover the total risk. The reinsurance

premium of the high layer is defined as follows

Πr,R =

∫ ∞
R

(
F (x)

)1/r
dx.

1This section is a paper appeared in Journal: Insurance: Mathematics and Economics 59,
65-70.
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For heavy-tailed distributions, Beirlant al. (2001), Necir and Boukhetala (2004),

Vandewalle and Beirlant (2006) and Necir et al. (2007) have introduced and

studied different estimators for Πr,R, in the case of high-excess loss layers (R→
∞).

A df F is said to be heavy-tailed whenever the tail function 1− F is a regularly
varying function with index (−1/γ) < 0, i.e., for any x > 0,

F (x) = x−1/γL (x) ,

where L is a slowly varying function at infinity, that is, L (tx) /L (t) → 1 as

t → ∞. The class of regularly varying functions includes popular distributions
such those Pareto’s, Burr’s, Student’s, Fréchet’s, α-stable (0 < α < 2), and

log-gamma, which are known to be appropriate models of fitting large insurance

claims, large fluctuations of prices, log-returns, and so on (see Beirlant al., 2001).

Let X1,n ≤ · · · ≤ Xn,n, n ≥ 1, be the order statistics pertaining to a sample

X1, . . . , Xn from X and let k = kn be an integer sequence satisfying

1 < k < n, k →∞, and k/n→ 0 as n→∞.

Let, for 0 < s < 1, Q (s) = inf {x : F (x) ≥ s} be the quantile function pertaining
to F. At an optimal retention level R = Ropt = Q (1− k/n) , the semi-parametric

estimator for Πr,R that proposed by Necir et al. (2007) is

Π̃r,R̂opt
= (k/n)1/r r

1/γ̂Hn, k − r
Xn−k,n, for γ̂

H
n, k < 1/r,

where R̂opt = Xn−k,n and γ̂
H
n, k is the classical Hill estimator (Hill , 1975) of the

tail index γ, defined by

γ̂Hn, k =
1

k

k∑
i=1

i (logXn−i+1,n − logXn−i,n) .

Amajor drawback of the Hill estimator is the discrete character of its behavior in

the sense that increasing k by 1, can change the actual value of the estimate con-

siderably. Using a kernel function K, Csörgő et al. (1985) proposed a smoother

version of Hill’s estimator defined by

γ̂Kn, k =
1

k

k∑
i=1

K

(
i

k + 1

)
Zi,
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where Zi = i (logXn−i+1,n − logXn−i,n) . The class of kernel estimators γ̂Kn, k
generalizes the Hill estimator. Note that, using the uniform kernel K = K =

1(0,1) yields Hill’s estimator γ̂
H
n, k as a special case.

We propose a kernel-type estimator for the reinsurance premium Πr,Ropt of a

heavy-tailed distribution. Thus, Πr,Ropt can be estimated by

Π̂K
r,R̂opt

= (k/n)1/r r

1/γ̂Kn, k − r
Xn−k,n, for γ̂

K
n, k < 1/r. (6.6)

In subsection 6.2.2,we study the asymptotic properties of Π̂K
r,R̂opt

and propose

its bias-reduced version whose asymptotic normality is also obtained. In sub-

section 6.2.3, we perform a small simulation study, by sampling from Fréchet

distribution, to compare these estimators. All proofs are given in subsection

6.2.4.

6.2.2 Main results

Firstly, in this subsection, we study the asymptotic normality of Π̂K
r,R̂opt

.

6.2.2.1 Asymptotic normality of Π̂K
r,R̂opt

From (6.6), it is clear that the asymptotic normality of Π̂K
r,R̂opt

is related to γ̂Kn, k.

To establish such a type of result, as usual in the extreme value theory, we need

a second-order condition on the tail quantile function U defined, for 1 < t <∞,
as

U (t) = (1/ (1− F ))−1 (t) = Q (1− 1/t) .

We say that the function U fulfills the second-order regular variation condition
with second-order parameter ρ < 0 if there exists a function A(t) tending to 0

and not changing sign near infinity, such that for all x > 0

lim
t→∞

logU (tx)− logU (t)− γ log x

A(t)
=
xρ − 1

ρ
. (6.7)

We also need the following classical conditions about the kernel K.
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Condition (K). Let K be a function defined on (0, 1].

(i) K(s) ≥ 0, whenever, 0 < s ≤ 1 and K(1) = K ′(1) = 0.

(ii) K(·) is differentiable, non-increasing and right continuous on (0, 1].

(iii) K and K ′ are bounded.

(iv)
∫ 1

0
K(u)du = 1.

(v)
∫ 1

0
u−1/2K(u)du <∞.

Theorem 6.2.1 Let F be a df satisfying (6.7) with γ ∈ (1/2, 1) and suppose

that (K) holds. Let k = kn be an integer sequence satisfying k → ∞, k/n → 0

and
√
kA(n/k) = O (1) as n → ∞. For any 1 ≤ r < 1/γ, on the probability

space (Ω,A,P) , there exists a sequence of Brownian bridges {Bn(s); 0 ≤ s ≤ 1}
such that, as n→∞,

(k/n)−1/r
√
k

U (n/k)

(
Π̂K
r,R̂opt

− Πr,Ropt

)
=
√
kA(n/k)ABK (γ, r, ρ)+W1,n+W2,n (K)+oP (1) ,

where

ABK (γ, r, ρ) =
r

1− rγ

(
1

rγ + rρ− 1
+

1

1− rγ

∫ 1

0

s−ρK (s) ds

)
,

and 
W1,n = − rγ2

1− rγ

√
n

k
Bn
(

1− k

n

)
,

W2,n (K) =
rγ

(1− rγ)2

√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (sK (s)) .

Corollary 6.2.1 Under the assumptions of theorem 6.2.1, if
√
kA(n/k)→ λ ∈

R, we have

(k/n)−1/r
√
k

U (n/k)

(
Π̂K
r,R̂opt

− Πr,Ropt

)
D−→ N (λABK (γ, r, ρ) ,AVK (γ, r)) , as n→∞,

where

AVK (γ, r) =
r2γ4

(1− rγ)2 +
r2γ2

(1− rγ)4

∫ 1

0

K2(s)ds.

Corollary 6.2.1 generalizes theorem 2 in Necir et al. (2007, 2010) when λ 6= 0

and when we use a general kernel instead of K (see theorem 6.1.2). In view of

these results, Π̂K
r,R̂opt

is an estimator of Πr,Ropt with an asymptotic bias given by

(k/n)1/rU (n/k)A(n/k)ABK (γ, r, ρ) .
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For any kernel K, we can compute the asymptotic bias and variance. If K = K,

we have the following corollary (similar of theorem Necir et al., 2007, 2010 see

theorem 6.1.2).

Corollary 6.2.2 Under the assumptions of corollary 6.2.1, and in the special
case where K = K, we have as n→∞

(k/n)−1/r
√
k

U (n/k)

(
Π̂K

r,R̂opt
− Πr,Ropt

)
D−→ N

(
λ

rρ (rγ + r − 1)

(1− ρ) (rγ + rρ− 1) (1− rγ)2 ,

r2γ2 (γ2 + r2γ4 − 2rγ3 + 1)

(1− rγ)4

)
.

Next, in the following subsection, we propose a bias-reduced estimator for Πr,Ropt .

6.2.2.2 Bias-reduced estimator for Πr,Ropt

From theorem 6.2.1, we have

Π̂K
r,R̂opt

− (k/n)1/rU (n/k)A(n/k)ABK (γ, r, ρ) (6.8)

is an asymptotically unbiased estimator for Πr,Ropt . Note that γ, ρ, U (n/k) and

A(n/k) are unknown quantities that we have to estimate.

Feuerverger and Hall (1999) and Beirlant et al. (1999, 2002), using (6.7), pro-

posed the following exponential regression model for the log-spacings of order

statistics

Zi ∼ γ + A
(n
k

)( i

k + 1

)−ρ
+ εi, 1 ≤ i ≤ k, (6.9)

where the εi are zero-centered error terms. We get the Hill estimator γ̂
H
n, k when

we ignore the term A(n/k) in (6.9) and by taking the mean of the left-hand

side of (6.9). We can exploit (6.9), using a least-squares approach, to propose a

bias-reduced estimator for γ in which ρ is substituted by a consistent estimator

ρ̂ = ρ̂(n, k) (see for instance Beirlant et al., 2002 and Fraga Alves et al., 2003)

or by a canonical choice, such as ρ = −1 (see e.g., Feuerverger and Hall , 1999).

Then, the least-squares estimators for γ and A(n/k) are given by

γ̂LSn,k (ρ̂) =
1

k

k∑
i=1

Zi −
ÂLSn,k (ρ̂)

1− ρ̂ = γ̂Hn, k −
ÂLSn,k (ρ̂)

1− ρ̂ ,

ÂLSn,k (ρ̂) =
(1− 2ρ̂) (1− ρ̂)2

ρ̂2

1

k

k∑
i=1

((
i

k + 1

)−ρ̂
− 1

1− ρ̂

)
Zi.
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We can view γ̂LSn,k (ρ) as the kernel estimator

γ̂
Kρ
n,k =

1

k

k∑
i=1

Kρ

(
i

k + 1

)
Zi,

where for 0 < u ≤ 1

Kρ (u) =
1− ρ
ρ

K (u) +

(
1− 1− ρ

ρ

)
Kρ (u) , (6.10)

with K(u) = 1(0,1) and Kρ (u) =
(

1−ρ
ρ

)
(u−ρ − 1)1(0,1), both kernels satisfying

condition (K). On the contrary Kρ does not satisfy statement (i) in (K). We
refer to Gomes and Martins (2004) and Gomes et al. (2007) for other techniques

of bias reduction based on the estimation of the second-order parameter. Then,

from (6.8) and using the above estimators for the different unknown quantities,

we obtain the following bias-reduced estimator for Πr,Ropt

Π̃K
r,R̂opt

= Π̂K
r,R̂opt

−
(
k

n

)1/r

Xn−k,nÂ
LS
n,k (ρ̂)ABK

(
γ̂LSn,k (ρ̂) , r, ρ̂

)
.

The asymptotic normality of Π̃K
r,R̂opt

is established in the following theorem.

Theorem 6.2.2 Under the assumptions of theorem 6.2.1, if ρ̂ is a consistent

estimator for ρ, then we have

(k/n)−1/r
√
k

U (n/k)

(
Π̃K
r,R̂opt

− Πr,Ropt

)
D−→ N

(
0, ÃVK (γ, r, ρ)

)
, as n→∞,

where

ÃVK (γ, r, ρ) = AVK (γ, r) +
γ2 (1− 2ρ) (1− ρ)2

ρ2
AB2

K (γ, r, ρ)

+
2rγ2 (1− 2ρ) (1− ρ)

ρ2 (1− rγ)2

(
1− (1− ρ)

∫ 1

0

s−ρK(s)ds

)
ABK (γ, r, ρ) .

We observe that Π̃K
r,R̂opt

has a null asymptotic bias, which was not the case for

Π̂K
r,R̂opt

(see corollary 6.2.1).

Corollary 6.2.3 Under the same assumptions as in theorem 6.2.2, and in the

special case where K = K, we have

(k/n)−1/r
√
k

U (n/k)

(
Π̃K

r,R̂opt
− Πr,Ropt

)
D−→ N

(
0, ÃVK (γ, r, ρ)

)
, as n→∞,
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where

ÃVK (γ, r, ρ) =
r2γ2 (γ2 + r2γ4 − 2rγ3 + 1)

(1− rγ)4 +
r2γ2 (1− 2ρ) (rγ + r − 1)2

(1− rγ)4 (rγ + rρ− 1)2 .

In the special case where K = Kρ, we have the estimator γ̂
LS
n,k (ρ) coincides with

γ̂
Kρ
n,k. The goal of the next corollary is to establish the asymptotic normality of

the resulting reinsurance premium estimator Π̃
Kρ

r,R̂opt
, denoted by Π̃LS

r,R̂opt
, when

the least-squares method is adopted.

Corollary 6.2.4 Under the same assumptions as in theorem 6.2.2, and in the

special case where K = Kρ, we have

(k/n)−1/r
√
k

U (n/k)

(
Π̃LS
r,R̂opt

− Πr,Ropt

)
D−→ N

(
0, ÃVKρ (γ, r, ρ)

)
, as n→∞,

where

ÃVKρ (γ, r, ρ) =
r2γ4

(1− rγ)2 +
r2γ2 (1− ρ) (1− 2ρ) (rγρ+ rγ + 2rρ− ρ− 1)

ρ2 (1− rγ)3 (rγ + rρ− 1)2 .

6.2.3 A small simulation study

We use the statistical software R, see Ihaka and Gentleman (1996), to compare,

in terms of bias and root of the mean squared error (RMSE), the performances

of the kernel-type estimator Π̂K
r,R̂opt

and least-squares estimator Π̃LS
r,R̂opt

. We gen-

erate 1000 samples of different sizes n = 1000, 2000 and 5000 from a Fréchet

distribution with hazard function F (x) = 1 − exp
(
−x−1/γ

)
, x > 0, γ = 3/4

and the second-order parameter ρ = −1. For the kernel function K, we choose

the uniform kernel K = K = 1(0,1). Note that Ropt = U(n/k∗), where k∗ is

the optimal value of k. Several methods are available for the choice of k∗, see

e.g. Danielsson et al. (2001), Cheng and Peng (2001), Neves and Fraga Alves

(2004) and the references therein. In our simulation study, we use the method of

Neves and Fraga Alves (2004). The simulation results are summarized in Table

6.1. We conclude that Π̃LS
r,R̂opt

has smaller bias and RMSE and consequently it

performs better than Π̂K

r,R̂opt
.
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n 1000 2000 5000
r 1.10 1.20 1.10 1.20 1.10 1.20

Πr,Ropt 3.803 8.153 3.635 8.044 3.478 7.772

Π̂K

r,R̂opt
4.071 8.364 3.867 8.208 3.521 7.807

Bias 0.268 0.211 0.232 0.164 0.043 0.035
RMSE 0.569 0.699 0.464 0.587 0.229 0.282

Π̃LS
r,R̂opt

3.862 8.206 3.683 8.084 3.507 7.781

Bias 0.059 0.053 0.048 0.040 0.029 0.009
RMSE 0.421 0.589 0.376 0.437 0.187 0.248

Table 6.1: Comparison of Π̂K
r,R̂opt

and Π̃LS
r,R̂opt

for 1000 samples of size n ∈
{1000, 2000, 5000} of a Fréchet distribution with γ = 3/4.

6.2.4 Proofs

For each integer n, let Y1,n ≤ · · · ≤ Yn,n be the order statistics pertaining to

a sample Y1, . . . , Yn of independent identically distributed rv’s, defined on the

same probability space as the X ′is, with df G(y) = 1− y−1, y > 1. Note that

{Xj,n}nj=1

D
= {U (Yj,n)}nj=1 . (6.11)

Let ξ1, ξ2, . . . be a sequence of independent rv’s, defined on probability space

(Ω,A,P) , uniformly distributed on (0, 1) in such a way that Yi = G−1 (ξi) , for

all 1 ≤ i ≤ n. Consequently, we have Yi,n =
(
1− ξi,n

)−1
for all 1 ≤ i ≤ n and

n ≥ 1, where ξ1,n ≤ · · · ≤ ξn,n denote the order statistics of ξ1, . . . , ξn and G
−1

is the quantile function pertaining to G.

We will use in this section the Csörgő et al. (1986) weak approximations. On

the probability space (Ω,A,P) , there exists a sequence of Brownian bridges

{Bn(s); 0 ≤ s ≤ 1}n≥1 , such that for every 0 ≤ v < 1/2 and for all n

sup
1/n≤s≤1−1/n

|βn(s)− Bn(s)|
(s (1− s))1/2−v = OP

(
n−v
)
, (6.12)

where the resulting uniform empirical quantile process, is denoted by

βn(t) =
√
n(t− Vn(t)), 0 ≤ t ≤ 1, (6.13)

with Vn is the empirical quantile function pertaining to the sample ξ1, . . . , ξn
which is defined by

Vn(s) = ξj,n,
j − 1

n
< s ≤ j

n
, j = 1, . . . , n and Vn(0) = ξ1,n.

LAZHAR



6. Empirical estimation of the distortion risk premiums for
heavy-tailed losses 101

Proof of Theorem 6.2.1. From (6.11), we may rewrite Π̂K
r,R̂opt

as follows

Π̂K
r,R̂opt

=
r (k/n)1/r

1/γ̂Kn,k − r
U (Yn−k,n) , for γ̂Kn, k < 1/r.

It is easy to verify that

(k/n)−1/r
√
k

U (n/k)

(
Π̂K
r,R̂opt

− Πr,Ropt

)
=

4∑
i=1

Ti,n,

where

T1,n =
r
√
k

1/γ̂Kn, k − r

(
U (Yn−k,n)

U (n/k)
−
(
k

n
Yn−k,n

)γ)
,

T2,n =
r
√
k

1/γ̂Kn,k − r

((
k

n
Yn−k,n

)γ
− 1

)
,

T3,n =
r(

1− rγ̂Kn,k
)

(1− rγ)

√
k
(
γ̂Kn, k − γ

)
,

and

T4,n =
(k/n)−1/r

√
k

U (n/k)

(
r (k/n)1/r

1/γ − r U (n/k)− Πr,Ropt

)
.

We start with the term T1,n, according to de Haan (2006 and theorem 2.3.9, page

48), for any δ > 0, we have

U (Yn−k,n)

U (n/k)
−
(
k

n
Yn−k,n

)γ
= A0

(n
k

){(k
n
Yn−k,n

)γ ( k
n
Yn−k,n

)ρ − 1

ρ

+ oP (1)

(
k

n
Yn−k,n

)γ+ρ±δ
}
,

where A0 (t) ∼ A (t) as t → ∞. Since k
n
Yn−k,n = 1 + oP (1) and

√
kA(n/k) =

O(1), as n→∞, we have
√
k

(
U (Yn−k,n)

U (n/k)
−
(
k

n
Yn−k,n

)γ)
= oP (1) ,

and since γ̂Kn, k
P→ γ (see Csörgő et al., 1985), then we obtain as n→∞

T1,n = oP (1) . (6.14)
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For the term T2,n, the equality Yn−k,n =
(
1− ξn−k,n

)−1
yields

√
k

((
k

n
Yn−k,n

)γ
− 1

)
=
√
k

((n
k

(
1− ξn−k,n

))−γ
− 1

)
.

Using a Taylor expansion, we get

√
k

((n
k

(
1− ξn−k,n

))−γ
− 1

)
= −γ (λn (k))−γ−1

√
k
(n
k

(
1− ξn−k,n

)
− 1
)
,

where λn (k) is a sequence of rv’s with values in the open interval of endpoints

1 and
n

k

(
1− ξn−k,n

)
. From Balkema and de Haan (1975), we have

n

k

(
1− ξn−k,n

) P→ 1, as n→∞.

It follows that, λn (k)
P→ 1 as n→∞. Therefore, as n→∞,

√
k

((n
k

(
1− ξn−k,n

))−γ
− 1

)
= −γ

√
k
(n
k

(
1− ξn−k,n

)
− 1
)

(1 + oP (1)) .

On the other hand we have

√
k
(n
k

(
1− ξn−k,n

)
− 1
)

=

√
n

k

{√
n

((
1− k

n

)
− Vn

(
1− k

n

))}
.

Using the uniform empirical quantile process, defined in (6.13), we obtain

√
k

((n
k

(
1− ξn−k,n

))−γ
− 1

)
= −γ

√
n

k
βn

(
1− k

n

)
(1 + oP (1)) , as n→∞.

Using the asymptotic approximation (6.12), we get for all large n

√
k

((n
k

(
1− ξn−k,n

))−γ
− 1

)
= −γ

√
n

k

{
Bn
(

1− k

n

)

+ OP
(
n−v
)(k

n

)1/2−v
}

(1 + oP (1)) ,

= −γ
√
n

k
Bn
(

1− k

n

)
(1 + oP (1)) .

Consequently, since γ̂Kn, k
P→ γ, we obtain for all large n

T2,n = − rγ2

1− rγ

√
n

k
Bn
(

1− k

n

)
(1 + oP (1)) ,

=W1,n + oP (1) . (6.15)
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For the term T3,n, from theorem 1 of Deme et al. (2013), we have for all large n

√
k
(
γ̂Kn, k − γ

)
=
√
kA (n/k)

∫ 1

0

s−ρK (s) ds

+ γ

√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (sK (s)) + oP (1) .

Then, since γ̂Kn, k
P→ γ, we get as n→∞

T3,n =
r

(1− rγ)2

{√
kA
(n
k

)∫ 1

0

s−ρK (s) ds

+ γ

√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (sK (s))

}
+ oP (1)

=
r

(1− rγ)2

√
kA
(n
k

)∫ 1

0

s−ρK (s) ds+W2,n (K) + oP (1) . (6.16)

For the term T4,n, we have

T4,n = (k/n)−1/r
√
k

(
r (k/n)1/r

1/γ − r −
Πr,Ropt

U (n/k)

)
,

where

Πr,Ropt =

∫ ∞
U(n/k)

(S(x))1/r dx.

Since x−1/rU(x) → 0 as x → ∞, then an integration by parts with a change of
variables yields

Πr,Ropt = (k/n)1/r

{
1

r

∫ ∞
1

x−1−1/rU (nx/k) dx− U (n/k)

}
.

Therefore

T4,n =
√
k

{
1

1− rγ −
1

r

∫ ∞
1

x−1−1/rU (nx/k)

U (n/k)
dx

}
= −1

r

√
k

∫ ∞
1

x−1−1/r

(
U (nx/k)

U (n/k)
− xγ

)
dx.

From theorem 2.3.9 of de Haan (2006), for γ ∈ (1/2, 1) and r ∈ [1, 1/γ) , we

obtain as n→∞

T4,n = −1

r

√
kA
(n
k

)∫ ∞
1

xγ−1−1/rx
ρ − 1

ρ
dx (1 + o (1))

=
√
kA
(n
k

) r

(1− rγ) (rγ + rρ− 1)
(1 + o (1)) . (6.17)
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Combining (6.14)-(6.17), we get as n→∞

(k/n)−1/r
√
k

U (n/k)

(
Π̂K
r,R̂opt

− Πr,Ropt

)
=
√
kA(n/k)ABK (γ, r, ρ)+W1,n+W2,n (K)+oP (1) .

This finishes the proof of theorem 6.2.1.

Proof of Corollary 6.2.1. Since {Bn(s); 0 ≤ s ≤ 1}n≥1 , is a sequence of

Brownian bridges, then

(k/n)−1/r
√
k

U (n/k)

(
Π̂K
r,R̂opt

− Πr,Ropt

)
D−→ N (0,AVK (γ, r)) , as n→∞,

with

AVK (γ, r) = lim
n→∞

E
(
(W1,n +W2,n (K))2)

= lim
n→∞

(
E
(
W2

1,n

)
+ E

(
W2

2,n (K)
)

+ 2E (W1,nW2,n (K))
)
.

Elementary computation gives, as n→∞

E
(
W2

1,n

)
=

r2γ4

(1− rγ)2 + o (1) ,

E
(
W2

2,n (K)
)

=
r2γ2

(1− rγ)4

∫ 1

0

K2(s)ds+ o (1) ,

and

E (W1,nW2,n (K)) = o (1) .

Then, we get

AVK (γ, r) =
r2γ4

(1− rγ)2 +
r2γ2

(1− rγ)4

∫ 1

0

K2(s)ds.

We complete the proof of corollary 6.2.1.

Proof of Corollary 6.2.2. The proof is a direct result of corollary 6.2.1 with

the kernel K = K = 1(0,1).

Proof of Theorem 6.2.2. According to theorem 6.2.1 and (6.8), we have

(k/n)−1/r
√
k

U (n/k)

(
Π̃K
r,R̂opt

− Πr,Ropt

)
=W1,n +W2,n (K) +W3,n (K) + oP (1) ,
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where

W3,n (K) =
√
k

(
A(n/k)ABK (γ, r, ρ)− ÂLSn,k (ρ̂)ABK

(
γ̂LSn,k (ρ̂) , r, ρ̂

) Xn−k,n

U (n/k)

)
= −ABK (γ, r, ρ)

√
k
(
ÂLSn,k (ρ̂)− A(n/k)

)
−
√
kÂLSn,k (ρ̂)

(
ABK

(
γ̂LSn,k (ρ̂) , r, ρ̂

)
−ABK (γ, r, ρ)

)
−
√
kÂLSn,k (ρ̂)ABK

(
γ̂LSn,k (ρ̂) , r, ρ̂

)( Xn−k,n

U (n/k)
− 1

)
.

From Lemma 5 of Deme et al. (2013), we have
√
k
(
ÂLSn,k (ρ̂)− A(n/k)

)
= γ (1− ρ)

×
√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (s (K (s)−Kρ (s))) + oP (1) .

Since ρ̂ is a consistent estimator for ρ, then we get as n→∞
√
kÂLSn,k (ρ̂)

(
ABK

(
γ̂LSn,k (ρ̂) , r, ρ̂

)
−ABK (γ, r, ρ)

)
= oP (1) .

Making use of Potter’s inequalities (see 5th assertion of proposition B.1.9 in de

Haan, 2006), we obtain as n→∞
√
kÂLSn,k (ρ̂)ABK

(
γ̂LSn,k (ρ̂) , r, ρ̂

)( Xn−k,n

U (n/k)
− 1

)
= oP (1) .

Therefore

W3,n (K) = −γ (1− ρ)ABK (γ, β, ρ)

×
√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (s (K (s)−Kρ (s))) + oP (1) , as n→∞.

It is clear thatW1,n +W2,n (K) +W3,n (K) is a Gaussian rv with mean zero and

variance

ÃVK (γ, r, ρ) = lim
n→∞

E
(
(W1,n +W2,n (K) +W3,n (K))2) .

After elementary computations, we get

ÃVK (γ, r, ρ) = AVK (γ, r) +
γ2 (1− 2ρ) (1− ρ)2

ρ2
AB2

K (γ, r, ρ)

+
2rγ2 (1− 2ρ) (1− ρ)

ρ2 (1− rγ)2

(
1− (1− ρ)

∫ 1

0

s−ρK(s)ds

)
ABK (γ, r, ρ) .
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This achieves the proof of theorem 6.2.2.

Proof of Corollary 6.2.3. The proof is a direct result of theorem 6.2.1 with

the kernel K = K = 1(0,1).

Proof of Corollary 6.2.4. The proof is a direct result of theorem 6.2.1 with

the kernel K = Kρ defined in (6.10).

6.3 Kernel-type estimators for the distortion

risk premiums [12]

Abstract.2A new kernel-type estimator for the distortion risk premiums of

heavy-tailed losses is introduced. Using a least-squares approach, a bias-reduced

version of this estimator is proposed. Under suitable assumptions, the asymp-

totic normality of the given estimators is established. A small simulation study,

to illustrate the performance of our method, is carried out.

6.3.1 Introduction

To determine an adequate price or premium for an insured risk, one should use

an appropriate pricing principle. For a presentation of the existing variants of

premium principles, we refer to Goovaerts et al. (1984), Rolski et al. (1999),

Denuit et al. (2005), and the references therein. Some premium principles are

special cases of the distortion risk premium (see Wang, 1996). For an insured risk

X, a non-negative rv defined on a probability space (Ω,A,P) with continuous df

F , the distortion risk premium is defined by

Π (g) =

∫ ∞
0

g
(
F (x)

)
dx,

where g : [0, 1] → [0, 1] is a non-decreasing function, called distortion function,

satisfying g (0) = 0 and g (1) = 1.

2This section is a paper appeared in: Scandinavian Actuarial Journal, DOI:
10.1080/03461238.2014.924434.
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By changing of variables and integrating by parts, we get the following expression

for Π (g)

Π (g) =

∫ 1

0

g′ (s)Q (1− s) ds,

where, g′ denotes the Lebesgue derivative of g and Q (s) = inf {x : F (x) ≥ s} ,
0 < s < 1 is the quantile function of F. Note in passing that, for t ↓ 0, the

quantile Q (1− t) is called high or extreme quantile.
For heavy-tailed distributions, some authors have introduced and studied dif-

ferent estimators for Π (g) by making use of the EVT, see e.g.,Beirlant et al.

(2001), Necir et Boukhetala (2004), Necir et al. (2007), Necir &Meraghni (2009),

Brahimi et al. (2012), Deme et al. (2013) and the references therein.

A df F is called heavy-tailed if its tail 1 − F is a regularly varying at infinity

with index (−1/γ) < 0, i.e.

F (x) = x−1/γ`F (x) , (6.18)

where `F is a slowly varying function at infinity, that is, `F (tx) /`F (t) → 1

as t → ∞ for any x > 0. The class of regularly varying functions includes

popular distributions such those Pareto’s, Burr’s, Student’s, Fréchet’s, α-stable

(0 < α < 2), and log-gamma, which are known to be appropriate models of

fitting large insurance claims, large fluctuations of prices, log-returns and other

data (see Beirlant et al., 2001). For more details on these distributions, we refer

to Bingham et al. (1987) and Rolski et al. (1999).

We restrict ourselves to this class of distributions. Then it is quite natural to

suppose that the distortion functions g is such that t 7→ g (t) is regularly varying

at zero with index 1/β ∈ (0, 1], that is

g (t) = t1/β`g (t) , (6.19)

where `g is a slowly varying function at zero satisfying `g (λt) /`g (t) → 1 as

t → 0 for λ > 0. There exist several examples of distortion functions satisfying

(6.19), we mention

• Net premium,
g (t) = t with β = 1 and `g (t) = 1.

• Tail value-at-risk, 0 < p < 1,

g (t) = min

(
t

p
, 1

)
with β = 1 and `g (t) = 1 if t ≤ p.
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• Proportional hazard transform, θ ≥ 1,

g (t) = t1/θ with β = θ and `g (t) = 1.

• Gini principle, 0 < ω ≤ 1,

g (t) = (1 + ω) t− ωt2 with β = 1 and `g (t) = (1 + ω)− ωt.

• Dual-power function principle, α ≥ 1,

g (t) = 1− (1− t)α = t

(
α− α (α− 1)

2
t+ o (t)

)
with β = 1 and `g (t) = α− α (α− 1)

2
t+ o (t) as t ↓ 0. (6.20)

• Beta-distortion risk premium, a ≤ 1 ≤ b,

g (t) = ta
{

1

aβ (a, b)

}
with β =

1

a
and `g (t) =

1

aβ (a, b)
,

where β (a, b) =
∫ 1

0
va−1 (1− v)b−1 dv.

• MINMAXVAR2 risk premium, η > 0, τ > 0,

g (t) = 1−
(

1− t
1

1+η

)1+τ

with β =
1 + η

1 + τ
and `g (t) = t−

1+τ
1+η −

(
t−

1
1+η − 1

)1+τ

.

For each n ≥ 1, let X1, . . . , Xn be a sample of X with df F satisfying (6.18) and

denote by X1,n ≤ · · · ≤ Xn,n the corresponding order statistics. Let k = kn be a

sequence of positive integers, such that

1 < k < n, k →∞, and k/n→ 0 as n→∞. (6.21)

Based on Weissman’s estimator of high quantiles (Weissman, 1978), Necir and

Meraghni (2009) proposed the following estimator for Π (g)

Π̂ (g) = g (k/n)
Xn−k,n

1− βγ̂H
+

n∑
i=k+1

ai,n (g)Xn−i+1,n, for γ̂
H < 1/β,

where

ai,n (g) = g

(
i

n

)
− g

(
i− 1

n

)
, i = 1, . . . , n,
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and γ̂H is the classical Hill estimator (Hill, 1975) of the tail index γ, defined by

γ̂H =
1

k

k∑
i=1

i (logXn−i+1,n − logXn−i,n) .

Based on γ̂H , Deme and Lo (2013) proposed a reduced-bias estimator for the

distortion risk premium Π (g) of heavy-tailed distributions. A major drawback

of γ̂H is the discrete character of its behavior in the sense that increasing k by

1, can change the actual value of the estimate considerably. Plotting γ̂H as a

function of k used therefore often results in a zig-zag figure. Using a kernel

function K, Csörgő et al. (1985) proposed a smoother version of Hill’s estimator

defined by

γ̂K =
1

k

k∑
i=1

K

(
i

k + 1

)
Zi,

where Zi = i (logXn−i+1,n − logXn−i,n) . The class of kernel estimators γ̂K gen-

eralizes and includes the Hill estimator. Notice that, using the uniform kernel

K = K = 1(0,1) yields Hill’s estimator γ̂
H , with 1(·) being the indicator function.

We propose a kernel-type estimator for Π (g) of heavy-tailed distribution, that

is

Π̂K (g) = g (k/n)
Xn−k,n

1− βγ̂K
+

n∑
i=k+1

ai,n (g)Xn−i+1,n, for γ̂
K < 1/β. (6.22)

In subsection 6.3.2, we study the asymptotic properties of Π̂K (g) and propose

a new reduced-biased estimator for Π (g) whose asymptotic results is also given.

The performance of our approach is shown on a small simulation study in section

subsection 6.3.3. The proofs are postponed until section subsection 6.3.4.

6.3.2 Main results

Firstly, in this subsection, we study the asymptotic properties of Π̂K (g).

6.3.2.1 Asymptotic distribution of Π̂K (g)

From (6.22), it is clear that the asymptotic normality of Π̂K (g) is related to

γ̂K . To establish such a type of result, the regular condition (6.18) itself is not

suffi cient. For this reason, we strengthen the condition (6.18) into the following
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one: the df F is said to satisfy the second-order regular variation with second-

order parameter ρ ≤ 0 if there exists a function t 7→ A (t) that converges to zero

when t tends to infinity, does not change its sign for all suffi ciently large t, and

such that

lim
t→∞

1

A(t)

(
1− F (tx)

1− F (t)
− x−1/γ

)
= x−1/γ x

ρ/γ − 1

ρ/γ
, for any x > 0. (6.23)

If ρ = 0 interpret
xρ/γ − 1

ρ/γ
as log x. In terms of the quantile function Q, this is

equivalent to (see theorem 2.3.9 in de Haan and Ferreira, 2006, page 48)

lim
s↓0

1

A (1/s)

(
Q (1− sx)

Q (1− s) − x
−γ
)

= x−γ
x−ρ − 1

ρ
, for any x > 0.

Moerever, we need the following classical conditions about the kernel K.

Condition (K). Let K be a function defined on (0, 1] .

(i) K (s) ≥ 0, whenever, 0 < s ≤ 1 and K (1) = K ′ (1) = 0.

(ii) K (·) is differentiable, non-increasing and right continuous on (0, 1] .

(iii) K and K ′ are bounded.

(iv)
∫ 1

0
K (u) du = 1.

(v)
∫ 1

0
u−1/2K (u) du <∞.

Theorem 6.3.1 Let F be a df satisfying (6.23) with γ ∈ (1/2, 1) and suppose

that the corresponding quantile function Q (·) is continuously differentiable on
[0, 1). Let k = kn be an integer sequence satisfying (6.21) with

√
kA (n/k) =

O (1) as n→∞. If the condition (K) holds and for any differentiable distortion
function g satisfying (6.19) with 1 ≤ β < 1/γ, then there exists a sequence of

Brownian bridges {Bn (s) ; 0 ≤ s ≤ 1} such that for all large n
√
k
(

Π̂K (g)− Π (g)
)

g (k/n)Q (1− k/n)
=
√
kA (n/k)ABK (γ, β, ρ)+W1n+W2n+W3n (K)+oP (1) ,

where

ABK (γ, β, ρ) =
β

(1− γβ) (γβ + βρ− 1)
+

β

(1− γβ)2

∫ 1

0

s−ρK (s) ds,
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and 

W1n = −

∫ 1

k/n

g′ (s)Bn (1− s)Q′ (1− s) ds

(n/k)1/2 g (k/n)Q (1− k/n)
,

W2n = − γ

1− βγ

√
n

k
Bn
(

1− k

n

)
,

W3n (K) =
βγ

(1− βγ)2

√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (sK (s)) .

Corollary 6.3.1 Under the assumptions of theorem 6.3.1, if
√
kA (n/k)→ λ ∈

R, then we have
√
k

g (k/n)Q (1− k/n)

(
Π̂K (g)− Π (g)

)
D→ N (λABK (γ, β, ρ) ,AVK (γ, β)) , as n→∞,

where

AVK (γ, β) =
γ2β

(2γβ + β − 2) (1− γβ)2 +
γ2β2

(1− γβ)4

∫ 1

0

K2 (s) ds.

Corollary 6.3.1 generalizes theorem 2 in Necir and Meraghni (2009) when λ 6= 0,

when we use a general kernelK instead ofK and when we use a general regularly

varying distortion function g. For any kernel K, we can compute the asymptotic

bias and variance. If K = K, we have the following corollary.

Corollary 6.3.2 Under the assumptions of corollary 6.3.1, and in the special
case where K = K, we have as n→∞,

√
k

g (k/n)Q (1− k/n)

(
Π̂K (g)− Π (g)

)
D→ N

(
λ

βρ (γβ + β − 1)

(1− ρ) (βγ + ρβ − 1) (1− βγ)2 ,

γ2β (γβ + β − 1)2

(2γβ + β − 2) (1− γβ)4

)
.

Note that this corollary 6.3.2 corrects a mistake in the asymptotic variance of

theorem 2 in Necir and Meraghni (2009).

Next we propose a bias-reduced estimator for Π (g) .
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6.3.2.2 Bias-reduced estimator for Π (g)

From theorem 6.3.1, we have

Π̂K (g)− g (k/n)Q (1− k/n)A (n/k)ABK (γ, β, ρ) (6.24)

is an asymptotically unbiased estimator for Π (g) with γ, ρ, Q (1− k/n) and

A (n/k) are unknown quantities that we have to estimate. The estimator Π̂K (g)

exhibit a bias because it is based on Weissman’s estimator of high quantiles for

heavy-tailed distributions, known to be largely biased. As a better alternative

to Weissman’s estimators, several estimators of extreme quantiles with reduced

biases are proposed in the literature, see e.g., Gomes and Martins (2004), Caeiro

et al. (2009), Gomes and Figueiredo (2006) and the references therein. Here,

we derive a new estimator for Π (g) with reduced bias by applying the results

of Feuerverger and Hall (1999) and Beirlant et al. (1999, 2002) who proposed,

under (6.23), the following exponential regression model for the log-spacings of

order statistics

Zi ∼
(
γ + A

(n
k

)( i

k + 1

)−ρ)
+ εi, 1 ≤ i ≤ k, (6.25)

where the εi are zero-centered error terms. We get the Hill estimator γ̂
H when

we ignore the term A (n/k) in (6.25) and by taking the mean of the left-hand

side of (6.25). We can exploit (6.25), using a least-squares approach, to propose

a reduced-bias estimator for γ in which ρ is substituted by a consistent estimator

ρ̂ = ρ̂(n, k) (see for instance Beirlant et al., 2002 and Fraga Alves et al., 2003)

or by a canonical choice, such as ρ = −1 (see e.g., Feuerverger and Hall, 1999 or

Beirlant et al., 1999). The least-squares estimators for γ and A (n/k) are then

given by

γ̂LS (ρ̂) =
1

k

k∑
i=1

Zi −
ÂLS (ρ̂)

1− ρ̂ = γ̂H − ÂLS (ρ̂)

1− ρ̂ ,

ÂLS (ρ̂) =
(1− 2ρ̂) (1− ρ̂)2

ρ̂2

1

k

k∑
i=1

((
i

k + 1

)−ρ̂
− 1

1− ρ̂

)
Zi.

Note that γ̂LS (ρ̂) can be viewed as the kernel estimator

γ̂LS (ρ) = γ̂Kρ =
1

k

k∑
i=1

Kρ

(
i

k + 1

)
Zi,



6. Empirical estimation of the distortion risk premiums for
heavy-tailed losses 113

where for 0 < u ≤ 1,

Kρ (u) =
1− ρ
ρ

K (u) +

(
1− 1− ρ

ρ

)
Kρ (u) ,

with K(u) = 1(0<u<1) and Kρ (u) =
(

1−ρ
ρ

)
(u−ρ − 1)1(0<u<1), both kernels sat-

isfying condition (K). On the contrary Kρ does not satisfy statement (i) in

condition (K). Then, from (6.24) and using the above estimators for the dif-

ferent unknown quantities, we obtain the following bias-reduced estimator for

Π (g)

Π̃K (g) = Π̂K (g)− g (k/n)Xn−k,nÂ
LS (ρ̂)ABK

(
γ̂LS (ρ̂) , β, ρ̂

)
.

The asymptotic normality of Π̃K (g) is established in the following theorem.

Theorem 6.3.2 Under the assumptions of theorem 6.3.1, if ρ̂ is a consistent

estimator for ρ, then we have
√
k

g (k/n)Q (1− k/n)

(
Π̃K (g)− Π (g)

)
D→ N

(
0, ÃVK (γ, β, ρ)

)
, as n→∞,

where

ÃVK (γ, β, ρ) = AVK (γ, β) +
γ2 (1− 2ρ) (1− ρ)2

ρ2
AB2

K (γ, β, ρ)

+
2γ2β (1− 2ρ) (1− ρ)2

ρ2 (1− γβ)2

(
1− (1− ρ)

∫ 1

0

s−ρK(s)ds

)
ABK (γ, β, ρ) .

We observe that Π̃K (g) has a null asymptotic bias, which was not the case for

Π̂K (g) (see corollary 6.3.3).

Corollary 6.3.3 Under the same assumptions as in theorem 6.3.1 and in the

special case where K = K, we have
√
k

g (k/n)Q (1− k/n)

(
Π̃K (g)− Π (g)

)
D−→ N

(
0, ÃVK (γ, β, ρ)

)
, as n→∞,

where

ÃVK (γ, β, ρ) =
γ2β (γβ + β − βρ− 1)2 (γβ + β − 1)2

(1− γβ)4 (γβ + βρ− 1)2 (2γβ + β − 2)
.
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In the special case where K = Kρ, we have the estimator γ̂
Kρ coincides with

γ̂LS (ρ). The aim of the next corollary is to establish the asymptotic normality

of the resulting estimator Π̃Kρ (g), denoted by Π̃LS (g), when the least-squares

approach is adopted.

Corollary 6.3.4 Under the same assumptions as in theorem 6.3.2, and in the

special case where K = Kρ, we have
√
k

g (k/n)Q (1− k/n)

(
Π̃LS (g)− Π (g)

)
D→ N

(
0, ÃVKρ (γ, β, ρ)

)
, as n→∞,

where

ÃVKρ (γ, β, ρ) =
γ2β

(2γβ + β − 2) (1− γβ)2 +
γ2β2 (1− ρ)2

ρ2 (1− γβ)4

+
γ2β2 (1− 2ρ) (1− ρ) (γβρ+ 2βρ+ γβ − ρ− 1)

ρ2 (γβ + βρ− 1)2 (1− γβ)3 .

6.3.3 Simulation study

Bymeans of the statistical softwareR, see Ihaka and Gentleman (1996), we carry
out a small simulation study to compare, in terms of bias and root of the mean

squared error (RMSE), the performances of the kernel-type estimator Π̂K (g)

and least-squares estimator Π̃LS (g) . To this aim, 1000 samples of different sizes

n = 1000, 2000 and 5000 are simulated from a Fréchet distribution defined as:

F (x) = exp
(
−x−1/γ

)
, x > 0 with γ = 2/3 and γ = 3/4 while the second-

order parameter ρ = −1. Concerning the premium calculation principles, we

choose the dual-power premium principle (6.20) where, as in Wang (1996), we

have set the loading parameter α at 1.366. The extreme value theory based

estimators rely on the number k of upper order statistics involved in estimate

computations. Several procedures are available for choosing the optimal values

of k, see e.g., Danielsson et al. (2001), Cheng and Peng (2001), Neves and Fraga

Alves (2004), and the references therein. In our simulation study, we apply the

Reiss and Thomas (2007) method whose performance is discussed by Neves and
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Fraga Alves (2004). The results are presented in Table 6.2. We conclude that

Π̃LS (g) has smaller bias and RMSE and consequently it performs better than

Π̂K (g).

n 1000 2000 5000

γ 2/3 3/4 2/3 3/4 2/3 3/4

Π (g) 3.2981 4.5811 3.2981 4.5811 3.2981 4.5811

Π̂K (g) 3.7554 5.0127 3.5126 4.7867 3.3778 4.6317
Bias 0.4573 0.4316 0.2145 0.2056 0.0797 0.0506
RMSE 0.5744 0.4918 0.5072 0.4368 0.1827 0.1208

Π̃LS (g) 3.5416 4.8132 3.4207 4.6693 3.3380 4.5902
Bias 0.2435 0.2321 0.1226 0.0882 0.0399 0.0091
RMSE 0.3394 0.2662 0.2711 0.2103 0.1081 0.0906

Table 6.2: Comparison of Π̂K(g) and Π̃LS(g) for 1000 samples of size n ∈
{1000, 2000, 5000} of a Fréchet distribution with γ = 2/3 and γ = 3/4, where g
is the dual-power function principle.

6.3.4 Proofs

Let ξ1, ξ2, . . . be a sequence of independent rv’s, defined on the same probability

space as the X ′is, uniformly distributed on (0, 1) . For each integer n, the uniform

empirical df is defined by

Gn (t) =
1

n

n∑
i=1

1(ξi≤t), 0 ≤ t ≤ 1,

and the corresponding uniform empirical quantile function is given by

Vn (t) = inf {s : Gn (s) ≥ t} , 0 ≤ s ≤ 1,Vn (0) = Vn (0+) .

In terms of the order statistics ξ1,n ≤ · · · ≤ ξn,n pertaining to the sample

ξ1, . . . , ξn, we have

Vn (s) = ξj,n,
j − 1

n
< s ≤ j

n
, j = 1, . . . , n and Vn(0) = ξ1,n.

The corresponding uniform quantile process is defined by

βn (t) =
√
n (t− Vn (t)) , 0 ≤ t ≤ 1.

LAZHAR
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The two sequences of order statistics X1,n ≤ · · · ≤ Xn,n and ξ1,n ≤ · · · ≤ ξn,n
are linked via the following equality

{Xn−j+1,n}nj=1

D
=
{
Q
(
1− ξn−j+1,n

)}n
j=1

. (6.26)

In this section, we use the well-known Gaussian approximation given by Csörgő

et al. (1986). On the probability space (Ω,A,P) , there exists a sequence of

Brownian bridges {Bn (s) ; 0 ≤ s ≤ 1}n≥1 such that for every 0 ≤ ν < 1/2

sup
1/n≤s≤1−1/n

|βn (s)− Bn (s)|
(s (1− s))1/2−ν = OP

(
n−ν
)
, as n→∞. (6.27)

Proof of Theorem 6.3.1. We have

Π (g) =

∫ 1

k/n

g′ (s)Q (1− s) ds+

∫ k/n

0

g′ (s)Q (1− s) ds

= Π1 (g) + Π2 (g) ,

and

Π̂K (g) =
n∑

i=k+1

ai,n (g)Xn−i+1,n +
g (k/n)

1− βγ̂K
Xn−k,n

= Π̂1 (g) + Π̂K
2 (g) .

It is clear that
√
k
(

Π̂1 (g)− Π1 (g)
)

g (k/n)Q (1− k/n)
=

√
n
(

Π̂1 (g)− Π1 (g)
)

(n/k)1/2 g (k/n)Q (1− k/n)
.

Necir and Meraghni (2009)„by using the second-order condition (6.23), have

shown that, as n→∞,
√
n
(

Π̂1 (g)− Π1 (g)
)

(n/k)1/2 g (k/n)Q (1− k/n)
=W1n + oP (1) ,

this implies that

√
k
(

Π̂1 (g)− Π1 (g)
)

g (k/n)Q (1− k/n)
=W1n + oP (1) , as n→∞,           (6.28)
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where

W1n = −

∫ 1

k/n

g′ (s)Bn (1− s)Q′ (1− s) ds

(n/k)1/2 g (k/n)Q (1− k/n)
.

From (6.26), we can rewritte Π̂K
2 (g) as follows

Π̂K
2 (g)

D
=

g (k/n)

1− βγ̂K
Q
(
1− ξn−k,n

)
.

It is easy to verify that
√
k

g (k/n)Q (1− k/n)

(
Π̂K

2 (g)− Π2 (g)
)

=

4∑
i=1

Tin,

where

T1n =

√
k

1− βγ̂K

[
Q
(
1− ξn−k,n

)
Q (1− k/n)

−
(n
k

(
1− ξn−k,n

))−γ]
,

T2n =

√
k

1− βγ̂K
[(n
k

(
1− ξn−k,n

))−γ
− 1

]
,

T3n =
β(

1− βγ̂K
)

(1− βγ)

√
k
(
γ̂K − γ

)
,

and

T4n =
√
k

[
1

1− βγ −
∫ k/n

0
g′ (s)Q (1− s)

g (k/n)Q (1− k/n)
ds

]
.

We begin with T1n, according to de Haan and Ferreira (2006, and theorem 2.3.9,

page 48), for any δ > 0, we have

Q
(
1− ξn−k,n

)
Q (1− k/n)

−
(n
k

(
1− ξn−k,n

))−γ

= A0

(n
k

)
(n
k

(
1− ξn−k,n

))−γ (nk (1− ξn−k,n))−ρ − 1

ρ

+oP (1)
(n
k

(
1− ξn−k,n

))−γ−ρ±δ}
,

where A0 (t) ∼ A (t) as t → ∞. Since n
k

(
1− ξn−k,n

)
= 1 + oP (1) (see Balkema

and de Haan , 1975) and
√
kA (n/k) = O (1) as n→∞, then we have

√
k

(
Q
(
1− ξn−k,n

)
Q (1− k/n)

−
(n
k

(
1− ξn−k,n

))−γ)
= oP (1) .
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From Csörgő et al. (1985), γ̂K P→ γ, we obtain for all large n

T1n = oP (1) . (6.29)

For T2n, Taylor’s expansion yields

√
k

{(n
k

(
1− ξn−k,n

))−γ
− 1

}
= −γ (λn (k))−γ−1

√
k
{n
k

(
1− ξn−k,n

)
− 1
}
,

where λn (k) is a sequence of rv’s with values in the open interval of endpoints

1 and
n

k

(
1− ξn−k,n

)
which, from Balkema and de Haan (1975), converges in

probability to 1 as n→∞. It follows that, λn (k)
P→ 1, as n→∞. Therefore, as

n→∞,

√
k

{(n
k

(
1− ξn−k,n

))−γ
− 1

}
= −γ

√
k
{n
k

(
1− ξn−k,n

)
− 1
}

(1 + oP (1)) .

On the other hand we have

√
k
{n
k

(
1− ξn−k,n

)
− 1
}

=

√
n

k

{√
n

((
1− k

n

)
− Vn

(
1− k

n

))}
.

Then, for all large values of n

√
k

{(n
k

(
1− ξn−k,n

))−γ
− 1

}
= −γ

√
n

k
βn

(
1− k

n

)
(1 + oP (1)) .

By using the Gaussian approximation (6.27), we get as n→∞,

√
k

{(n
k

(
1− ξn−k,n

))−γ
− 1

}
= −γ

√
n

k

{
Bn
(

1− k

n

)

+ OP
(
n−ν
)(k

n

)1/2−ν
}

(1 + oP (1))

= −γ
√
n

k
Bn
(

1− k

n

)
(1 + oP (1)) .

Consequently, since γ̂K P→ γ, we obtain for all large n

T2n = − γ

1− βγ

√
n

k
Bn
(

1− k

n

)
+ oP (1)

=W2n + oP (1) . (6.30)
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For T3n, from theorem 1 of Deme et al. (2013), we have for all large n

√
k
(
γ̂K − γ

)
=
√
kA (n/k)

∫ 1

0

s−ρK (s) ds

+ γ

√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (sK (s)) + oP (1) .

Then, since γ̂K P→ γ, we get as n→∞,

T3n =
β

(1− βγ)2

{√
kA
(n
k

)∫ 1

0

s−ρK (s) ds

+ γ

√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (sK (s))

}
+ oP (1)

=
β

(1− βγ)2

√
kA
(n
k

)∫ 1

0

s−ρK (s) ds+W3,n (K) + oP (1) . (6.31)

For T4n, a change of variables and an integration by parts yield

T4n =
√
k

[
1

1− βγ −
k

n

∫ 1

0

g′ (sk/n)Q (1− sk/n)

g (k/n)Q (1− k/n)
ds

]

=
√
k

[
1

1− βγ −
k

n

∫ 1

0

s−γ
g′ (sk/n)

g (k/n)
ds

−k
n

∫ 1

0

g′ (sk/n)

g (k/n)

(
Q (1− ks/n)

Q (1− k/n)
− s−γ

)
ds

]
.

Since g is regularly varying function at zero with index 1/β > 0 and with g (0) =

0, then by using the 11th assertion of proposition B.1.9 in de Haan and Ferreira,

2006, yields that for t ↓ 0

g′ (t) =
1

β
t−1g (t) + o (1) . (6.32)

Then, by using (6.32) and (6.19), we get as n→∞,

k

n

∫ 1

0

s−γ
g′ (sk/n)

g (k/n)
ds =

1

β

∫ 1

0

s−γ−1 g (sk/n)

g (k/n)
ds+ o (1)

=
1

β

∫ 1

0

s
1
β
−γ−1 `g (sk/n)

`g (k/n)
ds+ o (1)

=
1

1− βγ + o (1) .
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Finally, we get

T4n = −
√
k
k

n

∫ 1

0

g′ (sk/n)

g (k/n)

(
Q (1− ks/n)

Q (1− k/n)
− s−γ

)
ds+ o (1) , as n→∞.

Next, we apply the uniform inequality of regularly varying functions (see theorem

2.3.9 in de Haan and Ferreira, 2006). For a possibly different function A0, with

A0 (x) ∼ A (x), tx → 1, and for any δ > 0, there exists a thresholds sδ ∈ (0, 1)

such that for all t, ts ≤ sδ∣∣∣∣ 1

A0 (1/t)

(
Q (1− ts)
Q (1− t) − s

−γ
)
− s−γ s

−ρ − 1

ρ

∣∣∣∣ ≤ δs−ρ−γ max
(
sδ, s−δ

)
. (6.33)

We have g′ (s) ≥ 0 with s ∈ (0, 1) , because g is non-decreasing and differentiable

function. Then, by using the previous inequality (6.33), we have∣∣∣∣ 1

A0 (n/k)

k

n

∫ 1

0

g′ (sk/n)

g (k/n)

(
Q (1− ks/n)

Q1 (−k/n)
− s−γ

)
ds

−1

ρ

k

n

∫ 1

0

s−γ
(
s−ρ − 1

) g′ (sk/n)

g (k/n)
ds

∣∣∣∣ ≤ δ
k

n

∫ 1

0

s−ρ−γ−δ
g′ (sk/n)

g (k/n)
ds.

By using (6.32) and (6.19), we obtain as n→∞,

k

n

∫ 1

0

s−ρ−γ−δ
g′ (sk/n)

g (k/n)
ds = O (1) .

Therefore, as n→∞,

T4n = −1

ρ

√
kA
(n
k

) k
n

∫ 1

0

s−γ
(
s−ρ − 1

) g′ (sk/n)

g (k/n)
ds+ o (1) .

By using again (6.32) and (6.19), and after easy calculation, we get as n→∞,

T4n =
√
kA
(n
k

) β

(1− βγ) (βγ + βρ− 1)
+ o (1) . (6.34)

Combining (6.29)—(6.31) and (6.34), we get

√
k
(

Π̂K
2 (g)− Π2 (g)

)
g (k/n)Q (1− k/n)

=
√
kA (n/k)ABK (γ, β, ρ)+W2n+W3n (K)+oP (1) .

(6.35)

Finally, combining (6.28) and (6.35), theorem 6.3.1 follows.
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Proof of Corollary 6.3.1. Since {Bn (s) ; 0 ≤ s ≤ 1}n≥1 , is a sequence of

Brownian bridges, then
√
k

g (k/n)Q (1− k/n)

(
Π̂K (g)− Π (g)

)
D→ N (0,AVK (γ, β)) , as n→∞,

with

AVK (γ, β) = lim
n→∞

E
(
(W1n +W2n +W3n (K))2) ,

= lim
n→∞

(
E
(
W2

1n

)
+ E

(
W2

2n

)
+ E

(
W2

3n (K)
)

+ 2E (W1nW2n) + 2E (W1nW3n (K)) + 2E (W2nW3n (K))) .

After elementary but tedious computations, we obtain as n→∞,

E
(
W2

1n

)
=

2γ2

(γβ + β − 1) (2γβ + β − 2)
+ o (1) ,

E
(
W2

2n

)
=

γ2

(1− βγ)2 + o (1) ,

E
(
W2

3n (K)
)

=
γ2β2

(1− γβ)4

∫ 1

0

K2(s)ds+ o (1) ,

E (W1nW2n (K)) =
γ2

(γβ + β − 1) (1− γβ)
+ o (1) ,

E (W1nW3n (K)) = o (1) ,

and

E (W2nW3n (K)) = o (1) .

Then, we get

AVK (γ, β) =
γ2β

(2γβ + β − 2) (1− γβ)2 +
γ2β2

(1− γβ)4

∫ 1

0

K2(s)ds.

We complete the proof of corollary 6.3.1.

Proof of Corollary 6.3.2. The proof is a direct result of corollary 6.3.1 with

the kernel K = K = 1(0,1).
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Proof of Theorem 6.3.2. According to theorem 6.3.1 and (6.22), we have as

n→∞,
√
k

g (k/n)Q (1− k/n)

(
Π̃K (g)− Π (g)

)
=W1n+W2n+W3n (K)+W4n (K)+oP (1) ,

where

W4n (K) =
√
k

(
A(n/k)ABK (γ, β, ρ)− ÂLS (ρ̂)ABK

(
γ̂LS (ρ̂) , β, ρ̂

) Xn−k,n

Q (1− k/n)

)
= −ABK (γ, β, ρ)

√
k
(
ÂLS (ρ̂)− A(n/k)

)
−
√
kÂLS (ρ̂)

(
ABK

(
γ̂LS (ρ̂) , β, ρ̂

)
−ABK (γ, β, ρ)

)
−
√
kÂLS (ρ̂)ABK

(
γ̂LS (ρ̂) , β, ρ̂

)( Xn−k,n

Q (1− k/n)
− 1

)
.

From Lemma 5 of Deme et al. (2013), we have

√
k
(
ÂLS (ρ̂)− A(n/k)

)
= γ (1− ρ)

×
√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (s (K (s)−Kρ (s))) + oP (1) .

Since ρ̂ is a consistent estimator for ρ, then we get as n→∞
√
kÂLS (ρ̂)

(
ABK

(
γ̂LS (ρ̂) , r, ρ̂

)
−ABK (γ, r, ρ)

)
= oP (1) .

Making use of Potter’s inequalities (see 5th assertion of proposition B.1.9 in de

Haan, 2006), we obtain as n→∞

√
kÂLS (ρ̂)ABK

(
γ̂LS (ρ̂) , r, ρ̂

)( Xn−k,n

U (n/k)
− 1

)
= oP (1) .

Therefore

W4n (K) = −γ (1− ρ)ABK (γ, β, ρ)

×
√
n

k

∫ 1

0

s−1Bn
(

1− sk

n

)
d (s (K (s)−Kρ (s))) + oP (1) , as n→∞.

It is clear that W1n +W2n +W3n (K) +W4n (K) is a Gaussian rv with mean

zero and variance

ÃVK (γ, β, ρ) = lim
n→∞

E
(
(W1n +W2n +W3n (K) +W4n (K))2) .
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Elementary calculation gives

ÃVK (γ, β, ρ) = AVK (γ, β) +
γ2 (1− 2ρ) (1− ρ)2

ρ2
AB2

K (γ, β, ρ)

+
2γ2β (1− 2ρ) (1− ρ)2

ρ2 (1− γβ)2

(
1− (1− ρ)

∫ 1

0

s−ρK(s)ds

)
ABK (γ, β, ρ) .

This achieves the proof of theorem 6.3.2.

Proof of Corollary 6.3.3. The proof is a direct result of theorem 6.3.2 with

the kernel K = K = 1(0,1).

Proof of Corollary 6.3.4. From the proof of theorem 6.3.2, we deduce the

corollary 6.3.4.
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Abstract 
    The aim of this thesis is to propose new estimators of copula-based measures of 
multivariate association and extreme risks. The estimation of the distortion risk 
premiums for heavy-tailed losses is proposed by Necir and Meraghni (2009). Their 
considerations are based on the Hill estimator (Hill, 1975) of extreme tail index 
and Weissman's estimator (Weissman, 1978) of the high quantile. It is well 
known, in the extreme value theory, that Hill's estimator exhibits an important bias 
which leads to an over/under estimation the aforementioned estimators of the 
distortion risk premiums. Several reduced biased estimations of the tail index are 
now available in the literature that solves this problem. In this thesis, we choose 
the kernel estimation method to derive a new estimator of the distortion risk 
premiums for large claims and establish its asymptotic normality. From the 
simulation study, it is clear that the newly estimator has a reduced bias, vis-à-vis to 
the existing ones, for any choice of the kernel function. 

Résumé 
    L’objectif de cette thèse est de proposer de nouveaux estimateurs de mesures 

d’association multivariées et de risques extrêmes. L'estimation des primes de 
risque de distorsion pour les distributions à queue lourdes a été proposée par Necir 
et Meraghni (2009). Leurs considérations sont basées sur les estimateurs de Hill 
(Hill, 1975) de l'indice de queue et des quantiles extrêmes (Weissman, 1978). Il est 
bien connu, dans la théorie des valeurs extrêmes, que l'estimateur de Hill présente 
un biais important qui conduit à une sur/sous-estimation des estimateurs des 
primes de risque de distorsion. Plusieurs estimateurs à biais réduits de l'indice de 
queue sont maintenant disponibles dans la littérature qui permet de résoudre ce 
problème. Dans cette thèse, nous choisissons la méthode du noyau pour obtenir un 
nouvel estimateur des primes de risque de distorsion pour les grandes pertes et 
établir sa normalité asymptotique. Une simulation, montre que notre estimateur à 
biais réduit, vis-à-vis ceux qui existent déjà, pour tout choix du noyau. 

ـ�ــــ��ـ�ــ  
 �طــــــــا�ر���ت ـ��ـــــدة ���ـد�ـــــھــــو ا��ــــراح ��ــــدرات � ا�طرو�ــــ
ا�
ــــدف �ــــن ھــــذه     
�ــــ�ط  ا���ــــ������ــــ��� ا���ــــ�ى. ا ر�ــــ�ا�
 و��ت ذات ا�%$ــــ�ھ" �!��ز��ــــا���ــــ� �

ــــ� ( ــــ,� و +�*( ــــ�ف -� ــــ/ ط ــــ�ح + ــــ" ا�%�� ــــ�ل ا��1,! ــــ�ر 2009ا�ذ� ــــ3 +� ــــ� 4! %��� (
ــــــ6 ( ــــــ�ر و��ــــــ%�ن (1975ھ, ــــــ,8 1978) و +� ــــــ" ا�� ــــــ� -��9 ــــــ�وف، : ــــــ/ ا�%� + .(
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