Table des figures

Fig (1.1)	: Relation entre soustraction et modélisation du 'Background'	07
Fig (1.2)	: Processus de détection du mouvement dans [9]	09
Fig (1.3)	: Processus de détection du mouvement dans [15]	10
Fig (2.1)	: Graphe d'états d'une Chaîne de Markov à trois états	14
Fig (2.2)	: Graphe d'indépendance d'une chaîne de Markov	16
Fig (2.3)	: Graphe d'indépendance d'une chaîne de Markov cachée	19
Fig (2.4)	: Graphes d'état de deux types des modèles MMCs (a) Modèle ergodique, (b) Modèle gauche-droit	21
Fig (3.1)	: Construction du Parcours d'Hilbet-piano pour une image 16x16 (a)Initialisation, (b) et (c) Etapes intermédiaires, (d) Résultat final	39
Fig (3.2)	Comparaison entre Parcours d'Hilbet-piano et celui Ligne par ligne : (a) images originales en niveau de gris, (b) Parcours : Ligne par ligne, (c) : Parcours d'Hilbert- Piano	40
Fig (3.3)	: Schéma synoptique des algorithmes liés à un MMC	41
Fig (3.4)	: Image originale « AB » de taille : 32x32 pixels	51
Fig (3.5)	: Segmentation (1-1): Mu=20 50; Seg=40 40; l'image « AB »+ bruit gaussien de moyenne : 0.5 et de variance : 0.0001	52
Fig (3.6)	: Segmentation (1-2): Mu=200 250; Seg=10 10; l'image « AB »+ bruit gaussien de moyenne : 0.7 et de variance : 0	52
Fig (3.7)	: Segmentation (1-3): Mu=90 130; Seg = 10 10; l'image « AB »+ bruit gaussien de moyenne : 0.7 et de variance : 0	53
Fig (3.8)	: Segmentation (1-4): Mu=200 250; Seg=100 100;l'image « AB »+ bruit gaussien de moyenne : 0.7 et de variance : 0	53
Fig (3.9)	: Segmentation (1-5): Mu=100 230; Seg=100 400; l'image « AB »+Bruit gaussien de moyenne : 0 et de variance 0.01	54
Fig (3.10)	: Image originale « Voiture » de taille : 32x32 pixels	55

Fig (3.11)	: Segmentation (2-1): Image originale « Voiture » Mu=150 100; Seg=10 10	55
Fig (3.12)	: Segmentation (2-2) : Mu=150 100; Seg=10 10, l'image « Voiture »+bruit de moyenne : 0.1 et variance :0.01	56
Fig (3.13)	: Evolution des moyennes et des variances lors de la segmentation (2-1) en fonction du nombre d'itérations	57
Fig (3.14)	: Evolution des moyennes et des variances lors de la segmentation (2-2) en fonction du nombre d'itérations	58
Fig (3.15)	: Effet des probabilités initiales sur la segmentation de l'image « Voiture »	59
Fig (3.16)	: Effet de la matrice de transition sur la segmentation de l'image « Voiture »	60
Fig (3.17)	: Comparaison entre l'algorithme ICE et ceux de EM_MPM et EM_Viterbi	61
Fig (4.1)	:Graphe d'états modèle MMC choisi	64
Fig (4.2)	: Organigramme de la procédure de détection d'objet mobile	72
Fig (4.3)	: Les 'Background' des séquences de simulation	75
Fig (4.4)	: Détection d'objet mobile: Séquence « Disque » , Images successives	76
Fig (4.5)	: Détection d'objet mobile: Séquence « Disque », Images non successives	77
Fig (4.6)	:: Détection d'objet mobile : Séquence « Hana » , séquence a	79
Fig (4.7)	: Détection d'objet mobile : Séquence « Hana », séquence b et Seg=48 48	80
Fig (4.8)	: Détection d'objet mobile : Séquence « Hana » ,séquence b et Seg=10 10	81
Fig (4.9)	: Détection d'objet mobile : Séquence « Clip	83
Fig (4.10)	: Détection d'objet mobil : Séquence « Main », Avec modèle initial a et b	84
Fig (4.11)	: Détection d'objet mobile:Séquence« Wagon »,Séquence01et Séquence 02	86
Fig (4.12)	: Détection d'objet mobile : Séquence « Main » , Effet du vecteur P	88
Fig (4.13)	: Détection d'objet mobile : Séquence « Main », Effet de la matrice A	90
Fig (4.14)	: Détection d'objet mobile : Séquence « Main », effet des moyennes Mu	93
Fig (4.15)	: Détection d'objet mobile : Séquence « Main » , effet des variances Seg	96
Fig (4.16)	Détection d'objet mobile : Séquence « Main », Comparaison de l'ICE Vs EM_MPM Vs EM_Viterbi, avec modèles a et b	98
Fig (4.17)	: Détection d'objet mobile : Séquence « Main », : parcours d'Hilert_piano vs ligne par ligne vs colonne par colonne	100
Fig (4.18)	: Détection d'objet mobile par Seuillage : Séquence « Main »	101
Fig (5.1)	: Plate-forme expérimentale	105

Fig (5.2)	: Composants du kit 'IDK C6000'	106
Fig (5.3)	: Signal de sortie d'un capteur 'CCD'	106
Fig (5.4)	: Signaux de luminance et de chrominance pour une mire de barres couleur	107
Fig (5.5)	: Dispositions des échantillons de luminance et de chrominance (a) format« 4 :2 :2 », (b) format « 4 :2 :0 »	109
Fig (5.6)	: Vue de haut de la carte d'acquisition vidéo	110
Fig (5.7)	: La carte d'acquisition vidéo : Système de capture vidéo	111
Fig (5.8)	: Organisation de la mémoire de capture pour un format NTSC « 4 :2 :2 »	111
Fig (5.9)	: La carte d'acquisition vidéo : Système de visualisation	112
Fig (5.10)	: Organisation de chaque buffer d'affichage	113
Fig (5.11)	: Vue de haut du Kit 'TMS320C6711 DSK'	114
Fig (5.12)	: Schema bloc du Kit ,TMS320C6711 DSK'	115
Fig (5.13)	: Schéma fonctionnel du 'CPU C6711'	117
Fig (5.14)	: Déroulement typique de génération de code exécutable d'une application sur 'DSP' sous 'CCS'	118