الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement supérieur et de la recherche scientifique

Université Mohamed Khider – Biskra

Faculté des Sciences et de la technologie

Département : **de génie civil et** hydraulique

Ref :....

جامعة محمد خيضر بسكرة كلية العلوم و التكنولوجيا **قسم:** الهندسة المدنية و الري المرجع:....

Mémoire présenté en vue de l'obtention Du diplôme de

Magister

Option : Modélisation des matériaux et structures

Modélisation des structures continues à symétrie axiale de formes quelconques Par la méthode des éléments finis

Présenté par : LABIODH Bachir

Soutenu publiquement le 19/10/2011

Devant le jury composé de :

MELLAS Mekki	Maître de conférences	Université de Biskra	Président
HAMADI Djamal	Maître de conférences	Université de Biskra	Rapporteur
CHEBILI Rachid	Professeur	Université de Biskra	Examinateur
OUNIS Abdelhafid	Maître de conférences	Université de Biskra	Examinateur

INTRODUCTION _____01

CHAPITRE 1 : THEORIE DES COQUES ET SOLIDE DE REVOLUTION/RECHERCHE BIBLIOGRAPHIQUE

1.1 THEORIE DES COQUES ET SOLIDE DE REVOLUTION	03
1.1.1 Définitions des structures axisymétriques	03
1.1.2 Coque De Révolution	04
1.1.2.1 Surface moyenne	04
1.1.2.2 Géométrie de la surface moyenne	04
1.1.2.3 Courbure normale	05
1.1.2.4 Ligne de courbure	06
1.1.2.5 Théorie de Rissner Mindlin	08
1.1.2.5.1 Déplacements et déformations virtuelles	08
1.1.2.5.2 Principe des travaux virtuels	10
1.1.2.5.3 Loi de comportement	15
1.1.2.5.4 Modèles mixtes en cisaillement transversal	16
1.1.2.6 Théorie de love Kirchoff	18
1.1.2.6.1 Déplacements et déformations virtuelles	18
1.1.2.6.2 Principe des travaux virtuels	19
1.1.2.6.3 Loi de comportement	20
1.1.2.6.4 Modèles déplacement	20
1.1.3 Solide de révolution	21
1.2 RECHERCHE BIBLIOGRAPHIQUE	22
1.2.1 Coque de révolution	22
1.2.1.1 Eléments finis tronconiques	24
1.2.1.2 Eléments courbés	25
1.2.2 Solide de révolution	27

CHAPITRE 2 : FORMULATION

2.1 Méthode des éléments finis	28
2.1.1 Formulation variationnelle	28
2.1.2 Modèle déplacement	29
2.1.3 Principes variationnels mixtes	30
2.2 Formulation des éléments	32
2.2.1 Elément CAXI_L (coque mince ou épaisse)	32
2.2.1.1 Approximation des déplacements et déformations	33
2.2.1.2 Matrice de rigidité	34
2.2.1.3 Charges équivalentes	35
2.2.1.4 Efforts résultants et contraintes	36
2.2.2 Elément CAXI_K (coque mince)	37
2.2.2.1 Approximation des déplacements et déformations	37
2.2.2.2 Matrice de rigidité	38

2.2.2.3 Charges équivalentes	39
2.2.2.4 Efforts résultants et contraintes	40
2.2.3 Elément triangulaire pour le cas des solides de révolution	41
2.2.3.1 Approximation des déplacements et déformations	41
2.2.3.2 Matrice de rigidité	42
2.2.3.3 Charges équivalentes	43
2.2.3.4 Contraintes	43

CHAPITRE 3 : MISE EN ŒUVRE NUMERIQUE

3.1 Introduction	44
3.2 Présentation des programmes Axisym	45
3.2.1 Algorithme générale	45
3.2.2 Description des programmes Axisym	46

CHAPITRE 4 : VALIDATION ET APPLICATIONS

4.1 Coque De Révolution	48
4.1.1 Cylindre chargé à leur extrémité	48
4.1.2 Cylindre encastré/guidé sous pression	53
4.1.3 Cylindre sous pression	55
4.1.4 Plaque circulaire soumise a des charges uniformément réparties	56
4.1.5 Plaque circulaire sous différents types de chargement	58
4.1.6 Plaque circulaire (avec CT)	66
4.1.7 Plaque circulaire (sans CT)	67
4.1.8 Hémisphère	68
4.1.9 Dôme sphérique sous pression	70
4.1.10 Paraboloïde	72
4.1.11 Cylindre conique	74
4.1.12 Cône de révolution	76
4.2 Solide de révolution	78
4.2.1 Cylindre épaisse	78
4.2.2 Problème de BOUSSINESQ	82

CONCLUSION	85
BIBLIOGRAPHIE	86
ANNEXE	90

Résumé

La nécessité actuelle des ouvrages en coques de forme géométriques très complexes dans le domaine pratique est devenue importante. L'étude analytique est limitée, en général aux formes simples ; donc il est indispensable de recourir à l'usage des méthodes numériques, particulièrement la méthode des éléments finis. Cette méthode a prouvé son efficacité pour l'analyse numérique des structures. Dans ce mémoire, nous avons présenté la formulation de trois éléments développés pour l'étude des structures à symétrie axiale et la programmation de ces éléments sous Matlab . Les testes de validation et les applications dans le domaine de génie civil sont faites. Enfin les résultats obtenus sont comparés avec ceux obtenus par l'emploi du logiciel ANSYS.

Mots clés : Modélisation, symétrie axiale, éléments finis, formes géométriques

Abstract

Nowadays, shell structures with complicated geometrical shapes are very imported in practice. Analytical study is limited generally to simple forms; therefore it is essential to resort to the use of the numerical methods. Among them, finite element method; which proven its effectiveness for the numerical analysis of structures. In this research, the formulation of three finite elements for the study of the axial symmetry shells are presented; in addition; the programming of these elements in Mat lab has been done. Test validation and the applications in the field of civil engineering are given; also, the comparison with the results obtained by the use of ANSYS is done.

Key words: Modelling, axial symmetry, finite elements, geometrical forms

ملخص

إن الحاجة الى انجاز منشات قشرية ذات اشكال هندسية معقدة اصبحت حاليا ضرورة ملحة من الجانب التطبيقي. والدراسة النحليلية تقتصر عموما على الاشكال الهندسية البسيطة، وعليه أصبح من الضروري التوجه الى استعمال الطرق العددية والتي من بينها طريقة العناصر المحدودة، حيث اثبتت نجاعتها في التحليل العددي للهياكل. في هذا البحث تم تشكيل ثلاثة عناصر محدودة خاصة بدراسة الهياكل القشرية ذات التناظر المحوري، إضافة إلى برمجة . تم القيام باجراء الاختبارات اللازمة و التطبيقات في مجال الهندسة المدنية للمناطر المحوري، إضافة إلى برمجة . تم القيام باجراء الاختبارات اللازمة و التطبيقات في مجال الهندسة المدنية ملا المناطر المحوري، إضافة إلى برمجة . محال المتحمال برنام من عليها مع تلك المتحصل عليها باستعمال برنامج

الكلمات المفتاحية: النموذجة، التناظر المحوري، العناصر المحدودة، الأشكال الهندسية.

Liste des Figures

Chapitre 1 :
Figure (1 . 1): description géométrique de l'axisymétrie9
Figure (1 . 2): description de la surface moyenne10
Figure (1 . 3): Surface et ligne de coordonnées11
Figure (1 . 4): courbe v de courbure normale 1/ rn au point A11
Figure (1.5) : élément de surface limité par des lignes de courbure12
Figure (1 . 6): description géométrique de la surface moyenne
Figure (1 . 7): rayon de courbure RS et R θ
Figure (1.8): Composantes cylindriques et curvilignes virtuelles
Figure (1.9): Composantes σs et σz'17
Figure (1.10): sollicitation surfacique fr fZ fs fz ms
Figure (1 . 11) : efforts résultantes Ns , N θ , Ts , Ms et M θ
Figure (1.12): cosinus directeur de la normale
Chapitre 2 :
Figure (2 . 1) : Relations entre système d'équations différentielles, forme intégrale et fonctionnelles
Figure (2 . 2) : Elément tronconique (géométrie)
Figure (2 . 3) : Elément tronconique linéaire CAXI_L
Figure (2 . 4) : Elément tronconique linéaire CAXI_K
Figure (2.5): Elément à symétrie axiale
Chapitre 3 :
Figure (3.1) : blocs fonctionnels caractéristiques d'un programme éléments finis44
Figure (3 . 2) : Algorithme général du Programme Axisym

Chapitre 4 :

Figure (4, 1) cylindre chargé à leur extrémité
Figure (4, 2) Convergence de déplacement de l'extrémité libre
Figure (4, 3) structure déformé (ANSYS)
Figure (4, 4) variation du déplacement radial (maillage 24 éléments)50
Figure (4, 5) variation du moment méridien (maillage 24 éléments)51
Figure (4, 6) Cylindre encastré/guidé sous pression
Figure (4, 7) Convergence de Uc
Figure (4, 8) Plaque circulaire soumise a des charges uniformément réparties56
Figure (4, 9) convergence de la flèche au centre
Figure (4, 10) convergence de Ms à r= 0.5 m
Figure (4, 11) Plaque circulaire sous divers cas de chargement
Figure (4, 12) convergence de déplacement maximal (divers cas de charge)62
Figure (4, 13) convergence de déplacement maximal (divers cas de charge)65
Figure (4, 14) Plaque circulaire soumise a une chargement linéaire
Figure (4, 15) convergence de déplacement maximal
Figure (4, 16) Plaque circulaire soumise à une charge uniformément répartie67
Figure (4, 17) convergence de déplacement maximal67
Figure (4, 18) : Hémisphère68
Figure (4, 19) structure déformé69
Figure (4, 20) : Dôme sphérique sous pression70
Figure (4, 21) variation de l'écart entre Axisym et ANSYS
Figure (4, 22) Structure déformé
Figure (4, 23) : Hyperboloïde72
Figure (4, 24) variation de l'écart entre Axisym et ANSYS
Figure (4, 25) Structure déformé73
Figure (4, 26) : Cylindre conique74

Figure (4, 27) variation de l'écart entre Axisym et ANSYS	5
Figure (4, 28) : Structure déformé75	
Figure (4, 29) Cône de révolution76	5
Figure (4, 30) variation de l'écart entre Axisym et ANSYS77	7
Figure (4, 31) Structure déformé77	7
Figure (4, 32) Cylindre épais78	8
Figure (4, 33) Variation du déplacement (in)79	9
Figure (4, 34) Variation du contrainte tangentielle (ton/in ²)8	0
Figure (4, 35) Problème de BOUSSINESQ	32
Figure (4, 36) Variation de l'erreur en déplacement	3
Figure (4, 37): Structure déformé problème de BOUSSINESQ (Prog : AxisymT3AX dessin	18
obtenus avec MATLAB)	4

Liste des Tableaux

Chapitre 4 :
Tableau (4 , 1) : Déplacement radial à l'extrémité chargé48
Tableau (4, 2) : Déplacement radial (in) (x1/1000) maillage 24 éléments50
Tableau (4, 3) : Moment méridien lbf in/in (x1/1000) maillage 24 éléments51
Tableau (4, 4): Variation de la solution en déplacement en fonction du nombre de points
d'intégration numérique (méthode de Gauss)52
Tableau (4, 5) : Déplacement radial Uc (m)
Tableau (4, 6) : Déplacement radial (in) de l'extrémité Z = 200 in55
Tableau (4 , 7) : Flèche maximal (m)
Tableau (4, 8) : contrainte Ms (N.m/m) à r = 0.50 m
Tableau (4, 9) : Valeur de déplacement maximal pour divers cas de charge
Tableau (4, 10) : Valeur de déplacement maximal pour divers cas de charge
Tableau (4, 11) : Valeur de déplacement maximal (in)
Tableau (4, 12) : Valeur de déplacement maximal (in)67
Tableau (4, 13) : Valeur de déplacement maximal (in)
Tableau (4 , 14) : Valeur de déplacement maximal (in)
Tableau (4 , 15) : Valeur de déplacement maximal (ft)
Tableau (4, 16) : Valeur de déplacement maximal (in)
Tableau (4, 17) : Valeur de déplacement maximal (in)
Tableau (4, 18) : Valeur de déplacement radiale (in)
Tableau (4, 19) : Valeur de contrainte tangentielle (ton/in²)
Tableau (4, 20) : Valeur de contrainte radial (ton/in²)81
Tableau (4, 21) : Valeur de contraintes radial Kn/m²

Liste des Notations

- **u**_p : vecteur déplacement d'un point p (tous vecteurs sont notés en gras)
- $\mathbf{u}_{\mathbf{p}}^{*}$: vecteur déplacement virtuel d'un point p (* utilisé pour définir tous valeurs virtuels)
- β , β^* : rotation réel et virtuel
- {} : matrice colonne (vecteur)
- [] : matrice (utilisé aussi pour les références bibliographiques)
- []⁻¹ : inverse de la matrice
- []^T : transposé de la matrice
- det : déterminant d'une matrice
- $\langle \rangle$: matrice ligne (transposé de vecteur)
- $f_{x} = \frac{\partial f}{\partial x}$: dérivée partielle de f par rapport à x
- X,Y,Z : coordonnées cartésiennes globales
- \boldsymbol{x}_p , \boldsymbol{x}_q : vecteur position du point p et q
- ξ , θ : coordonnées paramétriques (méridienne et circonférentiel)
- s : abscisse curviligne
- i, j, k : base orthonormé cartésienne
- $\mathbf{t}, \mathbf{i}_{\theta}, \mathbf{n}$: base curviligne
- i_r , i_{θ} , k: base cylindrique
- n_{sc} : cosinus directeur de **n** suivant s

 $\frac{1}{R_s}, \frac{1}{R_{\theta}}$: courbure méridienne, courbure circonférentielle

- K, H: courbure gaussienne, courbure moyenne
- u, w : composantes du vecteur déplacement dans le repère curviligne
- U, W : composantes du vecteur déplacement dans le repère cylindrique
- \mathcal{E}_s , \mathcal{E}_{θ} : composantes de déformation curviligne
- χ_s , χ_{θ} : courbures de flexion

- ψ : rotation de la surface moyenne
- e_s , e_θ : déformation de membrane
- γ_s : déformation de cisaillement
- σ_s , σ_{θ} : contraintes normales (composantes curviligne)
- $\sigma_{s\theta}$, σ_{sz} , $\sigma_{\theta z}$: contraintes de cisaillement (composantes curviligne)
- σ_r , $\sigma_{r\theta}$, σ_{rz} , σ_{θ} , $\sigma_{\theta z}$, σ_z : composantes cylindriques de contraintes
- Π : fonctionnelle d'énergie
- Π_{int} , Π_{ext} : fonctionnelle, énergie potentielle interne, externe
- PTV : principe des travaux virtuels
- W_{int}, W_{ext}: travail virtuel interne, externe
- $f_r f_Z f_s f_z m_s$: sollicitations par unité de surface moyenne
- Ns , N θ : effort résultantes de membrane suivant s et θ
- Ms , $M\theta$: effort résultantes de flexion
- Ts : effort tranchant suivant z
- [H₁], [H]: matrice de comportement élastique
- G : module de cisaillement
- E : module de yong
- v : coefficient de poisson

 $[H_m], [H_{mf}], [H_f]$: matrice de comportement homogénéisées de membrane, flexion et couplage

membrane-flexion

- [H_c] : matrice de comportement globale en cisaillement transversal
- k : facteur de correction de cisaillement transversal
- $(f_r f_z),(f_{sr} f_{sz})$: force de volume, force surfacique sur Sf (solide de révolution)
- σ_r , σ_θ , σ_z , σ_{rz} : composantes cylindriques des contraintes (solide de révolution)
- L, C: opérateurs différentielles
- Ψ : fonction de pondération
- δ : symbole de calcul des variations

V^e: volume élémentaire

- p(x), $p(\xi)$: base polynomiale de l'approximation espace réel, paramétrique
- N(x) : fonction de forme
- { a } : variable généralisées de l'approximation
- {u(x)} : variables généralisés
- $\{ u_n \}$: variable nodales
- [B] : matrice reliant les déformations aux variables nodales
- $[\partial]$: matrice des dérivées partielles
- $\{ f_n \}$: vecteur des forces nodales de l'élément
- [k] : matrice de rigidité élémentaire
- [K],[F] : matrice de rigidité et vecteur des forces globales
- $[B_m] [B_f] [B_c]$: matrices définissant les déformations de membrane, de flexion et de

cisaillement transversal

[k_{mf}],[k_c] : matrice de rigidité élémentaires de membrane-flexion, cisaillement transversal

- g : accélération de la pesanteur
- ρ : masse volumique
- V : volume
- h : épaisseur suivant n
- $\{u_n\}_{loc}$: vecteur déplacements nodales dans le repère local
- $[k]_{loc}$: matrice de rigidité élémentaire dans le repère local
- [T] : matrice de changement de base

INTRODUCTION

INTRODUCTION

L'avantage du choix et de la conception des structures a symétrie axiale avec chargement de révolution soit coque ou solide de révolution (réservoirs, châteaux d'eau, silos, enceinte de réacteur, tunnels, etc.), est que la modélisation nous permis d'étudier la structure dans n'importe quel demi plan contenant l'axe de révolution dit plan méridien.

Dans la théorie des coques de révolution la symétrie par rapport à l'axe Z offre une simplicité et par conséquent une diminution du temps de calcul soit pour la solution numérique ou manuel qui est rarement possible (sauf dans des cas très simple), basé sur cette modélisation, et avec l'évolution de la méthode des éléments finis les chercheurs ont développés plusieurs types d'éléments finis où on peut distinguer d'après la théorie des coques deux types d'éléments finis:

 Des éléments finis où le cisaillement transversal est pris en considération dans la formulation (théorie de Rissner-Mindlin).

 Des éléments finis où l'effet du cisaillement transversal n'est pas pris en compte (théorie de Love-Kirchoff).

Pour la deuxième catégorie (solide de révolution) les types d'éléments finis utilisés sont semblables aux éléments finis de l'élasticité plane, sauf qu'on ajoute dans ce cas aux tenseurs des déformations et des contraintes la composante tangentielle, ces éléments sont généralement triangulaires, rectangulaires ou des quadrilatères.

L'objectif de notre étude est la mise en œuvre numérique de quelques modèles éléments finis (élaboration des programmes sous langage Matlab) pour les deux catégories et l'étude de convergence pour chaque type d'élément finis, ainsi d'étudier l'influence de certains paramètres sur la performance de l'élément:

- le modèle mathématique choisie (déplacement ou mixte).
- la méthode d'intégration numérique et les nombres des points d'intégration

Le premier chapitre est consacré dans une première partie à la présentation des différentes méthodes théoriques nécessaires pour la formulation des éléments finis, dans la deuxième partie on s'intéresse à la recherche bibliographique des éléments finis type coques axisymétriques et les éléments de type solides de révolution.

Dans le deuxième chapitre on donne une bref présentation de l'aspect mathématique (formulation variationnelle) de la méthode des éléments finis ainsi les modèles éléments finis

utilisés, ensuite par l'utilisation des théories décrites dans le premier chapitre, on donne la formulation (matrice de rigidité et contraintes) des éléments finis utilisés dans notre programmes.

Dans Le troisième chapitre on concrétise ce qui à été présenter au deuxième chapitre dans un programme informatique, on commence par la définition des différentes étapes qui caractérisent un programme éléments finis, puis on présente l'algorithme général de notre programmes écrits sous MATLAB, aussi on donne le mode de fonctionnement des différentes fonctions (subroutine) qui les constitues.

Le quatrième chapitre fait l'objet de la validation de notre programmes, ainsi La comparaison des résultats obtenus par notre programmes pour diverses applications avec ceux obtenus par d'autres logiciels (ANSYS et SAP), qui est indispensable pour tester la fiabilité et la capacité de notre programmes à résoudre les différents types des problèmes qui peut être fréquentés dans le domaine de la construction.

CHAPITRE 1

THEORIE DES COQUES ET SOLIDE DE REVOLUTION / RECHERCHE BIBLIOGRAPHIQUE

1.1 THEORIE DES COQUES ET SOLIDE DE REVOLUTION

1.1.1 Définitions des structures axisymétriques :

Les structures a symétrie axial peuvent être en général séparées en deux grandes catégories :

- a) les coques de révolution où l'épaisseur de la structure est petit par rapport à sont diamètre.
 - e << R
- b) les corps solides de révolution où l'épaisseur de la structure est considérable par rapport au diamètre.

➢ Symétrie axiale :

On dit qu'il existe une symétrie axiale lorsque la géométrie de la structure et les charges agissants (surfaciques, volumiques etc.) est symétriques par rapport à un axe (généralement Oz).

> Coque de révolution :

Les forces et déplacements se trouvent dans un plan tourne autour d'un axe.

Dans le cas présenté sur la figure (1 . 1) les forces et déplacements se trouvent dans le plan (Or ,Oz) appelé plan de révolution, l'axe de symétrie est l'axe Oz.

Figure (1.1): description géométrique de l'axisymétrie

1.1.2 Coque De Révolution 1.1.2.1 Surface moyenne :

La théorie des coques est l'étude des solides déformables surfaciques, elle est adaptée à l'étude des solides déformables dont la géométrie est assimilable à une surface avec une épaisseur.

Comme en théorie des poutres qui est l'étude des solides déformables linéiques (une courbe avec une épaisseur), cette géométrie va permettre d'établir une théorie simplifiée dans la quelle on dira qu'on connaît suffisamment les déplacements en connaissant seulement ceux de la surface moyenne

Dans l'étude théorique des coques, la surface moyenne Σ , la normale n et le segment BC (figure (1 . 2)) jouent un rôle essentiel.

Dans la suite on désigne par normale tant le segment que la droite qui le porte. Le segment correspond, dans la théorie des coques, à la section droite dans la théorie des poutres de Bernoulli.

Figure (1 . 2): description de la surface moyenne : (a) surface moyenne Σ et sa normale ; (b) dimensions caractéristiques (L, a, r) [5]

1.1.2.2 Géométrie de la surface moyenne :

Dans un système d'axes cartésiens orthogonal (X, Y, Z), les équations paramétriques : $X = X(\alpha, \beta)$ $Y = Y(\alpha, \beta)$ $Z = Z(\alpha, \beta)$ Définissent une surface Σ . A tout valeur constante Co du paramètre β correspond une ligne sur la surface, dite ligne

A tout valeur constante C_{β} du paramètre β correspond une ligne sur la surface, dite ligne de coordonnées α ; de même, $\alpha = C_{\alpha}$ définie une ligne de coordonnées β .

L'ensemble forme les lignes de coordonnées et $(\alpha\,,\,\beta)$ sont les coordonnées curviligne de la surface.

Le vecteur position est défini par : $OA = x(\alpha, \beta) = Xe_1 + Ye_2 + Ze_3$ Où e_1, e_2, e_3 sont les vecteurs unités dans (X, Y, Z)

Figure (1.3): Surface et ligne de coordonnées [5]

1.1.2.3 Courbure normale :

Soit n la normale élevée au point A d'une surface Σ figure (1 . 4), on dit qu'un plan contenant n réalise une section normale de la surface ; cette section se traduit par une courbe plan v tracé sur Σ .

Au point A de cette courbe, on désigne par r_n le rayon de courbure, son inverse $1/r_n$ est la courbure normale.

Lorsque le plan P tourne autour de n, r_n et $1/r_n$ varie entre deux valeurs extrêmes appelées rayons de courbure principaux r_{max} r_{min} et courbures principales $1/r_{min}$ et $1/r_{max}$, les plans P correspondants sont perpendiculaires.

La trace de ces deux plans dessine, au voisinage immédiat du point A, une petite croix sur La surface Σ , les bras de cette croix sont les directions principales ; les courbes enveloppes de ces directions en tous les points de Σ , constituent un réseau orthogonal de deux familles de lignes, appelés les lignes de courbure principales, ou simplement ligne de courbure.

1.1.2.4 Ligne de courbure :

Le réseau des lignes de courbure d'une surface peut être utilisé avantageusement comme système de ligne de coordonnées curviligne (α , β) pour exprimé les équations des coques, outre l'orthogonalité, ce réseau possède la propriété essentielle suivante : le long d'un tronçon ds_{α} (ou ds_{β}) d'une ligne de courbure, la normale reste dans le plan contenant la section normale et passe par le centre de courbure de tronçon (figure (1.5)), grâce à cette propriété, on peut isolé un fragment de coque d'épaisseur t par des sections droites, c'est-à-dire des coupes planes et normales à la surface moyenne.

Seule les lignes de courbures présentent cette particularité.

Figure (1.5) : élément de surface limité par des lignes de courbure [5]

Vecteur position de la surface moyenne (coque de révolution):

Un point P de la surface moyenne A de la coque de révolution (figure (1 . 6)) est défini en fonction de deux coordonnées paramétrique ξ et θ (qui remplace les coordonnées curviligne (α , β)), ξ est un paramètre associé à la description de la courbe méridienne génératrice de la coque de révolution.

Le vecteur position du point P s'écrit en coordonnées cylindriques : $\mathbf{x_p} = r(\xi) \mathbf{i_r}(\theta) + Z(\xi) \mathbf{k}$ Et en coordonnées cartésiennes : $\mathbf{x_p} = X(\xi, \theta) \mathbf{i_r} + Y(\xi, \theta) \mathbf{j} + Z(\xi) \mathbf{k}$ Avec $X = r(\xi) \cos\theta$ et $Y = r(\xi) \sin\theta$

Figure (1.6): description géométrique de la surface moyenne [2]

Courbures :

On définie : $\frac{1}{R_s}$: Courbure méridienne $\frac{1}{R_{\theta}}$: Courbure circonférentielle $K = \frac{1}{R_s} \frac{1}{R_{\theta}}$ courbure gaussienne $H = \frac{1}{2}(\frac{1}{R_s} + \frac{1}{R_{\theta}})$ courbure moyenne

Cas particuliers :

Cylindre : $\varphi = \frac{\pi}{2}$; $\varphi_{,s} = 0$; $\mathbf{R}_{s} = \infty$; $\mathbf{R}_{\theta} = \mathbf{R}$ Disque : $\varphi = 0$; $\varphi_{,s} = 0$; $\mathbf{R}_{s} = \infty$; $\mathbf{R}_{\theta} = \infty$ Cône : $\varphi = 0$; $\varphi_{,s} = 0$; $\mathbf{R}_{s} = \infty$; $\mathbf{R}_{\theta} = \frac{\mathbf{r}}{\sin\varphi}$

Figure (1 . 7): rayon de courbure R_S et R_{θ} [2]

1.1.2.5 Théorie de Rissner Mindlin :

Cette théorie consiste à exprimer moyennant certaines hypothèses simplificatrices toutes les inconnues du problème :

• Hypothèse de linéarisation géométrique :

Les déplacements est déformations restent petites en sorte que les équations cinématiques soient linéaires.

• Hypothèse de linéarisation matérielle :

Le matériau obéit à la loi de Hooke.

- La contrainte normale transversale est négligable : $\sigma_z = 0$
- $(h/R_{min})^2 << 1$ (h épaisseur de la coque)

Remarques :

- Les expressions données ci-dessous sont pour un matériau homogène isotrope.

- l'épaisseur h est prise constant sur toute la structure.

1.1.2.5.1 Déplacements et déformations virtuelles :

on peut déduire le déplacement virtuel d'un point q figure (1.8):

$$\mathbf{x}_{\mathbf{q}} = \mathbf{x}_{\mathbf{p}} + z \mathbf{n}$$
$$-\frac{h}{2} \le z \le \frac{h}{2}$$

Hypothèse des sections droites (cinématique virtuelle) :

 $\mathbf{x}_{\mathbf{q}}^* = \mathbf{x}_{\mathbf{p}} + \mathbf{u}_{\mathbf{p}}^*$ $\mathbf{x}_{\mathbf{q}}^* = \mathbf{x}_{\mathbf{p}}^* + z (\mathbf{n} + \mathbf{\beta}^*) = \mathbf{x}_{\mathbf{q}} + \mathbf{u}_{\mathbf{q}}^*$ $\mathbf{u}_{\mathbf{q}}^* = \mathbf{u}_{\mathbf{p}}^* + z \mathbf{\beta}^* \text{ avec } \mathbf{\beta}^* = \mathbf{\beta}^* \mathbf{t} + \mathbf{\beta}_{\mathbf{\theta}}^* \mathbf{i}_{\mathbf{\theta}} \quad \text{et } \mathbf{\beta}^*. \mathbf{n} = 0$ les vecteurs $\mathbf{u}_{\mathbf{p}}^*$ et $\mathbf{\beta}^*$ sont définis en fonction de deux paramètres descriptifs de la surface moyenne : les coordonnées paramétriques ξ et $\mathbf{\theta}$: $\mathbf{p}^* = \mathbf{p}^* (\xi, \mathbf{0})$

 $\mathbf{u}_{\mathbf{p}}^{*} = \mathbf{u}_{\mathbf{p}}^{*}(\xi,\theta) \quad ; \quad \boldsymbol{\beta}^{*} = \boldsymbol{\beta}^{*}(\xi,\theta)$ les coordonnées curvilignes physiques s (méridien) et θ (circonférence) $\mathbf{u}_{\mathbf{p}}^{*} = \mathbf{u}_{\mathbf{p}}^{*}(s,\theta) \quad ; \quad \boldsymbol{\beta}^{*} = \boldsymbol{\beta}^{*}(s,\theta)$ Descriptions cylindrique et curviligne:

 β^{*} (s, \theta) est relative à la base curviligne t , i_{θ} , n

les composantes de u_p^* peuvent être définies dans la base cylindrique (i_r, i_{θ}, k) ou dans la base curviligne (t, i_{θ}, n)

Figure (1.8): Composantes cylindriques et curvilignes virtuelles [2]

Le cham de déplacement virtuel pour un comportement axisymétrique : $v_{n}^{*} = \beta_{n}^{*} = 0$

$$\mathbf{v} = \mathbf{p}_{\theta} = \mathbf{0}$$

 $\mathbf{u}_{q} = \mathbf{u}_{p}^{*} + \mathbf{z} \beta^{*}$

Le champ de déplacement en coordonnées cylindrique s'écrit : $\mathbf{u}_{\mathbf{q}}^{*} = (\mathbf{U}^{*} + z \beta^{*} \cos \varphi) \mathbf{i}_{\mathbf{r}} + (\mathbf{W}^{*} + z \beta^{*} \sin \varphi) \mathbf{k}$ (1.1)

Et en coordonnées curvilignes : $\mathbf{u}_{q}^{*} = (\mathbf{u}^{*} + z \beta^{*}) \mathbf{t} + \mathbf{w}^{*} \mathbf{n}$ (1.2) avec $\mathbf{t} = \mathbf{x}_{\mathbf{p},\mathbf{s}} = \cos\varphi \mathbf{i}_{\mathbf{r}} + \sin\varphi \mathbf{k}$; normal unitaire $\mathbf{n} = \mathbf{t} \wedge \mathbf{i}_{\theta} = -\sin\varphi \mathbf{i}_{\mathbf{r}} + \cos\varphi \mathbf{k}$

Les déformations virtuelles :

Expressions générales :

$$\boldsymbol{\varepsilon}^*_{s} = \frac{1}{\alpha_1} \, \mathbf{u}^*_{q,s} \cdot \mathbf{t} = \frac{1}{\alpha_1} \, \left(\boldsymbol{\varepsilon}^*_{s} + \boldsymbol{z} \, \boldsymbol{\chi}^*_{s} \right) \tag{1.3}$$

$$\varepsilon_{\theta}^{*} = \frac{1}{r\alpha_{2}} \mathbf{u}_{q,\theta}^{*} \cdot \mathbf{i}_{\theta} = \frac{1}{\alpha_{2}} (\varepsilon_{\theta}^{*} + z \chi_{\theta}^{*})$$
(1.4)

$$\gamma_{s}^{*} = \mathbf{u}_{q,\mathbf{z}}^{*} \cdot \mathbf{t} + \frac{1}{\alpha_{1}} \mathbf{u}_{q,\mathbf{s}}^{*} \cdot \mathbf{n} = \frac{1}{\alpha_{1}} \gamma^{*} \qquad ; \quad \gamma^{*} = \beta^{*} + \psi^{*} \qquad (1.5)$$

(ψ rotation de la surface moyen)

avec:
$$\alpha_1 = 1 - \frac{z}{R_s}$$
; $\alpha_2 = 1 - \frac{1}{R_{\theta}}$; $\frac{1}{R_s} = \phi_{,s}$; $\mathbf{r} = \mathbf{R}_{\theta} \sin \phi$
 $\mathbf{e}^*_{s} = \mathbf{u}^*_{\mathbf{p},\mathbf{s}} \cdot \mathbf{t}$; $\mathbf{e}^*_{\theta} = \frac{1}{r} \mathbf{u}^*_{\mathbf{p},\theta} \cdot \mathbf{i}_{\theta}$; $\psi^* = \mathbf{u}^*_{\mathbf{p},\mathbf{s}} \cdot \mathbf{n}$ (1.6)

Les courbures virtuelles suivant s et θ sont:

$$\chi^{*}_{s} = \beta^{*}_{,s} ; \quad \chi^{*}_{\theta} = \frac{1}{r} \beta^{*} \cos \phi$$
 (1.7)

Déformation de membrane et de cisaillement transversal : En coordonnées cylindriques :

$$e_{s}^{*} = U_{,s}^{*} \cos \varphi + W_{,s}^{*} \sin \varphi$$
; $e_{\theta}^{*} = \frac{1}{r} U^{*}$ (1.8)

$$\psi^* = -U^*_{,s} \sin \varphi + W^*_{,s} \cos \varphi$$
; $\gamma^* = \beta^* + \psi^*$ (1.9)

En coordonnées curvilignes :

$$e_{s}^{*} = u_{,s}^{*} - \frac{1}{R_{s}}w^{*}$$
; $e_{\theta}^{*} = \frac{1}{r}(u^{*}\cos\varphi + w^{*}\sin\varphi)$ (1.10)

$$\psi^* = w^*_{,s} + \frac{1}{R_s} u^*$$
; $\gamma^* = \beta^* + \psi^*$ (1.11)

1.1.2.5.2 Principe des travaux virtuels:

Tenseur des contraintes :

Les relations contraintes-déformations (loi de comportement) seront établies avec l'hypothèse des contraintes planes soit :

 $\sigma_{z'}=0$

Les cinq contraintes significatives dans la base curviligne orthonormée (t_{ξ} , i_{θ} , n_{ξ})

Figure (1 . 9): Composantes σ_s et $\sigma_{z'}$ [2]

Le tenseur des contraintes dans le repère cylindrique (base i_r , i_{θ} , k) :

Pour un comportement axisymétrique :

$$\sigma_{z'} = \sigma_{\theta s} = \sigma_{\theta z'} = 0$$

$$[\sigma] = \begin{bmatrix} \sigma_s & 0 & \sigma_{sz'} \\ \sigma_\theta & 0 \\ sym & 0 \end{bmatrix}$$
(1.12)

Expression du principe des travaux virtuels:

$$\begin{split} W &= W_{int} - W_{ext} = 0 \quad \forall \ u_{\ q}^{*} \ avec \ u_{\ q}^{*} = 0 \ sur \ S_{u} \end{split} \tag{1.13} \\ W_{int} : travail virtuel des forces interne \\ W_{ext} : travail virtuel des forces externe \\ W : travail total \end{split}$$

• travail virtuel des forces externe : En composantes cylindriques : $W_{ext} = 2 \pi \int_{\xi} (U^* f_r + W^* f_Z + \beta^* m_s) r d\xi$ (1.14) En composantes curvilignes : $W_{ext} = 2 \pi \int_{\xi} (u^* f_s + w^* f_Z + \beta^* m_s) r d\xi$ (1.15)

Avec f_r f_z f_s f_z m_s sont des sollicitations par unité de surface moyenne A figure (1.10)

Figure (1.10): sollicitation surfacique $f_r f_Z f_s f_z m_s$ [2]

• travail virtuel des forces interne :

L'expression de W_{int} en fonction des efforts résultants :

$$W_{int} = 2 \pi \int_{s} \left(e^{*}_{s} N_{s} + e^{*}_{\theta} N_{\theta} + \chi^{*}_{s} M_{s} + \chi^{*}_{\theta} M_{\theta} \right) r ds$$
$$= 2 \pi \int_{s} \left(\left\langle e^{*} \right\rangle [N] + \left\langle \chi^{*} \right\rangle [M] + \gamma^{*} T_{s} \right) r ds \qquad (1.16)$$

Avec
$$\langle e^* \rangle = \langle e^*_s e^*_{\theta} \rangle$$
; $\langle \chi^* \rangle = \langle \chi^*_s \chi^*_{\theta} \rangle$ (1.17)
 $\langle N \rangle = \langle N, N_s \rangle$; $\langle M \rangle = \langle M, M_s \rangle$ (1.17)

$$\int_{s}^{t} \sigma_{s} \alpha_{2} dz \quad : M_{s} = \int_{s}^{t} \sigma_{s} z \alpha_{2} dz \quad : T_{s} = \int_{s}^{t} \sigma_{sz} \alpha_{2} dz \quad (1.18)$$

$$N_{s} = \int_{-t}^{t} \sigma_{s} \alpha_{2} dz \quad ; M_{s} = \int_{-t}^{t} \sigma_{s} z \alpha_{2} dz \quad ; T_{s} = \int_{-t}^{t} \sigma_{sz} \alpha_{2} dz \qquad (1.18)$$

$$N_{\theta} = \int_{-t}^{t} \sigma_{\theta} \alpha_{1} dz \quad ; M_{\theta} = \int_{-t}^{t} \sigma_{\theta} z \alpha_{1} dz \qquad (1.18)$$

$$\alpha_{1} = 1 - \frac{Z}{R_{s}} \qquad ; \quad \alpha_{1} = 1 - \frac{Z}{R_{\theta}}$$

$$e^{*} - e^{*} - \chi^{*} - \chi^{*} - \chi^{*} \quad \text{sont definis par equations (1 - 3) à (1 - 11)}$$

 $e_s, e_{\theta}, \chi_s, \chi_{\theta}, \gamma$ sont définis par équations (1.3) à (1.11) N_s, N_{θ}: effort résultantes de membrane suivant s et θ figure (1.11) M_s, M_{θ}: effort résultantes de flexion (moments) autour de **i**_{θ} et de **t** T_s: effort tranchant suivant z Ces efforts résultants sont définis par unité de longueur de surface de référence circonférentielle pour N_s , M_s et T_s et méridienne pour N_θ et M_θ , ce qui explique la présence des termes de courbure α_1 et α_2 dans leur expressions.

Figure (1 . 11) : efforts résultantes N_s , N_θ , T_s , M_s et M_θ [2]

Equation d'équilibre :

Considérons l'expression du principe des travaux virtuels équations (1 . 13) (1 . 15) (1 . 16) $W = W_{int} - W_{ext} = 0 \forall u_q^* \text{ avec } u_q^* = 0 \text{ sur } S_u$ $W_{int} = 2 \pi \int_{s} (\langle e^* \rangle [N] + \langle \chi^* \rangle [M] + \gamma^* T_s) r ds$

$$W_{ext} = 2 \pi \int_{s} (u^{*} f_{s} + w^{*} f_{z} + \beta^{*} m_{s}) r ds$$
$$+ 2 \pi (r u^{*} F_{s} + r w^{*} F_{z} + r \beta^{*} \mathcal{M})_{Sf}$$

avec \mathbf{f} et \mathbf{m}_s des sollicitations surfaciques, \mathbf{F} et \mathcal{M} linéiques.

En tenant compte des expressions de $\langle e^* \rangle$, $\langle \chi^* \rangle$ et γ^* équations de (1.3) à (1.11) et en intégrant par partie tous les termes faisant intervenir les dérivées par rapport à s, on obtient les équation d'équilibre sur A et sur S_f:

W =
$$-2\pi \int_{s} (u^* EQ1 + w^* EQ2 + \beta^* EQ3) r ds$$

+ $2\pi (r u^* EQ4 + r w^* EQ5 + r \beta^* EQ6)_{Sf}$

$$\forall u^{*}, w^{*}, \beta^{*} = 0 \text{ sur } S_{u}$$

$$EQ1 = N_{s,s} + \frac{\cos \varphi}{r} (N_{s} - N_{\theta}) - \frac{T_{s}}{R_{s}} + f_{s} = 0$$
(1.19)

$$EQ2 = T_{s,s} + \frac{\cos \phi}{r} T_s + \frac{N_s}{R_s} + \frac{N_{\theta}}{R_{\theta}} + f_z = 0$$
(1.20)

$$EQ3 = M_{s,s} + \frac{\cos \varphi}{r} (M_s - M_{\theta}) - T_s + m_s = 0$$
 (1.21)

Et sur S_f :

$$\begin{split} EQ4 &= N_s \; n_{sc} - F_s = 0 \\ EQ5 &= T_s \; n_{sc} - F_z = 0 \\ EQ6 &= M_s \; n_{sc} - \; \mathcal{M} = 0 \end{split}$$

 n_{sc} est le cosinus directeur de la normale en s dirigée vers l'extérieur du méridien, c'est-à-dire $n_{sc}=\bm{n_c}$. $\bm{t}=\pm~1$

Figure (1.12): cosinus directeur de la normale [2]

1.1.2.5.3 Loi de comportement :

Relations contraintes-déformations et déformation déplacement :

Nous considérons une coque constituée de matériau élastique subit de petites déformations et de petits déplacements, les relations contraintes-déformations sont établies avec l'hypothèse des contraintes planes ($\sigma_{z'} = 0$) et avec l'hypothèse d'anisotropie plane, (pas de couplage entre (ϵ_s , ϵ_θ) et $\gamma_{sz'}$)

On suppose également que les propriétés élastiques sont axisymétriques : Pour un matériau isotrope :

$$[\sigma] = [H_1] [\epsilon] \qquad ; \quad [H_1] = \begin{bmatrix} [H] & \{0\} \\ \langle 0 \rangle & G \end{bmatrix} \qquad (1.22)$$

$$[H] = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v \\ v & 1 \end{bmatrix} ; \quad G = \frac{E}{2(1 + v)}$$
(1.22)

G : module de cisaillement E : module de yong v : coefficient de poisson

Dans le cadre des petits déplacements et des petites rotations, l'hypothèse des sections droites conduit au champ de déplacements réels d'un point quelconque q :

 $\mathbf{u}_{\mathbf{q}} = \mathbf{u}_{\mathbf{p}} + z \boldsymbol{\beta}$ avec $\boldsymbol{\beta} \cdot \mathbf{n} = 0$

avec pour un comportement axisymétrique (v = $\beta_{\theta} = 0$) : $\mathbf{u}_{q} = (\mathbf{U}(s) + z \ \beta(s) \cos \varphi) \mathbf{i}_{r} + (\mathbf{W}(s) + z \ \beta(s) \sin \varphi) \mathbf{k}$ (coordonnées cylindrique) $\mathbf{u}_{q} = (\mathbf{u}(s) + z \ \beta(s)) \mathbf{t} + \mathbf{w}(s) \mathbf{n}$ (coordonnées curviligne)

les déformations réelles ε_s , ε_{θ} et $\gamma_{sz'}$ sont définies en fonction des composantes de $\mathbf{u_p}$ et de β comme ε_s^* , ε_{θ}^* et $\gamma_{sz'}^*$ en fonction de $\mathbf{u_p}^*$ et de β^* . On a donc:

$$\varepsilon_{\rm s} = \frac{1}{\alpha_1} \left(e_{\rm s} + z \, \chi_{\rm s} \right) \tag{1.23}$$

$$\varepsilon_{\theta} = \frac{1}{\alpha_2} \left(e_{\theta} + z \, \chi_{\theta} \right) \tag{1.24}$$

$$\gamma_{\rm s} = \frac{1}{\alpha_1} \gamma$$
; $\gamma = \beta + \psi$ (1.25)

Avec
$$\langle e \rangle = \langle e_{s} e_{\theta} \rangle$$
; $\langle \chi \rangle = \langle \chi_{s} \chi_{\theta} \rangle$
 $e_{s} = \mathbf{u}_{\mathbf{p},\mathbf{s}} \cdot \mathbf{t} = U_{,s} \cos\varphi + W_{,s} \sin\varphi = u_{,s} - \frac{1}{R_{s}} w$ (1.26)

$$\mathbf{e}_{\theta} = \frac{1}{r} \mathbf{u}_{\mathbf{p},\theta} \cdot \mathbf{i}_{\theta} = \frac{1}{r} \mathbf{U} = \frac{1}{r} (\mathbf{u} \cos \varphi - \mathbf{w} \sin \varphi)$$
(1.27)

$$\chi_s = \beta_{,s}$$
; $\chi_{\theta} = \frac{1}{r} \beta \cos \phi$ (1.28)

$$\psi = \mathbf{u}_{\mathbf{p},\mathbf{s}} \cdot \mathbf{n} = -U_{,s} \sin \phi + W_{,s} \cos \phi = w_{,s} + \frac{1}{R_s} u$$
 (1.29)

Relation efforts resultants-déformations (membrane et flexion) :

on considérant les définitions des efforts résultants équation (1.18) et en utilisant les relations contraintes-déformations équations (1.22) et de (1.23) à (1.29) on obtient :

Rigidité de cisaillement transversal :

en utilisant les équations (1 . 18) (1 . 22) et de (1 . 23) à (1 . 29) on obtient : $T_{s} = H_{c} \gamma \quad ; \quad H_{c} = k\overline{H}_{c} \qquad (1 . 31)$ $\overline{H}_{c} = \int_{-t}^{t} \frac{\alpha_{1}}{\alpha_{2}} G_{sz} dz$ Pour un matériau homogène isotrope : - 5

$$\overline{H}_c = G h$$
 et $k = \frac{5}{6}$

k : facteur de correction de cisaillement transversal

Energie interne de déformation :

On admet, pour les matériaux élastiques qui constituent la coque, l'existence d'une énergie interne de déformation, celle-ci s'écrit en fonction des déformations généralisées :

$$\prod_{int} (\mathbf{u}_{\mathbf{p}}, \beta) = 2 \pi \int_{s} \left(\frac{1}{2} \langle e \rangle [H_{m}] \{e\} + \langle e \rangle [H_{mf}] \{\chi\} + \frac{1}{2} \langle \chi \rangle [H_{f}] \{\chi\} + \frac{1}{2} \gamma H_{c} \gamma \right) r ds \qquad (1.32)$$

$$Ou \{e\}, \{\chi\}, \gamma \text{ sont definis par equations de } (1.23) a (1.30)$$

1.1.2.5.4 Modèles mixtes en cisaillement transverse :

L'expression du principe des travaux virtuels équation (1.13) traduit sous forme intégrale l'équilibre de la coque soumise à des sollicitations agissant sur la surface moyenne A et sur les contours S_f, plusieurs expressions variationnelles mixtes peuvent être définies suivant la manière dont on tient compte des relations déformations-déplacements et des relations contraintes-déformations :

$$W = W_{int} - W_{ext} = 0 \forall \mathbf{u}_{\mathbf{p}}^{*}, \beta^{*}, T_{s}^{*}; \mathbf{u}_{\mathbf{p}} = \overline{\mathbf{u}}_{\mathbf{p}} \text{ et } \boldsymbol{\beta}_{\mathbf{p}} = \overline{\boldsymbol{\beta}}_{\mathbf{p}} \quad \text{sur } S_{u} \quad (1.33)$$

$$W_{int} = 2 \pi \int_{s} \langle \langle \mathbf{e}^{*} \rangle ([\mathbf{H}_{m}] \{\mathbf{e}\} + [\mathbf{H}_{mf}] \{\chi\})$$

$$+ \langle \chi^{*} \rangle ([\mathbf{H}_{mf}] \{\mathbf{e}\} + [\mathbf{H}_{f}] \{\chi\}) + \gamma^{*} T_{s} + T_{s}^{*} (\gamma - \mathbf{H}_{c}^{-1} T_{s})) \mathbf{r} \, ds$$

L'énergie potentielle totale est :

$$\prod = \prod_{int} (\mathbf{u_p}, \beta, T_s) - \prod_{ext} (\mathbf{u_p}, \beta)$$

L'expression de la fonctionnelle d'énergie $\prod_{int}{(\boldsymbol{u_p}\,,\beta\,,T_s)}$ associée est:

$$\prod_{int} (\mathbf{u}_{\mathbf{p}}, \beta, T_{s}) = 2 \pi \int_{s} \left(\frac{1}{2} \langle e \rangle [H_{m}] \{e\} + \langle e \rangle [H_{mf}] \{\chi\} \right)$$

$$+ \frac{1}{2} \langle \chi \rangle [H_{f}] \{\chi\} + \gamma T_{s} - \frac{1}{2} T_{s} H_{c}^{-1} T_{s} r ds$$

$$L'expression de la \prod_{ext} (\mathbf{u}_{\mathbf{p}}, \beta) est:$$

$$(1.34)$$

$$\prod_{\text{ext}} (\mathbf{u}_{\mathbf{p}}, \beta) = 2 \pi \int_{s} (\mathbf{u}_{\mathbf{p}} \cdot \mathbf{f} + \beta m_{s}) \mathbf{r} \, ds + 2 \pi (\mathbf{r} \, \mathbf{u}_{\mathbf{p}} \cdot \mathbf{F} + \mathbf{r} \beta \mathcal{M})_{\text{Sf}}$$
(1.35)

1.1.2.6 Théorie de love Kirchoff :

La théorie des coques dites de kirchoff est basée sur l'hypothèse de conservation des normales : les points matériels situés sur une normale **n** à la surface moyenne déformée. On admet ainsi que les déformations de cisaillement transversal sont négligées, cela conduit à relier la rotation de la normale β^* et la rotation de la surface moyenne A, notée ψ^* .

1.1.2.6.1 Déplacements et déformations virtuelles :

 $\gamma^* = 0 \quad \text{et } \gamma = 0$ conduit à (équations de (1.3) à (1.11) et de (1.23) à (1.29)) : $\beta^* = -\psi^* = -\mathbf{u}^*_{\mathbf{p},\mathbf{s}} \cdot \mathbf{n} \quad ; \quad \beta = -\psi = -\mathbf{u}_{\mathbf{p},\mathbf{s}} \cdot \mathbf{n} \quad (1.36)$ Les champs de déplacements réels et virtuels sont ainsi : $\mathbf{u}^*_{\mathbf{q}} = \mathbf{u}^*_{\mathbf{p}} - z \psi^* \mathbf{t} \quad ; \quad \mathbf{u}_{\mathbf{q}} = \mathbf{u}_{\mathbf{p}} - z \psi \mathbf{t} \quad (1.37)$ Ces champs ne sont fonction que des composantes de $\mathbf{u}^*_{\mathbf{p}}$ et de $\mathbf{u}_{\mathbf{p}}$ (en faisant intervenir les dérivées premières par rapport à s).

En description cylindrique :

 $\mathbf{u}_{\mathbf{q}} = \mathbf{U}_{q} \mathbf{i}_{\mathbf{r}} + \mathbf{W}_{k} \mathbf{k} \quad \psi = \mathbf{W}_{,s} \cos\varphi - \mathbf{U}_{,s} \sin\varphi$ (1.38) avec: $\mathbf{U}_{q} = \mathbf{U} - z \psi \cos\varphi$; $\mathbf{W}_{q} = \mathbf{W} - z \psi \sin\varphi$ En description curviligne:

$$\mathbf{u}_{\mathbf{q}} = \mathbf{u}_{\mathbf{q}} \, \mathbf{t} + \mathbf{w}_{\mathbf{q}} \, \mathbf{n}$$
 ; $\psi = \mathbf{w}_{,s} + \frac{1}{\mathbf{R}_{s}} \, \mathbf{u}$ (1.39)

avec : $u_q = u - z \psi$; $w_q = w$ Les déplacements virtuels sont du même type. Pour les déformations, nous obtenons :

$$\varepsilon_{s} = \frac{1}{\alpha_{1}} (e_{s} + z \chi_{s})$$

$$\varepsilon_{\theta} = \frac{1}{\alpha_{2}} (e_{\theta} + z \chi_{\theta})$$
(1.40)
(1.41)

les déformation de membrane e_s et e_{θ} sont définies par (en coordonnées cylindriques et curvilignes) :

$$e_{s} = \mathbf{u}_{\mathbf{p},s} \cdot \mathbf{t} = U_{,s} \cos\varphi + W_{,s} \sin\varphi = u_{,s} - \frac{1}{R_{s}} w$$
$$e_{\theta} = \frac{1}{r} \mathbf{u}_{\mathbf{p},\theta} \cdot \mathbf{i}_{\theta} = \frac{1}{r} U = \frac{1}{r} (u \cos\varphi - w \sin\varphi)$$

les déformation de membrane virtuels e_s et e_{θ} : En coordonnées cylindrique :

$$e_{s}^{*} = U_{,s}^{*} \cos \varphi + W_{,s}^{*} \sin \varphi$$
; $e_{\theta}^{*} = \frac{1}{r} U^{*}$ (1.42)

En coordonnées curviligne :

$$e_{s}^{*} = u_{,s}^{*} - \frac{1}{R_{s}}w^{*}$$
; $e_{\theta}^{*} = \frac{1}{r}(u^{*}\cos\varphi + w^{*}\sin\varphi)$ (1.43)

les courbures sont :

$$\chi_s = -\psi_{,s} = -(\mathbf{u}_{\mathbf{p},\mathbf{s}} \cdot \mathbf{n})_{,s}$$
; $\chi_{\theta} = -\frac{1}{r} \psi \cos \varphi = -\frac{1}{r} \cos \varphi \mathbf{u}_{\mathbf{p},\mathbf{s}} \cdot \mathbf{n}$

En coordonnées cylindrique :

$$\chi_{s} = -\left(\cos\phi \left(W_{,ss} - \frac{1}{R_{s}} \ U_{,s}\right) - \sin\phi \left(U_{,ss} + \frac{1}{R_{s}} \ W_{,s}\right)\right)$$
(1.44)

$$\chi_{\theta} = -\frac{1}{r} \cos\varphi \left(W_{,s} \cos\varphi - U_{,s} \sin\varphi \right)$$
(1.45)

En coordonnées curviligne :

Chapitre 1 -

$$\chi_{s} = -(w_{,s} + \frac{1}{R_{s}} u)_{,s} = -(w_{,ss} + \frac{1}{R_{s}} u_{,s} - \frac{R_{s,s}}{R_{s}^{2}} u)$$
(1.46)

$$\chi_{\theta} = -\frac{1}{r} \cos \phi (w_{,s} + \frac{1}{R_s} u_{,s})$$
(1.47)

(idem pour $\chi^{*}_{\ s}$ et $\chi^{*}_{\ \theta}$ en fonction de U^{*} , W^{*} , u^{*} et $w^{*})$ Remarque :

Les expressions de courbures χ_s et χ_θ sont plus complexes que dans le modèle de Mindlin, en particulier, la présence des dérivées secondes de U et W dans la description cylindrique, mais seulement celle de w dans la description curviligne ; cependant, dans cette dernière, apparaît également la dérivée première du rayon R_s .

1.1.2.6.2 Principe des travaux virtuels :

Les différentes expressions du principe des travaux virtuels établies pour la théorie de Mindlin sont valables pour la théorie de kirchoff en tenant compte des relations cinématiques équations (1.37) à (1.47) nous écrivons:

$$W = W_{int} - W_{ext} = 0$$

$$\forall u_p^* \text{ avec } u_p^* = 0 \text{ et } \psi^* = 0 \text{ sur } S_u$$
(1.48)

$$W_{int} = 2 \pi \int_{s} \left(\langle e^* \rangle [N] + \langle \chi^* \rangle [M] \right) r ds \qquad (1.49)$$

avec $\langle e^* \rangle = \langle e^*_s e^*_{\theta} \rangle$; $\langle \chi^* \rangle = \langle \chi^*_s \chi^*_{\theta} \rangle$ les déformations virtuelles de membrane sont définis

les déformations virtuelles de membrane sont définis par les équations (1 . 3) à (1 . 11), et les courbures virtuelles par les équations (1 . 44) à (1 . 47)

les efforts résultantes sont données par :

$$\langle \mathbf{N} \rangle = \langle \mathbf{N}_{s} \ \mathbf{N}_{\theta} \rangle \quad ; \qquad \langle \mathbf{M} \rangle = \langle \mathbf{M}_{s} \ \mathbf{M}_{\theta} \rangle$$

$$\mathbf{N}_{s} = \int_{-t}^{t} \ \boldsymbol{\sigma}_{s} \, \boldsymbol{\alpha}_{2} \, dz \quad ; \quad \mathbf{M}_{s} = \int_{-t}^{t} \ \boldsymbol{\sigma}_{s} \, z \, \boldsymbol{\alpha}_{2} \, dz \quad ; \quad \mathbf{T}_{s} = \int_{-t}^{t} \ \boldsymbol{\sigma}_{sz} \, \boldsymbol{\alpha}_{2} \, dz \qquad (1.50)$$

$$\mathbf{N}_{\theta} = \int_{-t}^{t} \ \boldsymbol{\sigma}_{\theta} \, \boldsymbol{\alpha}_{1} \, dz \quad ; \quad \mathbf{M}_{\theta} = \int_{-t}^{t} \ \boldsymbol{\sigma}_{\theta} \, z \, \boldsymbol{\alpha}_{1} \, dz \qquad (1.51)$$

$$\boldsymbol{\alpha}_{1} = 1 - \frac{z}{R_{s}} \qquad ; \quad \boldsymbol{\alpha}_{1} = 1 - \frac{z}{R_{\theta}}$$

pour les travaux virtuels externes nous retenons une forme générale due à des sollicitations surfaciques **f** et **m**_s, linéiques **F** et **H** et une charge concentré P_Z sur l'axe Z :

$$W_{ext} = 2 \pi \int_{s} (\mathbf{u}_{p}^{*} \cdot \mathbf{f} - \psi^{*} \cdot \mathbf{m}_{s}) \mathbf{r} \, ds$$

+2 \pi (\mathbf{r} \mathbf{u}_{p}^{*} \cdot \mathbf{F} - \mathbf{r} \pi \mathcal{M})_{Sf} + w_{p}^{*} P_{Z} \qquad (1.52)
En effectuent physicum intégrations per parties de l'équation (1.40) en obtient les équation

En effectuant plusieurs intégrations par parties de l'équation (1 . 49) en obtient les équations d'équilibre suivant s et z ainsi que les conditions sur $S_{\rm f}$.

Les équations correspondantes aux relations (1.19) à (1.21) en éliminant l'effort tranchant T_s (en utilisant EQ3 (1.21) c'est-à-dire :

$$T_s = M_{s,s} + \frac{\cos \varphi}{r} (M_s - M_\theta)$$
(1.53)

1.1.2.6.3 Loi de comportement :

La loi de comportement retenue ne concerne que ε_{s} , ε_{θ} , σ_{s} et σ_{θ} $[\sigma] = [H] [\varepsilon]$ avec $\langle \sigma \rangle = \langle \sigma_{s} \ \sigma_{\theta} \rangle \quad ; \langle \sigma \rangle = \langle \varepsilon_{s} \ \varepsilon_{\theta} \rangle$ (1.54)

1.1.2.6.4 Modèles déplacement :

Les relations efforts résultantes-déformations sont données par : $[N] = [H_m] \{e\} + [H_{mf}] \{\chi\}$ (1.55) $[M] = [H_{mf}] \{e\} + [H_f] \{\chi\}$ avec $\langle e \rangle = \langle e_s e_\theta \rangle$; $\langle \chi \rangle = \langle \chi_{s} \quad \chi_{\theta} \rangle$ Le modèle déplacement correspond à l'équation (1.48) avec : $W_{int} = 2 \pi \int (\langle e^* \rangle ([H_m] \{e\} + [H_{mf}] \{\chi\}))$ (1.56)+ $\langle \chi^* \rangle ([H_{mf}] \{e\}+[H_f] \{\chi\})) r ds$ $(\chi_s \text{ et } \chi_{\theta} \text{ sont donnés par les équations de } (1.44) à (1.47))$ L'énergie potentielle totale est : $\prod (\mathbf{u}_{\mathbf{p}}) = \prod_{int} - \prod_{ext}$ Avec $\forall \mathbf{u}_{\mathbf{p}} = \overline{\mathbf{u}}_{\mathbf{p}}$ et $\psi = \overline{\psi}$ sur S_{u} $\prod_{int} = 2 \pi \int \left(\frac{1}{2} \langle e \rangle [H_m] \{e\} + \langle e \rangle [H_{mf}] \{\chi\} + \frac{1}{2} \langle \chi \rangle [H_f] \{\chi\}\right) r ds$ (1.57) $\prod_{\text{ext}} = 2 \pi \int_{s} (\mathbf{u}_{\mathbf{p}} \cdot \mathbf{f} - \psi m_{s}) \mathbf{r} \, ds + 2 \pi (\mathbf{r} \, \mathbf{u}_{\mathbf{p}} \cdot \mathbf{F} - \mathbf{r} \, \psi \, \mathcal{M})_{\text{Sf}} + w_{p} P_{Z}$ (1.58)

1.1.3 Solide de révolution :

L'étude des solides de révolution est un cas particulier de l'étude des solides tridimensionnels élastiques (théorie classique du mécanique du milieu continue).

L'expression du principe des travaux virtuels traduit sous forme intégrale l'équilibre de solide soumis à l'action des forces de volume f_v et de surface f_s :

$$W = \int_{V} \langle \epsilon^{*} \rangle [\sigma] dV - \int_{V} \langle u^{*} \rangle \{ f_{v} \} dV - \int_{s_{f}} \langle u^{*} \rangle \{ f_{S} \} dS = 0$$

$$\forall \{u^{*}\} \text{ avec } \{u^{*}\} = \{0\} S_{u}$$

Les déplacements virtuels :

 $\begin{array}{l} \langle u^* \rangle = \langle \ u^* \ v^* \ w^* \rangle \\ \text{Les forces volumiques et surfaciques :} \\ \langle f_v \rangle = \langle \ f_x \ f_y \ f_z \rangle \qquad \langle f_s \rangle = \langle \ f_{xx} \ f_{xy} \ f_{xz} \rangle \\ \text{Les contraintes :} \\ \langle \sigma \rangle = \langle \ \sigma_x \ \sigma_y \ \sigma_z \ \sigma_{xy} \ \sigma_{xz} \ \sigma_{yz} \rangle \\ \text{Les déformations :} \\ \langle \epsilon^* \rangle = \langle \ u^*,_x \ v^*,_y \ w^*,_z \ u^*,_y + v^*,_x \ u^*,_z + w^*,_x \ v^*,_z + w^*,_y \rangle \end{array}$

Pour un problème axisymétrique (solide de révolution) les relations précédentes deviennent :

$$\langle \mathbf{u}^{*} \rangle = \langle \mathbf{u}^{*} \mathbf{w}^{*} \rangle$$

$$\langle \mathbf{f}_{v} \rangle = \langle \mathbf{f}_{r} \mathbf{f}_{z} \rangle \qquad \langle \mathbf{f}_{s} \rangle = \langle \mathbf{f}_{sr} \mathbf{f}_{sz} \rangle$$

$$\langle \boldsymbol{\sigma} \rangle = \langle \boldsymbol{\sigma}_{r} \boldsymbol{\sigma}_{\theta} \boldsymbol{\sigma}_{z} \boldsymbol{\sigma}_{rz} \rangle$$

$$\langle \boldsymbol{\epsilon}^{*} \rangle = \langle \mathbf{u}^{*}_{,r} \frac{\mathbf{u}^{*}}{r} \mathbf{w}^{*}_{,z} \mathbf{u}^{*}_{,z} + \mathbf{w}^{*}_{,r} \rangle$$

En introduisant dans l'expression du PTV :

La loi de comportement : $[\sigma] = [H] \{ \epsilon \}$ Les relations déformations-déplacements :

$$\label{eq:constraint} \langle \epsilon \rangle \!\! = \langle \ u_{,r} \quad \frac{u}{r} \quad w_{,z} \quad u_{,z} \!\! + w_{,r} \ \rangle$$

Les conditions aux limites sur les déplacements:

$$u = \overline{u}$$
; $w = \overline{w}$ sur S_u

on obtient l'expression du W sous la forme intégrale suivantes en fonction du $\langle u^* \rangle$ et $\langle u \rangle$:

$$W(u^{*},u) = \int_{V} \langle \epsilon^{*} \rangle [H] \{ \epsilon \} dV - \int_{V} \langle u^{*} \rangle \{ f_{v} \} dV - \int_{S_{f}} \langle u^{*} \rangle \{ f_{S} \} dS = 0$$

 $\forall \{\mathbf{u}^*\} \text{ avec } \{\mathbf{u}^*\} = \{0\} \text{ et } \{\mathbf{u}\} = \{\overline{\mathbf{u}}\} \text{ sur } \mathbf{S}_{\mathbf{u}}$

Pour un corps de révolution l'intégrale sur le volume se transforme en intégrale sur la surface en remplacent dV par $2 \pi r dr dz$.

Le problème se ramène à trouver {u} satisfaisant cette dernière expression.

1.2 RECHERCHE BIBLIOGRAPHIQUE :

1.2.1 Coque de révolution :

Pour les coques axisymétriques on peut considérer qu'il y'a deux types d'éléments finis

- Les éléments finis basés sur la théorie de Love-Kirchoff, où l'effet du cisaillement transversal n'est pas pris en compte.
- Les éléments finis basés sur la théorie de Rissner-Mindlin où le cisaillement transversal est pris en considération dans la formulation.

Le premier type d'élément nécessite le respect de la continuité C^1 aux interfaces, le deuxième type d'éléments est basé sur des interpolations indépendantes des déplacements et rotations, et ne nécessite que la continuité C^0 , il est applicable aux coques minces si on utilise la méthode d'intégration réduite.

Comme pour tous les types d'élément finis il faut s'assurer avant tout calcul, que les éléments de types coque axisymétrique convergent vers la solution exacte lorsqu'on discrétise toujours plus finement, la solution exacte est celle résultant de la théorie sur base de laquelle l'élément finis est construit.

Pour garantir la convergence, l'élément fini doit pouvoir représenter les modes rigides et constants, de plus il doit être conforme, c'est-à-dire assurer la parfaite continuité des déplacements représentatifs aux frontières.

Dans les éléments finis de type coque, il est souvent très difficile de satisfaire ces exigences, la plus délicate est celle de conformité aux frontières, dans certains circonstances il est tout simplement impossible d'y satisfaire, elle n'est toutefois pas impérative, les élément non conformes assurent également la convergence vers la solution exacte s'ils satisfont au patch test, concrètement l'excès de rigidité est compensé par un certain assouplissement dû aux légères discontinuité aux frontières.

Tests de convergence :

Presque tous les éléments finis de coque sont non conformes, cependant la vérification de la convergence de l'élément peut se faire avec:

- Les tests impliquant un seul élément
- Les tests impliquant plusieurs éléments (patch test)

Dans le cas des coques à surface courbe, les tests sont plus difficiles à proposer que dans le cas des plaques ou des milieux continues, à cause de la représentation (discrétisation) de la géométrie.

Les tests impliquant un seul ou plusieurs éléments (patch tests) sont relatifs à la représentation des mouvements rigides ou modes rigides (état de déformations nulles) et de l'état de déformations constantes ou modes constantes.

Etat de déformations nulles (mode rigides) :

Un mode rigide (ou mouvement de corps rigides) est caractérisé par un champ de déplacement $\mathbf{u}_{\mathbf{p}}$ et de rotation β non nuls qui produit des déformations \mathbf{e}_{s} , \mathbf{e}_{θ} , χ_{s} , χ_{θ} et γ nulles en tout points.

Il en découle que l'énergie interne de déformation est nulle pour un mode rigide, pour le cas d'une coque de révolution axisymétrique il existe un seul mode rigide, soit la translation suivant l'axe global Z, en description cylindrique :

$$U=0 \quad , \quad W=a_1 \quad , \quad \beta=0$$

 $Et \quad e_s = e_\theta = \chi_s = \chi_\theta = \gamma = 0$

Pour que les éléments finis soient performants, il est nécessaires que les approximations retenues pour la géométrie r(s) et Z(s) et pour les composantes de u_p assurent une représentation exacte sinon très bonne de l'état de déformations nulles, si cet état est mal représenté, il y a présence de déformations et d'une énergie interne parasite

La représentation exacte des déformations nulles ne pose pas de problème si les composantes cylindriques U et W sont utilisées puisqu'il suffit que l'approximation de W contienne un terme constant, pour une formulation curviligne, si les approximations de la géométrie r(s), Z(s) et des déplacements u (s) , w(s) sont identiques, le mode rigide est correctement représenté.

Blocage en membrane (formulation curviligne) :

Le comportement d'une coque résulte de l'interaction entre membrane, flexion et cisaillement :

$$\Pi_{\text{int}} = (h \ \Pi_{\text{m}} + h^3 \ \Pi_{\text{f}} + h \ \Pi_{\text{c}}) \ 2\pi$$

Les termes de membrane dépendent linéairement de l'épaisseur en h alors que la flexion est fonction cubique de h, il en découle q'une mauvaise représentation des déformations de membrane peut introduire une influence numérique parasite des termes de membrane sur les termes de flexion ce qui définie le blocage en membrane (membrane locking).

Pour éviter le blocage en membrane il faut que les approximations de u(s) et de w(s) permettent d'obtenir des déformations e_s et e_{θ} nulles sont modifier la représentation de la flexion, pour une coque de révolution il n'existe pas de mode dit inextentionnel, c'est-à-dire tel que $e_s = e_{\theta} = \gamma = 0$ avec χ_s et $\chi_{\theta} \neq 0$.
Cependant le problème de blocage en membrane se manifeste d'autant moins que les approximations u(s) et w(s) permettent de représenter $e_s = u_{,s} - w/R_s$, où R_s est le rayon de courbure réel de la coque sans restreindre l'approximation de w(s) (qui sert à la représentation des courbures χ_s et $\chi_{\theta} \neq 0$).

Etat de déformations constantes (mode constant) :

Un mode constant est un champ de déplacement \mathbf{u}_p et β non nuls qui conduit à une valeur constante d'une ou de plusieurs déformations généralisées e_s , e_{θ} , χ_s , χ_{θ} et γ les autres déformations étant nulles.

Il existe un seul mode constant pour une coque dont le méridien est quelconque et trois modes constants pour une coque tronconique.

1.2.1.1 Eléments finis tronconiques :

Plusieurs éléments ont été développés au début des années 1960, le premier élément fini formulé (en 1963) dans le domaine des types de structures coque été un élément tronconique pour coques de révolution basé sur la théorie de Love-Kirchoff références ([39] [40] [41] [42]).

L'élément de type Kirchoff le plus utilisé actuellement est l'élément CAXI_K, pour ce type le champ de déplacement u est linéaire, w cubique.

En ce qui concerne les éléments basés sur la théorie de Rissner-Mindlin d'autres éléments que l'élément CAXI_L(référence [2], qui sera présenter en détail dans le chapitre 2) ont été proposés est testés.

un élément simple est performant basé sur le modèle déplacement à été formulé en [23], les composantes u et β sont linéaires et w quadratique, l'intégration ce fait avec 3 points de Gauss pour la membrane, 2 points pour la flexion, 1 point pour le cisaillement transversal.

En s'inspirant de l'élément avec formulation mixte en cisaillement transversal pour les poutres droites, un élément avec u et w linéaires et ß quadratique à été formulé et testé en [24] et [25], en utilisant une intégration uniforme avec deux points de Gauss, il implique une élimination locale de deux variables internes, mais il présente une performance meilleur que l'élément CAXI_L.

En [26], un élément fini tronconique a été défini pour les coques multicouches et sandwich en utilisant l'hypothèse de Mindlin pour chaque couche et en assurant la continuité des déplacements aux interfaces, sur chaque couche le déplacement u(s) est linéaire ainsi que la rotation $\beta(s)$ alors que w(s) est cubique de type Hermite.

1.2.1.2 Eléments courbés :

On peut distinguer aussi Les éléments courbés qui sont basés sur la description curviligne du champ de déplacement (composantes u et w), de tels éléments utilisant la théorie de Kirchoff ont été formulés et évalués à partir des années 1965 références ([30] [31] [27] [32] [17] [33] [29]), les chercheurs emploient différentes approximations de la géométrie et de composantes u(s) et w(s), un des problèmes majeurs avec les éléments courbes en composantes curviligne est celui qui est relatif à la représentation correcte du mouvement du corps rigide, des approximations assez élevées doivent être utilisées pour u(s) si on utilise le modèle déplacement pour évité une rigidité parasite ou blocage en membrane.

Certains chercheurs ont utilisé des approximations de u(s) et w(s) permettant une représentation explicite des mouvements de corps rigide [27], une représentation implicite acceptable nécessite une approximation polynomiale au moins quadratique pour u(s) [28] [17] [29].

Dans la thèse [17] des approximations quadratique pour u(s) et cubique (Hermite) pour w(s) sont utilisées et conduisent à un élément très performant.

Un élément courbe avec u et w quadratiques et w du $5^{\text{éme}}$ degré est présenté en [34], il permet d'avoir trois nœuds et quatre degrés de liberté par nœud (u, w et w_s).

Des approximations cubiques de type Hermite pour u et w ont été utilisées en [35], alors que des fonctions cubiques de type B-Splines ont été retenues en [36], pour définir un élément courbé, où les variables nodales pour cet élément sont u , w et les dérivées premières et secondes par rapport à s.

Un élément mixte de très haute précision (mais relativement compliqué) est présenté en [18] où u et w sont cubiques de type Hermite ainsi que les moments M_s et M_{θ} (conservés comme variables nodales).

Des éléments courbes avec cisaillement transversal ont été formulés à partir des années 1980 références ([20] [35] [31] [16] [37] [23] [38]), Au risque de blocage en membrane s'ajoute le blocage en cisaillement transversal.

Un élément courbé avec trois nœuds est développé dans [16], il utilise une interpolation quadratique, cet élément est présenter pour le cas des plaques circulaires avec introduction d'un facteur de pénalisation quand le rapport R/h est de l'ordre de 100, l'élément donne aussi des bons résultats pour les coques cylindriques et sphériques.

Un élément courbe avec u, w, β quadratiques et R_s constant a été utilisé en [20].

D'autres éléments courbes avec R_s constant ont été formulés en [21] et [22] sans blocage en membrane et cisaillement transversal.

En [22] les chercheurs considèrent des approximations linéaires de u, w et β mais ils utilisent des expressions modifiées (indépendantes) de e_s , e_{θ} et γ , un ou deux points de Gauss peuvent être utilisés, de bons résultats sont obtenus avec cet élément simple à six degrés de liberté.

Dans [21] un élément du même type mais avec u, w, β quadratiques à été proposé et testé, des approximations différentes de u, w, β sont cependant utilisées dans les expressions de e_s, e_{θ} et γ , pour définir e_s et e_{θ} ils utilisent u quadratique et :

 $w = N_i w_i$ avec (i=1,2,3)

$$N_1 = (\frac{1}{3} - \xi)/2$$
 $N_2 = \frac{2}{3}$ $N_3 = (\frac{1}{3} + \xi)/2$

Pour définir γ ils considèrent u et w quadratiques mais utilisent $\beta = \overline{N_i} \beta_i$ (les fonctions $\overline{N_i}$ sont obtenus par la méthode des moindres carrés), deux ou trois points de Gauss peuvent être utilisés, de bons résultats sont obtenus.

Dans la thèse [35] on trouve des éléments courbes où les composantes curvilignes u, w ou cylindriques U, W sont approchées (comme β) par des polynômes quadratiques ou cubiques (de type Lagrange) et la géométrie est définie à partir d'une représentation cubique de type Hermite pour r(s) et Z(s), des exemples de coques sphériques, tronconiques et cylindriques sont traités.

Des éléments avec des approximations du $5^{\text{éme}}$ degré des variables u, w, β sont utilisés en [31] (pas de blocage en membrane ou cisaillement transversal), de nombreux exemples sont présentés.

Un élément pour l'étude statique et dynamique des coques axisymétrique épaisses est présenté en [15] l'élément est basé sur un principe de variation modifiée de Hellinger-Reissner, et présente des degrés de liberté nodales additionnels pour l'interpolation du champ de déplacement afin d'augmenter la performance numérique, Plusieurs exemples numériques confirment l'efficacité de cet élément qui donne des résultats très précis pour des analyses statiques et vibration.

Un nouveau élément à huit nœuds de type coque-solide baptisé CSH8gZ7 très performant et présenté en [19], valable pour l'analyse des structures isotropes et composites minces ou épaisses, Cet élément a été couplé à une méthode spécifique de surface de réponse pour l'optimisation des structures composites. La méthodologie proposée a montré une efficacité en terme de précision et capacité d'optimisation de structures composites multicouches.

1.2.2 Solide de révolution :

Les éléments finis types solide de révolution sont généralement des éléments triangulaires, rectangulaires ou quadrilatères, vu sa simplicité et sa souplesse l'élément triangulaire T3AX avec une approximation linéaire du champ de déplacement et le plus répandu.

Dans les références [1] [9] et [12] on trouve que l'intégration exacte qui à été utiliser (matrice de rigidité [k] explicite) pour formuler l'élément T3AX,

En [10] l'élément T3AX à été formuler avec l'utilisation d'une intégration réduite à un seul point pour évaluer la matrice de rigidité [k]

On peut distingué aussi l'élément quadrilatéral Q4AX présenté en [10], le calcul de la matrice de rigidité [k] se fait de la même manière que l'élément T3AX avec des schémas d'intégration numérique de type Gauss.

Une étude numérique de comparaison des performances de différents éléments axisymétriques en [14] à montré que l'élément triangulaire T6 et l'élément quadrilatéral Q8 s'avèrent les plus performants pour les problèmes traités, l'élément T3AX reste très économique pour les situations sans flexion ou sans concentration des contraintes.

CHAPITRE 2

FORMULATION

2.1 Méthode des éléments finis :

Introduction :

La mécanique des solides permet de décrire le comportement des systèmes physiques grâce à des équations aux dérivées partielles, la méthode des éléments finis est l'une des méthodes les plus utilisées pour résoudre effectivement ces équations, elle consiste à utiliser une approximations simple des variables inconnues pour transformer les équations aux dérivées partielles en équations algébriques, elle fait appel aux trois domaines suivants :

- la mécanique des solides pour construire les équations aux dérivées partielles.
- Méthodes numériques pour construire et résoudre les équations algébriques.
- Programmation et informatique pour exécuter efficacement les calculs sur ordinateur.

2.1.1 Formulation variationnelle (ou intégrale) :

La méthode des résidus pondérés qui, en utilisant des fonctions de pondération, permet de passer d'un système d'équations aux dérivées partielles à une formulation intégrale, l'intégration par parties fournit des formulations intégrales modifiées dites faible qui sont plus faciles à utiliser, En mécanique des solides, la notion de fonctionnelle est utilisée pour construire directement une formulation intégrale en utilisant le principe de stationnarité de la fonctionnelle d'énergie.

Figure (2 . 1) : Relations entre système d'équations différentielles, forme intégrale et fonctionnelles [6]

Le comportement d'un système continu est décrit par les équations aux dérivées partielles : $L(u) + f_v = 0$ sur un domaine V

$\mathbf{Q}(\mathbf{u}) = \mathbf{f}_{s}$	sur la frontière S de V
Où: L et C	sont des opérateurs différentiels caractérisant le système
u f _v et f _s	fonctions inconnues (déplacement) fonctions connues dites sollicitations (forces volumiques et surfaciques)

2.1.2 Modèle déplacement :

Un problème d'élasticité est décrit par un ensemble de relations aux dérivées partielles faisant intervenir les contraintes $[\sigma]$, les déformations $[\epsilon]$ et les déplacements $\{u\}$, le modèle variationnelle en déplacement tient compte :

- Des équations d'équilibre su V et aux limites sur S_f sous une forme variationnelle
- Des équations cinématiques sous forme explicite en chaque point de V
- Des équations de comportement sous forme explicite en chaque point de V
- Des équations aux limites sous forme explicite en chaque point de S_u

La forme variationnelle (dans le cas des sollicitations statique uniquement) associé à l'équation d'équilibre obtenue par la méthode des résidus pondérés :

$$W = \int_{V} \psi R(u) \, dV = \int_{V} \psi \left(\operatorname{div} \sigma + f_{v} \right) \, dV = 0$$

avec : $div\sigma + f_v$ représente l'équation d'équilibre

on choisissons le champ de déplacement virtuel comme fonction de pondération $\psi = \mathbf{u}^*$ ce qui conduit à une cas particulière de la méthode de Galerkine, nous obtenons la forme variationnele :

$$W = \int_{V} \mathbf{u}^{*} (\operatorname{div} \sigma + f_{v}) \, dV = 0$$

En intégrant par partie nous obtenons la forme faible de W : $W = W_{int} - W_{ext} = 0 \forall u^*$ Où:

$$\begin{split} W_{int} &= \int_{V} \langle \epsilon^{*} \rangle [\sigma] \, dV \quad \text{avec} [\sigma] = [H] \{ \epsilon \} \\ W_{ext} &= \int_{V} \langle u^{*} \rangle \{ f_{v} \} \, dV + \int_{S_{f}} \langle u^{*} \rangle \{ f_{S} \} \, dS = 0 \end{split}$$

Donc l'expression du principe des travaux virtuels s'écrit :

$$W(u^*,u) = \int_{V} \langle \epsilon^* \rangle [H] \{ \epsilon \} dV - \int_{V} \langle u^* \rangle \{ f_v \} dV - \int_{S_r} \langle u^* \rangle \{ f_S \} dS = 0$$

$$\forall \{u^*\} \text{ avec } \{u^*\} = \{0\} \text{ et } \{u\} = \{\overline{u}\} \text{ sur } S_u$$

Un problème d'élasticité consiste ainsi à trouver {u} satisfaisant cette dernière expression Cette forme variationnelle sert de base pour construire les modèles déplacement en éléments finis. En admettant que les fonctions de pondérations \mathbf{u}^* et les fonctions solutions \mathbf{u} appartiennent au même espace de fonctions (mêmes bases de représentations) on obtient la formulation de type Galerkine conduisant aux modèles déplacement en éléments finis. Les déplacements virtuels \mathbf{u}^* sont alors définis comme les variations des déplacements réels :

$$\mathbf{u}^* = \delta(\mathbf{u}) = \delta \mathbf{u}$$

Où $\delta(\mathbf{u})$ représente la variation de la fonction u, l'expression de type Galerkine est alors :

$$W(u) = \int_{V} \langle \delta \epsilon \rangle [H] \{ \epsilon \} dV - \int_{V} \langle \delta u \rangle \{ f_{v} \} dV - \int_{S_{r}} \langle \delta u \rangle \{ f_{S} \} dS = 0$$

 $\forall \ \{ \ \delta u \} \ avec \ \{ \ \delta u \} = \{ 0 \} \ et \ \{ u \} = \{ \ u \} \ sur \ S_u$

On peut définir un fonctionnelle \prod appelée énergie potentielle totale telle que : W = $\delta(\prod(u)) = 0$

avec $\prod(u) = \prod_{int}(u) - \prod_{ext}(u)$

Où \prod_{int} est l'énergie interne de déformation :

$$\prod_{int} = \int_{V} \frac{1}{2} \langle \epsilon(u) \rangle [H] \{ \epsilon(u) \} dV$$

Et \prod_{ext} est le potentiel des forces de volume et de surface :

$$\prod_{ext} = \int_{V} \langle u \rangle \{ f_{v} \} dV - \int_{S_{f}} \langle u \rangle \{ f_{S} \} dS$$

La seconde variation de \prod est donnée par :

$$\delta^{2} \prod(\mathbf{u}) = \int_{V} \langle \delta \varepsilon \rangle [\mathbf{H}] \{ \delta \varepsilon \} d\mathbf{V} > 0 \qquad \forall \{ \delta \mathbf{u} \} \neq 0$$

La solution $\{u\}$ du problème d'élasticité correspond ainsi à un minimum de l'énergie potentielle totale, le principe du minimum de l'énergie potentielle totale s'énonce ainsi : Parmi tous les champs de déplacements cinématiquement admissible celui qui rend \prod minimum correspond à la solution du problème.

2.1. 3 Principes variationnels mixtes :

L'application des formulations dites mixtes ou hybrides permet dans de nombreuses situations comme les poutres, les plaques et les coques de définir des modèles éléments finis très performants (voire exacte pour les poutres droites ou courbes)

Principe variationnel général :

On peut définir un modèle général où tous les relations du problème d'élasticité sont représentées sous forme variationnelle, les fonctions \mathbf{u}^* , $\boldsymbol{\sigma}^*$, $\boldsymbol{\epsilon}^*$ seront utilisées comme des fonctions de pondérations dans la formulation de type Galerkine, ces fonctions appartiennent aux même espace que les fonctions solutions \mathbf{u} , $\boldsymbol{\sigma}$, $\boldsymbol{\epsilon}$

Nous pouvons construire une forme faible de W en contrainte ou en déplacement après intégration par partie du premier ou du seconde terme de l'intégrale.

Principes mixtes (type Hellinger – Reissner) :

L'expression du fonctionnelle est fonctions des deux variables indépendantes σ et u :

$$\prod(\mathbf{u},\sigma) = \int_{\mathbf{v}} -\frac{1}{2} \langle \sigma \rangle [C] \{ \sigma \} + \langle \sigma \rangle \{ \epsilon(\mathbf{u}) \} d\mathbf{V} - \int_{\mathbf{v}} \langle u \rangle \{ f_{\mathbf{v}} \} d\mathbf{V} - \int_{\mathbf{s}_{\mathbf{f}}} \langle u \rangle \{ f_{\mathbf{S}} \} d\mathbf{S}$$

avec $\{u\} = \{\overline{u}\}$ sur S_u

en intégrant par partie on obtient la forme faible en déplacement.

Démarche éléments finis (modèle déplacement):

Représentation du domaine de volume V par un ensemble de sous domaines de volume V^e dits éléments finis :

 $\mathbf{V} = \Sigma \ \mathbf{V}^{\mathbf{e}} \qquad \qquad \mathbf{W} = \Sigma \ \mathbf{W}^{\mathbf{e}}$

Approximation du champ de déplacement u(x) sur l'élément:

 $u(x) = [p(x)]\{a\} \text{ (espace réel)} \\ u(\xi) = [p(\xi)]\{a\} \text{ (espace paramétrique)} \\ p(x): base polynomiale de l'approximation \\ \{a\}: variable généralisées de l'approximation \end{cases}$

• Construction de la fonction d'interpolation N(x) :

 $\begin{aligned} \{u(x)\} &= [p(x)] \ [p_n]^{-1} \ \{u_n \ \} \\ \{u(x)\} &= [N(x)] \{ \ u_n \ \} \\ \{ \ u_n \ \} : variable nodales \end{aligned}$

 Approximation du champ de déformation & sur l'élément : En utilisant la relation déformation-déplacement on peut écrire les déformations sous la forme :

 $\{ \epsilon \} = [B] \{ u_n \} = [\partial] [N(x)] \{ u_n \}$ Avec : [∂] matrice des dérivées partielles

Construction de la matrice de rigidité élémentaire [k]:

En utilisant le PTV :
$$\begin{split} W^{e} &= \int_{\mathbb{V}^{e}} \langle \epsilon^{*} \rangle [H] \{ \epsilon \} dV - \int_{\mathbb{V}^{e}} \langle u^{*} \rangle \{ f_{v} \} dV - \int_{S^{e_{f}}} \langle u^{*} \rangle \{ f_{s} \} dS = 0 \\ \{ \epsilon \} &= [B] \{ u_{n} \} \quad et \{ \epsilon^{*} \} = [B] \{ u^{*}_{n} \} \\ W^{e} s' \acute{e} rit sous forme matricielle : \\ \langle u^{*}_{n} \rangle ([k] \{ u_{n} \}) - \langle u^{*}_{n} \rangle \{ f_{n} \} = 0 \\ Avec [k] &= \int_{\mathbb{V}^{e}} [B]^{T} [H] [B] dV \end{split}$$

- $\{ \ f_n \ \}$: vecteur des forces (équivalentes) élémentaires dues aux forces de volume et de surface
- Assemblage (construction de [K] et [F] :
 - [K] matrice globale obtenue par assemblage des matrices élémentaires
 [F] vecteur globale des sollicitations obtenue par assemblage des vecteurs sollicitations élémentaires
- Résolution :

Le problème se ramène à résoudre le système linéaire : [K] [U] - [F] = 0

2.2 Formulation des éléments :

2.2.1 Elément CAXI_L (coque mince ou épaisse) :

C'est un élément tronconique à deux nœuds basé sur la théorie de Reissner-Mindlin présenter en [2], le modèle élément fini utilisé pour cet élément est le modèle mixte en cisaillement transverse

Les approximations de u_p et de β sont linéaires en s et l'effort tranchant T_s est constant Cet élément peut être formulé en utilisant les composantes cylindriques ou curvilignes:

 $\begin{aligned} \mathbf{u}_{\mathbf{p}} &= \mathbf{U}(s) \ \mathbf{i}_{\mathbf{r}} + \mathbf{W}(s) \ \mathbf{k} & (\text{idem } \mathbf{u}_{\mathbf{p}}^{*}) \\ \mathbf{u}_{\mathbf{p}} &= \mathbf{u}(s) \ \mathbf{t} + \mathbf{w}(s) \ \mathbf{n} & (\text{idem } \mathbf{u}_{\mathbf{p}}^{*}) \end{aligned}$

L'ordre d'approximation des composantes (u,w) est le même que celui de (U,W), il est préférable de présenter l'élément avec les composantes cylindriques qui sont utilisables directement sans transformation avant l'assemblage.

On suppose que la coque est discrétisé par une suite des troncs de cône définis par les nœuds extrémités sur la courbe méridienne.

Un point p de la surface moyenne est défini par :

 $\mathbf{x}_{\mathbf{p}} = \mathbf{r}(\mathbf{s}) \mathbf{i}_{\mathbf{r}} + \mathbf{Z}(\mathbf{s}) \mathbf{k}$

a) discrétisation par facettes

b) géométrie d'un élément

Figure (2.2): Elément tronconique (géométrie)

avec

 $r(s) = N_1 r_1 + N_2 r_2$; $Z(s) = N_1 Z_1 + N_2 Z_2$ $N_1 = 1 - \frac{s}{L} \qquad ; \qquad N_2 = \frac{s}{L} \qquad ; \qquad L^2 = {r_{21}}^2 + \ {Z_{21}}^2 \quad ; \quad 0 \le s \le L$ (2.1) $r_{21}=r_2-r_1 \ \ ; \ \ Z_{21}=\ Z_2-Z_1 \ \ ; \ \ r_m=\frac{1}{2}\,(\ r_1+r_2)$ on a ainsi (équation (1, 2)) : $\mathbf{t} = \cos \phi \, \mathbf{i_r} + \sin \phi \, \mathbf{k}$ $\mathbf{n} = -\sin\phi \mathbf{i}_r + \cos\phi \mathbf{k}$

$$\langle \mathbf{t} \rangle = \langle \mathbf{C} \quad \mathbf{S} \rangle \qquad \langle \mathbf{n} \rangle = \langle -\mathbf{S} \quad \mathbf{C} \rangle \qquad (2.2)$$

avec : $S = \sin \phi$; $C = \cos \phi$

L'angle φ est constant équation $(1 \cdot 5)$: $\varphi_{,s} = \frac{1}{R_s} = 0$ et $\frac{1}{R_{\theta}} = \frac{\sin\varphi}{r} = \frac{Z_{21}}{Lr(s)} = \frac{S}{r}$ un point quelconque q et défini par : $\mathbf{x}_q = \mathbf{x}_p + z \mathbf{n}$ avec $-\frac{h}{2} \le z \le \frac{h}{2}$

2.2.1.1 Approximation des déplacements et déformations :

Considérons les expressions de (1 . 23) à (1 . 29) avec des approximations linéaires des composantes cylindriques U et W et de la rotation β figure (2 . 3) (idem pour U^{*}, W^{*}, β ^{*}):

Figure (2.3): Elément tronconique linéaire CAXI_L

$$\left\{ \begin{array}{c} \mathbf{U} \\ \mathbf{W} \end{array} \right\} = \left[\begin{array}{cc} \mathbf{C} & -\mathbf{S} \\ \mathbf{S} & \mathbf{C} \end{array} \right] \left\{ \begin{array}{c} \mathbf{u} \\ \mathbf{w} \end{array} \right\}$$

 $\mathbf{u_p} = \mathbf{U} \ \mathbf{i_r} + \mathbf{W} \ \mathbf{k}$; $\mathbf{u_q} = \mathbf{u_p} + \mathbf{z} \ \beta \ \mathbf{t}$

$$U = N_1 U_1 + N_2 U_2 ; \quad W = N_1 W_1 + N_2 W_2 ; \quad \beta = N_1 \beta_1 + N_2 \beta_2$$
 (2.3)

Les déformations de membrane sont:

$$\{e\} = \left\{ \begin{array}{c} e_s \\ \\ e_\theta \end{array} \right\} = \left\{ \begin{array}{c} C \ U_{,s} + S \ W_{,s} \\ \\ U/r \end{array} \right\} = [B_m] \ [u_n]$$

$$\begin{bmatrix} B_{m} \end{bmatrix} \begin{bmatrix} -\frac{C}{L} & -\frac{S}{L} & 0 & \frac{C}{L} & \frac{S}{L} & 0 \\ \frac{N_{1}}{r} & 0 & 0 & \frac{N_{2}}{r} & 0 & 0 \end{bmatrix}$$

$$\langle u_{n} \rangle = \langle U_{1} \ W_{1} \ \beta_{1} \ U_{2} \ W_{2} \ \beta_{2} \rangle \quad \text{(déplacements nodaux)}$$
Les courbures sont:
$$\{\chi\} = \begin{cases} \chi_{s} \\ \chi_{\theta} \end{cases} = \begin{cases} \beta_{,s} \\ (C/r) \beta \end{cases} = \begin{bmatrix} B_{f} \end{bmatrix} [u_{n}]$$

$$\left[\begin{array}{ccc} 0 & 0 & -\frac{1}{L} & 0 & 0 & \frac{1}{L} \end{array} \right] \qquad (2.5)$$

$$[\mathbf{B}_{\mathbf{f}}] = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{L} & \mathbf{0} & \mathbf{L} \\ \mathbf{0} & \mathbf{0} & \frac{\mathbf{C}}{\mathbf{r}} \mathbf{N}_1 & \mathbf{0} & \mathbf{0} & \frac{\mathbf{C}}{\mathbf{r}} \mathbf{N}_2 \end{bmatrix}$$
(2.3)

Les déformations de cisaillement transverse sont:

$$\gamma = \beta + \psi = \beta - S U_{,s} + C W_{,s} = [B_c] [u_n]$$

$$\langle B_c \rangle = \langle \frac{S}{L} - \frac{C}{L} N_1 - \frac{S}{L} \frac{C}{L} N_2 \rangle \qquad (2.6)$$

2.2.1.2 Matrice de rigidité :

Considérons les expressions (1.33) et (1.34), pour un élément nous avons :

$$W_{int}^{e} = 2 \pi \int_{0}^{L} (\langle e^{*} \rangle ([H_{m}] \{e\} + [H_{mf}] \{\chi\}) + \langle \chi^{*} \rangle ([H_{mf}] \{e\} + [H_{f}] \{\chi\}) + \gamma^{*} T_{s} + T_{s}^{*} (\gamma - H_{c}^{-1} T_{s})) r ds$$

$$W_{int}^{e} = \langle u_{n}^{*} T_{s}^{*} \rangle \begin{bmatrix} [k_{mf}] & \{k_{m/T}\} \\ \langle k_{m/T} \rangle & -k_{T} \end{bmatrix} \begin{cases} u_{n} \\ T_{s} \end{cases}$$
(2.8)

$$\begin{split} [k_{mf}] &= 2 \pi \int_{0}^{L} ([B_{m}]^{T} ([H_{m}] [B_{m}] + [H_{mf}] [B_{f}]) \\ &+ [B_{f}]^{T} ([H_{mf}] [B_{m}] + [H_{f}] [B_{f}])) r ds \\ \{k_{m/T}\} &= 2 \pi \int_{0}^{L} [B_{c}] r ds \\ k_{T} &= 2 \pi \int_{0}^{L} \frac{r}{H_{c}} ds \end{split}$$

Les matrices $[k_{mf}]$,{ $k_{m/T}$ }, k_{T} peuvent être évaluées numériquement avec un seul point d'intégration (s = L/2, ω = L) (intégration réduite)

$$[k_{mf}] = 2 \pi ([B_m]^T ([H_m] [B_m] + [H_{mf}] [B_f]) + [B_f]^T ([H_{mf}] [B_m] + [H_f] [B_f])) r_m L$$

$$\{k_{m/T}\} = 2 \pi [B_c] r_m L$$

$$(2.9)$$

 (\mathbf{n})

$$k_{\rm T} = 2 \pi \frac{r_{\rm m}}{H_{\rm c}} L$$

Où les termes r et s des matrices $[B_m]$, $[B_f]$, $[B_c]$ sont remplacés par $r_m = \frac{1}{2}(r_1 + r_2)$ et L/2 La variable T_s est une variable locale qui est éliminée en appliquant la relation :

$$T_{s}^{*}(\langle k_{m/T} \rangle \{u_{n}\} - k_{T} T_{s}) = 0 \quad \forall T_{s}^{*}$$
$$T_{s} = \frac{1}{\sqrt{k}} \langle k_{m} \rangle \langle u_{n} \rangle = H_{s} \langle B_{s} \rangle \langle u_{n} \rangle$$

d'où

d'où
$$T_s = \frac{1}{k_T} \langle k_{m/T} \rangle \{ u_n \} = H_c \langle B_c \rangle \{ u_n \}$$
 (2.10)
le travail interne W^e_{int} :
 $W^e_{int} = \langle u^*_n \rangle [k] \{ u_n \}$ avec $[k] = [k_{mf}] + [k_c]$ (2.11a)

avec :

$$[k_{mf}] = 2 \pi ([B_m]^T ([H_m] [B_m] + [H_{mf}] [B_f]) + [B_f]^T ([H_{mf}] [B_m] + [H_f] [B_f])) r_m L [k_c] = \{k_{m/T}\} \frac{1}{k_T} \langle k_{m/T} \rangle = 2 \pi \{B_c\} H_c r_m L \langle B_c \rangle$$
(2.11b)

Avec :

[k_c] : matrice de rigidité de CT [k_{mf}] : matrice de rigidité membrane flexion Pour un matériau isotrope :

$$H_{c} = k G h$$

$$G = \frac{E}{2(1+\nu)}$$

$$k = \frac{5}{6} \quad \text{(facteur de correction de cisaillement transverse)}$$

$$[H_{m}] = \frac{Eh}{(1-\nu^{2})} \begin{bmatrix} 1 & \nu \\ \nu & 1 \end{bmatrix} ; \quad [H_{f}] = \frac{Eh^{3}}{12(1-\nu^{2})} \begin{bmatrix} 1 & \nu \\ \nu & 1 \end{bmatrix} ; \quad [H_{mf}] = \frac{Eh^{3}S}{12(1-\nu^{2})r_{m}} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

2.2.1.3 Charges équivalentes :

Considérons l'équation (1.14)

$$\begin{split} W^{e}_{ext} &= 2 \ \pi \ \int_{0}^{L} \ (U^{*} \ f_{r} + W^{*} \ f_{Z} + \beta^{*} \ m_{s}) \ r \ ds \\ \text{En utilisant l'équation (2.3) le vecteur charges équivalentes } \{f_{n}\} : \\ W^{e}_{ext} &= \langle u^{*}_{n} \ \rangle \{f_{n}\} \\ \langle f_{n} \ \rangle &= 2 \ \pi \ \int_{0}^{L} \ \langle N_{1} \ f_{r} \quad N_{1} \ f_{Z} \quad N_{1} \ m_{s} \quad N_{2} \ f_{r} \quad N_{2} \ f_{Z} \quad N_{2} \ m_{s} \ \rangle \ r \ ds \\ f_{r} \ , \ f_{Z} \ , \ m_{s} \ \text{sont des sollicitations surfacique données par :} \\ \mathbf{f} &= \ \int_{-\tau}^{\tau} \ \mathbf{f}_{v} \ \alpha_{2} \ dz \quad ; \qquad m_{s} &= \ \int_{-\tau}^{\tau} \ \mathbf{f}_{v} \ . \ \mathbf{t} \ \alpha_{2} \ dz \\ \mathbf{f}_{v} \ \text{sollicitations volumiques} \\ \text{dans le cas des forces de gravité} \ \mathbf{f}_{v} \ \text{et le vecteur charges équivalentes avec} \ \rho \ g \ \text{constant :} \end{split}$$

$$f_r = 0 \ ; \ f_Z = \, - \, \rho \; g \; h \quad ; \quad m_s = \; \rho \; g \; \frac{S^2 h^3}{12r} \label{eq:fr}$$

En cas du présence d'une pression P

$$\begin{split} f_r &= -S \ P \ (1 - \frac{Sh}{2r}) \quad ; \ f_Z = \ C \ P \ (1 - \frac{Sh}{2r}) \quad ; \ m_s = \ 0 \\ si \ P \ est \ constant \ et \ \frac{Sh}{2r} << 1 \ on \ obtient \ : \\ \langle f_n \ \rangle &= 2 \ \pi \ P \ \frac{L}{6} \ \langle -S \ a_1 \ C \ a_1 \ 0 \ -S \ a_2 \ C \ a_2 \ 0 \rangle \\ a_1 &= 2r_1 + r_2 \quad ; \quad a_2 = 2r_2 + r_1 \end{split}$$

dans le cas d'une charge concentré P_Z agissant en un point r = 0 :

$$\langle \mathbf{f}_{n} \rangle = 2 \pi \mathbf{P} \ \frac{\mathbf{L}}{6} \ \langle \mathbf{0} \ \mathbf{P}_{\mathbf{Z}} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \rangle$$

2.2.1.4 Efforts résultants et contraintes :

Lorsque les variables nodales $\{u_n\}$ sont connues équation (2 . 4), les déformations de membrane et les courbures sont évaluées en s = L/2 équations (2 . 4) et (2 . 5) :

$$\{e\} = [B_m]\{u_n\} \qquad ; \quad \{\chi\} = [B_f]\{u_n\}$$

Les efforts résultants [N] et [M] (2.4)

 $\begin{array}{l} \{e\} \ , \ \{\chi\} \ , \ [N] \ et \ [M] \ seront \ évalués \ au \ milieu \ de \ l'élément \ (s = L/2) \\ Les \ contraintes \ \sigma_s \ et \ \sigma_\theta \ sont \ obtenues \ par \ équation \ (1 \ . \ 22) \ : \end{array}$

$\left[\sigma_{s} \right]$		$\left[\epsilon_{s} \right]$
{ }	=[H]	{ }
$[\sigma_{\theta}]$		[ε _θ]

 \mathcal{E}_s et \mathcal{E}_{θ} sont données par les équations (1 . 23) et (1 . 24)

2.2.2 Elément CAXI_K (coque mince) :

C'est un élément tronconique basé sur la théorie de Kirchoff [2], le modèle utilisé pour cet élément est le modèle déplacement, les composantes curvilignes u(s) et w(s) sont définies par des approximations linéaires et cubiques respectivement. La géométrie est définie comme l'élément CAXI L.

La geometrie est definie comme l'element CAXI_L.

2.2.2.1 Approximation des déplacements et déformations :

L'élément est formulé en utilisant les composantes curvilignes u et w de u_p :

 $\mathbf{u}_{\mathbf{p}} = \mathbf{u}(\mathbf{s}) \mathbf{t} + \mathbf{w}(\mathbf{s}) \mathbf{n}$

u(s) est linéaire (2 variables) et w(s) est cubique en s, de type Hermite (quatre variable) figure (2 . 4)

approximation de u(\xi)
$$-1 \le \xi \le 1$$
:
 $u(\xi) = N_1^L u_1 + N_2^L u_2$; $N_1^L = \frac{1-\xi}{2}$; $N_2^L = \frac{1+\xi}{2}$
 $u_{,\xi} = \frac{1}{2}(u_2 - u_1)$; $u_{,s} = u_{,\xi}\xi_{,s} = \frac{2}{L}u_{,\xi}$ (2.12)

approximation de $w(\xi)$:

$$\begin{split} & w = \langle \ N \ \rangle \ \{ w_n \} \quad \ \ ; \ \ \langle w_n \rangle = \langle \ w_1 \ \ \theta_1 \quad w_2 \quad \theta_2 \rangle \\ & \theta = - \ w_{,s} \text{ est du même type que } \beta \text{ dans l'élément CAXI_L} \end{split}$$

Figure (2.4): Elément tronconique linéaire CAXI_K

$$N_{1} = \frac{1}{4} (1-\xi)^{2} (2+\xi) \qquad ; \qquad N_{2} = -\frac{L}{8} (1-\xi^{2}) (1-\xi)$$
$$N_{3} = \frac{1}{4} (1+\xi)^{2} (2-\xi) \qquad ; \qquad N_{4} = -\frac{L}{8} (-1+\xi^{2}) (1+\xi) \qquad (2.13)$$

$$\begin{split} N_{1,s} &= \frac{3}{2L} (-1 + \xi^2) \qquad ; \qquad N_{2,s} = -\frac{1}{4} (-1 - 2\xi + 3\xi^2) \\ N_{3,s} &= \frac{3}{2L} (1 - \xi^2) \qquad ; \qquad N_{4,s} = -\frac{1}{4} (-1 + 2\xi + 3\xi^2) \\ N_{1,ss} &= \frac{6}{L^2} \xi \qquad ; \qquad N_{2,ss} = -\frac{1}{L} (-1 + 3\xi) \\ N_{3,ss} &= -\frac{6}{L^2} \xi \qquad ; \qquad N_{4,ss} = -\frac{1}{L} (-1 + 3\xi) \end{split}$$

Déformation de membrane équations de (1.23) à (1.29):

$$\{e\} = \begin{cases} e_s \\ e_\theta \end{cases} = \begin{cases} u_{,s} \\ 1/r (C u - S w) \end{cases} = [B_m] \{u_n\}_{loc}$$
(2.14)

$$[\mathbf{B}_{\mathrm{m}}] = \begin{bmatrix} -\frac{1}{\mathrm{L}} & 0 & 0 & \frac{1}{\mathrm{L}} & 0 & 0\\ \frac{1}{\mathrm{r}} \mathbf{N}_{1}^{\mathrm{L}} \mathbf{C} & -\frac{1}{\mathrm{r}} \mathbf{N}_{1} \mathbf{S} & -\frac{1}{\mathrm{r}} \mathbf{N}_{2} \mathbf{S} & \frac{1}{\mathrm{r}} \mathbf{N}_{2}^{\mathrm{L}} \mathbf{C} & -\frac{1}{\mathrm{r}} \mathbf{N}_{3} \mathbf{S} & -\frac{1}{\mathrm{r}} \mathbf{N}_{4} \mathbf{S} \end{bmatrix}$$

 $\langle u_n \rangle_{loc} = \langle u_1 \ w_1 \ \theta_1 \ u_2 \ w_2 \ \theta_2 \rangle$ (déplacements nodaux) (2.15)

Courbure de Kirchoff équations (1 . 46) et (1 . 47) avec $\frac{1}{R_s}$

$$\{\chi\} = \begin{cases} \chi_s \\ \chi_\theta \end{cases} = \begin{cases} -W_{,ss} \\ -(C/r) w_{,s} \end{cases} = [B_f] \{u_n\}_{loc}$$
(2.16)

$$[\mathbf{B}_{f}] = \begin{bmatrix} 0 & -\mathbf{N}_{1,ss} & -\mathbf{N}_{2,ss} & 0 & -\mathbf{N}_{3,ss} & -\mathbf{N}_{4,ss} \\ 0 & -\frac{\mathbf{C}}{\mathbf{r}}\mathbf{N}_{1,s} & -\frac{\mathbf{C}}{\mathbf{r}}\mathbf{N}_{2,s} & 0 & -\frac{\mathbf{C}}{\mathbf{r}}\mathbf{N}_{3,s} & -\frac{\mathbf{C}}{\mathbf{r}}\mathbf{N}_{4,s} \end{bmatrix}$$

2.2.2 Matrice de rigidité :

Les expressions (1 . 48) et (1 . 49), et de (2 . 14) à (2 . 16) permettent de définir la matrice de rigidité d'un élément :

$$W_{int}^{e} = 2 \pi \int_{0}^{L} (\langle e^{*} \rangle ([H_{m}] \{e\} + [H_{mf}] \{\chi\}) + \langle \chi^{*} \rangle ([H_{mf}] \{e\} + [H_{f}] \{\chi\})) r ds$$
$$W_{int}^{e} = \langle u_{n}^{*} \rangle_{loc} [k]_{loc} \{u_{n}\}_{loc}$$
(2.17)

 $\langle \; u^{*}_{\ n} \, \rangle_{loc}$ est défini comme $\langle u_{n} \, \rangle_{loc}$ équation (2 . 15)

$$\begin{split} [k]_{loc} &= 2 \pi \int_{0}^{L} [k_{\xi}] ds = 2 \pi \int_{-1}^{1} [k_{\xi}] \frac{L}{2} d\xi \\ avec [k_{\xi}] &= ([B_{m}]^{T} ([H_{m}] [B_{m}] + [H_{mf}] [B_{f}]) \\ &+ [B_{f}]^{T} ([H_{mf}] [B_{m}] + [H_{f}] [B_{f}])) r \end{split}$$

$$(2.18)$$

Les matrices $[B_m]$ et $[B_f]$ sont données par (2 . 14) et (2 . 16) les matrices $[H_m]$, $[H_{mf}]$ et $[H_f]$ sont définies par (2 . 11b)

Les termes à intégrer équation (2 . 18) sont des fractions rationnelles en ξ avec aux dénominateurs des termes linéaires en ξ (provenant de $r(\xi)$) et aux numérateurs des termes constants à cubiques en ξ (provenant de $[B_m]$), l'intégration numérique selon la méthode de Gauss intègre exactement un polynôme d'ordre m avec un nombre de points d'intégrations r tel que : $m \leq 2$ r -1, donc on peut utilisé un schéma d'intégration numérique à deux points de Gauss :

$$\begin{split} [k]_{loc} &= 2 \ \pi \ \sum_{i=1}^{2} \ [k_{\xi}(\xi = \xi_{i})] \ \omega_{i} \ \frac{L}{2} \\ avec \ \xi_{i} &= \pm 1/\sqrt{3} \ et \ \omega_{i} = 1 \end{split}$$

après évaluation de $[k]_{loc}$ il est nécessaire de transformer les variables $\{u_n\}_{loc}$ définies dans le repère local de l'élément en fonction des variables nodales du repère cylindrique, avant de procéder à l'assemblage, la matrice de transformation [T] est donnée par :

$$[T] = \begin{bmatrix} [t] & [0] \\ 0 & 1 \end{bmatrix} \qquad [t] = \begin{bmatrix} [t]^{T} & 0 \\ [0] & [t] \end{bmatrix}$$
$$[Q] = \begin{bmatrix} t & n \end{bmatrix} = \begin{bmatrix} C & -S \\ S & C \end{bmatrix}$$

Donc on peut écrire:

$$\begin{split} \boldsymbol{W}^{e}_{int} &= \langle \ \boldsymbol{u}_{n}^{*} \rangle \ [k] \ \{\boldsymbol{u}_{n} \} \\ avec \ \langle \boldsymbol{u}_{n} \ \rangle &= \langle \boldsymbol{U}_{1} \ \ \boldsymbol{W}_{1} \ \ \boldsymbol{\theta}_{1} \ \ \boldsymbol{U}_{2} \ \ \boldsymbol{W}_{2} \ \ \boldsymbol{\theta}_{2} \rangle \\ et \ [k] &= [T]^{T} \ [k]_{loc} \ [T] \end{split}$$

2.2.2.3 Charges équivalentes :

Pour de nombreux types de sollicitations volumique et surfacique le vecteur des charges équivalentes est défini à partir de l'équation (1.15)

$$W^{e}_{ext} = 2 \pi \int_{0}^{L} (u^{*} f_{s} + w^{*} f_{z} - w^{*}_{,s} m_{s}) r ds$$
$$\begin{cases} f_{s} \\ f_{z} \end{cases} \begin{bmatrix} C & -S \\ S & C \end{bmatrix} \begin{cases} f_{r} \\ f_{z} \end{cases}$$

les composantes f_r , f_Z , m_s sont présenter dans la partie (2.2.1.3) pour plusieurs types de sollicitations (poids propre, pression)

le vecteur des charges équivalentes est ainsi :

$$\begin{split} W^{e}_{ext} &= \langle u^{*}_{n} \rangle \{f_{n}\} \quad \text{avec } \{f_{n}\} = 2 \ \pi \ \int_{-1}^{1} \ \{f_{\xi}\} \frac{L}{2} \, d\xi \\ \{f_{\xi}\} &= \{N^{L}\} f_{s} + \{N^{C}\} \ f_{z} - \{N^{C}_{,s}\} m_{s} \end{split}$$
 $\begin{aligned} \text{avec :} \\ \langle N^{L} \rangle &= \langle N^{L}_{1} \ 0 \quad 0 \quad N^{L}_{2} \quad 0 \quad 0 \rangle \\ \langle N^{C} \rangle &= \langle 0 \quad N_{1} \quad N_{2} \quad 0 \quad N_{3} \quad N_{4} \rangle \\ \langle N^{C}_{,s} \rangle &= \langle 0 \quad N_{1,s} \quad N_{2,s} \quad 0 \quad N_{3,s} \quad N_{4,s} \rangle \end{split}$

2.2.2.4 Efforts résultants et contraintes :

Les déformations ϵ_s , ϵ_θ , les efforts résultantes [N], [M] et les contraintes σ_s et σ_θ se calculent par les relations :

dans cet élément les déformations et contraintes peuvent être évaluées en plusieurs points (point d'intégration, nœuds sommets)

2.2.3 Elément triangulaire pour le cas des solides de révolution :

Les solides à symétrie axiale et les corps de révolution peuvent être modélisés par des éléments finis de révolution, chaque élément consiste en un anneau solide.

L'élément qu'on va présenter, c'est un élément triangulaire iso paramétrique (3 nœuds) figure (2 . 5)

Figure (2.5): Elément à symétrie axiale [1]

2.2.3.1 Approximation des déplacements et déformations :

Figure (2.6): Elément triangulaire pour solide à symétrie axiale [1]

Pour cet élément [2] le champ de déplacement comporte uniquement les déplacements dans le plan (r O z), ce qui présente un état membranaire (u radial, w axial) L'approximation sera établie par des polynômes linéaires pour u et w : $u = a_1 + a_2 r + a_3 z$ $w = a_4 + a_5 r + a_6 z$ qui s'écrit sous la forme : $\{u(r,z)\} = [P(r,z)]\{a\}$

En remplacent les coordonnées généralisés par les coordonnées nodaux on obtient :

 $\begin{array}{l} \{u_n\} = \ [P_n] \ \{ \ a \ \} \ avec \ \langle u_n \ \rangle = \ \langle u_1 \ \ w_1 \ \ u_2 \ \ w_2 \ \ u_3 \ \ w_2 \rangle \\ \mbox{la fonction d'interpolation est défini par :} \\ [N(r,z)] = \ [p(r,z)] \ [p_n]^{-1} \end{array}$

 $\begin{array}{l} Finalement \ les \ déplacements \ généralisés \ s'écrit: \\ u = N_1 \ u_1 + N_2 \ u_2 + N_3 \ u_3 \\ w = N_1 \ w_1 + N_2 \ w_2 + N_3 \ w_3 \\ ou \ sous \ forme \ matricielle: \\ \{u(r,z)\} = [N(r,z)] \{ \ u_n \ \} \end{array}$

La relation déformation-déplacement est donnée par :

$$\langle \epsilon \rangle = \langle \ u_{,r} \quad \frac{u}{r} \quad w_{,z} \quad u_{,z} + w_{,r} \ \rangle = \langle \ \epsilon_r \quad \epsilon_\theta \quad \epsilon_z \quad \gamma_{rz} \ \rangle$$

En remplacent les déplacements généralisés par leur expressions on trouve : { ϵ } = [B] { u_n }

avec :

$$[\mathbf{B}] = \begin{bmatrix} \frac{\partial}{\partial \mathbf{r}} & \mathbf{0} \\ \frac{1}{\mathbf{r}} & \mathbf{0} \\ \mathbf{0} & \frac{\partial}{\partial \mathbf{r}} \\ \frac{\partial}{\partial \mathbf{r}} & \frac{\partial}{\partial \mathbf{r}} \end{bmatrix} \begin{bmatrix} \mathbf{N}_1 & \mathbf{0} & \mathbf{N}_2 & \mathbf{0} & \mathbf{N}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{N}_1 & \mathbf{0} & \mathbf{N}_2 & \mathbf{0} & \mathbf{N}_1 \end{bmatrix}$$

2.2.3.2 Matrice de rigidité :

L'expression du PTV est donnée par (paragraphe **1.2.3**) : $W = \int_{V} \langle \epsilon^{*} \rangle [H] \{ \epsilon \} dV - \int_{V} \langle u^{*} \rangle \{ f_{v} \} dV - \int_{S_{r}} \langle u^{*} \rangle \{ f_{S} \} dS = 0$ Pour un corps de révolution $dV = 2 \pi r dr dz$ ce qui donne pour un élément : $W^{e} = \langle u^{*}_{n} \rangle ([k] \{ u_{n} \} - \{ f_{n} \})$ $[k] = 2 \pi \iint [B]^{T} [H] [B] r dr dz$

Pour calculé cette intégrale on peut utilisé une méthode simple qui consiste à évalué la matrice [B] pour un point centrale de l'élément défini par les coordonnées (\bar{r}, \bar{z})

avec:
$$\bar{\mathbf{r}} = (\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3)/3$$
; $\bar{\mathbf{z}} = (\mathbf{z}_1 + \mathbf{z}_2 + \mathbf{z}_3)/3$

la matrice de rigidité devient alors :

 $[k] = 2 \pi [B]^T [H] [B] \overline{r} \Delta$

où Δ représente l'aire du triangle :

$$\Delta = det \begin{vmatrix} 1 & r_1 & z_1 \\ 1 & r_2 & z_2 \\ 1 & r_3 & z_3 \end{vmatrix}$$

2.2.3.3 Charges équivalentes :

Les vecteurs forces de volume et de surface sont donnés par :

Le vecteur sollicitation (appliqué aux nœuds) dû à des forces de volume :

 $\langle f_{nv} \rangle = \frac{Ah}{3} \langle f_r \quad f_z \quad f_r \quad f_z \quad f_r \quad f_z \rangle \quad \text{avec } f_r \text{ et } f_z \text{ constants}$ Où : h est l'épaisseur dans la direction θ A surface du triangle

Le vecteur charges équivalentes sur un côté du triangle appartenant à la frontière S_f:

$$\langle \mathbf{f}_{\mathrm{ns}} \rangle = \frac{\mathbf{L}}{2} \langle \mathbf{f}_{\mathrm{sr}} \quad \mathbf{f}_{\mathrm{sz}} \quad \mathbf{f}_{\mathrm{sr}} \quad \mathbf{f}_{\mathrm{sz}} \rangle$$

avec f_{sr} et f_{sz} constants

2.2.3.4 Contraintes :

Les composantes des contraintes sont :

$$\langle \sigma \rangle = \langle \sigma_r \quad \sigma_\theta \quad \sigma_z \quad \sigma_{rz} \rangle$$

 $\begin{array}{l} \mbox{de la relation contrainte -déformation :} \\ [\sigma] = [H] \left\{ \begin{array}{l} \epsilon \end{array} \right\} \quad \mbox{avec} \left\{ \begin{array}{l} \epsilon \end{array} \right\} = [B] \left\{ \begin{array}{l} u_n \end{array} \right\} \\ \end{array}$

Les contraintes seront calculé par : $[\sigma] = [H] [B] \{ u_n \}$

CHAPITRE 3

MISE EN ŒUVRE NUMERIQUE

3.1 Introduction :

Touts programmes basés sur la méthode des éléments finis inclut quelques blocs fonctionnels caractéristiques :

- Lecture, vérification et organisation des données décrivant le maillage (nœuds et éléments), les paramètres physiques (module d'élasticité...etc), les sollicitations et conditions aux limites.
- Construction des matrices et vecteurs élémentaires, puis assemblage de ceux-ci pour former la matrice globale et le vecteur global des sollicitations.
- Résolution du système d'équation après prise en compte des conditions aux limites.
- Impression des résultats après calcul éventuel des variables additionnelles (contraintes, réactions...etc)

Lecture, vérification et organisation des données

Lire et imprimer :

- Les coordonnées des nœuds
- Les connectivités des éléments
- Les paramètres physiques
- Les sollicitations
- Les conditions aux limites

Construction de la matrice et vecteur globaux [K] et [F]

Pour chaque élément :

- Extraire les informations liées à cet élément
- Construction de le matrice et le vecteur élémentaires [k] et [f]
- Assembler [k] et [f] dans [K] et [F]

Résolution du système d'équations $[K] \{U\} = [F]$

- Modifier [K] et [F] pour prendre en compte les conditions aux limites
- Calculer la solution {U}

Impression des résultats

- Calculer les variables additionnelles
- Imprimer les résultats

Figure (3.1) : blocs fonctionnels caractéristiques d'un programme éléments finis [6]

3.2 Présentation des programmes Axisym :

Les programmes qu'on a élaborés (AxisymCAXI_L, AxisymCAXI_K, AxisymT3AX) relatifs aux éléments finis CAXI_L, CAXI_K et T3AX présentés dans le chapitre 2 sont écrits sous langage Matlab, chaque programme est constitué d'une fonction (function) principale Axisym qui remplace le programme principal en Fortran et un ensemble des fonctions (functions) secondaires (qui jouent le même rôle des subrotines en Fortran).

3.2.1 Algorithme générale :

Figure (3.2): Algorithme général d'un Programme Axisym

3.2.2 Description des programmes Axisym :

• Programme principal Axisym :

Il fait appel aux différentes fonctions secondaires nécessaires aux calculs d'une structure axisymétrique en utilisant les formulations décrites au chapitre (2) pour chaque type d'élément.

• Fichier des données :

C'est un fichier fonction où on introduit toutes les données relatives au problème :

- tableau des coordonnées des nœuds
- tableau de connectivité des éléments
- épaisseur des éléments
- module d'élasticité
- coefficient de poisson
- conditions aux limites (numéros des degrés de liberté a bloquées)
- vecteur sollicitations

La commande Matlab : [les données] = feval(str2func(Nom du fichier des données)); ouvre le fichier des données et permet aux différentes fonction existant dans le programme principal de lire les données.

• Fonction plotmesh :

Cette fonction nous donne un affichage graphique du maillage, les coordonnées et la numérotation des nœuds, ce qui permet, avec le tracer la structure saisie, une vérification visuelle des données (tableaux des coordonnées et connectivité).

• Fonction matK :

C'est la fonction qui comporte le processus d'assemblage des matrices de rigidité élémentaires Ke fournit par la fonction matke, la boucle ce fait sur les éléments en utilisant la fonction LOCE qui nous fournit les degrés de liberté de chaque élément qui est nécessaires pour le stockage des termes de la matrice élémentaire dans la matrice de rigidité globale.

• Fonction LOCE :

A partir de la table de connectivité des éléments existant dans le fichier des données, cette fonction Fournit la table de localisation (numéros) des degrés de liberté pour chaque élément.

• Fonction matke:

Permet le calcul des matrices de rigidité élémentaires présenter au chapitre 2 (différentes d'un élément à un autre).

• Fonction DelDOFs :

Les conditions aux limites sont l'ensemble des déplacements nuls aux niveaux des appuis, un vecteur **e** dans le fichier de données est utilisé pour spécifier les degrés de liberté à bloquer. Pour appliquer cette condition on élimine les lignes et les colonnes correspondants au vecteur **e** des matrices K et du vecteur F vecteur sollicitations (puisque le chargement est saisi pour tous les noeuds y compris ceux d'appuis).

• Commande $U = K \setminus F$:

Une fois les conditions aux limites sont appliquées, il ne reste qu'à résoudre le système discret, La solution en déplacement (au nœuds) s'obtient avec la commande MATLAB $U = K \setminus F$, qui remplace les méthodes classiques pour résoudre les systèmes d'équations linéaires (méthode de factorisation de cholesky Pour une matrice symétrique définie positive).

• Fonction AddDOFs :

Avec cette fonction on ajoute au vecteur déplacement les degrés de liberté des nœuds bloqués qui est supprimés par la fonction DelDOFs, la boucle se fait sur les numéros des degrés de liberté à ajouter en utilisant la fonction AddToVect.

• Fonction AddToVect:

Fournit le vecteur déplacement résultant pour chaque degré de liberté ajouté.

• Fonction matContr:

Permet le calcul des contraintes en utilisant la formulation présenter au chapitre 2, pour chaque type d'élément.

• Fonction plotdeforme:

Cette fonction dessine la structure déformée, elle trace les solutions obtenues sur le schéma déjà obtenu par la fonction plotmesh.

CHAPITRE 4

VALIDATION ET APPLICATIONS

4.1 Coque De Révolution

4.1.1 Cylindre chargé à leur extrémité:

On applique les éléments étudiés à une coque cylindrique fixée à une extrémité est chargé à l'autre extrémité libre figure (4, 1).

le tableau N°(4, 1) permet de faire la comparaison entre la solution analytique donné en [1] et les résultats obtenus par le programme Axisym pour les éléments (CAXI_K et CAXI_L), ainsi ceux du logiciel ANSYS.

Figure (4, 1) cylindre chargé à leur extrémité

Maillage	ANSYS	SOL Ref [1]	Prog:CAXI_K	Erreur	Prog:CAXI_L	Erreur
9 éléments	2,876		2,815	2,05%	2,875	-0,03%
14 éléments	2,876	2,874	2,861	0,45%	2,875	-0,03%
24 éléments	2,876		2,871	0,10%	2,875	-0,03%

Tableau (4, 1): Déplacement radial (in) à l'extrémité chargé (x1/1000)

Figure (4, 2) Convergence de déplacement de l'extrémité libre

Figure (4, 3) structure déformée (ANSYS)

Position radial (in)	Prog:CAXI_K	Prog:CAXI_L	ANSYS	SOL [1]
0,00	2,871	2,875	2,876	2,875
0.05	2,065	2,073	2,074	2,073
0,10	1,356	1,361	1,361	1,361
0,15	0,789	0,787	0,788	0,787
0,20	0,372	0,364	0,365	0,364
0,25	0,092	0,079	0,079	0,079
0,30	-0,078	-0,092	-0,092	-0,092
0,35	-0,163	-0,178	-0,178	-0,178
0,40	-0,191	-0,205	-0,205	-0,205
0,45	-0,183	-0,195	-0,194	-0,195
0,50	-0,156	-0,164	-0,164	-0,164
0,55	-0,121	-0,127	-0,127	-0,127
0,60	-0,087	-0,089	-0,090	-0,089
0,65	-0,056	-0,057	-0,058	-0,057
0,70	-0,032	-0,032	-0,032	-0,032
0,75	-0,015	-0,013	-0,013	-0,013
0,80	-0,003	-0,002	-0,002	-0,002
0,85	0,004	0,005	0,005	0,005
0,90	0,007	0,008	0,008	0,008
0,95	0,008	0,009	0,009	0,009
1,00	0,007	0,008	0,008	0,008

Tableau (4, 2) : valeurs déplacement radial (in) (x1/1000) maillage 24 éléments

Figure (4, 4) variation du déplacement radial (maillage 24 éléments)

Position radial (in)	Prog:CAXI_K	Prog:CAXI_L
0,00	0,00	0,00
0.05	36,94	37,62
0,10	53,15	54,29
0,15	55,68	56,99
0,20	50,21	51,44
0,25	40,90	41,89
0,30	30,60	31,27
0,35	21,00	21,35
0,40	13,00	13,07
0,45	6,89	6,75
0,50	2,60	2,32
0,55	-0,14	-0,47
0,60	-1,66	-2,00
0,65	-2,32	-2,62
0,70	-2,40	-2,65
0,75	-2,15	-2,34
0,80	-1,75	-1,87
0,85	-1,31	-1,38
0,90	-0,90	-0,93
0,95	-0,56	-0,55
1,00	-0,30	-0,27

Tableau (4, 3): Moment méridien lbf in/in (x1/1000) maillage 24 éléments

Figure (4, 5) variation du moment méridien (maillage 24 éléments)

maillage	SOL [1]	Prog:CAXI_K 1 pts d'intégration	Prog:CAXI_K 3 pts d'intégration	Prog:CAXI_K 4 pts d'intégration	Prog:CAXI_L 2 pts d'intégration
24 éléments	2,874	1514	2,871	2,871	0,41

Tableau (4, 4) : Variation de la solution en déplacement (in) (x1/1000) en fonction du nombre des points d'intégration numérique (méthode de Gauss)

Commentaires :

D'après les résultats présentés dans le tableau N°(4, 1) et le graphe de la variation de l'erreur par rapport à la solution analytique, on constate que l'élément CAXI_L donne des résultats meilleurs que l'élément CAXI_K.

Dans le dernier tableau on constate que le changement du nombre de points d'intégration pour l'élément CAXI_K, ne porte aucun changement sur la solution en déplacement si on utilise un nombre de points plus que 2 points de Gauss, mais si on utilise un point d'intégration le résultat sera inacceptable.

Pour le deuxième éléments CAXI_L, si on utilise un schéma d'intégration à 2 points de Gauss et plus le résultat est obtenus avec une grande erreur, donc seul l'intégration réduite qui est applicable.

4.1.2 Cylindre encastré/guidé sous pression :

La figure (4, 6) montre un cylindre soumis à une pression externe uniforme, il est encastré/guidé aux extrémités, un demi méridien est discrétisé avec un nombre d'élément N = 1,2,3,4,5,6,7,8,9,10.

Dans le tableau N°(4, 5) on trouve la valeur du déplacement au centre U_c la comparaison ce fait entre la solution analytique sans prise en compte de cisaillement transverse donné en [2] et les résultats obtenus par les programmes Axisym pour les éléments CAXI_K et CAXI_L.

Figure (4, 6) Cylindre encastré/guidé sous pression

Maillage	SOL Ref [2]	Prog: CAXI_K	Erreur	Prog: CAXI_L	Erre
1 élément		-6,0160E-08	-20,59%	-4,3820E-08	12,1
2 éléments		-4,9780E-08	0,22%	-7,6020E-08	-52,3
3 éléments		-4,9896E-08	-0,01%	-4,4680E-08	10,4
4 éléments		-4,9900E-08	-0,02%	-4,6980E-08	5,83
5 éléments		-4,9896E-08	-0,01%	-4,8530E-08	2,73
6 éléments	-4,909E-00	-4,9892E-08	0,00%	-4,9140E-08	1,50
7 éléments		-4,9889E-08	0,00%	-4,9420E-08	0,94
8 éléments		-4,9887E-08	0,01%	-4,9560E-08	0,66
9 éléments		-4,9886E-08	0,01%	-4,9650E-08	0,48
10 éléments	1	-4,9885E-08	0,01%	-4,9710E-08	0,36

Tableau (4, 5): Déplacement radial Uc (m)

Figure (4, 7) Convergence de U_c

Commentaires :

On remarque que les résultats fournis par le programme Axisym pour l'élément CAXI_K convergent plus rapide vers la solution exacte que l'élément CAXI_L, puisque la solution analytique est relative à la théorie de Love-Kirchoff (cisaillement transverse négligé).

4.1.3 Cylindre sous pression interne :

Un cylindre de hauteur 200 inches et un rayon de 60 inches, est soumis à une pression interne de $1k/in^2$, l'épaisseur h=1in, E=29000k/in² v=0.3

Conditions aux limites : A la base $W=\beta=0$ Point courant W=0

Le déplacement donné au tableau (4, 6) pour un maillage de 2 éléments, correspond au point extrême Z=200in, la solution analytique est donné en [3] est comparé avec les résultats obtenus par le programme Axisym pour les éléments CAXI_K et CAXI_L, ainsi ceux obtenus par le logiciel SAP.

	SAP	SOL [3]	Prog:CAXI_K	Erreur	Prog:CAXI_L	Erreur
Ur	0,12175	0,12414	0,12414	0,00%	0,12414	0,00%
Ne	59,87	60	60	0,00%	59,99	0,02%

Tableau (4, 6) : Déplacement radial (in) et effort normal (K/in²) à l'extrémité Z = 200 in

Commentaires :

Les résultats obtenus par les programmes Axisym sont presque exactes et cela pour un maillage minimal.

4.1.4 Plaque circulaire soumise a des charges uniformément réparties :

Une plaque circulaire soumise à une charge uniforme et encastrée sur le contour, les valeurs de référence pour la flèche W et le moment Ms sont données en [2] Conditions aux limites : Au milieu : $u = \beta = 0$ A l'extrémité : $u = w = \beta = 0$

Figure (4, 8) Plaque circulaire soumise a des charges uniformément réparties

Maillage	SOL Ref [2]	Prog:CAXI_K	Erreur	Prog:CAXI_L	Erreur
2 éléments	10695.07	1071E-07	-0,28%	1069E-07	-0,09%
4 éléments		1067E-07	0,09%	1085E-07	-1,59%
6 éléments		1066E-07	0,19%	1077E-07	-0,84%
8 éléments	10000-07	1066E-07	0,19%	1074E-07	-0,56%
10 éléments		1066E-07	0,19%	1072E-07	-0,37%
20 éléments		1066E-07	0,19%	1069E-07	-0,09%

Tableau (4, 7): Flèche maximal (m)

Maillage	SOL Ref [2]	Prog:CAXI_K	Erreur	Prog:CAXI_L	Erreur
2 éléments		58,69	-97,68%	60,42	-103,50%
4 éléments		35,92	-20,98%	37,09	-24,92%
6 éléments	20.60	32,30	-8,79%	32,92	-10,88%
8 éléments	29,69	31,45	-5,93%	31,52	-6,16%
10 éléments		30,59	-3,03%	30,86	-3,94%
20 éléments		29,90	-0,71%	29,98	-0,98%

Tableau (4, 8) : contrainte Ms (N.m/m) à r = 0.50 m

Figure (4 , 10) convergence de Ms à r=0.5 m

Pour le déplacement on remarque que l'élément CAXI_K converge plus rapide que l'élément CAXI_L, mais avec moins de précision, pour la contrainte Ms les deux éléments convergent de la même manière.

4.1.5 Plaque circulaire sous différents types de chargement :

On applique les éléments CAXI_L et CAXI_K à une plaque circulaire sous diverses conditions de charges et d'appuis figure (4, 11)

1) ELEMENT CAXI_K :

Cas de charge 1					
Maillage	Maillage SOL Ref [1] Prog:CAXI_K I				
5 éléments		0,1236	-0,32%		
10 éléments	0 1222	0,1233	-0,08%		
20 éléments	0,1232	0,1232	0,00%		
20 éléments graduels		0,1232	0,00%		

Elément CAXI_K cas de charge 1

Cas de charge 2				
Maillage SOL Ref [1] Prog:CAXI_K				
5 éléments		0,02958	-2,42%	
10 éléments	0.02888	0,02906	-0,62%	
20 éléments	0,02000	0,02893	-0,17%	
20 éléments graduels		0,02896	-0,28%	

Elément CAXI_K cas de charge 2

Cas de charge 3				
Maillage	Prog:CAXI_K	Erreur		
5 éléments		0,005138	-2,35%	
10 éléments		0,005052	-0,64%	
20 éléments	0,00502	0,00503	-0,20%	
20 éléments graduels		0,00503	-0,20%	

Elément CAXI_K cas de charge 3

Cas de charge 4				
Maillage	SOL Ref [1]	Prog:CAXI_K	Erreur	
5 éléments		0,03432	2,19%	
10 éléments	0.02500	0,03495	0,40%	
20 éléments	0,03509	0,03512	-0,09%	
20 éléments graduels		0,03514	-0,14%	

Elément CAXI_K cas de charge 4

Cas de charge 5				
Maillage SOL Ref [1] Prog:CAXI_K E				
5 éléments		0,00448	1,54%	
10 éléments	0.00455	0,00453	0,44%	
20 éléments	0,00455	0,00454	0,22%	
20 éléments graduels		0,00454	0,22%	

Elément CAXI_K cas de charge 5

Tableau (4, 9) : Valeur de déplacement maximal pour divers cas de charge

61

Figure (4, 12) convergence de déplacement maximal (divers cas de charge)

2) ELEMENT CAXI_L :

Cas de charge 1				
Maillage	Prog:CAXI_L	Erreur		
5 éléments		0,1245	-1,06%	
10 éléments	0 1000	0,1238	-0,49%	
20 éléments	0,1232	0,1237	-0,41%	
20 éléments graduels		0,1236	-0,32%	

Elément CAXI_L cas de charge 1

Cas de charge 2				
Maillage SOL Ref [1] Prog:CAXI_L				
5 éléments		0,02949	-2,11%	
10 éléments	0.02898	0,02935	-1,63%	
20 éléments	0,02000	0,02931	-1,49%	
20 éléments graduels		0,02931	-1,49%	

Elément CAXI_L cas de charge 2

Cas de charge 3				
Maillage	SOL Ref [1]	Prog:CAXI_L	Erreur	
5 éléments		0,005113	-1,85%	
10 éléments	0.00500	0,005046	-0,52%	
20 éléments	0,00502	0,005029	-0,18%	
20 éléments graduels		0,005028	-0,16%	

Elément (CAXI_L	cas de	charge 3
-----------	--------	--------	----------

Cas de charge 4				
Maillage SOL Ref [1] Prog:CAXI_L E				
5 éléments		0,03491	0,51%	
10 éléments	0.02500	0,03541	-0,91%	
20 éléments	0,03509	0,03553	-1,25%	
20 éléments graduels		0,03547	-1,08%	

Elément CAXI_L cas de charge 4

Cas de charge 5				
Maillage	ge SOL Ref [1] Prog:CAXI_L			
5 éléments	0,00455 -	0,00453	0,44%	
10 éléments		0,00454	0,22%	
20 éléments		0,00455	0,00%	
20 éléments graduels		0,00454	0,22%	

Elément CAXI_L cas de charge 5

Tableau (4, 10) : Valeur de déplacement maximal pour divers cas de charge

Figure (4, 13) convergence de déplacement maximal (divers cas de charge)

Commentaires :

Cas de charge 1 :

Les deux types d'éléments convergents de la même façon, l'élément CAXI_K coïncide avec la valeur exacte pour un nombre d'éléments égale à 20.

Cas de charge 2 :

L'élément CAXI_K converge sensiblement rapide au démarrage de la discrétisation, ensuite les deux types d'éléments convergent vers la solution exacte.

Cas de charge 3 :

C'est l'inverse du cas de charge 2

Cas de charge 4 :

L'élément CAXI_K converge d'une façon régulière, tandis que L'élément CAXI_L converge de façon non régulière

Cas de charge 5 :

Le comportement des deux types pour ce cas est similaire a celui du cas 1.

4.1.6 Plaque circulaire (avec CT) :

Une plaque circulaire de rayon intérieur égale à 1.4 in et extérieur 2 in est soumise à une charge linéaire de 800 lb/in appliquée à un rayon égale à 1.8 in, la plaque est simplement appuyée au rayon intérieur et libre à l'extrémité (rayon extérieur).

On donne la solution analytique [3] avec prise en charge du CT, ainsi le résultat du logiciel SAP

Figure (4, 14) Plaque circulaire soumise a une chargement linéaire

Maillage	SOL Ref [1]	SAP	Prog:CAXI_L	Erreur	Prog:CAXI_k	Erreur
2 éléments			0,00537	-0,56%	0,00521	2,43%
6 éléments	0,00534	0,00534	0,00534	0,00%	0,00521	2,43%
12 éléments			0,00534	0,00%	0,00521	2,43%

Tableau (4, 11): Valeur de déplacement maximal (in)

Figure (4, 15) convergence de déplacement maximal

Commentaires :

On constate que l'élément CAXI_L coïncide avec la valeur exacte pour un nombre d'éléments égale à 6, tandis que l'élément CAXI_K à donné une résultat acceptable, mais pour un plus de précision il nécessite un nombre d'élément plus grand.

4.1.7 Plaque circulaire (sans CT) :

Une plaque circulaire est soumise à une charge uniformément répartie la géométrie et les caractéristiques mécaniques sont présentés sur la figure (4, 16). On donne la solution analytique [4] sans prise en charge du CT.

Figure (4, 16) Plaque circulaire soumise à une charge uniformément répartie

Maillage	SOL Ref [4]	Prog:CAXI_L	Erreur	Prog:CAXI_K	Erreur
2 éléments	0,17	0,2113	-24,29%	0,1705	-0,29%
4 éléments		0,1759	-3,47%	0,1700	0,00%

Figure (4, 17) convergence de déplacement maximal

Commentaires :

L'erreur de convergence de l'élément CAXI_L est grande par rapport à l'élément CAXI_K, la comparaison se fait pour une solution sans influence de CT..

4.1.8 Hémisphère

Un hémisphère est modélisé par l'élément tronconique CAXI_K (maillage 24 éléments), le résultat sera comparé avec la solution analytique [4], ainsi ce obtenu par ANSYS Les résultats obtenus sont regroupé dans le tableau (4, 13)

Figure (4, 18) : Hémisphère

Maillage	SOL Ref [4]	ANSYS	Prog:CAXI_K	Erreur
24 éléments	1,60E-05	1,59E-05	1,587E-05	0,81%

Tableau (4, 13) : Valeur de déplacement maximal (in)

Figure (4, 19) structure déformée

On comparant avec le résultat obtenu par ANSYS, le résultat obtenu par l'élément CAXI_K est acceptable.

4.1.9 Dôme sphérique sous pression :

Un dôme sphérique [4] est modélisé par le logiciel ANSYS et notre programme Axisym pour l'élément CAXI_K, les résultats sont regroupés dans le tableau ci-après :

Figure (4, 20): Dôme sphérique sous pression

Maillage	ANSYS	Prog:CAXI_K	DIFF
5 éléments	1,6100E-04	1,7140E-04	-6,46%
10 éléments	1,4700E-04	1,5190E-04	-3,33%
14 éléments	1,4500E-04	1,4890E-04	-2,69%

Tableau (4, 14): Valeur de déplacement maximal (in)

Figure (4, 21) variation de l'écart entre Axisym et ANSYS

Figure (4, 22) Structure déformée

On remarque que les résultats obtenus par ANSYS, et ce de notre programme pour l'élément CAXI_K convergent de façon uniforme.

4.1.10 Hyperboloïde :

Un hyperboloïde [4] (qui peur être un tour de refroidissement) est modélisé par le logiciel ANSYS et notre programme Axisym pour l'élément CAXI_K, les résultats sont regroupés dans le tableau ci-après :

Figure (4, 23) : hyperboloïde

Maillage	ANSYS	Prog:CAXI_K	DIFF
7 éléments	0,0414	0,02537	38,72%
20 éléments	0,03823	0,03815	0,21%
30 éléments	0,03823	0,03857	-0,89%

Tableau (4, 15): Valeur de déplacement maximal (ft)

Figure (4, 24) variation de l'écart entre Axisym et ANSYS

Figure (4, 25) Structure déformée

On remarque que les résultats obtenus par le logiciel ANSYS convergent rapidement au démarrage par rapport à notre programme pour l'élément CAXI_K, ensuite les deux programmes convergent vers le même résultat.

4.1.11 Cylindre conique :

Un cylindre conique [8] est modélisé par le logiciel ANSYS et notre programme Axisym pour l'élément CAXI_L, les résultats sont regroupés dans le tableau ci-après :

Figure (4, 26) : Cylindre conique

Maillage	ANSYS	Prog:CAXI_L	DIFF
4 éléments	4,338E-05	4,347E-05	-0,21%
8 éléments	3,592E-05	3,599E-05	-0,19%
12 éléments	3,455E-05	3,461E-05	-0,17%

Tableau (4, 16) : Valeur de déplacement maximal (in)

Figure (4, 27) variation de l'écart entre Axisym et ANSYS

Figure (4, 28) Structure déformée

On remarque que les résultats obtenus par ANSYS, et ceux de notre programme pour l'élément CAXI_L convergent de façon uniforme.

4.1.12 Cône de révolution

Un cône de révolution [8] est modélisé par le logiciel ANSYS et notre programme Axisym pour l'élément CAXI_L, les résultats sont regroupés dans le tableau ci-après :

Figure (4, 29) : Cône de révolution

Maillage	ANSYS	Prog:CAXI_L	DIFF
2 éléments	1,642E-05	1,645E-05	-0,18%
6 éléments	1,104E-05	1,103E-05	0,09%
10 éléments	1,107E-05	1,106E-05	0,09%

Tableau (4, 17): Valeur de déplacement maximal (in)

Figure (4, 30) variation de l'écart entre Axisym et ANSYS

Figure (4, 31) Structure déformée

On remarque que les résultats obtenus par ANSYS, et ceux de notre programme pour l'élément CAXI_L convergent de façon uniforme.

4.2 Solide de révolution

4.2.1 Cylindre épais :

Un cylindre épais [1] est soumis à une pression interne est modélisé par l'élément T3AX, les dimensions et les caractéristiques sont tel que : Diamètre intérieur = 2 in , Diamètre extérieur = 4 in

Hauteur = 4 in

Pression interne P = 0.3975 ton/in² E = 13400 ton/in² , v = 0.3Conditions aux limites : U_r=0 aux extrémités

Figure (4, 32) cylindre épais

		Prog:T3AX	
Position radiale (in)	Maillage 40 ELE 33 nœuds	Maillage 100 ELE 66 nœuds	Maillage 200 ELE 121 nœuds
1,00	5,734E-05	5,672E-05	5,691E-05
1,10			5,259E-05
1,20		4,874E-05	4,910E-05
1,30			4,623E-05
1,40		4,344E-05	4,386E-05
1,50	4,049E-05		4,189E-05
1,60		3,976E-05	4,022E-05
1,70			3,882E-05
1,80		3,714E-05	3,762E-05
1,90			3,662E-05
2,00	3,444E-05	3,523E-05	3,576E-05

Tableau (4, 18) : Valeur de déplacement radiale (in)

Figure (4, 33) Variation du déplacement (in)

		Prog:T3AX	
Position radiale	Maillage 40 éléments 33 nœuds	Maillage 100 éléments 66 nœuds	Maillage 200 éléments 121 nœuds
(in)	σθ	σθ	σθ
1,00	0,552	0,600	0,634
1,10			0,590
1,20		0,523	0,549
1,30			0,515
1,40		0,463	0,484
1,50	0,402		0,457
1,60		0,414	0,433
1,70			0,411
1,80		0,378	0,392
1,90			0,375
2,00	0,326	0,346	0,359

Tableau (4, 19) : Valeur de contrainte tangentielle (ton/in²)

Figure (4, 34) Variation du contrainte tangentielle (ton/in^2)

		Prog:T3AX	
Position radiale	Maillage 40 éléments 33 nœuds	Maillage 100 éléments 66 nœuds	Maillage 200 éléments 121 nœuds
(in)	σr	σr	σr
1,00	-0,240	-0,330	-0,363
1,10			-0,360
1,20		-0,328	-0,278
1,30			-0,278
1,40		-0,191	-0,213
1,50	-0,256		-0,214
1,60		-0,196	-0,162
1,70			-0,165
1,80		-0,108	-0,122
1,90			-0,125
2,00	-0,048	-0,113	-0,090

Tableau (4, 20) : Valeur de contrainte radial (ton/in²)

Commentaires :

D'après les courbes des variations des déplacements et contraintes, On remarque que notre programme donne des bons résultats pour les déplacements et les contraintes, on comparant avec la solution analytique,

4.2.2 Problème de BOUSSINESQ :

C'est une surface circulaire (du sol) [43] soumise à une charge uniformément répartie égale à 1 KN/m², la modélisation se fait avec 56 éléments de type T3AX

Figure (4, 35) Problème de BOUSSINESQ

Maillage 56 éléments 37 nœuds				
nœud	SOL analytique	Prog:Axisym	Erreur	
1	-0,98	-1,05	-7,14%	
2	-0,98	-0,98	0,00%	
3	-0,99	-0,95	4,04%	
4	-0,97	-0,92	5,15%	
6	-0,99	-0,99	0,00%	
7	-0,86	-0,92	-6,98%	
8	-0,76	-0,76	0,00%	
20	-0,37	-0,44	-18,92%	
32	-0,18	-0,13	27,78%	
44	-0,13	-0,14	-7,69%	

Tableau (4, 21): Valeur des contraintes radial Kn/m²

Figure (4, 36) Variation de l'erreur en déplacement

L'erreur entre la solution obtenue avec notre programme et la solution théorique est comprise entre 4 % et 28 %, cependant l'erreur peut être diminué en raffinant le maillage.

Figure (4 , 37): Structure déformée problème de BOUSSINESQ (Prog :AxisymT3AX dessins obtenus avec MATLAB)

CONCLUSION

CONCLUSIONS ET RECOMMANDATIONS:

D'après cette étude et les résultats obtenus dans ce cadre on peut conclure quelques remarques qui peuvent être utiles dans le développement des éléments finis destinés aux calculs des structures axisymétriques :

- ✓ Le choix du modèle mathématique joue un rôle très important, dans les applications étudiées au chapitre 4 on remarqué la supériorité de l'élément CAXI_L qui utilise une formulation mixte par rapport à l'élément CAXI_K où la formulation à été faite avec un modèle en déplacement, même pour des cas où la solution analytique est basé sur la théorie de Love-Kirchoff, donc on peut dire que si on utilise la formulation variationnelle mixte (type Hellinger Reissner), on peut construire d'autre modèles mixtes qui peuvent présenter plus de précision.
- ✓ Pour les éléments de type coques l'augmentations du nombres des point d'intégration ne porte pas des améliorations sur la solution, au contraire il nous donnes dans certains cas des mauvais résultats, ce qui à été remarqué dans l'exemple : 4.1.1 pour l'élément CAXI_L, où seul l'intégration réduites qui donne de bons résultats, aussi si on utilise un schéma d'intégration numérique avec plus de deux points de gauss pour l'élément CAXI_K, les résultats sera identiques à ceux obtenus avec deux points de Gauss, l'utilisation d'un seul point de Gauss pour ce type d'élément donne des résultats inacceptables.
- ✓ L'augmentation de l'ordre du champ de déplacement comme il a été mentionné dans le chapitre 1, par l'utilisation des techniques des degrés de liberté additionnels, peut présenter des améliorations sur la précision des résultats.
- Vu la forme géométrique et les dimensions importantes de ce type de structures l'analyse non linéaire géométrique est souhaitable.

Vu l'efficacité des éléments finis à champ de déformation on recommande la formulation des éléments finis pour ces structures de révolution.

BIBLIOGRAPHIE

BIBLIOGRAPHIE:

[1] C.ROCKEY, H.R. EVANS, D.W. GRIFFITHS, D.A. NETHERCOT Introduction à la méthode des éléments finis. EYROLLES 1979.

[2] BATOZ, J.L., DHATT.G., Modélisation des structures par éléments finis volume 3, HERMES 1992.

[3] ROARCK, R., YOUNG, W., Formulas for stress and strain. McGraw-Hill, 5th edition 1975.

[4] O.C ZIENKIEUVICZ AND R.L TAYLOR, the finite element method volume 2 Solid mechanic fifth edition Butterworth-Heinemann, 2000.

[5] FREY, F., STUDER, M.A., Analyse des structures et milieu continue volume 5, Presses polytechniques et universitaires romandes, 2003.

[6] TOZOUT, G., DHATT, G., Une présentation de la méthode des éléments finis, Maloine S.A 1981.

[7] SERGE LAROZE résistance des matériaux et structures, tome 1, Milieux continus solides plaques et coques, EYROLLES – MASSON, 1983.

[8] F.HAZIM ,Phd Thesis ,University of walls, 1989, UC

[9] RATHOD, H.A, Explicit stiffness matrices for axisymmetric triangular element, Comput.and Struct, Vol. 30, N° 5, p. 1091-1100. 1988.

[10] BATOZ, J.L., DHATT.G., Modélisation des structures par éléments finis volume 1, HERMES 1990.

[11] BATOZ, J.L., DHATT.G., Modélisation des structures par éléments finis volume 2, HERMES 1990.

[12] UTKU, S., Explicit expression for triangular torus stiffness matrix, AIAA J., Vol. 6, p.1174-1176, 1968.

[13] DAVID, V. HUTTON, fundamentals of finite element analysis, McGraw-Hill, 2004.

[14] DUROCHER, L., GASPER, A., RHOADES, G., A numerical comparison of axisymmetric finite element, IJNME, Vol. 12, p. 1415-1427, 1978.

[15] KIM JIN-GON Korean Society of Mechanical Engineers, Seoul, COREE,REPUBLIQUE 2004 (Revue)

[16] G.A.MOHR Application of penalty functions to a curved isoparametric axisymmetric thick shell element, Computers & Structures Volume 15, Issue 6, 1982, Pages 685-690.

[17] PROST, J.P., Analyse de la stabilité élastique des voiles minces de révolution par la méthode des éléments finis, Thèse de maîtrise es sciences, Université Laval, Québec, 1975.

[18] CHAN,A.S.L, TRBOJEVIC,V.M, Thin shell finite element by the mixed method formulation, CMAME 1977

[19] M. HANNACHI, H. NACEUR, J.L. BATOZ, S. BELOUETTAR 8^{éme} Colloque
National en Calcul des Structures Mai 2007, Giens

[20] COMBESCURE, A., Etude numérique du flambage plastique des coques de révolution, dans Volume 3, Calcul des structures et intelligence artificielle, (Fouet et al. Eds.), Pluralis, p. 81-95, 1990.

[21] PRATHAP, G., RAMESH BABU,C.R., A field consistent three noded quadratic curved axisymmetric shell element, IJNME, Vol. 23, p.711-723, 1986.

[22] RAMESH BABU,C., PRATHAP, G., A field consistent two noded curved axisymmetric thick shell element, IJNME, Vol. 23, p.1245-1261, 1986.

[23] TESSLER, A., An efficient conforming axisymmetric shell element including transverse shear and rotary inertia, Computers & Structures Vol 15 N° 5, p. 567-574, 1982

[24] DESPINOY, J.P, Modélisation des coques de révolution par éléments finis.Formulations et applications en statique et dynamique, Mémoire d'ingénieur CNAM, 1991.

[25] LIU, X.J, Modélisation de coques minces axisymétriques en grandes deformations élasto-plastiques. Thése de doctorat, UTC, 1991.

[26] ENGRAND, D., BORDAS, J., Calcul des coques en matériaux multicouches et sandwiches, par la méthode des éléments finis, la Recherche Aérospatiale, n°2, p. 109-118, 1973

[27] JONES, R.E, STROME, D.R, Direct stiffness method analysis of shells of revolution utilizing curved elements, AIAA J., Vol. 4, N° 9, p. 1519-1526, 1966

[28] MEBANE, P.M., STRICKLIN, J.A., Implicit rigid body motion in curved finite elements, AIAA J., Vol. 9, N° 2, p. 344-345, 1971.

[29] STRICKLIN, J.A., NAVARATNA, D.R, PIAN, T.H.H., Improvements on the analysis of shells of revolution by the matrix displacement method, AIAA J., Vol. 4, p. 2069-2072, 1966.

[30] BROMBOLISH, L., GOULD, P., Finite element analysis of shells of revolution by minimization of the potential energy functional, Proceeding Symposium on Application of Finite Element Methods in Civil Engineering, Nashville, USA, p. 279-307, 1969.

[31] GOULD, P., Finite element analysis of shells of revolution, Pitman Publishing Ltd, London, 1985.

[32] POPOV, E.P., SHARIFI, P., A refined curved element for thin shells of revolution, IJNME, Vol. 3, p.495-508, 1971.

[33] SHIVAKUMAR, K.N., KRISHNA MURTY, A.V., A high precision ring element for vibration of laminated shells, J. Sound Vibrations, Vol. 58, p. 311-318, 1978.

[34] HITCHINGS, D., Axisymmetric thin shells, in finite element analysis of thin walled Structures, J. Bull Ed., Elsevier, 1988, p. 133-164.

[35] EL HARIF, A., Etude par la méthode des éléments finis de l'effet de cisaillement transverse dans les plaques et les coques de révolution, Thése de doctorat es Sciences, Université de Mouhamed V, Rabat, Maroc, Décembre 1988.

[36] LUKASIEWICZ, S., Local loads in plate and shells, Sijthoff at Noordhoff, 1979.

[37] LEISSA, A.W, NARITA, Y., Natural frequencies of simply supported circular plates, JSV, Vol. 70, p. 221-229, 1980.

[38] TESSLER, A., SPIRIDIGLIOZZI, L., Resolving membrane and shear locking phenomena in curved shear deformable axisymmetric shell elements, IJNME, Vol. 26, p. 1071-1086, 1988.

[39] GRAFTON, P.E, STROME, D.R, Analysis of axisymmetric shells by the direct stiffness method, AIAAJ., Vol. 1, n° 10, p. 2342-2347, 1963.

[40] MEYER, R.R, HARMON, M.B, Conical segment method for analyzing open crown shells of revolution for edge loadings, AIAAJ., Vol. 1, n° 4, p. 886-891, 1963.

[41] PERCY, J.H, PIAN, T.N.H, KLEIN, S., NAVARATNA, D.R., Application of matrix displacement method for linear elastic analysis of shell of revolution, AIAA J., Vol. 3, n° 11, p. 2138-2145, Nov. 1965.

[42] POPOV, E.P, PENZIEN, J, LU., Z.A., Finite element solution for axisymmetric shells,J. Engng. Mech, Div., ASCE, Vol. 90, p. 119-145, 1964.

[43] O.C ZIENKIEUVICZ AND R.L TAYLOR, the finite element method volume 1 The basic fifth edition Butterworth-Heinemann, 2000.

ANNEXE
Programme MATLAB fichier fonction principale

```
function [U,SIG] = Axisym(elemtronc24ELE)
%FONCTION PRINCIPAL (programme principal)
                                                                                                                                                           %
%[U,SIG] = Axisym(var)
                                                                                                                                                           %
% résolution probleme structure axisymetrique coque de revolution
                                                                                                                                                           %
% U : solution pour déplacements
                                                                                                                                                           %
% SIG : contraintes(radial,axial,tangentielle)
                                                                                                                                                           %
% var : fichier de données du problème
                                                                                                                                                           %
% * * * REALISE DANS LE CADRE DE L'OBTENTION DU DIPLOME DE MAGISTER * * * %
% PAR : LABIODH BACHIR
                                                                                                                                                           %
% THESE MAGISTER / INSTITUT GENIE CIVIL ET HYDRAULIOUE
                                                                                                                                                           %
% OPTION : MMS
                                                                                                                                                           %
% THEME : Modélisation des structure continue a symétrie axial par
                                                                                                                                                          %
2
                    par la méthode des éléments finis
                                                                                                                                                           2
% ENCADRE PAR MR: HAMMADI DJAMEL
                                                                                                                                                           2
clc
[t,p,e,g,E,nu,F] = feval(str2func(elemtronc24ELE));
plotmesh(t,p,1,1,'b');
K = matK(t,p);
K = DelDOFs(K,e);
F = DelDOFs(F,e);
U = K \setminus F;
U = AddDOFs(U,e);
SIG = matContr(t,p,U);
net = size(t,1);
nnt = size(p,1);
% impression des résulatats
disp('Résultats de calcul structure coque de revolution ')
disp('4.1.1 Cylindre chargé à leur extrémité: Prog CAXI_L ')
disp(['fichier de données du probleme : ',elemtronc24ELE])
disp(['Nombre des elements total :',num2str(net)])
disp(['Nombre des noeuds total : ',num2str(nnt)])
disp(sprintf('\n Déplacements nodales :'))
disp(sprintf('Noeud\t\tUz\t\t\t\t\t\t Ur\t\t\t Beta '))
for i=1:nnt
        disp(sprintf('%d\t\t\t%+5.6f\t\t\t%+5.5f\t\t\t%+5.5f\t,i,U(LOCE(i))))
end
disp(sprintf('\n les contraintes :'))
disp(sprintf(' Noeud\t\tNs1\t\t Ts1\t\t Ms1\t\t Ns2\t\t Ts2\t\t Ms2 '))
for i=1:net
disp(sprintf('%d)t)t%+5.4f)t)t%+5.3f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)t%+5.4f)t)k%+5.4f)t)t%+5.4f)t)t%+5.4f)t)k%+5.4f)t)k%+5.4f)t)k%+5.4f)t)k%+5.4f)t)k%+5.4f)t(k%+5.4f)t)k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5.4f)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(k%+5)t(
\t%+5.3f',i,SIG(i,:)))
end
```

<pre>function [t,p,e,g,E,nu,F] = elemtroncl4ELE t = [1 2 % connectivité de l'élément 1 2 3 % connectivité de l'élément 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15]; p = [5.0 6.0 % coordonnées du noeud 1 5.0 5.9 % coordonnées du noeud 1 5.0 5.8 % coordonnées du noeud 2 5.0 5.8 % coordonnées du noeud 3 5.0 5.7 5.0 5.6 5.0 5.4 5.0 5.4 5.0 5.3 5 0 5 2</pre>
<pre>2 3 % connectivité de l'élément 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15]; p = [5.0 6.0 % coordonnées du noeud 1 5.0 5.9 % coordonnées du noeud 1 5.0 5.8 % coordonnées du noeud 2 5.0 5.8 % coordonnées du noeud 3 5.0 5.7 5.0 5.6 5.0 5.7 5.0 5.4 5.0 5.3 5 0 5.2</pre>
<pre>p = [5.0 6.0 % coordonnées du noeud 1 5.0 5.9 % coordonnées du noeud 2 5.0 5.8 % coordonnées du noeud 3 5.0 5.7 5.0 5.6 5.0 5.5 5.0 5.4 5.0 5.3 5 0 5 2</pre>
5.0 5.9 * coordonnees du noeud 2 5.0 5.8 * coordonnées du noeud 3 5.0 5.7 5.0 5.6 5.0 5.5 5.0 5.4 5.0 5.3 5.0 5.2
5.0 $5.75.0$ $5.65.0$ $5.55.0$ $5.45.0$ $5.35.0$ 5.2
5.0 $5.55.0$ $5.45.0$ $5.35.0$ 5.2
5.0 5.3 5.0 5.2
5.0 5.1 5.0 5.0
$5.0 4.5 \\ 5.0 4.0$
5.0 2.0
];
e = [43; 44; 45]; % noeud 15 bloqué dans la direction u w beta
<pre>g=0.01* ones(1,size(t,1));</pre>
nu = 0.3 * ones(1,size(t,1)); % coef de poisson
F = [31.4159 ; 0 ; 0 % charge appliqué au noeud 1 direction w 0 ; 0 ; 0 ; 0
0 ; 0 ; 0 0 ; 0 ; 0
0 ; 0 ; 0 0 ; 0 ; 0
0 ; 0 ; 0 0 ; 0 ; 0
0 ; 0 ; 0 0 ; 0 ; 0
0 ; 0 ; 0 0 ; 0 ; 0

Résultats de calcul structure coque de revolution 4.1.1 Cylindre chargé à leur extrémité: Prog CAXI_K fichier de données du probleme : elemtronc9ELE Nombre des elements total :9 Nombre des noeuds total : 10

9 -0.0000 -31.416 -0.0000

Déplacem	ments nodales	:				
Noeud		Uz	Ur		Beta	
1	+0.0	02815	-0.0000	1	+0.01629	
2	+0.0	00373	+0.0000	0	+0.00680	
3	-0.0	00181	+0.0000	0	+0.00015	
4	-0.0	00084	+0.0000	0	-0.00063	
5	-0.0	00004	-0.0000	0	-0.00018	
6	+0.0	00007	-0.0000	0	+0.00002	
7	-0.0	00000	+0.0000	0	-0.00000	
8	+0.0	00000	-0.0000	0	+0.00000	
9	+0.0	00000	+0.0000	0	+0.00000	
10	+0.0	00000	+0.0000	0	+0.00000	
les cont Noeud	raintes : Nsl	Tsl	Ms1	Ns2	Ts2	Ms2
1	-0.0000	-2.142	+0.0000	+0.0000	-2.9926	-0.049
2	-0.0000	-3.291	+0.0487	+0.0000	-3.0043	-0.013
3	-0.0000	-3.279	+0.0126	+0.0000	-3.1207	+0.002
4	+0.0000	-3.162	-0.0015	-0.0000	-3.1497	+0.002
5	-0.0000	-3.134	-0.0017	+0.0000	-3.1458	+0.000
6	+0.0000	-7.850	-0.0003	-0.0000	-7.8538	-0.000
7	-0.0000	-7.854	+0.0000	+0.0000	-7.8540	+0.000
8	-0.0000	-31.416	-0.0000	+0.0000	-31.4159	+0.000

+0.0000 -31.4159 -0.000

Résultats de calcul structure coque de revolution 4.1.1 Cylindre chargé à leur extrémité: Prog CAXI_L fichier de données du probleme : elemtronc9ELE Nombre des elements total :9 Nombre des noeuds total : 10

ts nodales	:				
1	Uz		Ur		
+0.00	02875	-0.0	0001	+0.01652	2
+0.00	00346	+0.0	0000	+0.0087	5
-0.00	00439	+0.0	0000	-0.0008	9
-0.00	00168	+0.0	0000	-0.00183	1
+0.00	00039	-0.0	0000	-0.0002	7
+0.00	00038	-0.0	0000	+0.0002	7
-0.00	00014	+0.0	0000	-0.0000	5
+0.00	00001	-0.0	0000	+0.0000)
+0 00	0000	-0 0	0000	+0,0000)
+0.00	00000	+0 0	0000	+0.0000)
					-
intes :					
Ng1	Ts1	Mg1	Ns2	Ts2	Ms2
-0 0000	-2 142	-0.0000	+0 0000	-2 8531	-0 071
0.0000	2.112	0.0000	10.0000	2.0331	0.071
-0.0000	-3.430	+0.0712	+0.0000	-2.8903	-0.017
0.0000	0,100			2.0000	0.01
-0 0000	-3 393	+0 0172	+0 0000	-3 1332	+0 009
0.0000	3.375			5.1552	
-0.0000	-3.150	-0.0088	+0.0000	-3.1851	+0.005
0.0000	0.100			0.1001	
-0 0000	-3 098	-0 0053	+0 0000	-3 1544	-0 000
0.0000	5.090	0.0000		5.1511	0.000
-0 0000	-7 841	+0 0004	+0 0000	-7 8432	-0 001
0.0000	,			,.0152	0.001
-0 0000	-7 865	+0 0009	+0 0000	-7 8569	+0 001
0.0000	,			1.0000	
-0 0000	-31 413	-0 0011	+0 0000	-31 4151	-0 001
0.0000	51.115	0.0011		51.1151	0.001
-0.0000	-31.417	+0.0011	+0.0000	-31.4145	+0.001
	ts nodales +0.00 +0.00 -0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000	<pre>ts nodales :</pre>	ts nodales : Uz t +0.002875 -0.0 +0.000346 +0.0 -0.000168 +0.0 +0.000039 -0.0 +0.000014 +0.0 +0.000001 -0.0 +0.000000 -0.0 +0.000000 +0.0 intes : Ns1 Ts1 Ms1 -0.0000 -2.142 -0.0000 -0.0000 -3.430 +0.0712 -0.0000 -3.150 -0.0088 -0.0000 -3.098 -0.0053 -0.0000 -7.841 +0.0004 -0.0000 -7.841 +0.0004 -0.0000 -31.413 -0.0011 -0.0000 -31.417 +0.0011	ts nodales : Uz Ur +0.002875 -0.00001 +0.000346 +0.00000 -0.000168 +0.00000 +0.000039 -0.00000 +0.000014 +0.00000 +0.00000 -0.00000 +0.00000 -0.00000 +0.00000 +0.00000 intes : Ns1 Ts1 Ms1 Ns2 -0.0000 -2.142 -0.0000 +0.0000 -0.0000 -3.430 +0.0712 +0.0000 -0.0000 -3.150 -0.0088 +0.0000 -0.0000 -3.098 -0.0053 +0.0000 -0.0000 -7.841 +0.0004 +0.0000 -0.0000 -7.841 +0.0004 +0.0000 -0.0000 -31.413 -0.0011 +0.0000	ts nodales : Uz Ur Beta +0.002875 -0.00001 $+0.0165;+0.000346$ $+0.00000$ $-0.0087;-0.000439$ $+0.00000$ $-0.0008;+0.000038$ $+0.00000$ $-0.0002;+0.000014$ $+0.00000$ $-0.0000;+0.000001$ -0.00000 $+0.0000;+0.000000$ $+0.00000$ $+0.00000;+0.000000$ $+0.00000$ $+0.00000;+0.000000$ $+0.00000$ $+0.00000;+0.000000$ $+0.00000$ $+0.00000;+0.00000$ $+0.00000$ $+0.00000;+0.00000$ -2.142 -0.0000 $+0.00000$ $-2.8531-0.0000$ -3.430 $+0.0712$ $+0.0000$ $-3.1332-0.0000$ -3.150 -0.0088 $+0.0000$ $-3.1851-0.0000$ -3.098 -0.0053 $+0.0000$ $-3.1544-0.0000$ -7.841 $+0.0004$ $+0.0000$ $-7.8432-0.0000$ -7.865 $+0.0009$ $+0.0000$ $-31.4151-0.0000$ -31.413 -0.0011 $+0.0000$ -31.4145

Résultats ANSYS

4.1.1 Cylindre chargé à leur extrémité :

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE	UX	UY	UZ	USUM
1	0.0000	0.0000	0.0000	0.0000
2	0.16060E-06	-0.96360E-08	0.0000	0.16089E-06
3	0.76879E-06	-0.65399E-07	0.0000	0.77156E-06
4	-0.14488E-04	0.14039E-06	0.0000	0.14489E-04
5	0.38083E-04	-0.21354E-06	0.0000	0.38084E-04
б	0.38667E-04	-0.67404E-06	0.0000	0.38673E-04
7	-0.16843E-03	0.10452E-06	0.0000	0.16843E-03
8	-0.43882E-03	0.37480E-05	0.0000	0.43883E-03
9	0.34571E-03	0.43066E-05	0.0000	0.34574E-03
10	0.28756E-02	-0.15021E-04	0.0000	0.28756E-02
MAXIMUM	ABSOLUTE VAL	UES		
NODE	10	10	0	10
VALUE	0.28756E-02-	0.15021E-04	0.0000	0.28756E-02

les contraintes :

Résultats de calcul structure coque de revolution 4.1.1 Cylindre chargé à leur extrémité: Prog CAXI_K fichier de données du probleme : elemtroncl4ELE Nombre des elements total :14 Nombre des noeuds total : 15

Déplacemer	nts nodales :		
Noeud	Uz	Ur	Beta
1	+0.002861	-0.00001	+0.01643
2	+0.001353	-0.00000	+0.01279
3	+0.000373	+0.00000	+0.00688
4	-0.000076	+0.00000	+0.00245
5	-0.000189	+0.00000	+0.00014
б	-0.000155	+0.00000	-0.00064
7	-0.000086	+0.00000	-0.00065
8	-0.000033	-0.00000	-0.00041
9	-0.00003	-0.00000	-0.00018
10	+0.000007	-0.00000	-0.00004
11	+0.000007	-0.00000	+0.00002
12	-0.000000	+0.00000	-0.00000
13	+0.000000	+0.00000	+0.00000
14	+0.000000	+0.00000	+0.00000
15	+0.000000	+0.00000	+0.00000

Noeud 1	Ns1 +0.0000	Ts1 -0.571	Ms1 +0.0000	Ns2 -0.0000	Ts2 -1.7400	Ms2 -0.053
2	+0.0000	-1.402	+0.0529	-0.0000	-1.4144	-0.050
3	+0.0000	-1.727	+0.0499	-0.0000	-1.3696	-0.030
4	+0.0000	-1.772	+0.0304	-0.0000	-1.4302	-0.013
5	+0.0000	-1.711	+0.0129	-0.0000	-1.5017	-0.003
6	-0.0000	-1.640	+0.0026	+0.0000	-1.5500	+0.002
7	-0.0000	-1.592	-0.0016	+0.0000	-1.5729	+0.002
8	-0.0000	-1.569	-0.0024	+0.0000	-1.5794	+0.002
9	-0.0000	-1.562	-0.0017	+0.0000	-1.5782	+0.001
10	-0.0000	-1.563	-0.0009	+0.0000	-1.5752	+0.000
11	-0.0000	-7.850	-0.0003	+0.0000	-7.8538	-0.000
12	-0.0000	-7.854	+0.0000	+0.0000	-7.8540	+0.000
13	-0.0000	-31.416	-0.0000	+0.0000	-31.4159	-0.000
14	+0.0000	-31.416	+0.0000	+0.0000	-31.4159	+0.000

Résultats de calcul structure coque de revolution 4.1.1 Cylindre chargé à leur extrémité: Prog CAXI_L fichier de données du probleme : elemtroncl4ELE Nombre des elements total :14 Nombre des noeuds total : 15

Déplacemer	nts nodales :		
Noeud	Uz	Ur	Beta
1	+0.002875	-0.00001	+0.01652
2	+0.001378	-0.00000	+0.01338
3	+0.000347	+0.00000	+0.00724
4	-0.000134	+0.00000	+0.00241
5	-0.000247	+0.00000	-0.00015
б	-0.000191	+0.00000	-0.00096
7	-0.000100	+0.00000	-0.00087
8	-0.000031	-0.00000	-0.00051
9	+0.000004	-0.00000	-0.00019
10	+0.000014	-0.00000	-0.00001
11	+0.000011	-0.00000	+0.00006
12	-0.000002	+0.00000	-0.00000
13	-0.000001	-0.00000	-0.00000
14	+0.000001	-0.00000	+0.00000
15	+0.000000	+0.00000	+0.00000

les cont	raintes :					
Noeud 1	Ns1 +0.0000	Ts1 -0.571	Ms1 +0.0000	Ns2 -0.0000	Ts2 -1.7200	Ms2 -0.057
2	-0.0000	-1.422	+0.0575	+0.0000	-1.3749	-0.055
3	-0.0000	-1.767	+0.0551	+0.0000	-1.3322	-0.033
4	-0.0000	-1.809	+0.0334	+0.0000	-1.4083	-0.013
5	-0.0000	-1.733	+0.0133	+0.0000	-1.4958	-0.001
6	-0.0000	-1.646	+0.0015	+0.0000	-1.5539	+0.003
7	-0.0000	-1.588	-0.0031	+0.0000	-1.5800	+0.003
8	-0.0000	-1.562	-0.0035	+0.0000	-1.5853	+0.002
9	-0.0000	-1.556	-0.0023	+0.0000	-1.5817	+0.001
10	-0.0000	-1.560	-0.0010	+0.0000	-1.5766	+0.000
11	-0.0000	-7.848	-0.0002	+0.0000	-7.8506	-0.000
12	-0.0000	-7.857	+0.0004	+0.0000	-7.8539	+0.000
13	-0.0000	-31.416	-0.0004	+0.0000	-31.4168	-0.000
14	-0.0000	-31.415	+0.0004	+0.0000	-31.4141	+0.000

Résultats ANSYS

4.1.1 Cylindre chargé à leur extrémité:

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE	UX	UY	UZ	USUM
1	0.0000	0.0000	0.0000	0.0000
2	0.67033E-06	5-0.40220E-07	0.0000	0.67154E-06
3	-0.91623E-06	5-0.25466E-07	0.0000	0.91658E-06
4	-0.23498E-05	0.23525E-07	0.0000	0.23500E-05
5	0.11493E-04	-0.11362E-06	0.0000	0.11494E-04
6	0.14023E-04	-0.19017E-06	0.0000	0.14024E-04
7	0.40991E-05	5-0.24454E-06	0.0000	0.41064E-05
8	-0.30767E-04	-0.16453E-06	0.0000	0.30768E-04
9	-0.99535E-04	0.22637E-06	0.0000	0.99535E-04
10	-0.19091E-03	8 0.10977E-05	0.0000	0.19091E-03
11	-0.24648E-03	8 0.24099E-05	0.0000	0.24649E-03
12	-0.13421E-03	0.35519E-05	0.0000	0.13425E-03
13	0.34729E-03	8 0.29127E-05	0.0000	0.34730E-03
14	0.13784E-02	2-0.22644E-05	0.0000	0.13784E-02
15	0.28756E-02	2-0.15026E-04	0.0000	0.28757E-02
MAXIMUM	ABSOLUTE VAL	JUES		
NODE	15	15	0	15
VALUE	0.28756E-02-	0.15026E-04	0.0000	0.28757E-02

			MATLAB Com	mand window		
4.1.1	Cylindre ch	harqé à leur	extrémité:	Proq CAXI K		
Nombre	e des elemen	nts total :24	1	5 –		
Nombre	e des noeuds	s total : 25				
Dépla	acements noo	dales :				
Noeud		Uz		Ur		Beta
1		+0.002871		-0.00001		+0.01650
2		+0.002066		-0.00001		+0.01538
3		+0.001357		-0.00000		+0.01284
4		+0.000789		+0.00000		+0.00982
5		+0.000372		+0.00000		+0.00691
6		+0.000092		+0.00000		+0.00441
7		-0.000078		+0.00000		+0.00246
8		-0.000163		+0.00000		+0.00106
9		-0.000191		+0.00000		+0.00013
10		-0.000183		+0.00000		-0.00040
		-0.000156		+0.00000		-0.00065
⊥∠ 1 2		-0.000121		+0.00000		-0.00071
1J				+0.00000		-0.00066
14 15		-0.000057		+0.00000		-0.00055
16		-0.000033		-0.00000		-0.00041
17		-0 000013		-0.00000		-0 00018
18		+0 0000004		-0.00000		-0 00010
19		+0.000007		-0 00000		-0 00004
2.0		+0.000008		-0.00000		+0.00000
21		+0.000007		-0.00000		+0.00002
22		-0.000000		+0.00000		-0.00000
23		+0.000000		-0.00000		+0.00000
24		+0.000000		+0.00000		+0.00000
25		+0.000000		+0.00000		+0.00000
les d	contraintes	:				
Noeud	Nsl	Tsl	Msl	Ns2	Ts2	Ms2
1	+0.0000	+0.215	+0.0000	-0.0000	-1.2926	-0.037
2	+0.0000	-0.278	+0.0369	-0.0000	-0.9525	-0.053
3	+0.0000	-0.618	+0.0531	-0.0000	-0.7404	-0.056
4	-0.0000	-0.830	+0.0557	+0.0000	-0.6266	-0.050
5	-0.0000	-0.944	+0.0502	+0.0000	-0.5823	-0.041
6	-0.0000	-0.989	+0.0409	+0.0000	-0.5825	-0.031
./	-0.0000	-0.988	+0.0306	+0.0000	-0.6078	-0.021
8	-0.0000	-0.963	+0.0210	+0.0000	-0.6440	-0.013
9	-0.0000	-0.927	+0.0130	+0.0000	-0.6819	-0.007
10 11	-0.0000	-0.889	+0.0069	+0.0000	-0.7161	-0.003
11 12	-0.0000	-0.855	+0.0026	+0.0000	-0.7439	+0.000
12 12	-0.0000	-0.827		+0.0000	-0.7047	+0.002
14	-0.0000	-0.792	-0.0017	+0.0000	-0.7877	+0.002
15	-0 0000	-0 783	-0 0023	+0.0000	-0 7924	+0.002
16	-0.0000	-0 778	-0.0022	+0.0000	-0.7941	+0.002
17	-0.0000	-0.777	-0.0018	+0.0000	-0.7940	+0.001
18	-0.0000	-0.777	-0.0013	+0.0000	-0.7929	+0.001
19	-0.0000	-0.778	-0.0009	+0.0000	-0.7914	+0.001
20	-0.0000	-0.779	-0.0006	+0.0000	-0.7899	+0.000
21	-0.0000	-7.850	-0.0003	+0.0000	-7.8538	-0.000
22	-0.0000	-7.854	+0.0000	+0.0000	-7.8540	+0.000
23	-0.0000	-31.416	-0.0000	+0.0000	-31.4159	+0.000
24	-0.0000	-31.416	-0.0000	+0.0000	-31.4159	-0.000

Résultats de calcul structure coque de revolution 4.1.1 Cylindre chargé à leur extrémité: Prog CAXI_L fichier de données du probleme : elemtronc24ELE Nombre des elements total :24 Nombre des noeuds total : 25

Déplace	ements noc	lales :				
Noeud		Uz		Ur		Beta
1		+0.002875		-0.00001		+0.01652
2		+0.002074		-0.00001		+0.01549
3		+0.001361		-0.00000		+0.01299
4		+0 000788		+0 00000		+0 00995
5		+0 000365		+0 00000		+0 00699
5		+0.0000000		+0.00000		+0.000000
0		0.000072				10.00111
7		-0.000093		+0.00000		+0.00244
8		-0.000178		+0.00000		+0.00101
9		-0.000205		+0.00000		+0.00007
10		-0.000195		+0.00000		-0.00048
11		-0.000164		+0.00000		-0.00072
12		-0.000127		+0.00000		-0.00077
13		-0.000090		+0.00000		-0.00071
14		-0.000058		+0.00000		-0.00058
15		-0.000032		-0.00000		-0.00044
16		-0.000014		-0.00000		-0.00030
17		-0.000002		-0.00000		-0.00018
18		+0.000005		-0.00000		-0.00010
19		+0.000008		-0.00000		-0.00003
20		+0.000009		-0.00000		+0.00001
21		+0.000008		-0.00000		+0.00003
22		-0 000001		+0 00000		+0 00000
23		-0 000001				-0.00000
22		+0 000001		-0.00000		+0 00000
25		+0.000001		+0 00000		+0.00000
log gor	traintog			10.00000		10.00000
Ies con	Nal	• 	Ma 1	Nac	T a J	Mab
NOEUQ	NSI 0 0000		MSI		1 2005	MSZ 0 020
	-0.0000	+0.215	-0.0000	+0.0000	-1.2905	-0.038
2	+0.0000	-0.280	+0.03/6	-0.0000	-0.9469	-0.054
3	+0.0000	-0.624	+0.0543	-0.0000	-0.7320	-0.057
4	+0.0000	-0.839	+0.0570	-0.0000	-0.6167	-0.051
5	+0.0000	-0.954	+0.0514	-0.0000	-0.5723	-0.042
б	+0.0000	-0.999	+0.0419	-0.0000	-0.5736	-0.031
7	+0.0000	-0.997	+0.0313	-0.0000	-0.6006	-0.021
8	+0.0000	-0.970	+0.0214	-0.0000	-0.6390	-0.013
9	+0.0000	-0.932	+0.0131	-0.0000	-0.6789	-0.007
10	+0.0000	-0.892	+0.0068	-0.0000	-0.7148	-0.002
11	+0.0000	-0.856	+0.0023	-0.0000	-0.7439	+0.000
12	+0.0000	-0.827	-0.0005	-0.0000	-0.7656	+0.002
13	+0.0000	-0.805	-0.0020	-0.0000	-0.7803	+0.003
14	+0.0000	-0.790	-0.0026	-0.0000	-0.7893	+0.003
15	+0.0000	-0.781	-0.0027	-0.0000	-0.7939	+0.002
16	+0 0000	-0 777	-0 0023	-0 0000	-0 7955	+0 002
17	+0.0000	-0 775	-0 0019	-0 0000	-0 7951	+0.001
18	+0.0000	-0 776	-0 0014	-0.0000	-0 7938	+0.001
19	+0 0000	-0 777	_0 0000	_0 0000	-0 7920	+0 001
19 20	+0.0000		-0.0009		-0.7220	+0.001
∠ ∪ 01	+0.0000	-0.1/9		-0.0000	-0.1903	+0.000
∠ ⊥ 2.2	+0.0000	-/.049	-0.0003	-0.0000	-/.0510	-0.000
22	+0.0000	-/.856	+0.0004	-0.0000	-/.8535	+0.000
23	+0.0000	-31.416	-0.0003	-0.0000	-31.4170	-0.000
24	+0.0000	-31.415	+0.0003	-0.0000	-31.4141	+0.000

Résultats ANSYS

4.1.1 Cylindre chargé à leur extrémité:

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE	UX	UY	UZ	USUM
1	0.0000	0.0000	0.0000	0.0000
2	0.73862E-06-0	.44317E-07	0.0000	0.73995E-06
3	-0.11391E-05-0	.20286E-07	0.0000	0.11393E-05
4	-0.76359E-06 0	.82549E-08	0.0000	0.76363E-06
5	0.80320E-05-0	.10077E-06	0.0000	0.80327E-05
6	0.90195E-05-0	.12635E-06	0.0000	0.90204E-05
7	0.84315E-05-0	.15253E-06	0.0000	0.84329E-05
8	0.52522E-05-0	.17305E-06	0.0000	0.52551E-05
9	-0.17293E-05-0	.17834E-06	0.0000	0.17385E-05
10	-0.13817E-04-0	.15502E-06	0.0000	0.13818E-04
11	-0.32198E-04-0	.85994E-07	0.0000	0.32198E-04
12	-0.57602E-04 0	.48707E-07	0.0000	0.57602E-04
13	-0.89786E-04 0	.26979E-06	0.0000	0.89786E-04
14	-0.12685E-03 0	.59473E-06	0.0000	0.12685E-03
15	-0.16437E-03 0	.10316E-05	0.0000	0.16437E-03
16	-0.19447E-03 0	.15698E-05	0.0000	0.19447E-03
17	-0.20489E-03 0	.21688E-05	0.0000	0.20490E-03
18	-0.17834E-03 0	.27437E-05	0.0000	0.17836E-03
19	-0.92421E-04 0	.31498E-05	0.0000	0.92475E-04
20	0.79324E-04 0	.31695E-05	0.0000	0.79387E-04
21	0.36473E-03 0	.25034E-05	0.0000	0.36474E-03
22	0.78797E-03 0	.77433E-06	0.0000	0.78797E-03
23	0.13614E-02-0	.24497E-05	0.0000	0.13614E-02
24	0.20740E-02-0	.76028E-05	0.0000	0.20740E-02
25	0.28756E-02-0	.15027E-04	0.0000	0.28757E-02
MAXIMUM	ABSOLUTE VALUES	S		
NODE	25	25	0	25
VALUE	0.28756E-02-0.2	15027E-04	0.0000	0.28757E-02

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : CylbatozlELE Nombre des elements total :1 Nombre des noeuds total : 2

Déplace	ments nodales :		
Noeud	Uz	Ur	Beta
1	+0.000000602	+0.000000000	+0.000000000
2	+0.000000000	-0.000000090	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz1ELE Nombre des elements total :1 Nombre des noeuds total : 2

Déplacement	ts nodales :
Noeud	Uz
1	-0.000000438
2	+0.000000000

Ur
 Ur
 Beta

 +0.000000000
 +0.000000000

 +0.0000000066
 +0.0000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz2ELE Nombre des elements total :2 Nombre des noeuds total : 3

Déplace	ments nodales :		
Noeud	Uz	Ur	Beta
1	+0.000000498	+0.000000000	+0.000000000
2	+0.000000524	-0.000000077	-0.000000033
3	+0.000000000	-0.000000116	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz2ELE Nombre des elements total :2 Nombre des noeuds total : 3

Déplace	ments nodales :		
Noeud	Uz	Ur	Beta
1	-0.000000760	+0.000000000	+0.000000000
2	-0.000000419	+0.000000089	+0.000003007
3	+0.000000000	+0.000000120	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz3ELE Nombre des elements total :3 Nombre des noeuds total : 4

ments nodales :		
Uz	Ur	Beta
+0.000000499	+0.000000000	+0.000000000
+0.000000515	-0.000000050	+0.000000177
+0.000000450	-0.000000101	-0.000001703
+0.000000000	-0.000000121	+0.000000000
	ments nodales : Uz +0.000000499 +0.000000515 +0.000000450 +0.000000000	ments nodales : Uz Ur +0.0000000499 +0.000000000 +0.000000515 -0.000000050 +0.0000000450 -0.000000101 +0.000000000 -0.000000121

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz3ELE Nombre des elements total :3 Nombre des noeuds total : 4

Ur	Beta
+0.000000000	+0.000000000
+0.000000053	-0.000001939
+0.000000105	+0.000004512
+0.000000125	+0.000000000
	Ur +0.000000000 +0.000000053 +0.000000105 +0.000000125

4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz4ELE Nombre des elements total :4 Nombre des noeuds total : 5

Ur	Beta
+0.000000000	+0.000000000
-0.000000038	+0.000000148
-0.000000076	-0.000000173
-0.000000112	-0.000002778
-0.000000123	+0.000000000

4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz4ELE Nombre des elements total :4 Nombre des noeuds total : 5

Ur	Beta
+0.000000000	+0.000000000
+0.000000037	-0.000000880
+0.000000079	-0.000000078
+0.000000114	+0.000004547
+0.000000125	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz5ELE Nombre des elements total :5 Nombre des noeuds total : 6

dales :		
Uz	Ur	Beta
00000499	+0.000000000	+0.000000000
00000505	-0.000000030	+0.000000121
00000520	-0.000000061	+0.000000113
00000495	-0.000000092	-0.000000868
00000290	-0.000000117	-0.000003359
00000000	-0.000000124	+0.000000000
	dales : Uz 000000499 000000505 000000520 000000495 000000290 000000000	dales: Ur 000000499 +0.000000000 000000505 -0.000000030 000000520 -0.000000061 000000495 -0.000000092 000000290 -0.000000117 000000000 -0.000000124

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz5ELE Nombre des elements total :5 Nombre des noeuds total : 6

ements nodales :		
Uz	Ur	Beta
-0.000000485	+0.000000000	+0.000000000
-0.000000504	+0.000000030	-0.000000380
-0.000000551	+0.000000061	-0.000000546
-0.000000530	+0.000000094	+0.000001083
-0.000000253	+0.000000118	+0.000004478
+0.000000000	+0.000000125	+0.000000000
	ements nodales : Uz -0.0000000485 -0.0000000504 -0.0000000551 -0.0000000530 -0.0000000253 +0.000000000	ements nodales : Uz Ur -0.000000485 +0.000000000 -0.000000551 +0.0000000061 -0.000000530 +0.000000094 -0.000000253 +0.0000000118 +0.000000000 +0.000000125

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz6ELE Nombre des elements total :6 Nombre des noeuds total : 7

Déplace	ements nodales :		
Noeud	Uz	Ur	Beta
1	+0.000000499	+0.000000000	+0.000000000
2	+0.000000503	-0.000000025	+0.000000101
3	+0.000000515	-0.000000050	+0.000000163
4	+0.000000520	-0.000000076	-0.000000172
5	+0.000000455	-0.000000101	-0.000001599
6	+0.000000232	-0.000000120	-0.000003628
7	+0.000000000	-0.000000124	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz6ELE Nombre des elements total :6 Nombre des noeuds total : 7

Déplac	ements nodales :		
Noeud	Uz	Ur	Beta
1	-0.000000491	+0.000000000	+0.000000000
2	-0.000000500	+0.000000025	-0.000000212
3	-0.000000526	+0.000000050	-0.000000415
4	-0.000000547	+0.000000077	-0.000000016
5	-0.000000471	+0.000000103	+0.000001937
б	-0.000000207	+0.000000120	+0.000004338
7	+0.000000000	+0.000000125	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz7ELE Nombre des elements total :7 Nombre des noeuds total : 8

Déplace	ments nodales :		
Noeud	Uz	Ur	Beta
1	+0.000000499	+0.000000000	+0.000000000
2	+0.000000502	-0.000000021	+0.000000086
3	+0.000000511	-0.000000043	+0.000000162
4	+0.000000521	-0.000000065	+0.000000064
5	+0.000000506	-0.000000088	-0.000000615
б	+0.000000410	-0.000000108	-0.000002225
7	+0.000000189	-0.000000121	-0.000003714
8	+0.000000000	-0.000000124	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz7ELE Nombre des elements total :7 Nombre des noeuds total : 8

Beta
0.0000000000
0.000000142
0.000000300
0.000000246
0.000000583
0.000002549
0.000004164
0.0000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz8ELE Nombre des elements total :8 Nombre des noeuds total : 9

Déplace	ements nodales :		
Noeud	Uz	Ur	Beta
1	+0.000000499	+0.000000000	+0.000000000
2	+0.000000501	-0.000000019	+0.000000075
3	+0.000000508	-0.000000038	+0.000000149
4	+0.000000518	-0.000000057	+0.000000143
5	+0.000000520	-0.000000076	-0.000000170
б	+0.000000484	-0.000000096	-0.000001112
7	+0.000000366	-0.000000112	-0.000002713
8	+0.000000156	-0.000000122	-0.000003697
9	+0.000000000	-0.000000124	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz8ELE Nombre des elements total :8 Nombre des noeuds total : 9

Déplace	ments nodales :		
Noeud	Uz	Ur	Beta
1	-0.000000496	+0.000000000	+0.000000000
2	-0.000000499	+0.000000019	-0.000000106
3	-0.000000509	+0.000000038	-0.000000228
4	-0.000000525	+0.000000057	-0.000000268
5	-0.000000533	+0.000000077	+0.000000065
б	-0.000000498	+0.000000096	+0.000001158
7	-0.000000370	+0.000000113	+0.0000002977
8	-0.000000147	+0.000000123	+0.000003979
9	+0.000000000	+0.000000125	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz9ELE Nombre des elements total :9 Nombre des noeuds total : 10

Déplace	ements nodales :		
Noeud	Uz	Ur	Beta
1	+0.000000499	+0.000000000	+0.000000000
2	+0.000000501	-0.000000017	+0.000000066
3	+0.000000506	-0.000000033	+0.000000135
4	+0.000000515	-0.000000050	+0.000000165
5	+0.000000522	-0.000000068	+0.000000028
6	+0.000000511	-0.000000085	-0.000000494
7	+0.000000456	-0.000000101	-0.000001594
8	+0.000000326	-0.000000115	-0.000003073
9	+0.000000131	-0.000000123	-0.000003625
10	+0.000000000	-0.000000124	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz9ELE Nombre des elements total :9 Nombre des noeuds total : 10

Déplace	ements nodales :		
Noeud	Uz	Ur	Beta
1	-0.000000497	+0.000000000	+0.000000000
2	-0.000000499	+0.000000017	-0.000000085
3	-0.000000506	+0.000000033	-0.000000182
4	-0.000000518	+0.000000050	-0.000000246
5	-0.000000530	+0.000000068	-0.000000123
б	-0.000000523	+0.000000085	+0.000000446
7	-0.000000466	+0.000000102	+0.000001667
8	-0.000000329	+0.000000115	+0.000003268
9	-0.000000126	+0.000000123	+0.000003794
10	+0.000000000	+0.000000125	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_K fichier de données du probleme : Cylbatoz10ELE Nombre des elements total :10 Nombre des noeuds total : 11

Déplace	ements nodales :		
Noeud	Uz	Ur	Beta
1	+0.000000499	+0.000000000	+0.000000000
2	+0.000000500	-0.000000015	+0.000000059
3	+0.000000505	-0.000000030	+0.000000122
4	+0.000000512	-0.000000045	+0.000000166
5	+0.000000520	-0.000000061	+0.000000116
б	+0.000000520	-0.000000076	-0.000000169
7	+0.000000496	-0.000000092	-0.000000860
8	+0.000000426	-0.000000106	-0.000002028
9	+0.000000291	-0.000000117	-0.000003329
10	+0.000000111	-0.000000123	-0.000003523
11	+0.000000000	-0.000000124	+0.000000000

Résultats de calcul structure coque de revolution 4.1.2 Cylindre encastré/guidé sous pression : Prog CAXI_L fichier de données du probleme : Cylbatoz10ELE Nombre des elements total :10 Nombre des noeuds total : 11

Déplacements nodales : Noeud Uz 1 -0.000000497 2 -0.000000499 -0.000000504 3 4 -0.000000514 5 -0.000000524 -0.000000528 б 7 -0.000000506 8 -0.000000434 9 -0.000000294

-0.000000110

+0.000000000

10

11

Ur Beta +0.000000000 +0.000000000 +0.000000015 -0.000000071 +0.000000030 -0.000000152 +0.000000045 -0.000000218 +0.000000061 -0.000000186 +0.000000077 +0.000000105 +0.000000092 +0.000000846 +0.000000106 +0.000002097 +0.000000118 +0.000003460 +0.000000124 +0.000003617 +0.000000125 +0.000000000

Résultats de calcul structure coque de revolution 4.1.4 Plaque circulaire soumise a des charges uniformément réparties : Prog CAXI_K fichier de données du probleme : plaque2ELECHE Nombre des elements total :2 Nombre des noeuds total : 3

Dépla	cements nod	ales :					
Noeud		Uz	U	r	Bet	a	
1		+0.000000	-0.00	01071	+0.00	00	
2		+0.000000	-0.00	-0.0000602		02	
3		+0.000000	+0.00	+0.000000		+0.0000	
les co	ontraintes	:					
Noeud	Nsl	Tsl	Ms1	Ns2	Ts2	Ms2	
1	+0.0000	+4166650.000	+3125132.986	+0.000	+241.667	-41.962	
2	+0.0000	-241.667	+58.628	+0.000	+495.833	+108.333	

4.1.4 Plaque circulaire soumise a des charges uniformément réparties : ELE CAXI_L fichier de données du probleme : plaque2ELECHE Nombre des elements total :2 Nombre des noeuds total : 3

Déplace	ments nodales	:					
Noeud	Uz			Ur		Beta	
1	+0.000000	000	+0.0	00106857		+0.0000000	0
2	+0.000000	000	+0.0	+0.000053472			31
3	+0.00000000			+0.00000000			0
les con	traintes :						
Nœud	Nsl	Tsl	Msl	Ns2	Ts2	Ms2	
1	NaN	+Inf	-Inf	+0.000	+83.333	+60.417	
2	+0.0000	+916.667	-60.417	+0.000	-83.333	-114.583	

Résultats de calcul structure coque de revolution 4.1.4 Plaque circulaire soumise a des charges uniformément réparties : Prog CAXI_K fichier de données du probleme : plaque6ELECHE Nombre des elements total :6 Nombre des noeuds total : 7

Déplacem	ents nodales	:				
Noeud		Uz	τ	Jr	Be	ta
1	+0.0	000000	+0.000	01066	+0.0	000
2	+0.0	000000	+0.000	01008	+0.0	001
3	+0.0	000000	+0.000	0843	+0.0	001
4	+0.0	000000	+0.000	0600	+0.0	002
5	+0.0	000000	+0.000	0329	+0.0	002
6	+0.0	000000	+0.000	0100	+0.0	001
7	+0.0	000000	+0.000	0000	+0.0	000
les cont	raintes :					
Noeud	Nsl	Tsl	Msl	Ns2	Ts2	Ms2
1	NaN	+Inf	-Inf	+0.000	+30.556	+76.877
2	+0.0000	+302.777	-78.728	+0.000	-26.389	+60.177
3	+0.0000	+359.723	-61.103	+0.000	-100.926	+31.691
4	+0.0000	+434.258	-32.308	+0.000	-179.861	-8.334
5	+0.0000	+513.195	+7.871	+0.000	-260.555	-59.850
6	+0.0000	+593.889	+59.479	+0.000	-342.129	-122.839

4.1.4 Plaque circulaire soumise a des charges uniformément réparties : ELE CAXI_L fichier de données du probleme : plaque6ELECHE Nombre des elements total :6 Nombre des noeuds total : 7

Déplaceme	nts nodales	:					
Noeud	Uz			Ur		Beta	
1	+0.000000	000	+0.0	00107717		+0.00000000)
2	+0.000000	000	+0.0	000101540		+0.000074034	ł
3	+0.000000	000	+0.0	000084331		+0.000132269)
4	+0.000000	000	+0.0	000059490		+0.000165490)
5	+0.000000	000	+0.0	000032138		+0.000162287	7
б	+0.000000	000	+0.0	000009312		+0.000111029)
7	+0.000000	000	+0.0	000000000		+0.00000000)
les contr Noeud 1	aintes : Nsl NaN	Ts1 +Inf	Ms1 -Inf	Ns2 +0.000	Ts2 +27.778	Ms2 +82.295	
2	+0.0000	+305.555	-82.295	+0.000	-27.778	+62.851	
3	+0.0000	+361.111	-62.851	+0.000	-101.852	+32.951	
4	+0.0000	+435.184	-32.951	+0.000	-180.556	-8.030	
5	+0.0000	+513.889	+8.030	+0.000	-261.111	-60.270	
б	+0.0000	+594.445	+60.270	+0.000	-342.592	-123.843	

			MATLAB	Command wind	dow		
4.1.4	Plaque circ	ulaire soum	ise a des	charges uni	formément ré	parties : Prog	g CAXI_K
Nombre	e des elemen	ts total :2	0				
Nombre	e des noeuds	total : 21					
Dépla	cements nod	ales :					
Noeud		Uz		Ur		Beta	
1		+0.000000		+0.00010	66	+0.0000	
2		+0.000000		+0.00010	61	+0.0000	
3		+0.000000		+0.00010	45	+0.0000	
4		+0.000000		+0.00010	19	+0.0001	
5		+0.000000		+0.00009	83	+0.0001	
б		+0.000000		+0.00009	37	+0.0001	
7		+0.000000		+0.00008	83	+0.0001	
8		+0.000000		+0.00008	21	+0.0001	
9		+0.000000		+0.00007	52	+0.0001	
10		+0.000000		+0.00006	78	+0.0002	
11		+0.000000		+0.00006	00	+0.0002	
12		+0.000000		+0.00005	19	+0.0002	
13		+0.000000		+0.00004	37	+0.0002	
14		+0.000000		+0.00003	56	+0.0002	
15		+0.000000		+0.00002	77	+0.0002	
16		+0.000000		+0.00002	04	+0.0001	
17		+0.000000		+0.00001	38	+0.0001	
18		+0.000000		+0.00000	82	+0.0001	
19		+0.000000		+0.00000	38	+0.0001	
20		+0.000000		+0.00000	10	+0.0000	
21		+0.000000		+0.00000	00	+0.0000	
les c	ontraintes	:					
Noeud	l Nsl	Tsl	Msl	Ns2	Ts2	Ms2	
1	NaN	+Inf	-Inf	+0.000	+9.167	+80.856	
2	+0.0000	+90.833	-81.023	+0.000	-7.917	+79.353	
3	+0.0000	+107.917	-79.437	+0.000	-30.278	+76.790	
4	+0.0000	+130.278	-76.845	+0.000	-53.958	+73.187	
5	+0.0000	+153.958	-73.229	+0.000	-78.167	+68.551	
6	+0.0000	+178.167	-68.584	+0.000	-102.639	+62.882	
7	+0.0000	+202.639	-62.910	+0.000	-127.262	+56.181	
8	+0.0000	+227.262	-56.205	+0.000	-151.979	+48.448	
9	+0.0000	+251.979	-48.469	+0.000	-176.759	+39.683	
10	+0.0000	+276.759	-39.702	+0.000	-201.583	+29.887	
11	+0.0000	+301.583	-29.904	+0.000	-226.439	+19.060	
12	+0.0000	+326.439	-19.075	+0.000	-251.319	+7.201	
13	+0.0000	+351.319	-7.215	+0.000	-276.218	-5.689	
14	+0.0000	+376.218	+5.676	+0.000	-301.131	-19.610	
15	+0.0000	+401.131	+19.598	+0.000	-326.056	-34.563	
16	+0.0000	+426.056	+34.552	+0.000	-350.990	-50.547	
17	+0.0000	+450.990	+50.536	+0.000	-375.931	-67.562	
18	+0.0000	+475.931	+67.552	+0.000	-400.880	-85.609	
19	+0.0000	+500.880	+85.600	+0.000	-425.833	-104.687	
20	+0.0000	+525.833	+104.678	+0.000	-450.792	-124.796	
			MATLAB C	Command wind	dow		
--------	-------------	--------------	------------	--------------	----------------	---------------	---------
4.1.4	Plaque cir	culaire soum	nise a des	charges uni	lformément réj	parties : ELE	CAXI_L
Nombre	e des eleme	nts total :2	20				
Nombre	e des noeud	s total : 21					
Dépla	acements no	dales :					
Noeud		Uz		Ur		Be	eta
1	+0.00	00000000		+0.00010	6924	+0.000	0000000
2	+0.00	00000000		+0.00010	6386	+0.000	0021493
3	+0.00	00000000		+0.00010	4783	+0.000	0042560
4	+0.00	00000000		+0.00010	2143	+0.000	0062951
5	+0.00	00000000		+0.00009	8507	+0.000	0082359
б	+0.00	00000000		+0.00009	3932	+0.000	0100469
7	+0.00	00000000		+0.00008	8490	+0.000	0116966
8	+0.00	00000000		+0.00008	2272	+0.000	0131531
9	+0.00	00000000		+0.00007	5380	+0.000	0143847
10	+0.00	00000000		+0.00006	7935	+0.000	0153594
11	+0.00	00000000		+0.00006	0075	+0.000	0160454
12	+0.00	00000000		+0.00005	1951	+0.000	0164108
13	+0.00	00000000		+0.00004	3731	+0.000	0164236
14	+0.00	00000000		+0.00003	5600	+0.000	0160519
15	+0.00	00000000		+0.00002	7758	+0.000	0152638
16	+0.00	00000000		+0.00002	0421	+0.000	0140273
17	+0.00	00000000		+0.00001	3821	+0.000	0123104
18	+0.00	00000000		+0.00000	8207	+0.000	0100812
19	+0.00	00000000		+0.00000	3843	+0.000	0073077
20	+0.00	00000000		+0.00000	1009	+0.000	0039580
21	+0.00	00000000		+0.00000	0000	+0.000	0000000
les c	contraintes	:					
Noeuc	l Nsl	Ts1	Msl	Ns2	Ts2	Ms2	
1	NaN	+Inf	-Inf	+0.000	+8.333	+81.671	
2	+0.0000	+91.667	-81.671	+0.000	-8.333	+79.921	
3	+0.0000	+108.333	-79.921	+0.000	-30.556	+77.230	
4	+0.0000	+130.556	-77.230	+0.000	-54.167	+73.541	
5	+0.0000	+154.167	-73.541	+0.000	-78.333	+68.840	
6	+0.0000	+178.333	-68.840	+0.000	-102.778	+63.118	
7	+0.0000	+202.778	-63.118	+0.000	-127.381	+56.373	
8	+0.0000	+227.381	-56.373	+0.000	-152.083	+48.603	
9	+0.0000	+252.083	-48.603	+0.000	-176.852	+39.805	
10	+0.0000	+276.852	-39.805	+0.000	-201.667	+29.980	
11	+0.0000	+301.667	-29.980	+0.000	-226.515	+19.126	
12	+0.0000	+326.515	-19.126	+0.000	-251.389	+7.243	
13	+0.0000	+351.389	-7.243	+0.000	-276.282	-5.670	
14	+0.0000	+376.282	+5.670	+0.000	-301.190	-19.612	
15	+0.0000	+401.190	+19.612	+0.000	-326.111	-34.584	
16	+0.0000	+426.111	+34.584	+0.000	-351.042	-50.585	
17	+0.0000	+451.042	+50.585	+0.000	-375.980	-67.617	
18	+0.0000	+475.980	+67.617	+0.000	-400.926	-85.680	
19	+0.0000	+500.926	+85.680	+0.000	-425.877	-104.773	
20	+0.0000	+525.877	+104.773	+0.000	-450.833	-124.896	

4.1.5 Plaque circulaire sous divers cas de charge ELE CAXI_L fichier de données du probleme : plaq Nombre des elements total :5 Nombre des noeuds total : 6

 Déplacements nodales :

 Noeud
 Uz

 1
 -0.000000000

 2
 -0.000000000

 3
 +0.000000000

 4
 +0.00000000

 5
 +0.000000000

 6
 +0.000000000

Ur	Beta
-0.124468503	-0.014065731
-0.097301207	-0.012978042
-0.071755629	-0.012474893
-0.047088960	-0.012117663
-0.023151151	-0.011758384
+0.00000000	-0.011339828

4.1.5 Plaque circulaire sous divers cas de charge ELE CAXI_L fichier de données du probleme : plaq10 Nombre des elements total :10 Nombre des noeuds total : 11

Déplace	ements nodales :		
Noeud	Uz	Ur	Beta
1	-0.00000000	-0.123817899	-0.013975003
2	-0.00000000	-0.110102820	-0.013320403
3	-0.00000000	-0.096929068	-0.012913079
4	-0.00000000	-0.084105514	-0.012635210
5	+0.00000000	-0.071532141	-0.012424345
б	+0.00000000	-0.059158426	-0.012245070
7	+0.00000000	-0.046962436	-0.012076325
8	+0.00000000	-0.034939471	-0.011905159
9	+0.00000000	-0.023095525	-0.011723440
10	+0.00000000	-0.011443352	-0.011526006
11	+0.00000000	+0.00000000	-0.011309586

4.1.5 Plaque circulaire sous divers cas de charge ELE CAXI_L fichier de données du probleme : plaq20 Nombre des elements total :20 Nombre des noeuds total : 21

Déplace	ements nodales :		
Noeud	Uz	Ur	Beta
1	-0.00000000	-0.123653542	-0.013951968
2	-0.00000000	-0.116734032	-0.013584902
3	-0.00000000	-0.109980283	-0.013301200
4	-0.00000000	-0.103356019	-0.013077278
5	-0.00000000	-0.096835096	-0.012896615
6	-0.00000000	-0.090398548	-0.012747352
7	-0.00000000	-0.084032601	-0.012620803
8	-0.00000000	-0.077727318	-0.012510496
9	+0.00000000	-0.071475634	-0.012411538
10	+0.00000000	-0.065272673	-0.012320186
11	+0.00000000	-0.059115236	-0.012233545
12	+0.00000000	-0.053001435	-0.012149356
13	+0.00000000	-0.046930398	-0.012065848
14	+0.00000000	-0.040902061	-0.011981619
15	+0.00000000	-0.034916998	-0.011895557
16	+0.00000000	-0.028976289	-0.011806778
17	+0.00000000	-0.023081418	-0.011714578
18	+0.00000000	-0.017234192	-0.011618394
19	+0.00000000	-0.011436673	-0.011517778
20	+0.00000000	-0.005691133	-0.011412376
21	+0.00000000	+0.00000000	-0.011301908

4.1.5 Plaque circulaire sous divers cas de charge ELE CAXI_L fichier de données du probleme : plaq20Mgrad Nombre des elements total :20 Nombre des noeuds total : 21

Déplace	ements nodales :		
Noeud	Uz	Ur	Beta
1	-0.00000000	-0.123646214	-0.013950940
2	-0.00000000	-0.120164851	-0.013755354
3	-0.00000000	-0.116730160	-0.013584285
4	-0.00000000	-0.113336420	-0.013433879
5	-0.00000000	-0.109978797	-0.013300952
6	-0.00000000	-0.103354639	-0.013077099
7	-0.00000000	-0.096833790	-0.012896499
8	-0.00000000	-0.090397285	-0.012747293
9	-0.00000000	-0.084031355	-0.012620798
10	-0.00000000	-0.07726061	-0.012510541
11	+0.00000000	-0.071474343	-0.012411631
12	+0.00000000	-0.065271323	-0.012320325
13	+0.00000000	-0.059113807	-0.012233727
14	+0.00000000	-0.052999903	-0.012149580
15	+0.00000000	-0.046928744	-0.012066112
16	+0.00000000	-0.040900266	-0.011981922
17	+0.00000000	-0.034915042	-0.011895898
18	+0.00000000	-0.028974154	-0.011807156
19	+0.00000000	-0.023079084	-0.011714992
20	+0.00000000	-0.011435239	-0.011517800
21	+0.00000000	+0.00000000	-0.011301565

Résultats de calcul structure coque de revolution
4.1.8 Hémisphère: Prog CAXI_K
fichier de données du probleme : SPHER28ELECHE
Nombre des elements total :28
Nombre des noeuds total : 29

Déplacement	ts nodales :
Noeud	Uz
1	+0.000000000
2	+0.00000003
3	-0.000000034
4	+0.000000135
5	+0.000001573
б	+0.000000490
7	-0.000002559
8	-0.000008399
9	-0.0000012500
10	-0.0000017332
11	-0.0000022708
12	-0.0000028281
13	-0.0000033497
14	-0.0000037550
15	-0.0000039346
16	-0.000038974
17	-0.0000037487
18	-0.0000034659
19	-0.000030250
20	-0.0000024002
21	-0.0000015647
22	-0.000004907
23	+0.000008496
24	+0.0000024837
25	+0.0000044379
26	+0.0000067363
27	+0.0000093994
28	+0.0000124435

+0.0000158783

29

Ur
+0.00000000
+0.00000000
-0.00000001
+0.00000007
+0.00000098
-0.00000000
-0.00000284
-0.00000856
-0.00001276
-0.00001783
-0.00002362
-0.000002976
-0.00003558
-0.000004004
-0.000004164
-0.000004073
-0.000003828
-0.000003393
-0.000002728
-0.000001789
-0.00000528
+0.000001106
+0.000003166
+0.000005708
+0.000008788
+0.000012460
+0.000016777
+0.000021784
+0.000027518

Beta +0.000000000 +0.000000000 -0.000000007 +0.000000066 -0.000000155 -0.000000741 -0.000001712 -0.000003015 -0.000003701 -0.000004305 -0.000004700 -0.000004712 -0.000004110 -0.000002607 +0.000000141 +0.000002101 +0.000004520 +0.000007447 +0.000010932 +0.000015021 +0.0000019755 +0.0000025167 +0.000031279 +0.000038098 +0.0000045611 +0.000053784 +0.0000062550 +0.0000071810 +0.0000081422

4.1.8 Hémisphère

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 0 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

NODE	UX	UY	UZ	USUM
1	0.0000	0.0000	0.0000	0.0000
2	-0.19644E-07	-0.11281E-08	3 0.0000	0.19676E-07
3	0.76592E-07	0.22882E-07	0.0000	0.79937E-07
4	-0.64380E-07	-0.43561E-07	0.0000	0.77733E-07
5	-0.19646E-06	-0.12352E-06	5 0.0000	0.23207E-06
6	-0.80864E-07	-0.19284E-07	0.0000	0.83132E-07
7	0.23911E-06	0.27850E-06	5 0.0000	0.36706E-06
8	0.83856E-06	0.86607E-06	5 0.0000	0.12055E-05
9	0.12542E-05	0.12910E-05	5 0.0000	0.17999E-05
10	0.17428E-05	0.18041E-05	5 0.0000	0.25084E-05
11	0.22853E-05	0.23884E-05	5 0.0000	0.33056E-05
12	0.28460E-05	0.30056E-05	5 0.0000	0.41393E-05
13	0.33688E-05	0.35889E-05	5 0.0000	0.49223E-05
14	0.37721E-05	0.40327E-05	5 0.0000	0.55219E-05
15	0.39456E-05	0.41849E-05	5 0.0000	0.57516E-05
16	0.39096E-05	0.40963E-05	5 0.0000	0.56626E-05
17	0.37620E-05	0.38534E-05	5 0.0000	0.53853E-05
18	0.34803E-05	0.34203E-05	5 0.0000	0.48796E-05
19	0.30403E-05	0.27568E-05	5 0.0000	0.41041E-05
20	0.24162E-05	0.18191E-05	5 0.0000	0.30244E-05
21	0.15808E-05	0.55928E-06	5 0.0000	0.16768E-05
22	0.50660E-06	-0.10740E-05	5 0.0000	0.11875E-05
23	-0.83475E-06	-0.31347E-05	5 0.0000	0.32440E-05
24	-0.24704E-05	-0.56783E-05	5 0.0000	0.61924E-05
25	-0.44278E-05	-0.87618E-05	5 0.0000	0.98170E-05
26	-0.67304E-05	-0.12439E-04	£ 0.0000	0.14143E-04
27	-0.93995E-05	-0.16764E-04	£ 0.0000	0.19220E-04
28	-0.12452E-04	-0.21783E-04	£ 0.0000	0.25090E-04
29	-0.15896E-04	-0.27532E-04	1 0.0000	0.31792E-04
MAXIMUM	ABSOLUTE VALUES			
NODE	29	29 0)	29

1 11 11 11 1011	INDOCLOIL	VIILOLO		
NODE	29	29	0	29
VALUE	-0.15896E-	-04-0.27532E-04	0.0000	0.31792E-04

Résultats de calcul structure coque de revolution 4.1.9 Dôme sphérique sous pression :Prog CAXI_K fichier de données du probleme : elemtroncl4ELE Nombre des elements total :14 Nombre des noeuds total : 15

Déplacement	cs nodales :
Noeud	Uz
1	+0.00000000000
2	-0.000001009198
3	-0.000007294752
4	-0.000014642379
5	-0.000020750915
6	-0.000024655253
7	-0.000026222817
8	-0.000025764578
9	-0.000023764658
10	-0.000020712671
11	-0.000017015043
12	-0.000012961495
13	-0.000008727042
14	-0.000004396129
15	-0.00000005902

Ur +0.00000000 -0.000009765 -0.000029108 -0.000052163 -0.000074937 -0.000095062 -0.000111442 -0.000123887 -0.000132775 -0.000138789 -0.000142702 -0.000145239 -0.000146967 -0.000148204 -0.000148907

Beta +0.00000000 -0.00003992 -0.000005790 -0.00006115 -0.00005562 -0.00004582 -0.00003486 -0.000002468 -0.00001632 -0.00001015 -0.00000611 -0.00000385 -0.00000280 -0.00000219 -0.00000167

4.1.9 Dôme sphérique sous pression :

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

NODE	UX	UY	UZ	USUM
1	0.0000	0.0000	0.0000	0.0000
2	-0.15152E-05	-0.10463E-04	0.0000	0.10573E-04
3	-0.80223E-05	-0.30123E-04	0.0000	0.31173E-04
4	-0.15418E-04	-0.53231E-04	0.0000	0.55419E-04
5	-0.21479E-04	-0.75881E-04	0.0000	0.78862E-04
б	-0.25287E-04	-0.95758E-04	0.0000	0.99040E-04
7	-0.26737E-04	-0.11180E-03	0.0000	0.11495E-03
8	-0.26156E-04	-0.12383E-03	0.0000	0.12656E-03
9	-0.24037E-04	-0.13223E-03	0.0000	0.13440E-03
10	-0.20874E-04	-0.13767E-03	0.0000	0.13925E-03
11	-0.17081E-04	-0.14093E-03	0.0000	0.14196E-03
12	-0.12955E-04	-0.14273E-03	0.0000	0.14332E-03
13	-0.86802E-05	-0.14368E-03	0.0000	0.14394E-03
14	-0.43506E-05	-0.14420E-03	0.0000	0.14427E-03
15	-0.35381E-08	-0.14462E-03	0.0000	0.14462E-03
MAXIMUM	ABSOLUTE VALUES			
NODE	7	15 0		15
VALUE -	-0.26737E-04-0.1	4462E-03 0.0000	0.14	462E-03

Résultats de calcul structure coque de revolution 4.1.10 Paraboloïde : Prog CAXI_K fichier de données du probleme : elemtronc30ELE Nombre des elements total :30 Nombre des noeuds total : 31

Déplacemen	ts nodales :
Noeud	Uz
1	-0.042153288531
2	-0.051612250234
3	-0.065921407409
4	-0.074169177806
5	-0.075372118101
б	-0.072154904320
7	-0.067244423765
8	-0.062286621567
9	-0.057909325246
10	-0.054166782960
11	-0.050921150704
12	-0.048041568324
13	-0.045460336370
14	-0.043160426053
15	-0.041146393652
16	-0.039420186155
17	-0.037966627342
18	-0.036755546791
19	-0.035783425416
20	-0.035187209284
21	-0.035417786200
22	-0.035730366480
23	-0.035924091016
24	-0.036069057595
25	-0.036218929620
26	-0.036411013947
27	-0.036669086319
28	-0.037007249035
29	-0.037433702421
30	-0.037953757809
31	-0.038571708972

Ur
+0.000000000
-0.005028748
-0.011079850
-0.014795573
-0.016060298
-0.015819286
-0.014955490
-0.013963590
-0.013013858
-0.012111387
-0.011215668
-0.010295276
-0.009338785
-0.008348034
-0.007329457
-0.006288858
-0.005230122
-0.004157393
-0.003079346
-0.002009261
-0.000947182
-0.000462178
+0.000024183
+0.000508096
+0.000988195
+0.001464597
+0.001938148
+0.002409944
+0.002881122
+0.003352828
+0.003826263

Beta
+0.00000000
-0.001146218
-0.000921111
-0.000350146
+0.000096719
+0.000317259
+0.000370589
+0.000343997
+0.000297595
+0.000257627
+0.000228655
+0.000206705
+0.000187055
+0.000166984
+0.000145887
+0.000124638
+0.000104756
+0.000086562
+0.000064993
+0.000023546
-0.000066458
-0.000040964
-0.000028327
-0.000026030
-0.000031221
-0.000041350
-0.000054466
-0.000069276
-0.000085068
-0.000101548
-0.000118624

4.1.10 Hypérboloïde :

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

NODE	UX	UY	UZ	USUM
1	-0.41026E-01	0.0000	0.0000	0.41026E-01
2	-0.50437E-01-0	0.49732E-02	0.0000	0.50682E-01
3	-0.65751E-01-0	D.11352E-01	0.0000	0.66724E-01
4	-0.74911E-01-0	D.15366E-01	0.0000	0.76471E-01
5	-0.76397E-01-0	D.16724E-01	0.0000	0.78206E-01
б	-0.72938E-01-0	D.16412E-01	0.0000	0.74762E-01
7	-0.67608E-01-0	D.15426E-01	0.0000	0.69346E-01
8	-0.62318E-01-0	D.14340E-01	0.0000	0.63946E-01
9	-0.57781E-01-0	D.13347E-01	0.0000	0.59303E-01
10	-0.54016E-01-0	D.12438E-01	0.0000	0.55430E-01
11	-0.50809E-01-0	D.11551E-01	0.0000	0.52106E-01
12	-0.47972E-01-0	D.10639E-01	0.0000	0.49137E-01
13	-0.45411E-01-0).96855E-02	0.0000	0.46432E-01
14	-0.43110E-01-0	D.86937E-02	0.0000	0.43978E-01
15	-0.41084E-01-0).76727E-02	0.0000	0.41795E-01
16	-0.39354E-01-0	D.66311E-02	0.0000	0.39908E-01
17	-0.37931E-01-0	D.55754E-02	0.0000	0.38338E-01
18	-0.36779E-01-0	D.44748E-02	0.0000	0.37050E-01
19	-0.36012E-01-0	D.34406E-02	0.0000	0.36176E-01
20	-0.35532E-01-0	D.23646E-02	0.0000	0.35610E-01
21	-0.35386E-01-0	D.12868E-02	0.0000	0.35410E-01
22	-0.35430E-01-0	D.80655E-03	0.0000	0.35439E-01
23	-0.35540E-01-0	D.32612E-03	0.0000	0.35541E-01
24	-0.35714E-01 (D.15436E-03	0.0000	0.35714E-01
25	-0.35949E-01 (D.63465E-03	0.0000	0.35955E-01
26	-0.36242E-01 (D.11142E-02	0.0000	0.36259E-01
27	-0.36585E-01 (D.15923E-02	0.0000	0.36619E-01
28	-0.36968E-01 (D.20673E-02	0.0000	0.37025E-01
29	-0.37378E-01 (D.25373E-02	0.0000	0.37464E-01
30	-0.37803E-01 ().29997E-02	0.0000	0.37922E-01
31	-0.38230E-01 (0.34513E-02	0.0000	0.38385E-01
MAXIMUM	ABSOLUTE VALUE	ES _		_
NODE	5	5	0	5
VALUE ·	-U.76397E-01-0.	.16724E-01	0.0000	0.78206E-01

Résultats de calcul structure coque de revolution 4.1.11 Cylindre conique : CAXI_L fichier de données du probleme : coqueconique12EL Nombre des elements total :12 Nombre des noeuds total : 13

Déplacement	ts nodales :		
Noeud	Uz	Ur	Beta
1	+0.00000000000	+0.00000000	+0.00000000
2	+0.000016004691	+0.000001419	+0.00008438
3	+0.000037436323	+0.00001874	+0.000004298
4	+0.000044354791	+0.00001637	-0.00000040
5	+0.000038350776	+0.00001380	-0.00003588
б	+0.000021730539	+0.00001679	-0.00006274
7	+0.000010791994	+0.00002689	+0.00000577
8	+0.000014661218	+0.000007343	+0.000005399
9	+0.000021356432	+0.000014522	+0.000005731
10	+0.000027174259	+0.000020403	+0.000004031
11	+0.000030913433	+0.000023739	+0.000002106
12	+0.000033025389	+0.000024945	+0.00000948
13	+0.000034608373	+0.000025040	+0.00000604

4.1.11 Cylindre conique :

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

NODE	UX	UY	UZ	USUM
1	0.0000	0.0000	0.0000	0.0000
2	0.15991E-04	0.13852E-05	0.0000	0.16051E-04
3	0.37384E-04	0.18586E-05	0.0000	0.37430E-04
4	0.44286E-04	0.16419E-05	0.0000	0.44316E-04
5	0.38322E-04	0.14024E-05	0.0000	0.38347E-04
б	0.21777E-04	0.17118E-05	0.0000	0.21844E-04
7	0.10862E-04	0.26910E-05	0.0000	0.11190E-04
8	0.14723E-04	0.73134E-05	0.0000	0.16439E-04
9	0.21388E-04	0.14458E-04	0.0000	0.25816E-04
10	0.27164E-04	0.20305E-04	0.0000	0.33914E-04
11	0.30864E-04	0.23612E-04	0.0000	0.38860E-04
12	0.32953E-04	0.24803E-04	0.0000	0.41245E-04
13	0.34554E-04	0.24921E-04	0.0000	0.42604E-04
MAXIMUM	ABSOLUTE VALU	JES		
NODE	4	13	0	4

NODE	4	13	0	4
VALUE	0.44286E-04	0.24921E-04	0.0000	0.44316E-04

Résultats de calcul structure coque de revolution 4.1.12 Cône de révolution: Prog CAXI_L fichier de données du probleme : coqueconique10EL Nombre des elements total :10 Nombre des noeuds total : 11

ts nodales :		
Uz	Ur	Beta
+0.000011064616	+0.00000000	+0.00000000
+0.000008776102	-0.00005260	-0.00000106
+0.000003988863	-0.000014881	-0.00000124
-0.00000366859	-0.000023594	-0.00000092
-0.000002949105	-0.000028988	-0.00000044
-0.00003618888	-0.000030814	-0.00000003
-0.000002945816	-0.000030096	+0.00000020
-0.000001732260	-0.000028279	+0.00000026
-0.00000649789	-0.000026575	+0.00000019
-0.00000041053	-0.000025624	+0.00000007
+0.00000000000	-0.000025610	-0.00000005
	Uz +0.000011064616 +0.000008776102 +0.000003988863 -0.000000366859 -0.000002949105 -0.000002945816 -0.000002945816 -0.0000001732260 -0.000000649789 -0.000000041053 +0.0000000000000	$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$

4.1.12 Cône de révolution

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

NODE	UX	UY	UZ	USUM
1	0.11075E-04	0.0000	0.0000	0.11075E-04
2	0.87732E-05	-0.52523E-05	0.0000	0.10225E-04
3	0.39842E-05	-0.14871E-04	0.0000	0.15395E-04
4	-0.36666E-06	-0.23587E-04	0.0000	0.23590E-04
5	-0.29441E-05	-0.28992E-04	0.0000	0.29141E-04
б	-0.36136E-05	-0.30837E-04	0.0000	0.31048E-04
7	-0.29453E-05	-0.30138E-04	0.0000	0.30282E-04
8	-0.17387E-05	-0.28331E-04	0.0000	0.28384E-04
9	-0.66088E-06	-0.26619E-04	0.0000	0.26628E-04
10	-0.51442E-07	-0.25637E-04	0.0000	0.25637E-04
11	0.0000	-0.25539E-04	0.0000	0.25539E-04
MAXIMUM	ABSOLUTE VAL	UES		
NODE	1	6	0	б
VALUE	0.11075E-04-	0.30837E-04	0.0000	0.31048E-04

Résultats	de calcul structure solide	de revolution
4.2.1 Cyl	indre epais	
fichier d	e données du probleme : sol	Rev40ELE
Nombre de	s elements total :40	
Nombre de	s noeuds total : 33	
Déplaceme	nts nodales :	
Noeud	IIr	IIz
1	+0 000057343	+0 0000000
2	+0 000040949	+0.00000000
2	+0.00034442	+0.000000000
4	+0.000055976	+0.000000545
5	+0.000033970	+0.00000343
5	+0.000035327	+0.000000309
7	+0.000055881	+0.000000563
2 Q	+0.000041531	+0.00000343
0	+0.000041551	+0.00000343
10	+0.000055943	+0.00000112
11	+0.000033943	+0.000000485
12	+0.000041028	
12	+0.000055088	+0.000000192
14	+0.000055964	+0.000000408
14 15	+0.000041007	+0.000000331
15	+0.000035732	+0.000000244
17	+0.000055999	+0.000000344
10	+0.000041680	+0.000000322
18	+0.000035749	+0.000000276
19	+0.000056001	+0.000000283
20	+0.000041683	+0.000000317
21	+0.000035751	+0.000000295
22	+0.000055991	+0.00000210
23	+0.000041681	+0.00000321
24	+0.000035746	+0.00000307
25	+0.000055943	+0.00000105
26	+0.000041666	+0.00000340
27	+0.000035755	+0.00000302
28	+0.000055715	-0.00000033
29	+0.000041634	+0.00000356
30	+0.000035939	+0.00000201
31	+0.000054382	+0.00000000
32	+0.000041933	+0.00000000
33	+0.000036572	+0.00000000