Table des figures

Fig. I.1	Représentation schématique d'une machine asynchrone triphasée	6
Fig. I.2	représentation des axes triphasés réels et les axes biphasés de la MAS	8
Fig. I.3	représentation des enroulements fictifs des axes (d-q)	11
Fig. I.4	Association MAS-onduleur de tension	15
Fig. I.5	Redresseur triphasé à diodes double alternance	15
Fig. I.6	représentation de la tension redressé	16
Fig. I.7	représentation d'un filtre passe bas	16
Fig. I.8	onduleur de tension triphasé à deux niveaux	18
Fig. I .9	Représentation de contrôle de courant par la technique à hystérésis	20
	Résultats de simulation de la MAS alimentée par un onduleur de tension	
Fig. I.10	Commandé par hystérésis (la bande d'hystérésis h=0.8) dans un référentiel lié au	22
	stator (α β) (Boucle ouverte).	
	Résultats de simulation de la MAS alimentée par un onduleur de tension	
Fig. I.11	Commandé par hystérésis (la bande d' hystérésis h=0.2)dans un référentiel lié au	23
	stator ($\alpha \beta$), (Boucle ouverte).	
Fig.I-12	schéma de principe de la MLI sinus-triangle	25
Fig. I.13	Principe de la génération de MLI sinus-triangle	26
Fiσ I 14	Résultats de simulation de la MAS alimentée par un onduleur de tension	28
гı <u>g</u> . 1.14	$[m = 10, r = 0.9]$ dans un référentiel lié au stator (α - β).	
Fig.I. 15	Résultats de simulation de la MAS alimentée par un onduleur de tension	29
	$[m = 20, r = 0.9]$ dans un référentiel lié au stator (α - β).	
	Résultats de simulation de la MAS alimentée par un onduleur de tension	30
Fig.1. 10	$[m = 40, r = 0.9]$ dans un référentiel lié au stator (α - β).	
Fig. II.1	l'évolution de l'extrémité de $\overline{\Phi}_s$ pour $R_s \overline{I}_s$ négligeable	35
Fig. II.2	Choix du vecteur de tension	37
Fig. II-3	(a) : Sélection des tensions correspondant au contrôle de flux.	39
	(a) : Contrôleur à hystérésis à deux niveaux.	
Fig. II-4	Contrôleur à hystérésis à trois niveaux	40
1		1

Fig. II-5	structure générale de contrôle direct de couple(DTC)	42
Fig. II-6a	réponse du système à vide	44
Fig. II-6b	trajectoire du flux statorique à la réponse à vide	45
Fig.II-7	réponse du système à une variation charge , avec boucle de vitesse	46
Fig.II-8	réponse du système à une variation de charge sans boucle de vitesse	47
Fig.II-9	réponse du système à couple de charge variable	48
Fig.II-10	réponse du système pour une inversion de vitesse à -100 rd/s à t=1s	50
Fig.II.11a	réponse du système lors de la variation de la résistance statorique de +50%	51
Fig.II.11b	la trajectoire du flux lors de la variation de la résistance statorique de +50%	52
Fig. II-12	réponse du système à faible vitesse de rotation	53
Fig. II-13	définition des secteurs utilisés dans la DTC	54
Fig II.14	résultats de simulation pour la DTC classique et modifiée	56
Fig.II.15	Les 12 Secteurs de la commande DTC	56
Fig. II-16	comparateur d'hystérésis de couple à quatre niveaux	57
Fig II.17	résultats de simulation pour la DTC-12 secteurs	59
Fig. III-1	représentation des vecteurs de tensions dans le repère (α , β)	63
Fig.III-2	Décomposition d'un vecteur de tension de référence $\bar{V}_{s ref}$	63
Fig.III-3	Résultats de simulation de l'algorithme MLI vectorielle	67
Fig.III-4	Schéma de la commande DTC-SVM de la machine à induction basé sur des régulateurs PI	68
Fig. III-5	Représentation vectorielle de la stratégie d'orientation de flux statorique.	69
Fig. III-6	Schéma fonctionnel de la régulation du flux	71
Fig. III-7	Schéma fonctionnel de la régulation de couple.	74

Fig .III-8	résultats de simulation de la DTC-SVM basée sur PI comparées avec DTC classique	77
Fig. III-9	schéma de la commande DTC-SVM basé sur le contrôle de l'angle de	78
	charge.	
Fig.III-10	angle de charge entre le flux de référence du stator et le flux du rotor	78
Fig. III-11	estimateurs des flux et du couple	80
Fig.III-12	résultats de simulation de la commande DTC-SVM basée sur le contrôle de l'angle de charge	81
Fig.III-13	la comparaison entre les deux tests de simulation	84
Fig. IV-1	Evolution temporelle de la prédiction à horizon fini	86
Fig. IV-2	. Schéma de principe du GPC	89
Fig. IV-3	Modèle numérique de représentation pour le GPC	90
Fig.IV-4	la commande DTC-SVM associée à un régulateur prédictif de vitesse	94
Fig IV-5	Evolution de la vitesse pour N ₁ =1,N ₂ =1,N _u =1, λ =0.8	95
Fig IV-6	Evolution de la vitesse pour N ₁ =1,N ₂ =2,N _u =1, λ =0.8	96
Fig IV-7	Evolution de la vitesse pour N ₁ =1,N ₂ =8,N _u =1, λ =0.8	96
Fig IV-8	Evolution de la vitesse pour N ₁ =1, N ₂ =2, N _u =1, λ =0.55	97
Fig IV-9	Evolution de la vitesse pour N ₁ =1, N ₂ =2, N _u =1, λ =0.7	97
Fig IV-10	Evolution de la vitesse pour N ₁ =1, N ₂ =2, N _u =1, λ =0.9	98
Fig. IV.11	Comparaison entre PI et la commande prédictive dans la régulation de vitesse.	99
Fig. IV.12	Représentation schématique de la linéarisation entrée-sortie.	100
Fig. IV.13	Commande prédictive directe de couple de la MAS	106
	Evolution du couple et du module du flux satatorique pour:	
Fig IV-14	N ₁ =1, N ₂ =20, N _u =1, λ =0.8,T _e =0.00001s	106

Fig IV-15	Evolution du couple et du module du flux satatorique pour:	107
	$N_1=1$, $N_2=20$, $N_u=1$, $\lambda=0.6$, $T_e=0.00001s$	
Fig IV-16	Evolution du couple et du module du flux satatorique pour:	107
	N_1 =1, N_2 =20, N_u =1, λ =0.9, T_e =0.00001s	
	Evolution du couple et du module du flux satatorique pour:	
Fig IV-17	N ₁ =1, N ₂ =20, N _u =1, λ=0.8,T _e =0.00001s	107
Fig IV-18	Evolution du couple et du module du flux satatorique pour:	
	N ₁ =1, N ₂ =10, N _u =1, λ=0.8,T _e =0.00001s	108
	Evolution du couple et du module du flux satatorique pour:	
Fig IV-19	N ₁ =1, N ₂ =30, N _u =1, λ =0.8,T _e =0.00001s	108
Fig IV-20	test de variation du couple (comparaison entre la DTC-SVM et la DTC	109
	prédictive).	
Fig IV-21	test de comparaison du flux statorique	110
Fig IV-22	test de comparaison de la vitesse de rotation	111
Fig IV-23	test de comparaison du courant de la phase statorique	112
Fig IV-24	Tension de la phase statorique	113
Fig IV-25	teste de variation de la charge comparé par la commande DTC-SVM	115