
Faculté des Sciences Exactes et des Sciences de la Nature et de la vie

Département d’Informatique

THÈSE

présentée pour

obtenir le diplôme de doctorat en sciences

SPÉCIALITÉ : INFORMATIQUE

Pattern-based Approach for Quality Integration in
Service-based Systems

(Une approche à base de patrons pour l’intégration de la qualité dans les systèmes à

base de services)

par

Tarek ZERNADJI

Soutenue le: mars 2016 , Devant le jury composé de :

Noureddine DJEDDI, Professeur, Université de Biskra . Président

Foudil CHERIF, Professeur, Université de Biskra .Rapporteur

Chouki TIBERMACINE, Maître de Conférences, Université de Montpellier, France Co-Rapporteur

Mohamed BENMOHAMMED, Professeur, Université de Constantine 2 . Examinateur

Salah SADOU, Maître de Conférences HDR, Université de Bretagne sud, France Examinateur

Abdelmalik BACHIR, Maître de Conférences A, Université de Biskra .Examinateur

Version of April 3, 2016

Contents

Contents iii

Acknowledgement vii

Abstract ix

Résumé xi

1 Introduction 1

1.1 Context . 1

1.2 Problem statement . 3

1.3 Contributions . 5

1.4 Dissertation plan . 7

2 State of the art 9

2.1 Background . 9

2.1.1 Service Oriented architecture (SOA) 10

2.1.2 Web services . 11

2.1.3 Web Services composition . 15

2.1.4 Web Services Business Process Execution Language (WS-BPEL) . 17

2.2 Literature review . 23

2.2.1 Architecture decisions documentation 23

2.2.2 Software quality documentation . 33

2.2.3 Quality achievement in service-based systems 45

2.2.4 Assistance to software evolution and impact analysis 50

2.2.5 Discussion . 55

2.2.6 Summary . 57

iii

iv Contents

3 Pattern-based documentation model of architecture decisions 59

3.1 General Model . 59

3.2 Links between Architecture Design Decisions and Quality Attributes . . . 61

3.3 WS-BScript: Web Service BPEL Scripting language 65

3.4 SOA Patterns Architecture Constraint Specification 70

3.5 Summary . 75

4 SAQIM: Service-Oriented Architecture Quality Integration Method 77

4.1 The Method at a Glance . 77

4.2 Quality attribute integration intent specification 80

4.3 Pattern Selection . 82

4.4 Pattern Application . 83

4.5 Quality Impact Analysis . 86

4.6 New Patterns Definition . 87

4.7 Pattern Cancellation . 87

4.8 Documentation of the New Architecture . 89

4.9 Summary . 90

5 Quality-oriented impact analysis process 93

5.1 A Micro-Process of Architecture Evolution 93

5.2 Quality-Oriented Architecture Change Assistance 95

5.2.1 Quality-Oriented Assistance Service 101

5.2.2 Weighted Sum Model for Patterns ranking 102

5.3 Summary . 107

6 Evaluation 109

6.1 SAQIM in Practice . 109

6.2 Experiment Process . 119

6.2.1 Methodology . 120

6.2.2 Data Collection . 120

6.2.3 Simulation . 124

6.2.4 Discussion . 127

6.2.5 Threats to validity . 129

6.3 Summary . 130

Contents v

7 Conclusion and Future Work 131

7.1 Conclusion . 131

7.2 Future Work . 134

List of Figures 137

List of Tables 139

List of Listings 140

Bibliography 141

Acknowledgement

First and foremost, praises and thanks to Allah.

I would like to thank my supervisors Dr. Foudil Cherif and Dr. Chouki Tibermacine

who supported me throughout the writing of this dissertation, for their listening and

relevant advices.

I also thank all the members of the jury Prof. Djeddi Noureddine, Dr. Salah Sadou,

Dr. Abdelmalik Bachir, and Prof. Mohamed Benmohammed for the time they spend to

review this work, I am grateful for the attention they paid to my work.

I also want to thank my family and friends for their unconditional support and their

continued presence.

Finally I thank all those who helped me in some way for the realization of this work.

vii

Abstract

Building distributed software by orchestrating existing Web services is a new paradigm,

which has been proposed as a possible implementation for the service-oriented archi-

tecture (SOA) specification. The emergence of such technology and languages is re-

cent. So, the engineering of these service-oriented applications is not yet mature and

raises many challenging questions. Among these questions, we can mention the cru-

cial issue of how to satisfy quality requirements in this kind of engineering processes.

In this thesis, we addressed the aforementioned problem by various contributions.

We proposed a model of architectural design decisions documentation and two lan-

guages. This model explicits formally the links between SOA patterns as design de-

cisions and qualitiy attributes. The first language is a scripting language called “WS-

BScript”. It is a lightweight DSL for specifying primitive changes making possible the

reconfiguration of Web services orchestrations. The second, is a constraint language

based on OCL coupled with BPEL (Business Process Execution Language) language

meta-model. It allows to specify predicates that check whether an instance of a pat-

tern exists in an architecture or not and therefore the quality it implements. We also

proposed a method named “SAQIM” (Service-oriented Architecture Quality Integra-

tion Method) which aims to provide software architects of Web service orchestrations

an on-demand assistance for the integration of quality requirements in their artifacts.

This method is based on a SOA patterns catalog already documented using the model

of the first contribution. It also makes use of our third contribution, a quality impact

analysis process that support the reasoning about the quality consequences of an ap-

plied SOA pattern. An experimentation on using the proposed processes has been re-

alized. This experimentation is considered as our last contribution in this thesis.

Keywords: Service Oriented Architecture (SOA), Design decision, Quality attribute,

SOA pattern, BPEL.

ix

Résumé

Construire des logiciels distribués en orchestrant des services Web existants est un

nouveau paradigme, qui a été proposée comme une mise en œuvre possible de la spé-

cification de l’architecture orientée services (SOA). L’émergence de telles technologie

et langages est récente. Ainsi, l’ingénierie de ces applications orientées service n’est

pas encore mature et soulève de nombreuses questions difficiles. Parmi ces questions,

c’est de savoir comment satisfaire les exigences de qualité dans ce genre de processus

d’ingénierie. Dans cette thèse, nous avons abordé le problème susmentionné par di-

verses contributions. Nous proposons donc un modèle de documentation de décisions

architecturales ainsi que deux langages. Ce modèle explicite formellement les liens en-

tre des patrons SOA comme étant des décisions de conception et les attributs qualités.

Le premier langage est un langage de script appelé “WS-BScript”. C’est un DSL léger

qui permet de spécifier des changements primitifs rendant possible la reconfiguration

des orchestrations de services Web. Le deuxième, est un langage de contrainte basé sur

OCL couplé avec le méta-modèle de BPEL. Il permet de spécifier des prédicats qui véri-

fient si une instance d’un patron existe dans une architecture ou non et donc la qual-

ité qu’il implémente. Nous proposons aussi une méthode nommée “SAQIM” qui vise

à fournir aux architectes logiciels des orchestrations de services Web une assistance

à la demande pour l’intégration des exigences de qualité dans leurs artefacts. Cette

méthode s’appuie sur un catalogue de patrons SOA documenté en utilisant le mod-

èle de la première contribution. Elle utilise notre troisième contribution, un processus

d’analyse d’impact sur la qualité qui appuie le raisonnement sur les conséquences de

l’application d’un patron SOA sur les qualités. Une expérimentation sur l’utilisation

des processus proposés a été réalisé et est considérée comme notre dernière contribu-

tion.

Mots clés: SOA, Décision architecturale, Attribut Qualité, patron SOA, BPEL.

xi

C
H

A
P

T
E

R

1
Introduction

1.1 Context

In the last two decades, (Restful or SOAP-based) Web services have confirmed their

status of one of the leading technologies for implementing components of service-

oriented software architectures for desktop, Web and even mobile applications. The

growing need for choosing such technology is related to: i) the integrability and porta-

bility (independence from programming languages, middleware or operating systems)

provided by the published services, ii) the ease of use and efficiency of HTTP as a com-

munication protocol with these services, iii) the security brought by the SSL/TLS layer

included in HTTPS, among many other “ilities”.

When modeling applications that involve the invocation of Web services, we can

build two kinds of compositions of Web services: orchestrations or choreographies.

In choreographies, Web services are considered as peers that collaborate in order to

implement the application’s business logic. One possible language that can be used

for modeling choreographies is the OMG’s standard BPMN (Business Process Model

and Notation [Groupe, 2011]). Orchestrations include a central workflow process that

implements the main business logic of the modeled application, and which invokes

operations of “partner” Web services. One of leading languages used for modeling

1

2 Chap 1. Introduction

(and even executing) orchestrations is the OASIS standard WS-BPEL1 or BPEL (Busi-

ness Process Execution Language [BPL, 2007]).

Building distributed software by orchestrating existing Web services is a new

paradigm, which has been proposed as a possible implementation for the service-

oriented architecture specification. It has been greatly influenced by the well-known

business process engineering field, where processes can be designed as collaborations

between a set of services published by some providers. New business logic can thus be

implemented, as an extension of existing Web services, through these orchestrations.

This helps development teams in capitalizing resources held by the providers of these

services. Indeed, Web service providers, which hold some precious resources (like large

databases of products to retail of Amazon, or weather forecast data of Meteo France),

offer third party developers the opportunity (for free or not) to build new applications

by extending their public services, and thus capitalize on these resources.

Nonetheless, these service-oriented software architectures, like any other software

artifact, are subject to changes during their lifecycle, and thus can be affected by the

consequences of an evolution phenomenon [Lehman et Ramil, 2002]. This evolution

is a natural consequence of responses to the changing requirements, imposed by users

as well as the environment with which the software system interacts or in which it runs.

A key aspect of a software evolution is the evolution of its architecture. The concept

of software architecture - a high level abstraction of the system structure and behavior-

is recognized as an effective means to deal with complex software systems design is-

sues. A software architecture is one of the first artifacts of the design process. It rep-

resents the first decisions for designing a software system, and thus allows to analyze

and evaluate the system early in the development process [Bass et al., 2003]. A recent

development in software architecture research is the notion of Architectural Knowl-

edge (AK) [Kruchten et al., 2006 ; de Boer et al., 2007 ; de Boer et Farenhorst, 2008 ;

Jansen, 2008]. AK encompasses all the knowledge acquired or formulated involved

with software architectures. One of the most important form of AK is the notion of

architectural design decisions (ADs) [Jansen et Bosch, 2005], and one of the most com-

mon design decisions at the architectural development process is the choice of a de-

sign pattern. Design patterns are sets of predefined design decisions with known func-

tionality and behavior [Gamma et al., 1995].

1In this thesis we will use the terms WS-BPEL and BPEL interchangeably

1.2. Problem statement 3

Evolution can target two aspects: functional and non-functional (qualitative). The

first concerns the addition, removal or modification of functionalities, while the sec-

ond focuses on the qualities that the software must reflect in its architecture. It is

acknowledged that architectural design decisions are driven by the quality attributes

required in the specification documents [Mylopoulos et al., 1992 ; Bass et al., 2003].

Indeed, it is not the software expected functionalities that mainly determine its ar-

chitecture, but rather the way in which its functionalities will be provided that allows

shaping and developing the architecture. So, when improving some software qualities

such as maintainability, performance or portability by introducing new architectural

design decisions, or when trying simply to add, remove or edit a functionality we may

unintentionally affect other previously made decisions, and therefore certain qualities

can be affected. It is argued that quality can be weakened after successive changes

(Lehman’s 7th law of software evolution [Lehman et Ramil, 2002]). These problems

are often raised during the maintenance phase. This is mainly due to: i) the lack of

information on the ADs that led to the software architecture, and an explicit defini-

tion of the links between the non-functional characteristics and ADs implementing

them, and ii) the lack of tool support to supervise architecture changes. Architecture

evolution is about making new design decisions or removing obsolete ones to satisfy

changing requirements. The challenge is to do this in harmony with the existing design

decisions [Jansen et Bosch, 2005].

This thesis deals with some problems encountered by architects during the design

and/or the evolution of software architectures, more specifically those related to qual-

ity aspects in Web service oriented architectures. These problems are addressed in the

following section.

1.2 Problem statement

The emergence of service-based systems related technologies and languages is recent.

So, the engineering of these service-oriented applications is not yet mature and raises

many challenging questions. Among these questions, we can mention the crucial issue

of how to satisfy quality requirements in this kind of engineering processes.

In this thesis, we tackled the problem of integrating non-functional requirements

4 Chap 1. Introduction

(NFRs) 2 in web service orchestrations. Addressing the problem of satisfying NFRs at

the architectural design level of web service orchestrations, involves managing the re-

lated ADs that shape the service orchestration.

Dealing with the aforementioned problem raises three main underlying ones. The

first is known as architectural knowledge vaporization about ADs. In this phenomenon

most of ADs made during the architectural development process are lost and conse-

quently the reasons (rationale) they led to them are also lost. This is mainly due to

the fact that, ADs are often not explicitly documented or still as intentions in the mind

of architects. Indeed, during the architectural development process architects tend to

avoid documenting ADs. This may come from many reasons, we can mention among

others, the fact that either they consider it as a difficult and/or time consuming task, or

they do not perceive the real benefit from the dedicated effort. Thus, in the absence of

an explicit documentation describing the choices that have been made by developers

(ADs) and which shape the architecture, design conflicts could appear and eventually

the loss of the system’s quality properties.

Therefore, the first research question we addressed in this thesis is:

• RQ1: How can we document architectural decisions in order to reduce AK vapor-

ization?

The second raised problem comes from the lack of assistance methods to archi-

tect in the existing design methods from the NFRs elicitation to their implementation

through ADs application. Indeed, an architect’s proposed solution (AD), like the choice

of a design pattern for a quality attribute may present more than one competing de-

sign alternatives. In such a situation she/he may not be able to choose an alternative.

Even when the architect knows what alternative to apply, she/he may not know how to

apply it.

Thus, the second research question we addressed in this thesis is:

• RQ2: How to assist architects in finding and applying the architecture design de-

cisions that answer an integration of a quality attribute in their software architec-

ture?

2non-functional requirements and quality requirements are used interchangeably in this thesis

1.3. Contributions 5

The third problem arises when a change is made to the software architecture. A

change occurs by applying one or several design decisions which may affect qualities

of the software architecture. Each decision may have different impact on the existing

qualities. Existing methods still lack offering sufficient practices and guidance to ar-

chitect that help him to better control change impact on quality requirements of the

software architecture.

Hence, the third research question we addressed in this thesis is:

• RQ3: How to assist architects in analyzing the impact of the integration of quality

requirements on the overall software architecture qualities?

Therefore, it is very useful to be able to control and master the integration of quality

requirements in web service orchestrations by offering to the architects an efficient

mean during its activity.

1.3 Contributions

Dealing with the aforementioned problems results in this thesis with three main con-

tributions: i) an architecture design decision documentation model, ii) a service-

oriented architecture quality integration method called SAQIM and iii) a quality-

oriented impact analysis process.

• Architecture design decision documentation model: It defines in a formal way

the links between architectural design decisions and quality attributes imple-

mented by these decisions. It aims hence, at representing architectural design

decisions as first class entities in a software architecture. A special kind of archi-

tectural design decisions is used in our model which are design patterns that tar-

get SOA architectures. The model includes the documentation of different facets

of a pattern: its name, description, the guaranteed quality attribute, pattern in-

stantiation scripts, and the constraints allowing the verification of its presence

or absence in the architecture. Therefore, two languages are proposed to specify

catalogs of SOA patterns. The first one that we propose in this thesis, is a script-

ing language that allows to create instances for a pattern in SOA architectures

concretely defined with BPEL language. It is a DSL (Domain Specific Language)

6 Chap 1. Introduction

with a voluntarily simplified set of primitives to simplify the documentation of

SOA patterns. The second language, is a constraint language based on OCL Ob-

ject Constraint Language) coupled with BPEL language meta-model. This allows

to specify predicates which verifies if a pattern instance exists in an architecture

or not.

• Service-oriented Architecture Quality Integration Method (SAQIM): It is a

method which aims at providing to software architects of Web service orchestra-

tions an on-demand assistance in integrating quality requirements in their arti-

facts. This method has been designed as a multi-step process and makes use of

a previously documented SOA patterns catalog. It introduces a template for en-

abling architects to describe quality integration “intents”. It then analyzes these

intents and helps the architect in satisfying the targeted quality attribute by sug-

gesting some service-oriented patterns. After that, the method that we propose

simulates the application of different alternative patterns that satisfy the targeted

quality requirement. It helps the developer to select among several patterns the

one that satisfies the best its preferences. It helps him also to instantiate the se-

lected pattern on its architecture by executing its script. Thanks to this process,

the developer has also the possibility to cancel the pattern instantiation using

“cancellation” scripts obtained automatically from the first script.

• Quality-oriented impact analysis process: It is a second process which com-

pletes the first one. It aims to notify the developer about the impact of a software

architecture modification on the other previously integrated qualities in the soft-

ware architecture. A modification could be the instantiation of a pattern in the

software architecture, hence the complementarity of this process with the previ-

ous one. This impact analysis is mainly based on OCL constraints evaluation of

the already integrated patterns. This process is based on an architecture docu-

mentation that we proposed in the first contribution. Using some fine grained

information defined in the documentation model, the process provides to the

developer a detailed notification report that allows him to control the changes

made to its architecture.

The first and the second process as well as the language interpreters have been im-

plemented in prototypical tools and experimented on real-world BPEL orchestrations.

1.4. Dissertation plan 7

A number of simulations on using the proposed processes have been realized. The ob-

tained results showed the benefit of using the proposed quality integration assistance.

This experimentation is considered as our last contribution in this thesis.

1.4 Dissertation plan

Chapter 2 presents a State of the art that synthesize and analyze a set of research works

in the literature dealing with the studied problem in this thesis. More particularly,

works on architectural design decisions documentation, software quality documenta-

tion, as well as works on assistance to software evolution have been covered. Chapter 3

introduces the first contribution. The different concepts of the documentation model

are presented and detailed namely, SOA patterns, quality attributes and their relation-

ships, and links between the two concepts as well. Chapter 4 covers the presentation

of SAQIM the second contribution. The different steps of the method are illustrated by

detailed explanations and concrete examples. Chapter 5 presents through a detailed

algorithm, the process used to analyze the impact of a quality integration on the other

quality attributes of a web service orchestration. Chapter 6 details the experimental

process to evaluate the proposed methods and the model they use. We show the setup,

the evaluating process, the analysis and final results. Finally, in Chapter 7 we conclude

the thesis with a summary of contributions and open perspectives.

Related publications

• Tarek Zernadji, Chouki Tibermacine, Foudil Cherif and Amina Zouioueche. In-

tegrating Quality Requirements in Engineering Web Service Orchestrations. Ac-

cepted in the Journal of Systems and Software, November 2015. Elsevier.

• Tarek Zernadji, Chouki Tibermacine, et Foudil Cherif. Quality-driven design of

web service business processes. In Proc. of WETICE/AROSA’14, Parme, Italie,

Juin 2014. IEEE CS.

• Tarek Zernadji, Chouki Tibermacine, et Foudil Cherif. Processing the evolution

of quality requirements of web service orchestrations: a pattern-based approach.

In Proc. of WICSA’14, Sydney, Australia, April 2014. IEEE CS.

• Tarek Zernadji, Tibermacine Chouki, Fleurquin Régis, and Sadou Salah. Assis-

tance à l’évolution du logiciel dirigée par la qualité. A book chapter In Évolu-

8 Chap 1. Introduction

tion et maintenance des systèmes logiciels, edited by Abdelhak-Djamel Seriai

and published by Hermes Sciences-Lavoisier 2014. ISBN 9782746245549, Paris,

France.

• Chouki Tibermacine et Tarek Zernadji. Supervising the evolution of web service

orchestrations using quality requirements. In Proc. of ECSA’11, pages 1–16, Es-

sen, Germany, September 2011. Springer-Verlag.

C
H

A
P

T
E

R

2
State of the art

In this chapter we present an overview of the state of the art. We begin with a brief

overview on service-oriented software architecture (SOA) in general then, we present

Web services orchestration as a kind of SOA. We emphasized on specific orchestrations

which are implemented with WS-BPEL language. In the second part, we discuss works

in four categories that are closely related to our work. In section 2.2.1 we present works

that deal with architectural design decisions documentation. We show in section 2.2.2

some of the approaches on software quality documentation. Specific works dealing

with quality requirements in the context of service-based systems are presented in sec-

tion 2.2.3. Finally, we give a brief overview on works providing assistance to software

evolution in section 2.2.4.

2.1 Background

Before discussing the literature about the studied problem in this thesis, we would like

to clarify some background information on the service oriented architectures (SOA)

paradigm (Section 2.1.1) and one of its implementation technologies the “Web ser-

vices” (Section 2.1.2), as well as the notion of web service composition (Section 2.1.3).

9

10 Chap 2. State of the art

At last, a detailed presentation of WS-BPEL language is given in section 2.1.4. We dis-

cuss these background knowledge in the sub-sections below.

2.1.1 Service Oriented architecture (SOA)

There are a lot of definitions of the term SOA “Service Oriented Architecture” but no

exact definition has been defined to this day. We have listed some of them below.

The OASIS (Organization for the Advancement of Structured Information Stan-

dards) SOA reference model defines SOA as follows:“Service Oriented Architecture

(SOA) is a paradigm for organizing and utilizing distributed capabilities that may be

under the control of different ownership domains” [MacKenzie et al., 2006]. This def-

inition presents SOA as a way of organizing different capabilities offered by different

owners in the world of distributed computing.

The World Wide Web Consortium (W3C) defined SOA as: “a set of components

which can be invoked and whose interface descriptions can be published and discovered

”1. This definition gives a general context for implementing service-oriented architec-

tures which is not limited to a specific kind of functionality, but imposes that the latter

should be published and discovered.

Another definition was given by Thomas erl [Erl, 2009]: “Service-oriented archi-

tecture represents an architectural model that aims to enhance the agility and cost-

effectiveness of an enterprise while reducing the burden of IT on the overall organization.

It accomplishes this by positioning services as the primary means through which solu-

tion logic is represented”. Erl stresses the improved agility given by SOA which is rep-

resented as an architectural model. This definition uses the term of “services” rather

than capabilities or components, as a means to implement SOA.

The open group gives the following definition: “Service-Oriented Architecture (SOA)

is an architectural style that supports service-orientation. Service-orientation is a way

of thinking in terms of services and service-based development and the outcomes of ser-

vices”2. This definition also emphasizes the use of services as units to build service-

based systems.

All the definitions agree that SOA is a paradigm, a way of thinking that provides a

1http://www.w3.org/TR/ws-gloss/#component
2http://www.opengroup.org/soa/source-book/soa/soa.htm

2.1. Background 11

Figure 2.1 : SOA infrastructure

general architecture for building complex distributed systems based on services. Ser-

vices are interface-based computing facilities which are described in a uniform, tech-

nology neutral manner. They allow loosely-coupled, message-based interaction and

are transparent concerning their location [Lenhard, 2011]. Figure 2.1 shows the three

types of partners required to build a SOA-based application: Service registry, Service

Providers and Service Requesters. The course of action is as follows:

1. The service provider publishes the service description to the service registry

2. The service requester finds the desired service by querying the service registry

3. The service requester binds to the service and retrieves the desired function.

Not all service-oriented architecture is based on Web services but, the real mo-

mentum for SOA was created by Web services. Web services technology is the most

promising choice to implement service oriented architecture and its strategic objec-

tives [Sheng et al., 2014].

2.1.2 Web services

A variety of definitions about Web services are given by different industry leaders, re-

search groups, and Web service consortia. Web Services and surrounding technologies

12 Chap 2. State of the art

are promoted by the World Wide Web Consortium (W3C). In the following we give the

definition which is adopted by the W3C: “A Web service is a software system designed

to support interoperable machine-to-machine interaction over a network. It has an in-

terface described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using SOAP mes-

sages, typically conveyed using HTTP with an XML serialization in conjunction with

other Web-related standards” [World Wide Web Consortium, 2004]. The aforemen-

tioned definition gives a high-level description of the major supporting technologies of

Web services. Interoperation among machines is the major design goal of Web services.

As the supporting standards, WSDL (Web Services Description Language) enables XML

service description of Web services and SOAP (Simple object access protocol) defines

a communication protocol for Web services [Yu et al., 2008].

The Web services framework is divided into three areas: communication protocols,

service descriptions, and service discovery, and specifications are being developed for

each [Wang et al., 2004].

• The simple object access protocol (SOAP) that enables communications among

Web services;

• The Web Services Description Language (WSDL) that provides a formal,

computer-readable description of Web services; and

• The Universal Description, Discovery and Integration (UDDI) directory that is a

registry of Web services descriptions.

Simple object access protocol (SOAP)

SOAP [World Wide Web Consortium, 2004] is a Web service messaging standard that

enables communication among Web services. It provides a lightweight messaging

framework for exchanging XML-based messages. SOAP is independent of languages

and platforms. While SOAP Version 1.2 doesn’t define “SOAP” as an acronym anymore,

there are two expansions of the term that reflect these different ways in which the tech-

nology can be interpreted:

• Service Oriented Architecture Protocol: In the general case, a SOAP message rep-

resents the information needed to invoke a service or reflect the results of a ser-

2.1. Background 13

vice invocation, and contains the information specified in the service interface

definition.

• Simple Object Access Protocol: When using the optional SOAP RPC Representa-

tion, a SOAP message represents a method invocation on a remote object, and

the serialization of in the argument list of that method that must be moved from

the local environment to the remote environment.

At its core, a SOAP message has a very simple structure: an XML element with two

children elements, one containing the header and the other the body. The header con-

tents and body elements are also represented in XML. SOAP messages can be trans-

ported over HTTP for the runtime invocation, which helps achieve the synchronous

communication. The HTTP protocol plays the bridging role for interactions between

computer systems [Wang et al., 2004].

Web Services Description Language (WSDL)

WSDL [World Wide Web Consortium, 2004] is a language for describing Web services.

WSDL is an XML format for describing network services as a set of endpoints oper-

ating on messages containing either document-oriented or procedure-oriented infor-

mation.

A WSDL document (see the Hello service example in listing 2.1) describes program-

ming interfaces and accessing formats of a Web service. It makes a clear separation

of the abstract and concrete descriptions of a Web service [Yu et al., 2008]. At the

abstract level, the WSDL description includes three basic elements: Types, Message,

and PortType. The types element encloses data type definitions that are relevant for

the exchanged messages. Message represents an abstract definition of the transferred

data. A message consists of one or more logical parts. WSDL message specifies what

type of data the message must contain when an operation is invoked. PortType is a set

of abstract operations provided by an endpoint of a Web service. At the concrete level

the WSDL description provides information of binding a concrete service endpoint.

It specifies three elements: Binding, port, and service. The binding specifies the

communication protocols, and the data format of the operations and messages. The

port describes a single address for binding a service endpoint. The service defines a

14 Chap 2. State of the art

collection of ports.

1 <definitions name=" HelloService "

2 targetNamespace=" http : / /www. examples .com/wsdl/ HelloService . wsdl"

3 xmlns=" http : / / schemas . xmlsoap . org /wsdl /"

4 xmlns :soap=" http : / / schemas . xmlsoap . org /wsdl/soap/"

5 xmlns : tns =" http : / /www. examples .com/wsdl/ HelloService . wsdl"

6 xmlns : xsd=" http : / /www.w3. org /2001/XMLSchema">

7

8 <message name="SayHelloRequest ">

9 <part name="firstName " type="xsd : s t r i n g "/>

10 </message>

11

12 <message name="SayHelloResponse">

13 <part name=" greeting " type="xsd : s t r i n g "/>

14 </message>

15

16 <portType name="Hello_PortType ">

17 <operation name=" sayHello ">

18 <input message=" tns : SayHelloRequest "/>

19 <output message=" tns : SayHelloResponse"/>

20 </operation>

21 </portType>

22

23 <binding name="Hello_Binding " type=" tns : Hello_PortType ">

24 <soap : binding s t y l e ="rpc " transport =" http : / / schemas . xmlsoap . org /soap/ http "/>

25 <operation name=" sayHello ">

26 <soap : operation soapAction=" sayHello "/>

27 <input>

28 <soap : body

29 encodingStyle =" http : / / schemas . xmlsoap . org /soap/encoding /"

30 namespace="urn : examples : h e l l o s e r v i c e " use="encoded"/>

31 </input>

32 <output>

33 <soap : body

34 encodingStyle =" http : / / schemas . xmlsoap . org /soap/encoding /"

35 namespace="urn : examples : h e l l o s e r v i c e " use="encoded"/>

36 </output>

37 </operation>

38 </binding>

39

40 <service name=" Hello_Service ">

41 <documentation> WSDL F i l e for HelloService </documentation>

42 <port binding=" tns : Hello_Binding " name=" Hello_Port ">

43 <soap : address location =" http : / /www. examples .com/ SayHello /" />

44 </port>

45 </ service>

46 </ definitions>

2.1. Background 15

LISTING 2.1 : Hello service WSDL example

Universal Description, Discovery and Integration (UDDI)

Universal Description, Discovery and Integration, or UDDI [OASIS, 2002], is the name

of a group of web-based registries that expose information about a business or other

entity and its technical interfaces (or API’s). These registries are run by multiple Oper-

ator Sites, and can be used by anyone who wants to make information available about

one or more businesses or entities, as well as anyone that wants to find that infor-

mation. UDDI integrates Web service description and discovery to help service re-

questers locate their desirable services. It provides a set of search facilities for finding

businesses, and their services. Services can be searched by specifying business name,

service name or service category [Akkiraju et al., 2003].

2.1.3 Web Services composition

In service-oriented computing (SOC), developers use services as fundamental ele-

ments in their application development processes [Milanovic et Malek, 2004]. De-

velopers and users can then solve complex problems by combining available basic

services and ordering them to best suit their problem requirements. One key chal-

lenge for SOA and Web services technology is Web services composition [Sheng et al.,

2014]. Web service composition accelerates rapid application development, service

reuse, and complex service consummation.

The terms orchestration and choreography describe two aspects of creating busi-

ness processes from composite Web services. The former (figure 2.2 (a)) always rep-

resent control from one party’s perspective. This differs from choreography (figure 2.2

(b)), which is more collaborative and allows each involved party to describe its part

in the interaction [Peltz, 2003]. In this context, many languages and standards have

been proposed for Web services composition over the years such as BPML (Business

Process Modeling Language)3, WS-BPEL [BPL, 2007], WSCL (Web Services Conversa-

tion Language) [WSC, 2002], WSCI (Web Services Choreography Interface) [WCI, 2002],

WS-CDL (Web Services Choreography Description Language) [WCL, 2004], and BPMN

(Business Process Model and Notation) [Groupe, 2011].
3http://www.ebpml.org/bpml.htm

16 Chap 2. State of the art

Figure 2.2 : Service orchestration and service choreography

Web services choreography

Choreography represents a global description of the observable behavior of each of the

services participating in the interaction, which is defined by public exchange of mes-

sages, rules of interaction and agreements between two or more business process end-

points [Sheng et al., 2014]. Choreography tracks the message sequences among mul-

tiple parties and sources (typically the public message exchanges that occur between

Web services) rather than a specific business process that a single party executes [Peltz,

2003]. All Web services which take part in the choreography must be conscious of the

business process, operations to execute, messages to exchange as well as the timing

of message exchanges. The choreography mechanism is supported by the standard

WS-CDL (Web Services Choreography Description Language).

2.1. Background 17

Web services orchestration

Service orchestration represents a single executable business process that coordinates

the interaction among the different services, by describing a flow from the perspective

and under control of a single endpoint [Sheng et al., 2014]. Orchestration can there-

fore be considered as a construct between an automated process and the individual

services that enact the steps in the process. The interactions occur at the message

level. They include business logic and task execution order, and they can span ap-

plications and organizations to define a long-lived, transactional, multi-step process

model [Peltz, 2003]. Orchestration includes the management of the transactions be-

tween the individual services, including any necessary error handling, as well as de-

scribing the overall process. WS-BPEL (or BPEL in short), is the standard for Web ser-

vices orchestration which is largely supported by the industry. WS-BPEL is one of lead-

ing languages for modeling and even executing Web service orchestrations.

In this thesis we deal with a special kind of SOA architectures which are Web service

orchestrations concretely defined with WS-BPEL language.

2.1.4 Web Services Business Process Execution Language

(WS-BPEL)

The Web Services Business Process Execution Language, commonly abbreviated as

(BPEL), or (WS-BPEL) is an XML dialect for describing business processes based on

Web services. BPEL is an orchestration language that was first conceived in July, 2002

with the release of the WS-BPEL 1.0 specification as a combination of XLANG [MIC,

2001] language by Microsoft and the Web Services Flow Language (WSFL) by IBM.

Today, it is promoted by the Organization for the Advancement of Structured Informa-

tion Standards (OASIS) and since April 2007 it is available in version 2.0 [BPL, 2007].

1 <process name=" SampleProcess ">

2 <import namespace=" http : / / . . . / MyRole"

3 location ="MyRole . wsdl" importType=" http : / / schemas . xmlsoap . org /wsdl /" />

4 <partnerLinks>

5 <partnerLink name="MyRolePartnerLink" partnerLinkType="MyRolePartnerLinkType" myRole="

myRole"/>

6 </partnerLinks>

7 <variables >

8 <variable name="InputParameter" messageType="InputMessage"/>

9 </ variables>

18 Chap 2. State of the art

10 <correlationSets >

11 <correlationSet name=" CorrelationSet " properties ="PropertyFromWSDL"/>

12 </ correlationSets>

13 <sequence name="MainProcessFlow">

14 <receive name=" StartProcess " createInstance ="yes " variable ="InputParameter"

partnerLink ="MyRolePartnerLink" operation="OperationFromWSDL" />

15 <!-- More basic and structured activities -->
16 </sequence>

17 </process>

LISTING 2.2 : A general structure of a BPEL process

BPEL allows to specify the behavior of a business process based on interaction

between the process itself and its partners. The interaction with each partner oc-

curs through a “PartnerLink” element which represent an external web service in-

terface. This latter, is represented by a WSDL document that describe the offered ser-

vice through a set of operations and handled messages. A BPEL process coordinates

(orchestrates) the interactions between partners and specifies the necessary logic to

achieve a business goal. BPEL provides two ways to describe processes: abstract pro-

cesses and executable processes. Executable processes are fully specified processes

that can be deployed and executed by an engine. Abstract processes are not executable

and they are not completely specified. Abstract processes hide the implementation de-

tails of a process and serve mainly a descriptive role [BPL, 2007].

An XML representation is associated with the description of a BPEL process as well

as a graphical (to design BPEL processes) one which are provided by most of the graph-

ical editors4,5.

A process is described in a BPEL process file and is purely Web Services-

based [Lenhard, 2011]. The structure of a BPEL file is comprised of several elements

as shown in listing 2.2. At least one WSDL file has to be imported into the process to

serve as an interface for it (Line 3). The entire process is contained in a “process”

element. It represents the root element (in the BPEL file) inside which the complete

description of the process elements is embodied [BPL, 2007]:

PartnerLinks: PartnerLinks (Line 4) define the relationship between the process and

external Web services. Each partnerLink (Line 5) relates to one partner who partic-

ipates in the process. It references a partnerLinkType which is to be found in the

4https://eclipse.org/bpel/
5https://soa.netbeans.org/

2.1. Background 19

WSDL file that describes the interface of the partner. Within a “partnerLink”, the role

of the business process itself is indicated by the attribute myRole and the role of the

partner is indicated by the attribute partnerRole. At least one WSDL interface needs

to be in place and one “partnerLink” needs to be defined for an executable process.

This minimum “partnerLink” describes the role of the process itself (has the myRole

attribute set), so that it can be invoked externally. If the BPEL process interacts with

other Web services they should be added as a “partnerLink” and their WSDL descrip-

tion must be imported into the process.

variables: Variables (Line 7) provide the means for holding messages that consti-

tute a part of the state of a business process. Messages might be those that have been

received from partners or are to be sent to partners. A process may contain a set of

variables. BPEL use three kinds of variables: Either their type is a “messageType” read

from a WSDL file, or an XML Schema or Schema element type defined by an imported

XSD (XML Schema Definition) file. During the execution of the process, variables can

be referenced by several activities which may assign or read data to or from them.

correlationSets: BPEL supports message correlation using correlationSets (Line 10)

which are used to route messages to the right process instance. correlationSets is made

up of one or more WSDL properties that have a propertyAlias defined in the imported

WSDL files. Correlation can be used on every messaging activity (“receive”, “reply”,

“onMessage”, “onEvent”, and “invoke”) [BPL, 2007]. Properties reference messageTypes

that are XML simple types, defined in the types part of the Web service. The values of

these types in incoming messages can then be used by the engine to direct the message

to the matching process instance.

Finally, each BPEL process has one main activity that represent the main control

flow (Line 13). BPEL define a set of activities which are divided into 2 classes: basic

and structured. Basic activities are those which describe elemental steps of the process

behavior. Structured activities encode control-flow logic, and therefore can contain

other basic and/or structured activities recursively [BPL, 2007].

Figure 2.3 shows an excerpt from the BPEL language meta-model (upper part of the

figure) and WSDL (lower part).

In the following subsections we are going to present the majority of the main BPEL

language constructs and not all of them because of the large size of its specification.

20 Chap 2. State of the art

Figure 2.3 : An excerpt of the BPEL/WSDL metamodel

Basic activities [BPL, 2007]:

- receive: The receive activity allows the BPEL process to wait for a matching

message to arrive and completes when the message arrives. It allows thus for the

process to be invoked through its web service interface (its WSDL). Therefore, the

partnerLink representing the BPEL process as well as the operation to invoke

should be specified in the receive activity attributes. Other attributes might be

specified such as the variable attribute which is used if needed to store input

data.

- reply: The reply activity allows the BPEL process to send a message in reply to

a previous inbound messaging activity, such as receive, onMessage or onEvent

and thereby answers to a client waiting for this answer.

- invoke: The invoke activity is used to call Web services offered by service

providers. The specification of the partnerLink to be invoked, as well as the op-

eration to be performed are mandatory attribute. The invoke activity can en-

close other activities, exception handling mechanisms using catch, catchAll

or compensationHandler activities. correlations can also be defined in invoke

activity.

- assign: The assign activity can be used to copy data from one variable to an-

other, as well as to construct and insert new data using expressions. It can con-

tain any number of elementary assignments, including copy elements which in

2.1. Background 21

turn contain from and to elements that specify source and target of the copy op-

eration. BPEL supports XPath 1.0 language [Consortium, 1999] as an expression

language by default.

- throw: used by a BPEL process to signal internal faults. A faultHandler ele-

ment can use the data provided by the throw activity to handle the fault and to

populate any fault messages that need to be sent to other services.

- wait: The wait activity is used to wait for a given time period or until a cer-

tain point in time has been reached. This can either be done by using a specific

amount of time in the for element or a date that serves as deadline in the until

element.

- empty: The empty activity can be used for doing nothing. This can be useful for

instance, for synchronization of concurrent activities.

- extensionActivity: This activity can be used to extend BPEL by integrating

new activities that are not part of the standard specification.

- exit: The exit activity is used to immediately end the business process in-

stance. All currently running activities must be ended immediately without in-

volving any termination handling, fault handling, or compensation behavior.

- rethrow: The rethrow activity is used in fault handlers to rethrow the fault they

caught. It rethrows the specified fault, ignoring changes made to the original

fault data by the a faultHandler.

Structured activities [BPL, 2007]:

Structured activities describe how a business process is created by composing the ba-

sic activities. BPEL define structured activities for various control-flow mechanisms

namely sequential control (through sequence, if, while, repeatUntil, and the se-

rial variant of forEach activities), concurrency and synchronization (through flow and

forEach activities) as well as deferred choice (through pick activity).

- sequence: The sequence activity is used to define a collection of activities to be

performed sequentially in the order in which they appear in the sequence.

22 Chap 2. State of the art

- if: This activity provides a selection mechanism and allows the execution of

one activity from a set of choices. It contains a condition which defines a boolean

expression and an activity that is executed in case the condition evaluates to true.

An optional number of elseIf elements can be defined each of which can define

a condition and is executed in case its condition evaluates to true. An optional

else element can be defined comprising an activity which is performed if no

branch with a condition is taken in the whole if activity.

- while: It is a loop activity that allows a repeated execution of a child activity. The

child activity is executed as long as the boolean condition evaluates to true. The

condition is evaluated each time before executing the activity.

- repeatUntil: The repeatUntil is another loop activity. Its child activity is ex-

ecuted until the condition becomes true. It ensure thus at least one execution of

the child activity.

- forEach: The forEach is another loop activity that gives the possibility to ex-

ecute its contained activity a given number of times in two ways: in sequential

order or in parallel (the parallel attribute set to “yes”). The contained activity

must be a scope activity comprising a defined logic. The number of iteration is

determined by “startCounterValue” and “finalCounterValue” attributes. A “com-

pletionCondition” may be used within the forEach to allow the forEach activity

to complete without executing or finishing all the instances of the scope.

- pick: The pick activity is used to react to one of several possible received mes-

sages or for a time-out to occur. It must contain at least one onMessage (simalr to

a receive) activity which executes its associated activity when a message arrives.

Optional timer-based alarms may be defined in the pick activity with onAlarm

activity.

- flow: The flow activity is used to perform parallel execution of one or more

activities. A flow completes when all of the activities enclosed by the flow have

completed. It enables the definition of synchronization relationships between

its children activities through the link construct. Activities in the flow could be

sources or targets of Links.

- scope: The scope activity provides the context which influences the execu-

tion behavior of its enclosed activities. It allows for the definition of its own

2.2. Literature review 23

partnerLinks, variables, correlationSets and handlers. Handlers may

be of type faultHandlers, compensationHandler, terminationHandler, and

eventHandlers.

2.2 Literature review

This section presents a State of the art that synthesize and analyze a set of research

works in the literature dealing with the studied problem in this thesis. More particu-

larly, works on architectural design decisions documentation, software quality docu-

mentation, quality documentation in service based-systems as well as works on assis-

tance to software evolution have been covered.

2.2.1 Architecture decisions documentation

The concept of software architecture is recognized as an effective means to deal with

complex software systems design issues. A software architecture is one of the first arti-

facts of the design process. It manifests the earliest design decisions of a software sys-

tem [Bass et al., 2003], and thus allows to analyze and evaluate the system early in the

development process. The practice of software architectures in the last two decades

has undergone significant evolutions on the representation and description aspects.

The work of Kruchten et al [Kruchten et al., 2009] presents an interesting historical

view on how software architectures were addressed.

The concept of architecture design decision (AD) has been introduced the first time

to the community of software architecture by Jansen et al. in [Jansen et Bosch, 2005].

According to them, an architectural design decision is defined as “a description of the

set of architectural additions, subtractions and modifications to the software architec-

ture, the rationale, and the design rules, design constraints and additional requirements

that (partially) realize one or more requirements on a given architecture”. This defini-

tion highlights the importance of this concept as one of the most important forms of

“Architectural knowledge” (AK) in the software development process. The concept of

“AK”, is a new advanced research in the discipline of software architectures, which en-

compasses all acquired or formulated knowledge therein [Jansen, 2008]. Jansen et al.

mentioned that this notion of “AK” is vital to the architecture construction process as

it improves the quality of the process and the architecture itself.

24 Chap 2. State of the art

Architectural design decisions (ADs) are decisions in the solution space6 that di-

rectly influence the design of the software architecture [Jansen, 2008]. It could be for

example, about choosing a particular architectural style or an architectural pattern. An

architectural design decision (AD) has a rationale which defines the reasons behind it.

Rationale describe why a change is made to the software architecture. It can include

the basis for a decision, alternatives and trade-offs considered [ISO/IEC/(IEEE), 2011].

According to the standard ISO/IEC/IEEE 42010 [ISO/IEC/(IEEE), 2011], AD and ratio-

nale are considered as architecture description elements. Accordingly, documenting

these two elements during the architectural development process is of great impor-

tance and has held a considerable attention of software architecture researchers com-

munity this last few years (see section 2.2.2 and section 2.2.1). Indeed, by keeping a

traceability on ADs made during the development process and the reasons that led

to these decisions, an architect can identify potential design conflicts and then avoid

them. These latter, can happen when building the software architecture or during its

evolution. Therefore, a software architecture documentation (of the architecture itself

or, of ADs) is an efficient means to guide the architectural development process so that

the involved decisions operate harmoniously.

Research conducted in the discipline of software architectures have shown impor-

tant consequences due to the phenomenon of knowledge vaporization [Bosch, 2004 ;

Jansen et Bosch, 2005]. This comes from the fact that, some details that a decision is

based on, such as decision context, assumptions, decision drivers, consequences and

considered alternatives, gets lost [Heesch et Avgeriou, 2009], or remains in heads of the

designers [van der Ven et al., 2006].

In this context, various approaches exist to describe and document this knowledge.

One category of works focuses on the use of language constructs that allow to express

architectural design decisions with respect to concepts that are defined at the “archi-

tecture descriptions level”. Another category of works deals with the concept of archi-

tectural design decision as a first class entity explicitly defined, regardless of a particu-

lar architecture description. We will start first by presenting the first category of works

represented by the architecture description languages, called ADL.

6The solution space is the domain containing all possible system solutions

2.2. Literature review 25

Design decisions documentation in architectures description

ADLs (Architecture Description Languages) are languages that allow to specify software

architecture descriptions. They provide a means to organize a software system in an as-

sembly of components and connectors, a rather abstract view of the system. The com-

ponents are units of computation or storage in the system and connectors are com-

munication units between the components. Besides this ability, some ADLs allow the

definition of architectural constraints that govern the allowed connection types by im-

posing restrictions on how the elements composing the system are arranged. Among

ADLs that offer this possibility, we find the Wright [Allen, 1997] language. The latter

integrates formal approaches to software architectures description and analysis and

more particularly the formalization of connectors. Constraints in Wright are defined

by predicates and cover any element of the architecture (Components, Connectors,

Ports, Roles,etc). The following constraint stipulates that an architecture configuration

must have a star topology:

∃center : Component s •
∀c : Connector s • ∃r : Role; p : Por t | ((center, p), (c,r)) ∈ At t achment s

∧
∀c : Component s • ∃cn : Connector s;r : Role; p : Por t | ((c, p), (cn,r)) ∈

At t achment s

The first predicate indicates that there is a component (“center”) attached to all

connectors of the description. The second predicate indicates that all components

must be attached to a connector. Thus, this constraint ensures that every component

is connected to the component representing the center of the star. Therefore, it gives a

formal way to document the star architectural style as an architectural design decision.

Armani [Monroe, 2001] is another constraint language that extends and com-

plements the Acme [Garlan et al., 2000] ADL . It allows the description of software

architectures, imposing constraints on the evolution of the elements composing

these architectures, and especially the capture of expertise in the design of software

architectures. It allows to describe three classes of architectural design expertise:

design vocabulary, design rules, and architectural styles. Design vocabulary specifies

the basic elements for system design. It describes the selection of components,

connectors, ports, systems, properties, roles and representations that can be used

26 Chap 2. State of the art

in the system design. Design rules specify heuristics, invariants, and composition

constraints to assist architects in the design and analysis of software architectures. The

expression of constraints on a system architecture is in the form of first-order logic

invariants. Armani allows the association of design rules with a complete architectural

style, a collection of connected design elements, a design element type, or an instance

of a component or connector. Armani predicates language provides various features,

such as terms composition, the ability to define its own functions or use predefined

functions. Among the predefined functions we find, the type functions (example:

declaresType (e: Element, t: ElementType): boolean), graph connectivity functions

(example, connected (c1, c2: Component): boolean), parent-child functions (exam-

ple, parent (c: Connector): System), set functions (for example, sum (s: set{number}):

number). The Armani predicate language includes also logical, arithmetic and

comparison operators. It distinguishes two types of constraints: “invariants” and

“heuristics”. The following example illustrates their use:

1 Invariant F o r a l l c1 , c2 : component in sys . Components |

2 E x i s t s conn : connector in sys . Connectors |

3 Attached (c1 , conn) and Attached (c2 , conn) ;

4 Heuristic Size (Ports) <= 5 ;

The constraint expressed by the invariant (Lines 1, 2, and 3) imposes that compo-

nents should be connected in pairs to form a complete graph. The heuristic (Line 4)

states that the number of all ports must be less or equal to five.

The last class of expertise concerns architectural styles. Examples on specifying

architectural styles using Armani can be found in [Monroe, 2001].

Undoubtedly, one of the most relevant solutions to promote reuse in software ar-

chitectures is the use of architectural styles. An architectural style defines a family of

systems by providing an architectural design vocabulary specific to a domain with re-

strictions on how parts can be grouped together [Kim et Garlan, 2010]. A specification

of a style in Armani consists of a declaration of a design vocabulary that can be used

to design styles, and a set of design rules that guide the composition and instantiation

of the design vocabulary. In the category of ADLs, Wright provides the ability to define

architectural styles.

In [Kim et Garlan, 2010], Kim and Garlan propose an approach for transforming

2.2. Literature review 27

architectural styles (a form of architectural design decision) formally expressed by the

Acme ADL, to relational models expressed with the Alloy [Jackson, 2002] language. Al-

loy is a modeling language based on first-order logic (first order relational logic). The

method, therefore, allows to describe architectural style specifications in the Alloy lan-

guage constructs through a style translation scheme. The aim is to be able to verify

properties on styles, namely, if a style satisfies some predicates set on its architec-

tural structure, the consistency of style (the existence of at least one configuration that

complies with style architectural constraints), or whether two styles are compatible for

composition.

All the works that have just been addressed consider a high level abstract descrip-

tion (components, connectors, configurations etc.) of architectural design decisions

(mainly as architectural styles) used to build an architecture. They are often provided

with constraint languages and mechanisms allowing the maintain and verification of

structural properties of those architectural design decisions.

Design decisions documentation related to architectures description

The other category of works on documenting architectural decisions treats architec-

tural decisions as first-class entities and aims to represent them as well as their ra-

tionale (Design Rationale) explicitly in the software architecture documentation. This

category is annex to architecture descriptions, which is specified using ADLs. The goal

is to capture knowledge related to the architectural decisions made during the soft-

ware development to reduce the effects of knowledge vaporization phenomenon. This

idea comes from the fact that most decisions made during the software architecture

construction remains implicit or as non-persistent intentions. Consequently, consider

the architectural decisions as first-class elements and representing them explicitly in

architectural documentation is one of the most interesting ways to improve the quality

of software architectures as we will show later.

The work of Perry and Wolf [Perry et Wolf, 1992] was one of the first major con-

tributions to software architecture description. They have introduced the following

definition for software architecture:

Software Architecture = { Elements, Form, Rationale }

Architectural elements are of three different types: i) processing elements; ii) data

28 Chap 2. State of the art

elements; and iii) connecting elements; Processing elements are components that per-

form the transformation on the data elements. The data elements are those that con-

tain the information that is used and transformed. The connecting elements make the

connection between the first two elements (the glue that holds the different pieces of

the architecture together).

The Form consists of a set of properties and relationships that define constraints

on the architecture elements and how they interact. Properties are used to constrain

the choice of architectural elements, whereas the relationships are used to constrain

the placement of those elements. An architecture may have different forms while rep-

resenting the same functionality.

The rationale capture the architect’s motivations for some architectural choices

(the choice of architectural style, the choice of elements, and the form). Perry et Wolf

mentioned the use of “views” for building software architectures while respecting the

concepts proposed in their model. These latter represent different aspects of the soft-

ware architecture, which reflect the different concerns of its users.

The 4+1 view model [Kruchten, 1995] has been proposed in the same context. It

marked a new era for software architectures description and documentation. This

model organizes the description of a software architecture using four different views,

namely: logical view, process view, development view, the physical view, and use a set

of scenario (the use cases view; plus one) to check their correctness. All these views

represent concerns of the different participants in the development of a software sys-

tem. UML (Unified Modeling Language) is generally the language used to represent

these views, but other notations and tools could also be used as well. Architectural

decisions that appear in the software architecture can be elaborated on any of the

views or captured by combining different views of the 4+1 model. The 4+1 approach

has been adopted as a foundational part of the RUP (Rational Unified Process) ap-

proach [Clements et al., 2003].

The notion of “view” has been taken into account some years later with the emer-

gence of the IEEE 1471-2000 [IEEE, 2000] standard, but with more refinement on how

views should express certain aspects of the software architecture. The standard de-

fines the view to express a system architecture according to a particular “viewpoint”.

This concept determines the languages to be used to describe a view, the modeling

methods or the associated analysis techniques that are applied to the representations

2.2. Literature review 29

of the view. The viewpoint address concerns (such as NFRs) of participants in the de-

velopment of the software system. The conceptual model of the standard has been

improved compared to the initial version, to incorporate as a first-class element, the

rationale of architectural decisions. It includes, in addition, other elements namely the

mission to be fulfilled by the system, the system environment, and a viewpoint library.

Clements et al [Clements et al., 2003], proposed in their approach V&B (Views and

Beyond) three different viewtypes for documenting a software architecture:

• The module viewtype, which responds to the way the software architecture

should be structured as a set of implementation units;

• The component and connector viewtype (C&C for Component-and-Connector),

allows to structure the architecture into a set of elements that have a runtime

behavior and interactions;

• The allocation viewtype, answers how the architecture is linked to non-software

structures of its environment.

The documentation approaches that we have illustrated [Kruchten, 1995 ; IEEE,

2000 ; Clements et al., 2003], aim to define a set of views on a system elements and

their relationships to describe a software architecture. We will now introduce some

works that have been proposed in order to reduce knowledge vaporization, by making

explicit the representation of architectural decisions.

In 2005, Jansen and Bosch [Jansen et Bosch, 2005] proposed a new way of perceiv-

ing a software architecture. They presented it as a set of architectural design decisions.

In this work, the authors presented a new approach for software architectures devel-

opment named “Archium”, which considers as stated above, that software architecture

is a set of explicit architectural design decisions. The approach is based on an archi-

tectural decisions conceptual model that describes architectural decisions elements

(Problem, Motivation, Cause, Solutions, Decision, trade-off, Architectural Modifica-

tion and Context) and their relationships. The description of a software architecture

is done through the conceptual model composed of the notions of: i) Deltas (part of

the architectural model) that express a change in the behavior of a component and

represent its functionalities; ii) design fragments; iii) and architectural decisions. The

addition of an increment on the old system software architecture is obtained by the

30 Chap 2. State of the art

use of a composition model. This latter, provides the necessary elements for linking

the architectural model (defines software architecture concepts similar to those used

in architecture models namely: port, connector, interface„etc.) elements with those

of the design decision model (contains a design decision as a first class concept). It

connects the changes made by the design decision model with elements of the archi-

tectural model. The final architecture is thus a set of architectural decisions.

Kruchten et al [Kruchten et al., 2006] define architectural knowledge as follows:

AK = Design Decision + Design

This formula confirms the vision introduced by Jansen and Bosch. It considers the

architectural decisions as an essential part of knowledge that contributes in the con-

struction of software architectures. The authors mentioned three levels of knowledge

that can be applied to categorize the architectural knowledge: i) Tacit: as intentions

mostly in the head of people; ii) Documented: there is some trace of this knowledge;

iii) Formalized: not only documented, but organized in a systematic way. The best

way that seems obvious to us to preserve this knowledge, is to adopt the formalization

level. This choice is motivated by the possibility of realizing an automatic decisions

management.

The work of Kruchten [Kruchten, 2004] provides a taxonomy of architectural de-

cisions. It could enable the construction of complex graphs of interrelated design

decisions to support reasoning about them. He presents a model for describing

architecture decisions, including rationale, scope, state, history of changes,

categories, cost, risk, etc. He identifies in this ontology the different possible re-

lationships between design decisions and links between design decisions and design

artifacts.

In [Tyree et Akerman, 2005], Tyree and Akerman discuss the importance of docu-

menting architecture decisions and their specification as first-class entities in an ar-

chitecture description. They point out that a simple document describing the key

architectural decisions can help significantly to clarify the systems architectures. To

this end, they present a template specifically designed for architecture decision docu-

mentation, which embeds interesting information characterizing architecture design

decisions on which a description and a documentation of a decision is elaborated (sta-

tus, assumptions, implications, related artifacts, constraints, ...). The template is de-

2.2. Literature review 31

rived from two models “REMAP” [Balasubramaniam et Vasant, 1991] and “DRL” [Jintae,

1989]. The authors provide as mentioned in their work an alternative documentation

form to that relying on a set of views. They also mentioned that, in their approach, they

first identify what decisions are important. These decisions drive then architecture,

and hence the views which is different from the V&B approach. In this latter, the archi-

tect uses “the view selection scheme” to decide which architecture view he/she wants

to produce. Then, the view identifies a family of design decisions that the architects

wants to resolve and be able to express. The proposed template has a rich vocabulary

for describing architectural decisions, and may provide an eventual support for impact

analysis for architecture evolution on software functionalities. This could be achieved

based on the information documented in the field “Related artifacts”. It specifies the

elements that the decision impacts (functional changes could be isolated).

Lago and Van Vliet [Lago et van Vliet, 2005] talk about explicit documentation of the

reasons for architectural decisions which they called “assumptions”. They proposed

an approach to make these assumptions explicit considered as invariabilities in the

system, and link them to software architectures documentation. This should enrich

the documentation and provide better support for evolution and maintenance.

Bass et al. [Bass et al., 2006] consider architectural design decisions and the Ratio-

nale, as the most important form of knowledge to capture. They defined the archi-

tectural decision by the notion of the architecture transformation from a state before

applying the decision towards the state after its application. Based on this notion they

suggested to document architectural decisions and their rationale by means of two

graphs. The first named causal graph, is a directed acyclic graph that organizes deci-

sions (represented by the nodes) in a temporal order. It considers design as a sequence

of decisions (transformations) with which one can trace the genealogy of all made de-

cisions. The second graph represents another aspect of the transformations, which is

the selection of architectural patterns or tactics allowing the implementation of archi-

tectural decisions. This gives all architectural elements as they exist in the software

architecture at a given time during development. The combination of the two graphs

provides answers about the manner in which the software architecture takes a certain

form, i.e. all architectural decisions in a chronological order of appearance on the ar-

chitecture by means of the causal graph, as well as their impact on the architecture

represented by a structural graph for a given level of the causal graph. Both graphs can

32 Chap 2. State of the art

provide valuable information about software architecture and thus improve the qual-

ity of the architectural design process. They provide the reasons for all made decisions,

and unnecessary paths already chosen.

In [Capilla et al., 2007], the authors proposed a way to characterize the archi-

tectural knowledge particularly architectural decisions in order to define a manage-

ment process of these latter under an evolution context. The greater part of this

knowledge remains implicit in the architect’s intentions and tends to disappear over

time carrying with it all the reasoning (alternative solutions, chosen paths) that is

related to the current software architecture. This work, reinforces further the idea

of documenting architectural decisions as first-class entities explicitly during the

software architecture development process. To this end, the authors defined at-

tributes to describe architectural decisions by separating according to their degree

of importance, mandatory attributes and optional attributes. The first class intro-

duces information associated with architectural decisions that should be defined

throughout the system lifetime, including a decision name and description, the

constraints, the dependencies (between decisions), the status, the rationale, the

design patterns, the architectural solution, and the requirements. The sec-

ond class provides additional information that can be chosen according to user prefer-

ences such as, the alternative decisions, assumptions, pros and cons, category

of decision, or quality attributes. In addition to these attributes, they have de-

fined attributes to support the evolution of architectural decisions, including the date

and version, the obsolete decision, the validity, the reuse times and rating,

and the trace links. Architectural decisions are described by the decision model

which is part of the meta-model proposed by the authors for the construction and

evolution of architectural knowledge. The other two parts of the meta-model are:

the “Project model” that contains information for building software architecture, and

the “Architecture” representing the software architecture described by one or more

architectural views. The meta-model integrates two different types of architectural

knowledge: the “Product” type which describes architectural decisions through the

attributes shown above, and the “Process” type that expresses the decision-making ac-

tivities undertaken by architects to store, manage, assess, document, communicate,

discover and reuse architectural design decisions.

Kruchten et al [Kruchten et al., 2009], confirm the need to integrate architectural

2.2. Literature review 33

decisions and their rationale as first-class entities in software architectures documen-

tation. They presented a historic evolution of the software architecture representation,

which covers three periods. The first focuses on the use of architectural views, notably

with the emergence of the famous 4+1 view model. The second is characterized by the

appearance of new methods which complemented the description of views, such as

IBM’s RUP (Rational Unified Process) method, or SEI (Software Engineering Institute)

methods of such as ATAM (Architecture Trade-off Analysis Method), ADD (Attribute

Driven Design) and SAAM (Software Architecture Analysis Method). All these methods

are used for software architectures analysis and evaluation. The authors mentioned

that the common point of these methods is the use of architectural decisions, which

brings us to the last period that highlights this notion. It is interested in investigat-

ing the representation, capture, management, and documentation of design decisions

made during the construction of architectures. Kruchten reinforced this idea and in-

cluded in the 4+1 view model, the “decision view” that incorporates design decisions.

The authors provided guidelines to allow the capture and representation of architec-

tural decisions, and help architects to document them.

In [Durdik, 2011 ; Durdik et Reussner, 2012 ; Ton That et al., 2012], the authors pro-

posed a process which is based on the use of a Pattern catalog to document patterns as

identified architectural design decisions. Indeed, in [Durdik, 2011 ; Durdik et Reussner,

2012] the authors use questions to help architects in selecting and validating the most

appropriate patterns.

2.2.2 Software quality documentation

The term “quality” comes from the Latin “qualitas”, derived from the word “qualis”

meaning “what”. It signifies the nature of an element. The quality concerns unquan-

tifiable characteristics, which opposes it linguistically to quantity. The term “quality”

has been associated with software since a long time. Since the appearance of the earli-

est methods of software development, we began to identify indicators that can help to

give a global appreciation of a software.

The term “software quality” is a complex concept that exposes several facets.

Among these facets, we find the quality of a software product, the quality of a soft-

ware process, which covers various software development phases, or also the quality

of software resources. We present in this section an overview on the different meth-

34 Chap 2. State of the art

ods for documenting the quality of a software product. Two approaches are discussed,

the quality models aiming at characterizing the quality of a finished software product,

and the one that makes use of software architectures, which are considered as specific

software products, to document quality properties.

Quality models

Research conducted in quality modeling have produced over the last thirty years, a

multitude of quality models that have been applied at different degrees of success. De-

spite the diversity and heterogeneity of existing quality models, there is no clear defi-

nition of what is a quality model. This stems from the fact that, these apply in different

contexts, and have rather distant targets ones of each other.

In [Deissenboeck et al., 2009], a quality model is defined as a model that aims to

describe, evaluate and/or predict software quality. This definition proposes the classi-

fication of quality models according to three different objectives namely the definition,

assessment, and prediction of software quality, thereby separating these models into

three categories: definition models, assessment models and prediction models. The

work of [Kläs et al., 2009] provides a broader classification scheme, of a wide range

of quality models, the best known in the literature. Inspired by the GQM (Goal/Ques-

tion/Metric) Template the authors provide five dimensions for classification which are:

1) object: specifies what is being examined by a quality model. The major classes of

objects are products, processes, and resources; 2) purpose: specifies the intent/mo-

tivation of quality modeling (specify, measure, evaluate, monitor, predict, improve,

manage, etc.); 3) quality focus: specifies the quality characteristic being modeled; 4)

viewpoint (stakeholder): specifies the perspective from which the quality characteris-

tic is modeled. The viewpoint may be, for example that of the developer or the user; 5)

context: specifies the environment in which the quality modeling takes place.

By fixing the first two dimensions (object: the products and the purpose: spec-

ify, define, control, improve and manage), we will thus limit ourselves to present in

the remainder of this section, the main approaches for the documentation of software

product quality.

The most popular quality models are based on a decomposition approach com-

monly known by the name of FCM (Factor-Criteria-Metric) quality models. They are

usually designed as a tree where the higher level of the hierarchy defines high-level ab-

2.2. Literature review 35

stract quality attributes and the lower level defines concrete quality criteria that can be

measured by metrics.

One of the most known models is that of McCall [McCall et al., 1977]. It includes

eleven factors covering three perspectives to define and identify the quality of a soft-

ware product. The first perspective represented by maintainability, flexibility and

testability covers the software product revision (the ability to undergo changes). The

second concerns the product transition that defines the software product adaptation

to new environments. It is represented by the portability, reusability and interoper-

ability. The last perspective is interested in product operation. It has the following

attributes: Correctness, efficiency, reliability, integrity and usability.

So the model describes these factors in a hierarchy of twenty three quality crite-

ria. The eleven factors describe the software external view, as perceived by users. The

twenty three criteria describe the software internal view, as perceived by developers.

The last level of this decomposition represents the metrics that are associated with cri-

teria. They are used as the measurement method and are intended to capture some

aspects of quality criteria.

The second of the founders models is that of Barry Boehm [Boehm et al., 1976]

proposed in 1976. It resembles that of McCall in that it uses the same decomposition

method to characterize quality attributes. It is a hierarchical model structured on three

levels. The top level addresses software users concerns:

• As-is utility : the extent to which the as-is software can be used, from three points

of view: ease of use, reliability and efficiency

• Maintainability : to what extent should it be easy to maintain.

• Portability : ease of changing software to accommodate a new environment.

The intermediate level, represents seven quality attributes which together describe

the expected qualities of the software system: portability, reliability, efficiency, usabil-

ity, testability, understandability, flexibility. The last level in Boehm’s model, repre-

sents the metrics associated with the characteristics of the previous level. This model

is based on a wide range of characteristics compared to that of McCall, and is particu-

larly focused on maintainability.

36 Chap 2. State of the art

FURPS [Grady, 1992] is another model that was proposed later by Robert Grady at

HP (Hewlett-Packard), less known than the previous two models. It was extended by

IBM Rational Software to FURPS+. FURPS means: Functionality, Usability, Reliabil-

ity, Performance and Supportability. The model decomposes characteristics into two

different categories of requirements: i) functional: represented by “functionality” char-

acteristic which identifies a set of features, and includes the “security” quality charac-

teristic; and ii) non-functional (URPS) represented by the following features:

• Usability : may include human factors, aesthetics, user documentation, etc;

• Reliability : may include the frequency and severity of failure, recoverability, pre-

dictability , Mean Time Between Failures;

• Performance : include efficiency, response time, resource consumption, etc;

• Supportability : include maintainability, testability, compatibility, adaptability,

etc.

In 1996, Geoff Dromey [Dromey, 1995 ; Dromey, 1996] introduces a new quality

model associated with software products, which resembles its predecessors. Dromey’s

vision is that we can not build high-level quality attributes such as maintainability or

reliability directly in a software. Instead, we can identify and construct a coherent set

of internal tangible properties or characteristics (of low-level). These latter determine

and exhibit external high level quality attributes. The author has identified three main

elements for a generic quality model: i) the product properties which influences the

quality; ii) high-level quality attributes; iii) and means for linking the product proper-

ties with the quality attributes. A product property in the model of Dromey is linked to

a component of a product type in software development, starting from requirements

specification, to implementation. A product is composed of multiple components.

Some are simple, others are made of a set of simpler components. The model iden-

tifies four types of product properties. For each type of property it defines a number of

quality attributes that are influenced by these latter :

• Correctness properties : define the properties to be respected, either directly by

a component or a composition of components (a context) to function properly.

For example, a variable in an implementation (product) is a component that may

2.2. Literature review 37

have as a quality-carrying property “assigned” or “precise”. If a variable does not

carry any of these properties, the correctness may be affected. This type of prop-

erties affects the “Functionality” and “Reliability” quality attributes.

• Internal properties : specify the normal form of a component that defines its

interior (structure) and that should not be violated whatever the context. For

example, the body of a loop must always ensure progress toward termination.

These properties measure if a component has been well deployed or composed.

They affect “Efficiency”, “Maintainability”, “Reliability” quality attributes;

• Contextual properties : these properties are associated with the individual com-

ponents, and address quality problems arising from a composition of a large

number of components. They affect the “Reusability”, “Portability”, “Maintain-

ability”, “Reliability” quality attributes;

• Descriptive properties : determine if a software product is easy to understand

and use for its intended purpose. For example, giving a name to a variable that

is not suggestive may affect descriptive properties. They affect the “Usability”,

“Reusability”, “Portability”, “Maintainability” quality attributes;

Links between properties and quality attributes are not formally established, but

are based on the classification of properties. For example, in order for a product to

satisfy its functionalities, in a reliable way, correctness properties of all its components

should be satisfied. Thus, the latter affects “Functionality” and “Reliability” quality

attributes. Note that the links just mentioned for each property type, are specific to the

implementation quality model. The model was primarily applied on implementation

products, but it is generic and allows to build quality models for the requirements or

design.

Kitchenham et al [Kitchenham et al., 1997] proposed a quality model called SQUID

(Software QUality In Development) with a hierarchical structure encapsulating and in-

spired by the first version of ISO/IEC 9126 model [ISO, 2001] and McCall model. It

is a composite model reflecting the different aspects of a quality model as compo-

nents representing the structure and content of the latter. It contains elements of both

models (quality characteristics, quality sub-characteristics, internal software proper-

ties that affect sub-characteristics, and measurable properties). The authors state that

38 Chap 2. State of the art

Figure 2.4 : An excerpt of the ISO/IEC 9126 quality model

SQUID’s philosophy is that, you can not get a specification of quality requirements

only by referring to a quality model, but from the specification of the desired behav-

ior of a specific product. Therefore, a third component is necessary, in addition to the

structure and content to meet quality requirements, which is that of a product qual-

ity model. This latter is the instantiation of a quality model of a specific product. In

this model all elements are measured by metric assignment and values. The SQUID

approach for software quality modeling is provided with a set of tools for specifying

quality requirements.

ISO has provided in 2001 a new version of ISO/IEC 9126 [ISO, 2001] standard to

evaluate software products: quality characteristics and guidelines for their use. The

standard is based on the model of McCall and Boehm. Aside from being structured

in the same way that these models it includes the “functionality” characteristic as well

as the identification of internal and external quality characteristics of a software prod-

uct. It consists of four parts: i) quality model; ii) external metrics; iii) internal metrics;

and iv) quality in use metrics. The quality model (See figure 2.4) defines a hierarchy

of quality characteristics (factors) on two levels, the quality characteristics (functional-

ity, portability, maintainability, efficiency, usability, reliability) and their corresponding

sub-characteristics.

The quality characteristics are defined as follows:

• functionality: The capability of the software product to provide functions which

2.2. Literature review 39

meet stated and implied needs when the software is used under specified condi-

tions.

• portability: The ability of a software to be moved from one environment to an-

other and ease of integration, adaptation, installation and co-existence.

• maintainability: The ability of software to be easily analyzable, testable and mod-

ifiable.

• efficiency: The ability of software to provide its services effectively with respect

to the execution time and system resources consumption.

• usability: The ability of software to be attractive, easily understandable and op-

erable.

• reliability: The ability of software to provide its services under specific conditions

and for a certain period

Despite this diversity of the proposed FCMs models and their popularity, they

showed some limitations and have received several criticisms [Deissenboeck et al.,

2009 ; Kitchenham et al., 1997 ; Deissenboeck et al., 2007 ; Marinescu et Ratiu, 2004 ;

Broy et al., 2006]. Therefore, they failed to establish an acceptable basis for quality

evaluation. The reason for this is the desire to condense quality attributes, as complex

as maintainability into a single value and the fact that these models are usually limited

to a fixed number of levels. Most of these models suffers from the lack of guidelines

and decomposition criteria of complex quality concepts, which makes difficult their

refinement and their localization in some large size quality models (eg. Usability can

not be decomposed to measurable properties in only two steps according to the three

levels of FCM models). It is also reproached, to this type of models to not be able to find

the real causes of quality problems during analysis or evaluation of an object-oriented

design. This is due to the significance of the metric values that reflect the presence of a

design or implementation problem (the symptoms) and not the problem itself which

makes treatment difficult [Marinescu et Ratiu, 2004].

Other works have been conducted at the SEI (Software Engineering Institute) which

led in 2002 to a model of a different kind that offers quality attributes characterization

of a software architecture, structured into three classes [Bass et al., 2003]. The first

class covers the system qualities and comprises the following attributes: availability,

40 Chap 2. State of the art

modifiability, performance, security, usability and testability. The authors state that

other attributes can be found and added in the taxonomy of quality attributes, such

as portability, captured as the modification of the platform. The second class is inter-

ested in business qualities and identifies some attributes which are: time to market,

cost and benefits, projected lifetime of the system, targeted market, rollout schedule

and integration with legacy systems. The third class covers the qualities directly related

to architecture: conceptual integrity, correctness and completeness, and buildability.

All these qualities represent goals for the software architect. The authors found that

among the raised issues, that the definitions provided for these quality attributes are

not operational and can overlap, thus not reflecting the context in which they are ap-

plied. For example, all systems are modifiable with respect to a set of changes and are

not with respect to another. Or, to which quality should we classify an aspect, such

as the failure of a system (availability, security, and usability). To remedy this problem

they proposed a mechanism to characterize quality attributes through quality attribute

scenarios which are comprised of six parts:

• Source of stimulus : it is the entity that generated the stimulus (a human, a soft-

ware system, or other actuator);

• Stimulus : it is a condition that needs to be considered when it comes at a system;

• Environnement : represents the conditions under which the stimulus occurs;

• Artifact : represents stimulated parts in the system, or the entire system;

• Response : The response is the activity undertaken after the arrival of the stimu-

lus;

• Response measure : the response should be measurable, in such a way the re-

quirement can be tested.

More recently, in 2003, Georgiadou et al. have proposed GEQUAMO (Generic Qual-

ity MOdel [Georgiadou, 2003]). This model encapsulates the requirements of different

stakeholders (developer, user, etc.) in a dynamic and flexible manner allowing each of

them to build and customize its own model, which reflects the importance of each re-

quirement, according to his/her point of view. It is a multilevel model that is built using

2.2. Literature review 41

a combination of two types of diagrams namely CFDs (Composite Features Diagram-

ming) developed by the author and “Kiviat” diagrams. CFDs provide a qualitative way

to describe the profile of an element under evaluation. They consist of a set of concen-

tric circles which express increasingly lower details (sub-characteristics). The charac-

teristics and sub-characteristics are built gradually with less detail in a tree structure.

At each node and based on the number of sub-characteristics, we can build a polygon

(triangle, rectangle, etc.) which constitute Kiviat diagrams. These latter, can represent

quantitative information on requirements or characteristics of each level.

To meet the needs of the problematic discussed in chapter 1 of this thesis, this im-

poses the choice of a quality model for the characterization of the different quality

attributes (concertized by architectural decisions) of a software product. However, the

models which have been synthesized, offer this ability but in different ways. Indeed

each model has its own vision and defines its own characteristics despite the fact that

together these models share a variety of quality characteristics. Most of these mod-

els constitute the result of personal efforts, which explains this diversity in points of

view and interpretations for their quality characteristics. In addition, these models are

mainly applied to a software product in general, except for the Dromey model which

mainly focused on implementation products (codes). Similarly to the SEI model that

provides a classification of quality attributes for software architectures, but does not

interest us for certain types of attributes like for example, business properties. So we

chose to adopt the ISO 9126 standard to represent and characterize the quality prop-

erties. This one, constitutes the result of the international community consensus for

the quality of a software product, and applies to all levels of the development process.

Indeed this model seems to be the most appropriate for the purposes of this thesis be-

cause it is the most complete and representative of quality characteristics for service-

based systems at design time. Indeed, we consider in this thesis static quality charac-

teristics which are measurable at design time. Dynamic quality characteristics such as

response time are not taken into account.

Quality attributes documentation in software architectures

Many works have been proposed on quality requirements capture and specification.

These works try to anticipate quality assessment, and process the quality aspect by

capturing and documenting quality requirements (commonly called NFRs for Non-

42 Chap 2. State of the art

Functional Requirements) in software architectures. Considered as an important arti-

fact in software development, software architecture appears to be an appropriate level

to study the quality of software.

The conducted research on NFRs could be classified into two categories, product-

oriented and process-oriented approaches. The first class covers the description of

non-functional requirements in order to measure or observe them on a software prod-

uct, while the second proposes the means that aims to identifying, modeling, and man-

agement of NFRs. These two approaches (product-oriented and process-oriented) are

complementary and together enable to represent and use the non-functional require-

ments [Mylopoulos et al., 1992].

One of the major works in the literature is that of Mylopoulos et al. [Mylopoulos et

al., 1992]. Following a process-oriented approach the authors propose a framework for

the representation and use of Non-functional requirements during the development

process. The framework includes five components allowing, following a goal-oriented

process, to justify and argue design choices made to satisfy certain software quality

requirements. These components are: i) a set of goals for representing NFRs, design

decisions and arguments in support of or against other goals; ii) a set of link types

for relating goals or goal relationships to other goals; iii) a set of generic methods for

refining goals into other goals; iv) a collection of correlation rules for inferring potential

interactions among goals; v) finally, a labeling procedure which determines the degree

to which any given NFR is being addressed by a set of design decisions. The authors

consider NFRs as goals to be achieved by validating the right design decisions and

their rationale, considered in turn as goals. Thus, the system design is guided by NFRs,

by building a graph containing the possible trade-offs between design decisions that

implement them and their Rationale. This approach addresses qualitatively quality

requirements satisfaction by anticipating the evaluation during the design process.

In Cyneirios et al. [Cysneiros et Sampaio do Prado Leite, 2004] propose an approach

based on Mylopoulos’s framework for capturing and representing NFRs and their in-

terdependencies. Their approach shows the integration of NFRs in functional require-

ments models. The authors were interested in conceptual models expressed in UML

by incorporating NFRs descriptions in class, sequence, and collaboration diagrams.

Other design methods in the literature allow the construction of software architec-

tures that address Non-functional requirements. Bass et al. [Bass et al., 2001], proposed

2.2. Literature review 43

ADD method (Attribute-Driven Design) which is similar in the spirit to Mylopoulos’s

method. It follows an architectural design process guided by quality requirements.

The idea behind is that design decisions are influenced by the quality requirements

to meet. The authors proposed for this purpose the concept of attribute primitives

(architectural patterns), which are collections of components and connectors collab-

orating to satisfy some quality attributes. These attributes are documented as general

scenarios. Examples of attribute primitives are a “data router”, a “cache and the com-

ponents that access it”, or “fixed priority scheduling”. Each of these primitives targets

and realizes a quality attribute. For the given examples, we have the “Maintainabil-

ity” and “Performance”. Indeed, the first primitive limits the knowledge that producers

and consumers have on each other and thus affects Maintainability. Similarly, the sec-

ond primitive keeps a copy of data accessible to components that use it providing thus

better performance.

The architectural design in ADD follows a decomposition and refinement process.

At each decomposition step, attribute primitives are selected to satisfy a set of qual-

ity scenarios. Then functionalities are allocated to instantiate connectors and com-

ponents provided by the primitives. Take the example of the attribute primitive “data

router” as a solution for the quality attribute “Maintainability”. This primitive defines

three types of design elements: “Producer”, “Consumer” and the “data router”. Ac-

cording to a certain functional requirements specification, different functions are de-

termined. A sensor function that produces data value, a guidance function as well as

a diagnosis function consuming the data value. The element type “Producer” is in-

stantiated into a “sensor”. The element type “Consumer” is instantiated for functions

“guidance” and “diagnosis”. While the “data router” could be instantiated into a “black-

board”.

In [Bass et al., 2003], the authors proposed architectural tactics, in the same spirit

as the primitive attributes to guarantee quality characteristics such as maintainability,

performance and security in software architectural design.

The ABAS (Attribute-Based Architectural Style) were proposed by Klein et al [Klein

et al., 1999] as an improvement of architectural styles by associating to them reasoning

frameworks based on quality attribute models. The ABAS can be used during soft-

ware architecture analysis and design. They allow reasoning about architectural de-

cisions guaranteeing certain quality attributes. The characterization of these latter

44 Chap 2. State of the art

is performed based on scenarios. The authors proposed several types of ABAS, such

as: the synchronization ABAS for performance quality attribute, the layered ABAS for

maintainability, and redundancy ABAS for availability.

In [Niemelä et Immonen, 2007] the authors proposed QRF method (Quality Re-

quirements of a software Family), which focuses on the representation and transfor-

mation of quality requirements to architectural models for software product families.

It also allows quality evaluation in the early stages of development. Quality require-

ments representation in a software architecture is done through a set of architectural

views. This step which constitute the final step after a series of analysis steps (impact,

quality, variability, and domain) includes two activities: selecting the styles and pat-

terns supporting different qualities and describing specific qualitative constraints.

Kim et al. [Kim et al., 2009] presented an approach for representing NFRs in soft-

ware architecture using architectural tactics as reusable architectural building blocks.

The latter and their relationships are represented as Feature Models and their seman-

tics is defined with the RBML language (Role-Based Meta-modeling Language). Archi-

tectural tactics satisfying quality attributes are selected and composed into one tactic

encompassing all the desired qualities. The resulting tactic is then instantiated to cre-

ate a software architecture that incorporates NFRs for the system under development.

Marew et al [Marew et al., 2009] proposed an approach inspired from the works

of [Mylopoulos et al., 1992 ; Chung et Nixon, 1995 ; Chung et al., 1999]. It aims at inte-

grating NFRs handling in analysis and design phases as with functional requirements

to fill the gap between the elicitation and implementation of NFRs. The authors in-

troduced in the phases prescribed by the object-oriented approach other phases rel-

evant for modeling NFRs in the analysis and design phases. They provided a tactic’s

types classification scheme to model NFRs namely Analysis Tactics (AT) and Design

Tactics (DT). The first category affects the analysis model while the second affects the

design model. For the first category, they grouped tactics under the types for Addi-

tion of Operations/Attributes, Addition of New Classes, Restructuring, and Using Spe-

cific Algorithm/ADT. Under the design tactics, we find tactics for Introducing New Be-

havioral Elements and Modifying Existing Elements. They start first in their approach,

by designing the “Softgoals Interdependency Graph”(SIG) [Mylopoulos et al., 1992 ;

Chung et Nixon, 1995 ; Chung et al., 1999] and classify the tactics that realize NFRs

according to the classification scheme. Then, ATs are modeled using “classpects” [Ra-

2.2. Literature review 45

jan et Sullivan, 2005] (combines the concept of class and the one of aspect), classes,

new algorithms, etc after thorough understanding of the analysis model. Design tac-

tics are also modeled using the design model that results from the design phase. The

output of this step is an integrated design model that satisfies both FRs and NFRs of

the user. After tactics modeling (ATs and DTs), tradeoff analysis is made to analyze the

relationships among NFRs. The authors proposed Q-SIG, an improved quantified ver-

sion of SIG coupled with prioritization on NFRs to arbiter between different competing

requirements.

In [Al-naeem et al., 2005], Alnaeem et al proposed “ArchDesigner”, a quality-driven

approach for facilitating the architectural design of distributed software applications

which use optimization techniques to determine optimal combination of design alter-

natives that best satisfy stakeholder’s quality goals and project constraints. Architec-

tural design decisions in their work are high level architecture design decisions (the

choice of Java EE, for example) to be applied in some ways, which are proposed to the

architects in combination with other decisions as candidate (output) software archi-

tecture that satisfies the quality goals.

In [Choi et al., 2006], the authors present an approach, called “AQUA”, to quality

achievement at architectural level based on design-decision making. They used an

evaluation contract (between users and software architects) for quality attributes iden-

tification, then a process to manually find high level architectural design decisions

achieving these quality attributes. The authors of this paper used a decision graph

transformation strategy to analyze the impact of applying a design decision alternative

on the software architecture.

2.2.3 Quality achievement in service-based systems

A plethora of works have been proposed in the literature to integrate and satisfy quality

requirements in service-based architectures such as, languages, middlewares, compo-

sition algorithms, models and processes. The focus of these works ranges from the

specification to the maintenance software process phase. A more detailed very recent

study on the different approaches dealing with quality requirements in service based-

systems is proposed in [Neto et al., 2016].

In the following we present some works dealing with the so called QoS-aware com-

position problem [Zeng et al., 2003] which consists in, given a composition, finding the

46 Chap 2. State of the art

set of services that optimizes some QoS attributes under given QoS constraints.

In [Canfora et al., 2008] the authors proposed a QoS (Quality of Service) aware com-

posite service binding approach which is based on Genetic Algorithms (GAs). This ap-

proach dynamically satisfies and maintain quality goals of existing (already designed)

composite Web services. It operates on designed composite services such as those

written using WS-BPEL language. The composite service defines several abstract ser-

vices each of which can be bound to a list of concrete services. The approach deter-

mines the optimal set of concretizations (a correspondence between abstract and con-

crete services) by binding at execution time for each abstract service the concrete ser-

vice that meets the quality constraints imposed by the SLA (Service Level Agreement)

contracts (between the provider and the consumer of a service). To do so, the approach

estimates the QoS of the composite service using a formula that defines aggregation

functions for each pair quality-attribute/composition language control statement such

as Sequence, Switch, Loop or Flow. It also predicts Qos deviation (the QoS of the actual

composite service becomes not compliant with the agreed SLA) at execution time by

re-binding the composite service.

The work of [Klein et al., 2011], similarly to the work mentioned above, uses a

heuristic approach to find near-optimal solution that represents a service composition

with the desired QoS. They first use an algorithm based on linear programming which

has a low polynomial time complexity to compute an initial solution close to the op-

timal one of the composition problem. The aim is to influence positively the running

time of the heuristic algorithm. The computed initial solution constitutes then the in-

put for the heuristic algorithm based on Hill-Climbing (a type of genetic algorithms)

that explores a reduced search space. The result is a reduced time complexity while

still achieving near-optimal solutions. Their proposal was validated using simulation-

based experiments.

Feng et al. [Feng et al., 2013] proposed also a dynamic approach to service com-

position taking into account not only initial imposed quality criteria for each involved

service but also their service-dependent QoS attributes. Their approach includes in

the calculation of the service composition QoS optimal combination, the QoS of what

they call “dependent services”. Their claim is that, for example a service provider may

give a discount on the execution cost if a related service provided by the same service

provider is invoked in the same workflow. This fact, may indeed in some situations led

2.2. Literature review 47

to a better result if dependent-services QoS is considered in the composition. The au-

thors proposed graph-based composition algorithms to compute the optimal QoS of a

service combination. They include in their QoS-aware service composition algorithm

among others, support to topological and aggregated QoS constraints. The first ones

concern the structure of the composition graph and allow the user to decide on the

complexity of the generated composition graph. The second ones are useful if the user

needs that the generated graph satisfy some QoS constraints in terms of other quality

attributes.

The above mentioned approaches are based on “global optimization” that consid-

ers the overall QoS attributes and constraints for a composite service and selects the set

of services that satisfy global constraints. Another category of approaches for service

composition are based on “local selection” which identifies an optimal service candi-

date and guarantees QoS criteria for each task in a service composition.

In [Sun et Zhao, 2012] the authors propose a combination of the two approaches

for QoS-aware service composition. They propose a decomposition-based approach

for service composition, in which the utility of a composite service can be computed

from the utilities of component services and the constraints of component services can

be derived from the constraints of the composite service. The method selects com-

ponent services independently to optimize the utility of the composite service while

meeting the global constraints specified by users. It uses utility functions to evaluate

a service by mapping all the QoS attributes into a single aggregated value. Similarly

to other works like the one of [Canfora et al., 2008], utility functions are proposed for

different composition language control statements such as Sequence, Switch, Loop or

Flow to compute the global utility for the composite service by the summation of the

utilities of its component services. Their approach combines the advantages of local

selection and global optimization, and enables the identification of a composite ser-

vice that has a near-optimal utility and meets all the global constraints in dramatically

reduced computation time.

A different kind of work (from those of the QoS-aware composition problem) is pro-

posed in [Baligand et al., 2006], the authors presented a language named “QoSL4BP”

and a tool named “ORQOS” that enable the architect to specify QoS constraints and

some QoS injection mechanisms in Web Service orchestrations. This approach offers

a way to integrate quality requirements as usable information at a functional and run-

48 Chap 2. State of the art

time level, and not at the architectural level. This approach deals with quality require-

ments as extra information which are exploited at a post-deployment time.

In the field of Web service based business processes engineering methods, few

works have been proposed to deal with quality aspects at the design (model) level.

In [Driss et al., 2010] the authors presented an approach to Web service (WS) mod-

eling, discovery and selection. They use an Intentional Service Model (ISM) which they

enhance with quality aspects to configure the WS discovery and selection process. The

selected services satisfy some quality requirements.

The work of [Azmeh et al., 2011] proposed an approach to Web services composi-

tion that satisfy quality requirements. The result of the composition in their work is

a sequence of invocations to services that satisfy dynamic quality attributes achieved

at runtime (e.g., response time). They do not produce service orchestrations which

embody more complex BPEL modeling elements (compared to sequences).

In [Rosenberg et al., 2007] the authors deals with the integration of quality aspects

at the modeling level similarly to what we target in our thesis. However, the input

of their approach is a WS-CDL Web service choreography annotated with SLAs doc-

uments of each partner. The output is a set of BPEL processes and their corresponding

WSDL descriptions (one for each partner) integrating the initial mapped QoS require-

ments of the service choreography. Based on a mapping between WS-CDL and BPEL

a transformation is performed. To bring QoS aspects from the choreography to the

orchestration layer they mapped SLAs documents to WS-QoS Policies (WS-QoS Policy

is their extension to WS-Policy [World Wide Web Consortium, 2007]). WS-QoS Poli-

cies are integrated in the “PartnerLink” element of the BPEL process. However, their

QoS aspects are requirements specified as policies of the BPEL process and not as its

own QoS attributes that should be considered when designing such Web service based

business processes.

The authors in [Mukherjee et al., 2008], propose an approach and a tool that oper-

ate on already designed concrete BPEL orchestrations to compute their QoS in terms

of three run-time measurable quality attributes namely response time, cost, and relia-

bility. To do so, the approach makes use of QoS information of the BPEL orchestration

partner services and certain control flow parameters. These includes among others,

the probability of selecting branches/events in “if” and “pick” activities, the average

2.2. Literature review 49

number of iteration in loops, and for each “catch” or “catchAll” block the fraction of

failures of its associated scope that it successfully intercepts. These attributes are de-

termined from the execution log of the business process. The BPEL process is consid-

ered in this approach as an activity graph. A proposed algorithm computes for each

node three parameters: i) the probability that a node completes successfully execu-

tion, ii) the time of completion of a node and iii) the cost. These three parameters for

the root node of the activity graph give reliability, response time and cost respectively

for the WS-BPEL composition. The approach allows also a designer to analyze the im-

pact of using some fault tolerance technique on the QoS of the BPEL orchestration,

thereby providing a way to achieve high reliability and performance of the designed

orchestrations.

Many QoS calculation methods for a composite service like the above mentioned

exist [Cardoso et al., 2004 ; Jaeger et al., 2004 ; Ardagna et Pernici, 2007 ; Yu et al., 2008 ;

Dumas et al., 2010]. The work proposed in [Zheng et al., 2013] showed some of their

limitations and proposed a method to overcome them. The authors showed also that

such works proved their usefulness in the selection of component services for compos-

ite services.

All the different approaches that we discussed in this section deal with quality as-

pects of service-based systems. The ultimate goal of these works is to build service-

based systems that expose the highest possible quality. However they differ from our

work in what follows:

• The majority of these works focus on the selection of services in an already de-

signed abstract service composition or a simple composition in the form of a se-

quence of invocations. They do not address the actual design of a composition,

i.e. how to arrange the various elements that constitute the composition;

• The quality constraints they deal with relate to dynamic quality attributes spe-

cific to a given service. These attributes must be measured beforehand (their val-

ues must be known, i.e. supplied by service providers). The constraints that we

take into accounts (NFRS), relate to attributes that affect the system as a whole.

They do not set threshold values for these attributes. They give indications to be

considered upstream in the development cycle. Even though in some of these

works, they deal with global constraints, these concern the system at runtime,

50 Chap 2. State of the art

and not its static architecture. Therefore, the nature of the constraints them-

selves (requirements) is not the same.

That is the context where the work we propose in this thesis comes to its utility.

There exist no work in the context of BPEL Web service orchestrations that considers

non-functional properties during the design of such service-based systems. Indeed, in

our work we propose to deal with quality attributes such as performance, reliability of

Web service orchestrations by integrating them at design time. The resulting service

orchestrations could then be used in the design of other more complex service orches-

trations (compositions) by using their QoS attributes such as response time as supplied

by service providers. Web service composition QoS calculation methods [Mukherjee et

al., 2008] could then be used to evaluate and/or enhance the run-time QoS attributes

of the designed web service orchestration. Such QoS attributes could be published

in SLA (Service Level Agreement) documents and used by potential consumers of the

service composition.

2.2.4 Assistance to software evolution and impact analysis

Despite the positive sens of the term “evolution”, it may be of harmful consequences

when associating it to software. Indeed, software evolution will not lack undesirable

consequences if it is not done in a controlled manner. Thus, when trying to meet new

requirements by introducing them into the architecture of a software system, or trying

to perform maintenance operations by making changes on the latter, we can easily af-

fect other requirements (functional and non-functional) and deviate from the require-

ments specification initially planned. This evolution process, has as effects to bring up

phenomena that have had different names by researchers in the literature, such as :

“Software Aging” [Parnas, 1994], “Architectural Erosion” [Merkle, 2010], “Design Ero-

sion”, “Code Decay” [Eick et al., 2001], or “Architectural Degeneration” [Lindvall et al.,

2002].

Despite the diversity of these terms, these phenomena agree on the fact that soft-

ware becomes, after a succession of changes, difficult to maintain and evolve. There-

fore, this makes the software unusable. This situation shows the need to make use of

methods and techniques to be able to monitor and control changes in the software.

Hochstein et Lindvall [Hochstein et Lindvall, 2005] presented in their work the

2.2. Literature review 51

above mentioned phenomena. They represented them by the term “degeneration”

which encompasses them, despite the fact that researchers who have proposed these

names were referring to different levels of abstraction namely the design level (Archi-

tectural Erosion and Design Erosion) and the implementation level (software aging

and Code Decay). The authors discussed various ways to handle the control of soft-

ware evolution. They introduced various approaches starting from the diagnosis, treat-

ment, research, to prevention following the medical model. Degeneration diagnosis

consists in identifying, when the software degenerates. In this phase, we find in the lit-

erature architecture recovery solutions that consist in extracting from the source code

and other software artifacts, concrete software architecture. These methods are placed

in the field of reverse engineering. The idea is to compare the current architecture with

the initially planned and see if violations at the architecture level were detected. Most

of the mentioned methods are focused on identifying architectural styles and design

patterns. The diagnosis can be used as a pretreatment phase to correct the detected

problems. Techniques for dealing with degeneration are those of refactoring which

consist in restructuring code without changing the system behavior. The degenera-

tion research aim at understanding the evolution to find out how systems degenerate.

Among the mentioned techniques, we find those of architectural changes visualization

through versions. These approaches apply after real evolution of software, that is, after

the application of the desired change has taken place on the software and the architec-

ture of the latter has degenerated. Even though these methods ensure that the changes

are reflected correctly on the targeted parts they involve extra costs due to correction

operations they bring. It is therefore better to predict changes to be able to avoid them

(prevention is better than cure). This, is about taking precautions and prepare the soft-

ware to potential changes that may occur in the future.

Other authors [Burge et Brown, 2006] have emphasized the importance of Decision

Rationale (DR) taken during the development process and showed their usefulness in

the software system evolution. The authors proposed the SEURAT (Software Engineer-

ing Using rationale) system as a maintenance support that allows to exploit DR by giv-

ing the possibility of representing, capturing and inferring on the latter in order to de-

tect eventual inconsistencies and indicate design problems. The representation of DR

is made by RATSpeak, which is based on the DRL language (Decision Representation

Language). RATSpeak is a structuring that includes a set of elements to express DR.

Elements defining the DR proposed by the authors are: Requirements, Decision prob-

52 Chap 2. State of the art

lems, Questions, Alternatives, Arguments, Claims, Assumptions, Argument ontology

and Background knowledge. The capture of these elements is done by SEURAT system

that offers a tightly integrated tool with Eclipse IDE, making the Rationale documen-

tation process as an integrated part for developers and not separate from the devel-

opment process. This increases therefore the chances for this very important form of

knowledge to be easily saved. Developers can associate, among others, DR with code

and specify parts of the code that are implementing them via SEURAT functionalities.

The system allows also to infer the knowledge embedded in the code and assist the de-

veloper during certain maintenance operations. It offers a number of type inference

allowing the control of the knowledge structure (lack of information) and to assess the

consistency of a design which resulted from a decisions sequence. SEURAT assists the

system users while making maintenance operations, by informing them about the im-

pact of a modification on the choices that have been made. It allows eventually to

assist the maintainer of the system during improvement operations, which is to bring

new system functionalities through new decisions, by checking that they are consistent

with the system’s earlier implemented decisions.

In the context of object-oriented software systems evolution management, Steyaert

and al. [Steyaert et al., 1996] proposed the concept of reuse contract in a perspective of

a good reuse of software artifacts. It is about the control and manage of propagation

of changes undertaken on models by modifying the object classes (reusable artifacts)

that compose them, by the use of reuse contracts. The latter documents the intentions

of both parties, the developer of the artifact and the one that will reuse the artifact. A

reuse contract is an interface that contains the specification of a set of methods. Each

method is identified by a name with a clause of optional specialization listing only the

methods required for the design of the method, and can be of abstract or concrete type.

The utility of reuse contracts was shown on abstract classes as reusable artifacts, using

inheritance as reuse mechanism. The approach has been exploited on conflicts prob-

lems arising from changing super-classes of a class hierarchy of an object model, par-

ticularly on the exchange of parent classes by other classes. Reuse contracts are usually

implemented by abstract classes and encapsulate some design information on depen-

dencies among methods within them. Therefore, they constitute a source of informa-

tion to detect inconsistencies in the class hierarchy of an object model. The authors

distinguished three basic operators that are applied to reuse contracts: concretization

to implement the abstract methods, refinement allowing methods overloading, and

2.2. Literature review 53

extension that allows the addition of new methods. Three additional operators apply

on reuse contracts: abstraction, coarsening, and cancellation. They enable to apply

the inverse operators of the first ones and derive from the basic contracts associated

with parent classes, contracts associated with subclasses. These operators consolidate

reuse contracts with additional information on how the classes will be reused.

Tom Mens and Theo D’hondt [Mens et D’Hondt, 2000] proposed later a general-

ization of reuse contract formalism by integrating it in the UML metamodel. They

introduce the concept of evolution contract for design conflicts detection in an ob-

ject model. The contract specifies the clauses of the provider and the software artifact

modifier. The former describe the artifact properties, and the second specifies how

the artifact has to be altered, therefore, evolve. Generally, the idea is to add evolu-

tion contracts between the elements of an object model representing a given phase.

The contract must specify evolution actions that the developer must follow during the

modifications. These constitute the basis of the conflict detection process after the

model has evolved. The authors used the concept of contract types to restrict opera-

tions governing the work of the modifier. Four types have been proposed: Add, Delete,

Connection, and Disconnection. An evolution contract is defined as an extension to

the UML metamodel. The semantic of a modification (contract type) is specified by

OCL rules. The introduction of evolution contracts in the UML meta-modeling level

allowed attacking evolution problems on different levels of abstraction, starting from

the requirement specification to implementation.

Other works focused on component-based software systems. Also based on the

notion of contract, Andreas Rausch [Rausch, 2000] proposed the concept of “Require-

ments/Assurances” contracts as support to manage the evolution of a component-

based system. They were used as part of a development methodology that takes into

account the evolution. The establishment of the requirements/assurances contract is

done using functions that determine the obligations of each participant (component).

They allow at one hand (the REQUIRES function) to calculate from a set of documents,

the set of properties (defined by predicates) required by a component (requires from its

environment). On the other hand (the ASSURES function) computes the set of proper-

ties provided by the component to its environment. Once all the properties specified

for each component, the designer explicitly defines the behavioral dependencies be-

tween components, by specifying for each component assurances that guarantee other

54 Chap 2. State of the art

components needs. The formulation of these dependencies constitutes a require-

ments/assurances contract. The next step is to check at each evolution step (defined

as a change in the development documents in a period of time) if the needs of a given

component are satisfied by assurances of another component which has undergone an

evolution. The formal structures proposed in this work allow describing a component-

based or object-based system. The evolution of these descriptions involves changes

that might be undesirable in some cases. These latter are detected through contracts

requirements/assurances that capture the dependencies between the components of

the system and assist the developer during the modifications. However, the provided

assistance by these contracts treats the functional aspect (business) and do not care

about the impact of the changes on the systems qualities.

Madhavji and Tassé [Madhavji et Tassé, 2003] proposed an evolution policy-driven

approach to preserve the qualities and requirements imposed on the software during

its evolution. The approach introduces two concepts. The first is a mechanism which

enables verification of the violation of certain evolution policy. The second is a contex-

tual framework that constitutes a support for activities which enable the evolution of

the software system. The evolution policy is formulated as a constraint in the first order

logic, such as the requirement stating that the estimated sum of the number of lines of

code added to all system components must not exceed the growth average plus an er-

ror percentage. The verification mechanism, which must collect information from a

product or process model to improve, assists the developer of the system by ensuring

the validity of the constraint and notifying him by the result. The result is analyzed

and provided feedback information is presented to the developer. The latter uses this

information to decide what action to take and make improvements to the model.

In [Mosser et Blay-Fornarino, 2013] the authors proposed an activity meta-model

“ADORE” largely inspired by the BPEL language grammar, that supports business pro-

cess evolution. The meta-model is based on first-order logic, where process activities

are represented as nodes, and relations between activities as edges. The meta-model

handles concepts dedicated to support a compositional approach of business process

design, with the definition of fragments of processes. Such fragments define additional

activities that aim to be integrated into other processes and adequately support their

evolution. A weave algorithm was proposed to this end that manage a set of defined ac-

tions by the meta-model. However, the proposed approach emphasizes on behavioral

2.2. Literature review 55

evolution of business orchestrations at the model level and do not deal with quality

aspect when evolving such business orchestrations.

There are many works proposed in this field that agree on the need to make use of

methods and techniques to be able to monitor and control changes in the software,

and more particularly those related in our case to quality requirements.

2.2.5 Discussion

In the second part of the state of the art we covered the main areas that are close to our

work. The works using ADLs as a means for documenting architectural decisions, work

on abstract representations of architecture. These representations employ the notions

of components, connectors or configurations to describe architectural decisions. This

does not match the types of architecture that we handled in this thesis, which rep-

resent service architectures implemented by a language that allows to build concrete

architectures (BPEL Web Service Orchestration). Moreover, most of the ADLs are not

adapted to document such specific architectures. Indeed, despite the fact that most

of them are provided with constraint languages and mechanisms allowing the specifi-

cation of architectural decisions structural aspects, they are not suited to our purpose

which is to describe architectural patterns targeting BPEL’s language constructs.

In the third part of the state of the art we discussed the importance of consider-

ing architectural design decisions as first-class elements during software architecture

design. This category of works is part of the architectural knowledge management ap-

proaches that make use of various information sources to capture architectural knowl-

edge, which is comprised of architecture design, design decisions, assumptions, con-

text, and other factors that together shape a software architecture [Breivold et al., 2012].

All the works agree with the fact that architectural decisions and their rationale are the

most important form of knowledge to capture during the architectural development

process. An explicit representation of this knowledge is necessary for evolving systems

and assessing future evolutionary capabilities of a system [Kruchten et al., 2006]. Most

of the proposed documentation models provide textual or semi-formal descriptions

of architecture design decisions and few works proposed their formalization (more

specifically their structural aspects). Even though efforts was made to describe links

between design decisions they still lack an explicit formal description of the links be-

tween design decisions and quality attributes they affect. Accordingly, in our work we

56 Chap 2. State of the art

proposed an architecture decision documentation model based on patterns as a kind

of architectural design decisions and we explicitly defined in a formal way the links

between patterns and their implemented quality attributes. These latter are the ratio-

nale behind the choice of a pattern. Additionally, we proposed to formalize not only

the structural aspects of a pattern as a design decision but also the way it can be ap-

plied to a software architecture. We do not claim the presentation of a new means to

document architecture design decisions. Otherwise we believe that our proposal en-

riches the previous works with fine grained useful information that might be of great

interest (as we are going to show it in this thesis) during the design and the evolution

of software architectures. Our model is thus complementary to previous efforts in the

literature.

In the fourth part of the state of the art we showed a variety of works that support

quality considerations during software architecture design. However, the discussed

works still have some limitations. They do not sufficiently support reasoning (impact

analysis) about the quality consequences of an applied design decision. Besides, they

do not offer, or lack sufficient support to explicitly make trade-off analysis between

competing design decisions with respect to quality attribute. Some of these works are

quite similar to our work in the sense that they use reusable design decisions (attribute

primitives and architectural tactics, we use SOA patterns) to address issues pertain-

ing to quality attributes. However, they differ from our work in that they focus on the

design stage, while we focus on the design and evolution stages. In addition, we give

support to the architect to choose among several possible competing alternatives of

a design decision the one that satisfies the best a given quality goal. Besides this, we

help the architect in applying the selected design decision (the choice of SOA Patterns)

in a semi-automatic fashion, and we give her/him assistance to make impact analy-

sis. To do so, we use a Multi Criteria Decision method (MCDM) in a complementary

way with a simulation-based quality-related impact analysis. Note that, our work is a

mix from those who exploit the architectural knowledge and those who consider NFRs

during software architecture design. Indeed, we make use of an architecture decision

documentation model to fulfill NFRs during the design of software architectures.

The fifth part of the state of the art is about achieving quality requirements in

service-based systems. In general, in service composition approaches services are se-

lected by considering their QoS attributes. However, these quality attributes are non-

2.2. Literature review 57

functional properties which are mostly measurable at the execution of the service-

based system (in our case they are BPEL orchestrations). Indeed, in the service com-

position problem, individual services are considered as black boxes offering specific

functionality and exhibiting QoS attributes. In most cases, these services are differ-

entiated based on those qualities, the one that offers a high quality level is the most

desirable. But these qualities, are the consequence of how these services have been

designed. Indeed, considering NFRs during the design of services (in our work we talk

about BPEL Web services orchestrations) leads to services with eventually hight QoS

attributes which are observable/measurable at execution time. This is were the work

we propose in this thesis comes to its utility. Indeed, methods that take into account

non-functional requirements in engineering Web service orchestrations are required.

We considered qualities as static quality attributes during the design of such service

architectures. Once integrated in a service orchestration, these qualities are exposed

then in future service compositions as dynamic QoS attributes (response time, avail-

ability etc.) that could be measured then used (as a differentiator between functionally

equivalent services) using different techniques.

The last category gives a preview about assistance and impact analysis approaches

applicable during the evolution of software systems. The work we propose in this the-

sis provides an on-demand assistance method and tools that help architects of BPEL

Web service orchestrations in integrating quality requirements when engineering such

a kind of architectures.

2.2.6 Summary

This chapter sums up existing works in state of the art in four main categories: AD doc-

umentation, software quality documentation, quality achievement in service-based

systems and assistance to software evolution. In the first category, we showed differ-

ent approaches to document design decisions and separated between two categories.

Those in architecture descriptions using ADLs and those related to architecture de-

scriptions. The last one highlighted the focus on AD as first-class status in the software

development process. The documentation of AD has been proved to bring many ben-

efits. Of these benefits, one most important is a clear vision about the rationale of the

AD, which conveys certain quality properties of the architecture.

In the second category we illustrated two ways to document quality. The first one is

58 Chap 2. State of the art

by using quality models. We have seen that, in general, quality models serve to capture

quality characteristics and/or sub-characteristics and then asses/evaluate them on a

final software product. The second way, is to anticipate quality assessment, and pro-

cess the quality aspect by capturing and documenting quality requirements in software

architecture. Most of the related research works use architectural styles, architectural

patterns, or architectural tactics to satisfy quality requirements in software architec-

tures.

The third category discuss how non-functional properties in service-based systems

and more specifically in Web service orchestrations was addressed. Many works was

proposed such as languages, composition algorithms, middleware among others to

fulfill quality requirement in such systems. Most of the works as the SOA principles

impose reuse services with their exhibited QoS attributes to compose more complex

service orchestrations with high quality level of QoS attributes that meet the user’s

quality constraints. We showed the need of engineering methods that consider quality

attributes at design level of such service orchestrations that will be used as individual

services exposing their own QoS attributes.

The last category of state of the art is about assistance to software evolution. we

emphasized the need to make use of methods and techniques to be able to monitor

and control changes in the software, and more particularly those related in our case to

quality requirements.

The following chapter aims at presenting the first contribution of this thesis, in

which we have proposed an architecture decision documentation model. This lat-

ter considers SOA patterns as a special kind of design decisions, and represents them

as first-class citizens in a software architecture. We base our proposal on the postu-

late stating that, quality can be implemented through patterns [Zernadji et al., 2014a ;

Zernadji et al., 2014b], which can be specified with checkable/processable languages.

C
H

A
P

T
E

R

3
Pattern-based documentation model of

architecture decisions

In this chapter we present our first contribution which consists in a model to ar-

chitecture decision documentation based on patterns and two languages that formal-

izes patterns. We present first an overview on the model in section 3.1 then a detailed

presentation in section 3.2 in which we discuss the different concepts of the model.

Section 3.3 and 3.4 show the languages we used as a means to formalize patterns.

3.1 General Model

The concept of architecture decision documentation has been firstly introduced

in [Tibermacine et al., 2005]. In this thesis, we present an improvement to the old

version of this documentation [Tibermacine et Zernadji, 2011]. It defines in a formal

way the links between architecture decisions and quality attributes implemented by

these decisions. We consider thus architecture decisions, which are entities that can

be formalized, as a way to indirectly check automatically quality requirements, which

are properties that cannot generally be formalized directly (or are very difficult to for-

59

60 Chap 3. Pattern-based documentation model of architecture decisions

malize1).

During the software architectural design process architecture design decisions

could be about the use of architectural styles, architectural tactics or patterns, among

others, to cope with design problems that the architect may face. Design patterns are

an efficient widely used means to communicate and document proven reusable design

solutions to recurring problems, as well as the most common used artifact in the soft-

ware systems development community. Design patterns are sets of predefined design

decisions with known functionality and behavior [Jansen et Bosch, 2005]. They provide

a common vocabulary and understanding for design principles and a means of docu-

menting software architecture [Gamma et al., 1995]. We consider in this thesis design

patterns as the kind of architecture design decisions that achieve quality attributes.

The latter are considered hence as the rationale behind these decisions. Design pat-

terns are basically represented by textual descriptions with graphical descriptions ac-

companying the text. Other approaches use formal descriptions to facilitate analysis

and tool support when applying pattern solutions during systems design [Gross et Yu,

2000], and this is why we adopted in our documentation model the formal descrip-

tion. Design patterns find their origins and extensive use in the object-oriented de-

velopment [Gamma et al., 1995] and gain in popularity and attractiveness even with

the emergence of the component-based and service-based development. Therefore,

a variety of pattern catalogs (such as [Gamma et al., 1995], [Buschmann et al., 1996],

or [Erl, 2009] which is more specific to SOA) have been proposed in the literature to

deal with recurrent design problems. Since our work targets service-based systems we

were focused on the formalization and use of SOA patterns.

An architecture decision documentation abstracts the links between a given quality

attribute and an architecture decision (a pattern) associated to this attribute. Figure 3.1

shows how these links are organized.

1By “formalization”, we simply mean here the specification of a given artifact in an unambiguous
and structured or semi-structured way using a language that can be processed by tools (not using the
natural language).

3.2. Links between Architecture Design Decisions and Quality Attributes 61

Figure 3.1 : Links between Architecture Decisions and Quality Attributes

3.2 Links between Architecture Design Decisions and

Quality Attributes

We associate to a link a degree of satisfaction. A pattern in collaboration with other

patterns contribute to the satisfaction of a given quality attribute. Each degree of sat-

isfaction represents a percentage. In the ideal situation (where the developers are con-

fident in the pertinence of their design decisions), the sum of all degrees associated

to the same quality attribute (within the same architectural element) would be equal

to 100%. For example, a portability quality attribute can be concretized by three dif-

ferent architecture decisions: the choice of the facade service pattern [Erl, 2009]2, the

choice of the MVC pattern [Buschmann et al., 1996] and the use of an API. If the de-

velopers consider that the two first decisions contribute more, in the concretization of

the portability quality attribute, than the third one, because they are critical, they can

associate to them high scores (for example 40 % to each pattern) and the last pattern a

2This pattern is originally inspired from [Gamma et al., 1995].

62 Chap 3. Pattern-based documentation model of architecture decisions

lower score (20 % for example). This is done in the same manner as in software require-

ments engineering where the project manager assigns values like high, medium or low

for the technical difficulty of the realization of each requirement or for their functional

priority. In our case, we chose to give them numerical values voluntarily because of the

complementarity which exists between patterns to reach a quality goal, as illustrated

in the example above.

We voluntarily simplify, in this documentation, the specification of patterns as the

kind of architecture design decisions. A pattern is thus formalized by two elements, an

architectural constraint and an architectural script (See figure 4.2). For the former ele-

ment, here again, a formalization degree is a percentage associated to the link between

a pattern and an architectural constraint. This score represents the extent to which

the constraint formalizes the pattern. If we consider that several constraints formalize

the same pattern, it is possible for the developer to state how the different constraints

share the formalization of the pattern. In some cases, a given constraint may have a

degree of formalization more important than others. In the ideal situation (where the

developers are sure of the completeness of their formalization), the sum of all degrees

associated to the same pattern would be equal to 100%. The constraints written in

a given documentation are defined with a predefined constraint language. Architec-

tural constraints are a formal specification of the structural conditions imposed by the

pattern and allow the checking of its presence or absence in a service orchestration,

therefore, the satisfaction of a quality attribute or not.

A pattern has an application context which is defined by the business or quality

constraint as well as the architect preferences. To a pattern we associate a context-

suitability degree (a percentage) which is specified and documented at quality inte-

gration time (for more details see section 5.2.2) because it depends on the pattern’s

suitability to a given situation and to the service orchestration. One advantage of the

context-suitability degree is to distinguish between pattern variants suitability for a

specific situation and a specific service orchestration. Even if the same pattern variant

is applied again on the same orchestration it would not have the same impact because

the context is frequently not the same. The architect could have for example a prefer-

ence for a pattern variant over another if it is a matter of price of the delivered service.

The second element is an architectural script that serves as a mean to apply a pat-

tern and its embodiment into a service orchestration. It provides the way it should

3.2. Links between Architecture Design Decisions and Quality Attributes 63

be applied in an orchestration. A script is composed of basic architecture changes

which are a set of parameterized actions that aim to reconfigure the structure of the

Web service orchestration. Actions are specified using a scripting language for Web

service orchestration reconfiguration called “WS-BScript” which is detailed in the next

section 3.3.

A quality attribute in this documentation is a non-functional property representing

an ISO 91263 characteristic or sub-characteristic (Reliability, Maintainability, Portabil-

ity, ...). It has a degree of criticality (inspired from Kazman’s quality attribute scores

and Clements’ quality attribute priorities [Clements et al., 2002]) which is specified

by developers (when expressing their preferences over quality attributes in a service-

oriented system project quality plan) and represents the importance of this quality at-

tribute in the architecture. A degree of criticality is represented by a percentage. The

sum of all degrees associated to all the quality attributes should be equal to 100%. The

technique used to derive the criticality degree values is detailed in section 5.2.2.

Associated to a given architecture decision, a quality attribute can enhance (affect

positively) other quality attributes. For example, the choice of the pipeline architecture

style targets the maintainability quality attribute, which enhances in this case the per-

formance attribute of the system. Contrarily, a given quality attribute can collide with

(affect negatively) other quality attributes. For example, the security quality attribute

collides generally with the efficiency attribute. This depends of course on the docu-

mented architecture decision and the application context. It is on the responsibility

of developers, fully aware of the application’s context and the architecture decisions

they made, to document these optional parts (the other quality attributes that collide-

with or enhance the documented quality attribute) of the pattern-based architecture

decision documentation.

A given quality attribute can be tightly- or weakly-coupled to another one. In the

first case, if a quality attribute A affects positively another attribute B, if we enhance A,

B will B enhanced; and if A is weakened, B will be weakened too. In the second case

(weakly-coupled attributes), if A affects positively another attribute B, if we enhance A,

B will be enhanced; and if A is weakened, B will not be affected. Inversely, the same

thing can be considered, if A affects negatively B. This is illustrated in Figure 3.2.

3Software engineering – Product quality – Part 1: Quality model. The International Organization for
Standardization Website: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749

64 Chap 3. Pattern-based documentation model of architecture decisions

A B
A B

A B
A B

"Enhancing" Relationship "Colliding with" Relationship

Tightly related QAs

A B
A B =

A B
A B

"Enhancing" Relationship "Colliding with" Relationship

Weakly related QAs

=

A B
A B

= A B
A B

"Enhancing" Relationship "Colliding with" Relationship

=

Positive influence

Negative influence

Figure 3.2 : Relationships between Quality Attributes

For example, in a service orchestration, adding an invocation to an encryption ser-

vice before transmitting information to a remote server is a simple architecture deci-

sion taken to enhance the security quality attribute. This makes less efficient the whole

orchestration (affects negatively the performance attribute). If we decide in another

context, to remove a binding to an authentication service which is invoked before a

given business service, this will obviously affect positively the performance quality at-

tribute (there is less time to execute the business service). We conclude here that the

two quality attributes, in the two contexts, are tightly coupled.

In another illustrative example, designing a system using the facade service design

pattern aiming to enhance its portability affects negatively the reliability quality char-

acteristic (more precisely, the availability sub-characteristic). Indeed, in the presence

of a single service providing the business service to clients, if this service crashes, the

provided functionality will not be anymore available. Let us suppose now that a given

service is provided by a component within a web application in order to abstract de-

tails of the different Internet browsers in which the application is executed at the client

side (portability purpose). The removal of such a service will not affect in any way the

reliability attribute. This is an example of two quality attributes which are weakly cou-

pled.

Between weakly coupled quality attributes, we identified two kinds of relationships.

There can be a positive or a negative influence. In the first case (positive influence), it

3.3. WS-BScript: Web Service BPEL Scripting language 65

is the enhancement of the first attribute which has an influence on the second one;

however in the other case, it is its weakness which produces an effect on the second

attribute. This is shown on Figure 3.2

In the current implementation of architecture decision documentation, architec-

ture constraints are specified using the OMG’s OCL [OMG, 2010] language. An archi-

tecture constraint in this language navigates in a meta-model of BPEL Web service or-

chestrations, but apply to only one instance of that meta-model (a model which repre-

sents a BPEL process). The evaluation of a given constraint tells the developer whether

the architecture description conforms to the constraint or not.

In addition to architecture decision documentation, we propose (as an optional

feature) to build a catalog of quality attribute relationships. Designing such a catalog

consists in :

1. Identifying the quality attributes defined in the quality model of the company

2. Identifying the attributes defined in the quality plan of the software project

3. Building a bi-dimensional table with all the quality attributes (one per line and

one per column)

4. Completing progressively the correlation between the quality attributes (on the

basis of information gathered from previous projects and the experience of de-

velopers)

5. Each time, adapting the table to the service-oriented architecture context

As aforementioned, a pattern is formalized by two languages: i) OCL language cou-

pled with BPEL language meta-model and ii) a scripting language called WS-BScript

which is presented in the following section.

3.3 WS-BScript: Web Service BPEL Scripting language

As we mentioned in the previous section, a given quality attribute can be implemented

using several patterns. Once the architect choses the pattern that she/he wants to use

to implement the desired quality attribute, she/he should apply it inside the Web ser-

vice orchestration. It could be difficult to the architect to know how exactly each of the

66 Chap 3. Pattern-based documentation model of architecture decisions

existing patterns she/he may choose, has to be applied on the service orchestration.

This is especially true when the architect (a novice one) does not know the existing pat-

terns for a given quality attribute. Even if the architect knows the way patterns has to be

applied there exist no existing tools/languages that could assist her/him to specify the

changes made by the pattern application in the context of BPEL orchestrations. There-

fore, it is very useful to have a language/tool which allows to specify these changes then

apply them in a semi-automatic way on a web service BPEL orchestrations.

To the best of our knowledge, there is no scripting language which allows the spec-

ification of set of actions that reconfigure WS-BPEL web service orchestrations. There-

fore, we have developed a voluntarily simplified language called “WS-BScript” (for Web

Service-BPEL Scripting). WS-BScript is a lightweight DSL that enables the architect to

specify primitive changes making possible the reconfiguration of Web service orches-

trations. The idea behind WS-BScript is to formalize some SOA patterns in order to ap-

ply them as much automatically as possible in the form of reusable design decisions.

This language allows the definition of parameterized “scripts”. A script is composed

of a set of actions like add, wire, and remove, among others. The basic structure of a

script is the following:

script apply<PatternName> (<listOfParameters>)

{ <setOfActions> }

A script declares a set of parameters, which represent the scope of the architec-

tural actions. This set identifies BPEL orchestration elements involved in the changes

brought by the elementary actions when applying a pattern. They form a super-set

for the elements indicated in the architectural area of the quality integration intents,

because generally more elements are needed to apply a pattern (these are requested

from the architect). These actions are simple statements. We enumerate them in the

following listing:

(01) add (BpelElement element, BpelElement AttachedParentelement,

int elementPosition)

(02) add (PartnerLinkElement element, String wsdlFileName)

(03) getPosition (String BpelElementName)

(04) create (BpelElement.Kind)

(05) remove (BpelElement element)

(06) wire (BpelElement element,PartnerLinkElement

element,String PartnerLinkOperationName)

3.3. WS-BScript: Web Service BPEL Scripting language 67

(07) unwire (BpelElement element,String PartnerLinkElement,

String PartnerLinkOperationName)

(08) ask (String message)

(09) let variableName

(10) variableName = <expression>

(11) for(variableName : OrderedListVar) <actions>

(12) if (<condition>) <action1 or blocOfActions1>

[else <action2 or blocOfActions2>]

(13) query (String OCLExpression)

(14) scriptCall (String scriptName([parameters])

(15) return (BpelElement element)

For instance, the first action adds a BPEL element to an orchestration, namely, In-

voke, Assign, Receive, and other BPEL process elements (except PartnerLink BPEL

element which does not require a position in an orchestration). An element is

added in a specific position inside a parent element (AttachedParentelement argu-

ment) in the orchestration. The second action adds specifically a BPEL PartnerLink

(PartnerLinkElement argument) and links it with a given Web service specified by the

wsdlFileName parameter. The “getPosition” action (Line 03) returns the position of a

BPEL element in the orchestration specified by the BpelElementName parameter. It is

used to identify precisely at what level we should apply a change in the orchestration.

The architect may provide the name of the BPEL element, or a qualified name which

indicates the path to the element if there are several elements with the same name in

the orchestration. Line 04 indicates the “create” action which creates a BPEL element

instance with some kind (the BPEL element that should be added to an orchestration

like, Invoke, Assign, Sequence, Flow, Scope, etc. as defined in the BPEL specification).

Line 05 shows the “remove” action which eliminates a BPEL process element (except

in this case a PartnerLink) from an orchestration such as, a Sequence, an Assign or

an Invoke, among others. The “wire” action binds a BPEL element to an operation

PartnerLinkOperationName in a PartnerLink element. The opposite action of “wire”

is “unwire” (Line 07). The “ask” action (Line 08) interrupts the execution of the script

and waits for some customization values from the architect. It is commonly used in

case of complex patterns application, which needs additional parameters that are not

fully specified in the quality integration intent. Declaring variables is possible using the

“let” action (Line 09). A variable can be initialized with an expression (Line 10). This

expression can be a simple variable, a returned action’s value like “getPosition” action,

68 Chap 3. Pattern-based documentation model of architecture decisions

or even a value obtained after evaluation of an arithmetic expression. Variables can

be of type integer, string, BPELElement, or Collection type. The “for” loop executes re-

peatedly a given block of actions (Line 11) which should be enclosed between braces.

In addition to the “for” loop, it is possible to specify “if-else” statements (Line12). A

condition in an if-else statement is a simple, or a composed boolean expression where

we can use conjunction (&&), disjunction (||) and negation (!). The “query” action (Line

13) allows to navigate the BPEL meta-model through parameterized OCL [OMG, 2010]

expressions and returns the expected result (BPEL elements usually). OCL is used as

a navigation language in a complementary way with WS-BScript actions to get BPEL

elements but without making any change to the orchestration. Composing patterns

is possible through the “scriptCall” action (Line 14). It allows calling another pattern

script by providing, as an argument, the name of the pattern script we want to call and

its arguments. The last action (Line 15) can be used inside a script if the architect wants

to return a given BPEL element that can be used by the caller script. Calling the return

action terminates the script execution.

The listing below shows a script example of the “Brokered Authentication Pat-

tern” [Erl, 2009] which implements the “Access Security” quality attribute. It adds

an authentication broker service on top of the invocation sequence in the service

orchestration and takes the responsibility for authenticating the client of the ser-

vice, then issuing a token that the client can use to access the other needed services

without the need for the client to have a direct relationship with them. Before ex-

ecuting the script the architect is asked first to indicate its arguments. She/he has

to look first in the orchestration for the WSDL file (the wsdlFileName parameter)

which represents the service. Second, she/he should look for a specific operation

(the partnerLinkOperationName parameter) in the WSDL file representing the ser-

vice as well as the process operation name (the processOperationName parameter)

that should be called to return a response. Finally, she/he looks for the firstAssign

parameter representing the Assign activity after which a call to the authentication bro-

ker service has to be made.
1 s c r i p t applyBrokeredAuthenticationPattern (Str ing f i r s t A s s i g n ,

2 Str ing wsdlFileName , Str ing partnerLinkOperationName ,

3 Str ing processOperationName) {

4 l e t aPartnerLink = create (BpelElement . PartnerLink) ;

5 add (aPartnerLink , wsdlFileName) ;

6 l e t position = getPosit ion (f i r s t A s s i g n) ;

7 l e t ocl = " s e l f−>closure (eContents () . oclAsType (EObject))−>s e l e c t (a |

3.3. WS-BScript: Web Service BPEL Scripting language 69

8 a . oclIsKindOf (model : : BpelType) and a . oclAsType (model : : BpelType) .name=

9 ’ f i r s t A s s i g n ’)−> c o l l e c t (a : EObject | a . eContainer ())−>asSet () " ;

10 l e t elem = query (ocl) ;

11 l e t aSequence1 = create (BpelElement . Sequence) ;

12 add (aSequence1 , elem , position +1) ;

13 l e t aSequence = create (BpelElement . Sequence) ;

14 add (aSequence , aSequence1 , 0) ;

15 l e t aInvoke= create (BpelElement . Invoke) ;

16 add (aInvoke , aSequence , −1) ;

17 wire (aInvoke , aPartnerLink , partnerLinkOperationName) ;

18 l e t a I f = create (BpelElement . I f) ;

19 add (aIf , aSequence , −1) ;

20 l e t aCondition = create (BpelElement . Condition) ;

21 add (aCondition , aIf , 0) ;

22 ask (aCondition) ;

23 l e t aAssign= create (BpelElement . Assign) ;

24 add (aAssign , aIf , 0) ;

25 l e t aElse = create (BpelElement . Else) ;

26 add (aElse , aIf , −1) ;

27 l e t aSequence2 = create (BpelElement . Sequence) ;

28 add (aSequence2 , aElse , 0) ;

29 l e t aAssign1= create (BpelElement . Assign) ;

30 add (aAssign1 , aSequence2 , 0) ;

31 l e t aReply= create (BpelElement . Reply) ;

32 add (aReply , aSequence2) ;

33 wire (aReply , ProcesspartnerLink , processOperationName) ;

34 }

LISTING 3.1 : Brokered Authentication Pattern application script

Another example is presented in the listing below that shows the architectural

script example of the “Service facade Pattern” defined using “WS-BScript”. The ap-

plication of this pattern as a design decision brings a level of abstraction into the archi-

tecture to accommodate potential changes that could occur in a service business logic.

Hence, the quality attribute ensured by this architectural pattern is the portability.
1 s c r i p t applyFacadePattern (L i s t AssignList ,

2 L i s t OperationList , Str ing wsdlFileName) {

3 l e t aPartnerLink = create (BpelElement . PartnerLink) ;

4 add (aPartnerLink , wsdlFileName) ;

5 for (p : OperationList && a : AssignList) {

6 l e t position=getPosit ion (a) ;

7 l e t ocl = " s e l f−>closure (eContents () . oclAsType (EObject))−>s e l e c t (a |

8 a . oclIsKindOf (model : : BpelType) and a . oclAsType (model : : BpelType) .name=

9 ’BpelElementName ’)−> c o l l e c t (a : EObject | a . eContainer ())−>asSet () " ;

10 l e t elem = query (ocl) ;

11 l e t aInvoke= create (BpelElement . Invoke) ;

12 add (aInvoke , elem , position +1) ;

70 Chap 3. Pattern-based documentation model of architecture decisions

13 wire (aInvoke , aPartnerLink , p) ;

14 l e t aAssign= create (BpelElement . Assign) ;

15 add (aAssign , elem , position +2) ;

16 }

17 }

LISTING 3.2 : Service Facade Pattern application script

This script gives a general way to insert a facade service into a specific position

in the Web service orchestration (regardless of the invoked operations number in the

service). It adds a partner link element (PartnerLink instance) which represents the

Web service encompassing the facade (Lines 03 and 04). This one is specified by the

wsdlFileName parameter. It then repeatedly, through the “for” loop (Line 05), looks

for the position through the “getPosition” action (Line 06) where the architect wants

to invoke the service (an operation in the PartnerLink) referenced by an Assign activ-

ity List4 element “a” (Line 06). The “getPosition” action returns the position relatively

to a BPEL activity’s container. This is why we have to get the container BPEL activity

of the “a” element so it could be possible to insert a BPEL activity just after it. To do

so, in Lines 07-09 through a parameterized OCL expression with a generic format the

script gets the container element of the “a” activity. The OCL expression accepts two

parameters, the name of the a activity and the type (BpelType) of the activity (namely,

Receive, Reply, Invoke, Assign, Sequence, etc. as defined in the BPEL specification).

This latter is automatically deduced by the “WS-BScript” toolset and injected in the

OCL expression. The OCL expression is executed in Line 10 through the “query” ac-

tion and the result is saved. After that, the script adds an Invoke activity (the aInvoke

instance) and binds it to the specified operation List5 element “p” in the previously in-

serted PartnerLink (lines 11, 12, 13). Lines 14 and 15 introduce an Assign activity

(“aAssign”) after the last inserted Invoke activity to set variables values.

3.4 SOA Patterns Architecture Constraint Specification

As we have mentioned in the previous section, we used OCL language to specify ar-

chitectural constraints for SOA patterns. OCL has been chosen because of its simplic-

ity [Briand et al., 2005] and the existence of a good tool support (OCL Toolkit [Dresden.,

4The list AssignList represents the Assign activities after which the service operations has to be in-
voked.

5The lists OperationList and AssignList must be ordered lists.

3.4. SOA Patterns Architecture Constraint Specification 71

2009], Eclipse MDT/OCL [Foundation, 2009]). OCL (Object Constraint Language) lan-

guage [OMG, 2010] is the OMG (Object Management Group) standard for expressing

constraints on UML models. The goal of this language is to provide developers with a

means of specifying conditions for refining the semantics of their models. This con-

straint language was initially suggested for specifying conditions on functional, not

architectural, aspects [Tibermacine, 2014]. However, the OCL language could be used

not only at model level but also at the meta-model level which allows the expression of

architectural constraints.

After applying a pattern on a service orchestration we have to be sure that its struc-

tural aspect is respected when making changes by imposing some architectural con-

straints. These latter are part of the pattern specification (see Figure 4.2) and serve to

verify if an architecture conforms to the pattern or not. Since the pattern implements

a quality attribute in the service orchestration, the non-conformance of its structure to

the specified constraints implies an altered quality attribute.

In order for this architectural constraints to be reusable artifacts, we build the SOA

pattern catalog with parameterized constraints that can be configured then checked

when applying a pattern into a service orchestration. The SOA patterns architectural

constraints was specified in the context of BPEL web service orchestrations. Therefore,

OCL expressions operate on the BPEL meta-model elements. We have to note that not

all SOA patterns found in the literature are applicable on the architectural level. About

eighty-five patterns for service-based systems that have been described in [Erl, 2009]

and the SOA Patterns website6, about thirty of them [Ton That et al., 2012], each having

several variants, can be applied at an architectural level.

Generally speaking, we performed the specification of the architectural constraints

in the following steps:

• Reflexion: understanding the role of the pattern, to which problem it responds,

and whether it is applicable at an architectural level or not;

• Analysis and specification: identifying the conditions inside a service orchestra-

tion that allow to characterize the pattern, then writing the constraints;

6http://www.soapatterns.org

72 Chap 3. Pattern-based documentation model of architecture decisions

• Test and correction: apply the constraints on a specific implementation of a ser-

vice orchestration and correct the eventual errors.

We give in the following an architectural constraint of the “Passive Replication

Pattern” brought from our implemented catalog of SOA patterns. We have to note

that constraints have been tested7 on an “Ecore-specific” implementation of WS-BPEL

meta-model, and that is why “Ecore” related details was removed for constraints clarity.

Listing 3.3 shows the architectural constraints of the “Passive Replication Pattern”

which is one of the three variants of the “Replication Pattern” that we have specified

in the SOA patterns catalog. This pattern serves the “Reliability” quality attribute.

Its design solution organizes the service invocations in a hierarchical way, a call to

another replicated service is planned only if the first does not answer. The identified

structural conditions characterizing this pattern are listed below:

i) The service to be replicated should be wrapped by a Scope BPEL activity, this

should guarantee to isolate the service that could eventually fail and allow to handle

(through a faultHandlers BPEL activity) its failing in a Catch BPEL activity. This latter

is defined inside a faultHandlers BPEL activity.

ii) In all the Catch activities attached to the Scope it should exist only one Reply

BPEL activity. This latter represents the fault response case of all the replicated services

and should be in the last Catch.

iii) The number of Invoke BPEL activities (representing the calls to the replicated

services) where each one is contained in a Catch, equals the one of Catch activities

minus one. The last Catch intercepts the failure case of the last replicated service.

iv) The service invocations are organized in a hierarchical way.
1 Context TRS : Process inv :

2 l e t scp :Set(A c t i v i t y) =

3 s e l f −>closure (oclAsType (A c t i v i t y))−>s e l e c t (a : A c t i v i t y | a . oclAsType (Scope) .name= ’ aScope ’)

in

4 --The service to be replicated should be wrapped by a ’Scope’ activity
5 scp . oclAsType (Scope) . a c t i v i t y −>e x i s t s (b : A c t i v i t y | b . oclAsType (Invoke) .name= ’

serviceTobeReplicated ’)

6 and
7 l e t cth : OrderedSet (A c t i v i t y) =

7Tests were held on an enriched version of the NetBeans travel agency application.

3.4. SOA Patterns Architecture Constraint Specification 73

8 scp−>closure (oclAsType (A c t i v i t y))−>s e l e c t (c : A c t i v i t y | c . oclIsKindOf (Catch))−>asOrderedSet

() in

9 l e t rep : Set(A c t i v i t y) =

10 cth−>closure (oclAsType (A c t i v i t y))−>s e l e c t (c : A c t i v i t y | c . oclIsKindOf (Reply)) in

11 --In all the ’Catch’ elements attached to the ’Scope’ it should exist only one ’Reply’.
This latter represents the fault response case (if any) of all the replicated
services and should be in the last ’Catch’ element

12 rep . oclAsType (Reply)−>s i z e () =1 and cth−>l a s t ()−>e x i s t s (c : A c t i v i t y | c . oclIsKindOf (model : :

Reply))

13 and
14 l e t ink : Set(A c t i v i t y) =

15 cth−>closure (oclAsType (A c t i v i t y))−>s e l e c t (c : A c t i v i t y | c . oclIsKindOf (Invoke)) in

16 --The number of ’Invoke’ activities equals the one of ’Catch’ activities minus one. The
last ’Catch’ intercepts the failure case of the last replicated service if any.

17 ink . oclAsType (Invoke)−>s i z e () >=1 and ink . oclAsType (Invoke)−>s i z e () = cth . oclAsType (Catch)

−>s i z e ()−1

18 and
19 l e t fhandlers : OrderedSet (A c t i v i t y) =

20 scp−>closure (oclAsType (A c t i v i t y))−>s e l e c t (c : A c t i v i t y | c . oclIsKindOf (FaultHandler))−>

asOrderedSet () in

21 --The service invocations are organized in a hierarchical way
22 if fhandlers−>s i z e () > 1 then
23 fhandlers−>excluding (fhandlers−>l a s t ())−>f o r A l l (aa , bb : A c t i v i t y | aa . oclIsKindOf (

FaultHandler) and
24 aa−>e x i s t s (bb . oclIsKindOf (FaultHandler))) else f a l s e endif

LISTING 3.3 : Passive Replication Pattern Architectural constraint

Firstly, this constraint checks that the service invocation to be replicated should be

wrapped by a Scope which the name is given as a parameter in the constraint (aScope

in Line 3). This allows to establish a recovery after failure system by attaching to the

Scope, a faultHandlers element offering the possibility to handle the failure of the

service (serviceTobeReplicated in Line 5) in a Catch elements. In the second part of

the constraint (Line 12), we check that there is only one Reply that should be placed at

the end of the Catch elements hierarchy. The third part of the constraint (see Line 17)

ensures that there is Catch element which does not encompass a service invocation.

Additionally, it ensures the existence of at least one invocation to a replicated service.

Finally, the last part checks that the invocations to the replicated services are hierarchi-

cally structured since each faultHandlers element encompasses another and, each

one encompasses a Catch (Lines 22- 24). The fact that Invoke activities are encom-

passed by Catch activities ensures that a service is called only if its predecessor has

failed. The failing of a service throws an exception which is intercepted by a Catch, this

way we ensure passively the execution of one service at a time.

74 Chap 3. Pattern-based documentation model of architecture decisions

In listing 3.4 we illustrate the architectural constraint of the “Exception Shielding

Pattern” [Erl, 2009]. It is a service security pattern which aims to prevent the service

environment from malicious attackers by sanitizing unfiltered exception data output

before making it available to the consumer. To implement this pattern, we use the

“faultHandlers” and the “Scope” BPEL elements which allow to isolate the process

part responsible of the exception. This pattern is part of our specified SOA patterns

catalog and can be used to implement the “security” quality attribute in a service

orchestration. Hereafter, the structural conditions characterizing this pattern:

i) The Invoke BPEL activity, which invokes the service causing exceptions deliver-

ing data to be sanitized should be encompassed in a Scope activity.

ii) It should exist only one Catch BPEL element (defined in faultHandlers) which

is attached to the Scope activity to intercept exceptions

iii) The Catch should encompass the invocation (Invoke activity) to the sanitizer

service as well as the response message transmitted by the Reply activity. The Invoke

should obviously be made before the Reply.
1 l e t scp :Set(A c t i v i t y) =

2 s e l f −>closure (oclAsType (A c t i v i t y))−>s e l e c t (a : A c t i v i t y | a . oclAsType (Scope) .name= ’ Scop ’) in

3 --The service that causes exceptions to be sanitized should be wrapped by a ’Scope’
activity

4 scp . oclAsType (Scope) . a c t i v i t y −>e x i s t s (b : A c t i v i t y | b . oclAsType (Invoke) .name= ’

serviceTobesanitized ’) and
5 l e t cth : Set(A c t i v i t y) =

6 scp−>closure (oclAsType (A c t i v i t y))−>s e l e c t (a : A c t i v i t y | a . oclIsKindOf (Catch)) in

7 --only one ’Catch’ activity attached to the ’Scope’ should exist to intercept exceptions
8 cth . oclAsType (Catch)−>s i z e () =1

9 and
10 l e t ch : Set(A c t i v i t y) =

11 cth−>closure (oclAsType (A c t i v i t y)) in

12 ch−>e x i s t s (a : A c t i v i t y | a . oclIsKindOf (Sequence) and a . oclAsType (Sequence) .name= ’ Seque ’ and
13 l e t sq : Set(A c t i v i t y) =

14 a−>closure (oclAsType (A c t i v i t y)) in

15 --The ’Catch’ should contain a call to the sanitizer service (op1) and the sanitized
response message throught a ’Reply’ activity (op2)

16 sq−>e x i s t s (b , c : A c t i v i t y | b . oclAsType (Invoke) .name= ’op1 ’ and c . oclAsType (Reply) .name= ’op2

’ and
17 sq−>asOrderedSet ()−>indexOf (b) < sq−>asOrderedSet ()−>indexOf (c)))

LISTING 3.4 : Exception Shielding Pattern Architectural constraint

3.5. Summary 75

In the first sub-constraint, we check that the sanitizer service invocation is encom-

passed by a Scope activity. The names of the Scope as well as the Invoke activities are

provided as parameters for the constraint (see Lines 2- 4). The second sub-constraint

checks in Line 8 the existence of only one Catch element which is sufficient to catch

a thrown exception. The unfiltered exception data output processing is performed in-

side the Catch element. This is done through an invocation to the sanitizer service

that filters the data, then transmitting the safe data to the service consumer through

the Reply activity (the operation names of the invoked service and the one to which

the reply is intended should be provided to the constraint). These two activities should

be inside the Catch which is checked in the last sub-constraint (see Line 16). It verifies

also that the invocation is performed before the reply (see Line 17).

3.5 Summary

In this chapter we presented a pattern-based documentation model of architecture de-

cisions and two languages for specifying SOA patterns catalogs. The model includes a

documentation of the different facets of a pattern: the name, description, guaranteed

quality attribute, the pattern instantiation script, and the constraints necessary for the

verification of the pattern presence in the service architecture. It explicits formally the

existing links between AD (SOA patterns) and the quality it implements. The first lan-

guage WS-BScript allows to specify the scripts necessary to create a new instance of a

given pattern in a SOA architecture defined with BPEL. It is a scripting language with

voluntarily simplified primitives to facilitate SOA patterns documentation. The second

language is a constraint language based on OCL (Object Constraint Language), a stan-

dard OMG (Object Mangagement Group) coupled with BPEL language meta-model.

This language allows to specify predicates to verify whether an instance of a SOA pat-

tern exists in an architecture or not and hence the quality it implements.

Through the pattern-based documentation of architecture decisions the architect

could build an architecture documentation as a set of design decisions during the ar-

chitectural design process. Each time a design decision is made in the form of a SOA

pattern, it is documented with its rationale which is the quality attribute it implements.

In this way, we keep traceability on all design decisions involved in the architectural

design process thus, reducing the vaporization phenomenon.

76 Chap 3. Pattern-based documentation model of architecture decisions

We will show in the next chapter how the pattern-based documentation model of

architecture decisions and the SOA patterns catalog are exploited in the quality integra-

tion assistance process. We will present SAQIM (Service-oriented Architecture Quality

Integration Method). A multi-step process that we have proposed in this thesis to deal

with quality requirements integration.

C
H

A
P

T
E

R

4
SAQIM: Service-Oriented Architecture

Quality Integration Method

This chapter introduces SAQIM, a quality-driven method for assisting architects of

BPEL Web service orchestration in achieving their quality goals. We give first during

the presentation of our approach a quick overview on the method in section 4.1. Then

we detail each of the method steps in the sections that follow.

4.1 The Method at a Glance

A given quality attribute can be implemented using several patterns inside a software

architecture. For example, the portability quality attribute can be concretized by three

different design patterns: the choice of the Facade service pattern, the choice of the

MVC pattern and the use of abstract APIs. Since the quality attributes that we have to

deal with in a service-based system can be listed in an exhaustive way (many quality

models exist), their corresponding implementation solutions (SOA patterns) can also

be exhaustively listed to some extent (by considering catalogs, such as [Gamma et al.,

1995], [Buschmann et al., 1996], or [Erl, 2009] which is more specific to SOA). These

77

78 Chap 4. SAQIM: Service-Oriented Architecture Quality Integration Method

quality implementations represent recurrent solutions and seem generic enough to be

“formally” specified then processed in a semi-automatic way to be used in different

quality integration scenarios.

Even if these implementations could be reused, finding a solution (the well suited

to be implemented) among several ones for a given NFR is not a trivial task for the ar-

chitect. There is about eighty-five patterns for service-based systems that have been

described in [Erl, 2009] and the SOA Patterns website1, about thirty of them [Ton That

et al., 2012], each having several variants, can be applied at an architectural level. This

makes difficult the decision making for the architect. The reason for that is related to

the way each solution concretizes a quality attribute, and what impact it could have

on the software architecture. This is especially true, when the architect (a novice one)

does not know the existing patterns for a targeted quality attribute or she/he is newly

assigned to the software project. For example, the reliability quality attribute can be

concretized by the “Replication pattern” in different possible ways with different vari-

ants namely, “Naive Replication”, “Smart Replication”, and the “Passive Replication”.

What is the best possible choice between the three offered solutions? Each of them is

suitable for the reliability but one is better than the other depending on the context in

which the pattern will be applied. For example, the architect may not be able to figure

out the application of the “Facade Pattern” for the portability quality attribute, or the

use of the “Exception Shielding Pattern” to secure her/his orchestration. Besides, even

if the architect is assisted by a collection of reusable patterns, it is difficult for her/him

to know the way each of the patterns has to be applied on the software architecture.

For example, for satisfying the access security quality attribute an architect may not

know how to exactly apply the “Trusted Subsystem Pattern” in her/his Web service or-

chestration.

The process we propose in the following sections aims to address the aforemen-

tioned problems and helps the architects to: i) find one or several SOA patterns to

answer an integration of a quality attribute in their orchestration, ii) choose among

several ones the most suitable one, and iii) apply a pattern in their architecture (or can-

cel an existing pattern if the integration consists in weakening or removing an existing

quality attribute).

Figure 4.1 shows the multi-step process that we propose in our work to deal with

1http://www.soapatterns.org

4.1. The Method at a Glance 79

Figure 4.1 : A process for integrating quality requirements in engineering Web service
business processes

quality requirements integration. During the process execution, its steps are handled

automatically or in a semi-automatic fashion and thus need the architect’s involve-

ment. The process that we propose is quality-driven. The architect starts first by for-

mulating an intent (QA intent specification step in Figure 4.1) for achieving a given

quality attribute in the Web service orchestration. A template is proposed for this pur-

pose that she/he may complete with some information. Depending on what she/he

wants to do against a quality attribute (QA) two options are possible. If the intent is

about adding or enhancing a QA the architect is assisted with a collection of proposed

SOA patterns (pattern selection step) implementing the targeted QA. Then, the pro-

cess assists the architect in choosing the pattern that satisfies the best its preferences,

by applying first in a semi-automatic fashion the selected patterns (pattern applica-

tion step) then by reasoning (automatically) on the quality effects of each pattern on

the other eventually added qualities (Context-aware quality impact analysis step). If

the architect’s intent is to remove or weaken a QA, a different type of assistance is pro-

vided. The architect is assisted in a semi-automatic way to cancel (pattern cancellation

step) the targeted pattern implementing the QA. For the two aforementioned options,

at the end of a validated architecture change the architect is invited to document its

design decision in a semi-automatic way.

The following sections detail the steps of the method.

80 Chap 4. SAQIM: Service-Oriented Architecture Quality Integration Method

4.2 Quality attribute integration intent specification

The architect begins the design usually with functional requirements. We believe that

at the design phase some quality attributes are correlated with functional require-

ments, hence, they have to be processed at the same time with them. For example,

in order to integrate the reliability quality attribute, the architect may replicate some

service partners. Thus, she/he should look for similar service partners that satisfy the

same functional requirement. Consequently, those service partners together allow to

achieve the reliability quality attribute.

The architect should first gather the needed information that may help her/him to

take decisions correctly while going through the different steps of the process. This

information is specified according to a template described in Table 4.1. The architect

provides in this template the quality attribute targeted by this integration activity from

the quality requirements specification (i.e. the architect wants to implement in the ser-

vice orchestration). We adopt at the top level of our specification the ISO 91262 quality

model to represent quality attributes as quality characteristics and sub-characteristics.

We consider in our work the ISO 9126 quality characteristics mainly as “abstract” qual-

ity attributes and sub-characteristics as “concrete” quality attributes which are spe-

cializations of the first ones. Some ISO 9126 quality sub-characteristics like “security”

are however still considered as “abstract” quality attributes for service-based systems.

These sub-characteristics may have several specializations as “concrete” attributes like

“Data security” and “Access security”. Additionally, the architect should specify where

in the orchestration the changes have to be made. Hence, she/he should identify the

architectural area that shows the scope of the change. It represents the architectural

elements (or sets of these elements) in the BPEL process concerned by the changes.

She/he does not specify an exhaustive list of all these elements, but only the main ones.

For example, the architect can identify the Assign activities in the BPEL process after

which Invoke activities should be added to integrate Authentication. Besides this,

the architect has to indicate in her/his intent specification the integration kind by in-

dicating if she/he wants to add (a new), enhance (an existing), weaken, or withdraw

(an existing) quality attribute. This will determine the assistance type to provide in

the following process steps. Additional information should be specified if the architect

2Software engineering – Product quality – Part 1: Quality model. The International Or-
ganization for Standardization Website:http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_ de-

tail.htm?csnumber=22749

4.2. Quality attribute integration intent specification 81

Table 4.1 : Template for Quality Integration Intent Description

Element Scope Description
Quality Attribute Inte-
gration

What?
State the quality attribute targeted
by the integration activity.

Integration Kind How?

State if the integration targets to
add a new quality attribute, en-
hance, weaken or withdraw the
quality attribute.

Related Quality At-
tribute

Ultimately
what?

If the integration kind is withdraw-
ing or weakening the quality at-
tribute, state here the quality at-
tribute which will be ultimately
enhanced or added (left empty
otherwise).

Architectural Area Where?
Indicate where in the orchestra-
tion changes will occur.

wants to withdraw or reduce a quality attribute. This is stated in the “Related Quality

Attribute” section. Indeed, we argue that each time the architect wants to remove or

weaken an existing quality attribute, she/he wants in fine to enhance or add another at-

tribute, which is considered here as the “related quality attribute”. For example, when

the architect tries to remove “Authentication” for affecting (weakening or removing)

“Security”, there is a final goal of enhancing “Performance”. In the other integration

kinds (add or enhance), this section is left empty.

The integration intent specification is analyzed, and depending on the integration

kind two cases are distinguished. These are detailed in the following subsections.

Quality Integration by Adding or Replacing a Pattern

In this case, the architect wants to enhance (replace the existing pattern implementing

the quality attribute by applying one or several other patterns) or add a new quality

attribute (apply a new pattern) to the orchestration. Therefore, a collection of patterns

is suggested to the architect.

Quality Integration by Removing a Pattern

In other situations the architect may have to remove a quality attribute. For example,

she/he may weaken or remove the security quality attribute (authentication). There

are no proposed patterns from the catalog here since there is no pattern to apply to the

82 Chap 4. SAQIM: Service-Oriented Architecture Quality Integration Method

architecture. Rather, a cancellation of the pattern implementing the quality attribute

is performed. This cancellation is automatically obtained from the scripts for a pattern

application. The pattern application and cancellation will be detailed in sections 4.4

and 4.7.

4.3 Pattern Selection

We consider in this work the existence of an “SOA Pattern Catalog” that we have build,

whose structure is detailed later. This pattern catalog is automatically analyzed us-

ing the “WS-BScript” toolset and this may result with a collection of patterns related

to the targeted quality3 which are proposed to the architect. The suggested patterns

are then applied (Pattern Application step) on the orchestration by the architect in

a semi-automatic way by configuring then executing their scripts (using WS-BScript

toolset), to evaluate then automatically their impact on the existing qualities (using

the WS-BScript toolset). The analysis may also result with no patterns. In this case,

the architect is invited to define a new pattern (New Pattern Definition step). The pro-

posed process is based on an “SOA Pattern Catalog”, where each pattern is specified

according to the model shown in Figure 4.2.

The pattern’s specification includes a “name” with a textual description of its role.

It includes also the “quality attribute” (The ISO 9126 quality characteristic or sub-

characteristic considered as concrete quality attribute) that the pattern implements.

Additionally, the pattern contains in its specification an “architectural script” which

describes the way it should be applied in the orchestration. This script is composed

of basic architecture changes which are a set of parameterized actions that aim to re-

configure the structure of the Web service orchestration. Actions are specified using a

scripting language for Web service orchestration reconfiguration called “WS-BScript”.

The last section in the description of a pattern contains the “architectural constraints”,

which are a formal specification of the structural conditions imposed by the pattern

and allow the checking of its presence or absence in the orchestration.

Existing SOA patterns are usually presented in the literature following a functional

organization (patterns for reliable messaging, patterns for atomic distributed service

transactions, etc.). This does not answer our needs in this work where we would like to

3As stated previously, a quality attribute may be implemented by applying several patterns in differ-
ent ways.

4.4. Pattern Application 83

Figure 4.2 : Pattern Specification

propose a pattern that concretizes a given quality attribute. Consequently, we organize

the patterns catalog based on the qualities they implement.

The “SOA Pattern Catalog” is an important artifact in SAQIM. It is partially built

before any use of SAQIM. It is then enriched, according to the model presented pre-

viously, each time a new pattern is used in the engineering of a given service orches-

tration using SAQIM. There are two roles associated to this catalog: i) a catalog ad-

ministrator, whose responsibility is to feed the catalog with new pattern specifications

(scripts, constraints, ...), and ii) a catalog user (an architect of a given orchestration),

who will not directly manage the catalog, but will just see SAQIM suggesting the ap-

plication of patterns retrieved from the catalog (or executing cancellation scripts pro-

cessed from the catalog). As indicated previously, in some cases, the architect has the

possibility to feed the catalog with new pattern specifications. In this case, the archi-

tect will play temporarily the role of an administrator. It is true that the responsibility

of the architect is to design the system, but the fact that she/he is able to enrich the

catalog will enable future instantiations of the same pattern, either in the same orches-

tration or in other orchestrations by benefiting from the automated support provided

by SAQIM.

4.4 Pattern Application

This is an important step in the process where the selected SOA patterns are applied on

a targeted Web service orchestration by means of some scripts, which specify simple

architectural changes expressed with a Web service orchestration scripting language

(WS-BScript).

84 Chap 4. SAQIM: Service-Oriented Architecture Quality Integration Method

In this step of the process, the architect will apply one or several predefined4 scripts

(issued from the catalog of patterns) on her/his orchestration. For this end, the archi-

tect has to configure the scripts she/he wants to apply by initializing their parameters

first and then by customizing them on the fly (through ask actions).

In the current implementation, the selected patterns are instantiated (from the pat-

tern catalog which contains the description of patterns) and then applied on the Web

service orchestration. It produces at last a new Web service orchestration. The archi-

tect is informed about the script application progress by displaying information on the

embodied elements composing a pattern instance.

A registry of patterns is created in this step which references all the instances5 used

to build a service orchestration, each of which has a unique identifier. The registry

exists during the quality integration assistance process; it is destroyed at the end of the

process. Compared to the architecture documentation, it contains all the patterns that

have been proposed to the architect for selection while the documentation contains

only those chosen and applied on the service orchestration. At evolution time, where

future changes may occur on the service orchestration, the registry could be restored

from the architecture documentation to assist architects.

Listing 4.1 below shows a script example of the Trusted Subsystem Pattern [Erl, 2009]

which implements the “Access Security” quality attribute. It prevents from unautho-

rized access to the resources of a service by malicious attackers. It adds an authen-

tication service on top of the invocation sequence in the orchestration to secure the

service from direct access to the databases.

Before executing the script the architect is asked first to indicate its argu-

ments. She/he has to give first the WSDL file (the wsdlFileName parameter)

which represents the service. Second, she/he should indicate a specific opera-

tion (the partnerLinkOperationName parameter) in the WSDL file representing the

service. Then, she/he should state an operation name in the BPEL process (the

ProcessOperationName) to which a reply is prerformed in case of an authentication

failure. Finally, the BpelElementName parameter representing the BPEL activity after

which a call to the authentication service has to be made is provided by the architect.
1 s c r i p t applyTrustedSubsystemPattern (String BpelElementName ,

4The patterns scripts are already specified in the patterns catalog, the architect has just to apply
them.

5Several instances of the same pattern may exist in an orchestration.

4.4. Pattern Application 85

2 String wsdlFileName , String partnerLinkOperationName ,

3 String ProcessOperationName) {

4 l e t position = getPosit ion (BpelElementName) ;

5 l e t ocl = " s e l f −>closure (eContents () . oclAsType (EObject))−>s e l e c t (a |

6 a . oclIsKindOf (model : : BpelType) and a . oclAsType (model : : BpelType) .name=

7 ’BpelElementName ’)−>c o l l e c t (a : EObject | a . eContainer ())−>asSet () " ;

8 l e t elem = query (ocl) ;

9 l e t aAssign = create (BpelElement . Assign) ;

10 add (aAssign , elem , position +1) ;

11 l e t aSequence = create (BpelElement .Sequence) ;

12 add (aSequence , elem , position +2) ;

13 l e t aPartnerLink = create (BpelElement . PartnerLink) ;

14 add (aPartnerLink , wsdlFileName) ;

15 l e t aInvoke = create (BpelElement . Invoke) ;

16 add (aInvoke , aSequence , 0) ;

17 wire (aInvoke , aPartnerLink , partnerLinkOperationName) ;

18 l e t a I f = create (BpelElement . I f) ;

19 add (aIf , aSequence , −1) ;

20 l e t aCondition = create (BpelElement . Condition) ;

21 add (aCondition , aIf , 0) ;

22 ask (aCondition) ;

23 l e t aAssign1 = create (BpelElement . Assign) ;

24 add (aAssign1 , aIf , 0) ;

25 l e t aElse = create (BpelElement . Else) ;

26 add (aElse , aIf , −1) ;

27 l e t aSequence1 = create (BpelElement .Sequence) ;

28 add (aSequence1 , aElse , 0) ;

29 l e t aAssign2 = create (BpelElement . Assign) ;

30 add (aAssign2 , aSequence1 , 0) ;

31 l e t aReply = create (BpelElement . Reply) ;

32 add (aReply , aSequence1 , −1) ;

33 wire (aReply , ProcesspartnerLink , ProcessOperationName) ;

34 }

LISTING 4.1 : Trusted Subsystem Pattern application script

The script starts first by looking through the “getPosition” action (Line 04) for the

position of the BPEL activity (BpelElementName parameter) representing the architec-

tural area after which the architect would like to apply the change. The “getPosition”

action returns the position relatively to a BPEL activity’s container. This is why we have

to get the container BPEL activity of the BpelElementName activity so it could be pos-

sible to insert a BPEL activity just after it. To do so, in Lines 05-07 through a parame-

terized OCL expression with a generic format the script gets the container element of

the BpelElementName activity. The OCL expression accepts two parameters, the name

of the BpelElementName activity and the type (BpelType) of the activity (namely, Re-

ceive, Reply, Invoke, Assign, Sequence, etc. as defined in the BPEL specification). This

86 Chap 4. SAQIM: Service-Oriented Architecture Quality Integration Method

latter is automatically deduced by the “WS-BScript” toolset and injected in the OCL ex-

pression. The OCL expression format given in the script example navigates in an Ecore

implemetation of the BPEL meta-model (see Figure 2.3).

The OCL expression is executed in Line 08 through the “query” action and the result

is saved. Then, the script adds in Lines 09 and 10 an Assign activity for variables setting

before adding a Sequence activity (Lines 11 and 12) inside which the remaining BPEL

activities composing the pattern will be inserted. We should note that in the “add” ac-

tion, the “0” value means an insertion at the beginning of the container activity and

the “-1” value means an insertion at the end, otherwise the architect has to specify the

exact position. After that, the script adds a partnerLink BPEL activity to the targeted

orchestration (Lines 13 and 14). Just after, an Invoke activity is added to the orchestra-

tion (Lines 15 and 16), having as attribute the partnerLinkOperationName parameter

which indicates the operation to invoke in the previously inserted PartnerLink. Line

17 binds the Invoke activity to the PartnerLink. The script adds If-Else BPEL elements

(Lines 18-21, 25 and 26) to specify the case of success, or failure of the authentication

for which a Reply is intended (Lines 31-33) to answer the consumer a non-granted ac-

cess. The script interrupts the execution through the “ask” action, asks on the fly for

additional customization parameters and assists the architect to set the condition of

the If element (Line 22). This script is executed on the BPEL description of the Web

service orchestration which results in a new Web service orchestration implementing

the security quality characteristic.

4.5 Quality Impact Analysis

In SAQIM we provide a mean that proposes to architects a collection of SOA patterns

implementing the desired quality attributes as well as a mean to apply them in the

service orchestration. Now, we need to know what are the consequences of integrat-

ing each pattern into the service orchestration. What impact may a pattern have on

the other embodied patterns. Hence, what impact may the satisfaction of a quality

attribute may have on the other already achieved quality attributes in the service or-

chestration. Moreover, in the presence of various alternative patterns for the same in-

tended quality attribute what it the most satisfactory one to the architects preferences.

To answer the aforementioned questions a quality impact analysis is required in the

quality integration assistance process. We proposed for this end a quality-oriented im-

4.6. New Patterns Definition 87

pact analysis process that assists architects with a quality-oriented change assistance

algorithm and a recommendation system of SOA patterns satisfying quality attributes

for service orchestrations. The quality impact analysis process is detailed in chapter 5.

4.6 New Patterns Definition

It is up to the architect to validate her/his choice of a specific pattern or to reject it. If

the architect is not satisfied with any of the proposed patterns, then she/he can define

new patterns (specialization of existing patterns, for example), which she/he is asked

to document according to the proposed specification (Figure 4.2). They will be consid-

ered as new reusable architecture design decisions that could potentially be applied on

some architecture descriptions in the future. The architect plays in this step the role of

the catalog administrator to feed the catalog with the newly defined pattern.

After that, the architect is redirected to the “Patterns Application” step to simulate

the effect of the new catalogued pattern. This is an important transition backward in

the process, especially if the architect who catalogued the pattern is not the one who

chose the patterns that are implemented in the architecture, and therefore, potentially

did not know them. Consequently, she/he does not know the impact of the new pattern

application on the other implemented qualities in the architecture. Hence, returning

back to the “Patterns Application” step is necessary to assist the architect.

4.7 Pattern Cancellation

As we have mentioned in Section 4.2, the architect may want to remove or weaken a

given quality attribute. In this case, the process execution takes another path, as il-

lustrated in Figure 4.1. The process goes through the pattern cancellation step where

an elimination of the concerned pattern is performed. This is done by deducing the

opposite effect of the pattern’s architectural actions, hence avoiding to the architect

the burden of doing it manually or specifying the cancellation script. The generated

cancellation script is then executed on the Web service orchestration. The generation

of a cancellation script is handled automatically (by the “WS-BScript” toolset) follow-

ing a bottom-up approach starting by the last action in the script and going up to the

first one, by respecting some specific rules which are enumerated hereafter: 1) keep

the script parameters specified in the original script; 2) maintain the loops and if-else

88 Chap 4. SAQIM: Service-Oriented Architecture Quality Integration Method

statements as they are; 3) ignore the “ask”, “return”, “create”, “query” actions; 4) replace

the “add” action by the “remove” action, and the “wire” action by the “unwire” action;

5) replace a script call by its corresponding cancellation script. 6) Replace the remove

(BpelElement element) action by two primitives:

i) let element= create(BpelElement.Kind), and

ii) add (BpelElement element, BpelElement AttachedParentelement, int elementPosition)

In the following listing 4.2 we show the cancellation script of the “Trusted Subsys-

tem” pattern, whose application script is given in Section 4.4:
1 s c r i p t cancelTrustedSubsystemPattern (String BpelElementName ,

2 String wsdlFileName , String partnerLinkOperationName ,

3 String processOperationName) {

4 unwire (aReply , ProcesspartnerLink , processOperationName) ;

5 remove (aReply) ;

6 remove (aAssign2) ;

7 remove (aSequence1) ;

8 remove (aElse) ;

9 remove (aAssign1) ;

10 remove (aCondition) ;

11 remove (a I f) ;

12 unwire (aInvoke , aPartnerLink , partnerLinkOperationName) ;

13 remove (aInvoke) ;

14 remove (aPartnerLink) ;

15 remove (aSequence) ;

16 remove (aAssign) ;

17 }

LISTING 4.2 : Trusted Subsystem pattern cancellation script

The script presented above cancels the application of the “Trusted Subsystem” pat-

tern by reversing its actions from the last one to the first one. Line 01 unbinds the

“Reply” activity from the “PartnerLink” before removing it (Line 02). Similarly, the

other BPEL elements are removed in the opposite order they were added (Rule 4 stated

above). The script parameters remain unchanged (rule 1).

The cancellation of a pattern from a service orchestration involves the following

steps: i) looking for all the pattern instances the architect wants to remove from the

pattern registry, and listing them to the architect, then ii) the architect should choose

manually the pattern instance to cancel; iii) if the pattern cancellation script has been

already generated, apply the script, otherwise, generate the script and add it to the reg-

istry then apply it, and finally iv) manage pattern intersections (handled automatically

4.8. Documentation of the New Architecture 89

by“WS-Bscript” toolset) by showing to the architect the BPEL elements pertaining to

other pattern(s) that could be eventually removed when applying the script. If it is the

case, it is up to the architect to validate the change or not.

The consequences of removing the pattern instance implementing a quality at-

tribute are reported to the architect by the quality impact analysis (See chapter 5) us-

ing the quality oriented assistance service (architectural constraints checking), and it

is the architect’s responsibility to validate the change and hence documenting the new

architecture, or repeat again the different steps of the process for a new architecture

decision.

4.8 Documentation of the New Architecture

In this step, the chosen pattern is applied to the orchestration and added in the archi-

tecture decision documentation as a new design decision. This documentation con-

tains all design decisions (SOA patterns) that was made to build the architecture. In ad-

dition, the architect has to complete a part of this documentation, namely the formal-

ization degree of the pattern, and also the related qualities of the quality attribute. The

criticality degree of the quality attribute the pattern implements, and the satisfaction

degree of the pattern for the quality attribute are automatically added to the documen-

tation by the “WS-BScript toolset”. This information is necessary for the futur quality

integrations especially in the patterns selection process (quality impact analysis step).

We show below an excerpt of the Travel Reservation System TRS (See Figure 6.1) sys-

tem’s architecture documentation. Its architecture documentation is presented in a

synthetic way (in order to not be too verbose with its original XML-based description)

in the listing below:

Architecture-Documentation :

1. Architecture-Tactic :

This tactic ensures the Access Security quality requirement by using

a Trusted subsystem pattern

- Quality-Attribute name="Access Security" degreeOfCriticality="34,8"

- Related-Quality name="Availability" relationship="Enhances"

relationType="weak" influence="negative"

- Architecture-Decision name="Trusted subsystem pattern"

degreeOfSatisficing="18,15"

degreeOfContext-suitability="72,6"

90 Chap 4. SAQIM: Service-Oriented Architecture Quality Integration Method

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="90"

2. Architecture-Tactic :

This tactic ensures the Data Security quality requirement by using

a Exception Shielding pattern

- Quality-Attribute name="Data Security" degreeOfCriticality="24,6"

- Related-Quality name="Portability" relationship="Enhances"

relationType="weak" influence="negative"

- Architecture-Decision name="Exception Shielding pattern"

degreeOfSatisficing="75"

degreeOfContext-suitability="80"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="90"

3. Architecture-Tactic :

This tactic guarantees the Portability quality requirement by using

a Service facade pattern

- Quality-Attribute name="Portability" degreeOfCriticality="5,8"

- Related-Quality name="Performance" relationship="CollidesWith"

relationType="tight"

- Architecture-Decision name="Service facade pattern"

degreeOfSatisficing="90"

degreeOfContext-suitability="95"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="80"

The architecture documentation contains three architectural tactics. They docu-

ment the links between architectural decisions (SOA patterns) and their correspond-

ing quality attributes (QA1, QA2, QA4 in Table 6.1). In this documentation we can see

among others the different relations between quality attributes (Related-Quality el-

ement in the listing above). For example, in the third tactic, the Related-Quality el-

ement shows that the portability and performance quality attributes are colliding and

are tightly coupled.

4.9 Summary

In this chapter we have presented SAQIM, a method for quality integration in ser-

vice orchestrations which relies in a complementary way on the service-oriented im-

pact analysis process and the documentation model detailed respectively in chapter 5

and chapter 3. We presented the different steps of the method starting from an “in-

4.9. Summary 91

tent” specification which expresses a request to satisfy a quality attribute in the ser-

vice orchestration to its achievement using SOA patterns. We showed how the method

and its accompanying “toolset” assists the architect and leads to concrete architecture

changes with minimal negative effect on the overall service orchestration quality at-

tributes.

The next chapter details another contribution in this thesis which is the quality-

oriented impact analysis process. This process is used in a complementary way with

SAQIM (in the quality impact analysis step) and offers valuable assistance in the quality

integration process.

C
H

A
P

T
E

R

5
Quality-oriented impact analysis

process

In this chapter we expose the quality impact analysis process. We present first in

section 5.1 a micro-process of architecture evolution and where in this process, the

quality-oriented change assistance takes place. The latter, is detailed in section 5.2.

5.1 A Micro-Process of Architecture Evolution

Figure 5.1 shows a simple micro-process of service-oriented architecture evolution1.

In this process, the triggers for requesting architecture evolution can be either new

business requirements (for perfective evolution), bug reports (for corrective evolution)

or quality enhancement (for perfective, adaptive or preventive evolution). Then the

developer has to go through multiple steps, ranging from architecture comprehension

to the proposition of a new architecture.

Among these steps, the developer performs some testing to check if there is a

1This micro-process addresses software evolution in general, and not service-oriented architectures
in particular. Adaptations to this specific context are detailed later.

93

94 Chap 5. Quality-oriented impact analysis process

Request for architecture evolution

Identification of architecture changes

New Business
Requirements Bug Reports

Quality Enhancement

Application of architecture changes

Quality-Related Regression testing

New Service-Oriented
Architecture

Failed
Tests

Architecture comprehension

Figure 5.1 : A Micro-Process of Architecture Evolution

“clean” progression (verify if the additional services, operations or activities work cor-

rectly) and no regression (existing features are not negatively impacted by the addi-

tions). We address exclusively quality-related regression testing. In practice there are

few works that dealt with this aspect by proposing some automatic support. Even with

the existence of such approaches, if some tests fail, the developer iterates (eventually

many times) to fix the problems. She/He is asked to look for the architecture changes to

be applied, and sometimes she/he is led to the step of “Architecture comprehension”.

The proposed quality impact analysis aims at assisting this process by notifying the

developer on-the-fly if there are some architecture changes that affect quality require-

ments. This is illustrated in Figure 5.2. The quality impact analysis is an important step

which is used by SAQIM (See section 4.5).

The approach introduces two concepts: an architecture documentation model

(bottom left of Figure 5.2) and a quality-oriented architecture change assistance that

uses the architecture documentation. The first concept encompasses the set of SOA

patterns (as design decisions) already instantiated and used to build the service archi-

tecture. For each pattern we specified following the model introduced in section 3.2, its

degree of satisfaction for the quality attribute it implements, the relationships of this

latter with the other already introduced qualities, its degree of formalization, among

5.2. Quality-Oriented Architecture Change Assistance 95

Request for architecture evolution

Identification of architecture changes

New Business
Requirements Bug Reports

Quality Enhancement

Application of architecture changes

New Service-Oriented
Architecture

Architecture comprehension

Documentation of new decisions

Architecture
Documentation

Undo changesValidate changes

Validate changes

Assistance
Algorithm

Figure 5.2 : The Proposed Micro-Process of Architecture Evolution

others.

The architecture change assistance is used when developers apply changes on an

architecture to notify them with the possible impact of their changes on quality re-

quirements. Since the process (SAQIM) that we propose to integrate a quality require-

ment in a service architecture is pattern-based, a change is often the instantiation of a

pattern in the service architecture. Then, it is the developer’s responsibility to validate

or undo changes. If changes are validated the developer is asked to document the new

decisions taken while evolving the service-oriented architecture. Another role of the

quality-oriented architecture change assistance is to help architects in choosing the

most satisfactory pattern to apply in her/his service orchestration since she/he may

be faced with many alternatives for the same quality attribute. The quality-oriented

architecture change assistance is detailed in the following section.

5.2 Quality-Oriented Architecture Change Assistance

There are two key elements that are used in this step: i) the use of a quality-oriented as-

sistance service that helps in diagnosing the consequences of any applied pattern on

the other implemented qualities, and ii) the use of a Multi-Criteria Decision Making

(MCDM) method, named “WSM” [Fishburn, 1967] (Weighted Sum Model), to evalu-

ate a number of SOA pattern alternatives and to help the architect to select the most

96 Chap 5. Quality-oriented impact analysis process

satisfactory pattern in a quality requirement integration step.

The algorithm 1 shows the behavior of this step. It is composed of several func-

tions. The algorithm is launched after the selected patterns are applied on the service

orchestration in the “Pattern Application” step of SAQIM (See section 4.4). Each pat-

tern is applied on an instance of the targeted service orchestration.

During the quality integration process, the information encapsulated in the archi-

tecture documentation (See section 4.8) is exploited by the assistance algorithm in

order to assist architects. The main purpose is to drive software architecture change

to a situation where the quality integration intent is satisfied and the existing qual-

ity is minimally affected. This is done in three main steps: i) constraint evalua-

tion and data collection; ii) pattern ranking, and iii) result reporting. The algorithm

starts first by looking for the architecture documentation associated to the service or-

chestration which has been changed. Then, in the first step the algorithm checks

(checkArchitecturalConstraint (..) function) each constraint (Line 21) in the

documentation (by calling a function which is detailed in section 5.2.1) and collects a

part of the necessary data to partially configure the ranking system (WSM). In the sec-

ond step, the ranking system collects first the remaining data required to complete its

configuration then computes and returns the ranking scores of all the patterns (ADs)

in a descending order (Lines 22- 27). It is obvious that there is no need for the ranking

system if there is only one selected pattern. In the last step, the results are reported

(Line 28) to the architects to allow her/him to choose a pattern from the selected ones.

After that, the developer is asked to pinpoint the architecture decision (a pattern) and

the quality attribute associated to the changes, if any (Lines 30- 33). At last, if the

changes generate a new architecture decision (the choice of a pattern), the algorithm

adds (addNewArchitecturalTactic (..) function) to the documentation the cou-

ple composed of this new decision associated to its quality attribute, which is called

an architectural tactic (Line 34). In addition the algorithm tries to infer the quality at-

tributes affected by this new tactic (Line 36).

We note here that the patterns (as design decisions) are previously documented

by the architect according to the model introduced in section 3.2. This model intro-

duces some fine-grained information (see Figure 3.1) namely, the criticality degree of

a quality attribute which represents its importance in the architecture, the formaliza-

tion degree, which represents the extent to which some checkable constraints (present

5.2. Quality-Oriented Architecture Change Assistance 97

Algorithm 1: Quality-Oriented Change Assistance

1 begin
2 let AE := Architectural Element;
3 // a service orchestration;
4 and AD := Architectural Decision;
5 and AC := Architectural Constraint;
6 and QA := Quality Attribute;
7 and AT := Architecture Tactic;
8 // a couple composed of a QA and an AD;
9 and Doc:= architecture documentation associated to changed AE;

10 and wsmParams:= { };
11 // an empty list of WSM system parameters (Aij, Wj);
12 and rankedPatterns:= { } ;
13 // an empty list of pairs (AD, score);
14 and affectedQAs:= { } ;
15 Function main(){
16 begin
17 after Pattern Application {
18 foreach (AT in Doc) do
19 QA := QA in AT ;
20 AD := AD in AT ;
21 check Ar chi tectur alConstr ai nt (AD);
22 let A2j= ask for the context-suitability decision criterion value;
23 w smPar ams := w smPar ams + (A2 j ,W 2);
24 let score := runWsmSystem();
25 rankedPatterns := rankedPatterns + (AD,score);
26 end
27 sor t (r ankedPat ter ns);
28 di spl ayResul t s();
29 Upd ate Ar chDocument ati on() ;
30 let newAD := ask for AD associated to the new architecture, if any;
31 if new AD 6= null then
32 let newQA := ask for the QA associated to newAD;
33 end
34 add New Ar chi tectur al Tacti c(new AD,newQ A);
35 }
36 check A f f ectedQ As();
37 end
38 }
39 end

98 Chap 5. Quality-oriented impact analysis process

in the documentation) formalize the pattern, and the satisfaction degree, which rep-

resents the degree to which a design pattern contributes to satisfy a quality attribute.

The documentation is enriched with a context-suitability degree, which is specified

and documented at quality integration time because it depends on the pattern’s suit-

ability to a given situation and to the orchestration. This degree cannot be reused in

different service orchestrations. It can however be reused in the future evolutions of

the same service orchestration.

Then, the developer is asked to validate the new architecture through the

UpdateArchDocumentation (..) function (Line 29 in algorithm 1) fully aware with

the possible consequences of her/his changes, or to undo changes (Line 3 in the

the UpdateArchDocumentation (..) function detailed in algorithm 2).

Algorithm 2: Update Architecture Documentation

1 Function UpdateArchDocumentation(AD)

2 begin

3 ask to validate the new architecture or undo changes ;

4 if new architecture maintained then

5 affectedQAs := affectedQAs + QA + QA_Relationships(QA, "enhances",

"tight");

6 warn "Architecture documentation will be changed ...";

7 Doc := Doc - AT(AD,QA);

8 ask to review satisficing degrees of ATs related to QA_Relationships(QA,

"enhances", "tight");

9 ask to review Non-Functional Requirements specification;

10 end

11 end

In this last case, the architecture documentation should be updated by the algo-

rithm (this is another important role of this assistance algorithm). The affected de-

cisions and their associated quality attributes are removed from the documentation

(Line 7). The developer is at last asked to review the degrees in the documentation, as

some tactics are removed. In addition, she/he is invited to review the non-functional

(or quality) requirements specification.

The function addNewArchitecturalTactic(...) (detailed in the algorithm 3) cre-

5.2. Quality-Oriented Architecture Change Assistance 99

ates a new architectural tactic and adds it to the documentation. Before that, if the

quality attribute has been voluntarily added by the developer, it is removed from the

set of affected quality attributes (Line 5). Else this attribute is considered as a new

quality and a checking is performed to alert the developer of the other qualities that

are possibly affected by this attribute (Line 7). At last, the algorithm asks the developer

to change the quality requirements specification.

The last function (algorithm 4) just recalls to the developer that there still remain

some affected quality attributes, if any. The developer is asked to review the architec-

100 Chap 5. Quality-oriented impact analysis process

ture documentation and the quality requirements specification.

Algorithm 3: Add Architectural Tactic

1 Function addNewArchitecturalTactic(AD,QA)

2 begin

3 newAT := new AT(AD,QA) ;

4 if QA is in affectedQAs then

5 affectedQAs := affectedQAs - QA;

6 else

7 warn "Other QAs may be in conflict with "+QA+": " + QA_Relationships

(QA,"collidesWith","both");

8 end

9 warn "Architecture documentation will be changed ...";

10 Doc := Doc + newAT ; ask to change Non-Functional Requirements

specification;

11 end

Algorithm 4: Check Affected Qualities

1 Function checkAffectedQAs()

2 begin

3 if a f f ectedQ As 6= null then

4 foreach (QA in affectedQAs) do

5 warn QA + "is still affected by your changes";

6 ask to review satisficing degrees of ATs implying QA ;

7 end

8 ask to change Non-Functional Requirements specification ;

9 end

10 end

The overall goal of this algorithm is threefold. First, it assists developers during

architecture evolution with information about the impact of their changes on archi-

tecture design decisions and on quality attributes. Second, it helps architects faced

to a variety of patterns implementing the same quality attribute to choose the one

that best satisfies their needs. Third, it helps to maintain the documentation of non-

functional (or quality) requirements up-to-date in a semi-automatic fashion. This can

5.2. Quality-Oriented Architecture Change Assistance 101

be observed in updates made automatically on the documentation, requests to review

satisficing degrees of the affected quality attributes, and requests to change or review

NFRs specification.

5.2.1 Quality-Oriented Assistance Service

The first element of the quality-related impact analysis step is an assistance service

which aims to notify the architect of the consequences of the applied pattern on the

other qualities. It indicates what are the related qualities that may be altered when

applying the pattern which implements the new quality attribute. This assistance is

mainly based on the evaluation of some OCL constraints that we used to specify SOA

patterns parameterized architectural constraints for Web service orchestrations. These

constraints are defined using OCL and navigate in a metamodel of BPEL.

Algorithm 5: Architectural Constraints Checking

1 Function checkArchitecturalConstraint(AD)

2 begin

3 let result := check AC ;

4 if r esul t == f al se then

5 A f f ectedQ AsNoti f i er (AD);

6 warn "Other QAs may be in conflict with "+QA+": ";

7 + QA_Relationships (QA,"collidesWith","both");

8 w smPar ams := w smPar ams + (A1 j ,W 1);

9 end

10 end

The function checkArchitecturalConstraint(..) detailed in the algorithm 5,

checks the constraints associated to a given architecture decision (a pattern) received

as an argument. It starts by checking the constraint expressions associated to the de-

cision. If the checking does not succeed for a given constraint, a set of warnings are

displayed to the architect by the AffectedQAsNotifier (..) function (Line 5). The

displayed information includes the architecture decision, the exact architectural ele-

ment impacted by the change, the degree of formalization of the decision, the quality

attribute, its degree of satisficing and its criticality degree (Lines 8 and 9 in the algo-

rithm 6). In addition, it shows to the developer the list of quality attributes which are

eventually impacted by the change (Line 10). For doing so, it uses the recorded infor-

102 Chap 5. Quality-oriented impact analysis process

mation in the architecture documentation namely, the “related-quality” attribute (See

section 4.8 for un example). It notifies also the developer when adding a quality at-

tribute to the service orchestration, about the quality attributes which are indirectly

impacted (i.e. the quality attribute that its constraint still hold and is related to the

added quality attribute). For example, when adding the portability quality attribute,

the change may not invalidate the constraints formalizing the performance quality at-

tribute implemented in the service orchestration but, this latter could be in a conflict-

ing conceptual relationship with the portability.

Algorithm 6: Affected Qualities Notifier

1 Function AffectedQAsNotifier(AD)

2 begin

3 AE := AE in the context of AC;

4 QA := QA associated to AD;

5 warn "The following architecture decision " +AD+" is affected.";

6 warn "This concerns the architectural element: "+AE;

7 warn "The affected architecture decision is formalized by the constraint up to "

+ degreeOfFormalization (AD,AC)+ "%" ;

8 warn "The affected architecture decision is satisficing "+QA + " up to "

+degreeOfSatisficing(AD,QA)+"%";

9 warn "The degree of criticality of this QA is: "+ degreeOfCriticality(QA);

10 warn "Other QAs may be affected. This concerns: " + QA_Relationships

(QA,"enhances", "tight") ;

11 end

Finally, the checkArchitecturalConstraint(..) function collects from the ar-

chitecture documentation for each applied pattern a part of the necessary data for the

ranking system (WSM) configuration (Line 8). This data is the criticality degree value

(C1) of the directly impacted quality attributes2.

5.2.2 Weighted Sum Model for Patterns ranking

The “WSM” method is the second key element of the quality impact analysis step and

is used only when the “Pattern Selection” step (See section 4.3) results in a collection

2The change produced by the application of an architecture decision (a SOA pattern) may impact
several quality attributes

5.2. Quality-Oriented Architecture Change Assistance 103

of patterns for a targeted quality attribute. Its goal is to give a ranking on the selected

patterns to choose the best alternative (having the highest WSM score).

Concerning this element, the MCDM problem we want to solve can be expressed

as following: “what is the pattern that impacts the less the most important quality at-

tributes, and is the most suitable to the architect preferences (context suitability, e.g.,

price, applicability related conditions, etc.)?” We have formulated the MCDM problem

as follows:

• Alternatives are some selected patterns we want to classify;

• Decision criteria are defined as follows:

1. Criticality of the impacted quality attribute (C1);

2. Context-Suitability of the pattern (C2).

The “WSM” is considered as one of the most widely used methods for its simplic-

ity [Triantaphyllou et al., 1999]. If there are M alternatives and N criteria, then the best

alternative (pattern) is the one that satisfies (in the maximization case) the following

formula [Fishburn, 1967]:

Aw sm
i = maxi

N∑
j=1

ai j w j , f or i = 1,2,3, ..., M . (5.1)

∑N
j=1 w j = 1 and w j > 0, j = 1, ..., N

ai j is the value of an alternative “i” (pattern) in terms of a decision criterion “j”.

Weights represent the importance of each criterion according to the architect’s prefer-

ences in the quality integration process.

In our approach, we choose the “Pairwise Comparison” method introduced in the

“AHP” (Analytic hierarchy Process) method [Saaty, 1980] to derive the data. AHP is

highly mature, has a shallow learning curve (simple to learn within a reasonable length

of time), uses quantitative measures and has clear-cut steps [Mead, 2006]. “Pairwise

comparison” is known to have a good theoretical foundation and is easy for deci-

sion makers to understand [Triantaphyllou et al., 1999]. In this approach the decision

maker has to express her/his opinion about the value of one single pairwise compari-

son at a time by using the scale proposed by Saaty [Saaty, 1980] depicted in Table 5.1.

104 Chap 5. Quality-oriented impact analysis process

Table 5.1 : Scale of relative importance

Intensity of impor-
tance

Definition

1 Equal importance.
3 Weak importance of one over another.
5 Essential or strong importance.
7 Demonstrated importance.
9 Absolute importance.

2, 4, 6, 8
Intermediate values between the two adjacent
judgments.

Reciprocals of above
nonzero

If activity i has one of the above nonzero num-
bers assigned to it when compared with activ-
ity j, then j has the reciprocal value when com-
pared with i.

Pairwise comparisons are represented in a decision matrix. In our MCDM problem the

data consist in the criteria weights (W j) as well as the criteria values themselves (C1

and C2). This data constitute the parameters for the WSM ranking system. Weights

should be derived in advance by the patterns catalog administrator, that means before

using the proposed method. The criticality degree values (C1) of the quality attributes

defined in the adopted quality model3 are derived by developers when expressing their

preferences over quality attributes. The data (C1) creation is done in the context of a

service orchestration which may make a quality attribute more desirable than another

(for example, security may be more advantaged than portability). Additionally, the crit-

icality degree values should be also prepared beforehand and should be available to be

used in the proposed method. They are automatically extracted after executing the

scripts of the patterns being evaluated, because it depends on the criticality degree of

the impacted quality attributes. If there is only one impacted quality attribute we take

its criticality degree, if there are many, we take the sum of the criticality degrees of the

impacted quality attributes.

Figure 5.3 shows an example of a decision matrix which represents the architect’s

preferences for the quality attributes defined in a service-oriented system project qual-

ity plan. An entry in the matrix, labeled ai j , indicates how much the criticality for qual-

ity “i” is higher (or lower) than that for quality “j”. Each quality has a value of “1” when

compared to itself. Figure 5.4 shows the derived values for C1
4.

3A company may define its quality attributes based on the developers experience.
4We used an online AHP priority calculator to calculate weights based on pairwise comparisons:

http://bpmsg.com/academic/ahp_calc.php

http://bpmsg.com/academic/ahp_calc.php

5.2. Quality-Oriented Architecture Change Assistance 105

In AHP, the pairwise comparisons in a decision matrix are considered to be con-

sistent if the corresponding “consistency ratio (CR)” is less than 10% [Saaty, 1980]. The

CR derived for the values in the below decision matrix is 5.4%. Finally, the context-

suitability values (C2) are derived when patterns are selected to be applied on the ser-

vice orchestration. The data is specified before executing the pattern script because it

is not documented yet since it is a context-dependent value and should be specified at

design time.

• An example of the weights vector: W1= 0.750, W2= 0.250 respectively for C1 and

C2 (prioritizing criteria weights show that the architects give more importance to

C1).

• The criticality degree weights vector (Figure 5.4) for the five quality attributes de-

fined in the project quality plan: C1Q1= 0.348, C1Q2= 0.246, C1Q3= 0.224, C1Q4=

0.058, C1Q5= 0.124 respectively for QA1, QA2, QA3, QA4 and QA5.

Figure 5.3 : Decision Matrix. Figure 5.4 : Weights for
C1.

Hereinafter, an example in the selection process when dealing with the reliability

quality attribute (QA3). The proposed solution (Pattern Selection step) for ensuring

Reliability (QA3) was the “Replication Pattern” with its three different variants namely,

the “Naive Replication (RP1)”, the “Smart Replication (RP2)”, and the “Passive Repli-

cation (RP3)”. The Replication pattern considers multiple implementations (as back-

ups) of a service actively used, thus representing a point of failure in the system ar-

chitecture. The architect decides to design a rescue system by the use of a backup

service for the Airline service, which is used sequentially. A call to the second service

is planned only if the first does not answer. The architect prefers the last variant of

106 Chap 5. Quality-oriented impact analysis process

the pattern since its design solution organizes the service invocations in a hierarchi-

cal way, while the first two variants plan parallel invocations (the first waits for the

first answer then continues, the second waits for all answers then picks the best one).

Therefore, she/he gives a score (Pattern Application step) for the Context-Suitability

Degree which is more important than the other patterns. Another advantage of the

last criterion (context-suitability) is to distinguish between pattern variants suitability

for a specific situation and a specific orchestration. Even if the same pattern variant is

applied again on the same orchestration it would not have the same impact because

the context is frequently not the same. The architect could have a preference for the

“Smart Replication” if it is a matter of price of the delivered service. The architects pro-

ceed by configuring the WSM system with Context-Suitability criterion values (C2) of

each pattern based on its preferences. Figures 5.5 and 5.6 show the derived values for

C2. For example, in Figure 5.6, in the row 1 column 2 of the matrix the architect slightly

favors the “Naive Replication” over the “Smart Replication”, hence she/he puts her/his

judgment value “2”. In the row 1 column 3 of the matrix, when comparing the “Naive

Replication” with the “Passive Replication” the architect strongly advantages the latter,

hence she/he puts the reciprocal value of “5” (0.20). The architect has just to fill (in

case of manually doing the calculation) one half of the matrix (the upper half). The

other half represents the reciprocal values.

Figure 5.5 : Weights of C2 for the replication pattern. Figure 5.6 : Decision
Matrix.

When the WSM method is applied on the previous data, the scores of the three

alternatives are:

• PNaive (WSM score)= 0* (0.750) + 0.179* (0.250) = 0,04475

• PSmart (WSM score)= 0* (0.750) + 0.113* (0.250) = 0,02825

• PPasive (WSM score)= 0* (0.750)+ 0.709* (0.250) = 0,17725

5.3. Summary 107

The notification report shows a higher score of the “Passive Replication (RP3)” with

no impacted related qualities (those directly impacted and their related quality at-

tributes in the orchestration), followed by RP1 then RP2. The results that yield the

application of the WSM method are considered as the satisfaction degrees of each ap-

plied pattern for a quality attribute. Note that values between parentheses are weights.

All variants have had no impact on any implemented quality attribute in the orches-

tration, which explains the “0” values for the first criterion (C1).

5.3 Summary

We proposed first in this chapter a micro-process of architecture evolution and we have

showed where in this process the quality-related analysis is involved. We presented a

method which makes operational the pattern-based documentation model of design

decisions through its use during architecture evolution, and an algorithm which im-

plements the supervision of architecture evolution. This supervision aims at deducing

on-the-fly the possible impact of a given architectural change on design decisions (SAO

patterns) and consequently identify the affected quality requirements. Additionally, it

provides a recommendation system for SOA patterns that allows architects to choose

the alternative that satisfies the best its preferences. The latter is based on the weighted

sum model and uses pairwise comparison technique of the AHP method as a weight-

ing technique. Here again, the recommendation system exploit the information (the

criticality degree of a quality attribute and the context-suitability degree of a pattern)

found in the documentation model to give a ranking on the selected patterns to choose

the best alternative (having the highest WSM score).

Our approach has been applied on a specific kind of software architectures, which

are service-oriented ones. A concrete implementation of this kind of software archi-

tectures has been considered in our work, which are BPEL Web service orchestrations.

In the following chapter, we present an evaluation of our contributions through a

number of simulation-based experiments to show the usefulness of the illustrated kind

of evolution assistance.

C
H

A
P

T
E

R

6
Evaluation

To evaluate our contributions that are respectively presented in chapter 3, chap-

ter 4 and chapter 5, we first show in detail through a case study how the proposed ap-

proaches are used in practice. Then, to show the benefit of our proposals we conducted

some experimentations on real-word web service orchestrations using real data.

6.1 SAQIM in Practice

The Web service orchestration, implemented by a BPEL process, that we use as an il-

lustrative and running example here represents a Travel Reservation Service (TRS) of

a travel agency. The TRS service1 is an example of real-life service for travel organiza-

tion. This system enables the users to plan and book trips in the Web. For this end, the

service interacts with four service partners namely a flight reservation service, hotel

reservation service, train reservation service, and a car rental service.

As in any software development the design of the TRS business process is based on

requirements which consist of functional requirements (FR), non-functional require-

1Released with NetBeans from Oracle Website.

109

110 Chap 6. Evaluation

ments (NFR), and technical requirements2. The functional requirements include the

main functionality in a travel agency reservation system which are in our example the

four service partners.

In addition to the functional requirements, the TRS system has initially the follow-

ing non-functional requirements:

• NFR1: Service consumers are granted access only if they are authenticated, and

no direct access to the backend resources of the service is allowed. The transmit-

ted data must not be intercepted by unauthorized service consumers.

• NFR2: The TRS system must not deliver any sensitive data that may be used by

malicious users which could compromise the integrity of the overall service.

• NFR3: The TRS system must ensure that the flight reservation service should be

available during the reservation time (8:00 AM-6:00 PM) in the working days. If

the service does not respond within 60 seconds the TRS system should notify the

system administrator.

The three NFRs are integrated into the orchestration at design time. After the NFRs

specification analysis the architect identified the first quality attribute she/he wants to

implement in the web service orchestration from NFR1, which is the “access security”

(QA1). The second and the third quality attributes, “data security” (QA2) and “reliabil-

ity” (QA3) are identified respectively from NFR2 and NFR3.

At the beginning, the architect designing this orchestration starts by looking

(and/or developing) for candidate service description interfaces that offer the needed

functionality of the aforementioned services of the TRS system. After getting the iden-

tified service description interfaces, she/he integrates them into the web service or-

chestration and invokes them in the desired logic.

We will see now some evolution scenarios which target quality requirements of this

service-oriented system, in which two additional NFRs emerged after a certain period

of time in the system’s lifetime.

2We are not interested in our work in this last kind of requirements.

6.1. SAQIM in Practice 111

Table 6.1 : Embodied Patterns and their achieved Quality attributes

Pattern

Trusted
Sub-
system
(1)

Exception
Shielding
(2)

Replication
(3)

Service
Facade (4)

Brokered
Authen-
tication
(5)

Quality
Attribute

Access
Security
(QA1)

Data
Security
(QA2)

Reliability
(QA3)

Portability
(QA4)

Access
Security
(QA1)

After a period of time, the architects realized that the service needs to access ad-

ditional databases (of different airline companies) having different formats, which re-

sulted in a portability (labelled QA4) quality evolution.

A long time after creating the system, the company providing these services has

expanded significantly, and therefore more users requested the TRS system. Conse-

quently, the architect observed that the performance (QA5) of the overall service (TRS

Service) has decreased due to a subsequent increasing number of user requests, which

imposed managing a large amount of data. As the amount of concurrent usage in-

creases, so does the amount of the generated responses, leading to increased resource

consumption of the entire service.

The two new additional NFRs are:

• NFR4: The TRS system should be able to support new data formats required by

the service partners and therefore, compensates their behavior modifications so

that the consumers are not impacted.

• NFR5: The TRS system processes and validates a large amount of data. To in-

crease performance, the transmission of unnecessary data to the consumers

should be avoided.

In order to satisfy the previous NFRs, several SOA patterns have been applied by

the architect in the TRS business process. Figure 6.1 shows the distribution of patterns

in this business process. Its design involved the use of five patterns that are introduced

incrementally into the orchestration3. Table 6.1 enumerates each of the embodied pat-

terns and its achieved quality attribute.

3We presented four (4) of the patterns in Figure 6.1 for space limitation.

112 Chap 6. Evaluation

Figure 6.1 : An excerpt of the TRS Business process showing the distribution of the
embodied patterns

6.1. SAQIM in Practice 113

Let us see now how quality integration intents are handled to address quality re-

quirements through the different steps of the proposed method (SAQIM). In the fol-

lowing we present one possible scenario for the TRS service orchestration design. The

first pattern (see Table 6.1) is embodied into the orchestration when the architect wants

to achieve the “access security” quality attribute (QA1). Table 6.2 depicts the specifi-

cation of the first quality integration intent (QII1). It shows that the quality integration

targets the “access security” quality attribute (QA1) which will be eventually added to

the orchestration. The architect specified the BPEL elements being involved in the

change which is shown in the “Architectural Area” section of Table 6.2. This shows

that the change will occur after a Receive BPEL activity in the TRS system named

AcceptConnection. In the next step (Pattern Selection step), an analysis of the pat-

terns catalog is performed to extract patterns implementing the targeted quality at-

tribute (access security).

Three patterns that serve QA1 were proposed to the architect which are: 1) Trusted

Subsystem Pattern (P1); 2) Brokered Authentication Pattern (P2), and 3) Direct Authen-

tication Pattern (P3).

Pattern P1 prevents from unauthorized access to the resources of the TRS service

by malicious attackers. It adds an authentication service on top of the invocation se-

quence in the orchestration to secure the service from direct access to the backend

resources. The service authenticates the clients then uses its own credentials to access

the backend resources. Pattern P2 adds an authentication broker service in the invo-

cation sequence of an orchestration and takes the responsibility for authenticating the

client of the service. Then, it issues a token that the client can use to access the other re-

quired services it composes without the need for the client to have a direct relationship

with them. The third pattern (P3) adds a service which requires the client services to

present credentials for direct authentication to access the functionality of the service.

This pattern may involve contrarily to pattern P2, a bandwidth consumption. This is

especially true if the client needs access to several services each one requiring a direct

authentication which may compromise the system’s performance.

The architect proceeds then in the “Patterns Application” step, by configuring the

WSM system with Context-Suitability criterion values (C2) of each pattern based on

its preferences. The resulting weights for the criterion obtained by the application of

the AHP pairwise comparisons method are ranked as follows: (P1)= 0.726, (P2)= 0.172,

114 Chap 6. Evaluation

Table 6.2 : Intent Specification for QII1

Integration Quality Attribute Security/Access Security
Integration Kind Add
Related Quality Attribute
Architectural Area after AcceptConnection: Receive

(P3)= 0.102; The result shows that the architect’s most preferable pattern for the current

context is (P1), followed by (P2) and (P3). This comes from the architect’s need to secure

the backend resources of the TRS system. The architect then configures the script of

each one of the proposed patterns by providing the needed arguments and apply them.

• The weights vector: W1= 0.750, W2= 0.250 respectively for C1 and C2

• The criticality degree weights vector for (Figure 5.4 in section 5.2.2) the five qual-

ity attributes defined in the software project quality plan: C1Q1= 0.348, C1Q2=

0.246, C1Q3= 0.224, C1Q4= 0.058, C1Q5= 0.124 respectively for QA1, QA2, QA3,

QA4 and QA5.

When the WSM method is applied on the previous data, the scores of the three

alternatives are4:

• Trusted Subsystem(WSM score)= 0* (0.750) + 0.726* (0.250) = 0.1815

• Brokered Authentication(WSM score)= 0* (0.750) + 0.172* (0.250) = 0.043

• Direct Authentication(WSM score)= 0* (0.750)+ 0.102* (0.250) = 0.0255

After the execution of the “Quality Impact Analysis” step, the notification report

shows a high score of the “Trusted Subsystem Pattern P2” with no impacted related

qualities (those directly impacted and their related quality attributes in the orches-

tration), followed by P2 then P3. The results that yield the application of the WSM

method are considered as the satisfaction degrees of each applied pattern for a quality

attribute. Note that values between parentheses are weights. It is worth mentioning

that, since it is the first quality attribute to integrate in the service orchestration, all

4We omitted here the representation of the decision matrix.

6.1. SAQIM in Practice 115

Table 6.3 : Intent Specification for QII2

Integration Quality Attribute Security/Data security
Integration Kind Add
Related Quality Attribute

Architectural Area
before ReserveVehicle, ReserveTrain,
ReserveHotel : Invoke

variants have had no impact on any implemented quality attribute in the orchestra-

tion, which explains the “0” values for the first criterion (C1). Consequently, the ar-

chitect documents the selected pattern as a new design decision in the architecture

decision documentation from the one hand, and commits the resulted new Web ser-

vice orchestration from the other hand.

The architect continues then the service orchestration design based on its func-

tional requirements where multiple BPEL elements are added to implement the TRS

service orchestration business logic. After that, to answer QII2 for achieving “data secu-

rity” quality attribute (QA2) the architect uses the proposed process and the “Exception

Shielding Pattern” is suggested. The architect decides to secure the Train, Vehicle

and the Hotel services. This is done by replacing the unsafe data handling mechanism

with one which is safe through the use of a specialized exception shielding service. The

latter is invoked when an exception occurs.

She/he configures then the pattern’s script (Patterns Application step) for each of

the three services by providing the list of parameters as required in the script. Then,

she/he applies each pattern instance. After that, the “Quality impact analysis” step re-

ports to the architect that no quality attributes were impacted by the change brought by

the pattern instances application (no constraints formalizing the first pattern “Trusted

Subsystem Pattern” were violated). Therefore, the architect documents the newly inte-

grated design decision in the architecture decision documentation and saves the new

orchestration.

The proposed solution for ensuring Reliability (QA3) was the “Replication Pattern”

with its three different variants namely, the “Naive Replication (RP1)”, the “Smart Repli-

cation (RP2)”, and the “Passive Replication (RP3)”. The specification of its quality inte-

gration intent (QII3) is shown in Table 6.4.

The selection process for the reliability quality attribute (QA3) was explained in sec-

tion 5.2.2 of chapter 5.

116 Chap 6. Evaluation

Figure 6.2 : TRS Business process

6.1. SAQIM in Practice 117

Table 6.4 : Intent Specification for QII3

Integration Quality Attribute Reliability
Integration Kind Add
Related Quality Attribute
Architectural Area before ReserveAirline: Invoke

To satisfy the fourth identified quality attribute (QA4) the process proposed the

“Service Facade Pattern”. The pattern’s script5 application involved several BPEL el-

ements integration (that was not present in the orchestration) at different positions

(specified as script arguments) in the orchestration. Several instances of the pattern

were applied on the orchestration which are shown by the pattern (4) in Figure 6.2. The

application of this pattern brings a level of abstraction into the architecture to accom-

modate potential changes that could occur in the service business logic. It ensures the

adaptation between the message format used by the TRS service and the data format

handled by the service partners. Also, it validates the data received from the service

partners. Here again there are no impacted related qualities (those directly impacted

and their related quality attributes in the orchestration). Consequently, the architect

documents the proposed pattern as a new design decision in the architecture decision

documentation and saves the resulted new Web service orchestration.

Always in the context of the same intent of embodying the “access security” quality

attribute (QA1), let us suppose that, after a period of time some of the service partners

have changed their security policy by imposing authentication filters. The architect

formulates a new quality integration intent. The aim was to establish an authentication

policy specific to security requirements imposed by the TRS system. The same three

patterns P1, P2 and P3 were proposed to the architect. The application of the patterns

shows that the “Direct Authentication” pattern (P3) breaks the portability (QA4) quality

attribute. This is illustrated by its criticality degree value (0.058) in the third formula

below. Introducing the pattern involves adding BPEL elements which use a message

format that is not adapted for the TRS system before the use of the Facade service.

This leads to break the facade pattern. The other patterns (P1 and P2) have had no

impact on the other quality attributes. The architect documents the selected pattern

as a new design decision in the architecture decision documentation, and commits the

resulted new Web service orchestration. The architect then re-applies again the facade

5The complete script can be found here: https://sites.google.com/site/wsbscript/soa-patterns-

examples/facade-pattern

118 Chap 6. Evaluation

Table 6.5 : Intent Specification for QII5

Integration Quality Attribute Security/Access Security
Integration Kind Add
Related Quality Attribute
Architectural Area after ReceiveItinerary: Receive

pattern on the Web service orchestration.

• Trusted Subsystem(WSM score)= 0* (0.750) + 0.085* (0.250) = 0.02125

• Brokered Authentication(WSM score)= 0* (0.750) + 0.644* (0.250) = 0.161

• Direct Authentication(WSM score)= 0.058* (0.750)+ 0.271* (0.250) = 0,1112

To deal with performance quality attribute (QA5) the method proposed the “Partial

Validation Pattern” [Erl, 2009]. The use of this pattern allows unnecessary data to be

avoided before the needed data is transmitted to the clients, hence, decreasing mes-

sage processing and memory consumption. So the architect decides to make some

architectural changes related with data management to increase the performance of

the service: i) Short-circuiting the Validate operation call to the Facade service,

and ii) Creating a service with specialized routines in data validation more sophisti-

cated than the validation operation offered by the Facade service. The first change

is made manually by the architect since it is an isolated simple action, while the sec-

ond one is performed by configuring the pattern’s script. The “Quality impact analy-

sis” report shows that the portability (QA4) quality attribute is affected by the change,

since the architectural constraint formalizing the “Service Facade Pattern” was violated

(Invoke activities having specific positions in the orchestration have been removed).

It also shows from the architecture documentation that, the portability (QA4) quality

attribute has a conflicting relation type with performance (QA5). The architect decides

then to cancel the pattern (Pattern cancellation step) where the corresponding can-

cellation script of the “Partial Validation Pattern” implementing QA5, which has been

already generated, is executed. This leads to remove it from the orchestration. The

process returns back to the “Quality Impact Analysis” to make sure that the pattern

cancellation has been performed correctly by checking if the constraints of the previ-

ously embodied patterns still hold. The architect keeps the orchestration as it was.

6.2. Experiment Process 119

Table 6.6 : Intent Specification for QII6

Integration Quality Attribute Security/Data Security
Integration Kind Withdraw
Related Quality Attribute Performance
Architectural Area after Assign23: Assign

As an attempt (QII6 in Table 6.6) to integrate the performance (QA5) the architect

did not find another solution than to try to minimize security policies (QA2). She/He

decides to remove the “Exception Shielding” pattern instance applied to secure the

Hotel service. The process takes another path, since the “Integration Kind” is to with-

draw a quality attribute, hence, there is no proposed pattern for the architect here.

It goes through the “Patterns Cancellation” step where the corresponding cancella-

tion script of the “Exception Shielding” pattern instance implementing QA2, which

has been already generated, is executed. The quality-related impact analysis reports

that the security quality attribute is impacted since its constraints do not hold any-

more. Also, it reports that its related quality attribute QA4 (Portability) may eventually

be impacted by the change. Being aware of the consequences, the architect decides to

validate the change.

6.2 Experiment Process

We can distinguish two main roles of SAQIM. First, it is a system that provides an au-

tomated support for the integration (application and analysis) of SOA patterns into

service orchestrations. Second, it is a recommendation system of SOA patterns satis-

fying quality attributes for service orchestrations. Due to the actual size of the pattern

catalog which includes eleven patterns, we will focus on the evaluation of the first role.

Indeed, it is not pertinent for example, to calculate the “precision” and “recall” as met-

rics to measure the efficiency and thus evaluate the research and selection aspects in

SAQIM with the actual size of the catalog. Thereby, we addressed in particular the fol-

lowing research question:

“Compared to a manual quality integration, does the automated support provided by

SAQIM give substantial help to architects?”.

To answer the research question, we pursued the steps detailed in the following sub-

sections.

120 Chap 6. Evaluation

6.2.1 Methodology

We compared some measures (presented later) obtained by using SAQIM with those

obtained “without using" it6. To do so, we simulated quality integration (with and with-

out SAQIM) by using a collection of 16 patterns: eleven of them are real patterns, and

the remaining five are “imaginary"7. These latter, are unreal patterns in which we have

varied randomly the number of BPEL elements (for scripts time specification), and the

number of tokens (for OCL constraints time specification) to estimate their specifi-

cation time by following a specific protocol (explained in the following subsection).

Imaginary patterns are introduced in the experimentation to represent a relatively ac-

ceptable number of SOA patterns that we can find and use in a real development pro-

cess. From the other hand, they allow to run simulations with a configurable number

of patterns in the catalog so that we can evaluate our method in a reliable way.

Figure 6.3 : Weights for OCL constraints. Figure 6.4 : Decision Matrix.

The experiment was conducted following the next steps:

6.2.2 Data Collection

We have invloved in our experiment three Ph.D students in software engineering and

6We mean by “without using SAQIM" that the architect has to choose him(/her)self the patterns and
uses the NetBeans BPEL designer to apply them manually.

7We used approximately the half of the real patterns total number.

6.2. Experiment Process 121

Table 6.7 : OCL constraints specification results

Pattern
Tocl
(min)

Var CD
1-
CD

Tocl*(1-
CD)

Uocl
Uocl-
Umec

NbTokens

Facade (1) 40,25 1,79 0,046 0,975 39,24 0,072 0,062 154
Trusted SubSys-
tem (2)

78,5 0,16 0,032 0,954 74,89 0,058 0,048 366

Passive Replica-
tion (3)

65,5 4,04 0,268 0,968 63,40 0,055 0,045 333

Smart Replica-
tion (4)

115,5 5,54 0,103 0,732 84,55 0,049 0,039 497

Naive Replica-
tion (5)

68 0,66 0,015 0,897 61 0,044 0,034 394

Exception
Shielding (6)

36 1,16 0,025 0,985 35,46 0,044 0,034 239

Message Screen-
ing (7)

63,5 2,79 0,081 0,919 58,36 0,043 0,033 365

Brokered Au-
thentication
(8)

56 1,54 0,058 0,942 52,75 0,041 0,031 363

Test-based Par-
tial state Deferral
(9)

62,25 1,62 0,149 0,851 52,97 0,036 0,026 459

Event-based Par-
tial state Deferral
(10)

75,5 2,16 0,206 0,794 59,95 0,036 0,026 461

Partial Validation
(11)

30 1,29 0,018 0,982 29,46 0,034 0,024 213

Figure 6.5 : Inverse power regression on Uocl values

122 Chap 6. Evaluation

programming languages. They have had the task of applying the patterns using Net-

Beans BPEL designer then measuring and recording the approximative time spent for

each pattern. They were also asked to record the time spent in understanding each

pattern after reading a textual documentation (retrieved from the literature). In addi-

tion, they were taught examples about the WS-BScript language. In addition to the first

task, they were asked to specify patterns by writing OCL constraints and scripts for the

eleven real patterns. These Ph.D students have basic OCL skills, a good knowledge of

frameworks, styles and basic patterns of software design. The students were separated

and were not told about the final goal of the experiment. Additionally, they were not

told about their recorded results to ensure confidentiality. Moreover, students were

selected with a relatively similar level of knowledge and background.

Because the level of the Ph.D students skills is close one to another, we notice an

insignificant variance (see Column 3 in Table 6.7 and Table 6.8) in the measured times

across students for each pattern. Therefore, the recorded times were “homogeneous”

and this is why we took the average time. Now, to estimate the specification time for

both OCL constraints and scripts for a number of imaginary patterns in a reliable way,

we followed a specific protocol. The aim is to estimate the pattern catalog specification

overhead from the one hand, and to simulate quality integration with a configurable

number of patterns from the other hand.

OCL constraints: The obtained values for the 11 real patterns are depicted in Ta-

ble 6.7. We first normalized these estimated time values. Indeed, the Ph.D students

have naturally acquired experience when specifying each time a new constraint. This

experience can bias our experiment. We have thus decided to dismiss it, in order to get

the most possible objective values. We have measured an approximative coefficient of

difficulty (C D) for each constraint. C D represents the architect’s opinion on the per-

ceived difficulty when specifying a constraint. We applied here AHP pairwise compar-

isons for prioritizing OCL constraints difficulty (Figures 6.3 and 6.4) in the same way as

for C1 values (Figures 5.3 and 5.4). The developer expresses her/his opinion (measured

on the scale of Table 5.1) like: “constraint i has an absolutely higher difficulty than j”

has a value of “9”. Then, we multiplied the previous specification time values by 1−C D .

The next step was to calculate the specification time for a lexical unit (token) in a

constraint “Uocl”. Values were obtained as follows:

U ocl = Tocl ∗ (1−C D)

N bTokens
(6.1)

6.2. Experiment Process 123

Figure 6.6 : Inverse power regression on Uscript values

Now, having time unit values for each pattern constraint we can apply a regres-

sion f(x) model to extrapolate values for the other imaginary patterns. We can notice

that “Uocl” values (in Table 6.7) have a decreasing trend, but actually they do not con-

verge to zero. Instead, they converge to a minimal value corresponding to specifying

a constraint as a “mechanical task”, i.e. without having to think about complex parts

in it. Therefore, we calculated “Umec” and we obtained 0.039 minute/token. So, the

function of our regression should be defined as : f(x)+Umec . After that, we subtracted

“Umec” from “Uocl” values then we applied an inverse power regression on the new

values (Uocl-Umec in Table 6.7). We found that the inverse power model is the one

that best fits our data. The result is illustrated in Figure 6.5. At the end, we used the

following inverse power regression function to extrapolate time unit values for OCL

constraints: f (x) = 0,244x−0,303 + 0,039. Finally, using Formula 6.1 we obtained the

specification time Tspec_ocl:

Tspec_ocl = (U ocl −Umec)∗N bTokens

(1−C D)
(6.2)

Scripts: We followed the same steps as for OCL constraints to determine the spec-

ification time for pattern scripts, except for the “coefficient of difficulty” (CD) estima-

tion. We started first by listing the different script actions8 used in the scripts, then

using pairwise comparisons we calculated the weight of each action according to its

difficulty of use (Figures 6.8 and 6.9). The next step was to calculate the occurrences

of each action in each script to get its global weight. Figure 6.7 shows an example of

the way “CD” values have been estimated. Column 3 in Figure 6.7 shows the individual

8To distinguish between adding a BPEL “activity” and adding a “PartnerLink” BPEL element we suf-
fixed “add” by the terms “Activity” and “PartnerLink” (Lines 1 and 2 in Figure 6.7).

124 Chap 6. Evaluation

Figure 6.7 : Scripts CD values estimation

CD values obtained for each action (from Figure 6.8). The overall value of the differ-

ent weights constitute the pattern’s script CD value (5.537 for the script of the Trusted

Subsystem Pattern, see Figure 6.7). This corresponds to 9.05% of the overall value for

all the pattern scripts which represents 0.0905 (See Table 6.8). We defined the time for

adding a single BPEL element by a script as the time unit “Uscpt”:

Uscpt = Tscpt ∗ (1−C D)

N bB pel Elem
(6.3)

Figure 6.6 shows the result of applying an inverse power regression model:

f (x) = 5,6973x−0,493 +1,89

Tspec_scr i pt = (Uscpt −Umec)∗N bB pelElem

(1−C D)
(6.4)

Tspec_pat ter n = Tspec_ocl +Tspec_scr i pt (6.5)

Using the formulas 6.1, 6.2, 6.3 and 6.4 we were able to estimate the specification

time (formula 6.5) for the 5 “imaginary” patterns.

6.2.3 Simulation

The aim of the simulation is to evaluate SAQIM’s cost effectiveness. Table 6.9 shows

the measures for the real patterns used in our simulation process. We calculated the

necessary time for integrating a quality attribute without using and with using SAQIM

6.2. Experiment Process 125

Table 6.8 : Scripts specification results

Pattern Tscpt Var CD 1-CD
Tscpt*(1-
CD)

Uscpt
Uscpt-
Umec

NbBpel
Elem

(1) 39 1,54 0,0378 0,9622 37,52 7,50 5,615 5
(2) 75 2,54 0,0905 0,9095 68,21 6,20 4,311 11
(3) 90 3,5 0,1297 0,8703 78,33 5,22 3,332 15
(4) 81,5 4,66 0,1353 0,8647 70,47 4,40 2,514 16
(5) 50 2,16 0,0967 0,9033 45,17 4,52 2,627 10
(6) 38 1,16 0,0771 0,9229 35,07 4,38 2,494 8
(7) 40,25 0,87 0,0819 0,9181 36,95 4,11 2,216 9
(8) 38,5 1,04 0,0968 0,9032 34,77 3,86 1,974 9
(9) 36 0,29 0,1011 0,8989 32,36 4,04 2,155 8
(10) 50,75 0,79 0,1016 0,8984 45,59 3,51 1,617 13
(11) 19,50 0,29 0,0514 0,9486 18,50 3,70 1,809 5

(Columns 2 and 3). Column 3 includes the pattern script configuration and automatic

application time (Column (a)), the OCL constraint configuration time (Column (b)),

and the pattern documentation time (Column (c)), when using SAQIM. Column 2 in-

cludes the time spent in understanding each pattern as well as the time spent in man-

ually applying a pattern using the Netbeans BPEL editor (without using SAQIM). The

last column shows the specification time (OCL constraints and scripts) for each pat-

tern which is used in the simulation process when using SAQIM with measures of Col-

umn 3 (Columns (a), (b), and (c)). The simulation has been run in two different situa-

tions based on an assumption stating that without SAQIM, the architect has at her/his

disposal the same patterns used by the architect that uses SAQIM and which she/he

should apply manually to integrate quality attributes. This simplification assumption

does not bias the results of the experiment. Rather, it ignores the time spent by ar-

chitects for searching appropriate patterns, which favors the situation of “not using

SAQIM”.

We conducted our simulation process on the TRS system according to three differ-

ent scenarios. The simulation has been iterated around 50 times to maximize random-

ness.

Worst case: We simulated the application of SAQIM, using a random generated

order of 16 patterns, then we re-applied SAQIM using the same order of patterns but

without counting their specification time. We simulated also the quality integration

without using SAQIM. The aim in this case is to observe the situation where SAQIM is

126 Chap 6. Evaluation

Figure 6.8 : Weights for script actions. Figure 6.9 : Decision Matrix.

Table 6.9 : Measures used in the simulation process

Time (minutes)

Pattern
without using
SAQIM

using SAQIM
pattern specification
time

(a) (b) (c)
(1) 43,37 0,59 0,72 1,57 76,77
(2) 52,42 0,65 0,39 3,20 143,10
(3) 44,47 0,93 0,66 1,40 141,73
(4) 56,28 0,86 1,00 1,10 155,02
(5) 56,27 0,71 0,65 1,03 106,16
(6) 59,12 0,67 1,18 2,17 70,53
(7) 49,42 1,17 1,23 2,05 95,31
(8) 49,23 0,63 1,03 1,58 87,53
(9) 56,16 0,57 1,18 2,16 85,33
(10) 48,09 0,56 0,98 1,25 105,54
(11) 57,48 0,71 1,09 1,54 47,96

less beneficial. Figure 6.10 shows the experiment result.

Best case: This case represents the parallel use of patterns. So, we used the same

pattern order of the worst case, then we simulated the application of SAQIM by consid-

ering the parallel design of three (3) BPEL orchestrations. That means, in the first time

we took into account the pattern’s specification time. In the remaining two applica-

tions we have not taken it into account. We simulated the quality integration without

6.2. Experiment Process 127

Figure 6.10 : Worst case pattern application time variation

using SAQIM with the same pattern order. The aim in this case is to observe the situa-

tion where SAQIM is the most beneficial. The result is given in Figure 6.11.

Random case: we simulated the application of SAQIM by adding each time we want

to integrate a quality, the pattern specification time (last column in Table 6.9) only if it

is the first use of the applied pattern. In the second step, we simulated the quality

integration without using SAQIM. The experiment result is shown in Figure 6.12.

6.2.4 Discussion

The worst case (Figure 6.10) shows that SAQIM begins to be cost effective starting from

the 29-th iteration, which corresponds to (more or less) approximatively 25.23 hours

(three full-time working days of 8 hours). It is worth noting that, according to our es-

timations, the pattern catalog specification (with 16 patterns) takes 24.51 hours. The

difference between the two measures, which equals 43.2 minutes, is the estimated time

taken in this simulation for making profitable the approximate three working days of

the (16-pattern) catalog specification time, in the worst case.

The random case (Figure 6.12) shows that SAQIM begins to be cost-effective start-

ing from the 19-th iteration, which corresponds to (more or less) approximatively 22.78

hours (2.84 working days of 8 hours). This period of time corresponds to the time of

learning and familiarizing the architect with the method. Indeed, as in all engineer-

ing methods learning involves an additional cost. We can also say that the use of the

pattern catalog is capitalized after the aforementioned period of time.

128 Chap 6. Evaluation

Figure 6.11 : Best case pattern application time variation

Note that in the TRS system which is a medium size project, we embodied using

SAQIM ten patterns (including pattern instances like for the “Exception Shielding pat-

tern”). Therefore, we can deduce that SAQIM becomes beneficial after the construc-

tion of the second BPEL process (when referring to the random case). Furthermore,

if the patterns catalog is used with several BPEL processes in parallel (the best case in

Figure 6.11), the catalog specification time will be distributed over all these processes,

and hence, the use of SAQIM becomes more beneficial. If we consider that the pattern

catalog will be developed by three architects, the specification time (24.51 hours) will

be divided by three, i.e. approximately 8.17 hours (one working day).

We have tested SAQIM with a relatively small set of patterns (16 patterns). We re-

peated the experience by increasing the number of patterns to thirty (30). We kept the

11 real patterns and we created 19 imaginary ones. Then, we generated different ran-

dom orders of patterns (6 random orders) and used them in the simulation process.

The aim of the experiment is to observe the behavior of SAQIM with a larger number

of patterns in the catalog. We found that SAQIM’s cost effectiveness (for the random

case) varies between the 8-th and 23-rd iteration. This variance is related to the pat-

terns order. Note that the result found with 16 patterns is in the range found when

using 30 patterns. We can deduce that the number of patterns in the catalog does not

affect SAQIM cost effectiveness.

Moreover, to estimate the overhead of the quality impact analysis step (Sec-

tion 5.2.1 and Section 5.2.2) we have measured its execution average time. We found

6.2. Experiment Process 129

Figure 6.12 : Random case pattern application time variation

that, it takes approximately one minute (including the context-suitability criterion

configuration time). This constitutes 25.08% (according to the Columns (a), (b), (c)

of Table 6.9) of the overall time for the “Passive Replication” Pattern. This means that,

in the worst case, it makes SAQIM beneficial after 25.72 hours instead of 25.23 hours,

which represents a difference of a small period of time of 29.4 minutes (0.49 hours).

6.2.5 Threats to validity

Wohlin et al. describe four areas where the validity of the results may be threat-

ened [Wohlin et al., 2012], we discuss threats in each of these areas.

Internal validity: We used a combination of real data and simulated data, which

was generated from the real data to construct our dataset. The assessment of SAQIM

cost effectiveness may be biased by the person’s level of expertise and experience par-

ticipating in the patterns catalog specification. The specification time assessment of

the pattern scripts as well as the OCL architectural constraints may differ from one

person to another, which may yield to different results. In our experiment to deal with

the selection threat [Wohlin et al., 2012] which concerns the effect of natural variation

in human performance, we selected a random group of Ph.D. students.

Construct validity: To increase construct validity, we avoided evaluation appre-

hension by separating students and by ensuring the confidentiality of the recorded re-

sults. Furthermore, the students were not told about the final goal of the experiment

to avoid the experimenter expectancies threat, for example when measuring the time

130 Chap 6. Evaluation

for document reading and comprehension of patterns.

Conclusion validity: To increase conclusion validity, we used regression analysis

to get reliable estimation of the imaginary patterns specification time. Additionally,

we selected students with relatively similar level of knowledge and background to limit

the threat of random heterogeneity of subjects. Furthermore, we used an acceptable

number of patterns in the simulation and we compared the results of SAQIM with those

obtained using a well-known easy-to-use software tool (NetBeans BPEL designer).

External validity: An important threat to the external validity is the use of students

as subjects. However, to increase the validity we involved Ph.D. students which have

some development experience, and can easily play the role of architects in industry.

Furthermore, despite the fact that the context in which the patterns catalog was devel-

oped is not part of a software development project it resembles to that of a real service-

oriented software development situation.

6.3 Summary

This chapter presented the setup, the process and the result of the conducted evalua-

tions. First, we show through a case study using a real-word web service orchestration

the usability of the approach. We detailed each step by giving examples and explana-

tions about the approach applicability. Secondly, we evaluated SAQIM’s cost effective-

ness. We built a SOA patterns catalog implementing the most experienced quality at-

tributes in web service orchestrations. Then we compared some measures (presented

in this chapter) obtained by using SAQIM with those obtained “without using” it. After

that, we made a number of simulations in different context (worst, best and random

cases). The obtained results was analyzed and discussed. We demonstrated that the

use of SAQIM brings a significant assistance and gain of time.

However, it is worth noting that, the evaluation of SAQIM was made by consider-

ing it as a macro-process (considering its inputs/outputs). Indeed, the evaluation of

SAQIM as a micro-process by addressing each of its steps need a more in depth evalu-

ation where we should consider another experiment process.

C
H

A
P

T
E

R

7
Conclusion and Future Work

This chapter summarizes the contributions of this thesis and presents several re-

search directions which require further investigations in the future.

7.1 Conclusion

THIS thesis deals with the problem of integrating non-functional requirements in

software architectures. We consider in our work a specific kind of software archi-

tectures, which are service-oriented ones, and we deal with a particular specialization

of this kind of architectures which are Web service orchestrations concretely defined

as BPEL processes. As any software the design of such service-based systems goes first

through the development of their architectures. A software architecture is one of the

first artifacts of the design process. It manifests the earliest design decisions of a soft-

ware system, and thus allow to analyze and evaluate the system properties like qual-

ity attributes in the development process. In a software development project, quality

requirements are important software artifacts that are mainly satisfied at software ar-

chitecture design time [Bass et al., 2012]. Architects are thus the software developers

who are responsible for taking architectural design decisions (ADs) in order to satisfy

131

132 Chap 7. Conclusion and Future Work

this kind of requirements. One of the most common design decisions at this stage of

a development process is the choice of an architectural style or design pattern. These

decisions as well as the reasoning behind them constitute an important architectural

knowledge in the development process. Most of this knowledge is ignored by archi-

tects and tend to be lost. Architecture design decision documentation models comes

to rescue to avoid the vaporization of this knowledge. Additionally, the design process

involve changes on the software architecture by making or removing design decisions.

Assistance tools support are crucial to handle ADs that shape the software architecture.

Specifically, addressing the problem of satisfying NFRs at the architectural design level,

involves managing the related architecture design decisions (ADs).

To address these issues we propose an architecture design decision documentation

model which is based on patterns as a kind of design decision. Indeed, the choice of

architectural patterns as a centric part of our model is motivated by their interesting

properties. First they are robust reusable solutions that have been tried and tested.

Second, they communicate design decisions at a level that is appropriate to program-

mers implementing the code [de Silva et Balasubramaniam, 2012], which is appropri-

ate to the kind of service architectures we are dealing with (BPEL orchestrations are

XML based representations).

As catalogs of these well-known recurrent design decisions have been proposed in

the literature and practice of software engineering (provided mainly with informal de-

scriptions), we argue in this work that such catalogs can be documented in a (more

or less) structured, automatically checkable and semi-automatically processable way.

Hence, two language are proposed. The first ensures the presence or the absence of

a pattern, thus the satisfaction of a quality attribute or not by verifying its structural

aspects. This is done by OCL architectural constraints which operate on a BPEL pro-

cess instance. The second language is a scripting language “WS-BScript” which is nec-

essary to offer a guidance on how to use a pattern and how to apply it into a BPEL

orchestration. Fine grained information about the pattern and quality attributes en-

riches the model. The usefulness of this information is perceived during the quality in-

tegration process. Such documentation is then operated in order to assist architects in

integrating quality requirements. SAQIM is an on-demand quality integration method

that provides such assistance to architects. It is based on a SOA pattern catalog where

each pattern is specified by an architectural constraint and an architectural script. The

7.1. Conclusion 133

method helps the architect in satisfying the targeted quality attribute, by suggesting to

him some service-oriented patterns. In addition, it simulates the application of differ-

ent competing alternative patterns that satisfy a targeted quality attribute by executing

their corresponding scripts. Also, it allows to cancel the instantiation of a pattern by

generating then executing its cancellation script using our implemented WS-BScript

interpreter. Moreover, the method helps in choosing the most appropriate pattern al-

ternative that satisfies its preferences between competing ones. By “most” appropri-

ate pattern, we mean a pattern: i) that satisfies the more the tackled quality attribute

(the pattern that gives the best scores for the evaluation criteria), and ii) that affects

the less the other quality requirements, already satisfied and documented in the soft-

ware architecture through the use of the quality impact analysis process. This latter,

allows reasoning about the impact of a pattern on the previously integrated qualities

of the service orchestration. It works then in a complementary way with SAQIM. The

reasoning process operates on the architecture documentation built using the model

we proposed. It is based on the evaluation of OCL architectural constraints formaliz-

ing the structural aspects of patterns. The process provides to the architect a warning

system that notifies him about patterns related change and allow him to control the

architecture evolution. We implemented a prototype tool that interprets and evaluates

OCL constraints as well as the documentation of validated design decisions.

In summary, our approach contributes by a new vision for the integration and sat-

isfaction of non-functional properties in Web services orchestrations defined with the

BPEL language. The originality of the proposed approach comes from the fact that it

operates on static quality properties of such architectures. It helps developers of these

applications to build web service orchestration incrementally by answering at the same

time quality constraints that must be considered upstream in the development cycle,

unlike other approaches that consider dynamic qualities of already designed services.

Moreover, our method intervenes on the way to arrange the elements that constitute

the composition. Our method allows to preserve, on-the-fly, the architecture coher-

ence with respect to the quality each time a new one is integrated by providing the

means to implement it. It also allows a considerable gain in time and efficiency in the

design process.

134 Chap 7. Conclusion and Future Work

7.2 Future Work

There are several improvements that could be made to the work done in this thesis,

and research directions which require further investigations in the future. We listed

some of them in the items below:

• We plan to define a simulation (decision) system to study the effect that yields

the application of all possible initial combinations of selected patterns (that im-

plement the required quality attributes specified in the NFRs). The aim is to gen-

erate all possible patterns application sequences, simulate their application, and

then record their impact on the embodied qualities. Then, we look for the best

application sequence which gives a service orchestration with the minimum ef-

fect on the qualities. We believe that the chosen sequence to embody the desired

quality attributes is important and yields to different results (i.e. a service orches-

tration with different qualities or differently affected qualities and with different

design costs).

• Another future work we are considering is to evaluate SAQIM as a quality inte-

gration micro-process by addressing each of its steps. More particularly, we plan

to conduct a validation of the pattern selection step as well as the quality im-

pact analysis step. For example, to evaluate the weighted sum model for pattern

ranking, a sensitivity analysis [Triantaphyllou et Sanchez, 1997] on the decision

criteria weights and the criteria values could be introduced for studying and in-

creasing the trustworthiness about the provided decision on patterns ranking.

• We plan also to enrich the specification of a pattern, by dependency relation-

ships with other patterns. This may improve the structure of the pattern catalog

with composite patterns therefore providing a better assistance to the architect

when integrating quality attributes. We would like to enhance the organization of

the catalog of patterns. Instead of a flat organization, we want to define a hierar-

chical one, built using some classification techniques like FCA (Formal Concept

Analysis [Ganter et Wille, 1999]). In this way, we can easily look for substitutable

patterns which can be proposed together to the architect in the process. We aim

also to improve the design of patterns in the catalog so that they do not affect

the overall service orchestration performance. In fact, patterns use elements of

BPEL language that may include extensive use of fault tolerance techniques like

7.2. Future Work 135

Recovery Blocks, Return Fastest Response and Deadline Mechanisms. The im-

provement could be achieved by techniques of QoS computation like the one of

[Mukherjee et al., 2008] which could be applied on elements composing a pat-

tern.

• Another improvement would be to integrate in the proposed method an impact

analysis activity on the business logic aspect. Indeed, our process evaluates the

impact of the evolved quality attribute on the other quality attributes. We plan

thus to evaluate also the impact on the existing functionality implemented in the

software architecture.

• A future work we are planing to conduct is on the specification of set of metrics

to measure the complexity of OCL expressions. The aim is to have a basis on

which the developer can refer for specifying less complex patterns architectural

constraints, therefore easily understandable and reusable.

• We envisage the development of a recommendation system of composite web

services including patterns in their design, thus integrating quality attributes.

This assumes that the individual services should be designed with the approach

that we have proposed. Thus, pattern identification techniques could be em-

ployed to detect the highest possible number of patterns in a composite web

service (BPEL orchestration) and possibly the service with higher quality of ser-

vice. Therefore, this assumption could involve modifications on the BPEL lan-

guage allowing such identification process. We believe that this approach allows

to have Web services compositions with better quality. However, these improve-

ments are research ideas that require further reflection and investigation to vali-

date their feasibility and applicability.

Overall, while there are still improvements to be undertaken on the proposed work

in this thesis, we believe that our approach is promising and could be used in a comple-

mentary way with Web service based business processes design methods for ensuring

the quality in BPEL Web service orchestrations.

List of Figures

2.1 SOA infrastructure . 11

2.2 Service orchestration and service choreography 16

2.3 An excerpt of the BPEL/WSDL metamodel . 20

2.4 An excerpt of the ISO/IEC 9126 quality model 38

3.1 Links between Architecture Decisions and Quality Attributes 61

3.2 Relationships between Quality Attributes . 64

4.1 A process for integrating quality requirements in engineering Web service

business processes . 79

4.2 Pattern Specification . 83

5.1 A Micro-Process of Architecture Evolution . 94

5.2 The Proposed Micro-Process of Architecture Evolution 95

5.3 Decision Matrix. 105

5.4 Weights for C1. 105

5.5 Weights of C2 for the replication pattern. 106

5.6 Decision Matrix. 106

6.1 An excerpt of the TRS Business process showing the distribution of the em-

bodied patterns . 112

6.2 TRS Business process . 116

6.3 Weights for OCL constraints. 120

6.4 Decision Matrix. 120

6.5 Inverse power regression on Uocl values . 121

6.6 Inverse power regression on Uscript values . 123

6.7 Scripts CD values estimation . 124

137

138 List of Figures

6.8 Weights for script actions. 126

6.9 Decision Matrix. 126

6.10 Worst case pattern application time variation 127

6.11 Best case pattern application time variation . 128

6.12 Random case pattern application time variation 129

List of Tables

4.1 Template for Quality Integration Intent Description 81

5.1 Scale of relative importance . 104

6.1 Embodied Patterns and their achieved Quality attributes 111

6.2 Intent Specification for QII1 . 114

6.3 Intent Specification for QII2 . 115

6.4 Intent Specification for QII3 . 117

6.5 Intent Specification for QII5 . 118

6.6 Intent Specification for QII6 . 119

6.7 OCL constraints specification results . 121

6.8 Scripts specification results . 125

6.9 Measures used in the simulation process . 126

139

List of Listings

2.1 Hello service WSDL example . 14

2.2 A general structure of a BPEL process . 17

3.1 Brokered Authentication Pattern application script 68

3.2 Service Facade Pattern application script . 69

3.3 Passive Replication Pattern Architectural constraint 72

3.4 Exception Shielding Pattern Architectural constraint 74

4.1 Trusted Subsystem Pattern application script 84

4.2 Trusted Subsystem pattern cancellation script 88

140

Bibliography

[Akkiraju et al., 2003] Rama Akkiraju, Richard Goodwin, Prashant Doshi, et Sascha

Roeder. A method for semantically enhancing the service discovery capabilities of

UDDI. In Proceedings of IJCAI-03 Workshop on Information Integration on the Web

(IIWeb-03), August 9-10, 2003, Acapulco, Mexico, pages 87–92, 2003.

[Al-naeem et al., 2005] Tariq Al-naeem, Ian Gorton, Muhammed Ali Babar, Fethi

Rabhi, et Boualem Benatallah. A quality-driven systematic approach for architect-

ing distributed software applications. In Proc. of ICSE’05, pages 244–253. ACM Press,

2005.

[Allen, 1997] Robert Allen. A Formal Approach to Software Architecture. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA, USA, May 1997.

[Ardagna et Pernici, 2007] Danilo Ardagna et Barbara Pernici. Adaptive service com-

position in flexible processes. IEEE Trans. Softw. Eng., 33(6):369–384, 2007.

[Azmeh et al., 2011] Zeina Azmeh, Maha Driss, Fady Hamoui, Marianne Huchard,

Naouel Moha, et Chouki Tibermacine. Selection of composable web services driven

by user requirements. In Proc. of ICWS’11, Washington DC, July 2011. IEEE CS.

[Balasubramaniam et Vasant, 1991] Ramesh Balasubramaniam et Dhar Vasant. Rep-

resentation and maintenance of process knowledge for large scale systems develop-

ment. In In Proceeding of the 6th Knowledge-based Software Engineering Conference,

KBSE, pages 223–231, september 1991.

[Baligand et al., 2006] Fabien Baligand, Didier Le Botlan, Thomas Ledoux, et Pierre

Combes. A language for quality of service requirements specification in web ser-

vices orchestrations. In Proc. of ICSOC’06. Springer-Verlag, 2006.

141

142 Bibliography

[Bass et al., 2001] L. Bass, F. Bachmann, et M. Klein. Quality attribute design primi-

tives and the attribute driven design method. In Proceedings of the 4th International

Conference on Product Family Engineering, pages 169–186. Springer-Verlag, 2001.

[Bass et al., 2003] L. Bass, P. Clements, et R. Kazman. Software Architecture in Practice,

2nd Edition. Addison-Wesley, 2003.

[Bass et al., 2006] Len Bass, Paul Clements, Robert L. Nord, et Judith Stafford. Captur-

ing and Using Rationale for a Software Architecture, pages 255–272. Springer, in a. h.

dutoit et al., rationale management in software engineering édition, 2006.

[Bass et al., 2012] L. Bass, P. Clements, et R. Kazman. Software Architecture in Practice,

3rd Ed. Addison-Wesley, 2012.

[Boehm et al., 1976] B. W. Boehm, J. R. Brown, et M. Lipow. Quantitative evaluation of

software quality. In In Proceeding of the 2nd International Conference on Software

Engineering, pages 592–605, San Francisco, California, USA, 1976. IEEE Computer

Society Press.

[Bosch, 2004] Jan Bosch. Software architecture: The next step. In In Proceedings of

First European Workshop, EWSA 2004, pages 194–199, May 2004.

[BPL, 2007] Web services business process execution language specification, version

2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.

[Breivold et al., 2012] Hongyu Pei Breivold, Ivica Crnkovic, et Magnus Larsson. A sys-

tematic review of software architecture evolution research. Information and Soft-

ware Technology, 54(1):16–40, Janvier 2012.

[Briand et al., 2005] L.C. Briand, Y. Labiche, M. Di Penta, et H. Yan-Bondoc. An exper-

imental investigation of formality in uml-based development. IEEE Transactions on

Software Engineering, 31:833–849, 2005.

[Broy et al., 2006] Manfred Broy, Florian Deissenboeck, et Markus Pizka. Demystifying

maintainability. In In Proceeding of the 2006 international workshop on Software

quality (WoSQ’06), pages 21–26. ACM Press, 2006.

[Burge et Brown, 2006] J. Burge et D.C. Brown. Rationale-based Support for Software

Maintenance, chapitre Rationale Management in Software Engineering, pages 273–

296. Springer-Verlag, in a. dutoit, r. mccall, i. mistrik, and b. paech édition, 2006.

Bibliography 143

[Buschmann et al., 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, et

M. Stal. Pattern Oriented Software Architecture: A System of Patterns. John Wiley

& Sons, 1996.

[Canfora et al., 2008] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, et

Maria Luisa Villani. A framework for qos-aware binding and re-binding of compos-

ite web services. Journal of Systems and Software, 81(10):1754–1769, Octobre 2008.

[Capilla et al., 2007] Rafael Capilla, Francisco Nava, et Juan C. Duenas. Modeling and

documenting the evolution of architectural design decisions. In In Proceeding of

the Second Workshop on SHAring and Reusing architectural Knowledge Architecture,

Rationale, and Design Intent (SHARK-ADI’07). IEEE Computer Society, 2007.

[Cardoso et al., 2004] Jorge Cardoso, Amit P. Sheth, John A. Miller, Jonathan Arnold, et

Krys Kochut. Quality of service for workflows and web service processes. J. Web

Semantics, 1(3):281–308, 2004.

[Choi et al., 2006] Heeseok Choi, Youhee Choi, et Keunhyuk Yeom. An integrated ap-

proach to quality achievement with architectural design decisions. JSW, 1(3):40–49,

2006.

[Chung et al., 1999] Lawrence Chung, B. A. Nixon, E. Yu, et Mylopoulos J. Non-

Functional Requirements in Software Engineering. Kluwer Academic Publishers,

1999.

[Chung et Nixon, 1995] L. Chung et Brian A. Nixon. Dealing with non-functional re-

quirements: Three experimental studies of a process-oriented approach. In Pro-

ceeding of 17th International Conference on Software Engineering (ICSE’95), pages

25–37, April 1995.

[Clements et al., 2002] Paul Clements, Rick Kazman, et Mark Klein. Evaluating Soft-

ware Architectures, Methods and Case Studies. Addison-Wesley, 2002.

[Clements et al., 2003] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Lit-

tle, R. Nord, et J. Stafford. Documenting Software Architectures, Views and Beyond.

Addison-Wesley, 2003.

[Consortium, 1999] World Wide Web Consortium. Xml path language (xpath) version

1.0. http://www.w3.org/TR/xpath/, 1999.

144 Bibliography

[Cysneiros et Sampaio do Prado Leite, 2004] Luiz Marcio Cysneiros et Julio Cesar Sam-

paio do Prado Leite. Nonfunctional requirements: From elicitation to conceptual

models. IEEE TSE, 30(5):328–350, 2004.

[de Boer et al., 2007] Remco C. de Boer, Rik Farenhorst, Patricia Lago, Hans van Vliet,

Viktor Clerc, et Anton Jansen. Architectural knowledge: Getting to the core. In

Proceedings of the Quality of Software Architectures 3rd International Conference

on Software Architectures, Components, and Applications, QoSA’07, pages 197–214,

Berlin, Heidelberg, 2007. Springer-Verlag.

[de Boer et Farenhorst, 2008] Remco C. de Boer et Rik Farenhorst. In search of ‘archi-

tectural knowledge’. In Proceedings of the 3rd International Workshop on Sharing

and Reusing Architectural Knowledge, SHARK ’08, pages 71–78, New York, NY, USA,

2008. ACM.

[de Silva et Balasubramaniam, 2012] Lakshitha de Silva et Dharini Balasubramaniam.

Controlling software architecture erosion: A survey. J. Syst. Softw., 85(1):132–151,

Janvier 2012.

[Deissenboeck et al., 2007] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, et J.-F.

Girard. An activity-based quality model for maintainability. In In Proceeding of the

23rd International Conference on Software Maintenance (ICSM ’07), pages 184–193.

IEEE Computer Society, 2007.

[Deissenboeck et al., 2009] Florian Deissenboeck, Elmar Juergens, Klaus Lochmann,

et Stefan Wagner. Software quality models: Purposes, usage scenarios and require-

ments. In In Proceeding of 7th International Workshop on Software Quality (WoSQ

’09). IEEE Computer Society, 2009.

[Dresden., 2009] T. U. Dresden. Ocl compiler web site. http://dresden-

ocl.sourceforge.net/, 2009.

[Driss et al., 2010] Maha Driss, Naouel Moha, Yassine Jamoussi, Jean-Marc Jézéquel, et

Henda Hajjami Ben Ghézala. A requirement-centric approach to web service mod-

eling, discovery, and selection. In Proc. of ICSOC’10, pages 258–272. Springer-Verlag,

2010.

[Dromey, 1995] R. Geoff Dromey. A model for software product quality. IEEE Transac-

tions on Software Engineering, 21(2):146–163, 1995.

Bibliography 145

[Dromey, 1996] R. Geoff Dromey. Cornering the chimera. IEEE Software, 13:33–43,

1996.

[Dumas et al., 2010] Marlon Dumas, Luciano García-Bañuelos, Artem Polyvyanyy,

Yong Yang, et Liang Zhang. Aggregate quality of service computation for composite

services. In ICSOC, éditeurs Paul P. Maglio, Mathias Weske, Jian Yang, et Marcelo

Fantinato, volume 6470 de Lecture Notes in Computer Science, 2010.

[Durdik et Reussner, 2012] Zoya Durdik et Ralf Reussner. Position paper: approach for

architectural design and modelling with documented design decisions (admd3). In

Proc. of QoSA ’12, pages 49–54, New York, NY, USA, 2012.

[Durdik, 2011] Zoya Durdik. Towards a process for architectural modelling in agile

software development. In Proc. of QoSA’11, pages 183–192. ACM, 2011.

[Eick et al., 2001] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, et Audris

Mockus. Does code decay? assessing the evidence from change management data.

IEEE Transactions on Software Engineering, 27(1):1–12, 2001.

[Erl, 2009] Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

[Feng et al., 2013] Yuzhang Feng, Le Duy Ngan, et Rajaraman Kanagasabai. Dynamic

service composition with service-dependent qos attributes. In 2013 IEEE 20th In-

ternational Conference on Web Services, Santa Clara, CA, USA, June 28 - July 3, 2013,

ICWS’13, pages 10–17, 2013.

[Fishburn, 1967] Peter C. Fishburn. Additive Utilities with Incomplete Product Sets:

Application to Priorities and Assignments, volume 15. INFORMS, 1967.

[Foundation, 2009] Eclipse Foundation. Model Development Tools website.

http://www.eclipse.org/modeling/mdt/, 2009.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, et John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Sofware. Addison-Wesley

Professional Computing Series, 1995.

[Ganter et Wille, 1999] B. Ganter et R. Wille. Formal Concept Analysis: Mathematical

Foundations. Springer-Verlag, Inc., 1999.

146 Bibliography

[Garlan et al., 2000] David Garlan, Robert T. Monroe, et David Wile. Acme: Archi-

tectural description of component-based systems. In Foundations of Component-

Based Systems, éditeurs Gary T. Leavens et Murali Sitaraman, pages 47–68. Cam-

bridge University Press, 2000.

[Georgiadou, 2003] Elli Georgiadou. Gequamo—a generic, multilayered, customis-

able, software quality model. Software Quality Journal, 11(4):313–323, 2003.

[Grady, 1992] Robert B. Grady. Practical software metrics for project management and

process improvement. Prentice Hall, 1992.

[Gross et Yu, 2000] Daniel Gross et Eric Yu. From non-functional requirements to de-

sign through patterns. Requirements Engineering, 6:18–36, 2000.

[Groupe, 2011] Object Management Groupe. Business process model

and notation (bpmn) specification, version 2.0. OMG Website:

http://www.omg.org/spec/BPMN/2.0/PDF, January 2011.

[Heesch et Avgeriou, 2009] Uwe van Heesch et Paris Avgeriou. A Pattern-based Ap-

proach Against Architectural Knowledge Vaporization. University of Groningen, Jo-

hann Bernoulli Institute for Mathematics and Computer Science, 2009.

[Hochstein et Lindvall, 2005] Lorin Hochstein et Mikael Lindvall. Combating architec-

tural degenration: A survey. Information and Software Technology, 47(10):693–707,

July 2005.

[IEEE, 2000] IEEE. Ansi/ieee std 1471-2000, recommended practice for architectural

description of software-intensive systems, 2000.

[ISO, 2001] ISO. Software engineering - product quality - part 1: Quality

model. International Organization for Standardization web site. ISO/IEC 9126-1.

http://www.iso.org, 2001.

[ISO/IEC/(IEEE), 2011] ISO/IEC/(IEEE). Systems and software engineering - architec-

ture description, May 2011.

[Jackson, 2002] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM

Transactions on Software Engineering and Methodoly, 11:256–290, April 2002.

Bibliography 147

[Jaeger et al., 2004] Michael C. Jaeger, Gregor Rojec-Goldmann, et Gero Muhl. Qos ag-

gregation for web service composition using workflow patterns. In Proceedings of

the Enterprise Distributed Object Computing Conference, Eighth IEEE International,

EDOC ’04, pages 149–159, Washington, DC, USA, 2004. IEEE Computer Society.

[Jansen et Bosch, 2005] Anton Jansen et Jan Bosch. Software architecture as a set of

architectural design decisions. In In Proceeding of of the 5th IEEE/IFIP Working Con-

ference on Software Architecture (WICSA’05), pages 109–120. IEEE CS, 2005.

[Jansen, 2008] Anton Jansen. Architectural design decisions. PhD thesis, University of

Groningen, Institute for Mathematics and Computing Science, August 2008.

[Jintae, 1989] Lee Jintae. Decision representation language (drl) and its support envi-

ronment. Rapport technique, MIT Artificial Intelligence Laboratory, August 1989.

[Kim et al., 2009] Suntae Kim, Dae-Kyoo Kim, Lunjin Lu, et Sooyong Park. Quality-

driven architecture development using architectural tactics. Elsevier JSS,

82(8):1211–1231, August 2009.

[Kim et Garlan, 2010] Jung Soo Kim et David Garlan. Analyzing architectural styles.

Journal of Systems and Software, 83(7):1216–1235, 2010.

[Kitchenham et al., 1997] Barbara Kitchenham, Steve Linkman, Alberto Pasquini, et

Vincenzo Nanni. The squid approach to defining a quality model. Software Quality

Journal, 6(3):211–233, 1997.

[Klein et al., 1999] Mark H. Klein, Rick Kazman, Leonard J. Bass, S. Jeromy Carrière,

Mario Barbacci, et Howard F. Lipson. Attribute-based architecture styles. In Pro-

ceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA’99),

pages 225–244, Deventer, The Netherlands, The Netherlands, 1999.

[Klein et al., 2011] Adrian Klein, Fuyuki Ishikawa, et Shinichi Honiden. Efficient

heuristic approach with improved time complexity for qos-aware service compo-

sition. In IEEE International Conference on Web Services, ICWS 2011, Washington,

DC, USA, July 4-9, 2011, pages 436–443, 2011.

[Kläs et al., 2009] Michael Kläs, Jens Heidrich, Jürgen Münch, et Adam Trendowicz.

Cqml scheme: A classification scheme for comprehensive quality model landscapes.

148 Bibliography

In In Proceeding of the 35th EUROMICRO Conference Software Engineering and Ad-

vanced Applications, pages 243–250. IEEE Computer Society, 2009.

[Kruchten et al., 2006] Philippe Kruchten, Patricia Lago, et Hans van Vliet. Building

up and reasoning about architectural knowledge. In In Proceedings of the Second

International Conference on the Quality of Software Architectures, QoSA, pages 43–

58. Lecture Notes in Computer Science 4214, Springer-Verlag, 2006.

[Kruchten et al., 2009] Philippe Kruchten, Rafael Capilla, et Juan Carlos Duenas. The

decision view’s role in software architecture practice. IEEE Software, 26(2):36–42,

2009.

[Kruchten, 1995] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw.,

12(6):42–50, 1995.

[Kruchten, 2004] Philippe Kruchten. An ontology of architectural design decisions in

software intensive systems. In In Proceeding of the 2nd Groningen Workshop Soft-

ware Variability, pages 54–61, 2004.

[Lago et van Vliet, 2005] Patricia Lago et Hans van Vliet. Explicit assumptions enrich

architectural models. In In Proceeding of the 27th International Conference on Soft-

ware Engineering (ICSE’05), pages 206–214. ACM Press, May 2005.

[Lehman et Ramil, 2002] M.M. Lehman et J. F. Ramil. Software evolution. Marciniak J.

(ed.), Encyclopedia of Software Engineering, 2nd Ed, Wiley, 2002.

[Lenhard, 2011] Jörg Lenhard. A pattern-based analysis of ws-bpel and windows work-

flow. Rapport Technique 88, Lehrstuhl für Praktische Informatik, 2011.

[Lindvall et al., 2002] Mikael Lindvall, Roseanne Tesoriero, et Patricia Costa. Avoiding

architectural degeneration: An evaluation process for software architecture. In In

Proceeding of the Eighth IEEE Symposium on Software Mertrics (METRICS’02), pages

77–86, Ottawa, Ontario, Canada, June 2002.

[MacKenzie et al., 2006] Matthew MacKenzie, Ken Laskey, Peter F. Brown, Metz Re-

bekah, et Booz Allen Hamilton. Reference Model for Service Oriented Architecture

1.0. August 2006.

Bibliography 149

[Madhavji et Tassé, 2003] Nazim H. Madhavji et Josée Tassé. Policy-guided software

evolution. In Proceeding of the 19th International Conference on Software Mainte-

nance (ICSM’03), pages 75–82. IEEE Computer Society Press, 2003.

[Marew et al., 2009] Tegegne Marew, Joon-Sang Lee, et Doo-Hwan Bae. Tactics based

approach for integrating non-functional requirements in object-oriented analysis

and design. Journal of Systems and Software, 82(10):1642–1656, 2009.

[Marinescu et Ratiu, 2004] Radu Marinescu et Daniel Ratiu. Quantifying the quality

of object-oriented design: The factor-strategy model. In In Proceeding of the 11th

Working Conference on Reverse Engineering (WCRE’04), pages 192–201. IEEE Com-

puter Society, 2004.

[McCall et al., 1977] J. McCall, P. Richards, et G. Walters. Factors in software quality.

Rapport technique, (RADC)- TR-77-369, Vols. 1–3, Rome Air Development Center,

United States Air Force, Hanscom AFB, MA, 1977.

[Mead, 2006] N.R. Mead. White paper: Requirements prioritization case study using

ahp. Rapport technique, Software Engineering Institute, Carneige Mellon Univer-

sity, 2006.

[Mens et D’Hondt, 2000] Tom Mens et Theo D’Hondt. Automating support for soft-

ware evolution in uml. Automated Software Engineering Journal, 7(1):39–59, 2000.

[Merkle, 2010] Bernhard Merkle. Stop the software architecture erosion. Tutorial in

SPLASH’10, Reno, Nevada, USA, 2010.

[MIC, 2001] Xlang, web services for business process design.

http://xml.coverpages.org/XLANG-C-200106.html, 2001.

[Milanovic et Malek, 2004] Nikola Milanovic et Miroslaw Malek. Current solutions for

web service composition. IEEE Internet Computing, 8:51–59, 2004.

[Monroe, 2001] Robert T. Monroe. Capturing software architecture design expertise

with armani. Rapport technique, School of Computer Science, Carnegie Mellon Uni-

versity, Pittsburgh, Pennsylvania, USA, 2001.

[Mosser et Blay-Fornarino, 2013] SéBastien Mosser et Mireille Blay-Fornarino.

"adore", a logical meta-model supporting business process evolution. Science

of Computer Programming, 78(8):1035–1054, Aôut 2013.

150 Bibliography

[Mukherjee et al., 2008] Debdoot Mukherjee, Pankaj Jalote, et Mangala Gowri Nanda.

Determining qos of ws-bpel compositions. In Proceedings of the 6th International

Conference on Service-Oriented Computing, ICSOC ’08, pages 378–393, Berlin, Hei-

delberg, 2008. Springer-Verlag.

[Mylopoulos et al., 1992] John Mylopoulos, Lawrence Chung, et Brian Nixon. Repre-

senting and using nonfunctional requirements: A process-oriented approach. IEEE

TSE, 18(6):483–497, June 1992.

[Neto et al., 2016] Plácido A. Souza Neto, Genoveva Vargas-Solar, Umberto Souza

da Costa, et Martin A. Musicante. Designing service-based applications in the pres-

ence of non-functional properties: A mapping study. Information & Software Tech-

nology, 69:84–105, 2016.

[Niemelä et Immonen, 2007] Eila Niemelä et Anne Immonen. Capturing quality re-

quirements of product family architecture. Information and Software Technology,

49(11-12):1107–1120, 2007.

[OASIS, 2002] OASIS. Uddi version 2.04 api specification.

http://www.uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf,

2002.

[OMG, 2010] OMG. Object constraint language specification, version 2.2,

document formal/2010-02-01. Object Management Group Web Site:

http://www.omg.org/spec/OCL/2.2/PDF, 2010.

[Parnas, 1994] David Lorge Parnas. Software aging. In In Proceeding of the 16th In-

ternational Conference on Software Engineering (ICSE’94, Sorrento, Italy, May 1994.

IEEE Computer Society Press and ACM Press.

[Peltz, 2003] C. Peltz. Web services orchestration and choreography. Computer,

36(10):46–52, Oct 2003.

[Perry et Wolf, 1992] Dewayne E. Perry et Alexander L. Wolf. Foundations for the study

of software architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52,

1992.

Bibliography 151

[Rajan et Sullivan, 2005] Hridesh Rajan et Kevin J. Sullivan. Classpects: unifying

aspect- and object-oriented language design. In Proceeding of the 27th international

conference on Software engineering (ICSE’05), pages 59–68. ACM, 2005.

[Rausch, 2000] Andreas Rausch. Software evolution in componentware using require-

ments/assurances contracts. In Proceeding of the 22nd International Conference on

Software Engineering (ICSE’00), pages 147–156. ACM Press, 2000.

[Rosenberg et al., 2007] Florian Rosenberg, Christian Enzi, Anton Michlmayr, Chris-

tian Platzer, et Schahram Dustdar. Integrating quality of service aspects in top-down

business process development using WS-CDL and WS-BPEL. In 11th IEEE Interna-

tional Enterprise Distributed Object Computing Conference (EDOC 2007), 15-19 Oc-

tober 2007, Annapolis, Maryland, USA, pages 15–26, 2007.

[Saaty, 1980] T.L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, New york, 1980.

[Sheng et al., 2014] Quan Z. Sheng, Xiaoqiang Qiao, Athanasios V. Vasilakos, Claudia

Szabo, Scott Bourne, et Xiaofei Xu. Web services composition: A decade’s overview.

Information Sciences, 280:218–238, 2014.

[Steyaert et al., 1996] P. Steyaert, C. Lucas, K. Mens, et T. D’Hondt. Reuse contracts:

managing the evolution of reusable assets. In In Proceeding of the 11th ACM SIG-

PLAN conference on Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA’96), pages 268–285. ACM Press, 1996.

[Sun et Zhao, 2012] Sherry X. Sun et Jing Zhao. A decomposition-based approach for

service composition with global qos guarantees. Information Sciences, 199:138–153,

Septembre 2012.

[Tibermacine et al., 2005] Chouki Tibermacine, Régis Fleurquin, et Salah Sadou. Nfrs-

aware architectural evolution of component-based software. In Proceedings of the

20th IEEE/ACM ASE’05, pages 388–391, Long Beach, California, USA, November

2005. ACM Press.

[Tibermacine et Zernadji, 2011] Chouki Tibermacine et Tarek Zernadji. Supervising

the evolution of web service orchestrations using quality requirements. In Proc. of

ECSA’11, pages 1–16, Essen, Germany, September 2011. Springer-Verlag.

152 Bibliography

[Tibermacine, 2014] Chouki Tibermacine. Software Architecture 2, chapitre Software

Architecture: Architecture Constraints. John Wiley and Sons, New York, USA, 2014.

[Ton That et al., 2012] Tu Minh Ton That, Salah Sadou, et Flavio Oquendo. Using Ar-

chitectural Patterns to Define Architectural Decisions. In Proc. of WICSA/ECSA’12,

pages 196–200, Helsinki, Finland, Aôut 2012.

[Triantaphyllou et al., 1999] E. Triantaphyllou, B. Shu, S. Nieto Sanchez, et T. Ray.

Multi-Criteria Decision Making: An Operations Research Approach, volume 15,

pages 175–186. J. Wiley, New York, 1999.

[Triantaphyllou et Sanchez, 1997] E. Triantaphyllou et A. Sanchez. A sensitivity analy-

sis approach for some deterministic multi-criteria decision-making methods. Deci-

sion Sciences, 28(1):151–194, 1997.

[Tyree et Akerman, 2005] Jeff Tyree et Art Akerman. Architecture decisions: Demysti-

fying architecture. IEEE Software, 22(2):19–27, March/April 2005.

[van der Ven et al., 2006] Jan Salvador van der Ven, Anton G.J. Jansen, Jos A.G. Nijhuis,

et Jan Bosch. Design decisions: The bridge between rationale and architecture. In

Rationale Management in Software Engineering, éditeurs Allen H. Dutoit, Raymond

McCall, Ivan Mistrík, et Barbara Paech, pages 329–348. Springer Berlin Heidelberg,

2006.

[Wang et al., 2004] Hongbing Wang, Joshua Zhexue Huang, Yuzhong Qu, et Junyuan

Xie. Web services: problems and future directions. Journal of Web Semantics, 1:309–

320, 2004.

[WCI, 2002] Web service choreography interface (wsci) 1.0.

http://www.w3.org/TR/wsci/, 2002.

[WCL, 2004] Web services choreography description language version 1.0.

https://www.w3.org/TR/ws-cdl-10/, 2004.

[Wohlin et al., 2012] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, et

Björn Regnell. Experimentation in Software Engineering. Springer, 2012.

[World Wide Web Consortium, 2004] World Wide Web Consortium. Web services ar-

chitecture. 2004. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

Bibliography 153

[World Wide Web Consortium, 2007] World Wide Web Consortium. Web services pol-

icy 1.5 - framework. 2007. https://www.w3.org/TR/ws-policy/.

[WSC, 2002] Web services conversation language (wscl) 1.0.

http://www.w3.org/TR/wscl10/, 2002.

[Yu et al., 2008] Qi Yu, Xumin Liu, Athman Bouguettaya, et Brahim Medjahed. Deploy-

ing and managing web services: Issues, solutions, and directions. The VLDB Journal,

17(3):537–572, Mai 2008.

[Zeng et al., 2003] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant

Kalagnanam, et Quan Z. Sheng. Quality driven web services composition. In Pro-

ceedings of the 12th International Conference on World Wide Web, WWW ’03, pages

411–421, New York, NY, USA, 2003. ACM.

[Zernadji et al., 2014a] Tarek Zernadji, Chouki Tibermacine, et Foudil Cherif. Process-

ing the evolution of quality requirements of web service orchestrations: a pattern-

based approach. In Proc. of WICSA’14, Sydney, Australia, April 2014. IEEE CS.

[Zernadji et al., 2014b] Tarek Zernadji, Chouki Tibermacine, et Foudil Cherif. Quality-

driven design of web service business processes. In Proc. of WETICE/AROSA’14,

Parme, Italie, Juin 2014. IEEE CS.

[Zheng et al., 2013] Huiyuan Zheng, Weiliang Zhao, Jian Yang, et Athman Bouguettaya.

Qos analysis for web service compositions with complex structures. IEEE T. Services

Computing, 6(3):373–386, 2013.

	Title
	Contents
	Acknowledgement
	Abstract
	Résumé
	1 Introduction
	1.1 Context
	1.2 Problem statement
	1.3 Contributions
	1.4 Dissertation plan

	2 State of the art
	2.1 Background
	2.1.1 Service Oriented architecture (SOA)
	2.1.2 Web services
	2.1.3 Web Services composition
	2.1.4 Web Services Business Process Execution Language (WS-BPEL)

	2.2 Literature review
	2.2.1 Architecture decisions documentation
	2.2.2 Software quality documentation
	2.2.3 Quality achievement in service-based systems
	2.2.4 Assistance to software evolution and impact analysis
	2.2.5 Discussion
	2.2.6 Summary

	3 Pattern-based documentation model of architecture decisions
	3.1 General Model
	3.2 Links between Architecture Design Decisions and Quality Attributes
	3.3 WS-BScript: Web Service BPEL Scripting language
	3.4 SOA Patterns Architecture Constraint Specification
	3.5 Summary

	4 SAQIM: Service-Oriented Architecture Quality Integration Method
	4.1 The Method at a Glance
	4.2 Quality attribute integration intent specification
	4.3 Pattern Selection
	4.4 Pattern Application
	4.5 Quality Impact Analysis
	4.6 New Patterns Definition
	4.7 Pattern Cancellation
	4.8 Documentation of the New Architecture
	4.9 Summary

	5 Quality-oriented impact analysis process
	5.1 A Micro-Process of Architecture Evolution
	5.2 Quality-Oriented Architecture Change Assistance
	5.2.1 Quality-Oriented Assistance Service
	5.2.2 Weighted Sum Model for Patterns ranking

	5.3 Summary

	6 Evaluation
	6.1 SAQIM in Practice
	6.2 Experiment Process
	6.2.1 Methodology
	6.2.2 Data Collection
	6.2.3 Simulation
	6.2.4 Discussion
	6.2.5 Threats to validity

	6.3 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	List of Figures
	List of Tables
	List of Listings
	Bibliography

