Liste des figures

<i>N</i> °	Figures	Page
1	Illustration de l'effet piézoélectrique direct	7
2	Représentation de l'apparition de la piézoélectricité	8
3	Organigramme des classes cristallines	9
4	Numérotation des directions	11
5	Orientation idéale des dipôles	12
6	Cycle d'hystérésis d'un matériau ferroélectrique	13
7	Transition de phase de type displacif dans BaTiO ₃ de structure pérovskite	16
8	Maille pérovskite cubique du PZT	20
9	Représentation du réseau tridimensionnel d'octaèdres	20
10	Déformations possibles de la structure de PZT	23
11	Diagramme de phase du PZT	24
12	Relation entre microstructure, propriétés et élaboration	31
13	Les principales étapes de préparation des céramiques piézoélectriques de type	32
	PZT	
14	Evolution de l'activité de PbO en fonction de la température pour différents	34
	mélanges	
15	Dispositif de frittage	35
16	Evolution de la densité en fonction de la température de frittage de la	36
	composition Pb [$Zr_{0.45} Ti_{0.45}$ ($Zn_{1/3}$, $Sb_{2/3})_{0.1}$] O ₃	
17	Schéma du dispositif de mesure de la constante diélectrique en fonction de la	38
	température	
18	Montage représentant la méthode de mesure de la tension de claquage d'un	40
	isolan	
19	Schéma représentant le processus de polarisation	41
20	Schéma représentant le principe de la méthode résonance – antirésonance	41
21	Schéma équivalent d'un matériau piézoélectrique	44
22	Schéma du MEB	46

23	Principe du diffractomètre à poudre	47
24	Spectres de diffraction typiques des phases : tétragonale (T), rhomboédrique (R)	54
	et la phase tétragonale-rhomboédrique (T+R)	
25	Les différentes allures des pics caractéristiques de la coexistence de la phase	54
	(T+R)	
26	Les diagrammes de DRX pour les trois échantillons frittés à 1180°C	56
27	Évolution de la densité en fonction du pourcentage de dopants	57
28	Les photographies prises par le microscope électronique à balayage pour les	59
	deux compositions : (a)- $Pb_{0.98} Nd_{0.02}[Zr_{0.45}Ti_{0.45}(Zn_{1/3} Sb_{2/3})_{0.1}]_{1-0.02/4}O_3$	
	(b)- $Pb[Zr_{0.45}Ti_{0.45}(Zn_{1/3}, Sb_{2/3})_{0.1}]O_3$	
29	Evolution des paramètres de maille et du rapport de distorsion en fonction du	60
	taux de néodyme	
30	La variation de la constante diélecrique en fonctions du pourcentage de dopants	63
	et de la température à : a- 1kHZ	
	b- 10kHZ	
	c- 100kHZ	
	d- 200kHZ	
31	Variation de la constante diélectrique en fonction du taux de dopages pour des	64
	échantillons polarisés et non polarisés à T =25°C	
32	La variation de la constante diélectriques en fonction de la température et de la	65
	fréquence pour une composition dopée avec 0.01% de Nd ³⁺	
33	La variation de l'angle des pertes en fonction de la température et de la	67
	fréquence pour une composition dopée avec 1% de Nd ³⁺	
34	La variation de l'angle des pertes en fonction de la température et du	68
	pourcentage de dopants à 1kHZ	
35	La variation de la résistivité (a) et de la conductibilité (b) en fonction de la	70
	température et de la fréquence pour une composition dopée avec 1% de Nd ³⁺	
36	La variation de la résistivité (a, b, c, d) et de la conductibilité (a', b', c', d') en	74
	fonction de la température et du pourcentage de dopants : (a, a`) à - 1kHZ	
	(b, b`) à - 10kHZ	
	(c, c`) à - 100kHZ	
	(d, d`) à - 200kHZ	
37	Évolution de K _P en fonction du pourcentage de dopants	76

38	La variation du K _P en fonction de la température	76
39	L'évolution du coefficient piézoélectrique de charge d ₃₁ en fonction du	77
	pourcentage de dopants	
40	L'évolution du coefficient piézoélectrique de charge d_{31} en fonction de la	78
	température	
41	L'évolution du coefficient piézoélectrique de tension g ₃₁ en fonction du	79
	pourcentage de dopants	
42	L'évolution de g_{31} en fonction de la température pour une composition dopée	79
	avec 1% de Nd ⁺³	
43	L'évolution de Q _m en fonction du pourcentage de dopants	80
44	L'évolution de Q_m en fonction de la température pour une composition dopée	81
	avec 1% de Nd ⁺³	
45	L'évolution du module de Young en fonction de taux de dopage	82
16	L'évolution du module de Young en fonction de la température pour une	07
46	composition dopée avec 1% de Nd ⁺³	83
47	Les diagrammes de DRX de l'ensemble d'échantillons frittés à 1180°C	89
48	Evolution de la densité en fonction de la composition	91
49	Évolution de la porosité en fonction de la composition	92
50	Évolution des paramètres de maille en fonction de la composition	93
51	La variation de la constante diélectrique en fonction de la composition	94
52	La variation de l'angle des pertes en fonction de la composition	95
53	La variation du facteur de couplage électromécanique planaire K_p en fonction de la composition	96
54	La variation du facteur de couplage électromécanique planaire K _p en fonction de	06
	la composition	90
55	Evolution du coefficient piézoélectrique de charge d ₃₁ en fonction de la	00
22	composition	98
56	Evolution du coefficient piézoélectrique de tension g ₃₁ en fonction de la	00
	composition	99
57	Evolution du module de Young E en fonction de la composition	100
58	L'évolution du facteur de qualité mécanique en fonction de la composition	101