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Chapter 3 
Numerical Modeling 

3.1   Introduction 

It is usually difficult to obtain closed-form expressions which satisfactorily describe the 

operation of modern semiconductor devices. There are also limitations of the degree of 

precision by the necessary approximations associated with analytic models. Numerical 

techniques may be used to solve the full set of semiconductor equations. but any approach for 

the solution of such a system consist essentially of three tasks. First; the domain (the 

geometry of the device has to be discretezed). The second; the differential equations are 

approximated by algebraic equations. The solutions of this algebraic equations consist on the 

third task. The finite difference method is adopted here for the reason which will be explained 

later.  

We will consider the case of an n-p junction. The n side represents the active layer of the field 

effect transistor, the side p represents the substrate itself. The set of differential equations 

describing the transport mechanism are well known: The Poisson’s equation relating electric 

fields with charge densities; continuity equations relating the rate of change of charge 

densities with current sources and sinks (generation-recombination). The equation defining 

the current as being caused by the locally existing fields and by diffusion if concentration 

gradients are present. The empirical function for the recombination mechanism for the carriers 

is usually needs to determinate the proportional deviation from equilibrium ( 2
innp ) and 

those describing the occupation of traps in band gap.   

The finite difference method is largely used for numerical solution of the semiconductor 

equations because of the simplicity of implementing the numerical schemes. The majority of 

early devices simulations such as those of Gummel [8] Slotboom [9]and Scharfetter and 

Gummel [10] used one dimensional finite difference schemes; which are adequate in the case 

where the current flow and electric field are predominantly unidirectional. In some situations 

it may be preferable to use a nonuniform spacing when discretizing, if the electron and hole 

distribution is expected to change rapidly through a region. For this it may be necessary to use 

a small spacing between points in this area. However, for many device structures, even abrupt 

p-n junctions, uniform grid spacing is suitable. 



Chapter 3                                                                                                                       Modeling 

 34

 This method offers the solutions for the physical variables ,,np as descretized values at 

specific nodes contained within a mesh. The continues derivatives of the semiconductor 

equations are replaced by discretized finite approximations (see for example [4]). The 

discretized physical variables are represented by values obtained from solution of the 

discretized equations at each mesh point except where boundary conditions determine the  

values of the variables. 

3.2   The phenomenological transport equations  

The phenomenological transport equations in semiconductors is given by the Poisson formula 

which is; 

        )(2
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                                                                       3.1 

 Where we consider two deep centers might be donors like centers and acceptors like centers; 

here we treat the steady state dc condition           

 Where  is the electron potential, 13103015.12 s F/cm; n and p are the free electron and 

hole concentrations and TOTAD NNN  which is the effective doping distribution. 

The ionized defect density (for a donor) depend on the temperature and the position of defect 

level with respect to Fermi level. This relation is given by      

     TDTD NfN                                                                                                                3.2 

where f the occupation factor given by 
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TDE is the energy level of the trap; and TDN is its density. Since the hole density is given by                         

              TK
EEnp

B
Fii  exp                                                                                                           3.4 

iE  is the intrinsic level, then the Eq 3.2  will be written as  
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 In the same way, the ionized density of a deep acceptor is given as                                            
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TAE  is the energy level of acceptor traps; TAN is the total acceptor trap density. 

The electron and hole conservation laws can be written : 

         01 
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n                                                                                                        3.7 

           01 
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While knowing that thnnn vC   and thppp vC  . The thermal generation rate of carriers for a 

single species of generation level take the following form,  
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where    TK
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en
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n
n  exp1                                                                                              3.10 
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At the thermal equilibrium  211 inpn   

The minority excess carrier lifetimes are meaningful concepts for extrinsic semiconductors 

having a negligible density of deep centers and for small departure from thermal equilibrium:  

            
Tn

n NC 
 1  ;  

Tp
p NC 
 1  

nJ is the electron current and pJ is the holes current given by 
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       x
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Since the velocity is proportional to the electric field as  
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where scmvns /108 6 , cmFn /73000 and  scmvps /105.9 6 , cmFp /4250  
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The relationship between nD  and n  in thermal equilibrium, for non degenerate 

semiconductors, and when n  is much smaller than cN  is  as know by Einstein relationship: 

for the electron nBn q
TKD 





  and  for the hole pBp q

TKD 





                                                                                       

where 0259.0/ qTKB V at KT 300  

3.3   Discretization of the device  

A partition of the structure n-p discretized in a uniform way. The meshpoint spacing is  

defined in the x-direction. We have take a fine spacing in order to detect any variation of 

parameters as a high field in a depletion layer. Such the active layer has a thickness of 

hc=2µm and doping density of 31510  cmND . The substrate has a thickness of mH sub 20 . 

The structure is divided to NMAX points along its thickness L, the main points are denoted 

by N and the secondary points by M. 
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Fig 3.1: The special descretization of the structure  
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3.4  Numerical method of resolution 

The basic equations (3.1); (3.7); (3.8) form the system for dc steady state analysis; given by 

    01  UGdx
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q
p            

          01  UGdx
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q
n                                                                                               3.14 
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Assuming that no optical excitation or other generation sources as impact ionization, then 

0G . 

The system of three equations of three unknowns  ,,np is obtained for each discretization 

point  10010 ixi . Considering the following steps. 

The first is that any function variable uf (n, p, pn, ,E, pnD ,  ) of x   its derivation is  
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                                                                                  3.15 

where     11 HNxNx  which represent the discretization of main grid  

The second step is Scharfetter and Gummel [10] approximation which takes the potential 

difference between two adjacent nodes sufficiently smaller and cannot exceed 2KT/q. This is 

achieved by increasing the total point number to produce a finite differences to avoid the 

negative values of electron density n. However; this lead to the reduction of computation 

efficiency and numerical instability in the solution. These can be avoided by allowing the 

electron density to follow an exponential variation between two mesh point. The current 

density equations nJ and pJ are integrated assuming: (1) the current densities equations nJ and 

pJ  and mobilities are constant between two adjacent point N and N+1, (2) a linear variation 

of the electrostatic potential which is justified because the potential variation is smooth along 

a discretization interval. From eq (3.12); we have 

        xTK
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
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
 


1                                                                                           3.16 

According to the integration method of variation constant  
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where    





  

 TK
q

TK
JxC

BBn

n exp0  

Since nJ  is constant along the interval [xi ,xi+1]; we obtain  
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with same way for holes current density 
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Then from eqs (3.18); (3.19); the current density equations are treated implicitly as 

differential equations in n and p. An approximation given to  as 
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Gummel and Shraffeter inferred the expressions for nJ and pJ as: 
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hence, the novel expressions are given by 
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where TK
q
B

  is the thermal voltage and E is the electric field derived from  as dx
dE  . 

and by knowing that  
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 Eqs (3.24); (3.25) can be put in simple way:  
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The system (3.14) become after descritezation: 
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where the coefficient  3,2,1ii are given by : 
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Like the currents densities, the recombination rate and the ionized traps density involve 

nonlinear functions. Assuming that the function is continues, single valued function of x of 

continues derivatives. So these are linearized by the first order approximation obtained from 

Taylor expansion: 
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Where the quantities defined at the origin of expansion are denoted by superscript 0 are 

determined from the initial conditions 0p , 0n and 0 . After the linearization of the continuity 

equations aforementioned and the substitution of  Taylor expansion in. 
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Thereby allowing to find a new system which involve only fundamental variable increments 

as unknowns. Written in matrix-vector as follow: 

                   NFNyNCNyNBNyNA  11   , 12  LN                                     3.34  

 For the differentials boundary conditions for  ,, np respectively are zero at 1N and 

LN .  CBA ,,  are the square matrixes of nine elements and F is a vector of three elements. 

  Where the elements of  matrix A are defined as; 
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Nn
NqB TA

s

0

32 1 ;        



  MhMhNhB 1

1
11

'
33  

The matrix C ; 

   
 

 1
1 0

'
11


 Np

MJ
NqhC p  ;  

 
 1

1 0

'
13


 N

MJ
NqhC p

  

   
 

 1
1 0

'
22


 Nn

MJ
NqhC n ;   

 
 1

1 0

'
23


 N

MJ
NqhC n

  

     NhMhC
'

33 1  ; 012 C ; 021C ; 031C ; 032C . 
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For the matrix F  

          NUMJMJNqhF pp 000
'

1 11    

           NUMJMJNqhF nn 000
'

2 11    

                    11 030201
00003   NNNNNNNNNNNnNpNNqF TATDAD

s
  

Solving this matrix vector equations mean solving the tridiagonal square matrix of order N. 

The global system has the form:  

                     FU                                                                                                              3.35       

where  U is the Jachobian matrix of the system of (L-2).(L-2) elements; and each matrix 

element itself corresponding to a single node ix  has nine scalar elements; 

                   


















































j

i

j

in
j

ip
j

i

j

in
j

ip

j

i

j

in
j

ip

ij

FFF
n
F

n
F

n
F

p
F

p
F

p
F

U








;          

                       















j
j

j

n
p




  

For the problem that the total number of scalar elements is so large;  a direct application of the 

Gaussian elimination method without modification is not recommended. A commonly 

accepted way to expedite computation is to exclude all zero elements. If this is done, only 

nine elements per line are stored in memory. If the elementary matrixes ijU  are viewed as 

blocks; the previous solution method can be extended in such a way that each element is 

block matrix instead of scalar. This is solved using a recursive method. 

In addition to the semiconductor equations and the domain, boundary and initial conditions 

have to be specified. Suitable for this, Dirichlet boundary conditions are usually used where 

the potential and carrier concentrations are pre-defined at the contacts.  

The absence of current and applied bias set the device at thermal equilibrium. Under the space 

charge neutrality condition, the initial carrier densities values are: 

              AD NNn 0 ,   ADi NNnp  /20      at active layer (n side )                                     3.36.a 
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             DA NNp 0 , DAi NNnn  /20         at substrate     (p side )                                     3.36.b 

In equilibrium; the current is zero. So that from eqs (3.11); (3.12) we can get 

             dnDqdnq nn     and   dpDqpdq pp   

Integrating these equations and the substituting 0n and 0p  the initial values of the potential is 

given by; 

           



 

i

AD

n
NN

q ln1    at the contact of the n-side  

                      
AD

i
NN

n
q 

ln1      at the contact of the p-side 

For any external polarization the initial values of n and p are unchanged while those of the 

potential are changed in a proportional way . so that the new trial values are given  

             L
L

VN
L

VN apap
T 1

11
1

11 11
1 





 









                                          3.38 

where the voltage apV referred the voltage applied and  11 and  L1  are the are the potential 

of starting condition. The next step is to solve the system with a recursive technique . 

First; equation(3.34) which has unknowns vectors at three point is transformed to an equation   

involving unknowns vectors at two points  as; 

                  NFNyNCNyNB ''' 1                                                                          3.39 

Or             1''''   NyNCNBNFNBNy                                                                     3.40 

Second; substituting  Ny  in the equation (3.34) knowing that division point N is decreased 

by one; we can found  

 

       22' BB                               

      22' CC                                                                                                                             3.41 

      22' FF   

For N=2 , the direct comparison of eq(3.39) with eq(3.34) yields to   01 y  

 

3.37 0  
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             11 '
1

''   NCNBNANBNB  

       NCNC '                                                                                                                       3.42 

            11 '
1

''   NFNBNANFNF ,    13  LN  

Thus, starting with equations (3.41) in equation (3.42) are determined for N=3, 4, …, L-1, 

where the inverse matrix 'B is obtained from the Sylvester’s formula.  

The last step is to calculate  Ny starting with N=L-1, L-2, ……, 2 using equation (3.39). 

where   0Ly is used at the starting condition. 

As in all iterative methods the problem is in deciding when is the time to stop and what 

criteria are set. The Newton method is significantly sensitive to correction terms set after each 

iteration. An overestimation given to the initial solution results in  divergence. 

At iteration k+1 the solution      KKK np ,, are corrected follows: 

   for  *                  K *                 if q
TK BK                                              

                                
 

  q
TKB

K

K





 *        if q
TK BK   

for    KK pn  , the corrective factor at iteration k+1is as follow: 

Since n and p are Boltzman-Maxwell functions then    KK pn  , are calculated as exponential 

functions of  K where;  

                         







TK
qnn

B

KK exp1                                                                                  3.44 

therefore by developing at the first order allowing to  

                        
TK

q
n

n
B

K  1                                                                                    3.45 

and in similar way   

                         







TK
qpp

B

KK exp1                                                                                3.46 

                   

3.43 
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                     
TK

q
p

p
B

K  1                                                                                        3.47  

 

which lead to            11 Kn
n            

                                11 Kp
p   

 It is necessary to set an other criterion to control the carrier densities solutions to avoid 

negative and weaker values which can affect the convergence. With a simple precaution that 

each negative or zero value is be replaced by a weaker and positive number of the order 

of 3010 . 

To stop the process, we just set the condition : reey
y  . If this condition is satisfied at 

certain number of iterations, the simulation is achieved unless it may continues to a maximum 

permitted  where therefore no convergence. 

To realize this; a program developed at Brunel University (UK) is used and the flow chart of 

this program is shown in figure 3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.48 
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*: Applied Bias (V), the maximum number of  iterations, EC-ET in eV for  the deep acceptors level, density of the 

deep acceptors level (in cm-3), ET-EV in eV for  the deep donors level, density of the deep donors level (in cm-3), 

minority carrier lifetime (S), Device area (cm2), a uniform generation rate (Normally 0), Temperature (K) 

 
 

Calculate the secondary variables: E;  J; G 

Data input 
(device definition and parameters*) 

 

Initial solution 

Compute the matrix  A , B, C and the vector  F  
    and therefore  the matrix '' ,CB and the vector 'F  

Fig3.2 Flow Chart for Numerical-Solution Procedure 

Solve Eq (3.35) and thereby determine  principal  solution 
          For the mains parameters   ,, npy  

END 

No convergence  

Improve variables                          

Judge for convergence : reey
y   

Start 

No  

No  

Yes   

yes    

NIT=NF 

NIT=NIT+1 
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The program uses two input files and produce two output files. 

Device definition 

 The device is divided into a number of points determined by the program taken at 

1001NMAX , the spacings between the grid is constant given by  1 NMAX
dxstep , after 

defining the one dimensional grid we give the shallow acceptor and donor at each point. 

Run definition 

This field provide the uses parameters it gives the reverse bias and minority lifetime. A clue to 

the items that must be included in this field may be summarized in the subroutine setrun.   

 Code output  

The program produce two output files. The largest of the output files give the various 

distributions through the device (distance, the net shallow doping density, electron and hole 

concentrations, various current for the electron and holes, thermal generation-recombination 

rate and density of filled acceptors and donors). 

The second files produced provides other information as applied bias; current;  conductance. 
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3.5 The channel conductance and substrate current modeling  

The backgating (the channel conductance reduction) is studied by calculating the space charge 

induced by depletion of the channel by the applied substrate voltage to reduce its effective 

thickness. By charge neutrality an equal and opposite charge is induced in the substrate. The 

relation between the conductance G and the width of the channel ( Cc wh  ) is given by  

       l
whZqnμ l

σAG CccnC                                                                                             3.48 

where nDn qNqn   is the channel conductivity, n is the free electron density in the 

channel (we suppose that the channel doping is uniform so that n=ND); Ac=Zc( Cc wh  ) is the 

channel cross section area. Z is the channel height, l is its length. 

The incremental change dG in the conductance is given by  

       
l

whdZqn
l

dAdG cccnc                                                                                              3.49 

where dAc is the incremental change in the channel cross section area, given by   

         cccc dwwhddA                                                                                                        2.50 

since hc is constant quantity and wc is the depletion width in channel side which changes ( 

reduction) with an applied voltage to the substrate.  This reduction (wC) will reduce the area of 

the channel through which the current passes and the conductance for the channel is then 

calculated using the reduced area and given by integrating equation (3.49). 

 





c

cc

w

h

cn

h

cn ndxl
Zqndxl

ZqG  0

 

the upper integral limit is (-wc) instead of (0) since in the depletion region (-wC<x<0) the 

electron density is negligible.                                    

The normalized conductance is then 
0Vb

Vb
G

G   

Where Vb is the backgating voltage applied to substrate. 

The current through the substrate is calculated by solving the equations (3.9) and (3.10) after 

numerical solving for  ,,np . 

 


