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Chapter 3

Numerical Modeling

3.1 Introduction

It is usually difficult to obtain closed-form expressions which satisfactorily describe the
operation of modern semiconductor devices. There are also limitations of the degree of
precision by the necessary approximations associated with analytic models. Numerical
techniques may be used to solve the full set of semiconductor equations. but any approach for
the solution of such a system consist essentially of three tasks. First; the domain (the
geometry of the device has to be discretezed). The second; the differential equations are
approximated by algebraic equations. The solutions of this algebraic equations consist on the
third task. The finite difference method is adopted here for the reason which will be explained

later.

We will consider the case of an n-p junction. The n side represents the active layer of the field
effect transistor, the side p represents the substrate itself. The set of differential equations
describing the transport mechanism are well known: The Poisson’s equation relating electric
fields with charge densities; continuity equations relating the rate of change of charge
densities with current sources and sinks (generation-recombination). The equation defining
the current as being caused by the locally existing fields and by diffusion if concentration
gradients are present. The empirical function for the recombination mechanism for the carriers

is usually needs to determinate the proportional deviation from equilibrium (#np—n?) and

those describing the occupation of traps in band gap.

The finite difference method is largely used for numerical solution of the semiconductor
equations because of the simplicity of implementing the numerical schemes. The majority of
early devices simulations such as those of Gummel [8] Slotboom [9]and Scharfetter and
Gummel [10] used one dimensional finite difference schemes; which are adequate in the case
where the current flow and electric field are predominantly unidirectional. In some situations
it may be preferable to use a nonuniform spacing when discretizing, if the electron and hole
distribution is expected to change rapidly through a region. For this it may be necessary to use
a small spacing between points in this area. However, for many device structures, even abrupt

p-n junctions, uniform grid spacing is suitable.
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This method offers the solutions for the physical variables p,n i as descretized values at

specific nodes contained within a mesh. The continues derivatives of the semiconductor
equations are replaced by discretized finite approximations (see for example [4]). The
discretized physical variables are represented by values obtained from solution of the
discretized equations at each mesh point except where boundary conditions determine the

values of the variables.

3.2 The phenomenological transport equations

The phenomenological transport equations in semiconductors is given by the Poisson formula
which is;

0w
ox?
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Where we consider two deep centers might be donors like centers and acceptors like centers;

here we treat the steady state dc condition
Where v is the electron potential, £:=12.3015-10-"* F/cm; nand p are the free electron and
hole concentrations and No—N.=Nror which is the effective doping distribution.

The ionized defect density (for a donor) depend on the temperature and the position of defect

level with respect to Fermi level. This relation is given by
Nip=f-Nm 3.2

where f'the occupation factor given by

1
f= 33
1+exp(E ETD LEZI=TD)

Emis the energy level of the trap; and N is its density. Since the hole density is given by

penexpl{E=Er ST ?F) 3.4

E: is the intrinsic level, then the Eq 3.2 will be written as

+ 1
NTD —NTD 1+&exp(_ Em —Ej ) 35
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In the same way, the ionized density of a deep acceptor is given as
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1
N7 =N14 3.6
4 l+ﬁexpr Era—Ei )

n KsT

Era 1s the energy level of acceptor traps; Nz is the total acceptor trap density.

The electron and hole conservation laws can be written :

1.8Js =g 3.7
q Ox

10Js 17— 3.8
q Ox

While knowing that Co=0»vim and Cp=0cp-vmp . The thermal generation rate of carriers for a

single species of generation level take the following form,

_ n-p—n?
U_rp(n+n1)+rn(p+p1) 39
_en . _EC—ET)
where i c Ncexp (KBT 3.10

— & N, exp-(Er=Ex)
P=c Nvexp—{=p - 3.11

At the thermal equilibrium - pi=n?

The minority excess carrier lifetimes are meaningful concepts for extrinsic semiconductors

having a negligible density of deep centers and for small departure from thermal equilibrium:

1. 1

"=C+Nr * "TCpNr

Jn1s the electron current and J) is the holes current given by

Jn=—qn Lin aal;/+an gz 3.12
0 0
Jpz—qpupa—li/—qué 3.13

Since the velocity is proportional to the electric field as
v=uE

1
1+‘un0'

1
E 1+/,lp0' E

V nsat V psat

we have taken tin= fino - and pp=upo-

where vus=810°cm/s , puno=7300F/cmand vps=9.5x10°cm/s , pupp=425F/cm
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The relationship between D» and u» in thermal equilibrium, for non degenerate

semiconductors, and when # is much smaller than Nc is as know by Einstein relationship:

for the electron Du=| 2L |14, and for the hole D,=| KL |,
q a q H

where K5T/g=0.0259V at T=300°K

3.3 Discretization of the device

A partition of the structure n-p discretized in a uniform way. The meshpoint spacing is
defined in the x-direction. We have take a fine spacing in order to detect any variation of

parameters as a high field in a depletion layer. Such the active layer has a thickness of

h~=2um and doping density of N,=10""cm=. The substrate has a thickness of H,=20um .

The structure is divided to NMAX points along its thickness L, the main points are denoted

by N and the secondary points by M.

As
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Fig 3.1: The special descretization of the structure
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3.4 Numerical method of resolution

The basic equations (3.1); (3.7); (3.8) form the system for dc steady state analysis; given by

1lalr (G-
; L (G-U)=0

< é.%+(g_(]):0 3.14

oy
\_ Ox?

Z—Si(p—n+ND—NA+N7fD—NfA)
Assuming that no optical excitation or other generation sources as impact ionization, then
G=0.

The system of three equations of three unknowns ( p,n,t//)is obtained for each discretization

point xi(OSiSIOOl ) Considering the following steps.

The first is that any function variable f. (n, p, tinp,E, Dnp ) of x its derivation is

ofu _ fuN }-f£u(N-1) 3.15
ox  x(N)-x(N-1) '

where x(N)-x(N—1)=H1which represent the discretization of main grid

The second step is Scharfetter and Gummel [10] approximation which takes the potential
difference between two adjacent nodes sufficiently smaller and cannot exceed 2K7/q. This is
achieved by increasing the total point number to produce a finite differences to avoid the
negative values of electron density n. However; this lead to the reduction of computation
efficiency and numerical instability in the solution. These can be avoided by allowing the
electron density to follow an exponential variation between two mesh point. The current
density equations J»and J, are integrated assuming: (1) the current densities equations J»and
Jp and mobilities are constant between two adjacent point N and N+1, (2) a linear variation
of the electrostatic potential which is justified because the potential variation is smooth along
a discretization interval. From eq (3.12); we have

lan: Jn + q al// 316
nox KpTnu., K,T 0x '

According to the integration method of variation constant
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n(cho(x)exp[ KZTW] 317

J, q
where C,(x )= ¢
e xp(“w]

Since J» is constant along the interval [X;,Xi:1]; we obtain

J Ci—G 318

ﬂ:unKBTx

2 i+l
J' exp _aY g
K,T

X

where C,.,, nmexp( q%”]
K,T

C; =n; exp| — av
K,T

with same way for holes current density

J

=M KT~ Cia=Ci 3.19

2 [ aV
| exf 1 L

X

ql//1+]
where C;,,=p,,¢
1=Pi+1 XP( K T]

qVy,
Ci=p;
. exp(K T]

Then from eqs (3.18); (3.19); the current density equations are treated implicitly as

differential equations in n and p. An approximation given to y as

w=ax+b
where g=Yix1"Yi ; b=y, —ax,;
Xiy1—Xi

Gummel and Shraffeter inferred the expressions for J.and J, as:

N €Xp— 1 (l//z+l Vi )‘l’l

J o =qun I; s Via—Vi 320
"y exXD— w1 RN
Xp K T(WH] Vi )‘
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Pi eXP_L(‘//m_Wi )‘Pm
J = KT Via=Vi 391
”%_qup q ( )»1 X1 —X; ’
exp_K T Via—Vi
hence, the novel expressions are given by
Jy=BE (0}t~ () 2
Jn=— lqu"GEx (n(O)e“’E"—n(x)) 3.23
where 0= is the thermal voltage and E is the electric field derived from y as £ _ay .
KBT dx
and by knowing that
N K p(N+1
1o - BN ) o LN o 1)y o PS4 324
n n M 1
Ji(M )~ LA (W +1)-n(N ) L (V1) (v (V) A 3.25
Eqgs (3.24); (3.25) can be put in simple way:
Jo(M }Hqﬁj[a,,](M (N a2 (M p(N+1)] 3.26
Jn(M }Hqﬁj[anl(M (N Wan(M (N +1)] 3.27
where
(W )y (V) (g W )y (V1)
ap]_‘uP(M/l—exp(—ﬁ(M)) and apz_‘uP(Mll—exp(ﬂ(M))

s OO e OO

with  B(M )=6-[y (N )}y (N +1)]
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The system (3.14) become after descritezation:

( L J oM ;(J]\;’gM Dy (v )0

1 Ja(M )-Ju(M 1) U(N 0

q h(N) 3.28

N W=Dy 2 (N (N s (N (N +1)== L p(N )-8} N (N )N (N N (N )N (V)]

where the coefficient 7/1( =1,2 3) are given by :

(V)= A —%ﬁ'(N)

P i Ty )
N G

Like the currents densities, the recombination rate and the ionized traps density involve
nonlinear functions. Assuming that the function is continues, single valued function of x of
continues derivatives. So these are linearized by the first order approximation obtained from

Taylor expansion:

saneanlon y ZH Do) gg(%&f‘fﬁ)cmﬂ»%ﬁ WA gy vw) 329
st (o1 j{j‘j)kn(zv): g}{(}v 1>) AV sy () G sy () 330
Uzuo(zvy%’(ﬁ]vy)(sp(zvy%’%)an(zv) 331
N (N =N (N ya_N(ujap(N) 3.32
N (NN (N y%a a(V) 333

Where the quantities defined at the origin of expansion are denoted by superscript 0 are
determined from the initial conditions po, noand wo. After the linearization of the continuity

equations aforementioned and the substitution of Taylor expansion in.
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Thereby allowing to find a new system which involve only fundamental variable increments

as unknowns. Written in matrix-vector as follow:
AN Y(N-1)+B(N (N HC(NN+1)=F(N) , 2< N<L-1 3.34

For the differentials boundary conditions for op,0n,0w respectively are zero at N=land

N=L. A,B,C are the square matrixes of nine elements and F is a vector of three elements.

Where the elements of matrix 4 are defined as;

e 1 OJNM ) aJH(M 1)
gh'(N) op(N-1) ~ g (N) oy (N-1)
An= 1 aJ’(’)(M _1) < Axn= 1 6Jn(M —l)

g (N) on(N-1) > ™" qh(N) oy (N-1)

_ 1
A= 0= (V)
An1=0; A2=0; A:1=0; A»=0
For the matrix B

[o9(M) OJ}.?(M—I)}OUO(N) OU(N)

" op(N) > Bo= on(N)

Bi= 1
gh'(N) op(N) ~ op(N)

Biz= 1 lraJPg(M) aJB(M—l)}
) w(N) op(N)

3 oU(N)

TTaN)

S

S

o
I~

1 [ons(m) 6J,9(M—1)} oU°(N)

B , M) 8J,9(M—1)}
“gh(N)| on(N)  on(N) on(N) °

T
V), 3p(V)~ o)

I P S A L2700 D N S 1}
Bﬂ_gs{HapN } Be= M o) [P B ) i =1 o)
The matrix C;

; Ciz = 1 an(M)

Cooe 1 0J3(M )
gh'(N) oy (N +1)

gh(N) op(N +1)

0J9(M )

1 OMM) L
Ca= Cx= W) oy (V1)

gh (N )on(N +1)°

CSS:WIWV) ;C12=0 ;C21=0; C51=0 ; C2=0.

41



Chapter 3 Modeling

For the matrix F

F=—r M s = FU()
B:iﬁ%ﬁﬂﬁ@HnmwﬁﬂhU%N)
——hnmﬂmmm@mN+NHm }mN»NJHWWWMWMWOHD

Solving this matrix vector equations mean solving the tridiagonal square matrix of order N.

The global system has the form:

U HS HF] 335

where [U ]is the Jachobian matrix of the system of (L-2).(L-2) elements; and each matrix

element itself corresponding to a single nodex: has nine scalar elements;
[ OFj 0F,; OF/ |
Op; Opj Opj
OFj oFi OFy |,
on; On; On; |’
oFj oF, OFy

L 0 vV 0 vV 0 V|

Uij=

opJ

0=| Ony

oy
For the problem that the total number of scalar elements is so large; a direct application of the
Gaussian elimination method without modification is not recommended. A commonly
accepted way to expedite computation is to exclude all zero elements. If this is done, only
nine elements per line are stored in memory. If the elementary matrixes U; are viewed as
blocks; the previous solution method can be extended in such a way that each element is

block matrix instead of scalar. This is solved using a recursive method.

In addition to the semiconductor equations and the domain, boundary and initial conditions
have to be specified. Suitable for this, Dirichlet boundary conditions are usually used where

the potential and carrier concentrations are pre-defined at the contacts.

The absence of current and applied bias set the device at thermal equilibrium. Under the space

charge neutrality condition, the initial carrier densities values are:

n’=Np—Na, p°=n?/Np—Na atactive layer (n side ) 3.36.a
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p°=N4—Np, n°=n?/N4+—Np at substrate  (p side ) 3.36.b
In equilibrium; the current is zero. So that from eqs (3.11); (3.12) we can get
gunn-dy=qg-Dndn and qu,pdy=q-Dp-dp
Integrating these equations and the substituting »n°and p° the initial values of the potential is

given by;

p

éln[w} at the contact of the n-side
n;

3.37

éln |~D_+]VAJ at the contact of the p-side

\

For any external polarization the initial values of n and p are unchanged while those of the

potential are changed in a proportional way . so that the new trial values are given

WT(N):{I_WI (I)V_az/l (L)]WI (N)-FWI (1)?;/1 (L)WI (L) 338

where the voltage Vi referred the voltage applied and v, (l)and v, (L) are the are the potential

of starting condition. The next step is to solve the system with a recursive technique .

First; equation(3.34) which has unknowns vectors at three point is transformed to an equation

involving unknowns vectors at two points as;
B (N By(N }+C: (N Py(N+1)=F (N ) 3.39
Or SYN)=B(NYF(N)-B(N)YC(NB/N+1) 3.40

Second; substituting 5y(N ) in the equation (3.34) knowing that division point N is decreased

by one; we can found

(B(2:=B(2)
C(2)=C(2) 3.41
(F()E=F()

For N=2 , the direct comparison of eq(3.39) with eq(3.34) yields to 5y(1):0

N
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[ B(N)=B(N)-AN)B(N-1)'C(N-1)

C(N)=C(N) 3.42

A

(F(N)=F(N)-AN)B(N-1)'F(N-1), 3<N<L-1

Thus, starting with equations (3.41) in equation (3.42) are determined for N=3, 4, ..., L-1,

where the inverse matrix B' is obtained from the Sylvester’s formula.

The last step is to calculate 5y(N ) starting with N=L-1, L-2, ...... , 2 using equation (3.39).

where §)(L)=0 is used at the starting condition.

As in all iterative methods the problem is in deciding when is the time to stop and what
criteria are set. The Newton method is significantly sensitive to correction terms set after each

iteration. An overestimation given to the initial solution results in divergence.

At iteration k+1 the solution p®),n®)y &) are corrected follows:

for Sy ) Sy =5y ) if &//@%
o] 3.43
Sy k.1 K.T
Sy = 2B if oy KyLsl
Y Sy g y £) p

for 6n%),6p®)the corrective factor at iteration k+1is as follow:

Since n and p are Boltzman-Maxwell functions then on'X ),5p(K Jare calculated as exponential

functions of Sy *) where;

(K+1)_  (K) qoy 3.44
n n exp(KBT) .

therefore by developing at the first order allowing to

|5n |< 9 s 3.45
‘n(K+I)‘_KBT v .
and in similar way
pEN = (K )exp | IOV 3.46
KT
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sp | ¢
—= 0 3.47
|p(K 1)| K, T 4
p
hich 1 on_ |
which lead to PR 1 3.48

It is necessary to set an other criterion to control the carrier densities solutions to avoid
negative and weaker values which can affect the convergence. With a simple precaution that
each negative or zero value is be replaced by a weaker and positive number of the order
of10-%.

oy

To stop the process, we just set the condition :‘TS er . If this condition is satisfied at

certain number of iterations, the simulation is achieved unless it may continues to a maximum

permitted where therefore no convergence.

To realize this; a program developed at Brunel University (UK) is used and the flow chart of

this program is shown in figure 3.2
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Data input
(device definition and parameters )

'

Initial solution

A 4

Compute the matrix 4, B, C and the vector F
and therefore the matrix B',C' and the vector F"

v

Solve Eq (3.35) and thereby determine principal solution
For the mains parameters oy (5 p,on, 0y )

L
Improve variables

A 4

Judge for convergence : (%

No
Nir=Nir+1
Yes ¢
Nir=Nr

<eére

YEs

A
No convergence

A

Calculate the secondary variables: E; J; G

l

END

Fig3.2 Flow Chart for Numerical-Solution Procedure

*: Applied Bias (V), the maximum number of iterations, Ec-Et in eV for the deep acceptors level, density of the
deep acceptors level (in cm™), Er-Ey in eV for the deep donors level, density of the deep donors level (in cm™),

minority carrier lifetime (S), Device area (cm?), a uniform generation rate (Normally 0), Temperature (K)
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The program uses two input files and produce two output files.
Device definition
The device is divided into a number of points determined by the program taken at

NMAX=1001, the spacings between the grid is constant given by Xxy.,= % NMA X—l)’ after
defining the one dimensional grid we give the shallow acceptor and donor at each point.

Run definition

This field provide the uses parameters it gives the reverse bias and minority lifetime. A clue to

the items that must be included in this field may be summarized in the subroutine setrun.

Code output

The program produce two output files. The largest of the output files give the various
distributions through the device (distance, the net shallow doping density, electron and hole
concentrations, various current for the electron and holes, thermal generation-recombination

rate and density of filled acceptors and donors).

The second files produced provides other information as applied bias; current; conductance.
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3.5 The channel conductance and substrate current modeling

The backgating (the channel conductance reduction) is studied by calculating the space charge
induced by depletion of the channel by the applied substrate voltage to reduce its effective
thickness. By charge neutrality an equal and opposite charge is induced in the substrate. The
relation between the conductance G and the width of the channel ( . —wc) is given by

G:U’;lc :qn,uanghc —WC) 3 48

where o=gnu.~qNpu»is the channel conductivity, n is the free electron density in the

channel (we suppose that the channel doping is uniform so that n=Np); Ac=Z.( h.—wc) 1s the

channel cross section area. Z is the channel height, / is its length.

The incremental change dG in the conductance is given by

aG=0tA: 2. Cll(h" ) 3.49

where dA. is the incremental change in the channel cross section area, given by
dA. =d(he —w. }=—dw. 2.50

since 4. is constant quantity and w, is the depletion width in channel side which changes (
reduction) with an applied voltage to the substrate. This reduction (w¢) will reduce the area of
the channel through which the current passes and the conductance for the channel is then

calculated using the reduced area and given by integrating equation (3.49).

—We

G:%ZC andx:%zc I ndx
e

—he

the upper integral limit is (-w.) instead of (0) since in the depletion region (-wc<x<0) the

electron density is negligible.

The normalized conductance is then G%
Vb=0

Where Vy, is the backgating voltage applied to substrate.

The current through the substrate is calculated by solving the equations (3.9) and (3.10) after

numerical solving for ( p,n,t//).
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