3.1. Introduction :

L'analyse modale d'une structure permet d'en améliorer la connaissance physique et, dans certains cas, le comportement. Le calcul de la base modale d'une structure est aujourd'hui une étape importante de son dimensionnement. Pour s'assurer qu'une analyse numérique simulera au mieux un problème réel donné, il faut effectuer deux opérations essentielles, la modélisation et la discrétisation. Ces opérations se font en deux temps,

-Modélisation d'abord,

-Discrétisation ensuite,

Ils portent sur les deux aspects principaux du problème pratique :

-Représentation de la géométrie, des charges, des conditions aux limites et du milieu.

-Choix des éléments finis et du maillage.

3.2. Formulation des équations du mouvement des systèmes à un seul degré de liberté :

Soit le système suivant :

Figure3-1 : Système a un seul degré de liberté.

m : Masse.

k : Rigidité.

 $c: \ Amortissement.$

Les forces agissant sur le système suivant la direction du direction du degré de liberté de déplacement sont :

•La force d'amortissement : $F_D(t) = c q(t)$

- •La force de rappel : $F_S(t) = kq(t)$
- •La force d'inertie : $F_I(t) = mq(t)$
- •La force appliquée : P (t)

L'équation du mouvement exprime tout simplement l'équilibre de ces forces :

$$F_{I}(t) + F_{D}(t) + F_{S}(t) = P(t)$$
(3-1)

L'équation du mouvement s'écrit :

$$mq(t) + cq(t) + kq(t) = P(t)$$
 (3-2)

Quatre cas peuvent se produire :

- P(t) = 0 et c = 0 \longrightarrow Oscillations libres non amorties.

-P(t) = 0 et $c \neq 0$ \rightarrow Oscillations libres amorties. $-P(t) \neq 0$ et c = 0 \rightarrow Oscillations forcées non amorties. $-p(t) \neq 0$ et $c \neq 0$ \rightarrow Oscillations forcées amorties.

Si,

•c = 0 \longrightarrow Système non amorti.

Pour notre cas, ce sont les oscillations libres non amorties, dans ce cas les forces agissant sont :

 $F_{I}(t) = m q(t)$ $F_{S}(t) = kq(t)$ L'équation du mouvement s'écri

L'équation du mouvement s'écrit :

 $mq(t) + kq(t) = 0 \tag{3-3}$

Si on pose $\omega^2 = \frac{k}{m}$ avec ω la pulsation du système, l'équation du mouvement devient :

 $\mathbf{q}(t) + \omega^2 q(t) = 0 \tag{3-4}$

(3-5)

La solution de l'équation (3-4) s'écrit :

 $q = q_0 e^{i\omega t}$

3.3. Formulation des équations du mouvement des systèmes à plusieurs degrés de libertés :

-Choix des degrés de liberté :

En générale, la réponse dynamique d'une structure ne pourra pas être exprimée de manière précise par un modèle à un seul degré de liberté. L'expression de la réponse faisant intervenir aussi l'historique du déplacement que son amplitude, le comportement résultant ne peut être représenté qu'à l'aide de plusieurs coordonnées de déplacement, c'est-à-dire le système doit comporter plusieurs degrés de liberté.

Nous utiliserons comme exemple représentatif de système à plusieurs degrés de liberté la poutre sur deux appuis simples représentée en figure 3-2 :

Figure 3-2 : Discrétisation d'une structure de type poutre.

Représentant la déformée de cette structure par des déplacements d'un ensemble de points placés de manière discrète le long de la poutre, Soit $q_1(t), q_2(t), ..., q_i(t), ..., q_N(t)$. On peut choisir ces points de manière arbitraire, ils seront en pratique choisis de manière à définir avec précision toute particularité de la structure et de sa déformée.

-Expression de l'équilibre dynamique :

L'équation du mouvement du système s'exprime en écrivant l'équilibre des forces effectivement associées à chacun degré de liberté. En général, on aura quatre types de forces à chaque nœud i :

- •La force appliquée P_i(t).
- •La force d'inertie F_{Ii}.
- •La force d'amortissement F_{Di}.
- •La force élastique F_{Si}

Le système des équations de l'équilibre s'écrit donc :

$$F_{I1} + F_{D1} + F_{S1} = P_1(t)$$

$$F_{I2} + F_{D2} + F_{S2} = P_2(t)$$

$$F_{I3} + F_{D3} + F_{S3} = P_3(t)$$

.....

Soit sous forme matricielle :

 $F_{I} + F_{D} + F_{S} = P(t)$ (3-6)

 F_D : égale à zéro à notre cas non amorti.

Chaque force s'exprime au moyen de coefficients d'influences. Par exemple, la composante élastique de la force au point 1 dépend en général des composantes des déplacements de tous les autres points de la structure, ainsi, au point 1 :

$$F_{SI} = k_{II}q_I + k_{I2}q_2 + k_{I3}q_3 + \dots + k_{IN}q_N$$
(3-7)

De la même la force correspondant au degré de liberté q₂ est :

$$F_{s2} = k_{21}q_1 + k_{22}q_2 + k_{23}q_3 + \dots + k_{2N}q_N$$
(3-8)

Et en générale :

$$F_{Si} = k_{i1}q_1 + k_{i2}q_2 + k_{i3}q_3 + \dots + k_{iN}q_N$$
(3-9)

Ces expressions supposent évidement que la structure a un comportement linéaire et que le principe de superposition s'applique. Les coefficients k_{ij} sont appelés coefficients d'influences de rigidités.

L'expression des forces F_{Si} peut s'écrire :

$$\begin{bmatrix} F_{S1} \\ F_{S2} \\ ... \\ F_{Si} \\ ... \\ F_{SN} \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} & k_{13} & ... & k_{1i} & ... & k_{1N} \\ k_{21} & k_{22} & k_{23} & ... & k_{2i} & ... & k_{2N} \\ ... & ... & ... & ... & ... & ... \\ k_{S1} & k_{S2} & k_{S3} & ... & k_{Si} & ... & k_{SN} \\ ... & ... & ... & ... & ... & ... \\ k_{N1} & k_{N2} & k_{N3} & ... & k_{Ni} & ... & k_{NN} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ ... \\ q_i \\ ... \\ q_N \end{bmatrix}$$
(3-10)

Soit : $\{F_s\} = [k]\{q\}$ (3-11)

Avec « k » la matrice de rigidité de la structure et « q » est le vecteur déplacement représentant la déformé de la structure.

De même les forces d'inertie peuvent s'exprimer au moyen de coefficients d'influences appelés coefficients d'influences de masses m_{ij} , liant les accélérations de chaque degré de liberté à la résultante correspondante des forces d'inertie. On a :

$$\begin{bmatrix} F_{11} \\ F_{12} \\ \dots \\ F_{1i} \\ \dots \\ F_{Ii} \\ \dots \\ F_{IN} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & \dots & m_{1i} & \dots & m_{1N} \\ m_{21} & m_{22} & m_{23} & \dots & m_{2i} & \dots & m_{2N} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ m_{i1} & m_{i2} & m_{i3} & \dots & m_{ii} & \dots & m_{iN} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ m_{N1} & m_{N2} & m_{N3} & \dots & m_{Ni} & \dots & m_{NN} \end{bmatrix} \begin{bmatrix} \bullet \bullet \\ q_1 \\ \bullet \\ q_2 \\ \dots \\ q_i \\ \vdots \\ q_i \\ \vdots \\ q_N \end{bmatrix}$$
(3-12)

Soit: $\{F_I\} = [m] \begin{Bmatrix} \bullet \\ q \end{Bmatrix}$ (3-13)

La matrice des coefficients d'influences de masse « m » s'appelle la matrice de masse de la structure et « q » est le vecteur accélération.

3.4. Modèle élément fini (cas bidimensionnel) :

Pour résoudre les problèmes aux modes propres d'une structure, il faut calculer ces matrices de masse et de rigidité globale. Pour se faire, il faut avoir recours à des techniques numériques basées sur des méthodes de calcul adéquates pour discrétiser ces milieux continus. La méthode des éléments finis (MEF) est l'une des techniques la plus utilisée.

Le calcul des matrices de masse et de rigidité de chaque élément poutre se fait tout d'abord dans son repère local (figure3-3). Dans ce chapitre, on limite notre étude à trois degrés de libertés par nœuds (deux déplacements : l'une axial (U) suivant l'axe X et l'autre vertical (V) suivant l'axe Y, et une rotation (θ) suivant l'axe Z).

Figure 3-3 : Elément poutre en flexion à six degrés de libertés

Si on pose : $a = \frac{EI}{L^3}$ (3-14) $b = \frac{ES}{L}$ (3-15) Où -E : module d'élasticité (ou de Young). -I : moment d'inertie de la poutre. -L : longueur de la poutre. -S : section de la poutre.

-ρ : masse volumique.

$$K_{e} = \begin{bmatrix} b & 0 & 0 & -b & 0 & 0 \\ 0 & 12a & 6aL & 0 & -12a & 6aL \\ 0 & 6La & 4aL^{2} & 0 & -6aL & 2aL^{2} \\ -b & 0 & 0 & b & 0 & 0 \\ 0 & -12a & -6aL & 0 & 12a & -6aL \\ 0 & 6L & 2aL^{2} & 0 & -6aL & 4aL^{2} \end{bmatrix}$$
(3-16)
$$M_{e} = \frac{\rho SL}{420} \begin{bmatrix} 140 & 0 & 0 & 70 & 0 & 0 \\ 0 & 156 & 22L & 0 & 54 & -13L \\ 0 & 22L & 4L^{2} & 0 & 13L & -3L^{2} \\ 70 & 0 & 0 & 140 & 0 & 0 \\ 0 & 54 & 13L & 0 & 156 & -22L \\ 0 & -13L & -3L^{2} & 0 & -22L & 4L^{2} \end{bmatrix}$$
(3-17)

Les matrices de masse et de rigidité globales sont obtenues en utilisant une technique qui s'appelle assemblage par méthode de matrice de passage :

$K_G = B^T K_{des} B$	(3-18)
$M_G = B^T M_{des} B$	(3-19)

Où

- •B est la matrice de passage, cette matrice ne contient que des coefficients nuls ou des coefficients unités.
- •K_{des} est la matrice désassemblée, elle contient uniquement les matrices élémentaires :

$$K_{des} = \begin{bmatrix} \begin{bmatrix} K_e^{\ l} \end{bmatrix} & 0 \\ & \ddots & \\ 0 & \begin{bmatrix} K_e^{\ N} \end{bmatrix} \end{bmatrix}$$
(3-20)

$$M_{des} = \begin{bmatrix} \begin{bmatrix} M_e^{\ I} \end{bmatrix} & 0 \\ & \ddots & \\ 0 & \begin{bmatrix} M_e^{\ N} \end{bmatrix} \end{bmatrix}$$
(3-21)

La figure (3-4) montre un système à deux bras flexibles dans son état de configuration initiale et déformée. La modélisation de chaque bras est basée sur la théorie des poutres de Timoshenko. Dans ce cas, OXY indique le système fixe des coordonnées originales. L'angle relatif à chaque bras est dénoté par θ_i . La déflection et l'angle de rotation de la normale avec l'axe neutre, représentés dans les coordonnées locales, sont donnés par w_i et Ψ_i respectivement.

Le vecteur r_{oi} indique la position de n'importe quel point sur le bras i par rapport à l'origine du système fixe.

$$\mathbf{r}_{\rm oi} = \mathbf{r}_{\rm i} + \mathbf{T}_{\rm i} \mathbf{R}_{\rm i} \tag{3-22}$$

Où le vecteur r_i représente la position par rapport à l'origine des coordonnées du bras i et R représente la déformation élastique du bras i dans les coordonnées locales du système. En outre, T_i est la matrice de transformation qui relie les coordonnées locales du système au système fixe :

$$R_{i} = \begin{cases} x_{i} + u_{i} \\ y_{i} + w_{i} \end{cases}$$
(3-23)
$$T_{i} = \begin{bmatrix} \cos(\beta_{i}) & \sin(\beta_{i}) & 0 \\ -\sin(\beta_{i}) & \cos(\beta_{i}) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(3-24)

Dans ces équations, u_i est le déplacement dans la direction local x_i , w_i est le déplacement dans la direction y_i et β_i est la rotation du joint i par rapport à l'origine des coordonnées du système fixe :

$$\beta_{i} = \begin{cases} \theta_{i} \rightarrow i = l \\ \sum_{j=l}^{i} \theta_{j} + \sum_{j=l}^{i-l} (\psi_{j})_{lj} \rightarrow i = 2,3,\dots \end{cases}$$
(3-25)

3.5. **Résolution du problème aux valeurs propres :** Soit l'équation (3-3) écrite sous forme matricielle :

$$[M] \left\{ \begin{array}{c} \bullet \\ q \end{array} \right\} + [K] \left\{ q \right\} = 0 \tag{3-26}$$

Avec q : le vecteur des degrés de liberté.

La solution générale de l'équation (3-26) est : $\{q\} = \{q_0\}e^{i\omega t}$ (3-27)

En injectant l'équation (3-27) dans l'équation (3-26), on montre que ω est solution du problème de valeurs propres suivant : $[K]{q_{\theta}} = \omega^{2}[M]{q_{\theta}}$ (3-28)

Le déterminant de l'équation (3-28) doit être nul :

 $det([K] - \omega^{2}[M]) = 0$ (3-29)

On obtient ainsi les N valeurs propres ω^2 (ω_i , i = 1,2,...,N) pour une dimension N des matrices [K]et[M].

Des méthodes permettant de trouver les premiers zéros d'un polynôme de degré N ont donc été mises au point. Du point de vue numérique, il existe un grand nombre de programmes disponibles permettant d'évaluer ces valeurs.

La plupart de ces méthodes consistent à écrire la relation (3-28) sous la forme suivante :

 $[H]{X} = \lambda{X}$ (3-30) Où [H] est une matrice symétrique définie positive, il est clair que si on écrit directement l'équation (3-28) sous la forme :

$$[K]^{-1}[M]\{q_0\} = \frac{1}{\omega^2}\{q_0\}$$
(3-31)

Où $[K]^{-1}$ est l'inverse de la matrice [K], la propriété de symétrie n'est pas toujours conservée. Par conséquent, il est nécessaire d'écrire la matrice [K] en utilisant la décomposition de Cholesky :

 $[K] = [L]^{T} [L]$ (3-32) Où l'exposant T désigne la transposée de la ma

Où l'exposant T désigne la transposée de la matrice [L]qui est une matrice triangulaire inférieure. Grâce à cette décomposition, l'équation (3-28) s'écrit :

$$[L]^{-T}[M][L]^{-1}[L]\{q_{\theta}\} = \frac{1}{\omega^{2}}[L]\{q_{\theta}\}$$
(3-33)
En posant :
$$[H] = [L]^{-T}[M][L]^{-1}$$
(3-34)
$$\{X\} = [L]\{q_{\theta}\}$$
(3-35)
$$\lambda = \frac{1}{\omega^{2}}$$
(3-36)

On se ramène à un problème de la forme de l'équation (3-30), où [H] est symétrique. Après avoir déterminer les λ , on déduit le vecteur q₀ par la relation suivante :

$$\{q_0\} = [L]^{-1} \{X\}$$
 (3-37)

Remarques :

-[M]et[K] sont définies positives.

-Si la matrice [K] est singulière, elle ne possède pas d'inverse. Afin de pouvoir utiliser les méthodes générales précédentes, on utilise un artifice qui consiste à introduire un paramètre $\alpha \in R^*$ du même ordre de grandeur que ω^2 . On a ainsi le problème suivant à résoudre : $([K] + \alpha[M])\{q_0\} = (\omega^2 + \alpha)[M]\{q_0\}$ (3-38)

La nouvelle matrice $[K] + \alpha[M]$ est alors inversible et la solution cherchée est $\omega^2 + \alpha$.

3.6. Exemple d'application :

Le tableau (3-1) montre les propriétés physiques et mécaniques d'un manipulateur à deux bras flexibles.

Propriété	Valeur
Module d'élasticité	E = 71.0 GPa
Densité du matériau	$\rho = 2710.0 \text{ kg/m}^3$
Section	$S = 0.0012 m^2$
Longueur	L = 1 m
Moment d'inertie	$I = 9 \times 10^{-8} m^4$

Tableau3-1 : Les propriétés physiques et mécaniques d'un manipulateur à deux bras flexibles.

Figure 3-5 : Robot manipulateur à deux bras flexibles

3.7. Résultats :

Pour valider l'efficacité de notre programme établit, deux modèles sont calculés, le premier contient neuf nœuds et le second contient vingt-et-un nœuds.

<u>.№</u>	Pulsations propres (rd/s)
01	15.4919333848082
02	15.4919333848476
03	15.4919333848842
04	20.3616383031726
05	46.3367192630133
06	72.7221272585298
07	140.91348313645
08	184.567833790886
09	295.042778099028
10	351.878287235319
11	547.340196718258
12	643.18837008413
13	868.885932292711
14	1025.57695304118
15	1354.48872047733
16	1613.94962740429
17	2017.31071156487
18	2639.24293218279
19	2662.86580947699
20	3418.59169622823
21	4103.6523414503
22	7344.89874965718
23	8790.28387463891
24	12194.3028087344
25	14216.4204698416
26	16882.6833228019
27	17592.4130870569

3.7.1. Modèle 1 (9 nœuds) :

Tableau 3-2 : Les fréquences propres du modèle 01

N⁰	Pulsations propres (rd/s)	N⁰	Pulsations propres (rd/s)
01	7.0710678116068	33	1165.22743498808
02	7.07106781180142	34	1272.28605333747
03	7.07106781185366	35	1387.06968070167
04	7.49315712845523	36	1509.17121069284
05	9.83424591476717	37	1614.66709283786
06	15.1505759526607	38	1637.36686780405
07	23.2531792858465	39	1769.13139962659
08	33.8448306741949	40	1899.9948470739
09	46.7809707809229	41	2022.795447542
10	62.0039569984144	42	2127.04484712365
11	79.4973270682875	43	2199.11320007181
12	99.2674108170857	44	2434.43229948305
13	121.336287777932	45	2654.25340165978
14	145.738976806883	46	2654.24599222522
15	172.521848996999	47	3269.19893359593
16	201.740480609651	48	4124.03894197464
17	233.454790750636	49	5004.01074583559
18	267.716679937293	50	5914.03820305608
19	304.535725636694	51	6858.67940902986
20	343.767947643445	52	7841.72507870993
21	384.649099135734	53	8865.5420577852
22	423.024373642844	54	9930.05118694039
23	505.517436819923	55	11031.2128446096
24	551.755377975211	56	12158.9180910066
25	607.669566668871	57	13294.307693629
26	669.527601160884	58	14406.8562012903
27	736.821456302397	59	15452.1437866495
28	804.873381297692	60	16372.0179690902
29	809.699901636234	61	17099.3291193604
30	888.521670501344	62	17731.0798858701
31	973.735608027376	63	17568.6024266377
32	1065.8210474854		

3.7.2. Modèle 2 (21 nœuds) :

Tableau 3-3 : Les fréquences propres du modèle 02

3.8. Conclusion :

La méthode établie a permit de déterminer les fréquences propres et les modes propres d'un manipulateur flexible à deux bras dans le cas de vibration libre non amorti. La modélisation est faite par la méthode des éléments finis en se basant sur la théorie des poutres.

L'outil de calcul technique (Matlab) nous a aidé à déterminer les matrices de masse et de rigidité de la structure, ainsi les valeurs propres, les vecteurs propres de la structure et la représentation graphique de la structure en chaque mode.

Pour valider l'efficacité de notre programme, deux modèles sont calculés, le premier à neuf nœuds et le second à vingt-et-un nœuds avec trois degrés de libertés pour chaque nœud. Dans ce qui suit, nous allons étendre notre étude à six degrés de libertés pour chaque nœud.

3.9. Représentation graphique de la structure en fonction des modes propres calculés (cas bidimensionnel) :

Pour déterminer les fréquences propres de la structure, nous avons été amenés à élaborer des programmes traitant en premier lieu le cas bidimensionnel, puis le cas tridimensionnel par l'aide du logiciel MATLAB 6.5, qui nous a permis la représentation graphique de la structure pour chaque mode.

Notre étude est faite pour deux cas :

-La structure contient 8 éléments en total ou neuf noeuds (4 éléments sur chaque bras).

-La structure contient 20 éléments en total ou vingt-et-un nœuds (10 éléments sur chaque bras).

Chaque nœud comporte trois degrés de libertés pour le cas bidimensionnel (deux déplacements, l'une axial suivant l'axe X, l'autre vertical suivant l'axe Y et une rotation suivant l'axe Z) et six degrés de libertés pour le cas tridimensionnel (trois déplacements et trois rotations suivant les axes X, Y et Z).

Pour valider les résultats obtenus pour les deux cas bidimensionnel et tridimensionnel par les programmes décrits ci dessus, on est amené à les confronter aux résultats obtenus par le logiciel ABAQUS version 6.7 en se basant sur les mêmes propriétés mécaniques du robot manipulateur.

Mode propre	Pulsations propres (rd/s)
01	15.4919333848082
02	15.4919333848476
03	15.4919333848842
04	20.36163
05	46.33671

-Pour neuf nœuds avec trois degrés de libertés :

Tableau 3-4 : Les premiers modes calculés par le programme (Neuf nœuds)

-Pour vingt-et-un nœuds avec trois degrés de libertés :

Mode propre	Pulsation propre
01	7.0710678116068
02	7.0710678118014
03	7.0710678118536
04	7.49315
05	9.83424

Tableau 3-5 : Les premiers modes calculés par le programme (Vingt-et-un nœuds)

3.10. Représentation graphique de la structure en fonction des modes calculés obtenus par logiciel ABAQUS : -<u>Résultats</u> :

N⁰	Modes propres	pulsations propres (rd/s)
01	5.08049E-3	14.03
02	1.66810E-02	7.74
03	1.98359E-02	7.10
04	6.73761E-02	3.85
05	0.15096	2.57
06	0.19573	2.26
07	0.53188	1.37
08	0.55766	1.33
09	1.5774	0.79

Tableau3-6 : Les neuf premiers pulsations propres obtenus par le logiciel ABAQUS

Figure3-15 : Représentation de la structure en mode 07 (w= 14.029 rd/s)

Figure3-16 : Représentation de structure en mode 08 (w= 7.74 rd/s)

Figure3-17 : Représentation de la structure en mode 09 (w=7.10 rd/s)

3.11. Analyse des résultats pour le cas bidimensionnel :

8 éléments	20 éléments	Abaqus (8 éléments)
W = 15.49 rd/s	W = 15.15 rd/s	W= 14.03 rd/s
	W= 7.49 rd/s	W= 7.74 rd/s
	W= 7.07 rd/s	W= 7.10 rd/s

Tableau 3-7 : Comparaison des différentes résultats obtenues

En comparant les différents résultats obtenus par le programme pour les deux modèles et ceux de Abaqus, on remarque plus le nombre d'éléments augmente plus on se rapproche des pulsations propres de la structure. Ici, le nombre de degré de liberté entre en jeux par nœud, qui fait de sorte que cette légère différence apparaisse entre les valeurs.

3.12. Modèle élément fini (cas tridimensionnel):

Pour s'approcher de plus en plus des fréquences propres réels de la structure, on doit tenir en compte des effets hors plan. Pour se faire, il faut augmenter le nombre de degrés de libertés par nœud.

Le calcul des matrices de masse et de rigidité de chaque élément poutre se fait tout d'abord dans son repère local (figure 3-18).

Dans ce chapitre, on va étendre notre étude à six degrés de libertés par nœud (trois déplacements U, V, W et trois rotations θ , Φ , Ψ suivant les axes X, Y et Z).

3.12.1. Poutre à 12 degrés de libertés (axes locaux):

Figure 3-18 : Structure spatiale –Poutre à 12 degrés de libertés Axes locaux (x, y, z)

	[140	0	0	0	0	0	70	0	0	0	0	0
	0	156	0	0	0	22L	0	54	0	0	0	-13L
	0	0	156	0	-22L	0	0	0	54	0	13L	0
	0	0	0	140	0	0	0	0	0	70	0	0
	0	0	- 22L	0	$4L^2$	0	0	0	-13L	0	$-3L^2$	0
ρSL	0	22L	0	0	0	$4L^2$	0	13L	0	0	0	$-3L^2$
$M_e = \frac{1}{420}$	70	0	0	0	0	0	140	0	0	0	0	0
	0	54	0	0	0	13L	0	156	0	0	0	-22L
	0	0	54	0	-13L	0	0	0	156	0	22L	0
	0	0	0	70	0	0	0	0	0	140	0	0
	0	0	13L	0	$-3L^2$	0	0	0	22L	0	$4L^2$	0
(3-40)	0	-13L	0	0	0	$-3L^{2}$	0	- 22L	0	0	0	$4L^2$

3.12.2. Axes globaux (X, Y, Z) : •Cosinus directeurs : Y Voir figure (4-2). B $n_x = \cos \alpha_1 = \frac{X_B - X_A}{L},$ $n_y = \cos \alpha_2 = \frac{Y_B - Y_A}{L}, \quad (3-41)$ α3 $n_z = \cos \alpha_3 = \frac{Z_B - Z_A}{L}$ y α_2 Figure 3-19 : A Les cosinus directeurs Z 0 Ζ

Pour notre cas, on prend les deux bras du manipulateur se trouvant dans le même plan X0Y, on obtient :

 $\begin{array}{l} \alpha_1 = \theta_1 \mbox{ (l'angle formé entre le bras et l'axe X).} \\ \alpha_2 = 90^{\circ}. \\ \alpha_3 = 90^{\circ} \text{-} \alpha_1. \\ \mbox{ L'équation (3-41) devient :} \\ n_x = \cos \alpha_1 \\ n_y = \sin \alpha_1 \\ n_z = 0 \end{array}$

Х

•La matrice de transformation sera :

	n_x	n_y	n_z	0	0	0	
	$-n_y$	n_x	n_z	0	0	0	
T -	$-n_y$	$-n_z$	n_x	0	0	0	(3-42)
1 –	0	0	0	1	0	0	
	0	0	0	0	1	0	
	0	0	0	0	0	1	

3.13. **Exemple d'application :**

On garde les mêmes propriétés physiques et mécaniques du manipulateur décrit au chapitre précédent seulement augmenté par les valeurs Iy, G et J.

Propriété	Valeur
Module d'élasticité	E = 71.0 GPa
Densité du matériau	$\rho = 2710.0 \text{ kg/m}^3$
Section	$S = 0.0012 m^2$
Longueur	L = 1 m
Moment d'inertie axiale de l'aire d'une surface par rapport à l'axe z	$I_z = 9 \times 10^{-8} m^4$
Module d'élasticité transversale	G = 24.4 GPa
Caractéristique géométrique de rigidité De la section en torsion	$J = 48 \times 10^{-8} m^4$
Moment d'inertie axiale de l'aire d'une surface par rapport à l'axe y	$Iy = 4 \times 10^{-8} m^4$

Tableau 3-8 : Les propriétés physiques et mécaniques d'un manipulateur à deux bras flexibles.

3.14. **Résultats :**

On garde les mêmes modèles, le premier contient neuf nœuds et le second contient vingt-et-un nœuds pour tester l'efficacité de notre programme. On élabore un autre programme qui tient compte de la nouvelle matrice de rigidité élémentaire pour six degrés de libertés, ainsi que la matrice masse élémentaire et la matrice de transformation.

3.14.1. Modèle 1 (9 nœuds) :

Les résultats sont donnés par le tableau 3-9 :

N⁰	Pulsations propres (rd/s)	N⁰	Pulsations propres (rd/s)
01	15.4919333847624	28	902.437997658297
02	15.4919333849214	29	1086.79768842447
03	15.4919333848297	30	1114.86348256601
04	15.4919333848297	31	1344.91016093334
05	15.4919333848379	32	1353.54618101476
06	15.4930622692731	33	1672.20552436227
07	18.6210234709416	34	1763.33257919621
08	21.9127966947933	35	1775.39050034715
09	32.4329992010093	36	2023.03722498212
10	45.4617832210663	37	2017.29088562098
11	58.0499631529034	38	2644.94215738668
12	85.3349049312253	39	2663.02942428759
13	94.0613409291312	40	4124.06197758184
14	140.024839507568	41	6381.78586308636
15	140.188611543259	42	8865.55277342184
16	196.475591446239	43	11592.6948356338
17	209.568378612954	44	14406.8627952582
18	260.295332351238	45	16764.045500928
19	294.203977839929	46	17731.0852434194
20	364.34263647844	47	6319985.47809412
21	390.058630334777	48	12883949.6361403
22	459.142482131743	49	19937426.8686869
23	546.239418845924	50	27696202.9752588
24	578.682416233813	51	36215218.2579073
25	688.495891433444	52	45005646.0139423
26	724.623799886611	53	55394357.1321142
27	867.850800789549	54	52368555.2732194

Tableau 3-9 : Les pulsations propres du modèle 1.

N⁰	Pulsations propres (rd/s)	№ Pulsations propres (rd/s)		
01	7.07106781181691	28	115.933392543807	
02	7.07106781186534	29	133.994011018568	
03	7.07106781186635	30	139.46236941588	
04	7.07106781186538	31	154.979503326309	
05	7.07106781216299	32	171.42968385235	
06	7.0754152257173	33	179.285345044586	
07	7.26768166478981	34	198.851513398426	
08	7.50839914831153	35	204.102647846531	
09	8.3700852225975	36	220.141223940471	
10	9.29881028601664	37	228.354766797421	
11	11.5306360978363	38	255.637628844153	
12	14.2450569941112	39	258.395398861776	
13	16.6708652414042	40	282.83878915506	
14	22.9500545114655	41	302.906182988267	
15	23.2408949686429	42	338.807895711351	
16	31.3137392625163	43	338.307435120497	
17	33.0297172712832	44	365.652563573769	
18	42.0018635028317	45	367.128853188914	
19	42.349729927195	46	403.811196744277	
20	53.8176536847424	47	412.82791691058	
21	58.4651496654719	48	447.532014012047	
22	66.0085880028292	49	492.995598056427	
23	78.9434211470779	50	503.983619103182	
24	80.5363847162228	51	538.454145946623	
25	97.549337451421	52	549.435774973466	
26	97.8254991290042	53	589.09726004675	
27	112.789569183363	54	590.763755644591	

3.14.2. Modèle 2 (21 nœuds) :

N⁰	Pulsations propres (rd/s)	Pulsations propres (rd/s)	
55	650.739858380992	82	1884.3514387821
56	654.599829587507	83	2019.52473844485
57	712.543963887845	84	2090.06452754799
58	734.071579742031	85	2136.38058435815
59	774.890434374499	86	2201.60897844647
60	803.490344091908	87	2653.14991563336
61	846.232076854333	88	2654.24971701179
62	860.347123793132	89	2956.72780975267
63	926.577708372981	90	3257.86827207616
64	953.204405093944	91	4297.2347949026
65	1006.14024435263	92	5395.78482918942
66	1043.03623519245	93	6221.76258137714
67	1062.96848116416	94	6818.89043799547
68	1092.40561970984	95	7959.10556735312
69	1163.81588135826	96	9171.1738142889
70	1177.58742404803	97	10094.5306646244
71	1250.24965759668	98	10941.7780772257
72	1268.37175811049	99	12204.3061313527
73	1351.76511832639	100	13481.1619410581
74	1368.3993366513	101	14419.2597534277
75	1418.71251718552	102	15281.8915870373
76	1465.5892417924	103	16317.3109238766
77	1505.98992098064	104	17131.6104059845
78	1633.38435895017	105	17448.2906255674
79	1748.41596535992	106	17680.2181078597
80	1769.66604086681	107	2514407.85825915
81	1769.50760805619	108	5044334.62145071

N⁰	Pulsations propres (rd/s)
109	7605385.13034241
110	10213287.7274858
111	12883859.6687619
112	15632909.8186591
113	18475970.5792134
114	21427431.5343227
115	24498848.7082679
116	27697035.1252018
117	31021891.6384063
118	34461736.7465135
119	37984996.8429242
120	41531280.0378376
121	45004285.7860815
122	48266292.4450587
123	51138036.685352
124	53411907.6081042
125	54882590.1642139
126	55393253.4561014

Tableau 3-10 : Les pulsations propres du modèle 2.

3.15. Conclusion (cas bidimensionnel) :

En se basant toujours sur la théorie des poutres, On continue à utiliser la modélisation par éléments finis. L'élaboration du nouveau programme réalisé sous le logiciel de Matlab, a permis de déterminer les matrices de rigidité et de masse de la structure étudié en tenant compte de six degrés de libertés par noeud. Il a permis encore de déterminer les modes propres par la suite les fréquences propres ainsi leurs représentations graphiques en chaque mode qui est donnée au chapitre suivant.

La prise en compte de deux modèles (l'un neuf nœuds et l'autre vingt-et-un nœuds) a permis l'efficacité de notre programme. Le constat des résultats obtenus, nous a permis d'avoir la conclusion suivante : plus on augmente le nombre d'éléments lors du maillage de la structure, plus on se rapproche des valeurs réels des pulsations propres de la structure.

3.16. Représentation graphique de la structure en fonction des modes propres calculés (cas tridimensionnel) :

-Pour neuf nœuds avec six degrés de libertés par nœud :

Figure 3-20 (a),(b),(c),(d),(e) : Les cinq premiers pulsations propres (Pour neuf nœuds avec six degrés de libertés par nœud)

-Pour vingt-et-un nœuds avec six degrés de libertés par noeud:

Figure3-21 (a),(b),(c),(d),(e) : les cinq premiers pulsations propres (Pour vingt-et-un nœuds avec six degrés de libertés par nœud)

3.17. Représentation graphique de la structure en fonction des modes obtenus par logiciel ABAQUS : -Résultats :

N⁰	Modes propres	Pulsations propres (rd/s)
01	1.20162E-3	28.84
02	4.01286E-3	15.78
03	4.81709E-3	14.41
04	1.58388E-2	7.94
05	3.64739E-2	5.23
06	4.20325E-2	4.87
07	9.45239E-2	3.25
08	0.13261	2.74
09	0.18659	2.31

Tableau3-11 : Les neuf premiers pulsations propres obtenues par le logiciel ABAQUS

Figure3-22 : Représentation de structure en mode 10 (w= 7.94 rd/s)

Module:	Visualization 🔽 ODB	C:/Abaqus/Temp/modesprp.odb 🗹	H4 41	D D 🗄 🔞 🚺
	U, Magnitude +1.001e+00 +9.203e-01 +8.398e-01 +6.788e-01 +5.179e-01 +3.569e-01 +1.154e-01 +1.154e-01 +3.494e-02			
	ODB: 1 Mode ZX Primar Deform	modesprp.odb Abaqus/Standard Version 6.7-1 Tue valeurspropres 8: Value = 4.01286E-03 Freq = 1.00820E-02 (cyc y Var: U, Magnitude ned Var: U Deformation Scale Factor: +1.604e+02	e Apr 27 16:06:22 Paris, les/time)	Madrid 2010
				35

Figure3-23 : Représentation de structure en mode 8 (w= 15.78 rd/s)

Figure3-24 : Représentation de structure en mode 7 (w= 28.84 rd/s)

Module:	Visualization 🚽 ODI	3: C:/Abaqus/Temp/modesprp.odb	•		f 🔕 🖸
	U, Magnitude +1.075e+00 +9.923e-01 +9.100e-01 +8.277e-01 +6.630e-01 +6.630e-01 +4.160e-01 +3.337e-01 +2.514e-01 +1.691e-01 +8.674e-02				× ×
1					
XY 📰					
₩, ~			- / 7 4 Tu A-07 4/07/00 D		
🦗 🖓 나 📰	Y Step: Z Mode Prim. Defo	rmodesprp.odb Aba <mark>qu</mark> s/Standard Versio valeurspropres : 9: Value = 4.81709E-03 Freq = 1.104 ary Var: U, Magnitude rmed Var: U Deformation Scale Factor: +	n 6.7-1 Tue Apr 27 16:06:22 P :62E-02 (cycles/time) 1.604e+02	aris, Madrid 2010	
)rag the mouse in a vie	ewport to pan the view			

Figure3-25 : Représentation de structure en mode 9 (w= 14.41 rd/s)

3.18.	Analyse	des re	ésultats	pour le	e cas	tridimensionnel	:
							-

8 éléments W(rd/s)	20 éléments W(rd/s)	Abaqus (20 éléments) W(rd/s)	Abaqus (200 éléments) W(rd/s)
15.4930622692731	7.50839914831153	7.94	5.68
18.6210234709416	14.2450569941112	14.41	9.12
21.9127966947933	16.6708652414042	15.78	18.45
32.4329992010093	31.3137392625163	28.84	27.05

Tableau 3-12 : Comparaison des différents résultats obtenus

3.19. Conclusion :

Faisant le même travail que précédemment, c'est-à-dire faire comparaître les différents résultats obtenus par le programme pour les deux modèles, on confirme avec certitude la même remarque faite au dessus : plus le nombre d'éléments augmente, plus on se rapproche des pulsations propres de la structure.