LISTE DES FIGURES

Figure 1-1 : la courbe Pushover qui représente la variation de l'effort tranchant à la base en
fonction du déplacement au sommet du bâtiment7
Figure 1-2 : diagramme conceptuel pour la transformation de système à plusieurs degrés de
liberté au système à un seul degré de liberté
Figure 1-3 : caractéristiques Force-déplacement de système à plusieurs degrés de liberté et
de système à un seul degré de liberté équivalent10
Figure 1-4 : Courbe pushover bilinéaire idéalisée10
Figure 1.5 : spectre de demande inélastique et courbe de capacité tracé dans le format
(AD)13
Figure 1.6 : la relation force- déformation du système élasto-plastique20
Figure 1.7 : représentation graphique de la méthode de spectre de capacité23
Figure 1.8 : représentation de format (ADRS) où les périodes naturelles sont données par
lignes radiales
Figure 1.9 : approximation bilinéaire de la courbe de capacité
Figure 1-11 : Conversion du spectre élastique au spectre d'ADRS27
Figure 1.11 : l'estimation initiale du point de performance en utilisant la règle de
déplacement égal
Figure 1.12: Estimation d'amortissement visqueux équivalent en utilisant la méthode du
spectre de capacité (ATC-40)
Figure 1.13 : estimation de déplacement cible en utilisant la méthode du spectre de
capacité
Figure 1.14 : les spectres de demande pour des facteurs de ductilité constants dans le
format ADRS

Figure 1.15 : la procédure graphique pour évaluer la demande sismique du	système à un
seul degré de liberté équivalent	36
Figure 1.16 : Idéalisation bilinéaire de courbe de Pushover	
Figure 1.17 : calcul de la rigidité latérale effective (FEMA-273)	41

CHAPITRE 2

Figure 2-1 boite de dialogue des données d'analyse pushover	43
Figure 2-2 : Courbe force-déplacement ou moment- rotation pour une définition	de rotule
utilisée dans SAP2000 (courbe de déformation plastique)	45
Figure 2-3 : Diagramme d'interaction P-M du modèles (5-1)	49
Figure 2-4: Configuration du modèle 2-1	52
Figure 2-4: Configuration du modèle 5-1	54
Figure 2-4: Configuration du modèle 5-2	55
Figure 2-4: Configuration du modèle 8-1	57
Figure 2-6 : Forme du spectre de réponse des modèles réguliers	60
Figure 2-7 : Forme du spectre de réponse des modèles irréguliers	60

Figure 3-1 : courbes de pushover du modèle 2-1	.64
Figure 3-2 : courbes de pushover du modèle 2-2	.64
Figure 3-3 : courbes de pushover du modèle 2-3	.65
Figure 3-4 : courbes de pushover du modèle 2-4	.65
Figure 3-5: courbes de pushover du modèle 5-1	.66
Figure 3-6: courbes de pushover du modèle 8-1	.66

Figure 3-7 : Les déplacements des niveaux du modèle 5-169
Figure 3-8 : Les déplacements des niveaux du modèle 5-269
Figure 3-9 : Les déplacements des niveaux du modèle 8-170
Figure 3-10: Les déplacements des niveaux du modèle 8-270
Figure 3-11 : Rapport de déplacement relatif du modèle 5-171
Figure 3-12 : Rapport de déplacement relatif du modèle 5-272
Figure 3-13 : Rapport de déplacement relatif du modèle 8-172
Figure 3-14: Rapport de déplacement relatif du modèle 8-272
Figure 3-15: L'effort tranchant d'étage du modèle 5-174
Figure 3-16 : L'effort tranchant d'étage du modèle 5-274
Figure 3-17: L'effort tranchant d'étage du modèle 8-174
Figure 3-18: L'effort tranchant d'étage du modèle 8-275
Figure 3-19 : Les déplacements des niveaux du modèle 5-1 (réponse non élastique)76
Figure 3-21: Les déplacements des niveaux du modèle 5-2 (réponse non élastique)76
Figure 3-21: Les déplacements des niveaux du modèle 8-1 (réponse non élastique)77
Figure 3-22: Les déplacements des niveaux du modèle 8-2 (réponse non élastique)77
Figure 3-23: Rapport de déplacement relatif du modèle 5-1 (réponse non élastique)78
Figure 3-24: Rapport de déplacement relatif du modèle 5-2 (réponse non élastique)78
Figure 3-25: Rapport de déplacement relatif du modèle 8-1 (réponse non élastique)79
Figure 3-26: Rapport de déplacement relatif du modèle 8-2 (réponse non élastique)79
Figure 3-27: L'effort tranchant d'étage du modèle 5-1 (réponse non élastique)80
Figure 3-28: L'effort tranchant d'étage du modèle 5-2 (réponse non élastique)81
Figure 3-29: L'effort tranchant d'étage du modèle 8-1 (réponse non élastique)

Figure 3-30: L'effort tranchant d'étage du modèle 8-1 (réponse non élastique)	81
Figure 3-30 : Distribution des rotules plastiques à la limite de plasticité du modèle 2-1	83
Figure 3-31 : Distribution des rotules plastiques à la limite de plasticité du modèle 8-3	84
Figure 3-32 : Distribution des rotules plastiques à la limite de plasticité du modèle 8-4	85
Figure 3-33 : Distribution des rotules plastiques	.88

Figure 4-1 : Spectre de réponse élastique de conception d'UBC 9790
Figure 4-2 : Courbe pushover bilinéaire du modèle 5-192
Figure 4-3 : Détermination du point de performance du modèle 5-1 selon SAP2000 (Séisme de faible magnitude)
Figure 4-4 : Tableau du spectre de capacité du modèle 5-195
Figure 4-5 : Distribution des rotules plastiques du modèle 5-1, 5éme pas
Figure 4-6: Courbe pushover bilinéaire du modèle 5-296
Figure 4-7 : Détermination du point de performance du modèle 5-2 selon SAP2000 (Séisme de faible magnitude)
Figure 4-8 : Tableau du spectre de capacité du modèle 5-2
Figure 4-9 : Distribution des rotules plastiques du modèle 5-2, 5éme pas
Figure 4-10 : Détermination du point de performance du modèle 5-1 selon SAP2000 (Séisme de magnitude moyenne)
Figure 4-11 : Distribution des rotules plastiques du modèle 5-1, 7éme pas103
Figure 4-12: Détermination du point de performance du modèle 5-2 selon SAP2000 (Séisme de magnitude moyenne)104
Figure 4-13 : Distribution des rotules plastiques du modèle 5-2, 6éme pas105
Figure 4-14 : Détermination du point de performance du modèle 5-1 selon SAP2000 (Séisme de forte magnitude)107

Figure 4-15 : Distribution des rotules plastiques du modèle 5-1, 9éme pas108
Figure 4-16 : Détermination du point de performance du modèle 5-2 selon SAP2000 (Séisme de forte magnitude)
Figure 4-17 : Distribution des rotules plastiques du modèle 5-2, 8éme pas111
Figure 4-18 : Spectre de réponse élastique de conception de RPA2003112
Figure 4-19 : Courbe pushover bilinéaire du modèle 2-1113
Figure 4-20 : Détermination du spectre de réponse pour le SAP2000117
Figure 4-21 : Détermination du point de performance du modèle 2-1 selon SAP2000
(Séisme de forte magnitude, la Zone III selon le code RPA 2003)118
Figure 4-22 : Tableau du spectre de capacité du modèle 2-1118
Figure 4-23 : Distribution des rotules plastiques du modèle 2-1, 7éme pas119

LISTE DES TABLEAUX

CHAPITRE 1

Tableau 2-1 : Relation moment-rotation des rotules par défaut (M) et (PMM) des sections
en béton48
Tableau 2-2 : les facteurs de proportionnalité de capacité de moment des rotules demoment M par défaut du modèle (5-1)
Tableau 2-3 : distinction des modèles
Tableau 2-4 : Propriétés des sections et chargement du modèle 2-1
Tableau 2-5: Propriétés dynamiques du modèle 2-153
Tableau 2-6 : Propriétés des sections et chargement du modèle 5-1
Tableau 2-7 : Propriétés dynamiques du modèle 5-1
Tableau 2-8 : Propriétés des sections et chargement du modèle 5-2
Tableau 2-9 : Propriétés dynamiques du modèle 5-2
Tableau 2-10 : Propriétés des sections et chargement du modèle 8-1
Tableau 2-11 : Propriétés dynamiques du modèle 8-1
Tableau 2-12 : Tableau résumant les valeurs de l'effort tranchant à la base de conception
des modèles61

Tableau 4-1 : Tableau résumant les valeurs de performance de tous les modèle
analytiques120
Tableau 4-2 : valeurs de ferraillage longitudinal des modèles 2-1 et 2-2 aux poteaux sou
la combinaison de charge Comb1123
Tableau 4-3 : Valeurs de ferraillage longitudinal des modèles 2-1 et 2-2 aux extrémités de
poutres sous la combinaison de charge Comb112.
Tableau 4-4 : Pourcentage de variations dans les valeurs de ferraillage124