LISTE DES FIGURES

Figure I.1 : Pouzzolane naturelle granulée	18
Figure I.2: Teneur en chaux libre dans différentes pâtes de ciment pouzzolaniques	20
Figure I.3 : Hydratation du clinker de ciment Portland	28
Figure I.4 : Hydratation du ciment à la pouzzolane	28
Figure I.5: Effet de pouzzolane sur la chaleur d'hydratation de ciment Portland	29
Figure I.6: Chaleur d'hydratation en fonction du temps	29
Figure I.7: Relation entre la perméabilité, la résistance à la compression et le niveau de	
porosité du béton	33
Figure I.8 : Représentation schématique de la pâte de ciment à l'état frais et à l'état durci	34
Figure I.9 : Proportion volumique des constituants de la pâte de ciment hydraté en fonction	
du E/C après 80 % d'hydratation dans l'eau	35
Figure 1.10 : Courbe de porosimétrie au mercure de deux pâtes de ciment conservées	
pendant 7 jours dans l'eau	36
Figure I.11 : Influence du degré d'inter connectivité sur la perméabilité de la pâte	36
Figure I.12 : Lessivage de la chaux dans une éprouvette de béton en fonction d'eau percolée	
et la teneur en pouzzolane du ciment	40
Figure I.13 : Pertes de masse en fonction du temps d'éprouvettes de mortier confectionné	
avec différents ciments, conservées dans une eau douce de PH 5 à 5.5	40
Figure I.14 : L'efficacité de laitiers à réduire les expansions dues aux sulfates	42
Figure I.15 : Expansion d'un béton à base de ciment Portland (-) et ciment pouzzolanique (-	
) en fonction de la durée d'immersion dans les eaux agressives	43
Figure I.16: Pénétration de quelques sels de dégivrage dans les ciments portlands et	
pouzzolanique	44
Figure I.17: Coefficient de diffusion d'ions Cl- en fonction de E/C pour des pâtes exposées à	
une solution de NaCl	45
Figure I.18 : Effet du type de ciment sur la pénétrabilité d'ions de chlorure après mois	
d'exposition à l'eau de mer	47
Figure I.19 : Variation de la concentration des chlorures libre en fonction de la quantité de	
C3A contenue dans le ciment	48

Figure I.20 : Chute de la résistance à la compression de différents types de ciment après la	
percolation des sulfates	53
Figure 1.21 : Effet de la substitution de ciment portland avec de la pouzzolane naturelle sur	
l'expansion de mortiers	55
Figure 1.22 : La variation de la résistance à la compression de pâtes de ciment immergées	
dans des solutions sulfatique en fonction de la durée de cure	55
Figure II.1 : Courbe granulométrique du sable	64
Figure II.2 : Courbe granulométrique de la pierre concassée	64
Figure III.1: Evolution de la résistance à la compression de ciment en fonction du temps et	
du pourcentage du filler (E/L= 0.55)	69
Figure III.2: Evolution de la résistance à la compression de ciment en fonction du temps et	
du pourcentage du filler (E/L= 0.45)	69
Figure III.3: Evolution de la résistance à la compression de ciment en fonction du temps et	
du pourcentage du filler (E/L= 0.35)	70
Figure III.4: Evolution de la résistance à la compression à 28 jours de ciment en fonction	
du rapport E/L et du pourcentage du filler	70
Figure III.5: Evolution de la résistance à la compression de ciment en fonction du temps et	
du pourcentage du pouzzolane (E/L= 0.55)	71
Figure III.6: Evolution de la résistance à la compression de ciment en fonction du temps et	
du pourcentage du pouzzolane (E/L= 0,45)	72
Figure III.7: Evolution de la résistance à la compression de ciment en fonction du temps et	
du pourcentage du pouzzolane (E/L= 0.35)	72
Figure III.8: Evolution de la résistance à la compression à 28 jours de ciment en fonction	
du rapport E/L et du pourcentage du pouzzolane	73
Figure III.9: Evolution de la résistance à la compression de ciment en fonction du temps et	
du pourcentage du pouzzolane (% $filler=10\%$, E/L= 0,35)	74
Figure III.10: Evolution de la résistance à la compression de ciment en fonction du temps et	
du type de ciment ($E/L=0.35$)	75
Figure III.11: Evolution de la résistance à la flexion de ciment en fonction du temps et du	
type de ciment (E/L= 0,35)	76
Figure III.12: Evolution de la résistance à la traction de ciment en fonction du temps et du	
type de ciment $(E/L=0.35)$	76

Figure III.13 : Variation de la consistance de la pâte en fonction du type de ciment	78
Figure III.14: Temps de début et de fin de prise de la pâte en fonction du type de ciment	78
Figure III.15: Résistance du mortier à la compression à 28 jours en fonction du type de	
ciment	79
Figure III.16 : Variation de la porosité en fonction du temps et du type de ciment	80
Figure III.17 : Variation de la résistance à la compression en fonction de la porosité	81
Figure III.18 : La variation du coefficient de qualité des pâtes de ciment immergées dans la	
solution MgCl2 en fonction du temps et du type de ciment	83
Figure III.19 : La variation du coefficient de qualité des pâtes de ciment immergées dans la	
solution Na2SO4 en fonction du temps et du type de ciment	83
Figure IV.1 : Résistance à la compression du béton en fonction du temps et du type de	
ciment	91
Figure IV.2 : Résistance à la flexion du béton en fonction du temps et du type de ciment	92
Figure IV.3 : Résistance à la traction par fendage du béton en fonction du temps et du type	
de ciment	92
Figure IV.4 : La résistance en compression après 28 jours de durcissement en fonction du	
mode de conservation	94
Figure IV.5 : La résistance en compression après 90 jours de durcissement en fonction du	
mode de conservation	94
Figure IV.6 : La variation du coefficient de qualité des bétons immergés dans la solution en	
fonction du temps et du type de ciment	96