
MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ MOHAMED KHIDER - BISKRA

— FACULTÉ DES SCIENCES EXACTES ET DES SCIENCES DE LA NATURE ET DE LA VIE —

— DÉPARTEMENT D’INFORMATIQUE —

THÈSE

présentée pour obtenir le diplôme de

DOCTORAT EN SCIENCES

SPÉCIALITÉ : INFORMATIQUE

From Web components to Web services:
opening development for third parties

Des composants Web aux Web services : ouvrir le développement aux tierces parties

par

Mohamed Lamine KERDOUDI

Soutenue le 26/05/2016, devant le jury composé de :

Abdelmalik BACHIR, Professeur, Université de Biskra, Algérie . Président

Salah SADOU, Maître de Conférences HDR, IRISA, Université Bretagne Sud, France Rapporteur

Chouki TIBERMACINE, Maître de Conférences, LIRMM, Université Montpellier II, France . . . Co-Rapporteur

Abdelkrim AMIRAT, Professeur, Université de Souk Ahras,Algérie, . Examinateur

Foudil CHERIF, Professeur, Université de Biskra, Algérie . Examinateur

Salim BITAM, Maître de conférences A, Université de Biskra, Algérie . Examinateur

http://univ-biskra.dz
https://www.researchgate.net/profile/Mohamed_Lamine_Kerdoudi
https://scholar.google.fr/citations?user=FHJIFrUAAAAJ&hl=fr&oi=sra
https://www-archware.irisa.fr/members/salah-sadou/
http://www.lirmm.fr/~tibermacin/
http://www.univ-soukahras.dz/fr/profile/amirat
https://scholar.google.fr/citations?user=tddtJGwAAAAJ&hl=fr&oi=sra
https://scholar.google.fr/citations?user=7Y8Fm7EAAAAJ&hl=fr&oi=sra

Contents

Contents iii

Acknowledgement vii

Abstract ix

Résumé xi

1 Introduction 1

1.1 Context . 2

1.2 The problem studied in the thesis . 3

1.3 Contributions . 5

1.4 Thesis Outline . 8

I State of the Art 11

2 Background 13

2.1 Introduction . 14

2.2 Web Component based Application Development 14

2.2.1 Web Application Frameworks . 14

2.2.2 Introduction to Java Enterprise Edition Platform 15

2.2.3 Java EE Components . 16

2.3 Service Oriented Development . 18

2.3.1 Service Oriented Architecture (SOA) . 19

2.3.2 Service-orientation design principles . 19

2.3.3 Concept of Service . 20

2.3.4 Service implementation technology . 20

2.3.5 Web service: Standard languages and protocols 21

2.3.6 Service Composition . 23

2.3.7 Business Process Execution Language . 24

iii

iv Contents

2.3.8 Business Process Model and Notation . 27

2.3.9 Service Component Architecture Specification 28

2.4 Summary . 30

3 Literature review 31

3.1 Introduction . 32

3.2 Approaches and Tools for Migrating Systems to (Web) Services-Oriented Appli-

cations . 32

3.2.1 Approaches for migrating Web applications to SOA 32

3.2.2 Approaches for migrating Legacy systems to SOA 36

3.2.3 Approaches for generating Web services from software components . . 42

3.2.4 Model-Driven Approaches for generating Web service-oriented applica-

tions . 43

3.3 Approaches for Web Service Composition . 47

3.4 Approaches of Software Architecture Recovery . 50

3.5 Summary . 55

II Contributions 57

4 Formal model for Web applications and Service oriented Systems 59

4.1 Introduction . 60

4.2 Illustrative Example . 60

4.2.1 Problem Statement . 60

4.2.2 Potential Web Services . 61

4.3 Web applications and Service oriented Systems 62

4.3.1 Web application Model . 62

4.3.2 Web Service Oriented System Model . 65

4.4 Summary . 68

5 Migrating Component-Based Web Applications to Web Services : Towards Consid-

ering a "Web Interface as a Service" 71

5.1 Introduction . 72

5.2 Approach Overview . 72

5.3 Operation Pool Construction . 74

5.3.1 Identification of Existing Operations . 74

5.3.2 Creation of New Operations from Web Interfaces 75

5.4 Input and Output Message Generation . 76

5.4.1 Dealing with HTTP requests and HTTP responses 77

5.4.2 Handling Session Objects . 80

5.4.3 Dealing with Cookies . 81

Contents v

5.5 Operation Filtering . 82

5.6 Operation Distribution in Services . 84

5.6.1 Grouping Criterion . 84

5.6.2 Spreading Criterion . 88

5.7 Web Service Deployment . 89

5.8 Summary . 90

6 Generation of composite Web Services 91

6.1 Introduction . 92

6.2 Web Service Choreography Creation . 92

6.3 Example of Choreography Creation at Code Level 93

6.4 Web Service Orchestration Creation . 94

6.4.1 Navigation Rule Extraction . 94

6.4.2 BPEL Process Creation Algorithm . 94

6.5 Example of BPEL Process generation . 98

6.6 Summary . 98

7 Recovering Architectures from Service Oriented Systems 101

7.1 Introduction . 102

7.2 Recovering Service Architectures from (Web) service Choreographies 102

7.2.1 From (Web) services elements to BPMN elements 103

7.2.2 Example of generating BPMN models from a Web service choreography 104

7.2.3 From (Web) services elements to SCA elements 105

7.2.4 Example of Recovering SCA models from a Web service choreography . 106

7.3 SCA Component grouping and SCA Composite generation model 107

7.3.1 Grouping SCA Components into an SCA composite 108

7.3.2 Creation an SCA composite starting from a set of SCA composites 109

7.4 Recovering Service architectures from OSGi-based Applications 110

7.4.1 OSGi Component . 111

7.4.2 The OSGi Framework . 111

7.4.3 Example of an OSGi-based application . 112

7.4.4 OSGi application Parsing . 114

7.4.5 Recovering the BPMN Architecture from the E-Mailer application 116

7.4.6 Recovering the Service Component Architecture from the E-Mailer ap-

plication . 117

7.5 Summary . 118

8 Tools 119

8.1 Introduction . 120

8.2 WSGen: A tool for creating primitive and composite Web services starting from

Web components . 120

vi Contents

8.2.1 WSGen’s Functional Architecture . 120

8.2.2 WSGen By Example . 121

8.2.3 Generated Primitive Web services . 122

8.2.4 Generated Composite Web service . 123

8.3 ArchGen: A tool for recovering Service Architectures from the source code of

Service Oriented Systems . 125

8.3.1 ArchGen’s Functional Architecture . 125

8.4 Underling Technologies . 126

8.5 Summary . 128

9 Experimentation: A Case study 129

9.1 Introduction . 130

9.2 Case study on the migration of Web applications toward Web service oriented

solutions . 130

9.3 First Experimentation . 131

9.4 Second Experimentation . 134

9.5 Discussion and Threats To Validity . 138

9.6 Summary . 139

10 Conclusion and Future Work 141

10.1 Summary . 141

10.2 Perspectives . 143

List of Figures 145

List of Tables 147

List of Listings 148

Bibliography 149

Acknowledgement

Saying thank you is more than good manners. It is good

spirituality.

Alfred PAINTER.

First and foremost, praises and thanks to my God, Allah for everything.

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Salah Sadou

for accepting the supervision of this thesis. Thank you for all the guidance, patience, immense

knowledge, and the support that you gave me at every stage in my Ph.D. Project.

I express my profound gratitude to my co-supervisor Assoc. Prof. Dr. Chouki Tibermacine

for their continuous support of my Ph.D study and related research, for their patience, im-

mense knowledge. Their guidance helped me in all the time. You have supported me at every

stage in this thesis. Thank You!

My sincere thanks also to the committee members: Prof. Abdelmalik BACHIR, Prof. Ab-

delkrim AMIRAT, Prof. Foudil CHERIF, and Dr. Salim BITAM, for accepting to evaluate this

work. I would like to take this opportunity to express my deepest gratitude to Prof. Brahim

Mezerdi for all the help and the support that he gave me in all the time. Thank you!

I sincerely thank all the members of LIRMM laboratory especially the MAREL team for the

numerous helpful discussions during my stay in Montpellier. I also thank my colleagues at the

computer science department of Biskra university. Many thanks to my friends for all the help

and the support they gave me in every stage of my research study.

Words cannot express how grateful I am to my father and my mother for all the sacrifices

that they made for me. They have been with me throughout my life and whose love brought

me where I am today. I owe a lot to both of you. I am very grateful to my brothers, my sisters,

and all my family members for all the support and the help they provided throughout my life.

Thank you very much.

vii

Abstract

Web applications are nowadays prevalent software systems in our everyday’s life. A lot of these

applications are built mainly by assembling Web components. These components are first cus-

tomized to meet the requirements of the built applications, then instantiated and assembled

with other component instances. The Web applications are then deployed in a Web server in

order to be tested and validated. Finally, they are put into production by deploying them in a

Web/application server to make them accessible for end users only. Thus, they are not designed

by considering future extensions that would be developed by third parties. One possible and

interesting solution for opening these applications for such kind of extension development is

to create and deploy Web services starting from these applications. This thesis addresses the

problem of opening Web Applications for third party development. We proposed a set of meth-

ods and tools that contribute in the migration of Web Component based applications toward

Web service oriented systems. Firstly, we proposed a formal model that represents in unam-

biguous way the source systems (Web applications) and the target systems (service-oriented

systems). This formal definition helps in understanding both kinds of systems and it enabled

us to present more accurately the migration approach. Secondly, we proposed a method to

generate operations that are published in Web services for each functionality provided by a

Web application. In addition, it generates new operations starting from Web interfaces. Thirdly,

we developed another complementary method to generate executable orchestrations, as BPEL

(Business Process Execution Language) processes, starting from navigations in the Web inter-

faces of these applications and to create Web service choreographies starting from the depen-

dencies between Web components. Fourthly, we proposed an approach for recovering high

level specifications in BPMN(Business Process Model and Notation) and in SCA (Service Com-

ponent Architecture) starting from the collaborations between the generated Web services.

These architectures help in better understanding the service compositions. Finally, in order

to evaluate the performance and the accuracy of the proposed approaches, we implemented

and experimented the solution in the migration of three real-world Web applications toward

Web service-oriented systems.

Keywords: Component-Based Web Applications, Service Oriented Architecture, Web Service,

Service Composition, SOA Migration, Software Architecture Recovery, Reverse Engineering.

ix

Résumé

Aujourd’hui, les applications Web sont des systèmes logiciels qui dominent notre vie quotidi-

enne. Un grand nombre de ces applications sont construites par l’assemblage de composants

Web. Ces composants sont d’abord personnalisés pour répondre aux besoins des applications

développées, puis instanciés et assemblés avec d’autres instances de composants. Les appli-

cations Web sont ensuite déployées dans un serveur Web afin d’être testées et validées. En-

fin, elles sont mises en production en les déployant dans un serveur Web /d’application pour

les rendre accessible seulement par les utilisateurs finaux. Donc, elles ne sont pas conçus

en prenant en considération des futures extensions qui pourraient être développées par des

tierces parties. Une solution possible et intéressante pour ouvrir ces applications pour ce type

de développement d’extensions est de créer et de déployer des services Web à partir de ces ap-

plications. Cette thèse étudie le problème d’ouverture des applications Web pour le développe-

ment tiers. Nous avons proposé un ensemble de méthodes et d’outils qui contribuent à la mi-

gration des applications à base de components Web vers des systèmes orientés services Web.

Tout d’abord, nous avons proposé un modèle formel qui représente clairement les systèmes

sources (applications Web) et les systèmes cibles (systèmes orientés services). Cette défini-

tion formelle aide à comprendre les deux types de systèmes et elle nous a permis de présenter

plus précisément l’approche de migration. Deuxièmement, nous avons proposé une méthode

pour générer des opérations qui sont publiées dans des Web services pour chaque fonction-

nalité fournie par l’application Web. En outre, elle génère des nouvelles opérations à partir des

interfaces Web. Troisièmement, nous avons développé une autre méthode complémentaire

pour générer des orchestrations exécutables, comme des processus BPEL, à partir des navi-

gations dans les interfaces Web de ces applications et de créer des chorégraphies de services

Web à partir de dépendances entre les composants Web. Quatrièmement, nous avons proposé

une approche pour récupérer des spécifications de haut niveau en BPMN et en SCA à partir

des collaborations entre les services Web générés. Ces architectures aident à mieux compren-

dre les compositions de services. Afin d’évaluer la performance et la précision des approches

proposées, nous avons implémenté et expérimenté la solution dans la migration de trois appli-

cations Web du monde réel vers des systèmes orientés services Web.

Mots clés: Applications à base de Composants Web, SOA, Services Web, Composition de Ser-

xi

xii Résumé

vices, Migration vers SOA, Extraction d’Architecture Logiciel, Rétro-ingénierie.

�� 	jÊÓ
	à

@ �IJ
k ; �éJ
ÓñJ
Ë @ A 	J�KAJ
k ú

	̄ �èY
KA�Ë@ Ñ 	¢	JË @ð �HAJ
m.×Q�. Ë @ Qå 	�AmÌ'@ �I�̄ñË@ ú

	̄ I. K
ñË@ �HA�®J
J.¢�� É�JÖ �ß

Bð

@ Õ �æK
 �IJ
k , I. K
ñË@ �HA 	KñºÓ ©J
Òm.�

�' ��K
Q£ 	á« A�A�

@ �éJ
 	�J.Ó �HA�®J
J.¢�JË @ è 	Yë 	áÓ Q�
�JºË@ ¼A 	Jë

�HA 	KñºÓ ©Ó AêªJ
Òm.�
�' Õ �æK
 Õç�' , Aë
ðA 	JK. Õç�' ú

�æË @ �HA�®J
J.¢�JË @ �HAJ. Ê¢�JÓ �éJ
J. Ê�JË �HA 	KñºÖÏ @ è 	Yë �J
�	m��'
	áÓ ���®j�JË @ð AîD�m 	̄ Ég.

@ 	áÓ I. K
ð ÐXA 	g ú

	̄ I. K
ñË@ �HA�®J
J.¢�� Qå�� 	� Õ �æK
 AëYªK. , øQ 	k

B@ I. K
ñË@

ÈðA 	J�JÓ ú

	̄ AêÊªm.Ì ; ��J
J.¢�� ÐXA 	g ð

@ I. K
ð ÐXA 	g ú

	̄ AëQå�� 	� ÈC 	g 	áÓ h. A�J 	KB
 @ YJ
�̄ © 	�ñ�K @Q�
 	g

@ð , Aî �Dm��

; �éJ
ÊJ. �®�J�ÖÏ @ �H@YK
YÒ�JË @ AêÒJ
Ò��� Y	J« PAJ. �J«B@ 	á�
ªK.
	Y 	g

B@ Õ �æK
 B ú
ÍA�JËAK. ð , ¡�® 	̄ 	á�
J

KAî 	DË @ 	á�
ÓY 	j�J�ÖÏ @

è 	Yë i�J 	®Ë ÐAÒ�JëCË �èQ�
�JÖÏ @ð �é 	JºÒÖÏ @ ÈñÊmÌ'@ Yg

@ð , �é�JËA�K 	¬@Q£

@ ÉJ. �̄ 	áÓ AëQK
ñ¢�� Õ �æK
 Y�̄ ú

�æË @
è 	Yë 	áÓ @ZYK. I. K
ð �HAÓY 	g Qå�� 	�ð ZA ��	� @
 ñë �H@YK
YÒ�JË @ QK
ñ¢�� 	áÓ ¨ñ	JË @ @ 	Yë É�JÖÏ �HA�®J
J.¢�JË @
�é�JËA�K 	¬@Q£

@ 	á�
ºÖ �ß Ég.

@ 	áÓ I. K
ñË@ �HA�®J
J.¢�� i�J 	̄ �éÊ¾ ��Ó �é�@PX �ékðQ£

B@ è 	Yë ÈðA 	J���Kð . �HA�®J
J.¢�JË @

�èQj. ë ú

	̄ ÑëA��� �èYK
Yg. i. ëA 	JÓ @ 	Y»ð , �HAJ
m.×Q�. Ë @ 	áÓ �é«ñÒm.× h@Q���̄ @ Õç�' �IJ
k , �H@YK
YÖ �ß QK
ñ¢�� 	áÓ

A 	JkQ���̄ @ , Bð

@ . I. K
ñË@ �HAÓY 	g úÎ« �éÖ
ßA �®Ë @ �HA�®J
J.¢�JË @ ñm� 	' I. K
ñË@ �HA 	KñºÓ úÎ« �éÖ
ßA �®Ë @ �HA�®J
J.¢�JË @

�éÒ 	¢	�

B@ð (I. K
ñË@ �HA�®J
J.¢��) PY�ÖÏ @ �éÒ 	¢	�

@ �éÒîD.Ó Q�
 	« �é�®K
Q¢�. É�JÖß
 ø

	YË@ (ú
Î¾ ��) ù
 ÖÞ�P h.
	XñÖ 	ß

A 	J 	JºÓ Y�̄ ð �éÒ 	¢	�

B@ 	áÓ 	á�
«ñ	JË @ C¿ Ñê 	̄ ú

	̄ Y«A��
 ú
Î¾ ��Ë@ h.
	XñÒ 	JË @ @ 	Yë .(I. K
ð �HAÓY 	g) �é 	̄ Yî �D�ÖÏ @

ú

�æË @ �HAJ
ÊÒªË@ 	áÓ �é«ñÒm.× h. A�J 	K A
K. Ðñ�®K
 i. î 	DÓ A 	JkQ���̄ @ , AJ
 	K A�K . hQ���®ÖÏ @ �èQj. êË @ i. î 	E �é�̄ X Q��»

AK. hQå�� 	áÓ

é 	KA

	̄ ½Ë 	X úÍ@

�é 	̄ A 	�B
 AK. ð , I. K
ñË@ ��J
J.¢�� 	¬Q£ 	áÓ �éÓY�®Ó �é 	®J
 	£ð É¾Ë I. K
ð �HAÓY 	g ú

	̄ AëQå�� 	� Õ �æK

�HAªK
 	Pñ�K h. A�J 	KB
 ÉÒºÓ Q 	k
�
@ i. î 	DÓ QK
ñ¢�JK. A 	JÔ�̄ , A�JË A�K . I. K
ñË@ �HAêk. @ð 	áÓ @ZYK. �HAJ
ÊÔ« i. �J 	�K

ú

	̄ �èXñk. ñÖÏ @ I. K
ñË@ �HAêk. @ð ú

	̄ i 	®��JË @ 	áÓ @ZYK. ½Ë 	Xð ; 	YJ
 	® 	J�JÊË �éÊK. A�̄ I. K
ñË@ �HAÓY	mÌ �éJ
Ë @Q���»Pð

@

	á�
K. �èXñk. ñÖÏ @ �HA�̄CªË@ 	áÓ @ZYK. ½Ë 	Xð I. K
ñË@ �HAÓY	mÌ �éJ
 	̄ @Q�̄ñK
Q» �HAªK
 	Pñ�K ZA ��	�B
 ð , �HA�®J
J.¢�JË @ è 	Yë
	àðAª�JË @ 	áÓ �éJ
 	�J.Ó øñ�J�ÖÏ @ �éJ
ËA« �éJ
�Y	Jë h.

	XAÖ 	ß h. @Q 	j�J�B Aj. î 	E A 	JkQ���̄ @ , AªK. @P . I. K
ñË@ �HA 	KñºÓ
�HAÓY	mÌ É 	� 	̄
@ Ñê 	̄ ú

	̄ Y«A��� �éJ
�Y	JêË @ h.
	XAÒ 	JË @ è 	Yë . Aë
ðA ��	� @
 Õç�' ú

�æË @ I. K
ñË@ �HAÓY 	g 	á�
K. Xñk. ñÖÏ @
�ékQ���®ÖÏ @ ÈñÊmÌ'@ A 	JÒJ
�̄ð A 	K 	Y 	® 	K Y�®Ë , �ékQ���®ÖÏ @ i. ëA 	JÖÏ @ �é�̄ Xð Z@X

B@ Õæ
J

�®�K Ég.

@ 	áÓð @Q�
 	g

@ð . �ém.×YÖÏ @ I. K
ñË@

ñm� 	' ù

�®J
�®mÌ'@ ÕË AªË @ ú

	̄ �èXñk. ñÓ I. K
ð �HA�®J
J.¢�� �é�KC�K ÉK
ñj�JK. ÐAJ
 �®Ë @ ÈC 	g 	áÓ �ékðQ£

B@ è 	Yë ú

	̄

. I. K
ñË@ �HAÓY 	g �éÒ 	¢	�

@

, �HAÓY	mÌ'@ l .×X , I. K
ð �éÓY 	g , �éJ
ÓY	mÌ'@ �éJ
 	�J. Ë @ , I. K
ñË@ �HA 	KñºÖß. �HA�®J
J.¢�JË @ : : �éJ
kA�J 	®ÖÏ @ �HAÒÊ¾Ë@
. �éJ
�ºªË@ �é�Y	JêË @ , �HAJ
m.×QK. �é�Y	Jë h. @Q 	j�J�@ , �éJ
ÓY	mÌ'@ �éJ
 	�J. Ë @ úÍ@ �èQj. êË @

C
H

A
P

T
E

R

1
Introduction

To program is to understand.

Kristen NYGAARD.

Preamble

This introduction presents the context of our work, the problem studied, and the contributions of

this dissertation. The context concerns the Web component-based development, the software

reuse and component-based development and finally the service oriented development. The

problem studied in the dissertation and our contributions are presented through a set of research

questions and a series of challenges that we aim to achieve. Finally, we end this introduction by

stating the organization of this dissertation and the list of our publications that are related to

this work.

2 Chap 1. Introduction

1.1 Context

WEB APPLICATIONS are software systems that are widely used since the early nineties and

the emergence of the World Wide Web. They have gained a lot of popularity com-

paratively to Desktop applications, because of their ease of use, via Web browsers, whereas

Desktop applications need sometimes heavy installations. These applications provide to their

users Web interfaces through which they can submit data to the server-side scripts and through

which they can receive the processing results.

Since the end of the nineties, Web component-based development has emerged as a new

solution which aims at decoupling Web application code modules, and making them reusable

and customizable software entities. Indeed, a step has been taken forward in modularizing Web

applications and thus separating business logic code, from view, data model and operational

control one. One of the technologies leading this field is Java EE and its numerous frameworks

like Struts or JSF. These technologies are currently one of the most interesting solutions for de-

veloping large and complex applications with highly critical requirements on maintainability

and portability. Web modules in such technologies are entities that can be used and reused

in different applications and customized according to the application requirements. Many li-

braries in the Internet provide access to Web COTS (Commercial Off The Shelf) like Compo-

nentSource ®1 or free Web components like RichFaces from JBoss or Apache’s MyFaces.

Besides, reuse is one of the major objectives of software engineering. Research on software

reuse has greatly evolved in recent years, from code reuse to knowledge reuse and software

component reuse. Unlike traditional development approaches, the development of a new sys-

tem is not made from scratch and does not require recreating large parts of the system for each

new change. For a decade, there is a growing interest in software engineering for developing

techniques and tools to build applications by assembling software components [Szyperski et

al., 1999]. This interest in components is resulting from the desire to reduce development costs

by increasing the reuse instead of inventing new forms of development to face the increasing

complexity of applications related to new requirements such as reliability and evolution. Cur-

rently there are many proposed definitions of the concept of software component, the most

cited definition is:

“A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently and is

subject to composition by third parties.” [Szyperski, 2002]

This definition can be interpreted on different levels of abstraction. Here, we explain some

parts of this definition: i) “a unit of composition”: This means that components are developed

to be composed with other components. ii) “contractually specified interfaces”: It provides an

1ComponentSource Website: http://www.componentsource.com/index.html

1.2. The problem studied in the thesis 3

interface comparable to a traditional application programming interface (API) through which

it exposes public capabilities as methods in order to be invoked by other programs. iii) “can

be deployed independently”: A component is self-contained. Changes to the implementation

of a component do not require changes (or a re-installation) to other components. iv) “third

parties”: Persons who assemble applications from components are not necessarily the same

as those who created these components. They can build new applications by extending the

functionality provided by the components.

Nowadays, SOA paradigm is considered as one of the best solutions for developing systems

by reusing a set of independent and loosely coupled software entities, called “Services” [Erl,

2009]. Services are a natural development of software components. They encapsulate discrete

functionality, which can be distributed and accessed programmatically. Besides, one possible

and usual way of implementing SOA architectures relies on Web services. Web services are

functionalities based on standard Internet and XML based languages and protocols which are

"programming language"- and "execution platform"-independent, like WSDL or SOAP. New

applications with thin or thick clients can be built and can access these functionalities, by sim-

ply formulating requests, which embed XML-based (SOAP) messages, to the chosen Web ser-

vice providers. The same kind of messages are returned back to these applications, containing

the results (answers to their requests). Upon these results, more actions can be performed by

these new applications in order to implement some new business-logic. In this way, Web ser-

vice providers, which hold some precious resources (like large databases of products to retail

of Amazon, or weather forecast data of Meteo France), offer third party developers the oppor-

tunity (for free or not) to build new applications by extending their public services, and thus

capitalize on these resources.

This thesis addresses the problem of Opening Web Applications for Third Party Develop-

ment that is precisely defined in the next section.

1.2 The problem studied in the thesis

The majority of Web applications have been designed and deployed exclusively for end users

who are humans. They have not been considered as a possible basis for remote extensions by

third parties. However, after deploying a Web application within an application server, there

is no means to directly publish some functionalities of the application for third party develop-

ment. To extend these applications, third-party developers have no other choice than making

HTTP requests in their programs and then parsing the HTML code returned by these Web ap-

plications. This represents a cumbersome task for a developer especially that in most cases

the parsed HTML code is too long and verbose. In addition, HTTP requests need frequently

a detailed customization, and HTTP responses need careful handling (dealing with errors and

redirections).

4 Chap 1. Introduction

In this thesis, we are interested in studying the following general question:

How can third party developers extend easily and efficiently the business logic imple-

mented by an existing Web component-based application?

In other words, the problem tackled here is to find a way to assist a developer to open its

Web application2 (or some of their functionalities), thereby allowing it to be easily and effi-

ciently i) re-used and extended remotely by third parties for developing new systems; ii) inte-

grated with existing systems ; iii) accessed from any program or device. As stated in the con-

text of this introduction, SOA paradigm is considered as one of the best solutions for opening

software systems to be reused and integrated with new or existing systems. As for Web ser-

vices, they have confirmed their status of one of the most pertinent solutions for a given service

provider, like eBay (auction and shopping), Amazon (retail) or FedEx (logistics), to open their

solutions for third party software development. Therefore, we redefine the problem of opening

Web applications for third party development, as a problem of searching a way for assisting

efficiently the developers to migrate their Web application (or some of their functionalities)

toward Web service oriented solutions. We divided and defined the problem of opening Web

applications toward Service Oriented Solutions through the following sub-questions:

RQ1: How to define precisely and in an unambiguous way the used concepts in the source

system (Component-based Web application) and the target system (Web service oriented system)

?

In order to define and present more accurately the processing to be performed on Web

applications to generate Web service oriented systems, we need to specify in unambiguous way

(mathematically) the used concepts in both systems. Moreover, we need to identify properties

that characterize both systems and provide a formal description that represents them.

RQ2: What are Web application capabilities which can be thought of remote Web services,

and how to migrate these capabilities to Web services?

We need to identify what are Web application functionalities which can be migrated into

Web services. In addition, we need to identify what are the activities and their sequencing that

the developer has to follow in order to generate pertinent operations and Web services starting

from a Web application.

RQ3: How to compose automatically and in a rational way the generated individual Web

services in order to provide coarse grained functionality?

The functionalities that are migrated into Web services originally collaborate together in the

Web application in order to provide coarse grained capabilities to end-users. Unfortunately,

2We consider in this thesis existing “white-box" Web applications, whose source code can be migrated.

1.3. Contributions 5

the third party developer cannot easily and efficiently identify these collaborations (because

they are embedded in the source code) in order to provide these coarse grained capabilities as

additional Web services. The third party developer has no other choice than parse manually

the source code to identify this collaboration and composing these services manually. This

tasks are error-prone, cumbersome, and so time-consuming. Indeed, despite the existence of

languages and standards for composing services such as BPEL [OASIS., 2007], the Web service

composition still is a highly complex task, and it is already beyond the human capability to deal

with the whole process manually [Rao et Su, 2005]. Hence, we need to find a way to compose

automatically and in rational way the generated Web services.

RQ4: How can we help third party developers or maintenance engineers to understand and

evolve easily the generated service oriented application?

Knowing that all software is required to regularly change (Lehman’s 1st law of evolu-

tion [Lehman et Belady, 1985]) and before starting the evolution a good understanding of the

implementation is required. The change in these compositions of services is often carried out

with an ad-hoc way directly in code. This makes very difficult the understanding of the ra-

tionale behind a given composition of services, especially for large applications. In addition,

it implies a direct impact on the cost and the risk of errors during an evolution. According

to [Bennett, 1996], in the software evolution, the software understanding stage costs more than

50% of the maintenance time. Hence, in order to understand and maintain these large ap-

plications, it is helpful to know their architectures. Unfortunately, the created (Web) service

oriented composites have not explicit service oriented architectures. In order to improve the

understanding for developers, we need to define in this thesis a way to explicit the hidden ser-

vice oriented architecture from the source code of a (Web) service oriented application. The

service architectures represent the systems using service-oriented concepts. They explicitly

show to developers the collaboration between (Web) services, the exchanged messages, and

the relationships between service providers and service consumers and their related roles.

1.3 Contributions

We proposed a systematic method that assists developers to migrate their Web applications to-

ward Web service oriented systems. In this way, we make the functionalities exposed by Web

interfaces of the application accessible as Web services for remote extensions. In order to de-

velop our method, we need to answer the previous asked sub-questions that are related to the

SOA migration problem. Each answer to these questions corresponds to one of our contribu-

tions in this thesis. We summarize these contributions as follows:

6 Chap 1. Introduction

1. Formal model for Web applications and Service oriented Systems:

In the first contribution, we defined a formal model that represents the different con-

cepts used in our approach. Indeed, this formal model describes in an unambiguous

way what composes Web applications, which are the input of our method, and the Web

service-oriented systems, which are the output. Both systems are represented as two di-

rected graphs expressed using a set-theoretic notation. The properties that characterize

the concepts in both systems are mathematically defined as sets. The provided formal

descriptions are used to better understand both kinds of software systems. In addition,

it enabled us to present more accurately the processing performed on Web applications

to generate Web service systems. Therefore, the transformations of Web applications to

Web services can be expressed as a mapping between graphs. The mapping is explained

using a set of procedures and functions that use the proposed formal model.

2. Migrating Component-Based Web Applications to Web Services : Towards Considering

a "Web Interface as a Service":

The second contribution is the heart of this thesis. We proposed a method to assist sys-

tematically the developers so that they can identify and generate easily Web services

starting from their existing component-based Web applications. It helps them to gen-

erate operations that are published in Web services for each functionality provided by a

Web application (methods and functions in the server-side source code of the applica-

tion). In addition, it generates new operations starting from Web user interfaces. This

makes it possible to provide parameterizable services starting from pages designed for

human interactions. This transformation goes through a semi-automatic multi-step pro-

cess. First, a parsing of the different Web component elements is performed to extract

the potential set of Web services. Then, the input and output messages related to each

Web service are deduced starting from the parsed elements. After that, the non-pertinent

operations in the Web services are eliminated from the starting set according to a set of

filtering constraints and the intervention of the developer. In the next step, the identified

operations are distributed into Web services based on the metrics of coupling and simi-

larity between operations so that we assure a good level of granularity for these services.

3. Generation of composite Web Services:

In the third contribution, we developed another complementary method to generate a

set of composition of the generated Web services starting from the dependencies that ex-

ist between the Web components (that have been transformed into individual primitive

Web services) of a Web application. An automatic parsing of the source code of the Web

application is performed to identify these dependencies.

Actually, there are two kind of dependencies, those which are between Web interfaces

and those which are embedded in the source code as method invocations.

1.3. Contributions 7

The first kind represents the end-users navigation in the Web interfaces of the applica-

tion. In our method, the relationships between these Web interfaces are transformed into

a set of Web service orchestrations. These orchestrations are generated as BPEL [OASIS.,

2007] processes. They implement a coarse-grained functionality provided by the Web

application, comparatively with the individual Web services that implement fine-grained

functionality. The BPEL is an OASIS standard, considered as one of the leading languages

used for implementing Web service orchestrations.

The second kind of dependencies represents the collaborations between the generated

Web services at code level. In our method, these dependencies are transformed into a set

of Web service choreographies. To do so, we parse the source code of the generated Web

services in order to identify these dependencies and transform them into Web services

requests.

4. Recovering Architectures from Service Oriented Systems:

In the fourth contribution, we proposed a reverse engineering approach for recover-

ing high level specifications of the generated services. Our approach generates behav-

ioral and structural models. In the behavioral models, choreographies are specified in

BPMN [OMG., 2011a]. In the structural models, choreographies are specified using the

SCA specifications [Beisiegel et al., 2009]. The creation of these service architectures

helps in better understanding the composition of services, which can be seen at code

level only. The proposed recovering approach is applied on the generated Web services

starting from the Web application. The recovered architectures can be provided to third

party developers to help them in understanding the target application before developing

extensions. In addition, they can serve as documentations for future evolution made by

the maintenance engineer.

We studied the application of our approach on large scale systems, where the num-

ber of services is high. We chose the OSGi (Open Services Gateway Initiative) applica-

tions [McAffer et al., 2010] as a good example of large Service Oriented Applications. This

choice allow us to scale to real-world SOA applications, where the number of services is

more than thousands.

5. Implementation:

We implemented our methods on a collection of Java Frameworks. We have developed

two prototypes: a tool called WSGen which covers the implementation of Contributions

2 and 3, and a tool called ArchGen implementing Contribution 4.

We focused in our work on a particular kind of Web applications, which are modern

component-based Web applications built with Java EE and its frameworks like JSF. They

are the input of WSGen tool and a set of (primitive and composite) Web services are pro-

vided as output. The choice of such technologies is motivated by the fact that they offer

8 Chap 1. Introduction

a structured organization of the source code of Web applications. This made easy the

parsing performed in our approach in order to generate Web services. Besides, (Web)

Service-based Applications source code (in the current implementation, Java Web ser-

vices) are the inputs of ArchGen tool and a set of BPMN and SCA models are provided as

output.

6. Experimentation:

Finally, we conducted two experiments for evaluating our proposals. In the first experi-

mentation, we have evaluated the performance and the accuracy of the proposed meth-

ods in the migration of three real-world Web applications towards Web service-oriented

systems. In the second experimentation, we measured what is the additional cost in-

duced by the using of our proposed approach. We have made some measures in the

development of the same software extensions developed first without our approach, and

then with our approach. Then, we have made a comparison between the obtained re-

sults.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 introduces a brief background about

Web component-based development, service oriented computing, and particularly the Web

services development and their composition. Chapter 3 provides an overview of the state-of-

the-art in three domains that are related to our work: (i) migrating existing systems toward

service oriented solutions, (ii) Web service composition, and (iii) software architecture recov-

ery. Chapter 4 starts by introducing a concrete example of a Web application which serves as

a running example for illustrating our proposals throughout this thesis. After that, this chapter

describes our proposed formal description of the context of this work, which is composed of

Web applications (inputs of our SOA migration approach) and Web service-oriented systems

(outputs of our approach). Subsequently, we illustrate how to use these formal definitions to

represent our concrete example and the desired Web service application that could be gener-

ated from this example. Chapter 5 presents the proposed approach for opening Web applica-

tions for third-party development. It comprises a general picture of the approach as well as

detailed explanations on the used concrete example. All activities that have to be performed

by the developer to generate individual Web services are detailed in this chapter. Chapter 6

presents the Web service composition approach. It describes via an example and an algorithm

the details about the automatic generation of Web service choreographies starting from the

collaborations that exist between the generated Web services. After that, it introduces thought

a set of procedures and a concrete example the details about the step of the automatic gener-

ation of Web service orchestrations starting from end-users navigation in the Web interfaces

of the Web application. Chapter 7 introduces our service architecture recovery approach for

extracting behavioral and structural models starting from the source code of the application.

1.4. Thesis Outline 9

This chapter describes the proposed transformation rules, and shows how they can be used to

recover BPMN and SCA models starting from two examples of service oriented systems. Chap-

ter 8 describes the architecture as well as the functionalities provided by two developed tools:

WSGen and ArchGen, which realize our proposed ideas. In each tool, we present how the pro-

posed approach is implemented and present the underlying technologies. Chapter 9 shows the

details of the conducted experimentation in order to evaluate the proposed ideas. It describes

the used measures to show the effectiveness and the applicability of the proposed solution.

This chapter ends with discussing the threats to validity. Finally, in Chapter 10, we conclude

the dissertation and we draw some perspectives.

Related publications

1). Mohamed Lamine Kerdoudi, Chouki Tibermacine, and Salah Sadou. Opening web ap-

plications for third party development: a service-oriented solution. Accepted in the in Service

Oriented Computing and Applications journal, (SOCA), pages 1–27, February 2016, Springer.

2). Chouki Tibermacine and Mohamed Lamine Kerdoudi. Migrating component-based

web applications to Web services: Towards considering a "Web interface as a service". An ex-

tended abstract published in proceedings of "Journées GDR - GPL - CIEL - AFADL" Nancy 2013.

Invited by the working group COSMAL to present the ICWS’12 paper.

3). Chouki Tibermacine and Mohamed Lamine Kerdoudi. Migrating component-based

web applications to Web services: Towards considering a "Web interface as a service". In pro-

ceedings of the 10th IEEE International Conference on Web Services (ICWS’12), editors Carole

A. Goble, Peter P. Chen, and Jia Zhang, pages 146–153, Honolulu, Hawaii, USA, 2012. IEEE

Computer Society. Acceptance rate: 17%.

4). Chouki Tibermacine and Mohamed Lamine Kerdoudi. Migration d’applications à base

de composants Web en services et orchestration de services Web. In proceedings of the french-

speaking conference on Software Architectures, (CAL’11) Lille, France.

5). Chouki Tibermacine and Mohamed Lamine Kerdoudi. From web components to Web

services: Opening development for third parties. In proceedings of European Conference on

Software Architecture (ECSA’10), editors Muhammad Ali Babar et Ian Gorton, volume 6285 de

Lecture Notes in Computer Science, pages 480–484, Copenhagen, Denmark, 2010. Springer.

Part I

State of the Art

11

C
H

A
P

T
E

R

2
Background

Education is what remains after one has forgotten what one

has learned in school.
Albert EINSTEIN.

13

14 Chap 2. Background

2.1 Introduction

In this chapter, we give a background about the context of this work, which helps in the under-

standing of the concepts that are used in this thesis. We begin (in Section 2.2) with an overview

about the Web component-based application development. Subsequently, we introduce the

Web Framework features, the Java Entreprise Edition Platform, and the components of Java EE

multi-tiered applications. In Section 2.3, we discuss the service oriented development from a

conceptual and a technological point of views. We present in particular the Web service tech-

nology and their composition. At the end, we introduce briefly the BPEL and BPMN languages,

and the SCA specification.

2.2 Web Component based Application Development

Web component-based development has emerged as a new solution that emphasizes the sep-

aration of concerns by decoupling Web application into customizable and reusable software

entities called Web components. In this section, we give a brief description of Frameworks that

support the Web component based development. After that, we introduce the Java Enterprise

Edition Platform and its Web components.

2.2.1 Web Application Frameworks

Nowadays, there are several Web Application Frameworks that offer a high level of flexibility

for the combination of different technologies to support developing Web Component-based

applications. Many of these Frameworks provide libraries for database access, templating

frameworks and session management, and they often promote code reuse. The Model-View-

Controller (MVC) pattern is commonly used as the underlying architectural pattern for most

of the Web application Frameworks. The MVC pattern is an architectural pattern originally de-

veloped for Smalltalk, an object-oriented programming (OOP) language. It enables the clean

separation of the presentation logic, control logic, and business objects. Examples of Web ap-

plication Frameworks that support the MVC pattern are: (i) Struts Framework: Struts is an

open-source Web application Framework for developing Java EE Web applications [Franciscus

et McClanahan, 2002]. It follows the MVC design paradigm and uses JEE technologies such as

Servlets, JavaServer Pages and JSP tag libraries. (ii) JavaServer Faces (JSF) Framework: JSF is a

Java specification for building component-based user interfaces for Web applications [Burns et

Kitain, 2009]. The JSF framework is responsible for interacting with client, and it provides tools

for tying together the visual presentation, application logic, and business logic of a Web appli-

cation [Geary et Horstmann, 2004]. (iii) Django Framework: Django is a high-level Python Web

Framework that encourages rapid development and elegant design[Holovaty et Kaplan-Moss,

2009]. Django’s primary goal is to ease the creation of complex, database-driven Web applica-

tions. The core Django Framework is based on the MVC architecture. It consists of an object-

relational mapper (ORM) that mediates between data models (defined as Python classes) and

2.2. Web Component based Application Development 15

a relational database (“Model”), a system for processing HTTP requests with a Web templating

system (“View”), and a regular-expression-based URL dispatcher (“Controller”).

2.2.2 Introduction to Java Enterprise Edition Platform

The aim of the Java Platform Enterprise Edition (Java EE) platform is to provide to develop-

ers a Framework for developing and deploying Java Web component based applications, while

shortening development time, reducing application complexity, and improving application

performance.

Distributed Multi-tiered Applications

The Java EE platform uses a distributed multi-tiered application model for enterprise Web

applications[Oracle,]. The application logic is divided into different kind of components.

These components make up the Java EE application are installed on various machines depend-

ing on the tier in the multi-tiered Java EE environment to which the application component

belongs. Figure 2.1 shows two multi-tiered Java EE applications divided into the tiers described

in the following list:

• Client-tier components run on the client machine.

• Web-tier components run on the Java EE server.

• Business-tier components run on the Java EE server.

• Enterprise information system (EIS)-tier software runs on the database server.

The Java EE multi-tiered applications are generally considered to be three-tiered applica-

tions because they are distributed over three locations: client machines, the Java EE server

machine, and the database or legacy machines at the back end.

Packaging and Deployment

A Java EE application is packaged into one or more standard units for deployment to any Java

EE platform–compliant system. Each unit contains a set of components, such as an enterprise

bean, Web page, Servlet, or applet, and an optional deployment descriptor that describes its

content. A Java EE application is delivered in a Java Archive (JAR) file, a Web Archive (WAR) file,

or an Enterprise Archive (EAR) file. A WAR or EAR file is a standard JAR (.jar) file with a (.war) or

(.ear) extension. Each of these archives has a specific structure.

16 Chap 2. Background

Figure 2.1 : Multi-tiered Architecture for JEE Component based application[Oracle,]

Containers

Containers are the interface between a component and the low-level, platform-specific func-

tionality that supports the component. They provide components with services such as life

cycle management, security, deployment, and threading. All JEE components are deployed

into Java EE containers. The server and containers are as follows:

• Java EE server: is the runtime portion of a Java EE product. A Java EE server provides EJB

and Web containers.

• EJB container: it manages the execution of enterprise beans for Java EE applications.

• Web container: it manages the execution of Web components and some EJB components

for Java EE applications.

• Application client container: it manages the execution of application client components.

• Applet container: it manages the execution of applets. It consists of a Web browser and a

Java Plug-in running on the client side.

2.2.3 Java EE Components

Java EE supports the development of components corresponding to each level (tier) of the

multi-tiered architecture.

2.2. Web Component based Application Development 17

Java EE Clients

A Java EE client is usually either a Web client (sometimes called a thin client), an application

client. A Web client consists of two parts: (i) Dynamic Web pages containing various types of

markup language (HTML, XML, and so on), which are generated by Web components running

in the Web tier, and (ii) A Web browser, which renders the pages received from the server. An

application client (such as: Applets, JavaBeans,...) runs on a client machine.

Web Components

Java EE Web components are either Servlets or Web pages created using JavaServer Faces tech-

nology and/or JSP technology (JSP pages) and run in the Web tier. Servlets are Java program-

ming language classes that dynamically process requests and construct responses. JavaServer

pages are like regular HTML pages with special tags and execute as Servlets. JavaServer Faces

technology builds on Servlets and JSP technology and provides a user interface component

framework for Web applications.

There are three main types of JSP constructs: scripting constructs, directives, and ac-

tions [Falkner et Jones, 2004]. Scripting elements are used to specify Java code that will become

part of the resultant Servlet. Directives are used to control the overall structure of the resultant

Servlet. Actions are used to control the behavior of the JSP engine. There are three types of JSP

scripting constructs that can be used to insert Java code into a resultant Servlet: expressions,

scriptlets, and declarations

• A JSP expression is used to insert a Java expression directly into the output. It has the

following form:

<%= Java expression %>

The expression is evaluated, converted into a string, and sent to the output stream of the

Servlet.

• A JSP scriptlet is used to insert Java statements into the Servlet’s jspService method,

which is invoked by the service method. A JSP scriptlet has the following form:

<% Java statement %>

• A JSP declaration is for declaring methods or fields into the Servlet. It has the following

form:

<%! Java declaration %>

JSP expressions and scriptlets can use a set of predefined variables (also known as JSP

implicit objects) from the Servlet environment namely, request (which is an instance of

18 Chap 2. Background

Figure 2.2 : Interaction between a Web client and a Web application that uses Web components
[Jendrock et al., 2014]

HttpServletRequest class), response (which is an instance of HttpServletResponse class),

out (which is an instance of PrintWriter class), session (represents the HttpSession object),

etc.

The Servlets and the JSPs are Java scripts that execute at the server-side. Figure 2.2 illus-

trates the interaction between a Web client and a JEE Web application that uses Web compo-

nents. The client sends an HTTP request to the Web server. A Web server that implements the

Java Servlet and JavaServer Pages technology (such as Apache Tomcat) converts the request

into an HTTPServletRequest object. This object is delivered to a Web component, which can

interact with JavaBeans components or a database to generate a dynamic content. The Web

component can then generate an HTTPServletResponse or can redirect the request to another

Web component. A Web component eventually generates a HTTPServletResponse object. The

Web server converts this object to an HTTP response and returns it to the client.

Business Components

Enterprise JavaBeans (EJB) components are business components that run on the business

logic server. The EJB components use the JavaBeans conventions for defining accessor meth-

ods for their properties.

2.3 Service Oriented Development

Service-oriented computing represents a new generation of distributed computing platform.

In this section, we first analyze the nature of Service Oriented Architecture, and we present

a clear definition of the concept of a service. Subsequently, we illustrate the characteristics

of Web services and service composition which lays the foundation for creating Web service

oriented systems.

2.3. Service Oriented Development 19

2.3.1 Service Oriented Architecture (SOA)

The Service-Oriented Architecture (SOA) is an effective response to the problems faced by orga-

nizations to improve flexibility and reduce the maintenance’s cost of their business processes,

while reducing the burden of IT on the overall organization [Erl, 2009]. Service-Oriented Ar-

chitecture is a concept and an approach for developing distributed architectures centered on

the notion of a service relationship between applications and the formalization of this rela-

tionship in a contract. Figure 2.3 encapsulates the idea of SOA [Sommerville, 2011]. Service

providers design and implement services and specify the interface to these services (as WSDL

descriptions in case of Web services). The interfaces of these services are published by the ser-

vice providers in an accessible registry (such as UDDI). Service requestors (sometimes called

service clients) who wish to make use of a service discover the specification of that service and

locate the service provider. They can then bind their application to that service and communi-

cate with it, using a communication protocol (such as the standard SOAP).

2.3.2 Service-orientation design principles

Eight service-orientation design principles are defined by Thomas Erl’s [Erl, 2008] as follows:

• Standardized Service Contract: Services within the same enterprise or domain are in

compliance with the same contract design standards.

• Service Loose Coupling: Service contracts impose low consumer coupling requirements

and are themselves decoupled from their surrounding environment.

• Service Abstraction: Service contracts only contain essential information and informa-

tion about services is limited to what is published in service contracts.

• Service Reusability: Services have the potential to be reused. These reusable services

are designed in a manner so that their solution logic is independent of any particular

business process or technology.

• Service Autonomy: Services exercise a high level of control over their underlying runtime

execution environment.

• Service Statelessness: Services minimize resource consumption by deferring the man-

agement of state information when necessary.

• Service Discoverability: Services are supplemented with communicative meta data by

which they can be effectively discovered and interpreted.

• Service Composability: Services are effective composition participants, regardless of the

size and complexity of the composition.

20 Chap 2. Background

Figure 2.3 : Service Oriented Architecture [Sommerville, 2011]

2.3.3 Concept of Service

A service is a unit of solution logic (such as the “Purchase Order” service) to which service

orientation has been applied to a meaningful extent. It is the application of service-orientation

design principles that distinguishes a unit of logic as a service compared to units of logic that

may exist solely as objects or components [Erl, 2009].

2.3.4 Service implementation technology

SOA represents an architectural model that is independent to any technology platform. In this

way, the entreprise can continually pursue the strategic goals associated with SOA by contin-

uing in taking advantage of technological advancements. A service can be built and imple-

mented as a (SOAP)-based Web service or a REST service.

Service as Web Service

Web services technology represents now the most important and popular means for im-

plementing service-oriented architectures. A service can be defined as: “A loosely-coupled,

reusable software component that encapsulates discrete functionality, which may be distributed

and programmatically accessed. A Web service is a service that is accessed using standard Inter-

net and XML based protocols.[Sommerville, 2011].”. A Web service is a body of solution logic

that provides a service contract consisting of a WSDL definition and one or more XML Schema

definitions and also possible WS-Policy expressions. The Web service contract exposes public

capabilities as operations, establishing a technical interface but without any ties to a propri-

etary communication framework.

Service as REST service

Representational State Transfer (REST) provides a means of constructing distributed systems

based on the notion of resources. REST is a software architectural style inspired from the

Web architecture. The term representational state transfer was introduced and defined by Roy

Fielding in his doctoral dissertation [Fielding, 2000]. REST services (or RESTful Services)

2.3. Service Oriented Development 21

are programs that are designed with an emphasis on simplicity, scalability, and usability [Erl,

2009]. They can send messages without a SOAP envelope and in a free encoding (XML, JSON,

binary, plain text). The Web Application Description Language (WADL) [Hadley, 2009] is an

XML-based language which can be used to describe the REST services. A WADL description

comprises essentially the following elements:

• Resource: it describes a set of resources, each identified by a URI.

• Method : it describes the input to and output from an HTTP protocol method (GET,POST,

PUT, DELETE) that may be applied to a resource.

• Request: It describes the input to be included when applying an HTTP method to a re-

source.

• Response: It describes the output that results from performing an HTTP method on a

resource.

WADL was submitted to the World Wide Web Consortium by Sun Microsystems on 2009,

but, it is not yet standardized [Hadley, 2009].

2.3.5 Web service: Standard languages and protocols

Web services refers to a collection of standards that cover interoperability. These standards

define both the protocols that are used to communicate and the format of the interfaces that

are used to specify services and service contracts [Josuttis, 2007]. There are five fundamental

Web services standards: XML, HTTP, WSDL, SOAP, UDDI. The two first standards are existed

beforehand and were used as a basis to realize the Web services approach.

1. Extensible Markup Language: The XML[Bray et al., 1998] is used as the standard format

to describe models, formats, and data types. All Web services standards are based on

XML.

2. Hypertext Transfer Protocol: HTTP (including HTTPS) is the low-level protocol used by

the Internet. HTTP(S) is one possible protocol that can be used to send Web services over

networks, using Internet technology.

3. Web Service Description Language: The Web Service Description Language (WSDL) is an

XML-based standard language [Chinnici et al., 2007], which is used to describe Web ser-

vice interfaces. It allows exposing, the functionality of a Web service as a set of operations

and messages (operation parameters). In the following, we describe the different parts of

the WSDL document.

22 Chap 2. Background

• Type: is composed of type definitions which are described using a type system such

as XML schemas.

• Message: describes the name and the type of the set of data being communicated

(Invocation parts and returned values).

• Operation: corresponds to an abstraction, which describes an action implemented

by the service.

• Port Type: describes a set of operations. Each operation has zero or more mes-

sages at the input and/or the output.

• Binding: specifies the binding of a port type to a concrete protocol, and the data

format.

• Port: defines an endpoint as a combination of binding and network address.

• Web Service: is a collection of related endpoints. It specifies also the service name.

These elements can be developed as separate and then be reused or combined to

form the complete WSDL document. The WSDL documents are defined by the service

providers as service contracts. Applications can access functionalities exposed by WSDL

documents, by simply formulating requests, which embed XML-based (SOAP) messages.

The results (answers of the requests) are returned as messages of the same kind.

4. Communication protocol: Simple Object Access Protocol: The Simple Object Access

Protocol (SOAP) is a protocol of the XML family [Box et al., 2000] providing a communi-

cation mechanism in a distributed and decentralized environment. It defines a common

and a standard format for XML messages over HTTP and other transports. SOAP was

originally defined by Microsoft and IBM, but it became a W3C recommendation on June

24, 2003. Since then, the software industry has entered a consolidation phase and has be-

gun to broadly adopt SOAP in the context of Web Services. SOAP consists of three parts: an

envelope that defines a framework for describing what is in a message and how to process

it, a set of encoding rules for expressing instances of application-defined datatypes, and

a convention for representing remote procedure calls and responses. SOAP messages are

XML documents that contains three elements composing a message: a mandatory SOAP

envelope, an optional SOAP header, and a mandatory SOAP body. The envelope rep-

resents the message, the header is a generic mechanism for include additional features

(such as security, transactions, and other quality-of-service attributes) to a SOAP mes-

sage in a decentralized manner without prior agreement between the communicating

parties, and the body is a container for mandatory information intended for the ultimate

recipient of the message.

5. Universal Description Discovery and Integration Registry : The Universal Description

Discovery and Integration (UDDI) provides a publicly accessible means to store and re-

trieve information about Web services interfaces. The UDDI specifications define an

2.3. Service Oriented Development 23

XML-based registry, established by an industry consortium to create and to implement a

directory of Web services [Clement et al., 2004]. A UDDI registry service manages in stan-

dard manner, information about service providers, service implementations, and service

metadata. The companies can publish the descriptions of their Web services in UDDI di-

rectory as WSDL files, so customers can easily find the Web services they need by query-

ing the UDDI registry. When customers finds the suitable Web service, they download

the WSDL document from the UDDI registry, then from the information included in the

WSDL file (such as the URL the Web service and how to use it), the client can invoke the

functionality of the Web service.

2.3.6 Service Composition

A service composition is a fundamental concept in service-oriented computing in which, a

composite service is an aggregation of services collectively composed to automate a particular

task or business process. We distinguish two concepts of service composition, the “orchestra-

tion” and “choreography” of Web services. Both concepts imply coordination or control the

act of making individuals Web services work together to form some coherent overall process.

Orchestration by convention refers to coordination at the level of a single participant’s process,

whereas choreography refers to the global view, spanning multiple participants [Havey, 2005]

Web Service Orchestration

A service orchestration is a coordination of the execution of different services under control of

a single endpoint central process (which can be another Web service). In other word, a Web

service orchestration is the invocation of several Web services based on a well defined business

process and exposing them as a single Web service (a Web service composite). So the orches-

tration is centralized with explicit definitions of operations and the order of invocation of Web

services. The involved Web services do not know (and do not need to know) that they are in-

volved in a composition process (see Figure 2.4). The client in Figure 2.4 can be another Web

service that invokes the of operations of the Web service composite.

Web Service Choreography

A service choreography in contrast to a service orchestration is more collaborative in nature

(there is no central coordinator). Rather, each Web service involved in the choreography knows

exactly when to execute its operations and with whom to interact. The choreography is repre-

sented by a message exchange between the services which are provided by a set of participants

(at least two participants), in order to ensure some interoperability. Each participant is respon-

sible of implementing decisions of their internal business process (see Figure 2.5). The services

of each participant could be implemented by completely different languages or frameworks

such as: Java, EJB, C] or BPEL. Each of these services could be implemented as an individual

Web service or a Web service orchestration.

24 Chap 2. Background

Figure 2.4 : Composition of Web services with orchestration

Figure 2.5 : Composition of Web services with choreography

2.3.7 Business Process Execution Language

One of the key standards accelerating the adoption of SOA is Business Process Execution Lan-

guage for Web services (BPEL) [OASIS., 2007]. BPEL is an XML-based language, which is created

to address the requirements of composition of Web services in a service-oriented environment.

It is considered as one of leading languages for implementing Web service orchestrations. A

BPEL process specifies the order in which the involved Web services should be invoked. With

BPEL, we can express, sequential, parallel, conditional, and loops behaviors. For example, we

can use a conditional behavior if an invocation of a Web service depends on the value of a pre-

vious invocation. We can also declare variables, copy and assign values, define fault handlers,

and so on. By combining all these constructs, we can define complex business processes as an

algorithm specification.

2.3. Service Oriented Development 25

Figure 2.6 : An excerpt of the BPEL meta-model

BPEL Meta-Model

Figure 2.6 depicts an excerpt of the BPEL meta-model. The main meta-class in this meta-model

is Process, which represents the BPEL process instances. A BPEL process is a set of steps,

where, each step is called ’Activity’. BPEL supports primitive and structure activities. Primi-

tive activities represent basic constructs such as:

• <Invoke>: invoking other Web services.

• <Receive>: waiting for the client to invoke the business process by sending a message

(receiving a request).

• <Reply>: Generating a response for synchronous operations.

• <Assign>: Manipulating data variables.

• <Throw>: Indicating faults and exceptions.

• <Wait>: Waiting for some time.

Structure activities combine these and other primitive activities to define complex business

process. The most important are:

• <Sequence>: for defining a set of activities that run sequentially.

26 Chap 2. Background

• <Flow>: for defining a set of activities that will be invoked in parallel.

• <Switch>: for implementing branches.

• <While>: for defining loops.

• <Pick>: for selecting one of several alternative paths.

In addition to the activity elements, a BPEL process contains other kind of elements (see Fig-

ure 2.6) such as:

• <PartnerLink>: the partners are the parties that interact with the BPEL process. They

represent both a consumer of the service that is provided by the BPEL process, and a

provider of a service to the BPEL process. A BPEL process declares the list of partner links

it supports and, for each, which role it performs and which role its partner is expected

to perform (for example: shipping provider or scheduling provider). A process can have

one or more partner links.

• <Variable> : A variable for use in a process or a scope, with a type based on a WSDL

message type, an XSD element, or an XSD basic type.

• <PartnerLinkType>: is a mapping of Web service port types to partner roles. Partner link

types are also defined in the WSDL files of the invoked services through the WSDL exten-

sibility element mechanism.

Structure of a BPEL Process

In Listing 2.1, we illustrate an overview of the structure of a BPEL Process in XML format. The

characters that are appended to elements, attributes, and as follows: "?" (0 or 1), "*" (0 or more),

"+" (1 or more).

1 <process name="NCName" targetNamespace="anyURI"

2 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

3 <import namespace="anyURI"? location="anyURI"? importType="anyURI" />*
4 <partnerLinks>?

5 <!-- Note: At least one role must be specified. -->

6 <partnerLink name="NCName"

7 partnerLinkType="QName"

8 myRole="NCName"?

9 partnerRole="NCName"?

10 initializePartnerRole="yes|no"?>+

11 </partnerLink>

12 </partnerLinks>

13

2.3. Service Oriented Development 27

14 <messageExchanges>? </messageExchanges>

15

16 <variables>?

17 <variable name="BPELVariableName" messageType="QName"? type="QName"?

18 element="QName"?>+ from-spec?

19 </variable>

20 </variables>

21

22 <correlationSets>?

23 <correlationSet name="NCName" properties="QName-list" />+

24 </correlationSets>

25

26 <faultHandlers>?

27 <!-- Note: There must be at least one faultHandler -->

28 </faultHandlers>

29

30 <eventHandlers>?

31 <!-- Note: There must be at least one onEvent or onAlarm. -->

32 </eventHandlers>

33 Activity

34 </process>

LISTING 2.1 : Structure of a BPEL Process[OASIS., 2007]

In the Line 33, we need to define an ordered list of activities that must be executed by the

BPEL process. A BPEL process starts providing services to its partners through inbound mes-

sage activities (<Receive>, <Pick> and <OnEvent>) and corresponding <Reply> activities.

2.3.8 Business Process Model and Notation

BPMN is a graphical design language that can be used by business analysts or developers to

represent in standard way business processes in an intuitive visual form. It provides a rich

framework for modeling inter-participant processing. The BPMN specification [OMG., 2011a]

define the notation and semantics of Process, and Collaboration diagrams. A Collaboration is

a collection of Participants shown as Pools, their interactions as shown by Message Flows, and

may include Processes (orchestrations) within the Pools.

The most important BPMN elements that are used in a Collaboration are:

• Participant: is a part of a Collaboration. It represents a specific PartnerEntity (e.g., a

company) or a more general PartnerRole (e.g., a buyer, seller, or manufacturer).

28 Chap 2. Background

• Pool: is the graphical representation of a Participant in a Collaboration. A Pool is a

square-cornered rectangle, which has a label placed in any location within the Pool. A

Participant is often responsible for the execution of the Process enclosed in a Pool. A

Process generally called a workflow.

• Lane: a Lane in a pool represents a subdivision of the participant often a department or

division of the company.

• Message Flows: connect two separate Pools. Message Flows cross the Pool boundary to

attach to the appropriate Activity. They must not connect two objects within the same

Pool. A Message Flow is a line with an open circle line start and an open arrowhead line

end that must be drawn with a dashed single line

• Sequence Flow: is used to show the order of flow elements in a Process. Each Sequence

Flow has only one source and only one target. The Activities within a Pool are organized

by Sequence Flows. A Sequence Flow is line with a solid arrowhead.

• Activity is a basic element of BPMN. It is a step in a process that performs a work. A

BPMN activity can be atomic or compound. An atomic activity, also known as a task,

performs a single action. A compound activity, also known as a process (or subprocess),

has its own set of atomic or compound activities, as well events, gateways and subpro-

cess.

2.3.9 Service Component Architecture Specification

Service Component Architecture (SCA) is a set of specifications which describe a model for

building applications and systems using a Service-Oriented Architecture (SOA). SCA provides a

model both for the composition of services and for the creation of service components. It aims

to encompass a wide range of technologies for service components and for the access methods

which are used to connect them [Beisiegel et al., 2009].

SCA Assembly Model

The SCA Assembly Model consists of a series of artifacts which define the configuration of an

SCA Domain in terms of composites which contain assemblies of service components and the

connections and related artifacts which describe how they are linked together.

SCA Component Diagram

One basic artifact of SCA is the component, which is the unit of construction for SCA. Fig-

ure 2.7 illustrates some features of an SCA component. A component consists of a configured

instance of an implementation, where an implementation is the piece of program code pro-

viding business functions. The business function is offered for use by other components as

2.3. Service Oriented Development 29

Figure 2.7 : SCA Component Diagram[Beisiegel et al., 2009]

Services. Implementations can depend on services provided by other components. These de-

pendencies are called References. Implementations can have settable properties, which are

data values that influence the operation of the business function. SCA allows for a wide variety

of implementation technologies such as Java, C++, and BPEL.

SCA Composite Diagram

The component configures the implementation by providing values for the properties and by

linking the references to services provided by other components using Wires. SCA describes

the content and linkage of an application in assemblies called composites. Figure 2.8 picture

illustrates some features of a composite assembled using a set of components. Composites can

contain components, services, references, property declarations, plus the wiring that describes

the connections between these elements.

SCA Domain Diagram

Composites are grouped within an SCA Domain. An SCA Domain represents a set of services

providing business functionalities that are belong to the same area. For example, an SCA Do-

main might cover all financial related function in accounts department, and it might contain a

series of composites dealing with specific areas of accounting, for example, with customer ac-

counts. The composites can be used to group and configure related artifacts. Figure 2.9 picture

illustrates an SCA Domain assembled from a series of high-level composites, some of which are

in turn implemented by lower-level composites

30 Chap 2. Background

Figure 2.8 : SCA Composite Diagram[Beisiegel et al., 2009]

Figure 2.9 : SCA Domain Diagram[Beisiegel et al., 2009]

2.4 Summary

In this chapter, we presented the main concepts related to Web component based applications

and Web service oriented applications. We started by presenting the properties of the first kind

of applications and their supported Web Frameworks. After that, we have introduced the Java

Enterprise Edition Platform, the distributed multi-tiered application model, and the JEE com-

ponents. In Section2.3, we illustrated the advantage of the service oriented development, the

service oriented architecture, and the service oriented design principals. We introduced also

the different implementation technologies for the primitive services and the service composi-

tions namely, the REST services, the Web services, and the BPEL language. At the end of this

chapter, we presented the BPMN language and the SCA specification which are among the

leading languages for creating respectively, the behavioral and structural views of the service

oriented systems.

C
H

A
P

T
E

R

3
Literature review

We cannot solve our problems with the same thinking we used

when we created them.
Albert EINSTEIN.

31

32 Chap 3. Literature review

3.1 Introduction

In this chapter, we present a state of the art of SOA migration approaches. There are more than

hundred approaches and tools for migrating systems to SOA. Each of them concentrates on

specific activities in the migration and a particular kind of systems. In Section 3.2, we intro-

duce the existing approaches and tools to migrate systems toward (Web) services-oriented ap-

plications. In this section, we distribute these approaches in four categories. In each category,

we present the approaches that are the most representative and close to our contributions. In

Section 3.3, we present a state of the art of the approaches in the domain of (Web) service com-

position. In Section 3.4, we discuss the existing approaches of software architecture recovery.

In each of all the presented approaches, we discuss the similarities and differences between

their proposals and our contributions.

3.2 Approaches and Tools for Migrating Systems to (Web)

Services-Oriented Applications

In this section, we present the existing approaches and tools that contributed in solving the

problem of migrating systems to (Web) services-oriented applications. We grouped these

works in the following categories:

3.2.1 Approaches for migrating Web applications to SOA

Some works have been proposed in the literature for migrating Web applications to Service

Oriented Architectures (SOA), such as [Almonaies et al., 2013 ; Tatsubori et Takashi, 2006 ;

Upadhyaya et al., 2012 ; Upadhyaya et al., 2015 ; Han et Tokuda, 2008 ; Baumgartner et al., 2004 ;

Lorenzo et al., 2007 ; Belushi et Baghdadi, 2007 ; Djelloul et al., 2009 ; Jiang et Stroulia, 2004 ;

Guo et al., 2005 ; Sosa et al., 2013].

The authors of [Almonaies et al., 2013] proposed a Framework which allows a semi-

automatic migration of Legacy Web applications (implemented using the PHP scripting lan-

guage) to service oriented applications. The proposed Framework uses an iterative process of

incremental steps to analyze and reprogram existing Web applications to Web services based

on the Service Component Architecture (SCA) Web services standard. The first step in this pro-

cess is the service identification. The output of this step is a marked-up version of the Web

application source code in which sections of code with the desired business functionality have

been identified as operations of the candidate service. This tagged candidate service is then

the input to an automated migration process. The migration process extracts and separates

the identified business features in dynamically-typed scripting languages as object-oriented

classes. An automatic inferring of the types of parameter values in dynamically-typed scripting

languages is performed. At the end of the process, each object-oriented class is converted into

an SCA service component.

3.2. Approaches and Tools for Migrating Systems to (Web) Services-Oriented Applications33

In contrast to our approach, the authors of [Almonaies et al., 2013] focus on the service

migration aspect, while the identification of services is done manually based on the developer

knowledge. In the identification notation, each candidate service operation is marked up man-

ually using a <service function = function-name> tag, where function-name is a user-suggested

name for the candidate service operation. In our work, we deal with the service identification

task in an automatic manner. We parse automatically programs executed at sever side in the

aim of identifying the potential operations to be published as Web services. In addition, we deal

with many aspects that are not covered in the work of [Almonaies et al., 2013] such as: i) gen-

erating service compositions starting from the dependencies between the Web components of

the application. ii) taking into consideration in the service identification many aspects namely:

session variables, cookies, client-side scripts, in-line documents.

The proposed work in [Tatsubori et Takashi, 2006] addresses the problem of extracting Web

services from Web applications. This work proposes a model for decomposing and abstracting

a Web application into modular building blocks forming the desired Web services. The decom-

position model is created by modeling each human transition from page to page as modular

pieces of the entire service. The abstract model consists of argument passing, data extraction

and context propagation in each transition from page to page. Using these two models and a

set of configuration files created manually by the developer, Web service wrappers can be cre-

ated for the Web applications. The decomposition technique in [Tatsubori et Takashi, 2006] do

not work a priori with Web applications that use techniques for retrieving remote data asyn-

chronously (like AJAX). In our approach, we deal with this kind of applications by transforming

the scripts at client-side into Web service requests, while the executed program at server side

is exported as a Web service. In addition, the page transition approach in [Tatsubori et Takashi,

2006] is applied to traditional Web pages, where the navigation is done with hyperlinks con-

tained in pages. Actually, modern Web applications that use navigation documents to imple-

ment dynamic transitions from page to page (such as in JSF Framework) are not addressed.

In the proposed approach in [Upadhyaya et al., 2012 ; Upadhyaya et al., 2015], RESTful ser-

vices can be extracted from Web applications. The approach is based on the capturing of sce-

narios executed by a user for the task to be migrated as a RESTful service. The input, output and

HTTP methods of the task are identified by the analysis of the annotation logs, the execution

logs, and the request/response HTML Web pages.

Comparing to our approach, we create Web services from the source code of the Web ap-

plications, while [Upadhyaya et al., 2012 ; Upadhyaya et al., 2015] proposed a black box ap-

proach (without accessing to the source code) for identifying Web services from Web applica-

tions. In addition, our migration approach is a semi-automatic process, while in [Upadhyaya

et al., 2012 ; Upadhyaya et al., 2015] the user is involved almost in every stage of their approach

such as: executing scenarios, identifying HTTP methods and the input/output messages which

are complex tasks.

34 Chap 3. Literature review

In another work, Wike [Han et Tokuda, 2008] generates virtual Web services by extracting

information from Web pages. Users can define patterns which are used to extract partial in-

formation from Web pages. The extraction function can be used to generate a Web service that

returns the result of the extraction process. Content-based Web pages are not the main concern

in our approach. Indeed, in our process, Web components including Web interfaces and busi-

ness logic implementation are the artifacts concerned by Web service generation. These works

are complementary solutions to our work. Web services that are generated using our approach

starting from Web components, which produce to users during execution a large quantity of

content, can be enhanced with new operations that return only partial information (texts, im-

ages, ...) using Wike. Invocations to these new operations can be added to the orchestrations

generated by our tool WSGen.

Baumgartner et al. [Baumgartner et al., 2004] proposed a process to transform the unstruc-

tured data in the “front-end” of Web applications into structured data which are accessible

from Web services that are generated automatically. In this way, they enabled the integration of

“front-end” contents of several Web applications. The proposed process performs the “front-

end” integration by exploiting existing Web-based interfaces of the Web applications to be in-

tegrated. The Web-based interfaces (for example, Web forms) are accessed and extracted au-

tomatically and the response document is translated from HTML(unstructured data) to XML

(structured data) which later can be automatically processed. The generated Web service is

like a wrapper program that queries the generated XML data. The activities of accessing, infor-

mation extraction and their transformation to a structured data are performed using the Lixto

Visual Wrapper tool [Baumgartner et al., 2001]. This tool is particularly well-suited for visual

and interactive creation of HTML to XML wrappers. The Lixto wrappers are embedded into

an information processing Framework, called Lixto Transformation Server [Herzog et Gottlob,

2001] which enables application developers to format, transform, integrate, and deliver XML

data to various devices and applications. The Transformation Server allows designers to pub-

lish the extracted information from the Web-based interfaces as Web Services that contain one

or several operations. After that, it generates their WSDL documents. However, the Lixto wrap-

per enables developers to create stable wrappers programs to deal with changes that can occur

on the Web page contents. The Lixto informs the Web service providers to react to any change

in the Web page format.

The process published in [Baumgartner et al., 2004] is complementary to our proposal. In-

deed, in our approach, we do not extract the content from the “font-end” of the Web application

to make them accessible as Web services. But, we generate Web services starting from the func-

tionally (by the parsing of the server side scripts and back-end components of the application)

provided the Web user interfaces (“font-end” of the Web application). The generated Web ser-

vices are independent applications, any change made in the format of the Web user interface

have no influence on the generated Web services.

3.2. Approaches and Tools for Migrating Systems to (Web) Services-Oriented Applications35

Another work published by [Jiang et Stroulia, 2004] relies on an automated reengineering

method for the presentation layer in order to create Web services for the functionalities already

offered by existing Web sites. These functionalities can be specified in terms of WSDL Web-

service specifications. The created Web services are deployed through proxies accessing the

original Web server and parsing its responses. Indeed, the proposed process examines a mul-

titude examples of interactions between client browsers and Web servers in order to identify a

set of HTTP request and HTML response pairs. These pair-wise interactions correspond to the

input and output messages of the created Web-service operation. A set of patterns are extracted

from the HTML responses. These patterns are then visualized and examined by a developer in

order to identify which ones correspond to useful services. At the end, the selected patterns are

translated into the corresponding WSDL specifications.

Lorenzo et al. [Lorenzo et al., 2007] proposed a wrapping based-migration approach for

migrating a user-oriented interface of the Web application into a programmatic interface that

exposes the full functionality and data of the application as Web services. The approach uses

a black-box (without accessing or changing the source code) reverse engineering technique

for modeling Web application user interface using a Finite State Automaton (the detail of this

technique is addressed in [Canfora et al., 2008]). The automaton model will be then inter-

preted by the wrapper. The wrapping technique is based on a migration process that includes

the following steps: 1) Selection of the Web application functionality to be turned into a Web

service, 2) Reverse engineering of the Web application user interface to identify the execution

scenarios, 3) Designing of an interaction model and developing their XML-based specification

to be interpreted by the wrapper, 4) Deployment and validation of the Wrapper service. This

step includes all the activities needed to publish the service and export it to an Application

Server. Comparing the approach in [Lorenzo et al., 2007] to our migration approach, we follow

a white-box approach. Indeed, we create Web services with accessing to the source code of the

Web applications. In addition, our approach is based on static analysis of the system artifacts,

while [Lorenzo et al., 2007] analyze the system at runtime by executing scenarios which are

corresponding to a set of use cases. Analyzing the system at runtime in order to identify new

Web services is one of the perspectives of this work.

[Belushi et Baghdadi, 2007] proposed to wrap the functionalities of legacy Web applications

to expose them as Web services. They apply a Bottom-up methodology to generate wrappers

using the provided tools by J2EE and .Net environments. The wrapper program is responsi-

ble for converting the SOAP request and response messages into a format processable by the

Legacy application. Another scenario provided by this approach when the Legacy application

needs to invoke an external Web service. The Legacy code saves their requests in a shared file

accessible by the wrapper. The later converts them into SOAP messages and invokes the desired

Web services, the results are then saved in a new file that is accessible by Legacy application.

WA2WS [Djelloul et al., 2009] is a Framework that can be used for creating Web Services

36 Chap 3. Literature review

from existing Web applications. The creation of Web services is performed through two ap-

proaches, a reverse-engineering approach and a forward engineering approach. In the first

approach, an UML conceptual schema is recovered starting from the HTML Web pages of the

application using a domain ontology. The second approach uses a set of mapping rules to gen-

erate the Java source code of the Web services. In our approach, the semantic of the Web inter-

face content is not taken into consideration when we parse the Web application. Our parsing

is based on a syntactic analysis. The use of a domain ontology in the parsing of the Web appli-

cation is an important complementary work that can enhance the service identification step in

our approach.

[Guo et al., 2005] proposed a white-box reverse engineering approach for generating wrap-

per components that make the functionalities of a Client–Server .NET application available as

Web Services. The approach is supported by a tool called Web Service Wrapper (WSW) which

is composed of two components: an Analyzer and a Wrapper. The Analyzer parses the source

code of the Microsoft .Net application and it displays the results to the developer as a set of

classes, properties, methods, parameters, and return values of the methods. The task of Wrap-

per is to wrap the legacy system into Web Services and generate related source code directly.

Before that, the Wrapper uses a set of restrictions to eliminate the methods that should not

be considered as Web services. An example of these restrictions is the methods that must be

public and not abstract. In our approach the elimination of non pertinent operations is a semi-

automatic task based on set of OCL constraints written by the developer and could be updated

and reused easily.

Another work proposed by [Maras et al., 2013] relies on the analysis of the client-side Web

application code. The authors consider several behaviors which could be reused in a large

number of Web applications [Maras et al., 2012]. They proposed an approach to identify and

extract the code which implements certain behaviors. The proposal is based on dynamic anal-

ysis, which relies on the execution of scenarios and saving the executed code (client-side code)

responsible for an expected behavior. In addition to the behavior identification, the approach

can extract library functionalities and identify (or delete) the code that does not implement any

behavior (improve the performance). This work is complementary to our proposal as it deals

with client side scripts’ code. Analyzing such kind of client code is one of the perspectives of

our work. For the moment, we partially deal with it in choreography creation when Ajax is used

in the migrated Web application.

3.2.2 Approaches for migrating Legacy systems to SOA

According to [Bisbal et al., 1999] a Legacy System is defined as any information system that

significantly resists modification and evolution. Such kind of systems can cause to host or-

ganizations several problems such as: expensive software maintenance, because documen-

tation and understanding of system details is often lacking and tracing faults is costly and

3.2. Approaches and Tools for Migrating Systems to (Web) Services-Oriented Applications37

time-consuming. A lack of clean interfaces makes integrating Legacy Systems with other sys-

tems difficult. And, they are also difficult, if not impossible, to extend. Several techniques and

methods have been proposed in literature to face the problem of migrating Legacy systems to

service-oriented architectures (SOA). A set of classifications of these solutions have been pro-

posed in [Bisbal et al., 1999 ; Almonaies et al., 2010 ; Zhang et Yang, 2004].

The works published in [Bisbal et al., 1999 ; Almonaies et al., 2010] classify these approaches

into four categories which are: i) replacement, make sense to retire the application and replace

it with a COTS components or a complete rewrite of the Legacy system from scratch. ii) rede-

velopment, which rewrites existing applications; iii) wrapping, which provides a new interface

to a component, making it more easily accessible by other software components; and iv) mi-

gration, which moves the Legacy system to a more flexible environment, while retaining the

original system’s data and functionality. In the migration strategy, Legacy code is identified,

decoupled, and extracted using approaches similar to those used in wrapping and redevelop-

ment.

Zhang et al. [Zhang et Yang, 2004] classify the SOA migration approaches on: i) black-box

re-engineering technique, is corresponding to the wrapping approach, where a set of adaptors

are developed to wrap the Legacy code and data, which allow the application to be invoked as

a service. ii) white-box approach (redevelopment) is a reverse engineering technique to the

existing code in order to recover the business logic and then apply modifications on this code

in order to expose this business logic as a Web service. iii) grey-box re-engineering technique,

combines black-box and white-box approaches for integrating not the whole Legacy system

but parts of a Legacy system with valuable business logic.

The approaches of migrating (Legacy) systems to SOA solutions have been the subject of

few literature reviews such as [Almonaies et al., 2010 ; Khadka et al., 2013 ; Razavian et Lago,

2015]. Almonaies et al. [Almonaies et al., 2010] provided a critical review based on the four cat-

egories of SOA migration approaches: replacement, redevelopment, wrapping and migration.

They study the strengths and the weaknesses of each approach aiming to assist organizations to

make good decisions when undertaking a new modernization project. They demonstrate that

no one approach can be applied to every situation. In order to choose, the developers have to

understand the maturity, applicability, strengths and weaknesses of each of approach.

Khadka et al. [Khadka et al., 2013] provided an historic overview, focusing on the meth-

ods and techniques used in a Legacy to SOA evolution. They developed an evaluation Frame-

work to evaluate the Legacy to SOA evolution approaches. The Framework uses six phases that

are typically related to evolution/modernization of Legacy systems. The phases are identified

from common phases in popular methods from software re-engineering domain and service-

oriented development methodologies such as: Butterfly Method, the Renaissance Method,

the Architecture-Driven Modernization(ADM), the Service-Oriented Design and Development

38 Chap 3. Literature review

Figure 3.1 : Evaluation Framework for Legacy to SOA evolution [Khadka et al., 2013]

Methodology(SODDM) and the Service-Oriented Modeling and Architecture (SOMA). Fig-

ure 3.1 depicts the evaluation Framework and its phases. The identified six phases are, Legacy

system understanding: reverse engineering, program understanding, architectural recovery

are used in this phase, Target system understanding: is concerned with the representation of

the desired architecture of the target SOA, Evolution feasibility determination: The feasibil-

ity assessments are carried out at a technical, economical and organizational level, Candidate

service identification: architectural reconstruction, feature location, design pattern recovery,

cluster analysis techniques, concept analysis, source code visualization are used to identify the

services in a large body of a Legacy code, Implementation: wrapping, program slicing, concept

slicing, graph transformation, code translation, model-driven program transformation, screen

scraping, code query technology, graph transformation are used to extract/leverage the Legacy

code as services, and Deployment and provisioning: is concerned with deployment and man-

agement of the services. Based on these identified phases, [Khadka et al., 2013] have derived a

list of evaluation criteria that are used in their review. Indeed, a set of evaluation questions are

proposed as evaluation criteria for each phase. An example of the asked evaluation questions

for the Candidate service identification phase is : Is there tool support for candidate service

identification? Khadka et al. have discussed a set of findings and good practices could be per-

formed in each phase of this Framework.

Razavian et al. [Razavian et Lago, 2015] provided a systematic literature review of SOA mi-

gration approaches that are proposed by the research community. The authors proposed a

SOA migration frame of reference which could be used to select and to define an approach

for migrating to SOA. This frame of reference generalizes the activities carried out and cate-

3.2. Approaches and Tools for Migrating Systems to (Web) Services-Oriented Applications39

Figure 3.2 : An example of two-view approach representation. (A) Knowledge view and (B)
activity view [Razavian et Lago, 2015]

gories of knowledge elements used or produced in the migration approaches. To categorize

the migration approaches, the authors represent them using views, where, the view is a par-

tial representation of a migration approach from a particular concern. The SOA migration ap-

proaches in this review, are represented using two views: i) Knowledge view: highlights the

type of knowledges that shape and drive the migration. It concerns the understanding of in-

put and output knowledge elements of the SOA migrations. The knowledge elements are As-Is

state (i.e., AS- legacy assets) and To-Be state (i.e. To-Be services) and ii) Activity view: reflects

what activities to be performed in SOA migration. Figure 3.2 depicts an example of the two-

view approach representation that is proposed in [Razavian et Lago, 2015]. In Figure 3.2.A, the

available knowledge is shown in white, and the required knowledge (not available) is in gray.

The arrows between knowledge indicate what input knowledge is required to create a certain

output. The Figure 3.2.B, represents the generic activities covered by the migration approach

and their sequencing. Three main processes are covered in this view are:i) reverse engineer-

ing: recovering the lost abstractions and eliciting the legacy fragments that are suitable for

migration to SOA),ii) transformation: from legacy abstractions to service abstractions and iii)

forward engineering: developing the target system as result of the migration process. The sub-

ject system may not yet exist, or its existing components are renovated based on transformed

abstractions as well as new requirements.

Using the SOA frame of reference, Razavian et al. have classified the existing migration ap-

proaches based on similar activity views and the migration objectives and solutions. The SOA

migration approaches are categorized on eight families. Figure 3.3 illustrates the schematic

forms of these families, where, (F1) Code transformation family, (F2) Service identification fam-

40 Chap 3. Literature review

Figure 3.3 : SOA migration families [Razavian et Lago, 2015]

ily, (F3) Business model transformation family, (F4) Design element transformation family, (F5)

Forward engineering family, (F6) Design and composite element transformation family, (F7)

Pattern-based composition transformation family and (F8) Forward engineering with gap anal-

ysis family. Figure 3.3.B illustrates an example of the schematic form of the activity view in fam-

ily (F4), where, in this family, the transformation process only occurs at “basic design element”

level (e.g., modules or classes). Similarly, reverse and forward engineering processes are lim-

ited to this level. As for our approach which is published in [Tibermacine et Kerdoudi, 2010], it

was categorized by [Razavian et Lago, 2015] in the family (F6). This family has a transformation

at both level of “basic design element” and “composite design element”(in Figure 3.2.B). This

entails altering legacy elements to services (i.e., design element transformation) as well as re-

shaping the structure of legacy elements to realize new service compositions (i.e., composition

transformation). Migration here adopts recovering and refactoring of the legacy architecture

to the service-oriented architecture as well as reshaping the legacy elements to service-based

elements.

In the following, we report the representative examples of approaches for the Legacy sys-

tems migration to service-oriented architectures: The SMART approach [Lewis et al., 2006]

3.2. Approaches and Tools for Migrating Systems to (Web) Services-Oriented Applications41

aims at assisting organizations to migrate their Legacy systems to SOA in a systematic way.

The Legacy systems functionalities, or subsets of them are exposed as services. The proposal

is based on an interview guide, which is presented to the developer in terms of questions.

These questions concern issues about the process of the migration. Based on the developer’s

responses, the degree of the difficulty and the required effort to make such migration are de-

termined.

Sneed et al. [Sneed, 2006] presented a tool supported method for moving a legacy software

into a service oriented solution. This work presented a set of metrics to be considered in the

identification of services in Legacy systems. Three main steps are followed in this method to

create Web services, which are i) salvaging the legacy code: consists on analyzing and eval-

uating several hundred of programs in order to identify and extract a code and determine if it

is interesting for reusing. In this step, a domain expert is involved, and (s)he is supported by

automated reverse engineering tools; ii) wrapping the salvaged code: the goal of the wrapping

process is to provide the component extracted from the legacy code with a WSDL interface.

The used technique is to transform each entry into a method and to transform each parameter

into an XML data element. The tool SoftWrap has been developed to automate this transforma-

tion for the languages PL/I, COBOL, and C/C++; iii) Linking the Web services to the business

processes: in this step, the Web services are linked as business processes. The language for

implementing business processes is BPEL4WS. The BPEL4WS process establishes links to part-

ners, defines the link types, declares the parameters to be sent and the results to be received,

and invokes the Web services.

Zhang and Yang [Zhang et Yang, 2004] proposed a re-engineering approach based on hi-

erarchical clustering algorithm to restructure the legacy code and to facilitate legacy code ex-

traction for Web service construction. The service identification step in this approach, starts

with a domain analysis to identify and document requirements on a set of systems in the same

application domain. The results of this step are summarized as a domain model expressed in

UML and saved in XML format. This model is used as basis to identify some business functions

that are reusable and suitable to be provided as services. After that, the target Legacy system is

evaluated and modeled in order to understand their source code. The modeling process uses a

reverse engineering technique which is based on the use of hierarchical clustering techniques.

The clustering techniques are used for transferring procedural code to object-oriented model

and understanding legacy code. Clustering analysis is to group large mounts of entities in a

dataset into clusters according to their relationship and similarity. In this work, the functions,

procedures and classes in object oriented programs are the entities to be clustered. The ob-

tained Dendrogram is analyzed in order to extract a functional service from legacy code accord-

ing to available design decisions (using the created domain model). At the end, the extracted

legacy code must be refined and packaged into candidate services. Based on the domain anal-

ysis and service identification, the service interfaces (WSDL descriptions) are designed.

42 Chap 3. Literature review

Another solution has been proposed in [Canfora et al., 2008] to migrate form-based Legacy

systems into Web services based on a wrapping approach. In the form-based Legacy system the

flow of data between the system and the user is described by a sequence of query and response

interactions, which is converted into message requests from the client and message responses

from the service provider. In this approach, the behaviors accrued when the user interacts with

the Legacy system is modeled in terms of finite state automata, based on a black box reverse

engineering technique. This specification will be interpreted by the wrapper.

Comparing these works to our migration approach, we do not create wrappers for the func-

tionalities exposed by the Web application, but we create a new Web service application start-

ing from the functionality exposed by the Web application. The generated Web service appli-

cation will be eventually used and extended remotely by third party developers. However, the

existing Web applications are kept running and accessible for end users.

3.2.3 Approaches for generating Web services from software components

A little work has been done on the migration of software components to SOA. The proposed ap-

proach in [Lee et al., 2005] provides a service-oriented architecture for component based sys-

tems. The authors have developed a model for converting functionalities implemented in soft-

ware components into Web services. This work allows to a client to specify a request for search-

ing a given functionality in components developed with different programming languages (C++

or Java) and deployed in a Web server. As an answer to this request, a Web service or a compo-

sition of Web services is generated automatically for the desired functionalities and returned to

the client. The proposed model allows significantly to reduce execution at the client side, and

increased the efficiency of Web servers by deploying as Web services only components that are

requested by the client.

A. Marinho et al. [Marinho et al., 2009] proposed a similar approach to [Lee et al., 2005].

In addition, the proposal allows the generation of services starting from components, which

are written in different programming languages. Compared to these reactive systems, WSGen

is proactive. Indeed, in our approach we do not react to a client request, but we propose to

the developers of the Web application to anticipate the export of some functionalities as Web

services. In this way, third party developers can make remote extensions of the services exposed

by the interfaces of the Web components. However, in [Lee et al., 2005 ; Marinho et al., 2009],

only business functionalities implemented in software components are transformed. In our

approach, the Web interfaces, the business functionalities and the navigation between Web

interfaces are converted into stateless Web services and compositions of them.

In [Fei et Wang, 2004], the authors have been presented a conceptual model of Web compo-

nents. They proposed a method for composing a set of services provided by Web components

using parameterized contracts. These contracts link the services in the provided interfaces of

3.2. Approaches and Tools for Migrating Systems to (Web) Services-Oriented Applications43

a given component to the services of its required ones. To satisfy a given functionality when a

composition is under construction, a service is included if all its required services are satisfied

by the component’s environment. If some required services are not satisfied, other provided

services from other components are integrated. In our approach, the Web components that we

deal with do not define required interfaces. They refer to industrial solutions of Web develop-

ment (like Java EE). In addition, we build compositions of services as BPEL processes starting

from existing Web and business logic code, while in [Fei et Wang, 2004], compositions are built

starting from formal definitions (contracts) associated with some candidate services in a repos-

itory.

R. Sindhgatta et al. [Sindhgatta et Ponnalagu, 2008] proposed a semi-automatic approach

based on information retrieval techniques for locating components realizing services in exist-

ing systems. The proposed approach based on three main steps: i) identify possible links be-

tween the description of the candidate services and the source code implementations. ii) The

retrieved links are then filtered and ranked based on the static traces for each selected compo-

nent. In this step, the components and their call relations are represented using a component

graph where the nodes are components and the edges are call relationships. The component

graph is traversed in order to filter the set of initial links retrieved, the links are ranked based

on weights assigned to them. iii) The structural dependencies between the results were further

used to filter the retrieved links and identify the possible technical and functional components

realizing the functionality. For farther analysis, a human expert has to confirm all source code

links as relevant. The work of [Sindhgatta et Ponnalagu, 2008] is complementary to our ap-

proach. Indeed, combining the vector space information retrieval model and static program

analysis using component graph will contribute mainly in improving the service identification

task of our approach.

3.2.4 Model-Driven Approaches for generating Web service-oriented applications

Model Driven Software Development (MDD) is a vision of software development where mod-

els play a core role as primary development artifacts [Staron, 2006]. Models are used to rea-

son about a problem domain and design a solution in the solution domain. For creating these

models, we need to define rules for automating many of the steps needed to convert one model

representation to another [Brown et al., 2005]. In practice there are three common model trans-

formations [Brown et al., 2005] are, i) Refactoring transformations: reorganize a model based

on some well-defined criteria, ii) Model-to-model transformations: convert information from

one model or models to another model or set of models, iii) Model-to-code transformations

(code generation): these transformations convert a model element into a code fragment.

Many works in the literature propose model-driven techniques to generate (Web) service-

oriented applications. The work of [Ameller et al., 2015] provided a state-of-the-art in Model

Driven Development (MDD) for SOA systems. The authors focus on what are the characteris-

44 Chap 3. Literature review

tics of MDD approaches that support SOA, what types of SOA are supported and how do they

handle non-functional requirements. They conducted a mapping study (is a form of systematic

literature review) on approaches that have been proposed in the scientific literature related to

the use of MDD in the context of SOC. The conducted study illustrated the following observa-

tions: (1) predominance of top-down transformation in software development activities; (2) in-

existence of consolidated methods; (3) significant percentage of works without tool support; (4)

SOA systems and service compositions more targeted than single services and SOA enterprise

systems; (5) limited use of metamodels; (6) very limited use of Non-Functional Requirements;

and (7) limited application in real cases.

Here we give some examples of model driven approaches for Web service-oriented devel-

opment. The authors of [Bauer et Huget, 2004 ; Bauer et Muller, 2004] have proposed a concep-

tual methodology based on UML 2.0 for developing Web service-based systems covering the

business process, Web service interface and composition parts. The conceptual methodology

can be seen as a multi-steps process. In the first step, a semantic business process specifica-

tion is produced using an extension of UML 2.0 activity diagrams. Next, this specification is

refined into two models: i) a static model, which is essentially the service model (interfaces of

Web services) which are developed using UML diagrams and is enhanced with meta-data, such

as the description of pre- and post-conditions for service invocation, and with exception defi-

nitions; ii) a dynamic model, which is essentially the creation of service choreography oriented

models on the message exchange level using UML 2.0. Each of these two models is described

by a platform independent model and one or more platform specific models.

In [Bauer et Muller, 2004] an approach based on MDA1 has been proposed to transform the

platform independent models specified by UML 2 sequence diagrams to Web Service composi-

tion representations (platform dependent models) specified in BPEL language. This approach

aims in particular to assist the developer in coding BPEL specifications. The transformation

consists on mapping of sequence diagram elements to BPEL2WS elements. This mapping is

defined informally (using graphical notation elements) by associating an element from the set

of sequence diagram elements with one or more elements of the set of BPEL2WS elements. The

informal definition of a mapping between the two representations can be automated. However,

information concerning the WSDL definition of the Web service interfaces are defined manu-

ally starting from UML class diagrams.

R. Gronmo [Gronmo et al., 2004] proposed a model-driven process for building Web ser-

vice compositions. The WSDL descriptions are transformed into UML models. These mod-

els are integrated by the developer to form composite Web services, which contain interface

and workflow descriptions. Interface models are described using stereotyped UML class dia-

grams and workflow models are represented by stereotyped activity diagrams. At the end, a

1OMG’s Website: http://www.omg.org/mda/specs.htm

3.2. Approaches and Tools for Migrating Systems to (Web) Services-Oriented Applications45

set of WSDL descriptions are generated for the resulting composite services. This work pro-

vides means for making forward engineering (UML to WSDL and BPEL) and reverse engineer-

ing (WSDL to UML) by specifying bidirectional transformation rules. A set of recommendation

are provided to developers in order to create Web services in the area of model driven develop-

ment.

In [Yu et al., 2007], proposed a MDA based approach to generate automatically BPEL pro-

cesses. This approach uses transformation rules for converting orchestration models (as PIMs)

specified in CCA (Component Collaboration Architecture), which is part of the UML profile for

Enterprise Distributed Object Computing (EDOC [OMG.,]), into BPEL specifications (as PSMs).

The approach is applicable to other orchestration languages. The same orchestration model

can be transformed to different specifications defined in different orchestration languages by

applying different rules. The transformation rules are specified using OMG’s QVT specification

(Operational Mappings language is used). These rules take as input an instance of the CCA

meta-model enriched by new features and constraints. A BPEL file and a WSDL file (instances

of respectively WSDL and BPEL meta-models) are the output of applying these transformation

rules.

[Sosa et al., 2013] describe a systematic and semi-automatic process to modernize and

adapt legacy Web applications to SOA solutions. The proposed approach is based on model-

driven techniques to drive the process. The first step in this process is the reverse engineering

of legacy systems to obtain a model-based specification from them. Service identification is the

second step, where new models conform to SoaML Meta-model (SoaML is OMG specification

to describe Services Oriented Architectures [OMG, 2012]) of the Web application are created,

where the services are labeled. After that, a matching between SoaML models and the business

process model (described in BPMN) of the company is performed. An orchestration of services

based on BPEL is generated by using a model-to-text transformation that takes as input the

weaving models obtained in the previous phase. Concretely, the process proposes: (i) a model-

based reengineering step; (ii) services identification and generation of the services layer for a

SOA, including, on the one hand, the wrapper code to interact with the legacy Web application

and, on the other hand, the publication of the services layer as Web services; (iii) a business

process modeling stage, to clearly describe the organization processes; (iv) an orchestration

code generation phase, to align the services layer offered with the business processes.

Another model-driven approach for creating service-oriented solutions has been proposed

in [Johnston et Brown, 2006]. In this work, a UML profile has been defined for software ser-

vices as a design notation for expressing the design of a services-oriented solution. The service

models that are expressed in this UML profile are then transformed into a specific service im-

plementation in WSDL. The use of this UML profile for describing software oriented services

provides several benefits such as providing: i) A consistent set of concepts, notations, and se-

mantics for modeling services and service interactions. ii) A “domain-specific language” for

46 Chap 3. Literature review

service modeling to support designers of SOAs as they design and reason about their solution.

iii) A consistent basis for generating service realizations from the logical service model. The

mapping from design to implementation is described at two levels: generation of a service

model from the analysis model and generation of a WSDL description from the service model.

This mapping is supported though automated tools in the IBM Rational Software Development

Platform. However, the defined model transformations can be used to convert service models

expressed using the profile into various target languages for service realization.

C. Dumez et al. [Dumez et al., 2008] have introduced UML-S (UML for Services), an exten-

sion to UML 2.0, to develop composite Web services conforming to the model-driven engineer-

ing vision. It is an UML profile and guidelines to develop composite Web services according to

MDE principles. In UML-S, both class diagrams and activity diagrams are used to model and

specify respectively Web services interfaces and their interactions. A set of transformation rules

between UML-S and low-level code (platform-specific code) are introduced. First, transforma-

tion rules from WSDL 2.0 to UML-S class diagram are introduced. Second, transformation rules

to generate WS-BPEL 2.0 code from UML-S diagrams are provided. The use of this transforma-

tion rules has simplified the creation of composite Web services and has made this task more

easy.

A. Fuhr et al. [Fuhr et al., 2013] proposed a model driven approach to migrate legacy sys-

tems to service oriented architectures. Based on model-driven strategies, this approach pro-

vided an extension of IBM’s SOMA method towards migration. SOMA(Service-Oriented Model-

ing and Architecture) is an iterative and incremental method to design and implement service-

oriented systems. Four phases of the SOMA method are extended to support SOA migration.

The defined extension are: i) The service identification phase has been extended by a model-

driven technique to reverse-engineer legacy code into an appropriate TGraph, which enables

queries and transformations to identify service candidates. The queries and the transforma-

tions are applied on models that represent different views on software systems including busi-

ness process models, software architecture and programming code. ii) The service specifi-

cation phase has been extended by combining the forward engineering (design of the target

architecture and orchestration of services) with the reverse engineering (derive service opera-

tions and message design from legacy code) techniques. Therefore, the forward design is per-

formed by analyzing legacy systems. iii) The service realization phase has been extended by

the tasks static and dynamic analysis of legacy systems in order to understand the implemen-

tation of legacy functionality. The result of these analyses helps developers to look in legacy

system to find the code to be migrated to services. iv) The service implementation phase has

been extended by including graph transformations as techniques to extract legacy code and

transform it into service implementations. The proposed approach was applied to the migra-

tion of functionality of GanttProject2 towards a Service-Oriented Architecture. As result, a set of

2GanttProject: http://www.ganttproject.biz/

3.3. Approaches for Web Service Composition 47

Web Services were generated whose business functionality where implemented by transform-

ing legacy code.

All these works are complementary to our approach. In our work the transformations are

made from PSM to PSM. Web components, which are models specific to a given platform (in

the current implementation, Java EE), are converted into Web services, which are considered as

another platform-specific model (WSDL, Java and BPEL, in the actual version of WSGen). The

UML profile presented in [Johnston et Brown, 2006] can be used to define high-level models

of the generated Web services. The other approaches can be used to make a reverse engineer-

ing of the generated Web services or orchestrations and obtain more understandable models

(compared to code). In addition, most of these works focus on UML modeling and generat-

ing new Web services starting from models of a high level of abstraction. In our approach, we

worked on the transformation of existing Web code.

3.3 Approaches for Web Service Composition

A summary of proposed solutions, standards and Frameworks for Web service composition is

presented in [Milanovic et Malek, 2004]. [Benatallah et al., 2003] proposed a set of patterns for

the definition and implementation of composite services. These patterns suggest a method-

ology for providing a high level abstraction in the design, construction and maintenance of

composite services.

A survey of automated Web service composition methods is presented in [Rao et Su, 2005].

The authors consider the automation is the possibility to generate the process model automat-

ically, or to locate the correct services if an abstract process model is given. They proposed a

framework for automatic Web services composition. This framework discusses the similarities

and differences between the existing service composition methods. Figure 3.4 gives a general

representation of this Framework. The Translator translates the specifications expressed by

the participants (Service requester and Service provider) using external languages into

another kind of specifications defined in an internal language that is used by the Process

Generator. For each request, the Process Generator generates a plan that composes the

available services in Repository. The Evaluator evaluates all plans and proposes the best to

be executed by the Execution Engine.

Our proposed approach covers all the phases in this framework, but slightly in different way.

Indeed, our system is not reactive to external specifications that come from service requester,

but, the process plan is extracted starting from the parsing of the Web interface navigations.

The translator in our approach, uses the extracted navigation documents and transform them

into a set of executable BPEL orchestrations. The involved Web services in the composition are

those that are generated from the Web application. The generated orchestrations could be then

executed in one of the existing BPEL execution engines such as Apache ODE [Apache., 2013].

48 Chap 3. Literature review

Figure 3.4 : The framework of the service composition system[Rao et Su, 2005]

The authors in [Zernadji et al., 2015] proposed a scripting language called WS-BScript used

by the designers to specify their process plans. These specifications are then interpreted auto-

matically for updating BPEL orchestrations. The WS-BScript language is used mainly to recon-

figure automatically an existing BPEL orchestration. The authors take into consideration the

non-functional properties in the evolution of these BPEL processes.

A survey of existing methods and approaches for reliable composite services is presented

in [Immonen et Pakkala, 2014]. The authors define the required phases of the composite ser-

vice design and execution to achieve reliable composite service. These phases are described in

the form of a framework. A matching of the existing approaches and their Framework was per-

formed. In our Web services migration approach, we proposed to publish similar operations in

different Web services, this makes them potentially published on different servers. In this way,

if one of the services is not available, or does not work correctly, we can find a similar service

(its substitute) in some other servers. In this way, our approach contributes in the creation of

reliable composite services.

Several automatic, semi-automatic and manual service composition approaches are pro-

posed in the literature such as [Paik et al., 2014 ; Oh et al., 2008 ; Segev et Toch, 2009 ;

Zeng et al., 2004 ; Ren et al., 2011 ; Medjahed et Bouguettaya, 2005 ; Boustil et al., 2014]. Paik et

al. [Paik et al., 2014] proposed to compose services dynamically and automatically from exist-

ing services in service-oriented architecture and cloud computing environments. The authors

proposed a framework and a nested multilevel dynamic composition model which provides a

functional scalability and a seamless composition. They extend the phases of automatic service

composition that are proposed [Rao et Su, 2005] by adding orchestration of nested workflows

and composition property transformations to the existing process.

Oh et al. [Oh et al., 2008] consider the problem of automatic composition of Web services as

AI planning and network optimization problems to investigate its complexity. Their Framework

allows to: (i) formalize the Web service composition problem in terms of AI planning problem,

(ii) analyze the available Web service sets using complex network analysis techniques, (iii) build

benchmarks that simulate these observed topologies, and (iv) design a Web service composi-

3.3. Approaches for Web Service Composition 49

tion algorithm, and finally, (v) evaluate it against the generated benchmarks as well as existing

testing sets.

In [Segev et Toch, 2009] a context-based semantic approach is proposed for classifying and

ranking Web services in order to compose them. The classification is based on the analysis of

the WSDL documents and free text descriptions of the Web services. Two methods are used

for the classification of Web services: Term Frequency/ Inverse Document Frequency (TF/IDF)

and context extraction. The TF/IDF mechanism generates a set of representative keywords

from a corpus of documents (WSDL files or textual descriptions). A context extraction is the

process of creating a set of descriptors, where, a descriptor is a pair of terms (word, phrase, or

alphanumerical) and a weight (represents the importance of the descriptor in relation with the

Web service). The process of service ranking is to give a numeric estimation of the comple-

mentary relation between each two Web services. This process is based on the context analy-

sis, where, each Web service WSDL context descriptor is evaluated according to its proximity to

other services’ free text context descriptors.

In our approach, some parameters of the generated operations have meaningless names

such as: arg1, input0 or param1, which are given by default. Thus, the generated WSDLs for

these services will have also message parts with meaningless names. This problem is consid-

ered by [Rodriguez et al., 2010] as an anti-pattern (called ambiguous names) which occurs fre-

quently in the Web services description. This anti-pattern makes the matching of parameters

in the automatic composition of the services more difficult, and requires the developer inter-

vention. The methods TF/IDF and context extraction that are used by [Segev et Toch, 2009]

could be exploited by our tool “WSGen” to extract representative names for these parameters

starting from the analysis of HTML forms and the used text to describe the input and output

values in the Web application.

Medjahed et al. [Medjahed et Bouguettaya, 2005] proposed a composability model to check

whether Web services can be composed without failure during their execution. A set of algo-

rithms for checking Web service composability are provided. In this composability model, the

Web services are compared to check their composability through a set of rules organized into

four levels: syntactic, static and dynamic semantic and qualitative levels. Each level compares

a specific pair of attributes of interacting Web services. The authors defined also, the notions of

composabi l i t y deg r ee and τ−composabi l i t y . The composabi l i t y deg r ee is to associate

a wei g ht for each of the four levels, and defining a wei g ht for each rule in that level. The

weight is an estimate of the importance of the corresponding level or rule from the composer’s

point of view. The τ−composabi l i t y compares the composability degree and the threshold (τ:

minimum value allowed for composability degree) to decide whether an operation is partially,

totally, not at all composable with another operation.

In our work, we have used the composability model of [Medjahed et Bouguettaya, 2005] to

50 Chap 3. Literature review

check the syntactic composability of the services. Semantic composability is one of the per-

spectives of our work.

3.4 Approaches of Software Architecture Recovery

Many automated techniques and approaches have been proposed in the literature to help

in recovering the architecture of a software system from its implementation. The authors

in [Ducasse et Pollet, 2009] have been presented a state of the art in the software architec-

ture reconstruction (SAR) approaches. They proposed a classification based on the lifetime of

SAR approaches as the following: (i) based on the Intended goals such as: understanding,

reuse, evolution, construction, and analysis. (ii) based on the Followed processes either a

bottom-up (refers to a recovery process), a top-down (refers to a discovery process) or a hybrid

process. (iii) based on the Required inputs, most SAR works are from source code constructs,

but there are some other kinds of information are considered such as dynamic information ex-

tracted from a system execution, or historical data held by version control system repositories,

architectural elements such as styles or viewpoints, or the fusion of multiple source of inputs.

(iv) based on the Used techniques, they are classified on three automation levels: quasi man-

ual, semi automatic, and quasi-automatic. (v) based on Expected outputs, the goals and the

output are clearly related. Most of the approaches focus on identifying and presenting soft-

ware architecture (such as visual software views, reconstructed architectural views, or design

patterns). Some approaches provide valuable additional information such as conformance of

the architecture and the implementation, or performing extra analysis on the extracted archi-

tecture to qualify it or to refine it further.

[Garcia et al., 2013b] proposed a framework comprising a set of principles and a process

for recovering a system’s ground-truth architectures. According to the authors, a ground-truth

architecture is the architecture of software system that has been verified as accurate by the

system’s architects or developers who have intimate knowledge of underling application and

problem domain. They consider this knowledge is often undocumented. The framework’s

principles serve as rules or guidelines for grouping code-level entities into architectural ele-

ments and for identifying their interfaces. Four types of information are used to obtain the

ground-truth architecture: generic information (e.g., system-module dependencies), domain

information (e.g., architectural-style rules), application information (e.g., the purpose of the

source code elements), and information about the system context (e.g., the programming lan-

guage used). The proposed process recovers a preliminary version of the system architecture

from its source code. After that, it involves the system’s engineers in a controlled step for com-

pleting the recovery. The authors have discussed their findings through obtaining ground-truth

architectures for four system existing systems come from several problem domains

The authors in [Garcia et al., 2013a] have used a set of eight architectures that have been

3.4. Approaches of Software Architecture Recovery 51

recovered from open source systems and carefully verified as ground-truths architecture in

performing a comparative analysis of six state-of-the-art software architecture recovery tech-

niques. They have used a set of metrics to evaluate the accuracy of each technique, and their

ability to identify a system’s architectural components and overall architectural structure. The

input of the six selected techniques in this study are: (i) textual inputs which are words in

source code and comments of implementation-level entities and (ii) structural inputs which

are control-flow-based and/or data flow-based dependencies between implementation-level

entities. The selected software architecture recovery techniques are:

(1) Algorithm for Comprehension-Driven Clustering (ACDC) [Tzerpos et Holt, 2000], this

technique recovers components (subsystems) using patterns driven approach. Depending on

the pattern used, the subsystems are given appropriate names. These patterns are used to

group entities at the implementation levels. They refer to familiar subsystem structures that

frequently appear in manual decomposition of large industrial software systems. These pat-

terns include for example grouping together entities (such as, procedures and variables) con-

tained in the same source file (Source file pattern) and entities in the same directory (Directory

structure pattern).

(2) Weighted Combined Algorithm (WCA) [Maqbool et Babri, 2004] is a hierarchical clus-

tering technique based on grouping together items or entities based on their properties or fea-

tures. In this technique, each entity is represented as a vector of properties (features), which

represents the entity dependencies. Each implementation-level entity is placed in a cluster,

where a cluster represents an architectural component. The WCA is based on an iterative merg-

ing process of clusters based on a pair-wise similarity of these clusters. The feature vector of a

combined cluster is built by combining the feature vectors of the two similar clusters.

(3) ScaLable InforMation BOttleneck (LIMBO) [Andritsos et Tzerpos, 2005] is a hierarchical

clustering technique. It differs from WCA in three points: (i) LIMBO use a mechanism called

Summary Artifacts (SA) to reduce the computations needed while minimizing accuracy loss.

(ii) LIMBO uses the Information Loss (IL) measure to compute similarities between entities,

(iii) LIMBO associates a new feature vector for a combined cluster, which is computed using a

specific formula.

(4) Bunch [Mancoridis et al., 1999] uses a hill climbing algorithm to find a partitioning of

entities into clusters that maximizes an objective function. Bunch initially starts with a random

partition and stops when there is no better partition.

(5) Zone-Based Recovery (ZBR) [Corazza et al., 2010] is a technique which utilizes textual

information, hierarchical clustering, and a weighting scheme for feature vectors. The textual

information tries to infer a software system’s semantics when recovering the system’s architec-

ture. In ZBR, the source file divided into zones and each word in this zone is scored by a term

52 Chap 3. Literature review

frequency. The zone is weighted using the Expectation-Maximization (EM) algorithm. Clusters

in ZBR consist of source files and feature vectors (consists of the word’s score values for each

weighted zone). The ZBR computes the similarity between entities using cosine similarity.

(6) Architecture Recovery using Concerns (ARC) [Garcia et al., 2011] recovers concerns of

implementation-level entities and uses a hierarchical clustering technique to obtain hierarchi-

cal elements. The recovery of concerns is based on a statistical language model LDA (Latent

Dirichlet allocation), which is obtained from the identifiers and comments in a system source

code.

In our recovery approach, the components are grouped based on their names and the de-

veloper knowledge. We plan in future to improve our approach by using one of these clustring

techniques. Our classification will take into consideration several other criteria such as: the

cohesion, the coupling, the similarity between components.

Recently there is a major interest by researchers for proposing approaches and techniques

that aim to recover component-based architectures and service-oriented architectures from

the system implementations. In the following, we give some examples of these approaches:

[Chardigny et al., 2008] proposed an approach called ROMANTIC which focuses on ex-

tracting component-based architectures from existing object oriented systems. The ROMAN-

TIC approach is based on defining a correspondence model between the code elements and

the architectural concepts and instantiating that model in order to extract the architectural el-

ements from the software. The correspondence model consists on defining a partition of the

system classes in shapes (each shape represents a component), while some classes in a shape

have links with classes from another shape. The extraction approach is based on a hierarchical

clustering algorithm. For the authors, an extracted architecture is relevant if it respects four

guides which are: (i) semantically correct. (ii) a good quality properties. (iii), respects precisely

the recommendation of the architect (iv) can be adapted to the specificity of the deployment

hardware architecture. The authors in [Kebir et al., 2012] proposed a technique for evolving ob-

ject oriented systems toward component-based applications.They have used the component-

based architectures that are created as a result of the ROMANTIC approach for identifying the

internal structure of the software components and their required/provided interfaces from the

object oriented programs.

The works in [Chardigny et al., 2008] and [Kebir et al., 2012] focus on creating component-

based architectures which help them to identify software components and their interfaces from

object oriented systems. The set of guides and the clustering algorithms are used to represent a

set of classes as an architectural component element. After that, they have defined a fitness

function to measure the semantic-correctness of a component, where they have identified

three semantic characteristics of software components: composability, autonomy and speci-

3.4. Approaches of Software Architecture Recovery 53

ficity. In our work, during the identification and the creation of Web services from Web appli-

cations, we create implicitly this kind of architectural elements by clustering and distributing

the services based on the cohesion, coupling, and similarity criteria. The semantic character-

istics are ensured by our service distribution technique. But, the main objective of our archi-

tecture recovering approach is not to identify services from Web applications but, is to explicit

architectural views from the collaboration between service participants, which can be seen at

code level only. The generated architectures are then used by the maintenance developers to

understand the implementation-level details of the target system.

[Allier et al., 2010] proposed an approach to restructure legacy object oriented applica-

tions into component-based applications. They consider a component as a group of classes

collaborating to provide a system function. The interfaces provided and required by a compo-

nent are the method calls respectively from and to classes belonging to other components. The

identification of components and their interfaces is based on the analysis of traces obtained

by executing scenarios corresponding to the system use cases. A clustering technique is used

for the classes of the target system, where the classes that appear frequently together in the

execution traces are grouped to form a component. The clustering is based on the using of

meta-heuristic search algorithms in order to find near-optimal solutions. The authors defined

a fitness function to evaluate the quality of a partition by considering the internal cohesion of

a component and the inter-component coupling.

The authors in [Seriai et al., 2014a] proposed an approach to identify the interfaces of a

component according to its interactions with the other components. According to the au-

thors, a component is implemented as a set of classes that work together to provide one or

more services. The set of services are then grouped as an interface for that component. They

consider the interface identification as a clustering problem based on the dependencies be-

tween the exposed methods and the components that use them. The Formal Concept Analysis

(FCA) techniques are used to perform this clustering. For each component a formal context

is created. This context summarizes the dependencies of this component with other compo-

nents. A dependency is defined by a pair: (calling component, called service). The FCA clas-

sifier module derives a concept lattice in which services are grouped according to the calling

components. After that, the lattice is interpreted in order to suggest interfaces for the called

component based on its corresponding lattice. The authors in [Seriai et al., 2014b] proposed

an approach for restructuring the object oriented systems by extracting component based ar-

chitecture and provide a mapping between the architectural elements and their corresponding

ones in the code. Their main objective is to identify all instances of classes representing an

instance of a component in order to build the component’s factory. The authors consider an

instance of a component is all the class instances, which have had connections during the ex-

ecution of the application. The component instances are created by transforming object call

graph into a component instance call graph.

54 Chap 3. Literature review

The works in [Allier et al., 2010], [Seriai et al., 2014a], and [Seriai et al., 2014b] are com-

plementary to our recovery approach. Indeed, in our approach, we analyze the static calls

between services to create the service component architectures. The grouping of the compo-

nents of these architectures is based on the developer knowledge and the syntactic comparison

of the service and component names. This step of our approach could be improved by using

the analysis technique of the execution traces which is proposed by [Allier et al., 2010]. The

grouping of the components will be then based on their runtime dependencies.

The authors in [Anquetil et al., 2009] proposed an approach for making the maintainers’

work easier. They proposed a component recovery approach for Java legacy application. They

explored a reverse engineering approach to extract component types, data types, provided and

required services, structure of composite component types, and communication channels be-

tween components. Their approach is intended to compare a concrete implementation with

an abstract model. It checks also the good state of the architecture of a system by indicating

when a component is used improperly (e.g. communicate with the wrong component).

The proposed approach in [Forster et al., 2013] enables the identification and the analysis

of software dependencies in the context of two software development frameworks: OSGi and

Qt. The first step in this approach is the identification of relevant architectural styles for com-

munication. To do so, developers are invited to inspect the available documentation to learn

about predominant styles and defining the abstract communication principles. The second

step consists on the parsing of the source code in order to create a model capturing object ori-

ented and procedural language constructs (such as packages, classes, and methods). The third

step is the identification of communication ports in source code. The Graphical Pattern Mod-

eling and Matching techniques are used in this step. The last step in this approach consists on

creating components and reconstructing the actual connections. The creation of component

abstractions and their attached ports is supported by the system experts. The information re-

covered is visualized in a graphical view.

In comparison to our work, [Anquetil et al., 2009] and [Forster et al., 2013] recover compo-

nent based architectures, where each public method in the classes is considered as a provided

interface for the component that enclose these classes and each invocation to this method is

modeled as a required interface for the caller component. But, our focus is to recover SOA

architectures (structural and behavioral views) starting from the service-oriented applications

(such as OSGi applications). Indeed, the service oriented communications are recovered and

modeled. To do so, we identify the components that register services in the Service Registry,

and the components that obtain from this Registry the object references (or WSDL interfaces)

of these services in order to invoke them and we represent these collaborations by BPMN and

SCA models.

Some works have been proposed in the literature to detect SOA design patterns from service

3.5. Summary 55

oriented applications such as: [Demange et al., 2013], [Upadhyaya et al., 2013], and [Liang et al.,

2006]. The SOA design patterns are cataloged in few books such as:[Erl, 2009] and [Daigneau,

2011]. These books provide good practices to design service oriented systems. In the recent

years, the detection of patterns in an SOA environment starts attracting more and more re-

searchers. Firstly, [Upadhyaya et al., 2013] proposed to identify service composition patterns

by analyzing the execution logs and the order of service invocation events in these execution

logs. These service composition patterns represent services that are used together repeatedly

and they are structurally and functionally similar. Secondly, [Demange et al., 2013] proposed to

detect five newly defined SOA patterns. They specify these patterns using "rule cards". Accord-

ing to the authors, the "rule cards" are sets of rules that combine various metrics. These can ei-

ther be static which provide information about structural properties like cohesion or coupling,

or dynamic, which provide information about response time or number of service invocation.

Subsequently, they generate detection algorithms from rule cards and apply concretely these

algorithms to detect patterns on SOA systems at runtime. [Liang et al., 2006] used the prop-

erty similarity between the services to detect SOA design patterns. All these works are comple-

mentary to our service oriented architecture recovery approach. Improving our approach by

recovering SOA design patterns will greatly enhance the understanding of the target system.

3.5 Summary

This chapter sums up existing works in the state-of-the-art in three main categories: migration

to SOA approaches, Web service composition approaches, and software architecture recovery

approaches. We highlighted the focus of the community on evolving existing systems to ser-

vice oriented applications. The migration to SOA has been proved to bring many benefits. Of

these benefits, one most important is to open the existing systems for third party development.

Through in-depth analysis of the studies focused on migration activities carried out by the se-

lected approaches, we have shown that there are several ways to make such transition to SOA

(for example, by wrapping, replacement, redevelopment, or migration), and the migration pro-

cess varies depending on the type of system to be migrated (legacy system, software compo-

nent, Web applications, or conceptual models) and the type of the target system (Web service,

service, composition of services, service oriented models). In addition, each selected approach

focuses on a set of particular activities and objectives (such as, code transformation, service

identification, business model transformation, design and composite element transformation,

and automatic, semi-automatic and manual migration).

Furthermore, most of the presented approaches focus on the modernization to SOA by

abandoning of the existing (legacy) system. But, in our approach, we create from Web applica-

tions new service-oriented systems intended for remote extensions by third party developers,

and, these Web applications are still operational and accessible by end-users via their browsers.

The second category of state of the art is about the Web service composition approaches. We

56 Chap 3. Literature review

have shown the topic of (semi)-automatic composition of services has attracted more and more

researchers in last decades, especially in the search for reliable and semantic service composi-

tion. The third category of state of the art is about software architecture recovery. We pointed

out the important role of architecture recovery in system maintenance and evolution.

The following chapters of this thesis aim at presenting the proposed ideas, which are illus-

trated through a set of concrete examples and evaluated with real data.

Part II

Contributions

57

C
H

A
P

T
E

R

4
Formal model for Web applications and

Service oriented Systems

Mathematics as an expression of the human mind reflects the

active will, the contemplative reason, and the desire for

aesthetic perfection. Its basic elements are logic and intuition,

analysis and construction, generality and individuality.

RICHARD COURANT

59

60 Chap 4. Formal model for Web applications and Service oriented Systems

4.1 Introduction

In this chapter, we introduce (in section 4.2) an example of a Web application which serves as

a running example for illustrating our proposals throughout this dissertation. After that, we

introduce (in section 4.3) a formal description of the context of our work, which is composed of

Web applications and Web service-oriented systems. These formal definitions represent in an

unambiguous way the concepts used in Web applications which are the input of our method,

and the concepts used in Web service oriented systems, which are the output. Moreover, we

identify the properties that characterize the concepts in both systems, and define them using

a set-theoretic notation. In addition, this chapter illustrates how to use the proposed formal

model to represent our example of Web application and the desired Web service oriented ap-

plication that could be generated from this example.

4.2 Illustrative Example

Our example is an e-shopping Web application that offers to customers the opportunity to pur-

chase electronic devices. The seller offers also delivery capabilities to ensure the transportation

of the purchased items. The shopping process begins when the customer enters keywords for

searching products via a Web interface (HTML form) provided by the application. A set of items

which are relevant to these keywords are provided and distributed on HTML pages. The cus-

tomer can choose one or a set of items among the returned ones. The selected items are saved

in a virtual cart, and the total price is then calculated and provided via a Web interface. Once

the customer finishes the shopping, (s)he is asked to sign in or to register for a new account.

At the end, before proceeding to checkout, the delivery schedule is prepared and provided via

another Web interface.

4.2.1 Problem Statement

In this subsection, we remind via this illustrative example the problem stated in the introduc-

tion of this thesis. Let us suppose now that a third-party developer would like to implement an

extension to this Web application. This extension concerns services for the purchased items

(insurance against theft, breakage, fire, etc). This extension provides first to customers an in-

terface for searching products that are for sale by the original application. The customer selects

a set of desired products and chooses the quantity for each one. The extended version of the

application includes all the steps from the original version. However, it gives the opportunity

to choose an insurance service and then integrate its cost to the final amount.

So, there are some functionalities needed by this extension that are already provided by

the original application (eg. searching, payment and delivery schedule). Therefore, for imple-

menting this extension it would be interesting for the third-party developer if (s)he can use

4.2. Illustrative Example 61

functionalities which are provided by the original application instead of implementing them

from scratch.

In order to implement this solution, the third-party developer should have access to the

functionality provided by the Web application differently than via its Web interfaces. Indeed,

if (s)he uses only these Web interfaces, (s)he should send from her(his) programs the neces-

sary HTTP requests, with customized parameters, and should then parse the returned HTTP

responses. This parsing involves an analysis of the responses in order to look for some specific

parts which are of interest. In our example, the third-party developer should implement a pro-

gram that sends an HTTP request to the server hosting the Web application, with for example

the reference(s) of the product(s) (chosen by the customer). The parsing should identify the

price of the purchased items, among other elements. As stated in the introduction, this task is

time-consuming, cumbersome, and error-prone. In addition, the developer should know the

exact type and structure of the HTTP requests and responses.

Moreover, unfortunately, there is no means to directly publish some services of the applica-

tion for third party development. Even if stubs can be generated and provided for client appli-

cations, these stubs are generally language-dependent (only Java clients can use stubs gener-

ated for EJBs) and cannot be published, as they are, in libraries of services. Besides, the EJB 3.x

specification introduced some annotations to enable developers to publish some methods in

a bean as services. However, this is possible only for individual methods, and we cannot intro-

duce annotations to create composition of operations which we found in real-world business

logic. In addition, we cannot use these annotations to expose Web interfaces as Web services.

The same observations can be made on Eclipse tools (WTP project), which allow to generate

Web services starting from individual methods in Java classes.

4.2.2 Potential Web Services

As we have aforementioned in the introduction of this thesis, one of the best solutions for the

previous problem is to enable the Web developer to create starting from the Web application a

set of Web services suitable for remote extensions. In the presented example, the created Web

services could be: a Searching Service for searching items, a Cart Service to manage a virtual

shopping cart, an Account Service used to sign in or to register for a new account, a Delivery

Service and a Payment Service.

The application extension scenario introduced previously can easily be implemented by

remotely invoking the Web service operations. The extension of the shopping Web application

can even be built simply as a BPEL process by invoking the Searching Web service using the

reference of the chosen product as input. The returned price is added to the insurance’s price.

The BPEL process makes the payment of the purchased products (without insurance) from

62 Chap 4. Formal model for Web applications and Service oriented Systems

the original Web application by invoking the generated Payment Web service. After that, to pay

the insurance costs, the BPEL process invokes an operation that is implemented by the third

party developer. At the end of this process, it invokes the Delivery Service.

4.3 Web applications and Service oriented Systems

Before presenting the details of our approach and how Web service-oriented systems can be

derived from Web applications, we define in this chapter the different concepts used in our

approach. Indeed, we introduce formal descriptions of what composes Web applications and

Web service oriented systems. These formal descriptions provide a better understanding of

both kinds of software systems. In addition, this enables an accurate presentation in the fol-

lowing chapters of the processing performed on Web applications to generate Web service sys-

tems.

These two formal models have been validated in the publication [Kerdoudi et al., 2016].

4.3.1 Web application Model

We adapt here the generic model of Briand et al. [Briand et al., 1996] to represent Web appli-

cations and their elements as a directed graph expressed using a set-theoretic notation. This

graph is expressed as a pair (E ,R), where E symbolizes a set of software entities found in a Web

application, namely, client side artifacts and server side artifacts. R is a binary re-

lation on E(R ⊆ E ×E). It corresponds to the relationships between Web application elements,

representing both structural and behavioral dependencies. Figure 4.1 gives an example of such

a representation for an imaginary Web application.

Definition 1 Representation of a Web application

SeS(ses3)

W P (w p1)C S(cs1)

W P (w p2)

SeS(ses1) SC (sc1)

SC (sc2) SC (sc3)

SeS(ses2)

submi t use

use

r edi r ect

use

bui ld

i ncl ude

cl i entScr i ptRequest

cl i entScr i ptResponse

Figure 4.1 : Structure of a Web application

4.3. Web applications and Service oriented Systems 63

A Web application is represented as a pair (E ,R), where

• E =C S A∪SS A with:

– C S A is the set of all client side artifacts which are HTML Web pages (W P in Figure 4.1)

and Client Scripts (C S in Figure 4.1).

– SS A is the set of all server side artifacts which are Server Scripts (SeS in Figure 4.1)

and Server Classes (SC in Figure 4.1)

• R is the set of all common and possible relationships between artifacts of Web applications

with:

– (C S A×SeS) corresponding to relationships between static Web pages and server side

scripts (such as submit, build, redirect, clientScriptRequest, among other re-

lationships in Figure 4.1)

– (SeS × SC) corresponding to relationships between server scripts and server classes

(eg. (ses1 use sc1) in Figure 4.1)

– (SeS × SeS) corresponding to relationships between server scripts (eg. redirect in

Figure 4.1)

– (SC ×SC) corresponding to relationships between server classes (eg. (sc1 use sc3) in

Figure 4.1)

– (C S A ×C S A) corresponding to relationships that exist between client side artifacts

(eg. (w p1 include cs1) in Figure 4.1)

For instance, for the example given in Figure 4.1 we have:

• C S A = { w p1, w p2,cs1}

• SS A = { ses1, ses2, ses3, sc1, sc2, sc3}

• R = {(w p1 include cs1), (ses2 build w p2),...}

Representation of a Web Interface

A Web (user) interface (UI) may be formally defined as a subgraph of the graph representing

the Web application to which it belongs. Thus, a Web UI is defined by a pair (Ewui ,Rwui) such

as: Ewui = (C S Awui ∪SS Awui) with (C S Awui ⊆C S A)∧ (SS Awui ⊆ SS A)∧ (Rwui ⊆ R)

A Web UI consists of server pages, client static pages and client built pages. The server

pages are deployed on the Web server and could manipulate some server classes; client static

pages have a static content which is composed of HTML tags; the content of client built pages

is generated on the fly by the server pages after processing user’s requests.

64 Chap 4. Formal model for Web applications and Service oriented Systems

W P (showC ar t .html)

W P (car tDet ai l s.html)

SeS(tot alPr i ceInC ar t . j sp)

SC (I tem. j ava)

SC (Pr oduct s. j ava)

submi t

use

use

bui ld

Figure 4.2 : A subgraph representing the Cart Web Interface

Example of a Web Interface SubGraph

Considering our example of the e-shopping application. In the Cart Web UI the total price of

all saved items in the user’s cart is calculated and presented to users via a Web interface.

Figure 4.2 shows a subgraph that represents the Cart Web UI 1 where,

• W P = { showC ar t .html ,car tDet ai l s.html }

• SeS = {tot alPr i ceInC ar t . j sp}

• SC = { I tem. j ava, Pr oduct s. j ava }

• R={(tot alPr i ceInC ar t . j sp use I tem. j ava),... }

In this subgraph, the user can access the cart through the client page showC ar t .html .

In order to calculate the total price of the products in the cart, the user can submit data

(such as product references and quantities) to the server script located in the JSP page

tot alPr i ceInC ar t . j sp. As a result, the total price is displayed to the user via the client page

car tDet ai l s.html .

Properties of server side artifacts

We define a set of structural and behavioral properties related to server side artifacts as

follows:

• Request Parameters: are the data entered by users when manipulating a Web interface

and which are processed by a server side script.

1This subgraph is used as an illustrative example throughout this thesis

4.3. Web applications and Service oriented Systems 65

For each element ses ∈ SeS,

RP (ses) is the set of request parameters which are processed by the server script ses.

• Environment Objects: Each server side script could manipulate a set of environment

objects such as session variables, cookies and business objects in order to store and share

user’s data.

For each element ses ∈ SeS,

EO(ses) is the set of environment objects which are manipulated by the server script ses.

• Produced Contents: For each element ses ∈ SeS,

PC (ses) is the set of produced contents by a server side script as a result of processing

user’s requests.

• Statements of Server Scripts: For each ses ∈ SeS, St at s(ses) is the set of all state-

ments declared in ses.

• Methods of Server Classes: For each sc ∈ SC , M(sc) is the set of all methods declared

in a server class sc.

• Method parameters: Each server method has a set of parameters, where

For each method m ∈ M(sc),

I Par (m) is the set of input parameters of m and OPar (m) is the set of output parameters

of m.

• Navigation Condition: NC (w p) represents the associated navigation condition to a

Web page w p. It states that the user action navigates dynamically from the Web page w p

to another page. In most web applications, navigation is not static. The page flow does

not just depend on which button the user clicks, but also on the input value that (s)he

introduces. For example, submitting a login page may have two outcomes: success or

failure. The outcome depends on a computation (result of reference method invocation),

namely, whether the username and password are valid.

The presented model and the set of definitions are used later throughout the thesis.

4.3.2 Web Service Oriented System Model

Perepletchikov et al. [Perepletchikov et al., 2007] extended the generic model proposed by

Briand et al. [Briand et al., 1996] and proposed a model covering structural and behavioral

properties of the design artifacts in service-oriented systems. We adapt this model for repre-

senting the generated Web Service oriented application as a graph. In this graph, the WSDL

files are used as service interfaces and object-oriented (OO) classes are implementations for

the primitive Web services. BPEL processes are used as implementations of the generated Web

66 Chap 4. Formal model for Web applications and Service oriented Systems

service orchestrations. Fig. 4.3 shows an example of a graph representing the software entities

of an imaginary Web service-oriented application.

Definition 2 Representation of a Web Service-oriented System

A Web service-oriented system is represented as a pair (Esos ,Rsos), where

• Esos = SI ∪BP ∪C ;

• SI is a set of all service (WSDL) interfaces;

• BP is a set (possibly empty) of all BPEL processes that implement the WSDL service inter-

faces of the Web service orchestrations;

• C is a set of all OO classes that implement WSDL service interfaces of primitive Web services

;

• Rsos is the set of all common and possible relationships between the sets SI , BP and C .

So, Rsos = IIR∪ISR∪WSR with,

– IIR (Interface Implementation Relationship) represents relationships between ser-

vice interface and service implementation elements. A Service interface could be im-

plemented using OO classes and/or business processes.

– ISR (Internal Service Relationship) represents relationships between classes. Two

classes in a given service could have a dependency relationship when an object of

the first class invokes the methods (on objects) of the second class.

– WSR (Web Service Request Relationship) represents relationships between a class (or

a Business process) of a particular service and a service interface of another service.

A class (or BPEL process) can invoke the operations defined in the service interface of

another service.

For instance, for the graph given in Figure 4.3 we have:

• SI = {si1, si2}

• C = {c1,c2,c3,c4,c5,c6}

• BP = {bpel1}

• R= {(si1 IIR c1), (c1 ISR c2), (c3 WSR si2),...}

4.3. Web applications and Service oriented Systems 67

SI (si1)Ser vi ce(ser1)

C (c1)

C (c2) C (c3)

C (c4)

I I R I I R

I SR

I SR

I SR

SI (si2)Ser vi ce(ser2)

C (c5)

C (c6)

BP (bpel1)
I I R I I R

I SR

W SR

Figure 4.3 : Structure of a Web Service-oriented System

A Web service may be formally defined as a subgraph of the graph representing the Web

service-oriented system to which it belongs. Thus, a Web service is defined by a pair (Es ,Rs): Es

= (SIs ∪BPs ∪Cs) where (SIs ∈ SI)∧ (BPs ⊆ BP)∧ (Cs ⊆C)∧ (Rs ⊆ R) with,

• A Web service has only a single service interface SIs

• Each Web service exposes a set of operations, where

– For each element e ∈ SI ∪BP ∪C ,

O(e) is the set of operations of e.

– For each operation o ∈ O(e), I Par am(o) is the set of input parameters of o;

OPar am(o) is the set of output parameters of o.

– For each operation o ∈O(e)∧e ∈C , Code(o) is the set of all statements of o.

Example of Web service-oriented system graph

Returning to the Cart Web UI presented previously (Section 4.3.1), Fig. 4.4 shows a graph

SOSsos1 = (Esos1,Rsos1) that represents the Web services which could be generated starting

from this Web UI.

68 Chap 4. Formal model for Web applications and Service oriented Systems

SI (w sdlC ar t)Ser vi ce(ser1)

C (C ar tSer vi ce)C (I tem)

I I R

I SR

SI (w sdlPr oduct s)Ser vi ce(ser2)

C (Pr oduct sSer vi ce)
I I R

W SR

Figure 4.4 : A subgraph that represents the generated Web services from the Cart Web Interface
(SOS1)

• SI = {w sdlC ar t , w sdlPr oduct s}

• C = {C ar tSer vi ce, I tem,Pr oduct sSer vi ce}

• BP = {}

• R = {(w sdlC ar t IIRC ar tSer vi ce), (C ar tSer vi ce WSR w sdlPr oduct s),...}

In this subgraph, Ser vi ce(ser 1) represents the generated Web service starting from server

scripts in the Cart Web UI and Ser vi ce(ser 2) represents the generated Web service start-

ing from the server class Pr oduct s. j ava. The W SR relationship represents an invocation

to an operation published in w sdlPr oduct s interface from the source code of the class

C (C ar tSer vi ce). This relationship represents an invocation from a server script in the Cart

Web UI to a method (this method is exposed later as a Web service operation) located in the

Pr oduct s. j ava class.

4.4 Summary

In this chapter, we illustrated through a concrete example, the need for shifting starting from

Web application systems into Web service-oriented systems. In order to better understand both

kinds of software systems and to present more accurately our migration process, we have pro-

posed a model that represents formally these two systems. Thus, we have used this formal

model to illustrate how our example of Web application and the desired service oriented system

are represented in an unambiguous way as two directed graphs expressed using a set-theoretic

notation. The migration process is then considered as a mapping between graphs. The prop-

erties that characterize the concepts in both systems are also mathematically defined as sets.

4.4. Summary 69

In the two next chapters, we use these formal definitions to present the migration of Web

applications toward individual and composite Web services. The approach is explained using

a set of procedures and functions that use this formal model.

C
H

A
P

T
E

R

5
Migrating Component-Based Web

Applications to Web Services : Towards
Considering a "Web Interface as a

Service"

The rise of Google, the rise of Facebook, the rise of Apple, I

think are proof that there is a place for computer science as

something that solves problems that people face every day.

Eric SCHMIDT.

71

72
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

5.1 Introduction

This chapter covers the heart of this thesis, we present our solution for migrating Web appli-

cations toward Web service-oriented systems. In section 5.2, we give a general overview of

the proposed approach. The proposed approach is a multi-step process which is explained

through an algorithm proposed in this chapter. All the details about the processing performed

on Web applications in order to generate primitive Web services are presented in the remain-

ing sections. In addition, we use our formal models (presented in Chapter 4) to present the

migration of Web applications to Web service-oriented systems as a mapping of graphs.

5.2 Approach Overview

The creation of Web services from Web applications is a semi-automatic multi-step process.

This is illustrated in Fig. 5.1. The dashed boxes in the process represent steps where the devel-

oper is involved. This process begins by receiving from the developer as input the source code

and the configuration files of the Web application to be analyzed. A set of primitive and com-

posite Web services are provided as output. To present the details of our approach accurately,

we use the previous formal definitions to represent the input Web application as a pair (E ,R)

and the desired Web service oriented solution as another pair (Esos ,Rsos). Moreover, we show

how to generate the Web service oriented application as a mapping from a Web application

graph to a Web service-oriented system graph. The Algorithm 1 introduces a sequence of the

main functions and procedures used to apply this mapping. In this algorithm, we follow the

same logic of steps in Fig. 5.1. The transformation process is composed of five steps.

A first version of this process was published initially in ECSA conference [Tibermacine et

Kerdoudi, 2010], CAL conference [Tibermacine et Kerdoudi, 2011] and ICWS conference [Tiber-

macine et Kerdoudi, 2012]. After that, our method was detailed and published in the Service

Oriented Computing and Applications journal [Kerdoudi et al., 2016].

In the following we give a brief description of each step in the proposed process.

1. Operation Extraction First, each element in a Web application is statically parsed to

identify the potential set of operations. The operations can be identified starting from

existing methods in server classes (see Line 3 in Algorithm 1) and from the server scripts

that provide functionalities via Web UIs (see Line 5).

2. Input and Output Message Identification The input and output messages related to each

identified operation in the Web services are extracted starting from the parsed elements

in the Web component. In this step, many aspects of Web application are taken into

consideration such as: HTTP requests and HTTP responses, session variables, cookies,

client-side scripts and their direct HTTP requests, in-line documents, among others.

5.2. Approach Overview 73

Figure 5.1 : The Proposed Migration Process

3. Operation Filtering Then, all operations that must not be published in Web services are

eliminated. This needs the contribution of the developer. (S)he should manually remove

these unwanted operations. Besides, we provide to the developer a way for specifying

constraints so that the operations that are recurrently unwanted can be automatically

removed (see Line 9).

4. Operation Distribution After that, the remaining operations are grouped in Web services

based on two criteria (see Line 10). Similar operations (lexically) are distributed on dif-

ferent Web services to ensure some level of reliability. The tightly coupled operations are

grouped together in a single Web service. This grouping increases at the same time the

performance and helps developers in the evolution and maintenance of the generated

services. Besides, each created Web service is represented as a subgraph of the output

graph.

5. Composite Web Service Creation

In this step, the potential dependencies between the different selected operations in the

Web services are identified. There are two kinds of dependencies between operations:

(i) Operation-call dependencies which give rise to Web service choreographies. The

identified dependencies between Web services are represented using the W SR relation-

ships (see Line 11). (ii) Web navigation relationships which allow to generate a set of

Web service orchestrations. The generated orchestrations are represented and added as

additional subgraphs of the output graph (see Line 12).

74
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

Algorithm 1 From a Web application model to a Web service-oriented system model

Input: Web application model W A = (E ,R)
Output: Web service-oriented system model SOS = (Esos ,Rsos)

1: for all e ∈ E do
2: if e ∈ SC then
3: s = i denti f yE xi st i ngOper ati ons(e)
4: else if e ∈ SeS then
5: s = i denti f yOper ati onsF r omW ebInter f aces(e)
6: end if
7: add (s, SOS)
8: end for
9: f i l terUnw antedOper ati ons(SOS,oclConstr ai nt s)

10: di str i buteOper ati ons(SOS)
11: cr eateC hor eog r aphi es(SOS)
12: cr eateBPELPr ocesses(SOS)
13: return SOS

Hereinafter, we detail each function in the process. In this chapter, we present the details

of the four first steps, which concern the generation of individual Web services. The details of

the composition of these Web services is presented in Chapter 6.

5.3 Operation Pool Construction

In this step of our approach a pool of operations is constructed by parsing the Web application’s

contents. Two kinds of operations are created. This step of our approach has been validated in

the publications [Tibermacine et Kerdoudi, 2012] and [Kerdoudi et al., 2016].

5.3.1 Identification of Existing Operations

These operations are generated starting from the existing methods and functions in the back-

end components of the Web application. To do so, we statically parse different elements (e.g.

classes or server scripts) of the Web components forming the transformed application. All

methods in classes and functions in scripts are prepared to be considered as potential op-

erations in Web services. For instance, in the example presented in section 4.3.1 the public

methods that are declared in the Pr oduct s. j ava class are transformed into new operations.

Algorithm 2 shows how to create a service containing operations that are generated starting

from existing public methods in a server class.

Therefore, the service interface and its implementation class are created here (see Lines 3

to 5 in Algorithm 2).

Algorithm 3 gives the details of how to create operations. Each access to global variables

5.3. Operation Pool Construction 75

Algorithm 2 Identify Existing Operations

1: function IDENTIFYEXISTINGOPERATIONS(ser verC l ass : SC)
2: s = create Ser vi ce : s=(SIs ,BPs ,Cs ,Rs) . s is subgraph of a service
3: w sdl = create Ser vi ceInter f ace : w sdl ∈ SIs

4: c = createC l ass : c ∈Cs

5: r = create IIR : r = (w sdl IIR c) ∧ r ∈ Rs

6: for all m ∈ M(ser verC l ass) do
7: if i sPubli c(m) then
8: cr eateNewOper ati on(s,c,m, w sdl)
9: end if

10: end for
11: return s
12: end function

or attributes from the source code of the identified methods and functions is transformed into

additional parameters (see Line 5 in Algorithm 3). This makes these operations stateless. More-

over, each server class and all their dependent internal classes (which does not publish opera-

tions) are grouped together to form a Web service (see Lines 7 to 12 in Algorithm 3).

Algorithm 3 Create New Operation

1: function CREATENEWOPERATION(s : SOS,c : Cs ,m : M(c), w sdl : SIs)
2: op = create Oper ati on : op ∈O(c)∧op ∈O(w sdl)
3: I Par am(op) = I Par (m)
4: OPar am(op) = OPar (m)
5: I Par am(op) = I Par am(op)∪UsedGl obalV ar In(m)
6: Code(op) = St at s(m)
7: for all usedC l ass ∈ g etUsedC l assesIn(Code(op)) do
8: if usedC l ass does not publish operations then
9: c1 = createC l ass : c ∈Cs

10: i sr = create ISR : i sr = (c ISR c1) ∧ i sr ∈ Rs

11: end if
12: end for
13: end function

5.3.2 Creation of New Operations from Web Interfaces

The main entities of a Web application are the Web user interfaces that consist of server’s pages

and client’s pages. Through client pages, the end-users can submit data to server-side scripts

and through which they can receive the processing results.

The public functionalities which are accessible via Web interfaces from end-users are trans-

formed into new operations. These operations have as parameters the data entered by users

when manipulating the Web interface (data entered in forms, for example), and have as output

76
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

the results returned by the scripts processing the data entered by the users. In other words,

the code present in programs executed at the server-side (JSP or PHP scripts, for example) is

grouped within new operations and formatted to be executed as stand-alone code. For exam-

ple, all the code present in scriptlets of a JSP page which implements a provided functionality

to users is grouped and formatted within a single operation. For instance, in the Web inter-

face presented in section 4.3.1, the code present in scriptlets of tot alPr i ceInC ar t . j sp server

page is formatted within a new operation exposed by the w sdlC ar t interface in Fig. 4.4. More

details about this transformation is given in the next section.

Therefore, the Web interfaces that use a secure protocol such as TSL(SSL) [Dierks et

Rescorla, 2006] to protect the exchanged messages content or to authenticate the client by us-

ing a client’s public key certificate are migrated toward a secure Web service that uses the same

protocol. Indeed, the source code that implements the TSL(SSL) protocol in the Web interface

is formatted to be a secure Web service. In this way, our approach will not weaken the migrated

Web application security level.

Besides, a Web interface may include a Frameset composed of one or more frames, and

in each frame, there is a content which could be dynamically loaded from elsewhere (Web in-

tefaces, texts, images, etc.). For example, the <iframe src="URL"> tags are used to embed

another content (HTML, JSP, PHP...) within a given HTML, JSP or PHP document. For such

tags, the inline frame (document) sometimes corresponds to a Web interface, which has been

transformed into a Web service. In this case, an invocation to this Web service is added in the

source code of the operation created starting from the currently analyzed Web interface. This

invocation allows to retrieve some data from the server.

Algorithm 4 shows how to create a Web service subgraph starting from a Web interface sub-

graph. First, the service interface and its implementation class are created (see Lines 3 to 5).

After that, a new operation is created from the Web interface (see Lines 6 to 9). This operation

and its internal dependent classes are grouped within a Web service (see Lines 10 to 15). In

other words, for each dependent class, we create a node of type Cs . This node is connected

to the class that implements the service with an I SR relationship. For example, in Fig. 4.4 the

C (I tem. j ava) class is an internal class used by the C (C ar tSer vi ce) class. Additional opera-

tions are also generated from the existing methods in the server page (see Lines 16 to 20).

5.4 Input and Output Message Generation

Based on the result of the first step, the input and output messages related to each operation

in Web services are identified and generated starting from the parsed elements in the Web ap-

plication: i) For operations in classes and other structured code elements, the parameters and

the returned values are formatted as (respectively, input and output) SOAP messages (see Lines

3 and 4 in Algorithm 3); ii) The saved data in HTTP requests and HTTP responses are parsed

5.4. Input and Output Message Generation 77

to extract new input and output messages (see Lines 7 and 8 in the Algorithm 4); iii) The used

environment objects (session variables, cookies and business objects) by the Web interface are

considered as input and output messages (see Lines 7 and 8 in Algorithm 4). This step of our

migration process and the used examples have been validated in the publication [Kerdoudi et

al., 2016].

Algorithm 4 Identify Operations From Web Interfaces

1: function IDENTIFYOPERATIONSFROMWEBINTERFACES(ser verC l ass : SeS)
2: s = create Ser vi ce : s=(SIs ,BPs ,Cs ,Rs) . s is subgraph of a service
3: w sdl = create Ser vi ceInter f ace : w sdl ∈ SIs

4: c = createC l ass : c ∈Cs

5: r = create IIR : r = (w sdl IIR c) ∧ r ∈ Rs

6: op = create Oper ati on : op ∈O(c)∧op ∈O(w sdl)
7: I Par am(op) = RP (ses)∪EO(ses)
8: OPar am(op) = PC (ses)∪EO(ses)
9: Code(op) = F i l ter (St at s(m))

10: for all usedC l ass ∈ g etUsedC l assesIn(Code(op)) do
11: if usedC l ass does not publish operations then
12: c1 = createC l ass : c ∈Cs

13: i sr = create ISR : i sr = (c ISR c1) ∧ i sr ∈ Rs

14: end if
15: end for
16: for all meth ∈ decl ar ed Method In(ses) do
17: if i sPubli c(m) then
18: cr eateNewOper ati on(s,c,meth, w sdl)
19: end if
20: end for
21: return s
22: end function

5.4.1 Dealing with HTTP requests and HTTP responses

The code present in the server programs (e.g. server pages like JSP or PHP pages) is parsed to

extract the input values received in the HTTP requests (by identifying the statements getting

values from HTTP requests). Their types are deduced from the parsed code by analyzing type

casts and other conversion statements. This is directly possible in statically typed scripting

languages like JSP and C]. For dynamically typed ones (like PHP or Python), we use external

tools for type inference. In addition, the shared objects (such as JavaBeans instances), which

are used across multiple Web interfaces, are considered as additional input parameters for the

generated operation. In this way, the saved data in these objects can be passed from an opera-

tion to another in order to compose them.

78
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

Furthermore, the contents produced by the server programs, which are viewed at the client

side (this content is produced using statements such as: JSP expressions or out.println(...)

for JSP and PHP’s echo() or print() function calls), are considered as output values. The

types of these values are extracted from the code and defined in the generated SOAP messages.

The arguments of the out.println(...) or echo(...) methods can be variables, method

invocations or expressions. For variables, we get their type from the parsed code. In the case

of method invocations, the type of the generated output message corresponds to the returned

type of the invoked method. The expressions can be a concatenation of texts and values of

variables and/or method invocations. In this case, the values from method invocations and the

variable accesses are extracted to be added as output values of the generated operation. The

text is added as another output.

Let us consider the Cart Web UI of our example presented in Section 4.3.1. This interface

allows users to calculate the total price of her/his items. Listing 5.1 shows an excerpt of the code

present in the tot alPr i ceInC ar t . j sp server script. Two input messages are identified start-

ing from the request.getParameterValues(...) statements (see Lines 8 and 9). They cor-

respond to the references of the selected items to be purchased and the quantities wanted

by the user for each selected item. Another input message is extracted from the used JavaBean

object prods. For the subgraph created for this Web interface (see Fig. 4.2), we represent these

values as: RP={r e f er ences, quanti t i es} and EO= {pr od s}.

1 <jsp:useBean class="shop.prod.Products" id="prods" scope="page"/>

2 <%!

3 String[] references;

4 String[] quantities;

5 double totalPrice = 0;

6 %>

7 <%

8 references = request.getParameterValues("references");

9 quantities = request.getParameterValues("quantities");

10 if(references != null){

11 for(int i = 0; i < references.length; i++){

12 Item item = prods.getItemByReference(references[i]);

13 double unitPrice = item.getUnitPrice();

14 int quantity = Integer.parseInt(quantities[i]);

15 totalPrice = totalPrice + calculateTPrice(unitPrice, quantity);

16 }

17 }

18 %>

19 <%= totalPrice %>

LISTING 5.1 : An excerpt of the code present in the Cart Web interface

5.4. Input and Output Message Generation 79

The type of the references input is an array of Strings. From the conversion statement (see

Line 14) we have deduced that the type of quantities is an array of Integers.

Finally, we have deleted from the source code of the generated operation: the conver-

sion, the cast and the request.getParameterValues(...) statements (Lines 8, 9 and 14 in

Listing 5.1). The returned value of the generated operation is the result saved in the variable

totalPrice and bound to the Web interface using a JSP expression (Line 19). This is used to

create an output SOAP message of type Double (in our subgraph, we have PC = {tot alPr i ce}).

After applying the two first steps and making the necessary modifications for the previous

source code, a new operation is created (see Listing 5.2). For that, four input parameters and a

returned value are identified.

1 public double serviceTotalPriceInCart(String[] references, int[] quantities, shop.

prod.Products prods){

2 double totalPrice = 0;

3 if(references != null){

4 for(int i = 0; i < references.length; i++){

5 Item item = prods.getItemByReference(references[i]);

6 double unitPrice = item.getUnitPrice();

7 int quantity = quantities[i];

8 totalPrice = totalPrice + calculateTPrice(unitPrice, quantity);

9 }

10 }

11 return totalPrice;

12 }

LISTING 5.2 : An excerpt of the generated operation from the Cart Web interface

Fig. 4.4 shows the subgraph that represents the generated Web service from the Cart Web

interface and the server class Products, where, the following values represent these services.

• O(C ar tSer vi ce) ={tot alPr i ceInC ar t , calcul ateT Pr i ce,...}

• I Par am(tot alPr i ceInC ar t)= {r e f er ences, quanti t i es, pr od s }

• OPar am(tot alPr i ceInC ar t) = { tot alPr i ce}

• I Par am(calcul ateT Pr i ce)={uni tPr i ce, quanti t y}

• OPar am(calcul ateT Pr i ce) = {T Pr i ce}

• O(Pr oduct s) = {g et I temB yRe f er ence, g et I temDet ai l s,...}

80
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

5.4.2 Handling Session Objects

Most of Web applications manage session variables in order to store and share the user’s data

when (s)he navigates from a Web interface to another one. To avoid losing this data and make

possible using them in the composition of the generated Web services from the Web interfaces,

we consider these values as additional input and output messages.

The user’s data that is stored in these session objects could be used as constraints for ac-

cessing other Web interfaces when the user navigates in the application. Therefore, the output

messages that are generated from the first Web interface are considered as the input to the

generated services from the navigated Web interfaces. This ensures that these services are not

freely accessible (preserve security). In order to generate these messages, we parse the code

present in operations that use session variables.

In our illustrative example, the addItem Web interface is used to add a new item into a vir-

tual cart. Listing 5.3 shows an example of using session variables to store information about the

cart. The quantity and the reference are identified and considered as input messages. They

are identified after the parsing of the request.getParameter(...) statements (as explained

in the previous section).

1 <%

2 Cart currentCart =(Cart) session.getAttribute("currentCart");

3 // return the object bound with the name ’currentCart’ in this session, or null if

no object is bound under this name

4 Cart newCart = null;

5 if (currentCart == null){

6 //binds a new object ’newCart’ to this session using the name "currentCart"

7 newCart = new Cart();

8 session.setAttribute("currentCart",newCart);

9 }

10 else {

11 newCart = (Cart) session.getAttribute("currentCart");

12 }

13 String StrQuantity = request.getParameter("quantity");

14 int quantity = Integer.parseInt(StrQuantity);

15 if (quantity > 0){

16 String reference = request.getParameter("reference");

17 // update the Cart and the object bound the this session

18 newCart.addItem(reference,quantity);

19 }

20 out.println(newCart.getTotalPrice())

21 %>

LISTING 5.3 : An excerpt of a server script present in the addItem Web interface

5.4. Input and Output Message Generation 81

Now, statements such as session.getAttribute(...) (see Lines 2 and 11) return the objects

bound to the name ’currentCart’ specified in this session. So, this object is transformed

into an additional input. The session objects can be updated in the source code (see Line 18).

For this reason, they are also considered as output messages of the generated operation. After

analyzing the cast statements in Lines 2 and 11, we have deduced that the concrete type of the

’currentCart’ message is Cart.

In addition, the parsing of statements that are used to bind an object to a session such

as: session.setAttribute(...,...) generates additional output messages. For example,

from the Line 8, we create an output message named ’currentCart’. At the end, an addi-

tional output message corresponding to the calculated price is generated from the parsing of

the statement out.println(...) (see Line 20). The type of this output corresponds to the

returned type of getTotalPrice method that is Double. Listing 5.4 shows an excerpt of the

newly created operation. It allows to add a new item in the virtual cart. This operation receives

three input messages (reference, quantity and currentCart) and returns a composed mes-

sage that contains the new total price and the updated virtual cart. However, the statements

that use session variables are removed from the code of this operation.

1 public AddItemOutput serviceAddItem(String reference, int quantity , Cart

currentCart){

2 Cart newCart = null;

3 if (currentCart == null){

4 newCart = new Cart();

5 currentCart = newCart;

6 }

7 else {

8 newCart = currentCart;

9 }

10 if (quantity >0){

11 newCart.addItem(reference,quantity);

12 }

13 return (new AddItemOutput(newCart.getTotalPrice(), currentCart));

14 }

LISTING 5.4 : An excerpt of the generated operation from addItem Web interface

5.4.3 Dealing with Cookies

Actually, the server can maintain information about user sessions in many ways such as using

cookies. In our approach, the used set of cookies is considered as input and output messages.

The statements which are used to access and to modify the saved cookies (e.g. in a JSP page,

request.getCookies() and response.addCookie(...)) are identified and replaced in the

body of the new generated operation with equivalent statements accessing these new mes-

82
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

sages. Listing 5.5 shows an example of using cookies to save information about user authenti-

cation in the signIn Web interface.

The parsing of this code has identified one input message which is defined starting from

the request.getCookies() statement (see Line 2). This input value corresponds to a set of

cookies that are used in the generated operation’s code. This set of cookies is returned as out-

put message of this operation in order to be used as input of another operation generated from

another Web interface that uses these cookies. In this way the composition of these two oper-

ations would be easier.

1 <%

2 Cookie[] cookies = request.getCookies();

3 String email = "", password ="";

4 if(cookies != null){

5 for(Cookie cookie : cookies){

6 if (cookie.getName().equals("email")){

7 email = cookie.getValue();

8 }

9 if(cookie.getName().equals("password")){

10 password = cookie.getValue();

11 }

12 }

13 AccountManager userId= new AccountManager();

14 if(userId.signIn(email,password)){

15 //

16 }

17 }

18 %>

LISTING 5.5 : An excerpt of code showing the using of cookies in the signIn Web interface

The generated operation has a body with the same code as the script shown above, except

the statement at Line 2. This Line is replaced with a statement which is used for extracting

the cookies from an object of type Collection (obj.getCookies()) received as an argument. In

addition, a “return" statement is added at the end of the operation’s body, which returns this

object (retun obj;).

5.5 Operation Filtering

In this step, the identified pool of operations is filtered by eliminating the operations which

are not suitable to be published in Web services. For example, the modern Web applications

use Public and Private APIs. Thus, by this filtering task, we allow developers to eliminate all

operations that are identified from Private APIs. The filtering cannot be fully automated and it

5.5. Operation Filtering 83

needs the developer involvement. The developer is asked to choose among the selected oper-

ations those that are not interesting for a publication. A set of filtering expressions are made

available to be used and enriched by the developer. Some kinds of operations are recurrent

in most of applications. Therefore, the specified expressions could be reused by another devel-

oper in order to filter operations which are generated starting from other Web applications. The

developer will not have to specify them from scratch. These expressions are constraints that

are checked on an Ecore [Eclipse, 2009a] instance of a meta-model representing operations.

These instances of the meta-model are automatically built by analyzing the operations’ code.

Constraints are Boolean expressions which are specified using OCL (Object Constraint Lan-

guage [OMG., 2006]). OCL has been chosen because of its simplicity [Briand et al., 2005] and

the existence of a good tool support (OCL Toolkit [Dresden., 2009], Eclipse MDT/OCL [Eclipse,

2009b], ...). The specified constraints navigate in the meta-model, which is illustrated in Fig-

ure 5.2. This meta-model is an excerpt of the UML meta-model (related to operations) [OMG.,

2011b] extended with some basic constructs.

The main meta-class in Figure 5.2 is Operation, which represents an identified operation

from the code. The Operation meta-class is associated to a Type meta-class which represents

the returned type of the operation. In addition, this operation could have a body and a set

of parameters. All constraints have as a context an instance of the Operation meta-class. An

example of a constraint is given below:

context Operation inv :

not (self.body.usedType ->includes(t | t.name=’HTTPSession’))

This OCL constraint states that the operations which use the session standard script variable

must not be selected.

context Operation inv :

not ((self.returnedType.name= ’void’) and

(self.name.substring(1,3) = ’set’) and

(self.ownedParameter->size() = 1) and

self.body.statement->exists(kind = ’AssignmentStatement’ and

isFieldAccess = ’true’)

In this example, all operations that represent field accessors (for example, setter methods) are

eliminated.

84
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

Figure 5.2 : The Operation Meta-model

The operation filtering approach has been validated in the publications [Tibermacine et

Kerdoudi, 2010], [Tibermacine et Kerdoudi, 2012] and [Kerdoudi et al., 2016].

5.6 Operation Distribution in Services

The extracted operations are distributed on multiple Web services based on the following cri-

teria:

5.6.1 Grouping Criterion

We group operations based on the cohesion and coupling criteria. We argue that an optimal

granularity is the key to a well-designed service. Service granularity generally refers to the per-

formance and size of a service [Kulkarni et Dwivedi, 2008]. The data granularity is one of service

granularity types [Haesen et al., 2008]. It reflects the amount of data that is exchanged with a

service. A good grouping of the identified operations in Web services has a positive impact on

the data granularity. In our approach, the highly coupled and cohesive operations are grouped

together in a single Web service. And, the loosely coupled operations are distributed on mul-

tiple services. This strategy of grouping reflects a low amount of data which is exchanged and

reduces the communication overhead. Hence from the service quality viewpoint, we increase

the performance and the maintainability of the generated services.

5.6. Operation Distribution in Services 85

The cohesion of a service is assessed based on the degree of the strength of functional re-

latedness of operations within a service. We measure the cohesion of a service by analyzing the

static invocations between operations within that service. Several cohesion metrics have been

proposed in the literature in order to measure the cohesion of a class in an object-oriented

system [Briand et al., 1998]. We believe that one of these metrics can be used to evaluate the

cohesiveness of the generated Web services. The LCOM (Lack of Cohesion in Methods), TCC

(Tight Class Cohesion) and LCC (Loose Class Cohesion) are one of the most used metrics to

measure cohesion between public methods in a class. The problem with LCOM metric is that

such metric only helps in identifying the absence of cohesion rather than its presence [Etzkorn

et al., 2004]. On the contrary, we need in our work to measure the presence of cohesion in Web

services. For this reason we use the TCC and LCC metrics to measure service cohesion. To

do so, we start with a flat organization of operations (all operations are distributed in one Web

service). Then, we calculate TCC and LCC to check the cohesiveness of this Web service. If

the service is not cohesive, we split it into set of low coupling services and we check again the

cohesiveness of each one of them. We repeat the measurement until the produced services are

“quite cohesive".

To measure the TCC , we consider a Web service with N operations. NP is the maximum

number of operation’s pairs:N P = [N ∗ (N −1)]/2. The N DC is the number of direct connec-

tions between operations. Then TCC is defined as the relative number of directly connected

operations: TCC = N DC /N P .

To measure LCC , we consider NIC is the number of indirect connections between opera-

tions (when two operations are connected via other operations). LCC is defined as the relative

number of directly or indirectly connected operations: LCC = N DC +N IC /N P .

According to [Badri et Badri, 2004], a class (a service in our case) is considered non-cohesive

when TCC < 0.5 and LCC < 0.5. If LCC = 0.8 the class is considered "strongly cohesive". If

T CC = LCC = 1 then the class is maximally cohesive, which means all methods are connected.

In our approach, we experimentally tested these metrics and we found out that with TCC > 0.5

or LCC > 0.5 the obtained Web services are “quite cohesive”.

Algorithm 5 shows how the grouping is performed. First, each group of operations is rep-

resented with a graph which is expressed as a pair (OP,CON), where OP symbolizes a set of

operations. CON is a binary relation on CON (⊆ OP ×OP). It corresponds to the direct and

indirect connections between operations.

The input of this algorithm is a group that contains all the identified operations. The output

is a set of cohesive Web services.

First, we try to find the best grouping (best level of cohesiveness) by measuring the TCC . If

TCC > 0.5 we conclude that the Web service is "quite cohesive". In this case, we do not need

86
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

Algorithm 5 Grouping Operations

1: function GOUPINGOPERATIONS(C L = (OP,CON)))
2: T CC = calcul ateTCC (C L)
3: if T CC > 0.5 then
4: return T RU E
5: else
6: LCC = calcul ateLCC (C L)
7: if LCC > 0.5 then
8: return T RU E
9: else

10: if existExplicitGroups(CL) then
11: expl i ci tGr oups = spl i t (C L)
12: for all g r oup ∈ expl i ci tGr oups do
13: g oupi ngOper ati ons(group)
14: end for
15: else
16: i mpl i ci tGr oups = g et Impli ci tGr oups(C L)
17: for all g r oup ∈ i mpl i ci tGr oups do
18: g oupi ngOper ati ons(group)
19: end for
20: end if
21: return FALSE
22: end if
23: end if
24: end function

to calculate the LCC , because, the existing number of direct connections is enough, in order

to know if service is cohesive or not. Now, in the case of TCC < 0.5, the indirect connections

between operations that belongs to a service are used to assess the cohesiveness of that service.

Hence, we need to calculate the LCC . If LCC > 0.5 we consider the Web service is "cohesive"

although the T CC < 0.5. Now, if the LCC < 0.5 and TCC < 0.5, then the service is not cohesive.

In this case, we split the service into a set of explicit groups of operations (where, there are no

connections between these groups) (see Line 11). For each explicit group we invoke again the

grouping algorithm. Now, if there are no explicit groups, we identify the implicit groups where

there is a lowest coupling between them (see Line 16). And, we repeat the measurement for

each group.

For instance, the following operations are created starting from the e-shopping application:

• (op1) : boolean serviceLogin(String userName, String paswword)

• (op2) : boolean authenticate(String userName, String paswword)

5.6. Operation Distribution in Services 87

G1

G2 op1

op2

op3

op4

G3

G4

op8

op5

op6

op7 op9

G5

op11

op10

Figure 5.3 : Example of operations grouping

• (op3) : User getUserDetails(String userName)

• (op4) : boolean userRegistration(String firstname, String lastname, String address, int

mobile, String email, String password)

• (op5) : Item[] serviceProducts()

• (op6) : Item[] getAllItems()

• (op7) : Item[] getItemsByUser(String userName)

• (op8) : Item getItemDetails(String reference)

• (op9) : Item getItemByReference(String reference)

• (op10) : Double serviceTotalPriceCart(String[] references, int[] quantities)

• (op11) : Double calculateTPrice(Double unitPrice, int quantity)

Fig. 5.3 shows the dependencies between operations where, dashed lines represent the in-

direct connections between a pair of operations and solid lines represent direct connections

between them. The measurements give the following values:

88
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

• TCC(G1) = 6
55 = 0.10

• LCC(G1) = 6+6
55 = 0.21

• TCC(G2) = 3
6 = 0.5

• LCC(G2) = 3+2
6 = 0.83

• TCC(G3) = 3
21 = 0.14

• LCC(G3) = 3+4
21 = 0.33

• TCC(G4) = 1
10 = 0.10

• LCC(G4) = 1+4
10 = 0.5

• TCC(G5) = 1
1 =1

• LCC(G5) = 1
1 = 1

We have started with the group G1 which is not cohesive. G1 is divided into two explicit

groups (G2) and (G3). After that, (G4) and (G5) are created starting from (G3). Finally, the

obtained cohesive Web services are: G2 (op1, op2, op3, op4), G4(op5, op6, op7, op8, op9) and

G5(op10, op11).

5.6.2 Spreading Criterion

Similar operations are spread out in different Web services. In this way, for users of an operation

within a service, another service containing a similar operation can be easily and quickly found

at the same provider (reliability).

In other words, Web services are exposed to errors and failures for many reasons, such as,

the network is unreachable, the application server is unavailable or the service is not working

properly. Hence, the reliability of the programs (it could be an orchestration of Web services)

that invokes these services will be decreased. Several error-handling approaches are proposed

in the literature such as [Aït-Bachir, 2008], [Crasso et al., 2008], [Kokash, 2006] and [Tiberma-

cine et al., 2015]. Many of these approaches are based on finding a relevant service substitute

that replaces the failed service. For example in [Azmeh et al., 2011] and [Tibermacine et al.,

2015] the identification of the substitute is based on the measurement of similarity between

service interfaces.

In this work, a solution based on a comparison of operation signatures has been used. The

WSSim tool [Tibermacine et al., 2013] allows to measure the similarity between operations by

comparing the operations’ names and input and output messages. Table 5.1 shows the simi-

larity measurement results that are produced by WSSim for the operations that are depicted in

5.7. Web Service Deployment 89

Table 5.1 : Obtained similarity scores

op1 op2 op3 op4 op5 op6 op7 op8 op9 op10 op11

op1 1 0.74 0.53 0.73 0.57 0.41 0.51 0.50 0.49 0.63 0.55
op2 1 0.52 0.5 0.45 0.42 0.67 0.60 0.55 0.52 0.61
op3 1 0.53 0.55 0.61 0.70 0.70 0.56 0.38 0.50
op4 1 0.46 0.35 0.53 0.56 0.53 0.59 0.53
op5 1 0.42 0.49 0.50 0.49 0.52 0.47
op6 1 0.63 0.64 0.60 0.34 0.49
op7 1 0.76 0.79 0.38 0.51
op8 1 0.86 0.48 0.56
op9 1 0.59 0.53
op10 1 0.65
op11 1

Fig. 5.3. In this table, we give a score of similarity (between 0 and 1) for all pairs of operations.

The operations that have a similarity score that ranges between 0.80 and 1 are considered highly

similar. According to the obtained similarity assessment, we consider that operations op8 and

op9 are highly similar.

After the calculation of cohesion and similarity between the different operations, the next

step is to distribute these operations on Web services. In the current implementation, we assist

the developer for giving a new organization based on the obtained results from the cohesion

and similarity values. The proposed organization could then be manually updated by the de-

veloper. For example, we decide to move the operation (op8) from the Web service G4 into

G5. This moving does not have a negative impact on the cohesiveness of the obtained services.

This technique of operations distribution based on the grouping and spreading criteria has

been validated in the publication [Kerdoudi et al., 2016].

5.7 Web Service Deployment

The validated set of Web services is deployed on an application server chosen by the develop-

er/administrator of the Web component-based application. All system configuration parame-

ters should be specified in order to perform this activity. This can be fully supported by the tool

we developed if the hosting server is running on the same machine and if the developer/ad-

ministrator has all the access rights to this server. He should only specify the file system path

to the public directory of the server, which contains the Web service implementations.

Another alternative to the centralized deployment is the remote hosting. In this case, the

developer has thus the opportunity to host her/his Web services in a server which is running

in another execution context. The code is uploaded and then put in the correct directory of

the Web server. This is done via FTP and requires that the developer has all access rights. This

90
Chap 5. Migrating Component-Based Web Applications to Web Services : Towards

Considering a "Web Interface as a Service"

step of our approach has been validated in the publication [Tibermacine et Kerdoudi, 2010],
[Tibermacine et Kerdoudi, 2011] and [Tibermacine et Kerdoudi, 2012].

5.8 Summary

Recent research in software and information systems engineering emphasizes the need for

the proposition of new languages, methods, and tools for building systems by shifting from

a product-centric to a service-oriented view [Finkelstein et Kramer, 2000]. In this chapter, we

presented our solution of migrating Web component based application to Web Services: To-

wards Considering a "Web Interface as a Service". The proposed solution, is a multi-step pro-

cess for the transformation of Web applications into Web service-oriented ones. Web compo-

nents are seen here as software artifacts embedding business logic code and exporting Web

interfaces. This kind of modules are analyzed, the different elements that compose them are

extracted to identify potential operations to be published into Web services. All operations

that must not be published in Web services are eliminated. We provide a semi-automatic way

of eliminating unwanted recurrent operations. This is done through OCL constraints that de-

velopers should specify on a simple metamodel of operations inspired from the UML meta-

model. These constraints are automatically checked. The operations kept must satisfy these

constraints, if any. After that, in order to create Web services with a good level of granularity, we

proposed a technique for distributing operations into Web services. Operations tightly coupled

are grouped in the same Web services in order to enhance their performance, and operations

that are similar are spread-out in different Web services, in order to enhance their reliability.

All of the resulting services are deployed on the Web server in order to allow third party devel-

opment. In our work, we considered these deployed artifacts (embedding Web interfaces) as

remote APIs (as Services) that offer the opportunity for developers to extend the functionality

provided by these services and exploit the resources used by them.

In the next chapter, we detail the step of the Web service composition. We show how the

individual Web services are composed automatically based on existing dependences between

Web components.

C
H

A
P

T
E

R

6
Generation of composite Web Services

Simplicity is prerequisite for reliability.

Edsger DIJKSTRA

91

92 Chap 6. Generation of composite Web Services

6.1 Introduction

In Chapter 5, we presented all the details of our method for transforming component-based

Web applications into service-oriented ones. We have illustrated how we assist the developer

so that (s)he creates primitive Web services starting from Web applications. In this chapter,

we show how to create composite Web services by assembling automatically the generated in-

dividual Web services. The potential dependencies between the different selected operations

in the Web services are identified. We distinguish two kinds of dependencies between opera-

tions: operation invocation dependencies and Web navigation relationships. In Section 6.2, we

present the details of the first kind of dependencies, where choreographies are generated by

analyzing the relationships between the published Web services. In Section 6.4, we present the

details of the second kind, where, the navigations between Web interfaces of the Web applica-

tion enable to create orchestrations of the Web services that have been created from these Web

interfaces.

6.2 Web Service Choreography Creation

The Web service choreographies are created starting from the analysis of the source code of

the generated Web services. We identify in the source code of the generated Web services all

external calls between operations in order to replace them by Web service requests (WSR). This

is illustrated and explained in Algorithm 6. Indeed, if the called operations are published in

the same Web service of the caller operation, nothing is done, the calls are left as method in-

vocations (see Line 6). If the called operations are present in the other published Web ser-

vices these operation dependencies are replaced by Web service requests in source code of the

invoking operation. In the created graph for the Web service-oriented system, we represent

each Web service request by a relationship of type W SR (a Web Service Request is an invo-

cation of a service from the code of a service client (it could be another Web service)) which

relates the invoking class node and the WSDL interface node of the invoked service (see Lines 6

to 9). An example of this relationship is given in Fig. 4.4, where the invocation to the method

g et I temB yRe f er ence from the code of the operation ser vi ceTot alPr i ceInC ar t is trans-

formed into W SR between the class C ar tSer vi ce and the interface w sdlPr oduct s. As for

a local method invocation, this is represented by an I SR relationship. Fig. 4.4 shows an I SR

relationship between the C ar tSer vi ce class and the I tem class.

Besides, other Web service requests can be also created starting from the parsing of client-

side scripts. Indeed, the majority of modern Web applications use Ajax, which allows to build

dynamic and interactive Web applications. Client-side scripts can create direct connections

to the server and transfer data from clients to servers. The XMLHttpRequest API is the mostly

used technique as an Ajax implementation [Flanagan, 2011]. In some cases, the request sent to

the server asks for a server-side program which has been transformed into a Web service. We

6.3. Example of Choreography Creation at Code Level 93

Algorithm 6 Web Service Choreography Creation

1: procedure CREATECHOREOGRAPHIES(SOS)
2: for all op ∈ SOS do
3: for all i nvOp ∈ i nvokedOpsF r om(op) do
4: c1 = decl ar i ngC l ass(i nvOp)
5: c = decl ar i ngC l ass(op)
6: if c1 ∉Cs then
7: w sdl1 = g etSer vi ceInter f aceO f (c1)
8: w sr = create WSR : w sr = (c WSR w sdl1) ∧ w sr ∈ Rsos

9: cr eateW SRequest (Code(op), i nvOp, w sdl1)
10: end if
11: end for
12: end for
13: end procedure

check this by the parsing of the scripts that use this API. In this case, we create a new request to

this Web service. This request is added at the beginning of the source code of the Web service

generated starting from the current Web interface. This invocation allows to update the data at

server side before it will be used by the Web service.

6.3 Example of Choreography Creation at Code Level

Let us consider our illustrative example to show how to create a composite Web service at code

level. In the Cart Web Interface, we use a client-side script to send data to server. Before pro-

ceeding to checkout, the user can modify the quantity of the purchased items. The new quan-

tity is sent as data to the server via a client-side script (in JavaScript using an XMLHttpRequest

object).

This client side script contains a call to a program executed at the server side corresponding

to the updateCart Web interface. This program allows to update the cart and calculate the new

total price. When the user clicks on the proceed to checkout button, a program (provided by

the Payment Web interface) is executed at server side. This program takes as input the new

calculated total price and the new cart details.

Following our approach, the payment and updateCart operations are created respectively

starting from the Payment and updateCart Web interfaces. So, an invocation to updateCart

operation is added at the beginning of the payment source code. In this way, the new total price

is calculated before proceeding to payment.

In addition to the invocation of the updateCart operation several other operation in-

vocations are created in order to accomplish the payment process. Indeed, the opera-

94 Chap 6. Generation of composite Web Services

tions checkCreditCard and checkPersonalInformation operations are invoked successively.

These operations are used respectively, to check the validity of the input credit card infor-

mation and the personal information of the user. If they are valid, we call two other opera-

tions, which are approvalPayment operation to approve the payment and sendEmail oper-

ation. The approvalPayment operation itself calls some other operations, which are respec-

tively: checkCredit, createInvoice, validatePayment and getDeliverySchedule.

The choreography creation approach has been validated in the publication [Tibermacine

et Kerdoudi, 2012] and [Kerdoudi et al., 2016].

6.4 Web Service Orchestration Creation

In this step of our approach, a set of Web service orchestrations is generated from the relation-

ships between Web interfaces. We parse the navigation documents such as JSF faces-config

files and their navigation rules. This allows the identification of other potential collaborations

of the different Web services created from these pages.

6.4.1 Navigation Rule Extraction

In some Web applications the navigation rules are not available. In this case, the hypertext links

and the redirection statements/tags located in the Web application are parsed in order to cre-

ate these rules. The Web application graph could be considered as a navigation model for the

input Web application. We associate to each Web page node a navigation condition (NC (web

page)). Indeed, the redirection statements like response.sendRedirect("url") are generally

declared in the body of a conditional statement such as If Statement. Thus, depending on the

condition value, the page is redirected to the appropriate destination. The used condition in

this code is extracted and analyzed to be added as a condition of created navigation rule. This

task requires sometimes the developer intervention to validate the generated navigation rules.

The process of the extraction of navigation rules has been validated in the publication [Ker-

doudi et al., 2016].

6.4.2 BPEL Process Creation Algorithm

The generated BPEL processes represent new services which implement some coarse grained

functionalities provided by the application. The exchange of messages between the BPEL pro-

cess and external clients (other applications or partner (Web) services) is done via a contract

described in WSDL. This contract represents an interface of the BPEL composite Web service.

Now, the generation of the Web service orchestration is implemented according to Algorithm 7.

In this algorithm, first all navigation paths are calculated from the Web navigation doc-

ument of the parsed Web application (Line 2). Each path represents a coarse grained func-

6.4. Web Service Orchestration Creation 95

Algorithm 7 WS Orchestration Creation Algorithm

1: procedure CREATEBPELPROCESSES(navi Rul es)
2: navi Paths = calcN avi Paths(navi Rul es)
3: for all path ∈ navi Paths do
4: pr ocess = Pr ocessF actor y.new Inst ance()
5: seq = pr ocess.cr eateSequence()
6: r etur nedV al 1 = pr ocess.cr eateV ar i abl e()
7: for all navi g Rul e ∈ path do
8: opF r om = par seSour ceV i ew(navi g Rul e.sV i ew)
9: if !(opFrom isPreviouslyInvokedIn process) then

10: op1 = pr ocess.cr eateInvocati onTo(opF r om)
11: op1.setPar ameter s(var i abl eso f pr ocess)
12: r etur nedV al 1 = op1.i nvoke()
13: pr ocess.stor e(opF r om,r etur nedV al 1)
14: seq.add(op1)
15: else
16: r etur nedV al 1 = g etStor edRetur nedV alB y (opF r om)
17: end if
18: i f Acti vi t y = par seCondi t i onE xpr essi on(navi g Rul e, pr ocess, seq)
19: opTo = par seDesti nati onV i ew(navi g Rul e.dV i ew)
20: if !(opTo isPreviouslyInvokedIn process) then
21: op2 = pr ocess.cr eateInvocati onTo(opTo)
22: matchedPar t s = calcul ateSi mi l ar i t y(opF r om.out put M sg ,opTo.Input M sg)
23: op2.setPar ameter s(var i abl esi npr ocess+r etur nedV al 1,matchedPar t s)
24: r etur nedV al 2 = op2.i nvoke()
25: pr ocess.stor e(opTo,r etur nedV al 2)
26: i f Acti vi t y.add(opTo)
27: else
28: seq = addPi ckToPr ocess(navi g Rul e, pr ocess, seq)
29: end if
30: end for
31: end for
32: end procedure

96 Chap 6. Generation of composite Web Services

tionality provided to the user when (s)he navigates between the Web interfaces of this path.

Therefore, for each path we create a BPEL process (Line 4) which represents a new generated

composite Web service. After that, for each navigation rule in the current path, we identify the

source operation (Line 8). The source operation corresponds to the operation that has been

generated starting from the navigation’s source Web interface. The same thing is done for the

destination Web interface (Line 19). As specified in the algorithm, a navigation rule contains

three elements: i) a source view (Line 8), which represents the Web interface(s) from which

the navigation started (e.g., the Web interface presenting the form for searching items in the

example introduced previously: search.jsp); ii) a destination view (Line 19) that corresponds

to the Web interface(s) to which the user will be automatically directed (e.g., the Web inter-

face(s) presenting the result of the search searchResult.jsp); and iii) an execution condition

which contains an expression and a value (e.g., the expression is a call to the JavaBean method

for getting the number of items found: #{searchResult.getItemsCount}, and the value is

"NotZero").

For each navigation rule, we first test if the source operation has already been called in the

process while parsing another navigation rule (Line 9). This ensures that operation invocations

are not duplicated. In the case of an operation which has already been invoked in the process,

we just get the returned value (Line 16). This kind of values is stored after each operation in-

vocation (see Lines 13 and 25). Then, we parse the condition part in the navigation rule, by

calling a function (see Line 18). In this function, we get the expression of the condition, which

corresponds to the operation to be invoked. We test if this operation is not invoked previously

in the process. In this case, we create in the process an invocation to this operation. After

that, we create in the process an If Activity. It is used to compare the obtained value after

invoking the operation defined in the condition’s expression and the condition’s value. If the

two values are equal, then we invoke the corresponding destination operation (see Lines 19 to

24). We need to test before, if the destination operation has already been called in the process

while parsing another navigation rule. This means that there is a cycle in this navigation path.

The cycles occur when the user wants to navigate again in a path with new input values. So, all

invoked operations in this cycle can be invoked again with the new input values. We deal with

cycles by calling of the function addPickToProcess (see Line 28). Fig. 6.1 shows an excerpt of

an abstract process, which represents the sequence of generated activities to be added in the

process after calling the addPickToProcess function. This abstract process contains mainly

the activities: Pick and RepeatUntil(Loop).

The loop activity is used to repeat the set of created invocations starting from the cycle.

The pick activity allows the process to block and wait for one or a set of suitable message(s).

The arrival of a message indicates that the user needs to repeat the invocation of operations

in the cycle. When one of these messages is received, the associated activity is performed and

the pick completes. If none of these expected messages is received within a certain period

6.4. Web Service Orchestration Creation 97

Figure 6.1 : An excerpt of a BPEL process representing the created activities to deal with a cycle.

of time 1, the pick can specify an exceptional behavior to be performed (in our algorithm, an

OnAlarm activity is added, which allows to the process to wait). In this way, the cycle of the

navigation path is considered in the BPEL process.

In orchestration creation, before each operation invocation (see Line (24) in the algorithm

above), we prepare the list of arguments. A matching of the variables’ names in the orches-

tration and the arguments of the operation to be invoked is performed. In this way, we check

the syntactic composability [Medjahed et Bouguettaya, 2005] of the two operations to be com-

posed and we ensure that arguments are passed in the correct order (see Lines (22) and (23)).

Each generated composite service is modeled as a subgraph that belongs to the graph

1We give a default value for this time interval, which could be modified by the developer on the generated BPEL
process

98 Chap 6. Generation of composite Web Services

which represents the migrated service-oriented system. In this subgraph we create a WSDL

interface node and BP(bpel) node and we connect them via an I I R relationship. These nodes

represent, respectively, the interface and implementation of the generated composite service.

The invocations to operations which belong to other Web services are represented with W SR

relationships. These relationships relate the BP(bpel) node of the generated composite service

and the WSDL interface node of each invoked service.

The first version of the proposed algorithm has been published in [Tibermacine et Ker-

doudi, 2011] and [Tibermacine et Kerdoudi, 2012]. The proposed abstract model which is used

to deal with cycles is validated in the publication [Kerdoudi et al., 2016].

6.5 Example of BPEL Process generation

Let us take the example presented in Section 4.2. A BPEL process is generated for the navigation

path which represents a successful purchasing. The process first invokes the basicSearch op-

eration of the first service. Then, it stores the result into a variable and invokes getItemsCount

operation of the same service to get the number of found items. If the returned value is equal

to "NotZero", the addItems operation of the CartService is invoked. The selected items (re-

ceived using a Receive activity) by the customer are the input of this operation. The re-

turned total price is stored. After receiving the email and the password of the customer the

signIn operation is invoked. If the identification is passed successfully, an invocation to the

DeliveryService is done. After that, the stored total price is used as input for invoking the

PaymentService. At last, the sendMail operation is invoked with the necessary data.

6.6 Summary

In this chapter, we presented our approach of Web service orchestration and choreography

generation. We have presented an algorithm that allows to generate choreographies starting

from the method invocations located in the source code of the generate individual Web ser-

vices. The presented algorithm, shows that the manual identification of these collaborations

and the creation of Web service requests are too complicated tasks and time-consuming, espe-

cially, for a large source code and a great number of the generated Web services. The second

algorithm that is presented in this chapter, allows to generate service orchestrations as BPEL

processes starting from Web user interfaces navigations. The Web navigation documents are

extracted from the source code (if they are not available as separate document such as JSF

faces-config files). The presented algorithm deals with several aspects, namely, the creation

of navigation paths, the creation of a WSDL description for each BPEL process, the identifi-

cation of the involved Web services in the orchestrations, the creation of the necessary BPEL

activities and partnerlinks elements, identification of the input and output variables, the iden-

tification of the variables that the client must provide via a receive activity, the matching of

6.6. Summary 99

variables’ names (based a syntactic similarity) in the arguments of the operation to be invoked,

and dealing with cycles. At the end, the BPEL processes are saved in files of XML-based format.

Hence, we have shown that our approach alleviates in particular the developer from the com-

plexity of identifying manually the Web navigations and preparing them to be considered as

business logics for these orchestrations. In addition, we free the developer from the complexity

of creating BPEL processes and their WSDL descriptions manually. (S)he does not need to deal

with the complex XML data in BPEL and WSDL files.

The next chapter shows how to recover high level specifications starting from the source

code of the generated Web service compositions.

C
H

A
P

T
E

R

7
Recovering Architectures from Service

Oriented Systems

Models are abstractions that portray the essentials of a

complex problem or structure by filtering out non-essential

details, thus making the problem easier to understand ...

Abstraction is a fundamental human capacity that permits us

to deal with complexity . . . We build models of complex

systems because we cannot comprehend such systems in

their entirety. There are limits to human capacity to

understand complexity ... Models help us organize, visualize,

understand and create complex things.

Terry QUATRANI

101

102 Chap 7. Recovering Architectures from Service Oriented Systems

7.1 Introduction

In this chapter, we present our recovery approach of service oriented architecture. In this

approach, we aim to derive high level specifications from the source code of (Web) Service-

Oriented Applications (namely the source code of the generated Web services using our ap-

proach in Chapter 5 and Chapter 6). In this way, we provide a useful support for maintenance

developers and for the third party developers in order to understand the target service ori-

ented system and make their evolutions easily. Our approach is based on two main steps:

First, we generate BPMN specifications that represents the behavior of the system. We chose

BPMN standard language because it provides a rich graphical notation for choreography mod-

eling [Decker et al., 2008]. Second, we generate architectures expressed with the SCA specifi-

cations [Beisiegel et al., 2009]). These architectures represent the structure of the system using

a set of components that are connected via explicit interfaces stating the provided and the re-

quired services.

We studied the application of our approach on two kinds of service oriented applications.

First, we generate the service architecture from the source code of a Web service choreography.

Second, we apply the approach on the OSGi (Open Services Gateway Initiative) [McAffer et al.,

2010] applications which are good examples of large Service Oriented Applications. This choice

allow us to scale to real-world SOA applications (such as: Equinox Framework, Eclipse E4, and

Eclipse Memory Analyzer Tool), where the number of the services is more than thousands.

7.2 Recovering Service Architectures from (Web) service

Choreographies

The recovering of service-oriented architectures is a reverse engineering process which extracts

high level specifications from the source code of (Web) service choreographies. A choreography

of (Web) services is a group of services published by some providers that collaborate to form

some consistent overall process. This collaboration is implemented by simply formulating re-

quests from a service requester(client) to a service provider. The ultimate goal of our approach

is to extract the hidden choreographies in order to help developers to understand the whole

behavior of their applications, before starting to apply changes.

Overall, we first parse the source code of a Web service-based application to generate an

abstract syntax tree. This latter is a tree representation of the abstract syntactic structure of

the source code. It is created in conformance with Eclipse’s ASTParser specification. After that,

we transform this representation into behavioral and structural service oriented architectures

using a set of transformation rules that we have defined. The recovering approach of BPMN

models from Web service choreographies and the defined transformation rules have been val-

idated in the publication [Kerdoudi et al., 2016].

7.2. Recovering Service Architectures from (Web) service Choreographies 103

7.2.1 From (Web) services elements to BPMN elements

The generation of BPMN models from Web service Choreographies is based on the following

set of rules which are defined as mappings between the source code elements and the BPMN

elements.

1. For each choreography (collaboration between service providers and service clients), we

create a BPMN model.

2. Each participant (service provider or service client) in the choreography is modeled with

a Pool element1. This Pool is used as a container of the activities that are performed by

the participant. The activities represent mainly the exchanges of the provided service (or

service client) with other participants.

3. If the participant is a service client thus, it must contains one or several (Web) service

invocation(s). Each service invocation is modeled as a Task2 element to be added to the

created Pool element of the service client. This Task element is a kind of activity within

BPMN. It is an atomic Activity within a process flow.

4. The set of Tasks within a Pool are connected as a sequence (in the same order of their

appearance in source code) using the Sequence Flow element.

5. If the participant is a service provider and its provided service has no requests for other

services, the provided service is modeled as a Service Task3 element to be added to the

created Pool element of the service provider. The Service Task is a kind of Tasks within

BPMN used to represent a kind of service, which could be a Web service.

6. If the participant is a service provider and its provided (Web) service implements re-

quests to other services, the service is modeled as a SubProcess4 element to be added

in Pool element. The SubProcess element can be a white box or a contour which shows

a lower-level process, which is executed by the service provider. Each request to an exter-

nal service is identified and modeled as a Task element to be added as an inner activity

of the SubProcess element. The set of Tasks within a SubProcess are connected as se-

quence using the Sequence Flow element.

7. The connection between a Task element (which is generated for a service request) and

the Service Task (or the SubProcess) which located in separate pool is done via a

1A Pool is the graphical representation of a Participant in a Collaboration.
2A Task is a rounded corner rectangle which is drawn with a single thin line.
3A Service Task shares the same shape as the Task, which is a rectangle that has rounded corners, with a graph-

ical marker in the upper left corner of the shape that indicates that the Task is a Service Task.
4A SubProcess is an Activity whose internal details have been modeled using Activities, Gateways, Events, and

Sequence Flows.

104 Chap 7. Recovering Architectures from Service Oriented Systems

Message Flow element. The Message Flow element is used to represent the message

sending or receiving between the client participant and the service provider participant.

8. Each control statement (for example, a conditional statement) containing a service invo-

cation is modeled with a diverging Exclusive Gateway (Decision) element5. It is used

to create alternative paths within a process flow, only one of the paths can be taken.

Each path is targeted to an activity element or to a default path (which can be the end

of the process). The decision of the Exclusive Gateway can be a question or the con-

ditional expression which is extracted from the source code (for example, the condition

expression of a conditional statement). The path where the answer to this question is

true is targeted to the Task element created for the service invocation. The two ele-

ments (Exclusive Gateway and Task elements) are connected using a Sequence Flow

element.

9. If the service invocation statements are located within a loop statement, the loop is rep-

resented with a Loop Task element. It has the same form as the Task with a loop marker

in the medium. And, we move the Task elements created for the service invocation state-

ments into the Loop Task element.

7.2.2 Example of generating BPMN models from a Web service choreography

Let us return to our example presented in section 6.3. We show here how to create a BPMN

model (behavioral model) from the generated Web service choreography (which can be seen at

code level only). Figure 7.1 shows the generated BPMN model6, that represents the participant

services which are involved in the payment activity in this example.

As we can see in this model, all the hidden choreographies are extracted and we can easily

understand the behavior of the overall composition. This is due to our technique of reverse

engineering, since only operation invocations and the control or loop statements that contain

operation invocations are extracted. In this way, the developer does not need to know all the

details which could be found in a large source code. Only participants (Web services) in the

choreography and their exchanged messages are modeled.

By extracting these models, we believe that thanks to the high level of abstraction provided

by the choreographies, evolving these applications will be simpler. Indeed, we help the devel-

oper in choosing the well suited position in the code in order to apply the necessary changes to

implement an evolution scenario.

5It has the form of a diamond with a marker inside that is shaped like an "X."
6The generated model is updated and validated manually by grouping the Poolswhich are of the same category

and giving more readable names to Pools, Lanes (sub-partition within a Pool) and Activities.

7.2. Recovering Service Architectures from (Web) service Choreographies 105

Figure 7.1 : A BPMN model represents a service choreography to accomplish the payment ac-
tivity.

Let us suppose the following evolution scenario for the payment activity choreography. We

need to add a new Web service that enhances the security of the payment process. This service

can be a program that sends to the client a validation code with an SMS on her/his smartphone.

The client introduces the received code and the application checks its validity. On looking at

the generated BPMN model, the developer can clearly decide to add an invocation to the new

service after the Credit Card Authorization task in the initiating Pool.

7.2.3 From (Web) services elements to SCA elements

The creation of SCA models is based on a set of transformation rules that we have defined as

mappings between the source code elements to SCA elements.

1. For each choreography (collaboration between service providers and service clients), we

create a Service Component Architecture instance, which is represented by an SCA com-

posite.

106 Chap 7. Recovering Architectures from Service Oriented Systems

2. Each participant (service provider or service client) in the choreography is modeled with

an SCA Component element. This SCA Component is used as basic element of business

function in an SCA assembly, which is combined into complete business solutions by

an SCA composite. Components provide and consume services. They are declared as

sub-elements of an SCA Composite.

3. If the participant is a service client thus, it must contain one or several (Web) service

invocation(s). All the identified operation invocations of the same service are modeled

as an SCA Component Reference7 element to be added to the created SCA Component

element for the service client (see Rule 2). This SCA Component Reference element rep-

resent a required interface (service) for the service requester participant. The name of the

SCA Component Referencemust be identical to the name of the interface of the invoked

service.

4. If the participant is a service provider then, it is modeled as an SCA Component (see Rule

2). This SCA component must has an SCA Component Service element8, which repre-

sents the interface of the offered (Web) service.

5. If the participant is a service provider and the implementation of its provided (Web)

service contains a request(s) to other service(s), the service provider is modeled as an

SCA Component (see Rule 2) and its offered service is modeled using an SCA Component

Service element (see Rule 4). And, all its operation invocations of the same service are

modeled as an SCA Component Reference (see Rule 3).

6. Each invocation from a service client to a (Web) service (or from a (Web) service to an-

other Web service) is modeled structurally as an SCA Wire element that connects the SCA

Component Reference element (from SCA Component of the service requester) and the

SCA Component Service element (from the SCA Component of the service provider).

7.2.4 Example of Recovering SCA models from a Web service choreography

Let us consider the same example which is presented in section 6.3. We show here how to cre-

ate an SCA architecture (structural view) from the generated Web service choreography. Fig-

ure 7.2 depicts the generated SCA architecture for the payment application9. First, for each

Web service involved in the payment activity, we create an SCA component. The name of all the

generated SCA components from this example are as follows: PaymentProcess, Check, Sale,

ApprovalPayment, OrderDetails, CartManager, Emailer, Delivery. Each of these compo-

nents has a provided interface that represents the interface of offered Web service. This inter-

face is modeled with an SCA Service element. The invocation of an operation located in this

7An SCA Component Reference has a chevron shape with a purple color
8An SCA Component Service has a chevron shape with a green color
9This model is opened and visualized graphically with the eclipse SCA Composite Designer Framework.

7.3. SCA Component grouping and SCA Composite generation model 107

Figure 7.2 : Service Component Architecture of the Payment Application

Web service is represented by an SCA Reference element in the SCA Component that repre-

sents the service requester (caller). This SCA Reference has the same name as the Web service

interface’s name.

To implement the previous evolution scenario, this architecture indicated to us that, we

need to update the source code of the PaymentProcess component by adding the concerned

Web service request. The invoked new Web service (SMS sender) could be provided by a sepa-

rate service provider. In this case, after such evolution, we can see in the new generated archi-

tecture, it contains a new SCA component connected to the PaymentProcess component. In

the case of the SMS sender service is implemented by one of the existing components such as

the CartManager component, after such evolution, we can see an SCA component Service el-

ement is identified and added to this component. And, it is connected to the PaymentProcess

component.

7.3 SCA Component grouping and SCA Composite generation

model

For a large (Web) service oriented applications where the number of services is large (hundreds

and thousands), the generated SCA architecture should have a great number of connections

between components. This makes the understanding of such kind of system difficult. To deal

with this issue, in our approach, we help the maintenance engineer by providing additional

models at high level of abstraction.

108 Chap 7. Recovering Architectures from Service Oriented Systems

Figure 7.3 : Architecture of Finance SCA Composite

7.3.1 Grouping SCA Components into an SCA composite

We proposed to generate several models of different levels of abstraction. Indeed, in addition

to the generated flat organization10 of the SCA components, we create new SCA models (a set

of SCA composites) where, we group the SCA Components of the same category into an SCA

Composite. Each SCA Composite is a separate model. For example, Figure 7.3 shows that,

the Check and the Sale SCA components (of the previous example) are grouped together to

form one SCA Composite has the name Finance. Figure 7.4 shows that, the CartManager, the

OrderDetails and ApprovalPayment SCA components are grouped together to form one SCA

Composite has the name Manufacture.

Now, if an SCA Component of SCA Composite ‘A’ provides a service that is required by

another SCA component located an SCA Composite ‘B’(outside of SCA Composite ‘A’), we

create an SCA Composite Sevice element in the SCA Composite ‘A’. Inside the SCA Composite

‘A’, we create an SCA Promote element11 that connects the created SCA Composite Service

and SCA Component Service of the component that provides this service. In this way,

we make this provided service accessible from the outside of this SCA Composite. In the

other side, we create an SCA Composite Reference element in the SCA Composite ‘B’. In-

side the SCA Composite ‘B’, we create an SCA Promote element that connects the created

SCA Composite Reference and SCA Component Reference of the component that requires

this service.

For example, in Figure 7.4, we created an SCA Composite Sevice element for the provided

10This means that all the components and their structural connections are modeled in one model.
11SCA promote element means that the composite service is actually provided by one of the components within

the composite

7.3. SCA Component grouping and SCA Composite generation model 109

Figure 7.4 : Architecture of Manufacture SCA Composite

service by the Sale SCA component, because, it is required by ApprovalPayment Component

(which is located in the Manufacture Composite). A promote element (shown in dashed lines)

is created to connect this SCA Composite Sevice and the SCA Component Sevice inside the

Finance Composite. Figure 7.4 shows an SCA Composite Reference element is created in the

Manufacture composite, which constitutes the ApprovalPayment Component. And, a promote

element inside the Manufacture composite is created to connect SCA Composite Reference

and SCA Component Reference.

In the current implementation, the grouping of components is performed semi-

automatically by assisting the developer in order to give the best grouping of SCA compo-

nents based on the category of the provided services and developer knowledges. In the near

future, we plan to use a hierarchical clustering technique such as Weighted Combined Algo-

rithm [Maqbool et Babri, 2004], where, we represent each component by a cluster, and we

compute the pair-wise similarity between all the clusters and then, we combine the two most

similar clusters into a new cluster. This is repeated until all the elements will be clustered or

the desired number of clusters is achieved.

7.3.2 Creation an SCA composite starting from a set of SCA composites

Once all the SCA Composites are created, we generate a new model (of high level of abstraction)

that groups together these SCA composites to form an SCA Architecture for the whole applica-

tion. Each SCA Composite (which is created previously by grouping components) is modeled

as an SCA component in this new architecture. The dependencies between SCA composites are

110 Chap 7. Recovering Architectures from Service Oriented Systems

Figure 7.5 : Refined Service Component Architecture of the Payment Application

identified based on the name of the provided and the required services. These dependencies

are then modeled in this architecture using the SCA Wire elements. In this way, we provide

an architecture of high level of abstraction that represents the application by hiding the details

of each SCA composite (which is modeled in separate model with its components). Figure 7.5

depicts the generated global architecture of the payment application. In this architecture, the

Manufacture and the Finance composites are modeled as SCA components.

7.4 Recovering Service architectures from OSGi-based Applications

We have presented in the previous sections how to generate BPMN and SCA specifications from

the source code of a Web service choreography. We have introduced a set of transformation

rules that allow the mapping from the source code elements into BPMN elements and into

SCA elements. These rules are extensible and easily testable and quickly debuggable. They are

defined to be applied to any service oriented system which has a set of participants that collab-

orate together to form some consistent overall process that represents a service choreography.

As we have aforementioned, this collaboration is implemented by formulating requests from

a service requester (client) to a service provider. This service provider can also formulate one

or several requests to other service providers. Our reverse engineering process aims to extract

these collaborations by identifying the statements that represent the service invocations from

the service clients to the service providers.

In this section, we illustrate how to use the previous transformation rules to recover the

BPMN and SCA models starting from another kind of service oriented systems, which are ap-

plications created and executed under the OSGi Framework. This allows us to study the ap-

plication of our recovery process on large scale applications. Before presenting the details of

the service-oriented architecture generation from the OSGi applications, we introduce with a

concrete example a brief description of the OSGi component model.

7.4. Recovering Service architectures from OSGi-based Applications 111

7.4.1 OSGi Component

The core specification of OSGi defines a component model and a Framework for executing

components. A component in OSGi is known as a bundle [Hall et al., 2011]. Each bundle is

defined by a single JAR file which packages the modules and a manifest file which contains the

extra meta-data. Listing 7.1 shows the meta-data in a the Manifest of a bundle. The manifest

file declares which of the packages are externally visible using “export-package”. The mani-

fest file can declare explicitly which are the bundles it depends on using “import-package” or

“require-bundle”. They are functionality consumed by the bundle and they are provided by

others bundles. The “require-bundle” is used when the bundle requires another bundle. The

first bundle has access to all the exported packages of the second. We consider in our work the

imported packages as the required interfaces of the component and the exported packages as

the provided interfaces.

1 Bundle-ManifestVersion: OSGi specification (use the value 2 for OSGi release 4)

2 Bundle-SymbolicName: The only mandatory forconsidering a JAR as a OSGi bundle. This

is the unique name of the bundle

3 Bundle-Name: A name easy to read by humans (without spaces)

4 Bundle-Version

5 Bundle-Activator: the ’Activator’ class

6 Import-Package: List of required packages by the bundle

7 and which are provided by other bundles

8 Export-Package: List of packages to be exported

9 Require-Bundle: List of bundle names

LISTING 7.1 : Metadata (Headers) in the Manifest

The class « Activator » is implemented by the bundle. It extends the

org.osgi.framework.BundleActivator class and contains methods (“start” and “stop”)

related to the life cycle of a bundle. The “start” method is called when the bundle is started

so the Framework can perform the bundle-specific activities necessary to start this bundle.

The “stop” method is called when the bundle is stopped. The two methods are invoked

automatically by the Framework.

7.4.2 The OSGi Framework

The Framework forms the core of the OSGi specifications. The functionality of the Framework

is divided in the following layers: Security Layer, Module Layer, Life Cycle Layer, Service Layer,

Actual Services (this layering is depicted in Figure 7.6) [Alliance, 2014]. The Security Layer is

based on Java 2 security. The Module Layer defines a modularization model for Java. The Life

Cycle Layer provides a life cycle API to bundles. This API provides a runtime model for bundles.

The Service Layer provides a dynamic, concise and consistent programming model for Java

bundle developers. It introduces a Service Oriented Programming model. It is like SOA in

112 Chap 7. Recovering Architectures from Service Oriented Systems

Figure 7.6 : OSGi Framework Layers [Alliance, 2014]

Figure 7.7 : The service-oriented interaction pattern [Hall et al., 2011]

Virtual Machine, which implements the Service Locator Pattern. The main concepts re-

volve around the service-oriented publish, find, and bind interaction pattern. A bundle (service

provider) can publish their exported interface as services into a Service Registry (the “start”

method that is implemented by the class « Activator » (called also: ServicePublisher) can be

used to register services in the Service Registry or to allocate any resources that the bundle

needs), while a service client (another bundle) search the registry to find available services to

use (see Figure 7.7). This bundle receives from the Service Registry a reference of an instance

service implementation.

7.4.3 Example of an OSGi-based application

We take as example a simple E-Mailer OSGi-based application that have been implemented as

set of bundles (components) that collaborate together to prepare and send an email. Here we

give the details of each component in this application and their provided and required services.

The components that compose the application are described as follows:

• Emailer Component: it is the main component in this application. It collaborates with

the other components in order to provide the email preparing and sending services.

• AddressBook Component: this component provides services such as: storing, accessing,

sorting and updating entries called contacts. Each contact entry usually consists of a few

7.4. Recovering Service architectures from OSGi-based Applications 113

standard fields (for example: first name, last name, company name, address, phone num-

ber, e-mail address, fax number). The services provided by this component are invoked

from the Emailer Component.

• TextEditor Component: it provides several services for editing the message to send,

such as: get the edited message, receive user input text, set the font, add a numbered

list, and insert a picture. These services are invoked from the Emailer Component.

• SpellChecker Component: it provides services to check the edited input text. The ser-

vices could be: fix the spelling errors or provide a set of suggestions to fix the errors, reg-

istering/unregistering a new dictionary. These services are invoked from the TextEditor

Component.

The Listing 7.2 depicts the interface that is exported as a service (contains a set of methods) by

the SpellChecker component.

1 package dz.biskra.univ.spell.checker;

2 public interface SpellCheckerService {

3 public void registerDictionary(Dictionary dictionary);

4 public void unregisterDictionary(Dictionary dictionary);

5 public boolean spellCheck(String word);

6 public Vector<String> getSuggestions(String word);

7 }

LISTING 7.2 : The Interface of the service provided by the SpellChecker component

The Listing 7.3 depicts an excerpt of the code of the class « Activator » that publishes

the service SpellCheckerService into the Service Registry, thanks to the “start()” method.

The “start()” method uses the provided bundle context and their implemented method

“registerService(...)” to register the interface as a service in the Service Registry.

1 public class Activator implements BundleActivator {

2 ServiceRegistration registration ;

3 public void start(BundleContext ctx) throws Exception {

4 registration = ctx.registerService(SpellCheckerService.class.getName(), new

SpellCheckerServiceImpl(), null);

5 }

6 public void stop(BundleContext bundleContext) throws Exception {

7 registration.unregister();

8 }

9 }

LISTING 7.3 : The Activivator of the SpellChecker component

114 Chap 7. Recovering Architectures from Service Oriented Systems

In the first parameter, we need to provide the interface name that the service implements, fol-

lowed by the actual service instance (« new SpellCheckerServiceImpl()»), and finally the service

properties (see Line 4 in Listing 7.3).

We have seen how to register a service. Now, we present how to discover this service (pro-

vided by SpellChecker component) from another bundle client (for example, the TextEditor

component). In order to use a service object and call its methods, a bundle must first obtains a

ServiceReference object. The BundleContext interface defines a number of methods a bundle

can call to obtain ServiceReference objects from the Framework. The Listing 7.4 shows a sim-

plistic client code that could be implemented by the TextEditor component. This code rep-

resents an excerpt of the getMessage method implementation 12. This code uses the provided

bundle context and their implemented methods “getServiceReference(...) and getService(...)”.

The getServiceReference(...) method is used to obtain the reference of the registered ser-

vice (SpellCheckerService) (see Line 8). It has one input which is the class name with which

the service was registered. The getService(...) method returns the service object from the

Service Registry(see Line 9). It has one input represents the service reference.

1 package dz.biskra.univ.text.editor;

2 import org.osgi.framework.*;

3 import dz.biskra.univ.spell.checker.SpellCheckerService;

4 public class TextEditorServiceImpl implements TextEditorService {

5 public String getMessage() {

6 BundleContext ctx = getContext();

7 String msg= getUserInput();

8 ServiceReference ref = ctx.getServiceReference(SpellCheckerService.class.getName

());

9 SpellCheckerService spellChecker = (SpellCheckerService) ctx.getService(ref);

10 //Tester ref!=null

11 Boolean isCorrect = spellChecker.spellCheck(msg);

12 if(isCorrect) { return msg;}

13 else {....} // fix errors

14 }

15 //...

16 }

LISTING 7.4 : An excerpt of a simplistic client code of the SpellCheckerService

7.4.4 OSGi application Parsing

In order to apply the previous transformation rules on the OSGi-based applications, we need

to identify from their source code and the manifest files the following elements: (i) the partic-

12This method is provided later as a service by the TextEditor component via the interface
TextEditorService.

7.4. Recovering Service architectures from OSGi-based Applications 115

ipants (bundles) that provide services (service providers) (ii) the participants that use services

(service clients), (iii) the name of the provided and the required services, and (iv) the invocation

order of these services (this corresponds to the order of their appearance in the source code).

Provided Services and Service Provider identification

We distinguish two types of provided services by a bundle as follows:

• Provided Services via the Service Registry: this kind of services is identified by

the parsing of the source code of each bundle. The parsing focuses on finding the state-

ments that allow the bundle to register services in the Service Registry. For example, in

the E-mailer application (in Section7.4.3), we have the SpellChecker bundle which has

registered a service in the Service Registry via the statement: “ctx.registerService(...)”, (see

Line 4 in Listing 7.3). So, the SpellCheckerbundle is considered as a Service Provider.

The name of the provided service is identified from the input parameters of the regis-

terService(...) method (the SpellCheckerService in this example).

• Provided Services via the Manifest file: this kind of services is identified by the

parsing of the manifest file of each bundle. As explained in the Section7.4.1, we consider

each exported package as a provided service while the name of this service corresponds

to the name of this package.

Required Services and Service Client identification

We distinguish two types of required services as follows:

• Required Services via the Service Registry: this kind of services is identified

by the parsing of statements that are used to discover the services from the Service

Registry. For example, in the E-mailer application, we have the TextEditor bundle

which uses the service SpellCheckerService that is provided by SpellChecker bun-

dle via the statements “getServiceReference(...)” and “getService(...)”. So, we consider the

SpellCheckerService as a required service for the TextEditor bundle, while the latter

is considered as a Service client.

• Required Services via the Manifest file: the imported packages are considered

in our approach as required services, while the name of each service corresponds to the

name of imported package.

Besides, in a bundle, we can have some services that are imported or their service references are

obtained (via the getServiceReference(...) statements), but these services are not really invoked

(or are not instantiated) in the source code of the client service. This kind of services is called

116 Chap 7. Recovering Architectures from Service Oriented Systems

Figure 7.8 : Recovered BPMN Architecture from the Emailer application

in our approach: Potential Required Services. We call the connector that links this bundle

with the bundle that provides the Potential Required Service: a Future Potential Connector. In

the current implementation, we distinguish between the two kinds of the required services (or

connectors) by using a documentation that is added (as an additional tag in the XML file) in the

SCA Component Reference element and the SCA Wire element of the generated SCA architec-

ture. In the near future, we plan to extend the Apache Tuscany SCA implementation of the SCA

specification for doing this distinction by using different colors for these elements. Moreover,

in this extension, we will distinguish between the services that are provided (or required) via

the Service Registry and those that are provided (or required) via the Manifest file.

This distinction between "potential" elements in an architecture and effective ones enables

to recover architectures that can be visualized with some level of detail (LoD) as in 3D or game

graphics. An architect can visualize a detailed architecture, with all its elements: potential and

effective ones. This will enable her/him to make a deep analysis of this architecture. She/He

can also visualize a general recovered architecture to have an overview of the structure of the

analyzed system. This latter case is particularly interesting if the system is very complex

7.4.5 Recovering the BPMN Architecture from the E-Mailer application

Figure 7.8 depicts the recovered BPMN model for the E-Mailer OSGi-based application. This

model is recovered using the same transformation rules which are presented in Section 7.2.1.

The participants here represent the bundles (bundles provide services and bundles consume

services). We have four bundles collaborate together as an overall process in order to achieve a

7.4. Recovering Service architectures from OSGi-based Applications 117

Figure 7.9 : Generated SCA model that represents the E-Mailer OSGi application

common goal (sending an email). A BPMN instance is created by applying the Rule 1 to our ex-

ample. Four Pool elements are created (AddressBook, TextEditor,... in Fig. 7.8) by applying the

Rule 2. The bundle TextEditor contains an invocation to the service SpellCheckerService

which is provided by the SpellChecker bundle (see Lines 8 to 11 in Listing 7.4). The invoca-

tion is modeled as Task element added to the TextEditor Pool (Rule 3). The invoked service

is represented with a Service Task in the SpellChecker Pool (Rule 5). This service is iden-

tified by the parsing of the source code of the SpellChecker bundle, and extracting the call to

the registerService(...) method (see Line 4 in Listing 7.3). We do the same work for mod-

eling all the interactions between bundles. The getMessage() service is used by the Emailer

bundle, and the implementation of this service contains requests to the services (check and

getSuggestions) provided by the SpellChecker bundle. In this case, the getMessage service

is modeled as a SubProcess element (Rule 6). The Exclusive Gateway element is created in

the TextEditor Pool by applying the Rule 8.

7.4.6 Recovering the Service Component Architecture from the E-Mailer
application

Figure 7.9 depicts the recovered SCA model for the E-Mailer OSGi-based application. We used

for creating this architecture the same transformation rules that are presented in Section 7.2.3.

An SCA instance is created from the collaboration in this example. Four SCA components are

created for each bundle (Rule 2) (see Fig. 7.9). All the four bundles register services in Service

Registry by calling the registerService(...) method. So, an SCA Component Service el-

ement is added to all the created SCA Components (Rule 4). The invocation of the getMessage

service (provided by the TextEditor bundle) from the Emailer bundle is modeled by SCA

Component Reference element in the Emailer SCA Component, and an SCA Wire element is

created to connect the created SCA Component Reference and the SCA Component Service

elements. We do the same work for the service invocations which are identified from the other

bundles. Finally, we obtain the architecture illustrated in Figure 7.9.

118 Chap 7. Recovering Architectures from Service Oriented Systems

7.5 Summary

In this chapter, we have presented a reverse engineering approach for deriving a service ori-

ented architecture from the source code of the Web service choreographies. We generate the

structural and behavioral views based on a set of transformation rules that we have defined.

In our recovery approach, we focused on identifying the service invocations. In this way, we

hide from the developer the unnecessary details which could be found in a large source code.

Only participants in the choreography and their exchanged messages are modeled. Hence, the

developer can easily understand the interactions in the overall composition of Web services.

We have shown that the defined transformation rules are extensible and can be applied

to any service oriented systems (not necessarily Web services). We have tested these rules on

another kind of service-oriented systems which are implemented within the OSGi Framework.

In next chapters, we present the details of the implementation of the proposed approaches

in this thesis. After that, we present the results of the conducted experimentation in order to

evaluate and validate the proposed ideas in this thesis.

C
H

A
P

T
E

R

8
Tools

Make it work.

Make it work right.

Make it work right and fast.

Edsger DIJKSTRA, Donald KNUTH, C.A.R. HOARE

119

120 Chap 8. Tools

8.1 Introduction

Both ideas of generating primitive and composite Web services from a Component-based Web

application (Chapter 5 and Chapter 6) and Recovering Architectures from Service Oriented Sys-

tems (Chapter 7) are put into practice via two tools: WSGen and ArchGen respectively. The first

tool allows generating and compiling Java Web services and BPEL processes. It generates also:

the WSDL documents for each generated individual and composite Web service, the configura-

tion files, and the axis archives for deploying these services. The second tool allows to generate

high level specifications described in BPMN and SCA. The generated specifications are XML

files that can be opened and visualized graphically in a dedicated Graphical Modeling Frame-

work such as, Eclipse BPMN2 Modeler [Eclipse, a] and SCA Composite Designer [Eclipse, b].

This chapter presents also the functional architecture of WSGen and ArchGen, where, we de-

scribe the role of each component in these architectures. In addition, we show here what are

the generated Web services and their compositions from an example of a Web application.

8.2 WSGen: A tool for creating primitive and composite Web

services starting from Web components

We implemented the proposed solution as a tool called WSGen: Web Service Generator. This

tool receives, as input, archives of Web components and generates a set of primitive and com-

posite Web services corresponding to these components. These Web services are deployed on

a Web service provider according to the choices of the developer.

8.2.1 WSGen’s Functional Architecture

As WSGen implements the multi-step process (presented in the Chapter 5 and Chapter 6), we

have chosen the pipeline architectural style [Shaw et Garlan, 1996] for its implementation. Fig-

ure 8.1 depicts its abstract architecture. The components parsed by WSGen are Java Enter-

prise archives: EARs (Java Enterprise Archives), JARs (Java Archives) and WARs (Web Archives).

JSPs, Servlets, JavaBeans, Enterprise JavaBeans and traditional Java classes in these archives

are extracted. These files are analyzed by the ArchiveParser component to identify and filter

(according to the OCL constraints defined by developers) the operations to be published in

Web services. The OpDistributer component allows the distribution of operations on multi-

ple services according to the two criteria discussed previously. The new organization of the

operations is provided as output of this component. The WSCreator generates primitive Web

services (Java classes) and the BPEL processes starting from the set of operations produced by

the OpDistributer component. For each generated Web service (primitive and composite one),

a WSDL document is generated. WSDeployer uses a Tomcat server associated with the Apache

implementation support for Web services, Axis. This component generates a set of deployment

8.2. WSGen: A tool for creating primitive and composite Web services starting from Web
components 121

Figure 8.1 : The Abstract Architecture of WSGen

files (for example, Axis ARchive (AAR) files and Web Services Deployment Descriptor (WSDD)),

which are used to deploy the desired Web services.

8.2.2 WSGen By Example

This section illustrates the application of the approach on an example of a Web application.

Indeed, we explain how to create a Web service-oriented solution starting from a simulated

version of a real-world Web application. The latter represents the Web service search engine

Seekda, which indexes a large set of public Web services in the Internet. In its simulated ver-

sion, this application is considered as a set of interacting Web components. Each one gives a

different view on the application. This example has been used and validated in the publica-

tion [Tibermacine et Kerdoudi, 2012].

• The login component: allows client’s authentication. It asks a user via a form to enter an

email and a password.

122 Chap 8. Tools

• The new_account component: allows a new user to register in the application. The user

is asked to enter an email, a password and re-type the password for validation.

• The password_recovery component: asks the user to enter the email address that

she/he used to register in Seekda, and a new password. This component sends then an

email that allows the user to activate the new password.

• The web_services_search component: asks the user to enter keywords for searching

Web services. This component provides as a result a list of Web services. Each service

is described by the following information: country name, provider name, WSDL URL,

WSDL Cache, monitoring date, server name, availability, documentation, tags and user

rating.

• The advanced_web_services_search component: allows the user to enter search key-

words and other search criteria such as: country name, provider name, some specific

tags, the number and order of results.

8.2.3 Generated Primitive Web services

The transformation of this Web component generates the following set of primitive Web ser-

vices 1:

• AccountService: a Web service composed of the following operations:

– The _service_login operation: receives as input two messages of type String (the

email and the password of the user). This operation performs the authentification

action.

– The _service_new_account operation: receives as input three messages of type

String (the email, the password and the repeated password). This operation per-

forms the creation of new client’s account.

– The _service_password_recovery operation: has three messages of type String

(the email, the new password, the repeated password). It returns a message that

indicates to the client that she/he will receive an email containing a link to activate

the new password.

• SearchingService: a Web service composed of the following operations:

– The _service_BasicSearch operation: receives a message of type String (search

keyword). This operation is used to search web services.

1This is not an exhaustive list. Some other generated operations will be introduced in the following subsection.

8.2. WSGen: A tool for creating primitive and composite Web services starting from Web
components 123

Figure 8.2 : Navigation Rules in the simulated Seekda Web Application

– The _service_AdvancedSearch operation: is used for an advanced search. It re-

ceives as input a message of complex type, the elements of this complex type are of

type String (search keyword, country name, provider name, some specific tags).

– The _searchResult operation: returns to the client a message of complex type

composed of elements of String type. These elements represent the information

about the searched Web service (country name, provider name, etc.).

8.2.4 Generated Composite Web service

Figure 8.2 depicts the navigation rules between the different views of the Seekda Web ap-

plication. These relations between Web views are converted to orchestrations of the previ-

ous Web services. First, all navigation paths are calculated from the web navigation doc-

ument. As illustrated in Figure 8.2 there are sixteen2 navigation paths for the seekda web

application. For each navigation path, a BPEL process is generated using the previous al-

gorithm. Figure 8.3 shows an excerpt of a generated BPEL process from the navigation

path : WelcomeSeekda → new_account → advancedSearch → searchResult. This process

represents an orchestration of the corresponding generated services. The interface of the

new BPEL composite Web service uses a set of port types, through which it provides op-

erations to clients. As depicted in Figure 8.3, the partner link at the left side represents a

client of the service provided by the BPEL process. The partner links at the right side rep-

resent the Web services (AccountService and SearchingService) that participate in the

BPEL process. We start the process with a "receive" activity to receive requests from ex-

2Some of them are duplicated and have different sources.

124 Chap 8. Tools

Figure 8.3 : Excerpt of the generated BPEL Process

ternal clients. These clients represent others applications or Web services that consume

the service provided by the BPEL process. We have then an "invoke" activity to call the
_service_new_account operation of the AccountService. After invoking this operation, we

have in the process another "invoke" activity to thenewAccountAction operation, which per-

forms the creation of a new account in Seekda web application. This returns one of two values

"newAccountPass" or "newAccountFail", which represent respectively, success or failure of

the registration. After that, we have an "if" activity, in which, we test whether the returned

value is equal to the value newAccountPass or not. This value as depicted in Figure 8.2 rep-

resents the value of the condition in the navigation rule. Based on this test, the process in-

vokes the _service_AdvancedSearch operation or not. Before invoking this operation,there

is a "receive" activity which gets from the client the search keywords and other search crite-

ria such as: country and provider names. The next activity in this process is an invoke to the

advancedSearchAction operation. We have then, an "if" activity in which, we compare the

returned value of the operation with "searchPass" value. If they are equal, the process invokes

the _searchResult operation. Finally, the returned message from this operation is sent to the

client using the "reply" activity.

In this way, developers can directly use the services generated from the Seekda search en-

gine application, either for creating new accounts or for searching Web services. They can build

extensions of these services to provide more sophisticated solutions. For example, the tools im-

plemented by our team [Azmeh et al., 2011] classify hierarchically the result set of Web services

obtained from Seekda, in order to make search and browsing easier. The set of Web services re-

turned by the Seekda application consists of HTML pages. Instead of building an HTML parser

8.3. ArchGen: A tool for recovering Service Architectures from the source code of Service
Oriented Systems 125

"from scratch" to analyze each HTML page, we can consider here these tools as extensions to

the functionalities provided by the Web interfaces of Seekda application accessed through our

generated Web services. In this way, these tools can simply send requests to the Web service

SearchingService and based on the obtained result, they classify Web services.

8.3 ArchGen: A tool for recovering Service Architectures from the

source code of Service Oriented Systems

In order to validate the idea of Recovering Architectures from Service Oriented Systems (Chap-

ter 7), we have implemented a tool called ArchGen: Architecture Generator. This tool receives

as input the source code of a service oriented application (namely the generated Web service

application from Web components), and generates a set of BPMN and SCA models as high level

specifications.

8.3.1 ArchGen’s Functional Architecture

Figure 8.4 depicts the abstract architecture of ArchGen. The input of ArchGen are the source

code of Java Web services or OSGi bundles’ source code. Each Java class in this components

is extracted and parsed. The parsing is performed using the SourceCodeParser component.

An Abstract Syntax Tree (AST) representation of the source code is created by this component

and provided as output. The CollaborationIdentificator component analyzes the AST in order

to extract the set of collaborations and the involved participants (service clients and service

providers). BPMNGenerator and the SCAGenerator components use these collaborations as

inputs to generate respectively BPMN architectures (as “*.bpmn2” files) and SCA specifications

(as “*.composite” and “*.composite_diagram” files). The SCAGenerator component provides

(via the interface “createSCAComposites”) an assistance to the designer to group SCA com-

ponents into an SCA Composite. This grouping is based on the component’s names and the

designer knowledge. After that, the SCAGenerator component provides a functionality via the

interface “createHLSpecification”) allows to create a high level specification (as an SCA com-

posite) by grouping these newly created SCA composites.

126 Chap 8. Tools

Figure 8.4 : The Abstract Architecture of ArchGen

8.4 Underling Technologies

WSGen and ArchGen have been implemented on the basis of the following technologies

(among others):

Eclipse ASTParser tool : All tasks related to the parsing of Java source code and the identifica-

tion of dependency between operations are implemented using the ASTParser tool. This

tool is available in the Eclipse Java development tools JDT [Eclipse, 2001].

JaxMe Java Source framework : This framework [Apache, 2003] is used for generating Java

source code. In WSGen, the API of this tool has been exploited to create new operations

and Java classes implementing the exported services.

MDT OCL: This tool [Eclipse, 2009b] aims at providing a support to developers working with

models containing expressions written in OCL. Such support includes the edition, code

generation, interpretation, and debugging of the OCL constraints given for some under-

lying (Ecore or UML2) model. In our case, the OCL constraints are checked on an Ecore

instance built starting from the operations’ code.

8.4. Underling Technologies 127

HTMLParser: This tool [Derrick et al., 2002] is a Java library used to parse HTML pages. WGen

adapts this tool to parse JSP files and extracts some code portions to generate Web service

operations. This allows to identify scriptlets, expressions, declarations and other JSP tags.

JspC: We use JspC to convert JSPs into Servlets. The generated classes are parsed to help us in

creating input/output parameters. JspC is available in Tomcat Apache Project [Apache,

2005]).

Axis’ Java2WSDL: This tool is provided by Apache with the Axis Web service support [Apache,

2004a]. WSGen uses Java2WSDL to generate WSDL files starting from the Java files con-

taining the operations that implement the created Web services.

Xerces-J: This tool [Apache, 1999] provided by Apache as an XML parsing support is used to

analyze the navigation documents in the Web components.

WSDL4J: The WSDL documents are parsed using this tool. WSGen uses WSDL4J API to create

WSDL documents, which represent the interfaces of the generated primitive and com-

posite Web services.

BPELWriter: This API [Eclipse, 2005] is a Java library used to generate BPEL processes. The

process is instantiated by BPELFactory. This instance is registered by a resource using

BPELResourceSetImpl, which in turn is used by an instance of the BPELWriter class.

BPELWriter has methods for translating each of the BPEL elements and attributes from

EMF objects into DOM objects. DOM objects are serialized to BPEL files.

XML Schema Definition Tool: This tool is available in Eclipse MDT project [Eclipse, 2009b]

as an API. This library is used to examine, create or modify W3C XML Schema. WSGen

uses this XSD API to parse the types (simples or complexes) of the operation’s messages.

The result of the parsing is used to calculate the similarity between two messages (output

messages with input messages) of two Web services operations to be composed.

Eclipse BPMN2 Modeler: is an eclipse graphical modeling tool [Eclipse, a] which allows to

specify business processes or choreographies using the BPMN 2.0 diagrams. This frame-

work provides a Java library used by programmers to generate BPMN models. The tool is

built on Eclipse Graphiti and uses the BPMN 2.0 EMF meta model developed within the

Eclipse Model Development Tools (MDT) project. This meta model is compatible with

the BPMN 2.0 specification proposed by the Object Management Group. A BPMN model

is instantiated by Bpmn2Factory class. The created instance is registered by a resource

using Bpmn2ResourceImpl class. The API provides methods for translating each of the

BPMN elements and attributes from EMF objects into DOM objects. DOM objects are

serialized to BPMN files.

128 Chap 8. Tools

Apache Tuscany SCA implementation: Apache Tuscany [Apache, 2004b] simplifies the task

of developing SOA solutions by providing a comprehensive infrastructure for SOA de-

velopment and management that is based on Service Component Architecture (SCA)

standard. Tuscany SCA Java has implemented the SCA specifications defined by OSOA

and OASIS. We used in our tool ArchGen these APIs in order to generate automati-

cally the SCA models from the source code of the service oriented applications. The

SCA model is instantiated by the ScaFactory interface. The ScaFactory interface is

also used to instantiate the SCA elements such as: SCA Composite, SCA Component,

SCA Wire, SCA reference, SCA Service and SCA Promote which are added into the

SCA instance (model). At the end, the SCA instance is registered by a resource using

org.eclipse.emf.ecore.resource.Resource. The EMF objects are translated into DOM ob-

jects, which in turn are serialized to SCA files.

8.5 Summary

In this chapter, a set of tools that implement the proposed ideas in this dissertation are pre-

sented. The WSGen tool implements the approach presented in Chapters 5 and 6. It con-

tributes to the generation of Java Web services and BPEL orchestrations throughout the process

of migrating of Component based Web applications toward service oriented solutions. In fact,

WSGen extracts the Web component archives and provides a specific parser for each of their

content (namely, Java classes, Servlets, JSP pages, Web configuration files, HTML files....). And,

it generates new Java classes, Java interfaces, WSDL documents, WSDD files, services.xml files,

BPEL processes, and their WSDL files. All the generated Java classes are compiled automatically

using the JDT API and archived in Axis Archives files. After that, they are deployed by moving

them into the Axis server directory. WSGen provides also to the developers an interface to edit,

update, save, or choose a set of OCL constraints. In addition, it distributes operations into Web

services based on similarity and the coupling metrics.

The ArchGen tool implements the recovering approach presented in Chapter 7. It con-

tributes in the generation of BPMN and SCA architectures starting from the source code of

(Web) service oriented systems. The created models can be then opened and visualized di-

rectly in a dedicated graphical modeling Framework such as: the Eclipse BPMN2 Modeler and

the Eclipse SCA Composite Designer.

In the next chapter, we present the details of the conducted experimentation for evaluating

our approaches.

C
H

A
P

T
E

R

9
Experimentation: A Case study

What remains eternally incomprehensible in

nature is that we can understand.
Albert EINSTEIN.

129

130 Chap 9. Experimentation: A Case study

9.1 Introduction

To evaluate the proposed approaches in this thesis, we conducted two evaluations. First, we

evaluated the performance of the proposed process by experimenting it through the migra-

tion of three real-world Web applications towards Web service-oriented systems. Second, we

evaluated the additional cost induced by the proposed approach by evaluating the developer’s

effort when (s)he implements extensions to the three Web applications with and without our

approach.

9.2 Case study on the migration of Web applications toward Web

service oriented solutions

As stated at the beginning of the thesis, when developers want to implement extensions to

Web applications, without using our approach, they can either: i) develop these extensions

from scratch by writing programs that send HTTP requests to the Web applications and then

analyze the returned HTTP responses; or ii) create “manually" Web services that publish the

functionality of the Web application1 and then write programs that invoke these services. We

have aforementioned that this task of developing extensions is costly: cumbersome and so

time-consuming.

In order to show that our approach reduces the cost of the development of extensions to

Web applications, we have conducted an experiment on three real-world Web applications of

different sizes. In this experiment, we have in particular addressed the following research ques-

tions:

• RQ1: What is the performance of the process of identification of operations and Web

services that are generated and published?

• RQ2: What is the additional cost induced by the proposed approach?

For answering the first research question, we measured in our experiment the performance

of our approach taking the definition of “performance” from the information retrieval domain.

We measured thus the precision and the recall on the results of the steps in the process: i) the

identification of published operations, ii) and the creation of BPEL processes.

For answering the second research question, we have measured: i) the size (in terms of

number of statements) of the same extensions developed first without our approach, and then

with our approach; ii) the time taken in the development of many extensions to see at what

1This task is not really fully manual. We consider the use of tools for annotating code and then generating Web
services from this annotated code.

9.3. First Experimentation 131

Table 9.1 : Size of the three Web applications

Systems NSAC NLOC

E-Auction Application 31 1600
Music Portal Application 32 570

Seekda Application 10 850

time (from how many developed extensions) we can see the benefits of using our approach

(initial cost of Web service generation amortized).

The chosen applications for our experiment are: (i) an E-Auction application [Francesca et

al.,] that provides via its Web interfaces the functionality for buying and selling second-hand

goods by bidders and sellers2. (ii) An Online Music Portal, which is a JEE Web application3. This

application offers to users and administrators several functionalities such as: searching, pur-

chasing and managing songs. (iii) A simulated version of a Web service search engine (Seekda).

This application provides a set of functionalities, such as, searching for public Web services in

the Internet.

Table 9.1 describes the size of the three Web applications, where NSAC represents the Num-

ber of Server-side scripts And Classes. NLOC represents the Number of Lines Of Code in the Web

application. These Web applications are considered as inputs for our tool (WSGen: Web Ser-

vice Generator). We have presented in Section 8.2.2 what are the generated Web services and

their compositions obtained from the Seekda Web application.

The experimentation method and all the obtained results have been validated in the publi-

cation [Kerdoudi et al., 2016].

9.3 First Experimentation

In order to answer the first research question, we have involved in our experiment four Ph.D.

students mastering Java EE. First, each participant is asked to annotate the code of the three

Web applications using EJB 3 annotations. Then, we have used Eclipse JEE to generate Web

services starting from the annotated classes and methods of these applications. This is what

we consider the “manual” Web service generation. We have then measured the number of

the generated operations. In addition, we have asked these Ph.D. students to imagine all the

possible pertinent operations that can be created from each application’s source code. We have

calculated the number of these operations. After that, in order to calculate Recall and Precision

for the operation identification step, we have measured for each application:

2It has been downloaded from the following GitHub repository: https://github.com/FrancescaRodricks/E-
Auction-SE-Project

3Downloaded from: https://github.com/sahebkanodia/onlinemusicportal

https://github.com/FrancescaRodricks/E-Auction-SE-Project
https://github.com/FrancescaRodricks/E-Auction-SE-Project
https://github.com/sahebkanodia/onlinemusicportal

132 Chap 9. Experimentation: A Case study

Table 9.2 : Recall and Precision calculation for the operation identification step

Involved developers Systems TP FP FN Precision Recall

E-Auction Application 25 9 3 0.73 0.89
Ph.D. Student 1 Music Portal Application 10 15 2 0.40 0.83

Seekda Application 12 2 1 0.85 0.92

E-Auction Application 28 9 7 0.75 0.80
Ph.D. Student 2 Music Portal Application 12 15 3 0.44 0.80

Seekda Application 12 2 2 0.85 0.85

E-Auction Application 26 9 4 0.74 0.86
Ph.D. Student 3 Music Portal Application 13 15 5 0.46 0.72

Seekda Application 9 2 2 0.81 0.81

E-Auction Application 27 9 8 0.75 0.77
Ph.D. Student 4 Music Portal Application 14 15 6 0.48 0.70

Seekda Application 11 2 3 0.84 0.78

Table 9.3 : Recall and Precision calculation for the step of BPEL generation step

Involved developers Systems TP FP FN Precision Recall

E-Auction Application 32 4 10 0.88 0.76
Ph.D. Student 1 Music Portal Application 10 2 2 0.83 0.83

Seekda Application 10 2 1 0.83 0.90

E-Auction Application 37 4 15 0.90 0.71
Ph.D. Student 2 Music Portal Application 11 2 2 0.84 0.84

Seekda Application 10 2 2 0.83 0.83

E-Auction Application 29 4 9 0.87 0.76
Ph.D. Student 3 Music Portal Application 13 2 2 0.86 0.86

Seekda Application 8 2 1 0.80 0.88

E-Auction Application 35 4 13 0.89 0.72
Ph.D. Student 4 Music Portal Application 15 2 2 0.88 0.88

Seekda Application 12 2 3 0.85 0.80

• True Positives (TP): the operations identified and published by WSGen and which are

also created manually.

• False Positives (FP): the operations created by WSGen, but which are eliminated manu-

ally.

• False Negatives (FN): the operations created manually without our approach and which

have not been generated by WSGen.

• True Negatives (TN): the operations eliminated by WSGen and are not created manually.

9.3. First Experimentation 133

The Precision is the ratio of the number of true positives to the total number of all created

operations by WSGen (T P +F P). Precision = T P
(T P+F P) .

The Recall is the ratio of the number of true positives to the number of operations that

should be published (T P +F N). Recall = T P
(T P+F N) .

Table 9.2 depicts the obtained values of precision and recall for the three applications. The

obtained values show that precision of the operations identification is relatively good except

the case of the Music Portal application where the precision is low. In this case, the elimination

of the operations provided to the administrator of the application (adding users, ...) cannot

effectively be automated and requires the developer knowledge. By this intervention of the

developer the value of F P becomes high, which affects negatively the value of the precision.

Besides, in the third column of Table 9.2 (TP) we can see a little difference between the

values obtained by the involved developers. This is due to the fact that there are some correct

operations which are identified by some developers but they are not identified by the others.

This variance is due in general to several factors such as: the level of developer skills, the time

spent in analyzing the code (careful code review or not), the complexity and the size of the code

and the availability of Web application documentation and architecture.

However, the measures show that the recall rate is relatively high for the three applications.

This means that the correctness level of our approach is relatively good (most of the identified

operations by WSGen are also created manually). Nevertheless, additional operations are cre-

ated manually and cannot be identified automatically by WSGen (False Negatives). An example

of these operations for the E-Auction application is getAuctionListForProduct operation. It

returns a list of created auctions for a specific kind of product. This functionality was not pro-

vided directly by the E-Auction application, but it was easy to create it by invoking an exist-

ing method in the Web application and then filtering its returned results that correspond to a

specific product. Additional operations are created manually (False Negatives) by slicing the

source code of some programs in the Web applications. The creation of this kind of operations

implies complex human thinking and this cannot be fully automated.

There are many variables which are involved in the service and operation identification

which made this task too complicated and time-consuming. In such a scenario, identifi-

cation of candidate services and operations within a large source code is challenging. Var-

ious strategies and ways could be adopted such as: using architectural reconstruction ap-

proaches [O’Brien et al., 2005], pattern detection [Arcelli et al., 2008] or concept analysis and

program slicing techniques [Zhang et al., 2006].

After the evaluation of performance for the operation’s identification step, now we have

made measures of performance in order to calculate the recall and the precision for the step

of the generation of BPEL processes. We have asked the four Ph.D. students to extract all pos-

134 Chap 9. Experimentation: A Case study

sible combinations that could be considered as pertinent Web service orchestrations. Then,

these have been compared with the generated orchestrations by WSGen. For these measures,

the True Positives are the number of BPEL processes which are created manually and with WS-

Gen. The False Positives are the BPEL processes created by WSGen and eliminated manually.

The False Negatives are the processes created manually but which have not been generated by

WSGen.

As we have seen in the first evaluation, there are some operations which have been created

manually and which are not generated by WSGen. As a result, we cannot rely on the previous

operation sets to measure recall and precision for BPEL process generation. To deal with this

issue, we have decided to consider in our measurement only the operations that are correct

(created both by WSGen and manually). After that, we measured the number of BPEL processes

that invoke these operations. The obtained values are depicted in Table 9.3. We can see in this

table that the precision is high for the three applications, which demonstrates that the step of

orchestration generation gives good results with a minimum rate of errors.

Besides, we can observe also in Table 9.3 that the recall is relatively high for the three ap-

plications. Despite that, there is a number of orchestrations which are created manually and

which are not generated by WSGen. This is due to the use of navigation models for generating

BPEL processes. As a result, some combinations of operations cannot be identified from these

models, but they are defined manually (False Negatives). An example of these combinations is

an orchestration that invokes operations which are created starting from programs in back-end

components of Web applications. This kind of operations is not always invoked directly from

BPEL processes that are generated by WSGen. This fact does not have an influence on the cor-

rectness of our approach, because most of the orchestrations which represent the functionality

used by end-users via Web interfaces are created by WSGen.

9.4 Second Experimentation

To answer RQ2, we estimated the developer’s effort when (s)he implements extensions to the

three Web applications with and without our approach. This part of the experiment is based

on the following steps:

• We have implemented extensions to the three Web applications without using our ap-

proach and then the same extensions have been developed using our approach. In the

extensions, which have been developed without using our approach, we have written

Java programs that send HTTP requests to the running Web applications and by analyz-

ing the HTTP responses. The implemented extensions are as follows:

– For the E-Auction: the extension allows to the user to create alerts by sending an

9.4. Second Experimentation 135

email when particular products with specific features are offered by the E-Auction

application.

– For the Music Portal: the extension is a mobile front-end for this application, for

accessing the searching functionality of the application from an Android tablet.

– For Seekda: the extension searches for Web service descriptions from the search

engine by sending keywords and then retrieves WSDL files from the obtained re-

sults (in order to exploit them to make classifications of Web services [Azmeh et al.,

2011]).

• We evaluated the number of statements in each implemented extension to each Web

application and we compare the obtained values for the two approaches. N SW SGen is

the number of statements for implementing an extension by invoking the generated Web

services. N SHT T P is the number of statements for implementing an extension by sending

HTTP requests to the Web application and analyzing the returned responses.

• We calculated StmRati o which is the ratio between N SW SGen and N SHT T P for the three

Web applications (StmRati o = N SHT T P / N SW SGen).

The values for StmRati o for the three applications are: 3.76 for the E-Auction applica-

tion, 3.6 for the Music Portal application, and 3.2 for Seekda. All the values confirm that the

extensions developed using our approach are more than three times smaller than the same

extensions developed using HTTP requests (answer to RQ2).

We can observe that the comparison made, between the two ways of developing extensions,

to answer the second research question does not take into consideration the initial overhead

of our approach. This overhead can be quantified by measuring the number of OCL expres-

sions and the number of interactions with WSGen GUI (number of clicks in order to validate

operations, for example). But this cannot be added up to the number of statements and then

be compared with the number of statements when developing the extensions without our ap-

proach. Then, we have decided to compare the total time spent during the development of

several extensions to one of the three Web applications, which is the Music Portal application.

In addition to the firstly created extension we have implemented three other simple extensions

to this Web application. Then, in order to not limit ourselves to four extensions of this Web ap-

plication, we have decided to create several fictive (simulated) extensions. For each simulated

extension, we vary randomly the value of N SHT T P and we calculate N SW SGen which is equal

to: N SHT T P ×StmRati o.

The comparison now is based on the calculation of the following values:

• T : represents the total time for generating primitive and composite Web services from

the Web application using our approach. This time is the sum of the global time for ex-

136 Chap 9. Experimentation: A Case study

Table 9.4 : Time for the four extensions of the Music Portal application

Extensions THT T P TW S

Extension 1 1.94 1.9
Extension 2 1.2 0.85
Extension 3 0.94 0.77
Extension 4 0.92 0.75

ecuting our tool and the time for the intervention of the developer: writing OCL con-

straints and validating the generated operations and services.

• TW SG : represents the time spent during the implementation of an extension to a Web ap-

plication by invoking the generated Web services. This time is the sum of the global time

needed for a developer to understand the service descriptions and/or the BPEL processes

in addition to the time for programming and testing an extension.

• THT T PG : represents the needed time to implement the same extension without using our

approach. This time is the sum of the estimated time for navigating between the inter-

faces of the Web application in order to learn and save, before the development of the

extension, the content of the HTTP requests (and their responses) sent to (respectively,

received from) the Web application and the global time to implement and test this exten-

sion.

• TW S : is the average time for implementing one statement within an extension using our

approach. This time is equal to TW SG /N SW SGen .

• THT T P : is the average time for implementing one statement within an extension without

using our approach. This time is equal to THT T PG /N SHT T P .

Table 9.4 shows the average values of time for implementing one statement in the four ex-

tensions of the Music Portal Web application. We can observe that the values of THT T P and

TW S decrease from one extension to the next one. This is related to the fact that the developer

acquires a programming experience during the implementation of an extension, which allows

her(him) to implement the next extension in less time. This experience is affected by several

factors such as the use of the same API. In this experimentation, we have supposed that all the

simulated extensions are implemented using the same API and in the same programming lan-

guage. Besides, we have estimated the time for rewriting the code of the four extensions (as if

it was a “mechanical” task that does not imply thinking). The estimated value of THT T P and

TW S is equal to 0.37 min. This is the minimal time. Now, we would like to predict the values of

THT T P and TW S for each simulated extension. For this, starting from the values in Table 9.4 we

have used a regression technique to obtain two curves of trends and their equations. These two

equations allowed us to extrapolate the values of THT T P and TW S for the simulated extensions.

9.4. Second Experimentation 137

Figure 9.1 : Result of the application of the regression technique for our approach.

Figure 9.2 : Result of the application of the regression technique for the HTTP approach.

As we have aforementioned, the values in Table 9.4 have a decreasing trend that tends to the

value 0.37. So, to determine the curves of trends we used an inverse power regression model,

which is defined mathematically as following: f (x) = a × xb , where a and b are constants, and

b is negative. f (x) represents the value of THT T P or TW S for the extension number: x. It is clear

that this function converges to zero. But, we have mentioned that the minimal value of time

for THT T P and TW S is 0.37. Thus, the function that we need in our calculation could be defined

as follows: g (x) = f (x)+ 0.37. To calculate f(x), we have first subtracted the value 0.37 from

the values in Table 9.4. After that, we have used these new values as input when we have ap-

plied the regression technique. The obtained curves of trends and their equations4 are shown

in Fig 9.1 and Fig 9.2. Now, in order to estimate the global time(THT T PG and TW SG) for im-

plementing each simulated extension, we use a function h which is defined mathematically as

follows: h(x,r) = g (x)×r , where r represents the number of statements N SHT T P
5 or N SW SGen

6

in each simulated extension. Thus, the result of the calculation of time for implementing all the

extensions of the Music Portal are shown in Fig9.3.

We have accumulated the global time for each simulated extension (the time to develop the

whole extension, not the time for writing one statement). We can observe in the curves that the

time for implementing the first extension using our approach is relatively high comparatively

to the time spent during the implementation of the same extension without our approach. This

4These curves and equations are generated using the tool provided by the Microsoft Office Excel 2007.
5N SHT T P is generated randomly.
6N SW SGen is calculated by: N SHT T P ×StmRati o.

138 Chap 9. Experimentation: A Case study

Figure 9.3 : Variation of the time over the number of extensions in the Music Portal Application

time is equal to T +TW SG , which represents the initial overhead of our approach (which is con-

sidered only one time) and the time for implementing the first extension. We can see in Fig. 9.3,

starting from the fourth extension (it represents the point where the two curves intersect), that

our method becomes beneficial and the global time for implementing and testing extensions

becomes less than the global time for doing the same thing without our approach. In addition,

we can observe that the slopes of the two curves are different. The curve related to the devel-

opment of extensions without our approach grows faster. This shows the amortization of the

initial overhead of our approach over the development of multiple extensions (answer to the

second part of RQ2).

9.5 Discussion and Threats To Validity

For the external validity, and in order to generalize the experiment results of the case study, we

need to take into consideration several aspects such as the type and the size of the selected Web

applications. We conducted our experiment on different types of Web applications that have

relatively medium sizes. To achieve results which can be confidently generalized, we need to

run this experiment on larger Web applications developed using different technologies (lan-

guages and/or frameworks). But the fact that our applications have medium sizes helped us

in manually creating Web services in a reasonable time. In addition, the hypothesis about the

use of HTTP requests (using java.net API of the standard library of the JDK) for developing ex-

tensions slightly biases the experiment. Indeed, this is not the most effective way of doing,

but we have considered it because it is the most straightforward and the standard way for de-

veloping Java-based extensions of Web applications (for Web scraping, for instance). Besides,

this is the only way of developing such extensions for Web applications that do not provide a

service-oriented REST (or SOAP-based) API, which is the case of most Web applications today.

On what concerns the internal validity, we can be tempted to say that, as we have been

involved (not in the manual annotation of the Web application code to generate Web services

in the first part of the experiment, but) in the development of the extensions without WSGen

in the second part of the experiment, the results would be biased. This fact does not have an

influence on the experiment results. Indeed, the way of developing the extensions by using

9.6. Summary 139

HTTP requests is greatly different from using Web services. The fact that the developers know

what would be the generated Web service interfaces of the Web applications does not impact

their way of programming the HTTP requests using the java.net API.

9.6 Summary

In this chapter, we have presented the setup, the process and the result of two evaluations.

Basically, they aim at proving the applicability of the proposed ideas and measuring the perfor-

mance of the proposed approach. The obtained results of experiments, showed the applicabil-

ity and the cost-effectiveness of the approach. We alleviate in particular the developer from the

complexity of creating these Web services (individual and composite) manually. As we have ex-

plained above, this task is particularly challenging, time consuming and error prone, especially,

when we parse a complex and large Web application, and when we create Web services start-

ing from Web interfaces, which are implemented with a mixing of different paradigms such as,

HTML, CSS, JavaScript and Java.

In addition, we have shown that in our method, the global time for implementing and test-

ing extensions is much less than the global time for doing the same thing without our approach.

Indeed, time related to the development of extensions without our approach grows faster ev-

ery time we implement new extensions, while our approach, starting from the fourth extension,

becomes beneficial.

In the near future, we plan to evaluate the accuracy, the performance of our software recov-

ering approach on case study in which we apply our techniques to produce service architec-

tures of one of the open source implementations of OSGi Framework such as Eclipse Equinox.

C
H

A
P

T
E

R

10
Conclusion and Future Work

10.1 Summary

THE work presented in this thesis contributes in opening Web applications for third party

development. Nowadays, there is a real need for shifting from Web applications target-

ing exclusively humans into Web service-oriented applications. Examples of scenarios where

this need is felt, for example, (i) when we want to build mobile applications by using data from

existing Web applications, or (ii) when we want to implement a new “niche” business logic

in the Web, underlying a large/famous Web application. After this shift, the obtained result

will thus enable third tier developers to build systems by reusing services provided by the ex-

isting Web applications instead of creating them from scratch or dealing with complex HTTP

interactions. In this thesis, we have addressed the problem of opening Component-Based Web

Applications for third party development. Web components are seen here as software artifacts

embedding business logic code and exporting Web interfaces. We proposed an approach (in

Chapter 5) that helps developers to create Web service-oriented systems starting from the Web

user interfaces of these applications. We considered in our approach these deployed artifacts

(embedding Web interfaces) as remote APIs (as Web Services) that offer the opportunity for de-

velopers to extend the functionality provided by these services and exploit the resources used

by them. Indeed, the third party developers use the WSDL descriptions of these Web services

to create their client applications. These latter can send XML-based messages (SOAP) to the

chosen Web service. The same kind of messages are returned back to these client applications,

containing answers to their requests. Upon these results, more actions can be performed in

141

142 Chap 10. Conclusion and Future Work

order to implement some new business-logic.

In addition to the created individual Web services from Web interfaces and existing primi-

tive functionality, we proposed in Chapter 6 a method to generate composite Web services by

assembling the created individual Web services in order to provide coarse-grained functional-

ities. The approach relies on the creation of Web service orchestrations and choreographies.

Both concepts imply coordination or control the act of making individuals Web services work

together to form some consistent overall process. Orchestration refers to coordination at the

level of a single participant’s process, whereas choreography refers to the global view, spanning

multiple participants. The orchestrations in our approach are expressed using BPEL, which

is one of the leading languages in this field. The choreographies are generated starting from

the method invocations located in the source code of the generated individual Web services.

We have proposed the necessary algorithms and techniques to generate BPEL processes start-

ing from Web user interfaces navigations and to generate the Web service choreographies as a

set of Web service requests embedded in the source code. All these “emerging Web services”

contribute in opening Web applications for third-tier extension development.

In order to present more accurately the processing performed in Web application to create

service oriented solutions, we have proposed (in Chapter 4) a formal model that represents in

an unambiguous way both kinds of systems as graphs. These mathematical notations are used

to present the migration as a mapping between graphs. This formal definition helps in the

general understanding, and it gives a solid reference point for the rest of the thesis.

Besides, software evolution is an inescapable activity in the software lifecycle [Lehman et

Belady, 1985]. In this activity, system comprehension plays an important role in understanding

the overall structure and behavior of a software before starting to apply changes to it. This is

particularly critical for new developers in the software project team or if evolution is performed

a long time after the initial development of this software. We proposed (in Chapter 7) an ap-

proach for recovering service oriented architectures from the source code of a (Web) service

oriented system. These architectures offer to developers (third party developers or mainte-

nance’s engineers) a support model of a high level of abstraction (in contrast to source code)

which can help them in understanding their systems. We provide two categories of support

models (of a high level of abstraction), which are: (i) BPMN models which represent the be-

havior of a service composition, and (ii) SCA specifications which represent the structure of

the service composition as a set of components connected with contractually specified inter-

faces. The interfaces are the provided and the required services from these components. The

architecture recovering is not performed in an ad-hoc way, but through explicit transformation

rules, which are extensible, easily testable and quickly debuggable.

All the proposed ideas in this thesis are implemented thought two tools called: WSGen

and ArchGen. The WSGen allows to generate primitive and composite Web services from a

10.2. Perspectives 143

Component-based Web application and the ArchGen allows to generate BPMN models and

SCA specifications from the source code of (Web) Service Oriented Systems. The details about

the implemented tools are presented in Chapter 8.

Finally, we have conducted two experiments to evaluate the proposed approaches (in

Chapter 9). In the first experimentation, we measured the performance of our approach by

migration of three real world Web applications into composite and primitive Web services.

Comparing to the manual creation of these Web services, the obtained results, have shown

a good values of precision and recall. In the second experimentation, we investigated the addi-

tional cost induced by the proposed approach. The obtained experiment results confirm that

the extensions developed using our approach are more than three times smaller than the same

extensions developed using HTTP requests. Besides, we evaluated the architecture recovery

approach on set of examples as a part of the evaluation process. The developers that were in-

volved in this evaluation confirmed that the generated models are very helpful. Experimenting

in depth this step of our approach on large applications with real-world developers is one of

the perspectives of this work. However, it is commonly agreed that recovering high-level archi-

tecture descriptions is helpful during software comprehension.

To sum up, we list the potential beneficiaries of the proposed ideas in this thesis: i) the or-

ganization which holds the rights on the Web application and whose developers would use the

proposed method: migrating a Web application of this organization towards a service-oriented

one enables the organization to modernize its “patrimony” and to shift to a new paradigm

(of service orientation); ii) third party developers: they will be able to develop new business

processes, potentially with financial benefits, starting from the generated Web services. The

development of this “ecosystem” (composed of third party developers) around the generated

services should necessarily bring a return on investment for the organization holding the rights

on the original Web application.

10.2 Perspectives

In the near future, we plan to extend the proposed method by implementing more sophis-

ticated techniques for grouping complementary operations in Web services, based on “text-

mining” of Web components’ documentation. At the conceptual level, we plan to study the

formalization of the performed transformation as a set of high-level declarative rules. We then

define such rules in a QVT-compliant language [OMG., 2008] and thus integrate our solution in

a Model-Driven Engineering process.

Furthermore, we plan to address more accurately the security issues when migrating Web

application toward Web service oriented systems. In fact, in the current work, we deal with

Web interfaces that use a secure protocol such as TSL (SSL). Actually, Web applications start

using a third party secure delegation service (such as OAuth authorization [Leiba, 2012]) to

144 Chap 10. Conclusion and Future Work

enhance their access security. As a future work, we intend to study the migration of such kind of

Web applications towards Web service-oriented systems that use this secure delegation service.

For example, the implementation of the scenario of delegation provided by OAuth could be

migrated into a Web service orchestration where the user is involved to introduce the scope of

authorization.

The results of the experiments demonstrated that service identification is challenging, and

there are several strategies and ways that could be adopted such as using architectural recon-

struction approaches [O’Brien et al., 2005], pattern detection [Arcelli et al., 2008] or concept

analysis and program slicing techniques [Zhang et al., 2006]. Indeed, we plan in the future

studying these strategies in order to improve this step of our approach so that obtaining more

precise results.

Future work includes also the use of a hierarchical clustering technique like Weighted Com-

bined Algorithm [Maqbool et Babri, 2004] in service architecture recovery approach. We illus-

trated in Chapter 7 the grouping the components in a composite is based on their category

and developer knowledge. We plan in future to use the Weighted Combined Algorithm, where,

we represent each component by a cluster, and we compute the pair-wise similarity between

all the clusters and then we combine the two most similar clusters into a new cluster. This is

repeated until all the elements will be clustered or the desired number of clusters is achieved.

In our thesis, the recovered architectures are created based on static analysis of the service

oriented applications. In the long term, we would like to analyze dynamically the artifacts,

like execution traces to identify at runtime dynamic service dependencies. In this kind of sys-

tems, an optimized architectures can be recovered at runtime, instead of dealing with static

“spaghetti” architectures. This optimization is possible because architecture elements are not

all involved in the running system. Thereby, these elements can be hidden in the dynamic ar-

chitecture description, and concretely running elements can be highlighted. By simplifying

architecture descriptions, they enable developers to make like a quick “inventory” of what is

concretely running, among all what composes their system, at a particular execution time (bug

occurrence, for example). They can easily identify which component is consuming a particular

failing service, for instance.

List of Figures

2.1 Multi-tiered Architecture for JEE Component based application[Oracle,] 16

2.2 Interaction between a Web client and a Web application that uses Web components
[Jendrock et al., 2014] . 18

2.3 Service Oriented Architecture [Sommerville, 2011] . 20

2.4 Composition of Web services with orchestration . 24

2.5 Composition of Web services with choreography . 24

2.6 An excerpt of the BPEL meta-model . 25

2.7 SCA Component Diagram[Beisiegel et al., 2009] . 29

2.8 SCA Composite Diagram[Beisiegel et al., 2009] . 30

2.9 SCA Domain Diagram[Beisiegel et al., 2009] . 30

3.1 Evaluation Framework for Legacy to SOA evolution [Khadka et al., 2013] 38

3.2 An example of two-view approach representation. (A) Knowledge view and (B) ac-

tivity view [Razavian et Lago, 2015] . 39

3.3 SOA migration families [Razavian et Lago, 2015] . 40

3.4 The framework of the service composition system[Rao et Su, 2005] 48

4.1 Structure of a Web application . 62

4.2 A subgraph representing the Cart Web Interface . 64

4.3 Structure of a Web Service-oriented System . 67

4.4 A subgraph that represents the generated Web services from the Cart Web Interface

(SOS1) . 68

5.1 The Proposed Migration Process . 73

5.2 The Operation Meta-model . 84

5.3 Example of operations grouping . 87

6.1 An excerpt of a BPEL process representing the created activities to deal with a cycle. 97

7.1 A BPMN model represents a service choreography to accomplish the payment activity.105

7.2 Service Component Architecture of the Payment Application 107

145

146 List of Figures

7.3 Architecture of Finance SCA Composite . 108

7.4 Architecture of Manufacture SCA Composite . 109

7.5 Refined Service Component Architecture of the Payment Application 110

7.6 OSGi Framework Layers [Alliance, 2014] . 112

7.7 The service-oriented interaction pattern [Hall et al., 2011] 112

7.8 Recovered BPMN Architecture from the Emailer application 116

7.9 Generated SCA model that represents the E-Mailer OSGi application 117

8.1 The Abstract Architecture of WSGen . 121

8.2 Navigation Rules in the simulated Seekda Web Application 123

8.3 Excerpt of the generated BPEL Process . 124

8.4 The Abstract Architecture of ArchGen . 126

9.1 Result of the application of the regression technique for our approach. 137

9.2 Result of the application of the regression technique for the HTTP approach. 137

9.3 Variation of the time over the number of extensions in the Music Portal Application 138

List of Tables

5.1 Obtained similarity scores . 89

9.1 Size of the three Web applications . 131

9.2 Recall and Precision calculation for the operation identification step 132

9.3 Recall and Precision calculation for the step of BPEL generation step 132

9.4 Time for the four extensions of the Music Portal application 136

147

List of Listings

2.1 Structure of a BPEL Process[OASIS., 2007] . 26

5.1 An excerpt of the code present in the Cart Web interface 78

5.2 An excerpt of the generated operation from the Cart Web interface 79

5.3 An excerpt of a server script present in the addItem Web interface 80

5.4 An excerpt of the generated operation from addItem Web interface 81

5.5 An excerpt of code showing the using of cookies in the signIn Web interface . . 82

7.1 Metadata (Headers) in the Manifest . 111

7.2 The Interface of the service provided by the SpellChecker component 113

7.3 The Activivator of the SpellChecker component . 113

7.4 An excerpt of a simplistic client code of the SpellCheckerService 114

148

Bibliography

[Alliance, 2014] OSGi Alliance. Osgi core specification release 6, 2014.

[Allier et al., 2010] Simon Allier, Houari A Sahraoui, Salah Sadou, et Stéphane Vaucher. Re-

structuring object-oriented applications into component-oriented applications by using

consistency with execution traces. In Proceedings of the 13th International Conference on

Component-Based Software Engineering (CBSE), pages 216–231. Springer, 2010.

[Almonaies et al., 2010] Asil A Almonaies, James R Cordy, et Thomas R Dean. Legacy system

evolution towards service-oriented architecture. In International Workshop on SOA Migra-

tion and Evolution, pages 53–62, 2010.

[Almonaies et al., 2013] Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, et Thomas R. Dean.

A Framework for Migrating Web Applications to Web Services. In Proc. of ICWE, 2013.

[Ameller et al., 2015] David Ameller, Xavier Burgués, Oriol Collell, Dolors Costal, Xavier

Franch, et Mike P Papazoglou. Development of service-oriented architectures using model-

driven development: A mapping study. Information and Software Technology, 62:42–66,

2015.

[Andritsos et Tzerpos, 2005] Periklis Andritsos et Vassilios Tzerpos. Information-theoretic soft-

ware clustering. IEEE Trans. Softw. Eng., 31(2):150–165, 2005.

[Anquetil et al., 2009] Nicolas Anquetil, Jean-Claude Royer, Pascal Andre, Gilles Ardourel, Petr

Hnetynka, Tomas Poch, Dragos Petrascu, et Vladiela Petrascu. Javacompext: Extracting ar-

chitectural elements from java source code. In Proc. of WCRE’09. IEEE, 2009.

[Apache, 1999] Software Foundation Apache. The Apache Xerces Project.

http://xerces.apache.org/, 1999.

[Apache, 2003] Software Foundation Apache. JaxMe Java Source Framework.

http://www.java2s.com/Code/Jar/j/Downloadjaxmejs02jar.htm, 2003.

[Apache, 2004a] Software Foundation Apache. Apache Axis, Web Service Project.

http://axis.apache.org/axis/, 2004.

149

150 Bibliography

[Apache, 2004b] Software Foundation Apache. Apache Tuscany.

http://tuscany.apache.org/home.html, 2004.

[Apache, 2005] Software Foundation Apache. Tomcat Apache Project.

http://tomcat.apache.org/, 2005.

[Apache., 2013] Apache. Apache Orchestration Director Engine. http://ode.apache.org/, 2013.

[Arcelli et al., 2008] Francesca Arcelli, Christian Tosi, et Marco Zanoni. Can design pattern de-

tection be useful for legacy systemmigration towards soa. In Proceedings of the 2nd IEEE in-

ternational ICSE workshop on Systems development in SOA environments (SDSOA ’08), pages

63–68. ACM, 2008.

[Aït-Bachir, 2008] Ali Aït-Bachir. Measuring similarity of service interfaces. In ICSOC PhD Sym-

posium, 2008.

[Azmeh et al., 2011] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, Moha N., et C. Tibermacine.

Selection of composable web services driven by user requirements. In Proc. of IEEE ICWS,

2011.

[Badri et Badri, 2004] Linda Badri et Mourad Badri. A proposal of a new class cohesion crite-

rion: An empirical study. Journal of Object Technology, 3(4):145–159, 2004.

[Bauer et Huget, 2004] Bernhard Bauer et Marc-Philippe Huget. Modelling web service com-

position with uml 2.0. International journal of Web engineering and technology, 1(4):484–

501, 2004.

[Bauer et Muller, 2004] Bernhard Bauer et Jorg P. Muller. Mda applied: From sequence dia-

grams to web service choreography. In Proc. of ICWE, 2004.

[Baumgartner et al., 2001] Robert Baumgartner, Sergio Flesca, et Georg Gottlob. Visual web in-

formation extraction with lixto. In Proceedings of the 27th International Conference on Very

Large Data Bases, VLDB ’01, pages 119–128, San Francisco, CA, USA, 2001. Morgan Kauf-

mann Publishers Inc.

[Baumgartner et al., 2004] Robert Baumgartner, Georg Gottlob, Marcus Herzog, et Wolfgang

Slany. Interactively adding web service interfaces to existing web applications. In Proceed-

ings of the International Symposium on Applications and the Internet (SAINT),, pages 74–80.

IEEE Computer Society, 2004.

[Beisiegel et al., 2009] Michael Beisiegel, Khanderao Khand, Anish Karmarkar, Sanjay Patil,

Michael Rowley, Martin Chapman, et Mike Edwards. Service Component Architec-

ture Assembly Model Specification Version 1.1. http://docs.oasis-open.org/opencsa/sca-

assembly/sca-assembly-1.1-spec-cd03.html, 2009.

Bibliography 151

[Belushi et Baghdadi, 2007] Wesal A. Belushi et Youcef Baghdadi. An Approach to Wrap Legacy

Applications into Web Services. In Proceedings of International Conference on Service Systems

and Service Management, pages 1–6. IEEE Computer Society, 2007.

[Benatallah et al., 2003] Boualem Benatallah, Marlon Dumas, Marie-Christine Fauvet, et

Fethi A. Rabhi. Patterns and skeletons for parallel and distributed computing. chapitre To-

wards Patterns of Web Services Composition, pages 265–296. Springer-Verlag, 2003.

[Bennett, 1996] Keith Bennett. Software evolution: past, present and future. Information and

software technology, 38(11):673–680, 1996.

[Bisbal et al., 1999] Jesús Bisbal, Deirdre Lawless, Bing Wu, et Jane Grimson. Legacy informa-

tion systems: Issues and directions. IEEE software, 16(5):103, 1999.

[Boustil et al., 2014] Amel Boustil, Ramdane Maamri, et Zaidi Sahnoun. A semantic selection

approach for composite web services using owl-dl and rules. Service Oriented Computing

and Applications, 8(3):221–238, 2014.

[Box et al., 2000] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendel-

sohn, Henrik Frystyk Nielsen, Satish Thatte, et Dave Winer. Simple object access protocol

(soap) 1.1. https://www.w3.org/TR/2000/NOTE-SOAP-20000508/, 2000.

[Bray et al., 1998] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, et François

Yergeau. Extensible markup language (xml), 1998.

[Briand et al., 1996] Lionel C. Briand, Sandro Morasca, et Victor R. Basili. Property-based soft-

ware engineering measurement. IEEE TSE, 22(1):68–86, 1996.

[Briand et al., 1998] Lionel C. Briand, John W. Daly, et Jürgen Wüst. A unified framework for co-

hesion measurement in object-oriented systems. Empirical Software Engineering, 3(1):65–

117, 1998.

[Briand et al., 2005] L.C. Briand, Y. Labiche, M. Di Penta, et H. Yan-Bondoc. An experimental

investigation of formality in uml-based development. IEEE TSE, 31:833–849, 2005.

[Brown et al., 2005] Alan W Brown, Jim Conallen, et Dave Tropeano. Introduction: Models,

modeling, and model-driven architecture (mda). In Model-Driven Software Development,

pages 1–16. Springer, 2005.

[Burns et Kitain, 2009] Ed Burns et Roger Kitain. Javaserver™ faces 2.0 final release specifica-

tion. http://download.oracle.com/otndocs/jcp/jsf-2.0-fr-full-oth-JSpec/, 2009.

[Canfora et al., 2008] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, et Porfirio Tra-

montana. A wrapping approach for migrating legacy system interactive functionalities to

service oriented architectures. JSS, 81(4):463–480, 2008.

152 Bibliography

[Chardigny et al., 2008] Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, et Dalila

Tamzalit. Extraction of component-based architecture from object-oriented systems. In In

proceeding of the Seventh IEEE/IFIP Working Conference on Software Architecture (WICSA),

pages 285–288. IEEE, 2008.

[Chinnici et al., 2007] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, et Sanjiva Weer-

awarana. Web services description language (wsdl) version 2.0 part 1: Core language.

http://www.w3.org/TR/2007/REC-wsdl20-20070626/, 2007.

[Clement et al., 2004] Luc Clement, Andrew Hately, Claus von Riegen, Tony Rogers, et al. UDDI

Version 3.0.2, UDDI Spec Technical Committee Draft, 2004.

[Corazza et al., 2010] Anna Corazza, Sergio Di Martino, et Giuseppe Scanniello. A probabilistic

based approach towards software system clustering. In In proceedings of the 14th European

Conference on Software Maintenance and Reengineering (CSMR), pages 88–96. IEEE, 2010.

[Crasso et al., 2008] Marco Crasso, Alejandro Zunino, et Marcelo Campo. Query by example for

web services. In Proc. of ACM SAC, 2008.

[Daigneau, 2011] Robert Daigneau. Service design patterns: fundamental design solutions for

SOAP/WSDL and RESTful web services. Addison-Wesley, 2011.

[Decker et al., 2008] Gero Decker, Oliver Kopp, Frank Leymann, Kerstin Pfitzner, et Mathias

Weske. Modeling service choreographies using bpmn and bpel4chor. In Proc. of CAiSE,

2008.

[Demange et al., 2013] Anthony Demange, Naouel Moha, et Guy Tremblay. Detection of soa

patterns. In In Proceedings of the 11th International Conference on Service-Oriented Com-

puting ICSOC’13, pages 114–130. Springer, 2013.

[Derrick et al., 2002] Oswald Derrick, Raha Somik, Ian Macfarlane, et David Walters. HTML

Parser website. http://htmlparser.sourceforge.net, 2002.

[Dierks et Rescorla, 2006] T. Dierks et E. Rescorla. The transport layer security (tls) protocol. In

IETF RFC 4346, 2006.

[Djelloul et al., 2009] Bouchiha Djelloul, Malki Mimoun, et Mostefai Abd El Kader. Towards

reengineering web applications to web services. The International Arab Journal of Informa-

tion Technology (IAJIT), 6(4), 2009.

[Dresden., 2009] T. U. Dresden. Ocl compiler web site. http://dresden-ocl.sourceforge.net/,

2009.

[Ducasse et Pollet, 2009] Stéphane Ducasse et Damien Pollet. Software architecture recon-

struction: A process-oriented taxonomy. IEEE Transactions on Software Engineering,

35(4):573–591, 2009.

Bibliography 153

[Dumez et al., 2008] Christophe Dumez, Jaafar Gaber, et Maxime Wack. Model-driven engi-

neering of composite web services using uml-s. In Proceedings of the 10th International

Conference on Information Integration and Web-based Applications & Services, pages 395–

398. ACM, 2008.

[Eclipse, a] Foundation Eclipse. BPMN2 Modeler website. https://www.eclipse.org/bpmn2-

modeler/.

[Eclipse, b] Foundation Eclipse. SCA Tools. https://eclipse.org/soa/sca/.

[Eclipse, 2001] Foundation Eclipse. Eclipse Java development tools (JDT) Project.

http://www.eclipse.org/jdt/, 2001.

[Eclipse, 2005] Foundation Eclipse. Eclipse BPEL Model Tool.

http://www.eclipse.org/bpel/developers/model.php, 2005.

[Eclipse, 2009a] Foundation Eclipse. Eclipse Modeling Framework Project.

http://www.eclipse.org/modeling/emf/?project=emf, 2009.

[Eclipse, 2009b] Foundation Eclipse. Model Development Tools website.

http://www.eclipse.org/modeling/mdt/, 2009.

[Erl, 2008] Thomas Erl. SOA: Principles of Service Design. Prentice Hall, 2008.

[Erl, 2009] Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

[Etzkorn et al., 2004] Letha H. Etzkorn, Sampson E. Gholston, Julie L. Fortune, Cara E. Stein,

Dawn Utley, Phillip A. Farrington, et Glenn W. Cox. A comparison of cohesion metrics for

object-oriented systems. Information and Software Technology, 46(10):677–687, 2004.

[Falkner et Jones, 2004] Jayson Falkner et Kevin Jones. Servlets and JavaServer Pages: The J2EE

Technology Web Tier. Addison-Wesley, 2004.

[Fei et Wang, 2004] Yui-Ku Fei et Zhijian Wang. A concept model of web components. In Proc.

of IEEE SCC, 2004.

[Fielding, 2000] Roy Thomas Fielding. Architectural styles and the design of network-based soft-

ware architectures. PhD thesis, University of California, Irvine, 2000.

[Finkelstein et Kramer, 2000] Anthony Finkelstein et Jeff Kramer. Software engineering: a

roadmap. In Proc. of ICSE, 2000.

[Flanagan, 2011] David Flanagan. JavaScript - The Definitive Guide (6th ed.). O’Reilly, 2011.

154 Bibliography

[Forster et al., 2013] Thomas Forster, Thorsten Keuler, Jens Knodel, et Michael-Christian

Becker. Recovering component dependencies hidden by frameworks–experiences from an-

alyzing osgi and qt. In Proceedings of the 2013 17th European Conference on Software Main-

tenance and Reengineering, CSMR ’13, pages 295–304. IEEE Computer Society, 2013.

[Francesca et al.,] Rodricks Francesca, Chauhan Sunil, Pascoala D’Souza, Kumar

Subodh, et Fernandes Leanne. E-Auction System, project of Goa University .

https://github.com/FrancescaRodricks/E-Auction-SE-Project.

[Franciscus et McClanahan, 2002] George Franciscus et Craig R McClanahan. Struts in Action:

Building web applications with the leading Java framework. Manning Publications Co., 2002.

[Fuhr et al., 2013] Andreas Fuhr, Tassilo Horn, Volker Riediger, et Andreas Winter. Model-

driven software migration into service-oriented architectures. Computer Science-Research

and Development, 28(1):65–84, 2013.

[Garcia et al., 2011] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, et

Yuanfang Cai. Enhancing architectural recovery using concerns. In In proceedings of the

26th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

552–555. IEEE Computer Society, 2011.

[Garcia et al., 2013a] Joshua Garcia, Igor Ivkovic, et Nenad Medvidovic. A comparative analysis

of software architecture recovery techniques. In Proceedings of the IEEE/ACM 28th Inter-

national Conference on Automated Software Engineering (ASE 2013), pages 486–496. IEEE,

2013.

[Garcia et al., 2013b] Joshua Garcia, Ivo Krka, Chris Mattmann, et Nenad Medvidovic. Obtain-

ing ground-truth software architectures. In Proceedings of the 35th International Conference

on Software Engineering (ICSE 2013), pages 901–910. IEEE Press, 2013.

[Geary et Horstmann, 2004] David Geary et Cay Horstmann. Core JavaServer Faces,. Addison

Wesley, 2004.

[Gronmo et al., 2004] R. Gronmo, D. Skogan, I. Solheim, et J. Oldevik. Model-driven web ser-

vice development. IJWSR, 1(4):1–13, 2004.

[Guo et al., 2005] He Guo, Chunyan Guo, Feng Chen, et Hongji Yang. Wrapping client-server

application to web services for internet computing. In Proceedings of the Sixth International

Conference on Parallel and Distributed Computing Applications and Technologies, PDCAT

’05, pages 366–370, Washington, DC, USA, 2005. IEEE Computer Society.

[Hadley, 2009] Marc Hadley. Web application description language (wadl).

https://www.w3.org/Submission/wadl/, 2009.

Bibliography 155

[Haesen et al., 2008] Raf Haesen, Monique Snoeck, Wilfried Lemahieu, et Stephan Poelmans.

On the definition of service granularity and its architectural impact. In Advanced Informa-

tion Systems Engineering, éditeurs Zohra Bellahsène et Michel Léonard, volume 5074 de Lec-

ture Notes in Computer Science, pages 375–389. Springer Berlin Heidelberg, 2008.

[Hall et al., 2011] Richard Hall, Karl Pauls, Stuart McCulloch, et David Savage. OSGi in action:

Creating modular applications in Java. Manning Publications Co., 2011.

[Han et Tokuda, 2008] Hao Han et Takehiro Tokuda. Wike: A web information/knowledge ex-

traction system for web service generation. In Proc. of ICWE, 2008.

[Havey, 2005] Michael Havey. Essential business process modeling. " O’Reilly Media, Inc.", 2005.

[Herzog et Gottlob, 2001] Marcus Herzog et Georg Gottlob. Infopipes: a flexible framework for

m-commerce applications. In Technologies for E-Services, pages 175–186. Springer, 2001.

[Holovaty et Kaplan-Moss, 2009] Adrian Holovaty et Jacob Kaplan-Moss. The definitive guide

to Django: Web development done right. Apress, 2009.

[Immonen et Pakkala, 2014] Anne Immonen et Daniel Pakkala. A survey of methods and ap-

proaches for reliable dynamic service compositions. Service Oriented Computing and Appli-

cations, 8(2):129–158, 2014.

[Jendrock et al., 2014] Eric Jendrock, Ricardo Cervera-Navarro, Ian Evans, Kim Haase, et

William Markito. The Java EE 7 Tutorial: Getting Started with Web Applications. Addison-

Wesley Professional, 2014.

[Jiang et Stroulia, 2004] Yingtao Jiang et Eleni Stroulia. Towards reengineering web sites to

web-services providers. In Proceedings of the Eighth European Conference on Software Main-

tenance and Reengineering, (CSMR’04), pages 296–305. IEEE, 2004.

[Johnston et Brown, 2006] Simon K. Johnston et Alan W. Brown. A model-driven development

approach to creating service-oriented solutions. In Proc. of ICSOC, 2006.

[Josuttis, 2007] Nicolai M Josuttis. SOA in practice: the art of distributed system design. "

O’Reilly Media, Inc.", 2007.

[Kebir et al., 2012] Selim Kebir, Abdelhak-Djamel Seriai, Sylvain Chardigny, et Allaoua Chaoui.

Quality-centric approach for software component identification from object-oriented code.

In In proceeding of the IEEE/IFIP WICSA and ECSA, pages 181–190. IEEE, 2012.

[Kerdoudi et al., 2016] Mohamed Lamine Kerdoudi, Chouki Tibermacine, et Salah Sadou.

Opening web applications for third-party development: a service-oriented solution. Service

Oriented Computing and Applications, pages 1–27, 2016.

156 Bibliography

[Khadka et al., 2013] Ravi Khadka, Amir Saeidi, Andrei Idu, Jurriaan Hage, et Slinger Jansen.

Legacy to soa evolution: A systematic literature review. In A. D. Ionita, M. Litoiu, G. Lewis

(Eds.) Migrating Legacy Applications: Challenges in Service Oriented Architecture and Cloud

Computing Environments. IGI Global, 2013.

[Kokash, 2006] Natallia Kokash. A comparison of web service interface similarity measures. In

Proc. of the Third Starting AI Researchers’ Symposium, 2006.

[Kulkarni et Dwivedi, 2008] Naveen Kulkarni et Vishal Dwivedi. The role of service granularity

in a successful soa realization a case study. In Proceedings of the 2008 IEEE Congress on

Services - Part I, SERVICES ’08, 2008.

[Lee et al., 2005] Roger Y. Lee, Ashok K. Harikumar, Chia-Chu Chiang, Hae Sool Yang, Haeng-

Kon Kim, et Byeongdo Kang. A framework for dynamically converting components to web

services. In Proc. of SERA, 2005.

[Lehman et Belady, 1985] M.M. Lehman et L. Belady. Program Evolution: Process of Software

Change. London: Academic Press, 1985.

[Leiba, 2012] Barry Leiba. Oauth web authorization protocol. IEEE Internet Computing,

16(1):74–77, 2012.

[Lewis et al., 2006] Grace Lewis, Edwin J. Morris, et Dennis Smith. Analyzing the reuse poten-

tial of migrating legacy components to a service-oriented architecture. In Proc. of CSMR,

2006.

[Liang et al., 2006] Qianhui Althea Liang, Jen-Yao Chung, Steven Miller, et Yang Ouyang. Ser-

vice pattern discovery of web service mining in web service registry-repository. In In Pro-

ceedings of the IEEE International Conference on e-Business Engineering (ICEBE’06), pages

286–293. IEEE, 2006.

[Lorenzo et al., 2007] Giusy Di Lorenzo, Anna Rita Fasolino, Lorenzo Melcarne, Porfirio Tra-

montana, et Valeria Vittorini. Turning web applications into web services by wrapping tech-

niques. In Proc. of the 14th Working Conference on Reverse Engineering (WCRE), pages 199–

208. IEEE Computer Society, 2007.

[Mancoridis et al., 1999] Spiros Mancoridis, Brian S Mitchell, Yihfarn Chen, et Emden R

Gansner. Bunch: A clustering tool for the recovery and maintenance of software system

structures. In In Proceedings of the IEEE International Conference on Software Maintenance,

(ICSM’99), pages 50–59. IEEE, 1999.

[Maqbool et Babri, 2004] Onaiza Maqbool et Haroon Atique Babri. The weighted combined

algorithm: A linkage algorithm for software clustering. In Software Maintenance and Reengi-

neering, 2004. CSMR 2004. Proceedings. Eighth European Conference on, pages 15–24. IEEE,

2004.

Bibliography 157

[Maras et al., 2012] Josip Maras, Jan Carlson, et Ivica Crnkovi. Extracting client-side web appli-

cation code. In Proc. of WWW, 2012.

[Maras et al., 2013] Josip Maras, Maja Stula, Jan Carlson, et Ivica Crnkovic. Identifying code of

individual features in client-side web applications. IEEE TSE, 39(12):1680–1697, 2013.

[Marinho et al., 2009] Anderson Marinho, Leonardo Gresta Paulino Murta, et Cláudia Werner.

Extending a software component repository to provide services. In Proc. of ICSR, 2009.

[McAffer et al., 2010] Jeff McAffer, Paul VanderLei, et Simon Archer. OSGi and Equinox: Creat-

ing highly modular Java systems. Addison-Wesley Professional, 2010.

[Medjahed et Bouguettaya, 2005] Brahim Medjahed et Athman Bouguettaya. A multilevel

composability model for semantic web services. IEEE TKDE, 17(7):954–968, Juillet 2005.

[Milanovic et Malek, 2004] Nikola Milanovic et Miroslaw Malek. Current solutions for web ser-

vice composition. IEEE Internet Comp., 8:51–59, 2004.

[OASIS., 2007] OASIS. Web Services Business Process Execution Language Version 2.0.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.

[O’Brien et al., 2005] Liam O’Brien, Dennis Smith, et Grace Lewis. Supporting migration to

services using software architecture reconstruction. In STEP, pages 81–91. IEEE Computer

Society, 2005.

[Oh et al., 2008] Seog-Chan Oh, Dongwon Lee, et Soundar R. T. Kumara. Effective web service

composition in diverse and large-scale service networks. IEEE Trans. Serv. Comput., 1(1):15–

32, 2008.

[OMG.,] OMG. UML Profile for Enterprise Distributed Object Comp.

http://www.omg.org/technology/documents/formal/edoc.htm.

[OMG., 2006] OMG. Object Constraint Language specification, version 2.0, document

formal/2006-05-01. http://www.omg.org/spec/OCL/2.0/, 2006.

[OMG., 2008] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT).

http://www.omg.org/spec/QVT/, 2008.

[OMG., 2011a] OMG. Business Process Model and Notation (BPMN) Version 2.0.

http://www.omg.org/spec/BPMN/2.0/, 2011.

[OMG., 2011b] OMG. Unified Modeling Language (UML) Superstructure specification, Version

2.4.1. http://www.omg.org/spec/UML/2.4.1/, 2011.

[OMG, 2012] Object Management Group OMG. Specification of the service oriented architec-

ture modeling language (soaml), version 1.0.1. Document formal/2012-05-10. Object Man-

agement Group Website: http://www.omg.org/spec/SoaML/1.0.1/, May 2012.

http://www.omg.org/spec/SoaML/1.0.1/

158 Bibliography

[Oracle,] Oracle. Java platform, enterprise edition: The java ee tutorial.

https://docs.oracle.com/javaee/7/tutorial/.

[Paik et al., 2014] Incheon Paik, Wuhui Chen, et Michael N. Huhns. A scalable architecture for

automatic service composition. IEEE Trans. Serv. Comput., 7(1):82–95, 2014.

[Perepletchikov et al., 2007] Mikhail Perepletchikov, Caspar Ryan, Keith Frampton, et Heinz W.

Schmidt. A formal model of service-oriented design structure. In Proc. of ASWEC. IEEE

Computer Society, 2007.

[Rao et Su, 2005] Jinghai Rao et Xiaomeng Su. A survey of automated web service composi-

tion methods. In Proceedings of the First International Conference on Semantic Web Services

and Web Process Composition, SWSWPC’04, pages 43–54, Berlin, Heidelberg, 2005. Springer-

Verlag.

[Razavian et Lago, 2015] Maryam Razavian et Patricia Lago. A systematic literature review on

soa migration. Journal of Software: Evolution and Process, 27(5):337–372, 2015.

[Ren et al., 2011] Kaijun Ren, Nong Xiao, et Jinjun Chen. Building quick service query list using

wordnet and multiple heterogeneous ontologies toward more realistic service composition.

IEEE T. Services Computing, 4(3):216–229, 2011.

[Rodriguez et al., 2010] Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, et Marcelo

Campo. Improving web service descriptions for effective service discovery. Science of Com-

puter Programming, 75(11):1001–1021, 2010.

[Segev et Toch, 2009] Aviv Segev et Eran Toch. Context-based matching and ranking of web

services for composition. IEEE Trans. Serv. Comput., 2(3):210–222, 2009.

[Seriai et al., 2014a] Abderrahmane Seriai, Salah Sadou, Houari Sahraoui, et Salma Hamza. De-

riving component interfaces after a restructuring of a legacy system. In In proceeding of the

IEEE/IFIP WICSA, pages 31–40. IEEE, 2014.

[Seriai et al., 2014b] Abderrahmane Seriai, Salah Sadou, et Houari A Sahraoui. Enactment of

components extracted from an object-oriented application. In In proceeding of the ECSA,

pages 234–249. Springer, 2014.

[Shaw et Garlan, 1996] M. Shaw et D. Garlan. Software Architecture: Perspectives on an Emerg-

ing Discipline. Prentice Hall, 1996.

[Sindhgatta et Ponnalagu, 2008] Renuka Sindhgatta et Karthikeyan Ponnalagu. Locating com-

ponents realizing services in existing systems. In Proceedings of the IEEE International Con-

ference on Services Computing, SCC’08., volume 1, pages 127–134. IEEE, 2008.

Bibliography 159

[Sneed, 2006] Harry M. Sneed. Integrating legacy software into a service oriented architecture.

In Proc. of CSMR, 2006.

[Sommerville, 2011] Ian Sommerville. Software Engineering (9th Edition). International Com-

puter Science Series. Pearson, 2011.

[Sosa et al., 2013] Encarna Sosa, Pedro J Clemente, Jose M Conejero, et Roberto Rodriguez-

Echeverria. A model-driven process to modernize legacy web applications based on service

oriented architectures. In Proc. of the 15th IEEE International Symposium on Web Systems

Evolution (WSE), pages 61–70. IEEE Computer Society, 2013.

[Staron, 2006] Miroslaw Staron. Adopting model driven software development in industry–a

case study at two companies. In Model Driven Engineering Languages and Systems, pages

57–72. Springer, 2006.

[Szyperski et al., 1999] Clemens Szyperski, Jan Bosch, et Wolfgang Weck. Component-oriented

programming. In Object-oriented technology ecoop’99 workshop reader, pages 184–192.

Springer, 1999.

[Szyperski, 2002] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-

ming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd édition, 2002.

[Tatsubori et Takashi, 2006] Michiaki Tatsubori et Kenichi Takashi. Decomposition and ab-

straction of web applications for web service extraction and composition. In Proc. of the

IEEE ICWS, 2006.

[Tibermacine et al., 2013] Okba Tibermacine, Chouki Tibermacine, et Foudil Cherif. Wssim:

a tool for the measurement of web service interface similarity. In Proc. of CAL, Toulouse,

France, 2013.

[Tibermacine et al., 2015] Okba Tibermacine, Chouki Tibermacine, et Foudil Cherif. A process

to identify relevant substitutes for healing failed ws-* orchestrations. J. Syst. Softw., 104(C):1–

16, 2015.

[Tibermacine et Kerdoudi, 2010] Chouki Tibermacine et Mohamed Lamine Kerdoudi. From

web components to web services: Opening development for third parties. In Proceedings of

the 4th European Conference on Software Architecture (ECSA’10), éditeurs Muhammad Ali

Babar et Ian Gorton, volume 6285 de Lecture Notes in Computer Science, pages 480–484,

Copenhagen, Denmark, 2010. Springer.

[Tibermacine et Kerdoudi, 2011] Chouki Tibermacine et Mohamed Lamine Kerdoudi. Migra-

tion d’applications à base de composants Web en services et orchestration de services Web.

In Proceedings of the french-speaking conference on Software Architectures, page 10, Lille,

France, Juin 2011.

160 Bibliography

[Tibermacine et Kerdoudi, 2012] Chouki Tibermacine et Mohamed Lamine Kerdoudi. Migrat-

ing component-based web applications to web services: Towards considering a "web inter-

face as a service". In Proceedings of the 19th IEEE International Conference on Web Services

(ICWS’12), éditeurs Carole A. Goble, Peter P. Chen, et Jia Zhang, pages 146–153, Honolulu,

Hawaii, USA, 2012. IEEE Computer Society.

[Tzerpos et Holt, 2000] Vassilios Tzerpos et R. C. Holt. Acdc : An algorithm for comprehension-

driven clustering. In In Proceedings of the Seventh Working Conference on Reverse Engineer-

ing (WCRE), pages 258–267. IEEE, 2000.

[Upadhyaya et al., 2012] Bipin Upadhyaya, Foutse Khomh, et Ying Zou. Extracting restful ser-

vices from web applications. In Proc. of IEEE SOCA, 2012.

[Upadhyaya et al., 2013] Bipin Upadhyaya, Ran Tang, et Ying Zou. An approach for mining ser-

vice composition patterns from execution logs. Journal of Software: Evolution and Process,

25(8):841–870, 2013.

[Upadhyaya et al., 2015] Bipin Upadhyaya, Ying Zou, et Foutse Khomh. An approach to extract

restful services from web applications. International Journal of Business Process Integration

and Management, 7(3):213–227, 2015.

[Yu et al., 2007] X. Yu, Y. Zhang, T. Zhang, L. Wang, J. Zhao, G. Zheng, et X. Li. Towards a model

driven approach to automatic bpel generation. In Proc. of ECMFA, 2007.

[Zeng et al., 2004] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas,

Jayant Kalagnanam, et Henry Chang. Qos-aware middleware for web services composition.

IEEE Trans. Softw. Eng., 30(5):311–327, 2004.

[Zernadji et al., 2015] Tarek Zernadji, Chouki Tibermacine, Foudil Cherif, et Amina

Zouioueche. Integrating quality requirements in engineering web service orchestrations.

Journal of Systems and Software, 2015.

[Zhang et al., 2006] Zhuopeng Zhang, Hongji Yang, et William C. Chu. Extracting reusable

object-oriented legacy code segments with combined formal concept analysis and slicing

techniques for service integration. Proc. of QSIC 2006, pages 385–392, 2006.

[Zhang et Yang, 2004] Zhuopeng Zhang et Hongji Yang. Incubating services in legacy systems

for architectural migration. In Proceedings of the 11th Asia-Pacific Software Engineering Con-

ference (APSEC’04). IEEE Computer Society, 2004.

	Title
	Contents
	Acknowledgement
	Abstract
	Résumé
	1 Introduction
	1.1 Context
	1.2 The problem studied in the thesis
	1.3 Contributions
	1.4 Thesis Outline

	I State of the Art
	2 Background
	2.1 Introduction
	2.2 Web Component based Application Development
	2.2.1 Web Application Frameworks
	2.2.2 Introduction to Java Enterprise Edition Platform
	2.2.3 Java EE Components

	2.3 Service Oriented Development
	2.3.1 Service Oriented Architecture (SOA)
	2.3.2 Service-orientation design principles
	2.3.3 Concept of Service
	2.3.4 Service implementation technology
	2.3.5 Web service: Standard languages and protocols
	2.3.6 Service Composition
	2.3.7 Business Process Execution Language
	2.3.8 Business Process Model and Notation
	2.3.9 Service Component Architecture Specification

	2.4 Summary

	3 Literature review
	3.1 Introduction
	3.2 Approaches and Tools for Migrating Systems to (Web) Services-Oriented Applications
	3.2.1 Approaches for migrating Web applications to SOA
	3.2.2 Approaches for migrating Legacy systems to SOA
	3.2.3 Approaches for generating Web services from software components
	3.2.4 Model-Driven Approaches for generating Web service-oriented applications

	3.3 Approaches for Web Service Composition
	3.4 Approaches of Software Architecture Recovery
	3.5 Summary

	II Contributions
	4 Formal model for Web applications and Service oriented Systems
	4.1 Introduction
	4.2 Illustrative Example
	4.2.1 Problem Statement
	4.2.2 Potential Web Services

	4.3 Web applications and Service oriented Systems
	4.3.1 Web application Model
	4.3.2 Web Service Oriented System Model

	4.4 Summary

	5 Migrating Component-Based Web Applications to Web Services : Towards Considering a "Web Interface as a Service"
	5.1 Introduction
	5.2 Approach Overview
	5.3 Operation Pool Construction
	5.3.1 Identification of Existing Operations
	5.3.2 Creation of New Operations from Web Interfaces

	5.4 Input and Output Message Generation
	5.4.1 Dealing with HTTP requests and HTTP responses
	5.4.2 Handling Session Objects
	5.4.3 Dealing with Cookies

	5.5 Operation Filtering
	5.6 Operation Distribution in Services
	5.6.1 Grouping Criterion
	5.6.2 Spreading Criterion

	5.7 Web Service Deployment
	5.8 Summary

	6 Generation of composite Web Services
	6.1 Introduction
	6.2 Web Service Choreography Creation
	6.3 Example of Choreography Creation at Code Level
	6.4 Web Service Orchestration Creation
	6.4.1 Navigation Rule Extraction
	6.4.2 BPEL Process Creation Algorithm

	6.5 Example of BPEL Process generation
	6.6 Summary

	7 Recovering Architectures from Service Oriented Systems
	7.1 Introduction
	7.2 Recovering Service Architectures from (Web) service Choreographies
	7.2.1 From (Web) services elements to BPMN elements
	7.2.2 Example of generating BPMN models from a Web service choreography
	7.2.3 From (Web) services elements to SCA elements
	7.2.4 Example of Recovering SCA models from a Web service choreography

	7.3 SCA Component grouping and SCA Composite generation model
	7.3.1 Grouping SCA Components into an SCA composite
	7.3.2 Creation an SCA composite starting from a set of SCA composites

	7.4 Recovering Service architectures from OSGi-based Applications
	7.4.1 OSGi Component
	7.4.2 The OSGi Framework
	7.4.3 Example of an OSGi-based application
	7.4.4 OSGi application Parsing
	7.4.5 Recovering the BPMN Architecture from the E-Mailer application
	7.4.6 Recovering the Service Component Architecture from the E-Mailer application

	7.5 Summary

	8 Tools
	8.1 Introduction
	8.2 WSGen: A tool for creating primitive and composite Web services starting from Web components
	8.2.1 WSGen's Functional Architecture
	8.2.2 WSGen By Example
	8.2.3 Generated Primitive Web services
	8.2.4 Generated Composite Web service

	8.3 ArchGen: A tool for recovering Service Architectures from the source code of Service Oriented Systems
	8.3.1 ArchGen's Functional Architecture

	8.4 Underling Technologies
	8.5 Summary

	9 Experimentation: A Case study
	9.1 Introduction
	9.2 Case study on the migration of Web applications toward Web service oriented solutions
	9.3 First Experimentation
	9.4 Second Experimentation
	9.5 Discussion and Threats To Validity
	9.6 Summary

	10 Conclusion and Future Work
	10.1 Summary
	10.2 Perspectives

	List of Figures
	List of Tables
	List of Listings
	Bibliography

