Republique Algérienne Démocratique et Populaire
Ministeére de 1’enseignement supérieur et de la recherche scientifique
Université Mohamed Khider — Biskra
Faculté des sciences exactes et sciences de la nature et de la vie
Département de Mathématiques

THESE

Présentée pour 1’obtention du diplome de doctorat

Mathématiques

Option : Probabilités et Statistique

Equations différentielles stochastiques rétrogrades
de type champ moyen

Présentée par

CHAOUCHKHOUANE Nassima

Devant le jury composeé de

B. MEZERDI Professeur U. de Biskra Président

B. LABED Maitre de Conférences A U. de Biskra Rapporteur
N. KHELFALLAH Maitre de Conférences A U. de Biskra Examinateur
S. REBIAI Professeur U. de Batna Examinateur

H. ZEGHDOUDI Maitre de Conférences A U. de Annaba Examinateur



Contents

Dédicace
Remerciements
Abstract
Résumé
Introduction

1 Background on Backward Stochastic Differential Equations
1.1 Definitions . . . . . . . . oL e
1.2 Existence and Uniqueness of a Solution . . . .. ... ... ... ......
1.3 Comparison principle . . . . . . .. . L L
1.4 Reflected Backward Stochastic Differential Equations . . . . . . . . . .. ..
1.4.1 Existence and Uniqueness of a Solution . . . .. ... .. ... ...
1.4.2 Comparison Result . . . . . . . .. ... oo
1.5 Mean field Backward stochastic differential equation . . . . . ... ... ..
1.5.1 Notations and assumptions . . . . . . ... ... ... ...
1.5.2 Existence and Uniqueness of a Solution . . . ... ... .......

2 Backward doubly stochastic differential equations

2.1 Backward doubly stochastic differential equations with Lipschitz coefficients
2.1.1 Notation and assumptions . . . . . . . .. . ... ...
2.1.2 Existence and uniqueness of a Solution . . . . . . .. .. ... .. ..

2.2 Comparison Theorem of Backward doubly stochastic differential equations .

2.3 Backward doubly stochastic differential equations with continuous coefficient

2.4 Reflected Backward doubly stochastic differential equations . . . . . .. ..
2.4.1 Existence of a solution of the RBDSDE with lipschitz condition . . .
2.4.2 RBDSDEs with continuous coefficient . . . . . ... ... ... ...

ii

iii

iv

o

[ora =

11
12
19
21
21
22

26

27
28
36

43
45



3 Mean-Field Reflected Backward Doubly Stochastic Differential Equations 57

3.1 MF-RBDSDE with lipschitz condition . . . ... .. .. ... ........ 58
3.1.1  Assumptions and Definitions . . . . . . . ... ... ... ...... 58
3.1.2 Existence of a solution to the MF-RBDSDE with lipschitz condition 59

3.2 MF-RBDSDEs with continuous coefficient . . . . . . ... ... .. ..... 61

Bibliography 69



DIDICACE

Je dédie ce modeste travail:

[ ]
o

mes chers Parents pour tout ce qu’ils m’ont donné,
e 4 mon mari Lazhar et mes enfants Moncef et Manissa,
e 4 mes fréres et mes soeurs,

touts ma familles et touts mes amies.

[ ]
o,



ii

REMERCIEMENTS

Je tiens & remercier Monsieur Boubakeur Labed, Maitre de conférence & I'université
de Mohamed Khider de Biskra , qui m’a proposé cette thése.

C’est avec un énorme plaisir, que je remercie le Professeur Brahim Mezerdi de
I'université de Mohamed Khider de Biskra, qui accepté de présider mon jury de thése et Pour
tous les conseils qui nous est donnée pendant 1’étude.Mes remerciements vont également
a4 Monsieur Nabil khalfala, Maitre de conférence & l'université de Mohamed Khider de
Biskra,qui a accepté de faire partie de mon jury.

Je tiens aussi a remercier le professeur Salah Eddine Rbiai, de I'université de Batna,
et Monsieur Zaghdoudi Abd Alhakim, Maitre de conférence a I'université de Anaba, qui
ont accepté de se joindre au jury.

Je tiens aussi & remercier Monsieur Mansuri Badredine, Maitre de conférence a
I'université de Mohamed Khider de Biskra, pour son aide et son intérét qu’il a manifesté a
ce travail.

Aussi, je voudrais remercier Mon mari Lazhar Tamer, Docteur a 'université de
Mohamed Khider de Biskra a l’encouragement et l'aide donnée par moi pendant de ce
travail.

Un grand merci a tous ceux qui m’ont aidé a concrétiser ce travail.



iii

ABSTRACT

In this thesis we study the mean field reflected backward stochastic differential
equation.We first establich existence and uniqueness results for MFRBDSDE when the
coeflicient f is Lipshitz. Secondly , we extend our results on existence when the coefficient

is continuous and linear growth. Our proof are based on approximation techniques.
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RESUME

Dans cette thése, nous étudions les équations différentielles doublement stochas-
tiques rétrogrades réfléchies de type champs moyen.Dans un premier temps, nous établis-
sons un résultat d’existence et d’unicité quand le coefficient est Lipchitzien Deuxiémement,
nous généralisons nous résultat d’existence quand le coefficient est continue et a croissance

linéaire. Nos démonstrations sont basées sur des techniques d’approximation.



Introduction

After the earlier work of Pardoux & Peng [42] (1990), the theory of Backward
stochastic differential equations (BSDEs in short) has a significant headway thanks to the
many applications areas. Several authors contributed in weakening the Lipschitz assumption
required on the drift of the equation (see Lepeltier & San Martin [32] (1997), Kobylanski
[29] (2000), Mao [40] (1995), Bahlali [2,3] (2001)). Since then, these equations have found
a wide field of applications as in mathematical finance, see in particular El-Karoui, Peng,
Quenez [17] (1994) or in stochastic optimal control and differential games, see El-Karoui,
see Hamadene and Lepeltier [23,24] (1995). They also appear to be an effective tool for
constructing G-martingales on manifolds with prescribed limits, see Darling [15] (1995), and
they provide probabilistic formulae for solutions of systems of quasi-linear partial differential
equations, see Pardoux, Peng [43] (1992).

Cvitanic, Karatzas [14] (1995) have introduced the notion of BSDE with two re-
flecting barriers. This is a generalization of the work of El-Karoui et al. [20] (1997) related
to the BSDE with one reflecting barrier. Roughly speaking, in [14] (1995) the authors look
for a solution for a BSDE which is forced to stay between two prescribed processes L and

U (L < U). Using two methods, the first one linked to Dynkin games and Picard-type



iterative procedure and the second based on the penalization of an ordinary BSDE, they
show that the BSDE with two reflecting barriers has a unique solution if the coeffecient
(drift) of the equation is a Lipschitz map.

A new kind of Backward stochastic differential equations was introduced by Par-

doux & Peng [44] (1994),

T T - T
Yt=£+/ f(s,Ys,Zs>ds+/ g(s,Ys,Zs)st—/ Z,dW,.
t t t

with two different directions of stochastic integrals, i.e., the equation involve both a standard
(forward) stochastic integral dW; and a backward stochastic integral d(Et. This equation
has been in order to give a probabilistic representation for the solution of the following

system of semilinear parabolic SPDE

u(t,x) = h(z) + fsT {Lu(r,z) + f(r,x,u(r,z),c*Vu(r,x)} dr
+fSTg (ryx,u(r,z),0c*Vu(r,z))dB,, t<s<T,

such that

1 0? d
S i) s+ bip e, with (ay) = o0,
52 (a])axiaxj + : b oz, with (a;;) :== o0

/L)j

L=

Pardoux & Peng proved the existence and uniqueness of a solution for BDSDEs
under uniformly Lipschitz conditions. Shi et al [45] (2005) provided a comparison theorem
which is very important in studying viscocity solution of SPDEs with stochastic tools.

Bahlali et al [4] (2009) proved the existence and uniqueness of a solution to the
following reflected backward doubly stochastic differential equations (RBDSDEs) with one

continuous barrier and uniformly Lipschitz coefficients:



T T — T
Ytzfﬂ—/ f(s,Ys,ZS)ds—}—KT—Kt—l—/ g(s,YS,Zs)st—/ ZdWs.
t t t

In a recent work of Buckdahn et al. [8,9] (2009), a notion of mean-field backward

stochastic differential equation (MF-BSDEs in short) of the form
T T
Y; = §+/ E f(s,w' w,Ys (w),Ys (w') , Zs)ds — / ZsdWs,
t t

with ¢ € [0, T], was introduced. They deepened the investigation of such mean-field BSDEs
by studying them in a more general framework, with general driver. They established the
existence and uniqueness of solution under uniformly Lipschitz condition. The theory of
mean-field BSDE has been developed by several authors, Du et al. [16] (2012) the authors
established a comparison theorem and existence in the case of linear growth and continuous
condition.

Mean-field Backward doubly stochastic differential equations

T
Y; :§+/ E'f(s,0,w,Ys (W), Ys (w') , Zs)ds
t

T T
+/ Eg(s,0,w,Ys (W), Zs)dBs — / ZydWs,
t t

with ¢ € [0, 7], are deduced by Ruimin Xu [47] (2012), obtained the existence and unique-
ness result of the solution with uniformly Lipschitz coefficients and present the connection
between McKean-Vlasov SPDEs and mean-field BDSDESs.

This thesis is composed of three chapters.

The first chapter concert the study of BSDE than the Lipschitz one in both one

dimension and multidimensional case. In a first time, we give an existence and uniqueness



result for BSDE with Lipschitz coefficient. In a second, we consider the reflected BSDE we
give the proof of the existence of solutions to RBSDEs with Lipschitz coefficient by using
the penalisation method. The last topic of the first chapter is the study of the Mean field
BSDE.

In chapter 2, we present some new results in the theory of backward doubly sto-
chastic differential equations. First, under some Lipshitz assumption on the coefficient we
present an existence and uniqueness results for the BDSDE. Secondly, we present, under
continuous assumptions an existence result for solution of backward doubly stochastic differ-
ential equation. Note that in this chapter we define the reflected backward doubly stochastic
differential equation and we recall the results of existence and uniqueness in the Lipschitz
case. The existence of a maximal and a minimal solution for RBDSDEs with continuous
generators in also.

Chapter 3: Our main goal is devoted to the study of the mean field backward

doubly stochastic differential equations,

T T
Y, — 5+/ E’f(S,M,w'7K7YS’,Z&Z§)dS+/ E'g (s,0,, Yo, Y., Z,, 21) dB,
t t

T
+Kp— Ky — / Z,dW,,
t

with ¢ € [0, T].

We prove an existence result under uniformly Lipschitz condition on the coeffi-
cients, and we will show the existence of a minimal solution under weaker condition than
the Lipschitz one. Precisely, we deal with continuous and linear growth coefficients. For

the proof, we adapt the method of Lepeltier and San Martin which consist on of approxi-



mating the coefficients f by a sequence of Lipschitz coefficients. After, we prove existence
and uniqueness results of a solution of mean field reflected backward doubly stochastic
differential equations when the coefficient is Lipischtz. Finally, we will investigate this re-
sult to prove existence of maximal and minimal solution of the mean field RBDSDE with

continuous and linear growth coefficient



Chapter 1

Background on Backward

Stochastic Differential Equations

The objective of this chapter is to introduce the notion of backward stochastic
differential equation, and to specify terminologies used in this context. We also give some

basic facts, which are widely used throughout the thesis.

1.1 Definitions

Let (2, F, P) be a probability space on which is defined a d-dimensional Brownian

motion W = (W), o p. Let us denote by (~7'—tw)t _ .. the natural filtration of W and

(Fp) ;. 1ts completion with the P-null sets of 7. We define the following spaces:

‘<



Pn the set of Fi- progressively measurable, R"- valued processes on Q x [0, 7]
L2 (F) = {n : i — measurable random R" — valued variable

S2(0,7) = ¢ ¢ € P, with continuous paths, s.t. E [sup g0t|2] < 0
t<T
T
H2q(0,T) = ZePyst. E /|ZS|2ds < 00
0

Let us now introduce the notion of multi-dimensional BSDE.

Definition 1 Let 7 € L2 (Fr) be a R"— valued terminal condition and let f be a R"—
valued coefficient, P, @ B (R" X R”Xd) —measurable. A solution for the n-dimensional
BSDE associated with parameters (f,&7) is a pair of progressively measurable processes

Y, Z) .= (Ya, Zy) with values in R™ @ R™? such that:

t<T

Y €S2, Z eH?

nxd

T T (1.1)
Yt:§T+/f(s,YS,Zs)ds—/stWS, 0<t<T.

t t

The differential form of this equation is

—dYy = [ (t,Ys, Zy) dt — ZydWy, Yr==¢&r . (1.2)

Hereafter f is called the coefficient and & the terminal value of the BSDE.

Under some specific assumptions on the coefficient f, the BSDE (1.1) has a unique

solution. The standard assumptions are the following:



;

(Z) (f (ta 07 O))tST € H%L
(1) f is uniformly Lipschitz with respect to (y, z) :
there exists a constant C' > 0 s.t. YV (y,9, 2, £)

@ty 2) = flont g D S Cly—gl+ e —4),  dtodP  ae.

1.2 Existence and Uniqueness of a Solution

In [42], Pardoux and Peng have established the existence and the uniqueness of

the solution of the equation (1.1) under the uniform Lipschitz condition.

Theorem 2 (Pardouz and Peng [42]) Under the standard assumptions (Hy), there exists

a unique solution (Y, Z) of the BSDE (1.1) with paramaeres (f,&7) .

Proof. We give a proof based on a fixed point method. Let us consider the function
® on 8?(0,7) xH2(0,T), mapping (U,V) € S§%(0,T) xH2(0,T) to (Y,Z) = ®(U,V)

defined by

T

T
n:g+/ﬂ&mw@w—/4mm (1.3)
t

t

More precisely, the paire (Y, Z) is constructed as follows: we consider the martin-
T
gale My =B | £+ / f(s,Us, V5)ds\F; | , which is square integrable under the assumptions
0
on (& f).
We may apply the martingale representation theorem, which gives the existence

and uniqueness of Z € HZ (0,7 such that



T
M, = My + /stWs. (1.4)
0

We then define the process Y by

T t
E:E f—’_/f(SaUS?‘/S)ds\ft :Mt_/f(S7U57‘/S)dS7OStST‘
t 0

By using the representation (1.4) of M in the previous relation, and noting that
Yr =&, we see that Y satisfies (1.3).

Observe by Doob’s inequality that

T

T 2
E | sup /stWs < 4E /]ZS|2ds < 0.
0<t<T | /

Under the condition on (£, f), we deduce that Y lies in S? (0,7)). Hence, ® is
a well defined function from S?(0,7) xH2(0,T) into itself. Then,we see that (Y, Z) is a
solution to the BSDE (1.1) if and only if it is a fixed point of ®.

Let (U, V), (U, V') € §%(0,T) xH%2(0,T) and (Y,Z) = ®(U,V), (Y,Z') =
U, V). Weset (U,V)=(U-U",V—-V')and fy = f(s,UV)— f (s,U’,V') Take some

S > 0 to be chosen later, and apply It&’s formula to e?* |YS}2 between s =0 and s =T :

=
I
O\.H

T T
e (ﬁ V4|~ sz) ds — /eﬁs |Z,|” ds — Q/eﬁszzsdws. (1.5)
0 0
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Observe that

T 3
2 2 e’ 2 2
B || [ mPiaba) | < S| s mP [ 120 a) <o
2 0<t<T
0
¢
which shows that the local martingale / Y,.Z,dW, is actually a uniformly inte-

0
grable martingale from the Burkholder-Davis-Gundy inequality. By taking the expectation

n (1.5), we get

T T
E‘YO}Q%—E /eﬁ$<5‘175‘2+‘25‘2)d8 =2E /eﬁsﬁ.fsds
0 0
- T
< 2C)E /eﬁs\;ummm)ds
:OT T
<103 | [0 | + 48 | [ (j0.P + )
L0 0
Now, we choose 3 = 1+ 4C?%, and obtain
T T
E /eﬁs Vo[ +1Z[*) ds S%E /eﬂs O, + V) |-
0 0

This shows that @ is a strict contraction on the Banach space §? (0,7) xH2 (0,T)

endowed with the norme

1
T 2

120y = | B | [e (WLl +12.) ds

0

We conclude that & admits a unique fixed point, which is the solution to the

BSDE(1.1). m
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1.3 Comparison principle
We state a very useful comparison principle for BSDEs.

Theorem 3 Let (fl,fl) and (52,f2) be two pairs of terminal conditions and generators
satisfying conditions (Hy) and let (Yl, Zl) , (YQ, Z2) be the solutions to their corresponding
BSDFEs. Suppose that:

o (1 <€ s,

o fL(6, Y ZY) < f2(t Y2 ZE) dt ®dP a.e.

o f2(t, V1, 2}) e H2(0,T).

Then Yt1 < Yf forall0 <t <T, a.s.

Furthermore, if Y < Y3, then Y} = Y2, 0 < t < T. In particular, if P (51 < 52) >

0 or f1(t,-,-) < f?(t,-,-) on a set of strictlly positive measure dt @ dP, then Yy < Yg.

1.4 Reflected Backward Stochastic Differential Equations

Along with this section, the dimension n is equal to 1. So we are going to deal
with solutions of BSDESs whose components Y are forced to stay above a given barrier. Let
¢ € L2 (Fr) and f (t,w,y,2) a function which satisfies the assumption (H;) . Besides let us
introduce another object, called the obstacle which is a process S := (St)th’ continuous,

P—measurable and satisfying:

sup (S;1)°
0<t<T

iii) B < 4o0.

Let us now introduce the notion of reflected BSDE (in short RBSDE) associ-
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ated with (f,£,5). A solution for that equation is a triple of P—measurable processes

(Y, Z,K) := (Y4, Z, Ky),<p , with values in R such that:

Y €82, and K € 8%
T
(iv) Z € H? , in particular E /|Zt2dt < 00;

(v) Vi=¢+ /f (s,Ys,Zs)ds + Kp — K; — /stws, vt € [0,T] ; (1.6)
t

(vi) ¥4 > S, 0<t<T;

T
(vii) {K:} is continuous and increasing, Ko = 0 and / —St) dK; = 0.
0

\

1.4.1 Existence and Uniqueness of a Solution
Existence
Theorem 4 [Existence] The reflected BSDE associated with (f,&,S) has a unique solu-
tion
In this section, we will give a proof of theorem (4), based on approzimation via

penalisation.

In the following, C will denote a constant whose value can vary from line to line
Proof. Existence via penalization. For n € N, let (Y, Z") := (Y", Z}") 1 be

the P—measurable processes of S x H?2 such that:

T
v —£+/st" Zm) ds+n/ ds—/zgdws, t<T, (1.7)
t



where & and f satisfy the assumptions (H;), we define:
t

Kt”:n/(YS"—SS)dS, 0 <t<T.
0

It follows from the theory of BSDE’s that for each n,

E| sup [V < o0 .
0<t<T

13

We now establish a priori estimates, uniform in n, on the sequence (Y, Z", K™).

T
vep+ [ izzas

t

=E (¢ + 2R /n"f@,lgn,zsms + 2K /n"nm”—ss)‘ds
t

=E|¢]* 4 2E /Y"st” ZM) ds| + 2K /Y”dK”

T B T
gE|§\2+2E/ (5,0,0) + K |Y"| + K |Z2|) Y| ds | + 2K /SdK”
Lt

sup (Sf)

T
<C|1+E /mﬂ ds| | +1E /Z”| ds| +1E
/ 0<t<T

+aB | (K7 - K7)?).

where « is a universal non-negative real constant. But, for any ¢t < T, we have,

T
Kp = KP =Y~ [fsv0 20y ds+ [ 22w,
t
Hence

B (k7 — K7)’|

T 2 2

T
< CE |& + \1@"!2 + /\f (s, Y, ZM)|ds | + /ZS"dWS
t t

< CE 1+§2+\1@"|2+/|§2"!2d8+/IZ?\2d8
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. _ (1
Choosing a = (30) we have

T T
2 1
2B (Iv7P) + 5B /|zg|2ds <c|i1+E /|y;,"|2ds
t t
It then follows Gronwall’s lemma that:

T
E | sup <|Yt”|2) + / \ZM*dt+ (K22 | <C, neN. (1.8)
0<t<T )

Note that if we define
fo(ty,2) = f(t,y,2) +n(y— S,

f’n (tv Y, Z) < fn—l—l (ta Y, Z) )
and it follows from the comparison Theorem (3) that Y;* < V"™ 0 <t < T,

a.s. Hence

and from (1.8) and Fatou’s lemma we have E (SUPogth Y?) <ec

It then follows by dominated convergence that

T
E /(Yt—YZ‘)2dt — 0 as n — o0. (1.9)
0
Now it follows from Itd’s formula that
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T
E(W—Yt”)+E/|ZQ—Z§|2ds 2E/ (5, Y, Z0) — f (5, Y2, Z)] (Y7 — YE) ds

_l’_

t
T

2E/ d(K" — K?)
t

< QKE/ (yY" Y24 Y - Y| x| 27 - Zé’l) ds

T
“dK? + 2E/ (YP — So)” dK™”,

t

+2E

“\ﬂ

from which one deduces the existence of constant C such that

T T
E/\Z?—Zg’zds < CE/|YS"—YSPdes+4E/ de+4E/ (YP - S,)” dK™",
t

t (1.10)

let us admit for a moment the following lemma

Lemma 5

E(bup ‘ St)|2>—>0asnﬂoo.
0<t<T

We can now conclude. Indeed, (1.8) and lemma (5) imply that

T T
E/(Y;"—St)_dKf—l—E/(YSp—Ss)_ng — 0 asn, p— oo,
t t
hence from(1.9) and (1.10) :

T
E/(|Y" YP?P + |20 — |)dt—>0asn p — 0.
0

Moreover,



I
—

e -ver+ [ 1z - 2P as

—+
[\

(Y§" = Y9) d (K — KY)

|
)

Th— T T

(Y = Y9) (28 — Z7) dWs,

and

supg<ier V3" — Y/IP < (s, Y2, Z0) — f (s, YD, ZD)| YD — Y| ds

2

_l’_

- dK? + 2/ (Y = S,)" dK™
0

T
t/
T T
0/
T
+2supg<i<r /(st - YP) (27 - Z9)dw|,
t

and from the Burkholder-Davis-Gundy inequality,

[f (37 an, Zg) - f (37 Y:?p7 Z?)] (}/;n

16

—YP)ds



17

B[ (v -Y7P+ 120 - 20F) b

\ﬂ

2
B (SUPogth Y =YY ) <C

T
(Yr — 8;)~ de+2E/( — 8)” dK]
0

2E

_l’_

O\’ﬂo

+1iE (Supogth Y — Y;p|2> + CE/ |z — 27" d.

Hence E (SUPogth Y, — Ytp]2> — 0, as n and p — o0, and consequently from

(1.7) we have

E ( sup \Kf—KfF) — 0,as n and p — . (1.11)
0<t<T

Consequently there exists a pair (Z, K) of progressively measurable processes with

values in R% x R such that

/|Zt A sup K — KP'*| =0, as n — oo,
<t<T

and (iv) and (v) are satisfied by the triple (Y, Z, K); (vi) follows from lemma(5).
It remains to check (vii) .

Clearly, {K;} is increasing. Moreover, we have just seen that (Y, K") tends
o (Y, K) uniformly in ¢ in probability. Then the measure dK" tends to dK weakly in

probability.

T
/ _ 8, dK? a/ (Yi — S,) dK,
0

in probability, as n — oc.
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We deduce from the same argument and lemma (5) that

T
/ — Sy) dKy > 0.
0

On the other hand,

— S$)dK <0, neN.

O\ﬂ

Hence

T
/ —Sy)dKy =0, a.s.
0

and we have proved that (Y, Z, K) solves the RBSDE. m

Uniqueness

We are going to show that the RBSDE (1.6) has a unique solution. To begin

with let us deal with the uniqueness issue.

Proposition 6 (Uniqueness) The reflected BSDE (1.6) associated with (f,&,S) has at

most one solution.

Proof. Assume that (Y, Z, K) and (Y, Z, K) are tow solutions of (1.6) , and define

AY =Y -Y,AZ=2-27,AK = K — K. Then, (AY, AZ, AK) satisfies

T
AYt:/[f(s,Ys,Z)—f(s,Y;,ZS)]ds—/AstWS+AKT—AKt,0gth.
t
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By applying Ito’s formula to ]AYt\z , and passing to expectation, we have

T T
E!An12+E/!AZs!2ds —2E/ [f (5,Ye, Zs) = £ (s, Y, Z4)] (AY,) ds
t t

T
+2E/AstAKS.
t

Hence

T T
/AY;dAKS = / (Yo — Ly + Ly — V) (dK, — dK,)
t t

T
-~ [ - Lyar, - [ (- 1) K, <0
t

t

Then we have
T T
2 1 2 2
E ||AY;] +§ |AZs|"ds| < CE |AYs|" ds
t t

By Gronwall’s lemma, we conclude that AY =0, AZ =0, and so AK =0. =

1.4.2 Comparison Result

Let us consider now another triple ( 1,&n, S ) and assume the reflected BSDE
associated with this triple has a solution (Y’,Z’, K'). The following result allows us to

compare the components Y’ if we can compare the triples. Namely we have:

Theorem 7 Assume (Hy) holds for the coefficient f and that f'(s,Y!, Z.) € H3. If:

o P—a.s., &p <&
e At @dP —a.e., f(t,Y!,Z]) < f' (t,Y/, Z})
o St < S{

Then P—a.e.,Y <Y,



have:

20

2
Proof. Applying It6’s formula with )(Y — Y’)+‘ , and taking the expectation we

T
2
E ’(Yt - Y{)*( +E/1[Ys>m Zy — 7% ds
t

T
ZE/ Y Y/ (3>Y:9>Zs)_f/(8>}/;/azé)]d
t
T
+E/Y YNt (dEK, — dK?).
t

Since on [V; > Y/], Yy > S} > S; we have:

T T
/ (Y — YD) " (dK, — dK)) / TdK! <.
t t

Assume now that the lipshitz condition in the statement applies to f. Then

/-i-2 / 112
B| - Y0+ B [ 1oy 12, - 22 ds
t

T
m/ (Y~ Y)T1f (5,Ys, Zs) — f' (5, Y7, Z0)] ds
t

< QKE/ (Yo = YT (Vs = Y| + |20 — 7)) ds

T
< E/I[Y5>YS’] |Z3 — Z‘;|2 ds +KE/ ‘()/S — Y;/)-i_‘ ds.
t

Hence

s

) ) T
B[ - )" gKE/’(YS—Y’)st,
t
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and from Gronwall’s lemma, (Y; —Y/)* =0,0<t<T. m

1.5 Mean field Backward stochastic differential equation

This section devoted to the study of a new type of BSDESs, the so called Mean-

Field BSDEs.

1.5.1 Notations and assumptions

Let (Q,]:", ]F’) = (2 xQ,F®F,P®P)bethe (non-completed) product of (2, F, P)
with itself. We endow this product space with the filtration

F= {.7:} =FRF: 0<t< T} . A random variable ¢ € L° (Q, F, P, R") originally
defined on Q is extended canonicaly to Q : ¢ (W', w) = & (W),

(W w)€Q=QxQ. Forany 0 € L* (Q,]:", P) the variable 6 (-,w) : © — R belongs

to

E'[0(,w)] = /9 (W', w) P (dw') .
Q

Notice that B/ [0] = E' [0 (-,w)] € L* (Q, F,P), and,
9] /ed B —/E’ 0(-,w)] B (dw) = E [E' 9] .
Q Q

The driver of our mean-fieled BSDE is a function f = f (v, w,t,v,2,y,2) :
Qx[0,T] xR x R x R x R? — R wich is F—progressively measurable, for all (v, 2',y, z),
and satisfies the following assuptions:

(A1) There exists a constant C > 0 such that, P — a.s., for all t € [0,7],

o0 Il d
Y1,Y2,Y1,Ya € Rv Z1,%2,%1,%9 € R 5
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|f(ta ylbzi?yhzl) - f(t7yéazévy2az2)| < C(‘yi - yl2’ + |le - Zé’ + |y1 - y2| + |Zl - 22|)

(A2) f (‘,0,0,0,0) € H]}% (07T7 R)

Remark 8 Let 5 : Q x [0,T] — R, v : Q x [0,T] — R be two squar integrable, jointly
measurable processes. Then, for our driver, we can define, for all (y,z) € R x R?, dt

P (dw) — a.e.,

fﬁ”y (w7t7 Y, Z) =K [f (',(,U,t, B;)f%)y7 Z)]
= /f (wlv("J? t /Bt (w/) » Vi (w,) Y, Z) P (dw,) .
Q
Indeed, we remark that, for all (y,z), due to our assumptions on the driver f,
f (-, AT z) € HI% (0,T,R), and thus f%7(-,-,y,2) € H2 (0, T, R). Moreover, with the

constant C of assumption (A1), for all (y1,21), (y2,22) € R x RY, dt P (dw) — a.e.,

fﬁfY (w7taylvzl) - fﬁfY (w7tay2a ZQ) < C(|y1 - y2| + |Zl - 22|) :

Consequently, there is an F— progressively measurable version of f%7 (-, y,2),
(y,2) € R x R? such that £ (w,t,-,-) is dt P(dw) — a.e., defined and Lipschitz in (y, 2)
its Lipschitz constant is that introduced in (A1l).

We now can state the main result of this section.

1.5.2 Existence and Uniqueness of a Solution

Theorem 9 Under the assumptions (A1) and (A2) , for any random variable ¢ € L? (Q, Fr,P),

the mean-field BSDE



23

T T
Y, =&+ /E’ [f (s,Y), Z0,Ys, Zs)] ds — /ZSdWS, 0<t<T, (1.12)
t t
has a unique adapted solution

(Vi Zseior) € SE(0,T,R) x 13 (0, T, R7).

Remark 10 We emphasize that, due to our notations, the driving coefficient of (1.12) has
to be interpreted as follows

B'[f (5., Y, 26, Ys, Zo)] (w) =B [f (s, Y, Z6, Y5 (W), Zs (w)]

’» T8

= /f(w',w,s,YS(w’),Zs (W),Ys (w), Zs (w)) P(du') .
Q

Proof. We first introduce a norm on the space H]% (O, T R x Rd) which is equiv-
alent to the canonical norm:

1
2

T
0Ol =B [ fPe?ds b, >0
0
The parameter § will be specifed later.
Step 01: for any (y, z) € H]% (O, T:R x Rd) there exists a unique solution (Y, Z) €

SZ(0,T;R) x H2 (0,T;R?) to the following BSDE :

T T
Y, =&+ /E’ [f (.94 25, Ys, Zs) ] ds — /stWS, 0<t<T. (1.13)
t t

Indeed, we define g\ (s, u,v) = B [f (5,4, 2, i, v)]. Then, due to Remark (8),
f@2) (s, pu,v) satisfies (H;), and from Theorem (2) we know there exists a unique solution

(Y,Z) € S(0,T;R) x H%(0,T;R?) to the BSDE (1.13).
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Step 02: the result of Step 1 allows to introduce the mapping (Y-, Z-) = I [(y-, 2*)] :

HZ (0, T;R x R?) — HZ (0,T;R x R?) by the equation

T T

Yi=¢+ /E/ [f (s, s, 24, Y5, Zs) | ds — /ZSdWS, 0<t<T. (1.14)
t t

For any (y , 2t ,(y2,22) € 'H]%- (O,T;]R X Rd) we put (Yl,Zl) =1 [(yl,zl)],

1
(v2,2%) = I[(s% )], 5:2) = (v' — 922 = 2%) and (V,2) = (v -V?, 21— 22).

2
Then, by applying Ito’s formula to e”* |Y;| and by using that Y1, Y2 € SH% (0,T;R) we get

T
2
dr/Fi| + E /eﬁ(r_t)
t

~ ~ ~ |12
Y Y, Z.| dr/|F,

) T
+E / ePlr=tp
t
T

—E /e/ﬁ(r—t)zﬁ <g<ylvzl) (r, Y, Z1) — g*%) (r, V2, Zf)) dr/F |, t€0,T].

t

From assumption (A1) we obtain

T T
~ |2 ~ 12
(4-20-20)E /eﬁr YT‘ dr| + 1B /eﬁr Z,| dr
0 0
T T
<iC!E /eﬁrgT\er +E /eﬁr\zrﬁdr
0 0

Thus, taking 8 = 16C? + 4C + 1 we get

T ) T
E /e’gr< )dr < -E /eBT (|g)r|2+|2r|2) dr|,
0 0

> 5 15 s - - 2 . d
(Y, Z> Hﬁ < 7 (7, Z)HB . Consequently, I is a contraction on Hg (O,T,]R x R )

~ |2 A
Y| + 1|4,

[N

that is,

endowed with the norm |[|-[|5, and from the contraction mapping theorem we
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know that there is a unique fixed point (Y,Z) € H32 (O,T;R X Rd) such that
I(Y,Z) = (Y,Z).On the other hand, from Step 01 we already know that if I (Y, Z) = (Y, Z)
then

(Y,Z) € S2(0,T;R) x HZ (0,T;R%) . m
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Chapter 2

Backward doubly stochastic

differential equations

In this chapter , we recall some results on BDSDESs, we’ll present the existence
and uniqueness of solutions for BDSDEs, under uniformly Lipschitz condition and estimate
the moments of the solution. For this and, we present the comparison theorem of BDSDEs
because we know, its very useful result in the theory of BDSDEs. Then we give the proof the
existence of minimal (resp maximal) solutions for the BDSDEs with continuous coefficients.
Next we recall the result about the reflected BDSDEs with Lipschitz condition. Finaly we
present the proof of the existence of a minimal solustion in the case when the coefficient f

is continuous and with linear growth.
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2.1 Backward doubly stochastic differential equations with

Lipschitz coefficients

2.1.1 Notation and assumptions

Let T be a fixed final time. Throughout this thesis {WW;, 0 <t <T}and {B;, 0 <t <T}
will denote two independent d-dimensional Brownian motions (d > 1), defined on the com-
plete probability space (2, F,P) . Let N denote the class of P-null sets of F. For each

t € [0,T], we define
FREFR@FH VN, and G = FY @ FF,

where F}V =0 (Ws:0 < s <t) and .fET:a(BS—Bt:tgng).

In other words the o-fields F;, 0 < ¢t < T, are P-complete. We notice that the
family of o-algebras F = {ft}ogth is neither increasing nor decreasing; in particular, it is
not a filtration.

We consider coefficients (f, g) with the following properties:

F:Qx[0,T] x R" x R™4 — R",

g:Qx[0,T] x R® x R4 —, Rn*d,

be jointly measurable and such that for any (y, z) € R® x R"*¢,

f(y,2) € H*([0,T];R™),

9(.y,2) € H*([0,T];R™),
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the following hypotheses are satisfied for some strictly positive finite constant C'
and 0 < o < 1 such that for any (w,t) € Q x [0,T], (y1,21), (y2,22) € R® x R™¥4 .
f(ty,z2), g(ty,z) are Fi-measurable processes,
(H) (@) |f (s 2) = £ (6y2,22) [P < e (Jyn =l + 21 — 22]?)

(i) |g(t,y1,21) — g (ty2, 22) > < clyr — yol* + |21 — 22

\

Throughout this paper, <, > will denote the scalar product on R™, i.e < z,y >:= > """ | zy;,
for all (z,y) € R™ x R™. Sometimes, we will also use the notation z*y to designate < x,y >.
We point out that by C' we always denote a finite constant whose value may change from

one line to the next, and which usually is (strictly) positive.

2.1.2 Existence and uniqueness of a Solution

Suppose that we are given a terminal condition ¢ € L2 (Q, Fr,P). The solution to
a BDSDE((, f, g) is a pair (Y, Z) € 8% ([0,T]; R") x H? ([0, T]; R"*¢) | such that for any
0<tLT

T

T T
Yt:§+/f (s,n,zs)ds+/g(s,n,zs)E§5—/stws. (2.1)
t t t

-
Here dB; denotes the classical backward It6 integral with respect to the Brownian
motion B, and dW denotes the standard forward It6 integral with respect to the Brownian

motion W. Our main goal in this section is to prove the following theorem.

Theorem 11 Under the above conditions, in particular (Hs) , Eq (2.1) has unique solution

(Y, Z) € §2([0,T]; R") x H? ([O,T];R”Xd> :
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Let us first establish the result in Theorem (11) for BDSDESs, where the coefficients
f, g do not depend on Y and Z. Given f € H?([0,T];R"*?%) and g € H? ([0, T];R"*%),

and let & be as before. Consider the equation:
T T - T
Yt=§+/ f(s)ds+/ g(s)st—/ Z,dW,. (2.2)
¢ t ¢
Then we have the following result. There exists a unique pair
(Y, Z) € 82 ([0, T]; R") x H> ([O,T];]R”Xd) .

which solves Eq(2.2) .
Proof. Existence. To show the existence, we consider the filtration G; = .7-"tW ®

]:75 and the martingale

w=sfe+ [ 16 as+ [ o6)TBG] (23)

which is clearly a square integrable martingale by (Hz). An extension of Itd’s martingale
representation theorem yields the existence of a G;-progressively measurable process (Z;)

with values in R"*% such that
T T
E/ |1 Z¢||?dt < 0o and My = M; +/ ZsdWs, t € 0,1] (2.4)
0 t

We subtract the quantity [ f (s)ds+ [; g (s) dB, from both sides of the martingale in (2.3)

and we employ the martingale representation in (2.4) to obtain

Yt:§+/tTf<s>ds+/tTg<s>§E;—/thdes,

where

n:E[§+/tTf<s>ds+/tTg<s>d“§s/gt}.
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It remains to show that (Y;) and (Z;) are in fact Fi-adapted. For Y;, this is obvious since
for each ¢,

Y, =E(©/F v FP)
Where © is Fr Vv ffT measurable. Hence 77 is independent of F; V ¢(0), and
V; =E(©/F).
Now

/tTstWs=f+/tTf(s)ds+/tTg(5)<dE_Yt’

and the right side is ]—"%V \Y ffT measurable. Hence, from It6’s martingale representation
theorem, Zs,t <s < T is F/V v .7-"tBT adapted. Consequently Z, is FV v FtBT measurable,
for any ¢ < s, so it is FV v ]—"tBT measurable.

Uniqueness. Is immediate, since if (Y, Z) is the difference of two solutions,
JE— T E—
Y}%—/ ZsdWs =0, 0<t<T.
t

Hence by orthogonality
T
B(TI)+B [ Tr(Z.Z5ds =0,
t
and Y; =0 Pa.s., Zy =0 dtdPa.e. m

We will also need the following Itd-formula.

Lemma 12 Let o € S (F,[0,T];R"), 8 € H?(F,[0,T;;R"), v € H? (F, [0,T]; R™*?), and

§ € H? (F, [0, T7; R”Xd) be such that:

¢ o ¢
o = o + / Bsds +/ ~,dBs +/ 0sdWs.
0 0 0
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Then, for any function ¢ € C? (R™,)

t

dlar) = oa)+ /Ot<v¢<as>,ﬁs>ds+ | (Voo 2.5

t 1 t 1 t
= [[(Votan. - 5 [ Thig (o) vortlds+ 5 [ T 00) 8.0 ds

0

In particular,
t t - t
la|? = |a0|2+2/ <as,[35>ds+2/ <a5,’ySst>+2/ (g, 65dW)
0 0 0

t t
- / Iy ||2ds + / 184 2ds.
0 0

Next, we establish a prior estimate for the solution of the BSDE in (2.1). for that

sake, we need an additional assumption on g.

there exists c such that for all(t,y,z) € [0,T] x R* x RF*d
(Hs)

99" (t,y,2) < 22" +c(||g(¢,0,0)||* + |y|*)I.

Proposition 13 Assume, in addition to the condition of Theorem(11), that (H3) holds and

for some p > 2, £ € LP(Q, Fr, P,R*) and

T
B / (1£(£,0,0)” + [lg(t, 0,0)[P)dt < .
0
Then

T
E( sup Vi + ( / 1Z:]2)72) < oo.
0<t<T 0

Proof. By lemma 12 applied to ¢(z) = |z|P, we obtain that

T T
i [ WPzt < Be - ) [ vz vods
t t

T T
(¢4 p / YoP2(f (s, Y, Zu), Ya)ds + p / YL 2(Y,. g(s, Vi, Z,)dB)
t t

P T
2 [ WP 2lg(s,va, 2o Pds
t

T T
s 2= [P ey (s Y 20V Yidds —p [ VPR Zid)
t t
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Taking the expectation, we get

T T
B(YiP)+ 58 [ VP2 ZuIPds + Do - 2B [ [V 422V, Vds
t t
T D T
<B(EP) +5B [ VS (Y20 20, Yds + BB [ V2o (s.Ya0 22) s
t t
D T
+Lp-28 [ NP .V 2o Vo
t
We can conclude from (Hg) that for any a < o < 1, there exists ¢(«’) such that for
0<t<T,

lg(t,y,2) 1< e (@) (Jyl* + 1| 9(£,0,0) %) + o/ |12]*.

1- 2
But from (Hs), (H3) and the fact that 2ab < 22 ¢

+ b2, ¢ > 0, it follows that there
c l—«o

exists a constant § > 0 and ¢ such that
T
B(YiP)+ 08 [ Y% Z0)Pds
t
T
< B(I¢l") + cB / (Yol + £ (5.0,0) " + lg (s,0,0) [P)ds
t

Then, from Gronwall‘s Lemma we obtain

T
sup E(mm / meuth?dt) <o
0<t<T 0

Applying the same inequalities we have already used to the first identity of the proof, we
deduce that

T
Y <€ + / (Yal? + 1£(5,0,0) " + lg(s,0,0)[P)ds
t

T T
+p / Va2V, g(s, Yo, Z,)dBy) — p / VAP 2(Y,, Z,d W)
t t
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from the Burkholder-Davis-Gundy inequality, we get

T
E(supo<i<r|Yil”) < IEflﬁl”vLcE/ (IYs” +17(5,0,0)[” + [lg(s,0,0)[|")ds
0

T
+ CE\// Y |2P=4(gg* (s, Ys, Z,)Ys, Ys)ds
0

T
+ cE\// |Ys|2P~4(ZsZ*Ys, Ys)ds
0

We estimate the last term as follows :

T T
E\// IY;PP4<ZSZ:n,n>ds§E<np/2\// |Yi[P—2|| Zy |2t
0 0
1

1. [T B
< E(Supogt5T|Yt!p)+4E/ Y2 [P72)| Z¢||*dt
0

Wl

we deduce that

E(supo<t<r|Y|’) < o0
Now we have

T T T
/ 1Z|2dt = € — [Yo[? + 2 / (F(t, Yoo Z2), Yidt + 2 / (Vi o(t, Vi, Z)dBy)
0 0 0

T T
+ [ gt vizolPae -2 [ (v ziawy
0 0

Hence for any § > 0,

T T T
( / uztwdt)p/zsam(/ lg(t. Y Z0) [2d0)P/ + (6, p)JEP” + Yol + / (F(t Yo Z2), YidtP?
0 0 0

T T
T / (Vi g(t, Y, Z)dBP/? + | / (Yi, ZodW) [P
0 0
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Passing to expectation
T T
E( / | Ze|2d)P/? < (1 + )20l / | Zo|2d)?? + (5. p)
0 0
T p/2 T
+c<5,p>E[(/0 ||zt|r|mdt> 1+c<5,p>E[</0 A
T
< (1+ 6)%aE( / | Z2|2d)"/? + ¢ (5.,p)
0
T T
+ o8, p)BA (supo<r<r Vi) / | Zelldey?’? + ( / PAR D
0 0
T
< (14 6%+ (1 + S)E( / | Ze|2d0P/?] + ¢ (6., p).
0

The second part of the result now follows, if we choose § > 0 small enough such that

(1+6)2a+(1+0) <1

|
We can now turn to the proof of theorem (11)
Proof. Uniqueness.Let (Y}!, Z}) and (Y;?, Z?) be two solutions. Define
Y=Y -Y? Z,=2Z'-Z} 0<t<T
Then

T T T
Y, = / (s, YL, Z1) — f(s, Y2, 22))ds + / 9(s, Y2, ZY) — g(s,Y2, 22)|dB, - / Z.dW..
t t t

Applying Ito’s formula to |Y|? yields :

T T
BV, +E / 1Z.|%ds = 2E / (s, Y, Z1) — f(s,Y2, 22), ¥ s)ds
t t

T
+E / lg(s, Y2, ZY) — g(s, Y2, 22)|%ds.
t
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Hence from (Hs) and the inequality ab < ﬁcﬂ + 522,

T T T T
E|Yt|2+E/ 1Z,|%ds gc(a)E/ |YS|2ds+1;aE/ HZ5||2ds+aE/ | Z,||* ds.
t t t t

where 0 < a < 1 is the constant appearing in (Hg). Consequently

- l—a T ) T )
B[V + — E/t IZ,l dsSc(a)E/t V. [2ds.

From Gronwall’s lemma, E(|Y|?) =0, 0<% <T, and hence EfOT |1 Zs||* = 0.

Existence.We define recursively a sequence (Y;", Z}")n=0.1,... as follows. Let Y;O =
0, Z? = 0. Given (Y, Z}), (Y;"™, Z™) is the unique solution, constructed as in theorem

(11), of the following equation :

T T T
v —er [ fean s [ o znas - [ zmiaw. @)

Let Y?H 2yt _ype Z?H & zntl _zn 0 <t < T. The same computation as in the

proof of uniqueness yield :

T T
E(V; 7P +E / 1Z, " |2ds = 2B / (F(s, Y, Z0) = f(s, Y20, 20, 7

T
1E / lg(s, Y™, Z7) — g(s, Y0, 221 2ds.
t

Let 8 € R. By integration by parts, we deduce

T T
E(|Y, 2P + BE /t V7 2ePds + B /t 1Z0 |24 ds

—n+1

T
. / s, Y, 20 — f(s, Y21, 200, Ve ds
t

T
+ E/ lg(s, Y™, Z) — g(s, Y h, Z07 1) 2P ds.
t
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There exists ¢,y > 0 such that
B(7) 265) + (8 — 7)B / Vi Pesds + B / 1Z0 265
T
— 1+
<B [ (VIR + 2z s
t

2c

Now choose 8 =~ + 1+ou and define ¢ = 7%,

BV 2 + B / @V 4 202 e ds

1 T
<TEOB [ @VIE 1z s

It follows immediately that
l1+a -
B [ TR 17 s < (5 [T 2B
t

and, since £ < 1, (Y}, Z]")n—0,1,... is a Cauchy sequence in H?(0,T; R¥) x H?(0, T; RF*!).

It is then easy to conclude (Y;*),—o 1. is also Cauchy in S?([0, T]; R¥), and that
(Y;% Zt) = limnHOO(Y;tm Ztn)

solves equation (2.1). m

2.2 Comparison Theorem of Backward doubly stochastic dif-

ferential equations

In this section, we only consider one-dimensional BDSDEs. We consider the fol-

lowing BDSDEs : (0 <t <T)
T T
vi=¢+ f s, Y} Z ds+/ g(s, Y}, ZzHdB, / Zlaw, (2.6)
t t

T T
YE=¢2+ f2 (s, Y2, 72) ds+/ 9(s, Y2, Z2)dB, — / ZZdWy (2.7)
t t
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where BDSDEs (2.6) and (2.7) satisfy the conditions of theorem (11). Then there exist
two pairs of measurable processes (Y1, Z1) and (Y2, Z?) satisfying BDSDEs (2.6) and (2.7),

respectively. Assume

&> as,
(Ha)

frt.Y, 2) > fA4t,Y, Z), a.s.,

Then we have the following comparison theorem.

Theorem 14 Assume BDSDEFEs (2.6) and (2.7) satisfy the conditions of theorem (11), let
(Y1, ZY) and (Y2, Z?) be solutions of BDSDEs (2.6) and (2.7), respectively. If (H4) holds,

then Y, > Y2, a.s, Vt € [0,T).
Proof. The pair (Y,! — Y2, Z} — Z2) satisfies the following BDSDE.
T
VEovE = - @)+ [ (v Zh - P vE 2
t
T
+ [ (ol 21 - g(s.¥2 2B,
t
T
—/ (zY = Z%Haw,, 0<t<T.
t
Applying Ito’s formula to |(Y,} — Y;2)7|2, we get
T
’(Y;fl - }/;52)_‘2 = ‘(51 - §2>_’2 - 2/ (Y;l - Y;2>_(f1(57 Y:sl? Zsl) - f2(87 Y-szv Zg))ds
t
T
2 [ YA (gl Y 20 - gls, Y2 2D,
t
T
4 [ tyaevala(s, Y, 20 - g(s, Y2, 22) s
t
T T
+ 2/ Y-y~ (z} - 2%)aw, - / lyi<yz |23 — Z2|ds. (2.8)
t ¢
From (Hy), we have ¢! — ¢2 >0, so

B¢ -€&) P =0



Since (Y!, Z1) and (Y2, Z2) are in S?([0, T];R) x H2(0,T;RY) it easily follows that
T
B [ (v - v (2 - ZBaw. o,
t

T
B[ (V= Y2) (gl Y 20 — gl Y2, Z2)dB, .
t

Let
T
A:_Q/ (Y:@l_Yf)i(fl(‘g?}/slazi)_f2(87Yts27Z.32))d8
t
T
__2/ (Y-sl_Y-s2)_(fl(37y-slazsl)_fl(saytfazg))ds
t
T
2 [ (YR 2 - (s YR 2D
t
= Al + AQ,
where

T
Ay :_2/ (Y;l—}/'52)7(](‘1(8,}/51,Z51)—fl(S,Y;Q,Zg»dS
t
T
Bo =2 [ (VY2 (s Y2 22) - s Y ZD)ds <0
t
From (Hsz) and Young’s inequality, it follows that

T
A<A< 20/ (Y2 Y2) (V2 - Y2| + |2} - 22))ds
t

2 T T
<O+ 1) [0 Y2 Pds 4 (- 0) [ LyaayalZE - 2P
- t t

Using the assumption (Hg), again, we deduce
r 2 7242
[ twaevalals. v 20 - g(s. Y2, 22) s
t
T
< [ tpevalClYE - Y22 4+ alzt - Z2Plds

t
T T
_ /t |(y;1—yj)—|2ds+a/ Ly cyz|Z) — Z2Pds.
t
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Taking expectation on both sides of (2.8), we get

2 T
BI(Y! — Y2) P < (C+20+ 1B [ |} - ¥2) P,
- t

By Gronwall’s inequality, it follows that

B[(Y) = Y?)"[?=0 vte[0,T].

That is, V! > Y%, a.s., Vt € [0,7]. =

2.3 Backward doubly stochastic differential equations with

continuous coefficient

In this section we study BDSDEs with continuous coefficient. Our main result is

We consider coefficients (f, g) with the following properties:
f:Ox[0,T] xR xR — R,
g: 2% [0,T] xR x RY — R,
for a.e (t,w), the map (y, z), the map (y, z) — f(¢,y, z) is continuous, and for any (¢,y, z) €

[0, T] xR xRY, the following hypotheses are satisfied for some strictly positive finite constant

K, L and 0 < a < 1 such that for any (y1,21), (42, 22) € R x R,

f(t,y,2), g(t,y, z) are Fi-measurable processes,
(H5) (i) 1f (89, 2) | < K (1 Jyl+ 2]),

(H) ’g (ta ylvzl) -9 (t7y2722) ‘2 < C’yl - y2’2 + 04H2'1 - 22“2'
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Theorem 15 Under the above hypothese (Hs) and if € € L?, there exists a solution for the
BDSDE (2.1). Moreover, there is a minimal solution (Y, Z) of BDSDE (2.1) in the sense

that, for any other solution (Y, Z) of BDSDE (2.1), we have Y <Y .

We still assume that [ = d = 1. Before giving the proof of Theorem 15, we define,as
the classical approximation can be proved by adapting the proof given in J. J. Alibert and

K. Bahlali [1], the sequence f,(t,y, z) associated to f,

fn(t7y? Z) = y,i;lgg[f(tvy/’z/) + n(|y - y/| + |Z - Z/|)L

then for n > N, f, is jointly measurable and uniformly linear growth in ¥, z with constant

N. We also define the function.
F(t,y,z) = N(1+[y| +|Z])

Given ¢ € L2 (Q, Fr,P), by theorem (11), there exist two pair of processes (Y™, Z") and

(U, V), which are the solutions to the following BDSDESs, respectively,
T T T
Y =¢+ / fu(s, Y, Z1)ds —i—/ 9(s, Y], Z)dBs — / ZdWy (2.9)
t t t
T T T
U =&+ / F(s,Ug, Vs)ds + / 9(s,Us, V5)dBs — / VedWy (2.10)
¢ t t
From theorem (14) and lemma 1 of [34], we get
Vn>m>N, Y"<Y"<U, dt®dP — a.s. (2.11)

Lemma 16  There exists a constant A > 0 depending only on N, C, «, T and &, such
that

Vo= N[V <A |27 < A U< A, V< A
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The proof of this lemma is in [45]

Lemma 17 {(Y", Z")}125 converges in S ([0,T];R) x H? (0, T;R).

n=1

Proof. Let ng > N. Since {y"} is increasing and bounded in S ([0,T];R), we
deduce from the dominated convergence theorem that Y converges in S2 ([0, T];R). We

shall denote by Y the limit of {Y"}. Applying Ito’s formula to |Y;* — Y;™|?, we get for

n;mZ no;

E|Y] —TYJ“F +B [ |27~z ds

=2 [T (YD = YI) (fu (5, YD, Z0) — fon (5, Y™, Z07)) ds

+E [ g (s, Y, Z2) — g (s, Y™, Z)|* ds
1 1
2

<2 (B S ve =y Pds)® (B ) 1 (5,52, 22) = fin (5, Y2, 202 ds)
+B [T (C Yo — Y2 4|20 — Z;nﬁ) ds.

Since f,, and f, are uniformly linear growth and {Y™, Z"} is bounded, similary to

lemma (16), there exists a constant N > 0 depending only on N, C,a,T and &, such that

BIYy —Yg"* +E [ |20 -z ds
<E(Jy NIY2 =Y +alzp - 20 ds).

So

120 — zm? < My oy,
1—«

Thus {Z"} is a Cauchy sequence in H? (0, T;R) , from which the result follows. m
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Proof. of Theorem(15). For all n > ng > N, we have Y < Y™ < U, and {Y"}
converges in H2 (0, T;R),dt ® dP—a.s. to Y € S%([0,T];R).

On the other hand, since Z" converges in H? (0,T;R) to Z, we can assume,
choosing a subsequence if needed, that Z" — Z,dt ® dP — a.s. and G = sup,, |Z"| is

dP — a.s.integrable. Therefore, from (i) and (iv) of lemma 1 in [34], we get

&Y Z) — f(t,Y,Z), (n— oo)dt—a.s.

[fn (£, Y/", Z")|ds < N (1 +sup, |Y}"| +sup, [Z£]"])
=N (1 + sup, ‘Y;fn| + Gt) eL! ([OaT] 7dt) :

Thus, for almost all w and uniformly in ¢, it holds that

T T
/fn(s,YS”,Zg)dSH/ f(s,Y,Z)ds, (n— o).
t t

From the continuity properties of the stochastic integral, it follows that

T T
sup / Z;‘dWS—/ ZsdWy
t t

0<t<T

— 0 in probability,

T T
sup / g(s, Y, Z)dBs — / g (s,Ys, Zs)dBs| — 0 in probability.
t t

0<t<T

Choosing, again a subsequence, we can assume that the above convergence is

P — a.s. Finally,
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Y7 =Y < [ (8, Y Z0) — fon (5, Y, Z07)| ds
| [T g (s, Y2, Z2)dBs — [ g (s, Y, Z) dBy
+| [T zraw, — [T Zmdw

)

and taking limits on m and supremum over ¢, we get

T
supg<y<r |Y" = Yil < [o [ fu (8, Y, Z0) — f (s, Y, Zs)| ds
+supg<i<r LTQ(&YZL,Z?)st —ftTg(S,Ys,Zs)st

Fsupgeyer | f) Z0dWs — [ ZdW|, P —a.s.

From which it follows that Y" converges uniformly in ¢ to Y in particular,Y is a
continuous process. Not that {Y™} is monotone; therefore, we actually have the uniform
convergence for the entire sequence and not just for a subsequence. Taking limits in Eq
(2.9) we deduce that (Y, Z) is a solution of Eq(2.1).

Let ()7, Z) € 82([0,T];R) xH2 (0, T; R) be any solution of Eq (2.1) .From theorem
(15), we get that Y < Y, Vn € N and therefore Y < Y proving that Y is the minimal

solution. m

2.4 Reflected Backward doubly stochastic differential equa-

tions

In this section, we study the case where the solution is forced to stay above a given

stochastic process, called the obstacle. We obtain the real valued reflected backward doubly
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stochastic differential equation :
T T T
Y = f—l—/ f(s,Ys, Zs)ds+/ g(s,Ys, Zs) dBS+KT—Kt—/ ZsdWs, 0<t<T (2.12)
t t ¢

We consider the following conditions,

H1l) Let f:Qx[0,T]xRxR*=Rand g: 2 x [0,7] x R x Ré— R be measurable and
such that for every (y,2) € R x R%, f(.,y,2) € H2(0,T,R), g(.,y,2) € H*(0,T,R)
H2) There exist constants L > 0 et 0 < a < 1, such that for every (t,w) € Q x [0,7] and
(y,2) € R x RY,

1f (ty,2) = (2 < L(ly =y + 12— 2))

9ty 2) =g (LY, )P < Lly—y/ P +alz -2

H3) Let £ be a square integrable random variable which is Fp—mesurable.

H4) The obstacle {S;,0 <t < T'}, is a continuous J; —progressively measurable real-valued

process satisfying

w)E( sup (St)2> < 00.

o<t<T

We assume also that Sp < ¢ a.s.

Definition 18 A solution of equation (2.12) is a (R x R4 x R+) -valued F;—progressively
measurable process (Yi, Zt, Kit)o<i<p which satisfies equations (2.12) and

v) (Y, Z,K7) € 8% x H? x L?(9).

vi) Yy > S;.

vii) (Ky) is continuous and nondecreasing, Ko =0 and fOT (Y; — Sy)dK; = 0.
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2.4.1 Existence of a solution of the RBDSDE with lipschitz condition

Theorem 19 Under conditions, H1), H2), H3) and H4), the RBDSDE (2.12) has unique

solution.

Remark. In the sequel C will be note a constant which may changes from line to

line.

Lemma 20 Leti=1,2. Let (n') be a square integrable and Gp-measurable. Let h' : [0,T] x
Q X R —— R be such that for every G,-adapted process Y satisfying E(supthYf) < 00,
we have hi(s,Ys) is Gi-adapted and EfOT(hi(s,Ys)Vds < oo. Let (Y',Z") be a solution of

following BSDE :

Vi =ai + [ hi(s, Yi)ds — [ Zidw,
B(supicr |V} + Jy 125 ds) < o0
Assume that,
i) h' is a uniformly lipischitz function in the variable y.
i) nt <n? a.s.
iii) hi(t,Y,?) < h2(t,Y;?) dP x dt a.e.
Then,

Vi<Y? 0<t<T as.

2
Proof. Applying 1t6’s formula to ‘(Ytl — Ytz)Jr‘ and using the fact that n' < n?,
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we obtain
1 2\ +|? g 1 212
(v =v?)] +/t Lyisvzy |2 = 20| ds
T
<2 [0 (VoY) (0 (s ) - 1 (s YD) ds
t
T +
- 2/ (Y —-Y2)" (z) - Z22) aw,.
t
Using the fact that h' is Lipischitz and Gronwall’s lemma, we get (Y, — Y;2)* = 0, for all

0 <t <T a.s. Which implies that Ytl < Y?, Vi, a.s. ®

We first consider the following simple RBDSDE, with f, g independent from (Y, 7).

;

=&+ [ f(s)ds+ Kp— Ky + [ g(s)dBs — [ Z,dW,

Y, > S, (2.13)

\

Proposition 21 There exists a unique process (Y, Z, K) which solves equation (2.13).

Proof. By [43], for n € N, let (Y}", Z}")g<;<7 denote the unique pair , with values

in R x R? satisfying, (Y™, Z") € S? x H?> and

T T T T
Y/ i=¢ +/ f(s)ds+ n/ (Ss —Y") T ds +/ g(s)dBs — / Z¢dWs.
t t t t

We define )
=&+ fo s)ds + fo ) d B
Sp =S+ [y f(s)ds+ [y g(s)dBs
\ Y, =Y+ [ f(s)ds+ [ig(s)dBs
we have,

T T
Vi=in [ (8- ds- [ zraw. (214)
t t
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Let Ay = E9 [€ V sups<7Ss]. Then there exists v € L2([0, 7] x €2, R?) which is G;-predictable
such that

T
Ay = Arp —/ ~ AW, (2.15)
t

Since (Ss — Ag)T = 0, we have
T T
A= A7+ n/ (Ss — As)Tds — / 7AW (2.16)
t t
By Lemma (20) we have
<A = EY E \Y, supnggs] .

Set Y;:=sup,Y, and Y;:=sup,Y;"

Applying Ito’s formula, and passing to expectation we get

T
E / Iy, — Z7Pds < E|sup(Ss — )
0 s<T

Hence
T . . T
B [ |2;Pds < 2E|sup(S. ~ P+ 28 ||y,
0 s<T 0

Coming back to equation (2.14) and using equation (2.15) we obtain

T
E(n / (S, — Y™)* ds)? < 4| sup(Ss — £)*[?
0 s<T

Hence, there exist a nondecreasing and right continuous process K satisfying E(K%) < 00
such that for a subsequence of n (which still denoted n) we have for all ¢ € L2(Q;C([0,T))),

T

T
limE/ on(Ss —YM)Tds = E/ P dK.
" 0 0
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Let N € N* and n,m > N. We have
T T
07 YR <2 (S-S, - Yy s 2 [ (S0 YN m(S, - Yyt
t t
T T
2@z - yaw. - [ 120 -z
t t
By BDG inequality, there exists a constant C such that

T T
lim sup (E <sup (Y — th)2> + E/ \zn — Zm)? ds> < QCE/ (Ss — YN dK,
0 0

n,m t<T

Letting N tends to co, we obtain

T T
lim sup (E <Sup Y — th)Q) + E/ |z — Zm|? ds) < QC'E/ (Ss — Ys) dK
0 0

n,m t<T

Let
Ay n/ <Ss - Y”) ds — / ZndWs.
t ¢
Since St < &, the comparison theorem, shows that, for every n we have, Vt € [0, T, ?? >

Y/ a.s. Let 0 be a G;—stopping time, and 7 = o0 AT. We have
~ T
Y! = E9~ [S’Te_n(T_T) + n/ Sse_”(s_T)ds]

It is not difficult to see that Y™ converges to S; a.s. Therefore Y, > S, a.s., and hence
Y, >S5, a.s.

Using section theorem, we get, a.s. for every ¢t € [0,T], Y; > S;, which implies that

T
lim sup(E(sup(Y;" — Y;™)?) + E/ | Z — Z™|%ds) =0
n,m t<T 0

T
and E/ (Ss — Y5)dKs =0
0

We deduce that (Y, K) is continuous and there exists Z in L2 such that Z" converges
strongly in L2 to Z. Finally, it is not difficult to check that (Y, Z, K) satisfies equation

(2.13) m



49

Proof. of Theorem19 Existence. We define a sequence (Y;", Z}", Ki")<;<p as

follows. Let Y, = S;, Z? =0 and for t € [0,T] and n € N*,

;

VI =g (YD 2 ds o+ f) g (s, YD, Z0) B+ ) A — [ 25w

Y;nJrl > St a.s.

(Y;"—H _ Ss) dK;H—l =0

\

Such sequence (Y™, Z", K™), exists by previous step.

Put V" =yl —yn, By Itd’s formula, we have,
on+1|? ’ Zn+1 |2 T‘"Jrl n on n—1 on—1
‘Yt ‘ + ‘Zs ‘ ds=2 | Y2 (f (s, Y2, 20 = f (s, Y1, 20 1)) ds
t t
T*”Jrl n+1 n T*”Jrl n n n—1 n—1
+ t Yy (dKI™ —dKY) +2 ) Yy (9(s, Y] Z0) —g (s, Y] 1, Z071)) dBs

Tfn—i-lfn—ﬁ-l r -1 —-1y|2
+2/ Yy Z, dWs+/ |9 (s, Y, Z0) — g (s, Y71, Z071) 7 ds
t t

Therefore, It6’s formula applied to |y|2 ePt shows that :

2 2 2
Vet =g [V e T e (20 s
=2 [ VI (f (5, 2,20 - (52 20 ds
+ ftT €BSYZ+ (ngH-l _ dK;L)
+2 [PV (g (s, v, 28) — g (s, Y21, 2071)) dB,
+2 [ eV Tz aw,

e g (s, Y0 22) — g (5, Y2, 20 ) P ds

Shows that,
i 12 T 12 T 12
E<(Y?+1] >eﬁt—(5—|—20'y)E</ ’YSH‘ efBS> ds+E/ )28“) ds
t t

T T
< <c+ 20) B[ (VI e ds + <a—|— 20) B[ (7L s
v t ’Y t
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Choosing v = (14_0(1), C= p%a (C’ + 1_?0‘) ,and B = —2Cv — C, we have

T/ 2 2
E/ (C‘YZH‘ +\7§“\ )eﬁsczs
t

n T/ 2
< <142—a> E/ <C’ ’Yi )eﬁsds
t

Since 14 < 1, there exists (Y, Z) in H? x H? such that (Y™, Z") converges to (Y, Z) in

2 |5t
+ |7

H? x H2. It is not difficult to deduce that Y™ converges to Y in S2.

It is not difficult to shows that (Y, Z, K) is a solution to RBDSDE (2.12).

Uniqueness. It follows the comparison theorem which will be established below. m

2.4.2 RBDSDEs with continuous coefficient

In this section we prove the existence of solution to RBDSDE when the coefficient
is only continuous.
We consider the following assumption
H5) i) for a.e (t,w), the map (y, z) — f(t,y, z) is continuous.
ii) There exist constants k > 0, L > 0 and « €]0, 1], such that for every (t,w) € Q x [0,T]

and (y,2) € R x RY,

1f(ty,2)| < 5 (L+ [yl + |2])
9 (t,y,2) —g (b9, 2N < Lly—y/|* +alz =2
Theorem 22 Under assumption H1), H3), Hj) and H5), the RBDSDE (2.12) has an
adapted solution (Y, Z, K) which is a minimal one, in the sense that, if (Y*,Z*) is any

other solution we have Y <Y™* P —a.s.

Before giving the proof of Theorem 22, we recall the following classical lemma. It

can be proved by adapting the proof given in J. J. Alibert and K. Bahlali [1].
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Lemma 23 Let f:[0,7] x Q x R? — R be a measurable function such that:
(a) For almost every (t,w) € [0,T] X Q, x — f(t,x) is continuous,
(b) There exists a constant K > 0 such that for every (t,z) € [0,T] x R? |f(t,z)| <
K(1+ |z|) a.s.

Then, the sequence of functions

fult x) = nf) {h(t,y) +nlz —yl}
1s well defined for each n > K and satisfies:
(1) for every (t,z) € [0,T] x R, |fu(t,z)| < K(1+ |z|),
(2) for every (t,z) € [0,T] x RY, n — f,(t,z) is increasing,
(3) for every n > K, (t,z,y) € [0,T) x RT x R?, | fult,2) — fult,y)| < nlz —yl,

(4) If x,, — x, as n — oo then for every t € [0,T] fn(t,z,) — f(t,z) as n — co.
Since ¢ satisfies H3), we get from Theorem (19), that for every n € N*, there exists

a unique solution {(Y;", Z}", K{*), 0 <t < T} for the following RBDSDE

Vit =&+ [] fuls, Y2, Z0)ds + Kt — KP + [ g(s, Y, Z0dBs — [[7 ZrdW,,  0<t<T,

Y > S5

Jo (Y= 83 dK7? =0
(2.17)

We consider the function defined by

FHtuv) = w1+ Jul + [|v])
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Since, | f1(t, u,v)— fL(t, v, v")| < k(Ju—u/|+||lv—2"]]), then similar argument as before shows

that there exists a unique solution ((Us, Vs, K),0 < s < T') to the following RBDSDE:

U =&+ [ f2(s,Us, Vi)ds + Kp — K + [ g(s,Us, Va)dBy — [ VodW,

U, > S, (2.18)

JT(Ug — Sy)dEy =0

We need also the following comparison theorem

Theorem 24 Let (&, f,9,5) and (¢, f',9,5") be two RBDSDESs. Each one satisfying all
the previous assumptions H1), H2), H3) and Hj). Assume moreover that :

i) €< ¢ as.

i) f(t,y,2) < f'(t,y,2) dP x dt a.e. ¥ (y,z) € R x R%

iii) Sy < S, 0 <t <T a.s.

Let (Y, Z, K) be a solution of RBDSDE (&, f,g,S) and (Y',Z', K') be a solution of RBDSDE
(&, f.9,5"). Then

Y}SYt’, 0<t<T a.s.

2
Proof. Applying It6’s formula to ‘(Y} —Y)*

, and passing to expectation, we

have

2 T 2
Bl =¥ [ +B [ 1rovy |2~ 2] as
=2E/tT (Vo))" (F Y022 — 1 (5.Y].2,) ) ds

T A+
+2E/t (ve-¥)) (4K, - dK)

T , 2
+E/ ‘g(s,Ys,Zs) -9 (8,12,Z§> Liy,>yzyds.
t
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Since on the set {Y; > Y/}, we have Y; > 5 > Sy, then

T N+ T N+

[ (ve-y) r - ary = [ (vo-v)) awi <o
¢ t
Since f is Lipschitz, we have on the set {Y; > Y/},
2
ds

2 T /
E‘(n_}/}’)—i_} +E/ 1{YS>Y5,} ZS—ZS
t

1 T
< <3C+ C2> E/
€ t

+(8+a)E/tT

;12
Ys = Y| liy,>yrnyds

;12
ZS - Zs 1{Ys>Ys'}d8'

We now choose ¢ = 1_TO‘, and C = 3C + %CQ, to deduce that

2 _ T .2
Bl(vi-v) " <08 [ |- ) as
t

The result follows now by using Gronwall’s lemma. =

Lemma 25 i) a.s. for all, t Y? <Y <Y < U,.

ii) There exists Z € H? such that Z™ converges to Z.

Proof. Assertion i) follows from Theorem (24). We shall prove ii).

1t0’s formula yields
T T T
EYJ? + B / |Z0)%ds =BJé[? + 2 / Y7 (s, Y2, Z0)ds + 2B / S,dK™
0 0 0
T
1E / lg(s, Y, 20| ds
0

2
But, assumption H5) and the inequality 2ab < @ + 7b% for r > 0, show that :
r

T T T
E/ 120 2ds < C + (7“/<;2+(1—|—5)04)E/ Hzg||2ds+2E/ S, K™
0 0 0

T
<O+ (21 (1 +5)a)E/ 12712ds + BE(KD)?
0
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On the other hand, we have from (2.17)
T T T
Kr=Yy—-§¢— / (s, Y, Z0)ds — / 9(s,Y", Z)dBs +/ ZedWs (2.19)
0 0 0
then
T
E(K})? < C (1 +E/ ||Z§|2ds>
0

which yield that
T T
E/ 127]12ds < C + (7"/42 +(1+e)a+ BC) E/ | 272 ds
0 0
Choosing r === m, we obtain
T
B[ |zIds<c
0
For n,p > K, Itd’s formula gives,

S

T T
BT~ V(P +B 120 - Z2Pds =28 [ (V2 = Y2)(Fuls, Y2, 20) - fyls Y2, Z0))ds
0 0
T T
428 [ (V7 - YPKD 28 [ (V7 - YydK?
0 0
T
4B [ gl ¥2,20) - g(s. Y2, 20) | ds.
0
But
T T
B [ (- Y2)aK? =B [ (S~ Y2)aK? <0
0 0
Similarly, we have EfOT(Ysp - Y™MdKY <0.

Therefore,

T T
E / |20 — 77|ds <2 / (V2 — Y)(fauls, Y Z0) — fo(s, Y, ZP))ds
0 0

T
+E / lg(s, Y7 20) — g(s,YP, Z2)| ds
0
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By Holder’s inequality and the fact that g is Lipschitz, we get

T
B[ I2; - 22l
0 1 1
T 2 T 2
< (B[ or-veras) (8 [ (svrz - gl e z)s)
0 0
T T
+ CE/ Y — YP|?ds + aE/ |z — ZP|%ds
0 0
Since suanfoT |fn(s, Y, Z™)|? < C, we obtain,
1
T T 2
B[ Nz -zpas<c(s [ or-vtes)
0 0
Hence
T
E/ |27 — ZP||?ds — 0; as n,p — oo
0
Thus (Z"),>1 is a Cauchy sequence in H?(RY). m
Proof. of theorem 22. Put Y; = sup,Y;", we have (Y",Z") — (Y,Z) in
S2(R?) x H2(R?). Then, along a subsequence which we still denote (Y™, Z"), we get

Y™, Z") — (Y, Z), dt®dP a.e

then, using Lemma 23, we get f,(¢, Y, Z}') — f(t,Y:,Z:;) dP®@dt a.e
On the other hand, since Z" — Z in H?(R?), then there exists A € H?(R) and a subse-
quence which we still denote Z™ such that Vn, |Z"| < A, Z" — Z, dt @ dP a.e.

Moreover from H5), and Lemma 31 we have
Falt Y, Z0)] < R(1+sup [Y{"] + Ar) € L2(0,T], dt), P—a.s,
n
It follows from the dominated convergence theorem that,

T
E/ | (s, Y2, Z) — f(s,Ys, Zo)|?ds — 0, n — 0. (2.20)
0
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We have,

T
B[ lg(s Y7\ 20) ~ gls. Yoo Z2) s
0

T T
SC’E/ |YS"—Y5|2d8—|—aE/ |27 — Z||?ds — 0, as n — oo.
0 0

It is not difficult to show that (Y, Z) is solution to our RBDSDE. Let
o T T T
Y, :g+/ F(s,Ys, Zs)ds + Kr —Kt+/ 9(s,Ys, Zs) dBs —/ ZdW,,  (2.21)
t t t

Z €HELY € 8% Kr € L2 Yy > Sy, (K;) is continuous and nondecreasing, Ko = 0 and
fOT (Yy—S;) dK; = 0, and (Y*,Z*, K*) be a solution of (2.12). Then, by Theorem (24),

we have for every n € N*, Y < Y*. therefore, Y is a minimal solution of (2.12) m
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Chapter 3

Mean-Field Reflected Backward
Doubly Stochastic Differential

Equations

In this chapter we study the existence and uniqueness of the solutions to mean-field
reflected backward doubly stochastic differential equation when the driver f is lipschitz. We
also study the existence in the case when the driver is of linear growth and continuous, in

this case we establish a comparison theorem.
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3.1 MF-RBDSDE with lipschitz condition
We shall consider the following MF — RBDSDE:

T T
th = 5 + / E/f (Sawawlu YS: Ys/7 Z57 Z;) ds + / E/g (s,w,w’, }/57 }/s/a ZS7 Z;) dB‘igl)
t t

T
+Kpr — K — / ZsdWs.
t

3.1.1 Assumptions and Definitions

We consider the following assumptions,
H1) Let f:Qx[0,T]xRxRIxRxR— Rand g: Q2x[0,T] xR x R xR xR?— R be two
measurable functions and such that for every (y, z,1/,2') € RxRY x R x R?, f(.,y, 2,9, %)
and, g(.,y,2,y',2') belongs in H?(0,T,R)
H2) There exist constants L > 0 and 0 < « < 3, such that for every (t,w) € Q x [0,T]

and (y,2,7,2) € R x RT x R x RY,

‘f(taylazlayllvz,l) _f(t7y27z27yévzé)}
< L(ly1 — w2l +|vi — yé} + |21 — 20| + |25 — ZéD
‘g (taylazlayllazi) -9 (t,y27227y§a2§)|2 <

L (ln = ol + o5 = w5]*) + @ (121 = 22> + |21 = 25/

H3) Let £ be a square integrable random variable which is Fp—mesurable.
H4) The obstacle {S;,0 <t < T'}, is a continuous J; —progressively measurable real-valued
process satisfying F (SUPogth (St)2> < 0.

We assume also that St < € a.s.
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Definition 26 A solution of equation (3.1) is a (R x R4 x R+) -valued F;—progressively
measurable process (Yi, Zy, Kit)o<i<p which satisfies equation (3.1) and

i) (Y, Z,Kr) € S? x H? x L*(Q).

i) Yy > Si.

iii) (Kt) is continuous and nondecreasing, Ko =0 and fOT (Y; — Sy)dK; = 0.

3.1.2 Existence of a solution to the MF-RBDSDE with lipschitz condition

Theorem 27 Under conditions, H1), H2), H3) and Hj), the MF-RBDSDE:(3.1)has a

unique solution.
Proof. For any (y, z) we consider the following MF-RBDSDE, with ¢ € [0, 7]

T T
Y, = §+/ E/f(37w,w’,}/'s7y;’Zs,zg)dS+/ E/g(s,w’w/,}/;,yg7zs7zg)d33
t t

T
+K7r - K; — / ZsdWs.
t

According to Theorem 19, there exists a unique solution (Y, Z) € S? x H? i.e., if we define

the process

t t
Kt - YO_}/;S _/ E/f (Suwawlvysvy;azﬁzg) dS—/ ]Elg (vaawlai/say;ZSaz‘/g) dBS
0 0

t
—{—/ ZsdWs,
0

then (Y, Z, K) satisfies Definition 26. Hence, if we define ©(y, z) = (Y, Z), then © maps S? x
H? itself. We show now that © is contractive. To this end, take any (yi, zz) €S2 xH? (i =
1,2), and let ©(y",2") = (Y',Z"). We denote (Y,Z,K) = (Y' -Y? 7' - 722 K' — K?)

and (7,z) = (yl —y?, 2t = z2). Therefore, 1t6’s formula applied to ‘?‘2 ePt where 8 > 0,
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and the inequality 2ab < (%) a® + 6b?, lead to

B|V:| e + (8- 3L — S50)E [ [V, |* ePds + 3B [ % |Z,|” ds
<E [PV, (dK} - dK2)

B ;7 o8 ((L+ 532) [ + (122 (12,]?) ) ds

Choosing 3 = 3L+ 18L22a +1 (1+2a> (L + 1522) and setting M = (1+2a> (L+1522) yield

B|V| e + LME [T |V,[" e#ds + 3B [ e | Z,|* ds
<E [ PV, (dK) — dK?)
+129E [T e (M7, + [=,) ds

We have

T
E/ Y, (dK} — dK?) <0,
t

and

T T
_ — 142
E/ efs (M V|7 + |ZS|2> ds < +2 O‘E/ ePs (M 7. + |zs|2) ds
t t
Consequently the mapping © is a strict contraction on S? x H? equipped with the norm

2l (E/tTeﬁs (M7, +1Z.) ds>é

Moreover, it has a unique fixed point, which is the unique solution of the MF-RBDSDE

with data (&, f,9,5). =
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3.2 MF-RBDSDEs with continuous coefficient

In this section we prove the existence of a solution to the MF-RBDSDE where the
coefficient is only continuous.
We consider the following assumption
H5) i) for a.e (t,w), the mapping (y,v/, z,2') — f(t,y,9, 2, 2’) is continuous.
ii) There exist constants L > 0 and a €]0, 5[, such that for every (t,w) € Q x [0,T] and

(y7zuylaz/) ERXRd XRXRd,

;

1f g,y 22 ) S L1+ |yl + (9] + |2 + |2'])

2 2
g (t, 91,91, 21, 21) — g (t, Y2, Y5, 22, 25)|” < L(Iy’l —ysl” + | fy2|2>

+a (|2 = 2+ |21 - )
Theorem 28 Under assumption H1), H3), H4) and H5), the MF-RBDSDE (3.1) has an
adapted solution (Y, Z, K) which is a minimal one, in the sense that, if (Y*,Z*) is any

other solution we have Y <Y* P — a.s.

Before giving the proof of Theorem 28, we recall the following classical lemma. It

can be proved by adapting the proof given in Alibert and Bahlali [1].

Lemma 29 Let f:[0,T] x @ x R x R x R — R be a measurable function such that:
(a) For almost every (t,w) € [0,T] x Q, x — f(t,W, ) is continuous,

b) There exists a constant K > 0 such that for every (t,y',y,z) € [0,T] x R x R x R?
1f(8,yy,2)] < KL+ Y]+ lyl + [2]) as.

(c¢) For almost every y, z, f (t,y,y, z) is increasing in y'.
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Then, the sequence of functions

fn(t’y,7y7z): inf {f(t,u,v,w)+n(y’—u)++n|y—v\—i—n]z—w|}

(u,v,w)eQ?Hd
1s well defined for each n > K and satisfies:

(1) for every (t,y',y,2) € [0, T) x R**, | fu(t,y',y, 2)| < K(1+[y| + [yl + |2,
(2) for every (t,y',y,2) € [0,T] x R2*4 n — f,(t,x) is increasing,
(3) for every (t,y',y,z) € [0,T] x R*, o/ — fu(t,y',y,2) is increasing,

|t ™yt 2 — fa 2 0% 2 < n (I — o2+ vt — P+ 2 = 22)),

(5) If Wn>yns2n) — (V'sy,2), as n — oo then for every t € [0,T] fu(t,Ypn,Yn,2n) —

[,y y,2) as n — oc.

Since ¢ satisfies H3), we get from Theorem (27), that for every n € N*, there exists

a unique solution {(Y;", Z}", K{*), 0 <t < T} for the following MF-RBDSDE

)
Y =&t ) fals, (Y)Y, Z0)ds + K — K7+ [, g(s, (YD), Y2, Z2)dBs

— [T zraw,, 0<t<T,
t s
(3.2)

Y > S

T n n
k ST (e - ) dKr =0

We consider the function defined by

Lt u,v,w) == L1+ |u| + |v] + |w]),
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since, |f1(¢, u,v,w)— f1(t, ', v, w")| < L(lu—u'|+|v — v'|+|w — w'[), then similar argument
as before shows that there exists a unique solution ((Us, Vs, K5),0 < s < T') to the following

MF-RBDSDE:

;

U=+ [ f1(s,UL U, Vi)ds + K7 — Ko + [ g(s, UL, Uy, Vs)dBs — [ VodWy

Uy > S (3.3)

JT(Uy = 85)dKs =0

We also need the following comparison theorem.

Theorem 30 (comparison theorem) Let (gl,fl,g,Sl) and (52,f2,g,S2) be two MF-
RBDSDEs. FEach one satisfying all the previous assumptions H1), H2), H3) and Hj).
Assume moreover that :

i) €1 < €% as.

i) fY(t )y, 2 2) < f2 (Y, y, 2, 2) dP x dt a.e. ¥ (Y, y, 2, 2) € R x RY

iii) S < S2, 0<t<T a.s.

Let (Yl, Zl,Kl) be a solution of MF-RBDSDFE (51, L, Sl) and (Y2, ZQ,Kz) be a solution
of MF-RBDSDE (52, 2,9, 5’2) . We suppose also :

a) One of the two generators is independent of z'.

b) One of the two generators is nondecreasing in y'.

then

YP<Y? 0<t<T as.
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Proof. Suppose that (a) is satisfied by 1 and (b) by f2. Applying Ito’s formula
to ‘(Ytl - Yﬁ)*)z, and passing to expectation, we have
|- 12) [ 8 [ Ao |2 - 20
— %R /tT vi-v2)t g (f1 <3, v, v Zi) — (37 v2) vz (22, Zz)) ds
vam [ -2 - a)
+E/tT B (9 (s ) Y8 (20) . 28) =g (s, (V) Y2 (2), 22)) ‘2 Liyioy2yds.

Since on the set {V,! > Y2}, we have Y,! > 57 > S}, then

T T
/ (Y;} _Y52)+ (dK; _szz) _ _/ (Yl _YSQ)-i-dKSQ <0
t ¢

s

Since f ! and f? are Lipschitz, we have on the set {Y; > Y/},

2 T
E‘(Ytl—Yf)Jr‘ +E/ Lyasyay |2 — 22| ds
t

4 L? 1 o+ |2 1 212
< E/t 6L+ —— ’(Yt —Y7) ‘ + |25~ Z7|" ds

then
L2
1 -2«

T
E‘(}Ql_nz)-ﬁ-rSE/ <6L+ )‘(Ytl_nz)—&-rds
t

The result follows by using Gronwall’s lemma.

Lemma 31 i) a.s. for all, t Y? <Y <Y <U,.

ii) There exists Z € H? such that Z" converges to Z.
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Proof. Assertion i) follows from Theorem comparaison. We shall prove ii).

1to’s formula yields
T T T
BG4 B [ 1201 ds <BI¢P + 28 | YIB'(fu(s, (7)Y 20)) ds + 2B | S.aK?
0 0 0
T 2
8 [ 8 (Jols. 07 32,22 ) s

From assumption H5) , and the inequality 2ab < agi +eb? for € > 0, we get :

T LT T L T
E/ \Z§]2ds§Elf\2++E/ yg(s,o,o,o)\2d5+(3Lg++4L)E/ Y72 ds
0 € 0 € 0

L Ty o T "
+(—+alE —|Z2"ds + 2E SedK]
€ 0o ¢ 0

On the other hand, we have from (3.2)

T T T
Kp =Yg~ 6= [ B, 02 Y0 Z0ds - [ Blo(s 07) YL Z0dB.+ | Zvd
0 0 0

(3.4)
then
T
B(KP)? < C (1 +E/ yyzgu2ds> .
0
We have

T
QE/ S, dK" < Z=E (Sup]5t|2> + BE(K})?
0 t

T
;E (sup ]St]2> + BC <1 + E/ HZ;‘Hst> ,
t 0

|-

IN

which yields that
Ep— o LT ’ 2 L T

E |Z7° ds < E|¢| +7+ﬁC+E l9(s,0,0,0)] ds+(3L5+;—|—4L)E |Y'|" ds
0 0 0

L T]' n|2 1 2
+|(—4+a+pC)E —|Z¢|"ds + <E ( sup | S|
€ 0 € B ¢
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Choosing ¢, 8 such that (% +a+ ﬂC’) < 1, we obtain
T
E/ |1Z2)%ds < C
0
For n,p > K, Ito’s formula gives,
T
B(YG - YR+ B [ |27 - 227
0
T
- 2E/ (Y;n - Ysp)El(fn(Sv Y;na (Y;n)l ) Zg) - fp(S, }/Sp, (np), ) Zg))ds
0
T T
+28 [V YD 28 [ (V7 - YKy
0 0
T 2
B [ B (ol Y2 02 23) = gl Y2 (V2 22)) P ds.
0

But

T T
B [ (- Y2)aKY =B [ (5.~ Y2)aK? <0
0 0

Similarly, we have EfOT(Kgp —Y")dK?Y <0.

Therefore,
T T
E/ ”Zg - Z§‘|2ds S21@/ (an —Y;p)E/(fn(S,Y;n,(an),7Zg) _fp(37)/;p7 (Y;p),,Zg))dS
0 0
r 2
B [ B g, YL 00 20) - g(s Y2, (2 20) | s
0
By Holder’s inequality and the fact that g is Lipschitz, we get
T
B[ lzz - 22
0

T 1 T 1
s(E / m"—l/;’)?ds) (E / E'(fn<s,n",<ys”>’,zg>—fp<s,np,(np>’,zg’>>2ds)
T

T
L IE / (Y2~ YP[2 4| (V7Y — (YP) ) ds + oF / 27— 77
0 0
Since suanfoT |fu(s, YR (YY), Z7)2 < C, we obtain,

T T
B[ Nz -zpas<c(s [ or-vtas)
0 0

1
2
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Hence

T
B [ )20 - Z2)Pds — 0, as np— oo
0

Thus (Z"),>1 is a Cauchy sequence in H?(RY). m
Proof. of theorem 28. Put Y; = sup,Y;”, we have (Y™, Z") — (Y,Z) in

S?(R%) x H2(R?). Then, along a subsequence which we still denote (Y™, Z"), we get
Y™, z" —(v,Z), dt®dPa.e

then, using Lemma 29, we get f,(¢, ;" (Y*) , Z}) — f(t,Y:, (Y}) , Z;) dP ®dt a.e
On the other hand, since Z" — Z in H2(RY), then there exist A € H2(R) and a subsequence
which we still denote Z™ such that Vn, |Z"| < A, Z" — Z, dt ® dP a.e.

Moreover from H5), and Lemma 31 we have
Falt Y, (V) 2] < K (14 sup V'] + sup | (V) | + Ay) € LA(0,T], db), P —aus,
n n
It follows from the dominated convergence theorem that,
T 2
E/ B (fu(s, Y, (V) Z0) = f(5,Ys, (Y5), Zs))|"ds — 0, n — oo. (3.5)
0
We have,
T
B[ 1B (ol Y2 22) - g5, Yo, 2) [Pds
0
T
< CE/ B (VS = Yol + [ (Y = (V) *) ds
0
T
+ aE/ |27 — Z||?ds — 0, as n — oo.
0

It is not difficult to show that (Y, Z) is solution to our MF-RBDSDE. Let

o T

Y, = §+/ E'f (s, Ys, (Ys)', Zs) ds + Kr — Ky

t

T T
+/ E'g(s,Y;,(YS)',ZS)dBS—/ ZdWs,
t t
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where Z € H2, Y € S%, Ky € L2, Y, > S, (K;) is continuous and nondecreasing, Ko = 0
and fOT (Yy—S;)dK; =0, and (Y*, Z*, K*) be a solution of (3.1). Then, by Theorem (30),
we have for every n € N*, Y < Y*. Therefore, Y is a minimal solution of (3.1) m
Remark 32 Using the same arguments and the following approrimating sequence
halt,,y,2) = sup  {h(u,0,w) — nlz — ul — nly — o] — nlz — wl},

one can prove that the MF-RBDSDE (3.1) has a maximal solution.
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