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Abstract

In this thesis we study some boundary correction methods for kernel estimators
of both density and regression functions and their statistical properties. Kernel
estimators are not consistent near the finite end points of their supports. In other
words, these effects seriously affect the performance of these estimators. To re-
move the boundary effects, a variety of methods have been developed in the lit-
erature, the most widely used is the reflection, the transformation and the local
linear methods... In this thesis, we combine the transformation and the reflection
methods in order to introduce a new general method of boundary correction when
estimating the regression function. Boundary problem for kernel quantile function

estimator in heavy-tailed case are also studied in this thesis.
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Résumé

Dans cette thése nous étudions certaines méthodes de correction des effets de bord
des estimateurs a noyaux des fonctions de densité et de la régression et leurs pro-
priétés statistiques. Les estimateurs a noyau présentent des problémes de conver-
gence aux bords de leurs supports. En d’autre termes, ces effets de bord affectent
sérieusement les performances de ces estimateurs. Pour corrigé ces effets de bord,
une variété de méthodes ont été développées dans la littérature, la plus largement
utilisée est la réflexion, la transformation et la linéaire locale... Dans cette thése,
nous combinons les méthodes de transformation et de réflexion, pour introduire
une nouvelle méthode générale de correction de l’effet de bord lors de [’estimation
de la régression. Le probléme de bord de [’estimateur o noyau de la fonction des
quantiles en cas de distribution a queue lourde est également étudié dans cette

thése.
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Introduction

In statistical studies, it is often the case that variables represent some sort of
physical measure such as time or length. These variables thus have a natural lower
boundary, e.g. time of birth or zero point on a scale. Hence, it is also justified
to assume that the underlying true density f has a bounded support. There are
many applications in particular in economics where densities of positive random
variables are the object of interest or an essential model to be estimated from
data. For examples, volatility models, duration and survival times data, financial
transaction data,... In a lot of these situations, however, appropriate functional
forms are unknown, such that a nonparametric estimate is needed. It is often the
point estimates close to the boundary which are the focus of practical interest and

thus, require good precision.

Nonparametric kernel smoothing belongs to a general category of techniques for
nonparametric curve estimations including : density, distribution, regression, quan-
tiles, ... These estimators are now popular and in wide use with great success
in statistical applications. Farly results on kernel density estimation are due to

Rosenblatt (1956) and Parzen (1962), and the form kernel regression estimator

1



Introduction

has been proposed by Nadaraya (1964) and Watson (1964). Since then, much
research has been dome in the area e.g., the monographs of Silverman (1986),

and Wand and Jones (1995) and kernel regression estimator can be found in, for

instance, Gasser and Miiller (1979), Fubank (1988) and Fan and Gijbels (1996).

Kernel estimators are not consistent near the finite end points of their supports.
In other words, these effects seriously affect the performance of these estimators
and these require good precision. In this thesis we study some boundary correction
methods for kernel estimators of both density and regression functions and their
statistical properties. The so-called ‘boundary problem’ of kernel density estima-
tors has been thoroughly analyzed and discussed for densities which are continuous
on their support [0,00). It arises when the support has at least one finite bound-
ary and it appears e.g. in form of a relatively high bias when calculating the
estimate at a point near the boundary. In the density estimation context, a vari-
ety of boundary correction methods now exists, and most are referred to in Jones
(1993). He sets up a unified approach to many of the more straightforward meth-
ods using “generalized jackknifing” (Schucany et al. 1971). A well-known method
of Rice (1984) is a special case. A popular linear correction method is another: it
has close connections with the boundary properties of local linear fitting (Fan and
Gigbels, 1996 )... Consequently, an idea on how to include boundary corrections in

these estimators is presented.

In the regression function estimation context, Gasser and Miller (1979) identi-

fied the unsatisfactory behavior of the Nadaraya Watson regression estimator for



Introduction

points in the boundary region. They proposed optimal boundary kernels but did
not give any formulas. However, Gasser and Miller (1979) and Miller (1988)
suggested multiplying the truncated kernel at the boundary zone or region by a
linear function. The local linear methods developed recently have become increas-
ingly popular in this context (cf. Fan and Gijbels (1996)). More recently, in Dai
and Sperlich (2010) a simple and effective boundary correction for kernel density
and regression estimator is proposed, by applying local bandwidth variation at the
boundaries. To remove the boundary effects a variety of methods have been devel-
oped in the literature, the most widely used is the reflection method, the boundary
kernel method, the transformation method, the pseudo-data method and the lo-
cal linear method. They all have their advantages and disadvantages. One of the
drawbacks is that some of them (especially boundary kernels), can produce negative

estimators.

For heavy-tailed distributions, bias or inefficiency problems may occur in the clas-
sical kernel estimation when considering. The estimation of population quantiles
15 of great interest when a parametric form for the underlying distribution is not
avatlable. It plays an important role in both statistical and probabilistic appli-
cations, namely: the goodness-of-fit, the computation of extreme quantiles and
Value-at-Risk in insurance business and financial risk management. Also, a large
class of actuarial risk measures can be defined as functionals of quantiles (see, De-
nuit et al., 2005). Quantile estimation has been intensively used in many fields,
see Azzalini (1981), Harrell and Davis (1982), Sheather and Marron (1990),
Ralescu and Sun (1993 ), Chen and Tang (2005). Most of the existing estimators
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suffer from either a bias or an inefficiency for high probability levels. Inspired
by Wand et al. (1991), Buch-Larsen et al. (2005) showed that for heavy-tailed
distributions, the tail performance of the classical kernel density estimator could
be significantly improved by using a tail flattening transformation. They used
modified Champernowne distribution to estimate loss distributions in insurance
which is categorically heavy-tailed distributions. Sayah et.al.(2010) produce a ker-
nel quantile estimator for heavy-tailed distributions using a modification of the

Champernowne distribution.

The rest of the thesis is organized as follows. In chapter 1, we focused on the
boundary effect in kernel density estimation, some methods of boundary correc-
tion have been discussed. This first chapter consists of preliminary mathematical
material which serves the framework for the rest of the thesis. Chapter 2 is con-
cerned with the connections between the kernel regression estimation and boundary
effect. Chapter 3 introduces the important part of our research is devoted to the
extension of the boundary correction methods based on both transformation and
reflection to the regression setting. In chapter 4, We have focused also on the
boundary problems for kernel quantile estimator in heavy-tailed data case and

presents some asymptotic results.



Chapter 1

Boundary correction in kernel

density estimation

In the past, many ways to diminish the boundary problem in the kernel density
estimation have been considered. Consequently, an idea on how to include bound-
ary corrections in these estimators is presented. The first statement implies that
the density has a support which is bounded on the left hand side. Without loss of
generality the support is set to be [0, 00). Nonparametric kernel density estima-
tion is now popular and in wide use with great success in statistical applications.
The reflection method is specifically designed for the case f™) (0) = 0 where f()
denotes the first derivative of f. The boundary kernel method is more general

than the reflection method in the sense that it can adapt to any shape of density.

These included a boundary kernel and its close counterpart the local linear fitting

method, the transformation and reflection based method given by Zhang et al.

bt



Chapter 1. Boundary effect in kernel density estimation

(1999), Jones and Foster’s (1993) nonnegative adaptation estimator, Cowling and
Hall’s (1996) pseudo-data method, and a recent estimator due to Hall and Park

(2002) based on a transformation of the data “inside” the kernel.

1.1 Kernel density estimation

Let X; ..., X, be independent and identically distributed (iid.) copies of the ran-

dom variable (rv) X with continuous distribution function

and continuous density function : f(x) = L F (z).

In this chapter, we will consider the problem of estimating the density using non-
parametric kernel estimation, wich is a rather simple but very powerful and thus
broadly used method to estimate a density non-parametrically. It was first defined
in Rosenblatt (1956) and Parzen (1962), the latter providing a more detailed

analysis of this new and innovative method.

A very natural estimator of the distribution function is the empirical estimator

1 n
Fn (Jj') = 5 Z 1{X¢§z}7
i=1
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where

Lxi<ay =
Definition 1.1.1 (Standard kernel density estimator). Let n be the sample size

and K be a kernel function of support [—1,1], symmetric around the origin. The

standard kernel density estimator based on X, ..., X,, is

n

() = %ZK(QB _hX) (1.1)

=1

where h := h,, (h — 0 and nh — o0) is the bandwidth and K (.) := K (./h),
where K 1s an integrable smoothing kernel which usually is nonnegative, i.e., a

symmetric probability density function .

Conditions 1.1 [ has two derivatives and f" is bounded and uniformly con-
tinuous in a neighborhood of zero or x when x is a boundary or interior point,

respectively.

K satisfies [ K*(t)dt < co and [ [*K(t)| dt < co.

Propriety 1.1.1 For any real-valued function x on R, ¢ € R and | = 0,1, 2,
define pu. (x) = [ t'x (t)dt and p (x) = [ t'x (t) dt. Suppose that Condition
holds, then for x = ch, ¢ > 0, asn — oo, h — 0 and nh — oo, f () has
expected value

h2

B (fa () = tto () f () = hpine () {9 @)+ e () J& (@) +0 (h) (1.2)
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and variance

Var (§@)) = o @) (59 +0 () (13)

Propriety 1.1.2 Suppose that K is supported on [—1,1]. Then for any ¢ € [0,1),
oK) <1 and fu (x), x = ch, as an estimator of f (x), has a nonzero constant

bias unless f(0+) is equal to zero. And for ¢ > 1, and become

B (Fi@) = 1 @)+ 2 (1) 1 @) + 0 (1) (1)
and
Var (@) = o F @i (52) 40 (). (1.5)

The mean square error (M SFE) is a widely used measure of discrepancy. For fh

as an estimator of f it is defined as

A~

MSE (fu(@) = £ | (5 (0) - 1 @))| = Bias? (£ @) + Var (o (@)).
The asymptotic mean integrated square error (AMISFE) is
AMISE ( fh( ) 4 MQ / P (2)?dx + h““ (K?). (1.6)

The bandwidth which minimizes the AMISE can be calculated by differentiating

(1.6), setting the equation to 0 and solving it for h. The result is referred to as
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the optimal global bandwidth:

Byt = f1o () 1/571—1/5
TN\ (K) [ fO () da '

Remark 1.1.1 The formula for the bias and the variance show that some sort

of bias-variance trade-off is present. Taking assumption h — 0 and nh — oo for
n — oo nto account, the following behavior can be observed:

1) h becomes too small: bias gets smaller, variance gets larger.

2) h becomes too large: bias gets larger, variance gets smaller.

An example of the impact of the bandwidth on the estimator can be seen in the

figure (1.1)).

From (1.6 another useful result can be derived: the optimal kernel function. Since
the moments have a defining impact on the AMISE and the function itself has re-
strictions from its own definition, an optimal kernel function can be derived. Some

popular kernels functions used in the literature are the following (see Silverman,

1986):

Quartic or Biweight kernel Ky () = % (1-— t2)2 Lig<1

Triangular kernel Kirian (1) = 3—3 (1- t2)3 Lig<a
Gaussian kernel Kgquss () = \/%76_1/ 2 for teR
Epanechnikov kernel Kppa (1) =2 (1= 12) 1y<a
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0.5
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flx)

02
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01

0.0

Figure 1.1: Kernel density estimator using three different bandwidths

1.2 Boundary effects

In statistical studies, it is often the case that variables represent some sort of
physical measure such as time or length. These variables thus have a natural
lower boundary, e.g. time of birth or zero point on a scale. Hence, it is also
justified to assume that the underlying true density f has a bounded support.
Boundary effects are a well known problem in nonparametric curve estimation,
no matter if we think of density estimation or regression. Moreover, both density
estimator and regression usually show a sharp increase in variance and bias when
estimating them at points near the boundary region, i.e., for z € [0,h), this

phenomenon is referred to the "boundary effects".

10
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Triangular Biweight

00 02 04 06 08 10
1 L L 1 L L
00 02 04 06 08

gaussian Epanechikov

Kix)

Kix)
00 01 02 03 04
L L L L L

0o 02 04 06

Figure 1.2: Rate of kernels: Triangular, Biweight, Gaussian and Epanechnikov

To remove those boundary effects in kernel density estimation, a variety of meth-
ods have been developed in literature. Some well-known methods are summarized

below:

e Reflection method (Cline and Hart, 1991, Schuster, 1985, Silverman, 1986).

e Boundary kernel method (Gasser and Miiller, 1979, Gasser et al., 1985,

Jones 1993, Miiller, 1991, Zhang and Karunamuni, 2000).
e Transformation method (Marron and Ruppert, 1994, Wand et al., 1991).
e Pseudo-data method (Cowling and Hall, 1996).
e Local linear method (Cheng, 1997, Zhang and Karunamuni, 1998).

e Rice’s Boundary Modification (Cheng, 2006).

11



Chapter 1. Boundary effect in kernel density estimation

Consider a density function which is continuous on [0,00) and is 0 for x < 0.
Given a bandwidth h, the interval [0, /) is defined to be the boundary interval
and [h, 00) the interior interval. The kernel density estimator is in conformity in
the interior interval. As will be shown, problems will arise if z is smaller than
the chosen bandwidth h. In order to analyze this situation, consider now only
fu(c.h), for ¢ € [0,1). This can be understood as some sort of rescaling. The
expected value of fh (x) is computed just as before, but when substituting the

variables, one must pay attention to the limits of the integral:
:/ K(t)f(zx—ht)dt, x=ch for ce€(0,1).
1

Assuming that f" exists and is continuous in a neighborhood of z, the density in
the integral can be approximated by its second order Taylor expansion evaluated

at x:

Fla—ht) = f(@)+ (e —ht —2) fO (@) + = (@ — bt — )2 SO (@) + 0 (1)

2

given for h — 0 and being uniform in t € [—1, 1],

B (fu(@)) = /K dt—hf(>/ K (t)di

+§f(()/‘tK(ﬁﬁ+owﬂ (1.7)

Unless © > h, i.e. ¢ > 1, the estimator is not asymptotically unbiased and
inconsistent. At the left most boundary the expected value asymptotically reaches

12
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only half the original value:

SO 0.

=
/N
S
—~
e}
SN—
——
I

Example 1.2.1 The boundary problem can be detected in figure (1.5). The the-

oretical curve is that of the exponential density.

________ Estimator
PR theoretical

Figure 1.3: Boundary problem in kernel density estimation

1.3 Boundary corrections in kernel density esti-

mation

As will be shown, it is difficult to find an approach which fulfills both require-

ments without bringing along other restrictions. Thus, one must usually set some

13
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kind of priority: is it more important to find an estimate which is rather precise
but is not a real density or to find an actual density setting the exactness of the
estimate as a second priority?. Since the standard kernel density estimator per-
forms satisfyingly for x > h, the goal is to find a method which adapts near the
boundary in a beneficial way, but coincides with the standard estimator in the
interior interval, i.e. if x > h. It is natural to desire a smooth crossover from the
boundary to the internal estimator. This is justified by the simplicity it brings
along: one would have to select a kernel function, bandwidth and possibly tuning
factors for the boundary but would not require two or more different algorithms
for the estimation on the whole support. In this section, some methods were
selected which seemed to be reasonable. There were methods which were rather
complicated and others which on the other hand felt quite natural. The order in
which these approaches are presented is not chronological but is rather an attempt

to create a coherent order.

If not explicitly stated otherwise, K(.) is taken to be a smooth kernel function
of support [—1, 1], symmetric with respect to the origin, the sample consists of
n ii.d. copies of the random variable X with continuous density f on [0, 0),
the bandwidth is a strictly positive number h > 0, depending on n, fulfilling the

conditions (h — 0, n — oo and nh — o) and fj, () is the standard kernel density

estimator as in Definition (1.1.1]).

14
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1.3.1 Cut-and-Normalized method

As can be seen in (|1.7]), the kernel density estimator is asymptotically biased in
[0, h),

E(fh /K ydt — hf ()/ K () dt
+?f (m)/_l 2K (t)dt + o (h?)

Due to Gasser and Miiller (1979), a very naive correction could then be to divide
the original estimator by this factor ffl K(t)dt. The order of the bias is
then h, which still is not very satisfying since in [h, c0) it becomes of order hZ%.
The goal is to achieve such an order in the boundary interval. This is a local
correction since the integral depends on the relative position of x with respect to

the bandwidth

n

1.3.2 Reflection of the data method

This method is introduced by Schuster (1985), then study by Cline and Hart

(1991). A simple but ingenious idea is to reflect the data points Xj ..., X,, at the

15
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origin and then to work with the rv’s:

—Xj, jzl,...,n

Xanja j:n+1,,2n

This not only yields a twice as large sample size but most importantly yields a
‘sample’ drawn from a density with unbounded support. Therefore, a standard

kernel estimator can be applied to the data which is now of sample size 2n:

2n
: 1 -,
fmﬂm—m;K( ), ek (19)

This is the standard kernel density estimator. Moreover it is also easy to see that
this estimate is symmetric around the origin. Thus, the natural way to get an

estimate with support [0, 00) :

£x 2f;’kefl (:C>7 x 2 0
frefl (‘r) =
0, z <0

This is usually referred to as the reflection estimator and it can also be formulated

as

16
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Due to the symmetry of the kernel function, it is very easy to prove that this
results in the reflection estimator, i.e. freﬂ (2) = fu (2) + fu (—2) . This equality

allows to calculate the bias and the variance of the estimator in the following way:
R B2
Bias (frefl (x)) = ?f(z) (x) /tQK (t)dt+ o (h?).

Var ( Fren (a:)) - n—lh f(x) / K*(t)dt+0 (7).

Example 1.3.1 Taking boundary problem for rv X with exponential distribution
with parameter X = 0.5 and sample size n = 300. Graphical output ﬁgure

illustrates the boundary correction by the reflection method.

05
I

________ Reflection
____________ Simple
PR theoretical

04

02
I

0.1

Figure 1.4: Classical (simple) and reflection estimator.

Remark 1.3.1 As in the reflection estimator, the estimate is set to 0 for x < 0.

Of course, (@ reduces to the standard kernel density estimator as soon

17



Chapter 1. Boundary effect in kernel density estimation

as x > h. An interesting property is that at O this estimator coincides with the

reflection estimator (1.10):

fon (0) = %mi[( (0 _hXi) B %1_}2%[( (_fj(>

B —)Z- X, R
() (3 -

since K is a symmetric function.

1.3.3 Generalized Jackknifing method

Jones (1993) sets up a unified approach to many of the more straightforward
methods using “generalized jackknifing” developed by Schucany et al., (1971).

Let fh be the standard kernel density estimator. We have

with a; (¢) = [V K (t)dt, and k; (¢) = [V L (t) dt.

Let also f be like f only with kernel function L

Think of f and f as being defined only on [0,00). Then, in a minor reformu-

lation of the presentation of Jones (1993), generalized jackknifing seeks a linear

18
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combination

A ~

f(2) = auf (z)+ Bof (2) (1.11)

with good asymptotic bias properties. Away from the boundary, kernel density
estimation typically affords a bias of order h? as h = h(n) — 0. It turns out that

the choices

az = ki (c)ao (¢) /{k1(¢) ao (¢) — a1 (c) ko (¢)}

By = —ay (¢) ko (¢) / {k1(c) ag (c) — a1 (c) ko ()}

allow O(h?) bias at and near the boundary also. (Note that ki (c)ag (c) must
not equal a4 (c) ko (¢)). Observe that boundary corrected kernel density estimates

typically do not integrate to unity, but could be renormalised to do so.

There are many possible choices for L. It is usually preferred to make L a function
of K because then one has a boundary correction derived solely from the “interior
kernel” K. Examples include taking L(t) to be K.(t) = ¢ ' K(c7't) or K(t) or
K(2p —t) or tK(t).

Remark 1.3.2 A disadvantage of all generalized jackknife boundary corrections,
however, is their propensity for taking negative values near the boundary. See the
dashed curves in figure where n = 50 data points are simulated from the
Gamma(3,1) distribution (but only the boundary region 0 < x < h is shown).

Here, K is the biweight kernel and h = 1.3. The proposed modified boundary

19



Chapter 1. Boundary effect in kernel density estimation

corrected estimator

fo(z) = f(2) exp{f(”") _ 1}. (1.12)

It is clearly nonnegative because, since K and aq (c) are nonnegative, f is nonneg-
ative, and the rest of the formula is exponentiated. That it is a modification of f
“in the direction of” f 1s clear, and thus to each f there corresponds a nonnegative
fc (x) . Indeed, there is no requirement here of generalized jackknifing to obtain f,

so the proposal is a completely general non negativisation.

0.25 —

Figure 1.5: Generalized jackknife boundary corrections methods.

The asymptotic means and variances of both f () and fo (x) are given in the
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Chapter 1. Boundary effect in kernel density estimation

following theorem. Let

_ ki(c)ag(c) —ai(c) ka(c)
Ble) =1 (€) a0 (¢) — ax (¢) ko (¢)’

_ ki (e)b(c) =2k (c) as (c) e(c) + af(c) 2 (c)
{k1 (c) ag (¢) — a1 (¢) ko (0)}?

where b (¢) = [ K2 (t)dt, e (¢) = [PV K2 (8) dt, and 2 (¢) = [PV 2K2 (1) dt.

V (c)

’

Theorem 1.3.1 Suppose that f has at least two continuous derivatives. Then,

asn — 00, h — 0 and nh — oo,

12

Bias (f (:r))
Bias (fo(x))

3B (c) fP (2)

Lp? (B (¢) f@ (z) + ° () f (w)>

12

and

Var <fE (ac)) ~ %V (c) f (x)

where fr denotes either f given by and fo(x) given by .

1.3.4 Translation in the argument of the kernel method

The cut-and-normalized estimator (1.8]) converges slowly to the true density func-
tion. In Hall and Park (2002) an adaptation of this estimator is presented, density

functions with an upper bound were considered. Nevertheless, the estimator will
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Chapter 1. Boundary effect in kernel density estimation

now be presented for densities with support [0, 00). For ¢ = x.h™1 :

2 1 1 - r—X;, 4+ a(x)
Jrag (z) := EW;K ( - ) ., x>0 (1.13)

where « () is a function to determine.

Remark 1.3.3 [t is clear that if o (x) = 0, this estimator would reduce to the cut-
and-normalized estimator (1.§). The aim is to find a suitable o (x) such that for
x > h, the estimator reduces again to the standard kernel density estimator
. Hence, an estimator must be used and in Hall and Park (2002) the following

18 proposed

) (o :
& (z) = 2 ;CN((x)) Kl(c) /_ K@i x=ch

with fon () is given by and fO) () is an estimate of the first derivative of

the density evaluated at x.

Definition 1.3.1 By a translation in the argument of the kernel, Hall and Park

(2002) give a boundary correction kernel density estimator, for ¢ = x.h™! :

- ._i 1 u r—X;+ a(x)

Example 1.3.2 In figure @), the boundary problem is studied for the sam-
ple size of 300 and rv X ~ exp(0.2). Classical kernel estimator (Simple), by

translation in the argument of the kernel (TAK) and by cut and normalized (CN)
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Chapter 1. Boundary effect in kernel density estimation

approach are considered. In the graphical output, we give a comparison of three
methods also mentioned. The graph shows that the three methods to coincide for

x > h = 0.3. In the boundary region, both CN and TAK estimators improve the

simple one.
s = CN
Sl TAK
24 J-== e Simple
\T‘q_{\_‘ E— Theoretical
’ *-\—‘L\
% 2] - L
= o ’ ‘-\I_.q
=
8] \‘\_-‘—“?.J__|
° i MU
[ N
SN

Figure 1.6: Classical (simple), by translation in the argument of the kernel and
by the approach of the cut and normalized estimators.

1.3.5 Reflection and transformation methods

The reflection estimator computes the estimate density based on the original and
the reflected data points. Unfortunately, this does not always yield a satisfying

result since this estimator enforces the shoulder condition and still contains a bias
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of order h if the density does not fulfill this condition. The generalized reflection

and transformation density estimators is given by

i nhZ{ <M>+K(%(Xi))}, >0 (1.14)

where ¢ is a transformation that need to be determined.

Remark 1.3.4 By simply looking at this formula, one could also question the need
of using the same function in both arguments: why not use different functions
g1 and g2? If chosen in a smart way the bias could possibly be reduced to a
higher order with respect to h. This idea was pursued in the technical report
of Karunamuni and Alberts (2003) and later on, in an abbreviated manner, in
Karunamuni and Alberts (2005). Special cases were analyzed in Zhang et al.
(1999) and in Karunamuni and Alberts (2006). The general form of such estimator

is the following:

fort (@ hZ{ (M>+K<%“m>}, x>0 (L15)

g1, g2 are two transformations that need to be determined. The kernel function K

is nonnegative, symmetric function with support [—1,1], and satisfying

/K(t)dtzl,/tK(t)dt, and0</t2K(t)dt<oo.

A1 Karunamuni and Alberts (2005) assumed that the transformations g;, go in

(1.15)) are non-negative, continuous and monotonically increasing functions
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defined on [0, 00). Further assumed that g; ' exists, g,(0) = 0, g,(:) =1, and
that g,(f) and g,(;’) exist and are continuous on [0, o), where g,(j )

j*" —derivative of g, with g,(go) = g and g; ' denoting the inverse function of

denotes the

gr (for k=1,2).

A2 Particularly, supposed that ¢g; = g» := ¢ and

@ oM (0) [ . . ! .
o 0) = 25 / (t )K(t)dt( +2/c (t )K(t)dt)

= d.K!

c)

-1

(1.16)

where

(1.17)

and

-1

K= /Cl(t—c)K(t)dt(c—l—?/cl(t—c)K(t)dt)

A3 Supposed further that, fU) the j*»—derivatives of f exists and is continuous

on [0,00), j =0, 1,2, with f© = f.
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Theorem 1.3.2 Under the above conditions on f, g1, g2, h and K (e.g., A1-A3).
For the estimate fgrt (x) defined in , we have for x =ch, 0 < c¢<1:

Bias ( Fore (:c)) - %hQ { £ (0) /_ K (1) de
— [ (0) £ (0) + 9@ (0) (SO (0) = g (0) £ (0))]

(8 + /_11 K*(t) dt) } + o0 (h?) (1.18)

and

1

Var (fm @)) - % <2/01K(t)K(20—t)dt+ s (t)dt) +o (ﬁ) .
(1.19)

1.3.6 Rice’s boundary modification density estimator

Rice (1984) proposed a boundary modification of kernel regression estimators. In
the boundary area, the method takes a linear combination of two kernel regression
estimators based on different bandwidths such that the bias is of the same order
of magnitude as in the interior. The idea is similar to the bias reduction technique
discussed in Schucany and Sommers (1977). Cheng (2006) adapted the method

to the context of density estimation.

Definition 1.3.2 Given a > 0, the Rice’s boundary modified kernel estimator of
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f(z), x =ch, ¢ >0 is

J— ~

Fon (2) = afy () = bfun (x) =01y

1=

(@K — bEap) (v = X5) (1.20)

where

COLK CK
- U e/a (K) p e (K)

a#[],c/a (K) aluLC/a (K) - ﬂO,c/a (K> Q¢ (K) ’ aILL].,C/a (K)

(1.21)

Here, a and b depend on ¢ and are obtained by requiring to have a bias ?a’h (x) of

order h?, see Rice (1984) for more details.
Let
— b .
Ko()=aK()——K (—)
Asymptotic bias and variance of f,, (z) are given in the following theorem.

Theorem 1.3.3 Under Condition , forx =ch,c >0, asn — oco, h —

and nh — oo,

Bias (Fon (1)) = o1 (04) po (Ka) +0 (1)

and

Var (Fas () = L0, (R2) 0 (1)
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Remark 1.3.5 Under the above Theorem, Tom retains the same rate of conver-
gence in mean squared error everywhere. This method introduces an extra para-
meter «, the ratio of the two bandwidths. Rice (1984) recognized that it is difficult
to find the best solution for each c and suggested taking o = 2 — ¢, where K is

supported on [—1,1].

Remark 1.3.6 In the case of Normal kernels, keeping the bandwidth ratio fixed,
for ease and speed of implementation, and a specific bandwidth ratio are suggested.
i) When the kernel is Gaussian, our asymptotic studies recommend taking o = 1.
ii) Hence o = 1 is recommended as a general choice.

iii) Cheng (2006) discussed advantages of Rice’s boundary modification. For that
method, best choice of the bandwidth ratio o depends on the density, the sample
size, the kernel and the location in a complicated way. He provided both asymptotic
and exact formulae of the mean squared errors to analyze the problem. Cheng
(2006) also performed some analyses in the case of Normal kernel and made some

useful suggestions.
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Chapter 2

Boundary correction in kernel

regression estimation

This chapter is concerned with the connections between the kernel regression
estimation and boundary effect. In the regression function estimation context,
Gasser and Miiller (1979) identified the unsatisfactory behavior of the Nadaraya
Watson regression estimator for points in the boundary region. They proposed
optimal boundary kernels but did not give any formulas. However, Gasser and
Miiller (1979) and Miiller (1988) suggested multiplying the truncated kernel at the
boundary zone or region by a linear function. The local linear methods developed
recently have become increasingly popular in this context (cf. Fan and Gijbels
1996). More recently, in Dai and Sperlich (2010) a simple and effective boundary
correction for kernel density and regression estimator is proposed, by applying

local bandwidth variation at the boundaries. To remove the boundary effects a

29



Chapter 2. Boundary correction in kernel regression estimation

variety of methods have been developed in the literature, the most widely used is
the reflection method, the boundary kernel method, the transformation method,

the pseudo-data method and the local linear method.

2.1 Nadaraya-Watson estimator

Let Y be a real random variable (rv), and let X be a continuous covariable
with probability density function f which is supported within [0, 00). The real
rv’s Y and X are repectively called variable of interest and predictor. Our
goal is to estimate the regression function, which is the conditional expectation

m(z) .= E(Y|X = z) (assuming f (x) # 0). Then the model can be written as
Y =m(X) +e¢, (2.1)

where € is a v such that E (¢|/X) =0 and Var (¢|X) = 02 < .

There exist many interesting nonparametric estimators for the unknown regres-
sion function m. Examples of these last can be found in, for instance, Gasser
and Miiller (1979), Eubank (1988) and Fan and Gijbels (1996). Given a sam-
ple of independent replicates of (X,Y’), the popular Nadaraya-Watson estimator
Nadaraya (1964) and Watson (1964) of m is given by

X V- X)
ST K- X))

() (2.2)
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Chapter 2. Boundary correction in kernel regression estimation

where h := h,, (b — 0 and nh — o0) is the bandwidth and K} (.) := K (./h),
where K is an integrable smoothing kernel which usually is nonnegative, i.e., a
symmetric probability density function with compact support. There have been
numerous activities to study m,,(z), see Héirdle (1990) and Wand and Jones (1995)
for a review.

Conditions 2.1 e F(Y?) < 0o and F(X?) < oco.

e m s twice continuously differentiable in a neighborhood of x.

Theorem 2.1.1 We have, under conditions , as h — 0, nh — oo forn — oo

h2 (2f® (z) m (2) + f (2) m® (2)) pa (K)

Bias (my(x)) = 27 () +o0(h?) (2.3)
and
Var (fn(z)) = nh; i (K7) 0 (%) , (2.4)

2.2 Some boundary corrections methods in ker-

nel regression estimation

Nonparametric regression function estimators usually show a sharp increase in
variance and bias when estimating m(.) at points near the boundary of the sup-

port of the function (e.g., z < h). Gasser and Miiller (1979, 1984) identified the
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Chapter 2. Boundary correction in kernel regression estimation

crucial nature of these effects. They proposed optimal boundary kernels but did
not give any formulas. However, Gasser and Miiller (1979) and Miiller (1988)
suggested multiplying the truncated kernel at the boundary by a linear function.
Rice (1984) proposed another approach using a generalized jackknife, also known
as Richardson extrapolation which linearly combines the two bandwidths. Schus-
ter (1985) introduced a reflection technique for density estimation. Eubank and
Speckman (1991) have given a method for removing boundary effects using a "bias
reduction theorem". The fundamental idea of their work is to use a biased esti-
mator to improve another estimator in some sense. Miiller (1991) proposed an
explicit construction for a boundary kernel which is the solution of a variational
problem under asymmetric support. He tables many polynomials that are opti-
mal in a specified sense. Moreover, Miiller (1993) introduced a general method
of constructing a boundary kernel which is the solution of a variational problem
involving a certain weight function. More recently, Miiller and Wang (1994) gave

explicit formulas for a new class of polynomial boundary kernels.

In the context of density estimation, Wand and Schucany (1990) and Berlinet
(1993) worked with the Gaussian kernel which exhibits a first-order boundary
effect because the Gaussian kernel has noncompact support. In fact, Berlinet
(1993) proposed a framework for building kernels of increasing order apart from

some specific methods based on moment relationships.
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2.2.1 Gasser and Miiller estimator

Gasser and Miiller (1979) proposed the following estimator

1 [ -
Thn(z):EZ/ K(Ih“>dun
i=1 7 si-1

with s;,7 = 1, ...,n a sequence defined as follows:
80:07 Si—1 SXiSSiy (lzlavn> ) Sn:]-

A natural choice for s; (i =1,...,n— 1) is:

1
§; = 5 (X + Xip1)

Conditions 2.2 K fulfills a Lipschitz condition of order vx (0 < vk < 1).

The basic requirement for the design is:

1
max |X1 — Xz'_1| =0 <—)
) n

but at some points they require form of asymptotic equidistant with rate 6 > 1 :

=)
Si = Si-1— —| = 0| —
n n

max
7
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For an equidistant design they can put the terms involving o (%) equal to zero.

Remark 2.2.1 The Gasser and Miiller regression estimator is a modification of
an earlier version of Priestly and Chao (1972), and is similar to that of Cheng
and lin (1981). The special case of s; = X; has been investigated by Cheng and
Lin (1981).

Theorem 2.2.1 assuming m to be Lipschitz continuous of order ~,,

E(mn(x))z%/;K(x;u)m(u)du+o<n%)

and

X o [1 1 1
Var (1, (v)) = nh /1K2 (u)du+o |:nl+’YK.hl+’YK + noh

2.2.2 Cut-and-Normalized regression estimator

A method of cut-and-normalize was first introduced by Gasser and Miiller (1979).
For simplicity, only the left boundary effects, i.e., ¢ = x/h < 1, we discussed here.
The right boundary effects proceed in the same manner. Since Gasser and Miiller
(1979) investigated the cut-and-normalize method, we briefly explain the general

approach described above.
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Therefore, a boundary kernel modification of m is

Mo ( Z K. ( ) Y, (2.5)

where

_ K@ 3 .
Ky (t) = T K (u) du 1<t< (2.6)

Further, this is 'normalized’ in the sense that it is rescaled to integrate into (0, 1).

Then, the corresponding Bias is

c 2,7,(2)
Bias (e (x)) = —hmW (:)3)/ tKi. (t) dt+h m2' ()
-1 :

/C t* K. (t) dt+o (h?),
(2.7)

where [ tK. (t)dt #0.

Remark 2.2.2 The dominant part of Bias (men(x)) in (W 1s of order h, so
mon(x) is still subject to more boundary bias. The asymptotic variance of ey (x)

can be obtained by the same method as for he non boundary, i.e.,

Var (mey(z / K2 dt+0(n1h> (2.8)

Hence, the asymptotic mean square error has the form

AMSE (nen(a) = 7 / K2 (1) dt + [hm D () /_ Cltch ) dtr. (2.9)
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2.2.3 Rice’s boundary modified regression estimator

The Rice’s boundary modified kernel regression estimator (cf. Rice, 1984) is

~

Map () = My () 4 5 [y, (2) — Man (7))

where

R(c)
aR(c/a) — R(c)’

b=
R(c) =wi (c) Jwo (c), and w; (c) = [, t'K (¢) dt.

Theorem 2.2.2 The leading bias of mq. (v) is

bias (Mg () = hmY (z) [-R (¢) — BR(c) + afR (c/a)]

Remark 2.2.3 For the choice of o, Rice has recommended the following : o =

2—c.

Remark 2.2.4 Rice presents a simple and effective solution to the following prob-
lem: if a given kernel, K is used in the interior of the interval, how can K be
smoothly modified near the boundary? one may not choose to use the optimal
kernel (Epanechnikov, 1969) because of its non differentiability at +1 and the
relatively small dean in MSE, Tapia and Thompson (1978) (Although Epanech-
nikov’s kernel was derived to be optimal for the problem of density estimation, a

similar derivation shows its optimality for regression).
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Next, to obtain the same local asymptotic behavior, the generalized jackknife

method is applied to reduce the order of the bias.

2.2.4 Generalized Jackknif regression estimator

In this section we describe the boundary effects and present a simple and effective
solution to the boundary problem. This solution is due to Rice (1984) and uses
the (generalized) jackknifing technique. Boundary phenomena have also been dis-
cussed by Gasser and Miiller (1979) and Miiller (1984b) who proposed “boundary
kernels” for use near the boundary. In the setting of spline smoothing Rice and
Rosenblatt (1983) computed the boundary bias. Consider the fixed design error

model with kernels having support [—1, 1]. Take the kernel estimator
() = (k)™ ST K (X = 2) Y
i=1

which has the expectation

z/h

n

E () = / K (w)m (z — uh) du + O (ih) as nh— oo

(a—1)/h
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Now let z = ch < 1 — h, then by a Taylor series expansion the expected value of

m;n(x) can be approximated by

/K Ydu — hm ()/ uK (u) du
+ghtm® (@) [ WK () du

= m (z) wo (¢) — hmW (z)w; (¢) + %hzm@) () wa (€) (2.10)

Of course, if c > 1

wo(c) = 1
wi(c) = 0
Wa (C) = dk

and we have the well-known bias expansion for the estimator. The idea of John
Rice is to define a kernel depending on the relative location of x expressed through

the parameter c. Asymptotic unbiasedness is achieved for a kernel: K.(-) =

K(-)/wo(c).

Remark 2.2.5 If x is away from the left boundary, that is, ¢ > 1, then the
approrimate bias is given by the third term. If ¢ < 1, the second term is of
dominant order O(h) and thus the bias is of lower order at the boundary than in the
center of the interval. The generalized jackknife technique (Gray and Schucany,

1972) allows one to eliminate this lower order bias term.
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Let M (x) be the kernel estimator with kernel K, and let
ﬁzjh(:v) =(1- R>mjh70(x> + Rmaﬂw@)

be the jackknife estimator of m(x), a linear combination of kernel smoothers with
bandwidth A and ah. From the bias expansion (2.10), the leading bias term of

1), (x) can be eliminated if

_ wi(c)/wolc)
= (e fan(e) @) — w1 (@)

This technique was also used by Bierens (1987) to reduce the bias inside the

observation interval. In effect, the jackknife estimator is using the kernel function
K] (z) = (1 - R)K(t) - (R/a)K(t/a)

where R and « and thus K depend on c. In this sense, K7 can be interpreted as
a “boundary kernel”. For the choice of a, Rice (1984) has recommended to take

=2 —c.

Example 2.2.1 As an example, take as the initial kernel the quartic kernel given

by
K (t) = (15/16) (1 — £2)* 1[4,

The numbers wo(c), wi(c) can be computed explicitly. Figure shows the se-

quence of boundary kernels K for ¢ = 0.1,0.2,0.4,0.6,0.8. Note that the kernels
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have negative side lobes. Figure shows the monparametric estimate of the
function m (x) = 2% from n = 15 observations (Gaussian noise, o = 0.05). The
bandwidth h is 0.4, thus 60 percent of the observation interval are due to boundary

effects.

0.0 0.5 : 1.0 1.8 2.0

Figure 2.1: Sequence of boundary kernels.

2.2.5 Local linear regression estimator

Most regression estimators studied in the literature are of the form

> wi(z, Xy, Xn) Vi
=1

40



Chapter 2. Boundary correction in kernel regression estimation

—-{3.2 A A l i
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.2: Boundary correction in kernels regression estimation: quartic case.

Such a kind of estimator is called a linear smoother (cf. Fan and Gijbels 1996),
since it is linear in the response. Consider a linear smoother which is obtained
via a local linear approximation to the mean regression function. More precisely,

the estimator is defined as 7 () where @ together with b minimizes

n

d (Yi—a—b(z— X)) Ky (z — X;) (2.11)

i=1
It turns out that m (z) is the best linear smoother, in the sense that it is the
asymptotic minimax linear smoother when the unknown regression function is in
the class of functions having bounded second derivative. This property is estab-

lished in Fan (1992b). The preceding idea is an extension of Stone (1977), who

used the kernel K(z) = 1j3/<1)/2, resulting in the running line smoother. For a
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further motivation and study of linear smothers obtained via a local polynomial
approximation to the regression function see Cleveland (1979), Lejeune (1985),
Miiller (1987), Cleveland and Devlin (1988) and Fan (1992b,1993). Fan and Gij-

bels (1992) referred to the estimator 7 (x) as a local linear smoother.

The smoothing parameter in (2.11) remains constant, that is, it depends on nei-
ther the location of x nor on that of the data X;. Such an estimator does not fully
incorporate the information provided by the density of the data points. Further-
more, a constant bandwidth is not flexible enough for estimating curves with a
complicated shape. All these considerations lead to introducing a variable band-
width h/a (X;), where a/(.) is some nonnegative function reflecting the variable
amount of smoothing at each data point. This concept of variable bandwidth was
introduced by Breiman, Meisel and Purcell (1977) in the density estimation con-
text. Further related studies can be found in Abramson (1982), Hall and Marron
(1988), Hall (1990) and Jones (1990). It is expected that the proposed estimator
has all the advantages of both the local linear smoothing method and the vari-
able bandwidth idea. Fan and Gijbels (1992) gave a formal introduction of the

estimator. Instead of (2.11]), they minimized

S (Vi—a—ble— X)) a(X) K ((z - X)) a (X)), (2.12)

=1

with respect to a and b. Denote the solution to this problem by a, b. Then the
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regression estimator is defined as a, which is given by

m(z) =a= Zwm/zwi (2.13)
where

with
n

Sk =Y a(X) Ky ((z— Xi)a (X)) (v = Xp)",  k=0,1,2 (2.15)

i=1

If Fan and Gijbels (1996) take « (.) = 1, the preceding result slightly generalizes

the known result for the estimator with a constant bandwidth (see Fan, 1992b)

_ Z?:l Ky (2 — X;) [Sna — (x — X;) Sual Vi
>y K (= X5) [Sna — (2 — X;) S A

()
where

Sk =Y Kp(z—X;)(x—-X,)", k=012 (2.16)
=1
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Chapter 3

General method of boundary
correction in kernel regression

estimation

Abstract]] Kernel estimators of both density and regression functions are not
consistent near the finite end points of their supports. In other words, boundary
effects seriously affect the performance of these estimators. In this paper, we
combine the transformation and the reflection methods in order to introduce a new
general method of boundary correction when estimating the mean function. The
asymptotic mean squared error of the proposed estimator is obtained. Simulations
show that our method performes quite well with respect to some other existing

methods.

!This chapter is an Article appeared in Afrika Statistika. Vol. 10, 2015, pages 688
699.(Authors : S. Kheireddine, A. Sayah and D. Yahia).
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3.1 Introduction

Let Y be a real random variable (rv), and let X be a continuous covariable with
probability density function f which is supported within [0, c0). Then the model
can be written as Y = m(X) + € where € is a rv such that E (¢/X) = 0 and

Var (e|X) = 0% < o0.

Given a sample of independent replicates of (X,Y"), the popular Nadaraya-Watson

estimator Nadaraya (1964) and Watson (1964) of m is given by

Y YiKa (- X))

- (3.1)
> En(r—X))

i ()
where h := h,, (h — 0 and nh — o0) is the bandwidth and K} (.) := K (./h),

where K is an integrable smoothing kernel which usually is nonnegative.

Boundary effects are a well known problem in the nonparametric curve estima-
tion setup, no matter if we think density estimation or regression. Moreover,
both density and regression estimator usually show a sharp which increase in
bias and variance when estimating them at points near the boundary region, i.e.,
for x € [0,h), this phenomenon is referred as "boundary effects". In the con-
text of the regression function estimation, Gasser and Miiller (1979) identified
the unsatisfactory behavior of for points in the boundary region. They pro-
posed optimal boundary kernels but did not give any formulas. However, Gasser
and Miiller (1979) and Miiller (1988) suggested multiplying the truncated ker-

nel at the boundary zone or region by a linear function. Rice (1984) proposed
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another approach using a generalized jackknife. Schuster (1985) introduced a re-
flection technique for density estimation. Eubank and Speckman (1991) presented
a method for removing boundary effects using a bias reduction theorem. Miiller
(1991) proposed an explicit construction of a boundary kernel which is the solu-
tion of a variational problem under asymmetric support. Moreover, Miiller and
Wang (1994) gave explicit formulas for a new class of polynomial boundary kernels
and showed that these new kernels have some advantages over the smooth opti-
mum boundary kernels in Miiller (1991), i.e., these new kernels have higher mean
squared error (MSE) efficiency. The local linear methods developed recently have
become increasingly popular in this context (cf. Fan and Gijbels, 1996). More
recently, in Dai and Sperlich (2010) a simple and effective boundary correction for
kernel densitiy and regression estimator is proposed, by applying local bandwidth

variation at the boundaries.

To remove the boundary effects a variety of methods have been developed in the
literature, the most widely used is the reflection method, the boundary kernel
method, the transformation method, the pseudo-data method and the local linear
method. They all have their advantages and disadvantages. One of the draw-
backs is that some of them (especially boundary kernels), can produce negative
estimators. The recent work of Karunamuni and Alberts (2005) provides excellent
selective review article on boundary kernel methods and their statistical proper-
ties in nonparametric density estimation. In the latter reference, a new boundary
correction methodology in density estimation is proposed and studied. It is the

purpose of this paper to extend this approach to the regression case.
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The rest of the chapter is organized as follows. Section introduces our new
nonparametric regression estimator and presents some asymptotic results. In Sec-
tion [3.3] extensive simulations are carried out to compare the proposed estimator

with outher ons. Proofs are relegated to Section [3.4]

3.2 Main results

In this paper, we combine the transformation and reflection boundary correction
methods to estimate the mean function i, (z). At each point in the boundary
region (i.e., for z = ch, 0 < ¢ < 1), we propose to investigate a class of estimators

of the form

Y VKL g0 (X)) + K (- 1 (X))}

S (K (4 g (X)) + K (2 — 92 (X))

_ &l@) (3.2)

where h is the bandwidth, K, (.) := K (./h) and K is a kernel function and
g1, g2 are two transformations that need to be determined. Also, let the kernel
function K in (3.2)) be a non-negative, symmetric function with support [—1,1],

and satisfying

/K(t)dtzl,/tK(t)dt:O, and0</t2K(t)dt<oo,

that is, K is a kernel of order 2.
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For > h, m,(x) reduces to the traditional kernel estimator 7, (x) given in ([2.2)).
Thus m,(x) is a natural boundary continuation of the usual kernel estimator ([2.2)).
Moreover, estimator is non-negative as long as the kernel K is non-negative.
Most, importantly, the proposed estimator improves the bias while the variance

remains almost unchanged.

We assume that the transformations g;, go in (3.2]) are non-negative, continuous
and monotonically increasing functions defined on [0, 00). Further assume that
g, ! exists, gr(0) = 0, g, = 1, and that g/ and g} exist and are continuous on

[0, 00), where g; ' denoting the inverse function of g, (for k = 1,2). Particularly,

suppose that

g"(0) = 9:)/ (0) Ck. and g5 (0)= J;,((g)) Ck.e (3.3)

-1

Suppose further that, ), ¢ and m") the j"—derivatives of f, ¢ and m exist

and are continued on [0,00), j = 0,1,2, with f© = f, »(© = » and m©® = m.

The bias and variance of our estimator are given in the following theorem, which

is the main result of this paper.
Theorem 3.2.1 Under the above conditions on f, v, m, g1, g2, and K. For the
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estimate m.,(x) defined in , we have for x = ch, 0 <c<1:

h?(A; —m(x) As)

Bias(m,(z)) = @) +o(h?), (3.4)
i = S0 [ rnsa momor-0a) o).
(3.5)

1

Ay =" (0) / 2K (t) dt — [g7" (0) ¢ (0) + 37 (0) (™) (0) — g1 (0) ¢ (0))]

( / 2K () dt + ), (3.6)

-1

1

Ay = 1(0) [ (@)t~ 162 (0) £(0) + 3980 (7 (0) ~ 4 (0) 1 0)
( / 2K () dt + ), (3.7)

and o?(x) = Var (Y/X =x).
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Hence, the M SE of m,(z) is

MSE (m, (7)) = Bias*(m,(z)) + Var (m,(z))

The asymptotic M SE of m,(z) is

AMSE (i (2)) = [t ;2”(;()”’”2) nh f2 ( / K2(1)dt+2.

/clK(t)K(Qc—t)dt)

On the basis of Theorem the asymptotic optimal bandwidth that minimizes
the AMSE is

a*(0) £(0) (chlK(t)K(Zc—t dt + [ K2 (t d,g) 18
4(Ay —m (x) Ay)?

hopt = Cn ™'/ with C =
(3.8)

Remark 3.2.1 Functions satisfying the conditions can be easily constructed.

We employ the following transformation in our investigation. For 0 < ¢ < 1,

define
1 2 2,3
ge(y) =y + 5dey” + dodpy”,  k=1,2 (3.9)

where di = ¢{ (0) (resp. dy = ¢4 (0)) and Ay is a positive constant such that
12)\g > 1. This condition on X\ is necessary for gi(y) of (@) to be an increasing

function in y.
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Remark 3.2.2 The choice hoy, of h is only possible in a simulation study, when
all required quantities are known, but not in a real data situation. To select the
bandwidth for the new method in practice, we can replace the unknown quantities in
(3.8) by their estimates. Another method is to use leave-one-out cross-validation

(cf. Hdrdle and Vieu, 1992 ) to select the bandwidth h, i.e., we find h by minimizing

CV (h) =3 (y; = Min(@)’,

here m; ,(.) is the proposed regression estimate by leaving the ith observation out.

3.3 Simulation results

In this section, we present some simulation results which are designed to illustrate
the performance of our estimator for small sample and large sizes. For com-
parison purposes, the local linear and the classical Nadaraya—Watson estimators
(2.2)) were also considered. Recently, local polynomial fitting, and particularly its
special case - local linear fitting - have become increasingly popular in light of
recent works by Cleveland and Loader (1996), Fan (1992b) and several others. It
has the advantages of achieving full asymptotic minimax effeciency and automat-
ically correcting for boundary bias. A review of local polynomial smoothing is

given in Fan and Gijbels (1996). The local linear regression estimator is given by

() =Y wiV;/ > wj, wyi= Ky (X; —2) (Sna — Sna (X; — 1)),
j=1 j=1
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where S, 1, = >0 K (X; —2) (X — o)F for k=1,2.

To assess the effect of the correction methods near the boundaries, the following

models are investigated:
Model 1:my () =22+1 and Model 2:my(x) =22° + 32+ 1

and errors €, assumed to be standard normally distributed independent rv’s.
Likewise, consider two cases of density f with support [0, 00) of the continuous

covariable X :

2
density 1: fi () = exp(—x) and density 2: fo(x) = ) x> 0.
7r T

For each density fi, fo and models my, my we calculate the absolute biases and
MSE's of the proposed general transformation and reflection (GTR), the local
linear (LL) and Nadaraya-Watson (NW) estimators, in left boundary region (i.e.,
x = ch ; for ¢ = 0.1, 0.2, 0.3, and 0.4). The bandwidth selection is based on
cross-validation procedure. The main reason for this choice is that it provides a
fair basis for comparison among the different estimators regardless of bandwidth

effects.

Throughout our simulations, we use the Epanechnikov kernel (cf. Epanechnikov,

1969)

K(t)=(3/4) (1 =) 111 (1)
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where 14 (.) denotes the indicator function of a set A.

The simulated sample sizes are n = 50 (small) and n = 500 (large). All results
are calculated by averaging over 1000 simulation runs. For each model and each
density, we calculate the absolute bias and the MSFE of the estimators at the
points in the mentioned boundary region. The results are shown in Tables
and We see that in all cases the standard Nadaraya-Watson estimator 1y, ()
is the worst one. This is clearly due to the boundary effect. Furthermore, when
looking at the M SE’s, our new method outperforms the others. The bias is about

the same for our method and the local linear one.

3.4 Proofs

Proof of (3.4). For z = ch, 0 < ¢ <1, we have

Y VK + g1 (X0) + K (= 1 (X))}
S (K (4 g (X)) + K (2 — 02 (X))
@n ()

fal@)
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where g; and g2 are given in (3.3)). For the numerator ¢, (x), we have

B = [ [ Ko+ ) + Ko o = ()} f () dyd
=1/Uﬁx+mU)H@@—mUH¢U
/Kh x4+ g1(u u)du + — /Kh (x — g1(u)) ¢ (u) du

=: I + I,

where ¢ (u) = [yf (u,y)d

Let t = (z + ¢1(u)) /h, then

hletwwa“”Wdt
/ W T e =)

A Taylor expansion of order 2 of the function ¢ (g; " (.)) / gV (97" () at

t = c gives
I - /K 0) +h(t — ) (&' (0) — g} (0) 0 (0)
h2 (t B 0)2 " " " / "
t—5 {7 (0) = 91" (0) ¢ (0) = 391 (0) (¢ (0) — " (0) ¢ (0))} | at
+o(h?)
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1

11=s0<o>/K(t)dt+h<¢'<o>—g;'<o>so<o>>/<t—c>f<<t>dt
+ % {¢"(0) — g1" (0) ¢ (0) — 39" (0) (¢’ (0) — g7 (0) ¢ (0))}

1

/(t—c)QK(t)dHo(h?).

Cc

Similarly,

[

h=¢(0) [K®it=h( 0) =g 0 0) [ ¢-K O

-1

+ %2 {¢" (0) — 91" (0) ¢ (0) — 397 (0) (¢ (0) — g7 (0) ¥ (0))}

Cc

x/(t—c)2K(t)dt+o(h2).

-1

Using the properties of K, we have

/ctK(t)dt:—/lK(t)dt and /CK(t)dtzl—/lK(t)dt.

-1

(3.10)

(3.11)

Also, by the existence and the continuity of ¢” (.) near 0, we have for x = ch,

0 (0) = o () — chy/ (z) + DL () + 0 (h?),

¢’ (x) = ¢ (0) + che” (0) + 0 (h)
" (x) = " (0) +0o(1).

(3.12)

Now combining (3.10]) and (3.11]) and using the properties of K along with (3.12)),
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we have for x = ch, 0 <c¢ <1

B[fa(@)] = 3 B K (& + gy (X)) Y] + 3 B K (0 = 00 (X)) i
/K )dt + (0 /K )dt +h (¢ (0) — g7 (0) 0 (0))

c

C

/t—c fdt— <o>—ga'<o>sa<o>>/<t—c>f<<t>dt

-1

T 5 {6 (0) — g1 (0) 2 (0) — 3¢/ (0) (& (0) — g (0) ¢ (0))}
x / (t— o) " (0) — g (0) 0 (0) — 347 (0)
(" (0) — g7 ( }/ (t—c)? K (t)dt+o (r?). (3.13)

Furthermore, the kernel K provides

j(t—c)zK(t) dt = /1t2K (t)dt + 2,

-1

and

1 c 1

/(t—c)K(t)dt—/(t—c)K(t)dt:2/(t—c)K(t)dt+c.

c —1 c
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From (3.13]) we have

1

E[@n(2)] = ¢ (z) + h (¢ (0) — 41 (0) ¢ (0)) {2/ (t —c) K (t) dt + c}

+ % {¢" (0) = g" (0) ¢ (0) — 347 (0) (¢" (0) — g7 (0) ¢ (0))}
X {/tQK (t)dt + *} + o (h?)

1

= ¢($)+h{2%0’ (0)/(t—C)K(t)dt—gi'(U)SO(O)

+o(h?). (3.14)

Under the condition (3.3)) on the transformation g;, the second order term of the

right-hand side of (3.14)) is zero. It can be shown that
Egn(n)] —¢(z) = h*A; +o (hz) ,

where A; is given in (3.6]).
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Similarly, we can get

1

E[J@)] = £ @) +h {2f’ ©) [ -k 0t~ 0

><{2/(t—c)K(t)dt+c} +h; f’/(O)/tQK(t)dt

c

— 195 (0) f (0) + 395 (0) (" (0) — 95 (0) f (0))] {/t2K (t)dt + *}

+ o (h?) (3.15)
Substitute g4 (0), the second term of the right-hand side of (3.15)) is zero. Then
E [fn(ﬂﬂ)] — f(x) = KAy +o(h?)

where A, is given in (3.7)). Hence

- _ R*Ai+o(R?) h% (A — m(x) Ay)
e (7) = 3, o () ~ f (@)

+0(h2).

The asymptotic bias result (3.4) follows directly.

Proof of (3.5)). In order to find the asymptotic variance of the proposed estimator

(13.2), we may write

iy (2) = ZWm-(x)Yi,
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with

Ky (24 91 (Xi)) + K (. — g1 (X))
Do U (24 g2 (X3)) + K (7 — g2 (X3)) }

Wni (ZL’) =

The weights W,,;(z) are nonnegative and satisfy Zn_IWm(x) =1, for all z € R.

Moreover, we have

n

g () = m () = ) W) {¥; —m (X)) + ZWm(w) {m (Xi) —m (2)}

i=1

= Ji+ s

Here J; is the variance which is study here. Recall that the predictable quadratic

variation of J; equals

E(I)ZWﬁi(fU)UQ(Xi) = (nh) ™Y *(Xo) {Kn (@ + g1 (X2)) + K (x = g1 (X))},

i=1

where ¢?(.) is the conditional variance i.e., 6%(.) = Var (Y|X = .).
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For z = ch, 0 < ¢ < 1, we have, using a Taylor expansion of order 2

fo i) {En (2 + 91 (X)) + Kn (2 — g (Xi))}2]

= LB (X0) {Kn (5 + 01 (X2)) + K (2 — g1 (X))}

nh2
= [ ) 5 () + K (o~ ()} S )
:E%[/o%mex+mmewMu+/£%wKﬂx—mw»fwm4
2o [ WK (o4 ga()) Ko (&~ ga(u)) F(u)eu
= Ju + J2-

Firstly,

mlmk/aijwmww

‘ 2, 1 2 f(gfl((c—th)
—I—h/_lo (9, ((c—=1t)h))K=(t) S (e=Dh )dt
_ f(()?):-h (0) /1 K2 (t) dt + 0(%) (316)

Next we consider [Ji5. By the continuity property of g{ and by a Taylor expansion

of order 2 of g;, we have

g1 ((c=t)h) = g1 (0) + (t =) (=h) g1 (0) + O (h?)

=(c—t)h+ 0 (h?),
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since ¢; (0) = 0 and ¢; (0) = 1. Using (3.16) and by the change of variables,
z + ¢1(y) = ht, we obtain
2 o

Ji2 = ? (W) Ky (z + g1 (Xy)) Kp, (x — g1 (X)) fu)du

9 1
BRA

X f(f/[1 (th — x))dt

:_/ 9" (th—2)) K (1) Ky (z = (t— ) h+ O (12))

o (9" (th—2)) K (1) Kn (2 = a(g,” (th — )

x flgy (th—w))dt

:‘i/ K (2¢—t+ 0 (h)) (f(0) + O () dt
/ K (t)K (2c—t)dt+o (n1h> (3.17)

The proof of (3.5) now follows from (3.16|) and (3.17)), which achieves the proof of
Theorem [3.2.1]
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Table 3.1: Bias and MSE of the indicated regression estimators at boundary

|Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE
c=.1 c=.2 c=.3 c=.4

GTR .0141  .0613 .0381 .0631 .0461 .0584 .0512 .0571
n = 50 NW 2678 1362 2192 1120 .1775  .0894  .1365 .0700
LL 0375 1.2375 .0064 .3649 .0064 .1468 .0101 .1167

Model 1 densityl
GTR .0109 .0083 .0126 .0090 .0162 .0091 .0199 .0084
n = 500 NW 1747 0 .0393 1503 .0313 1217 .0233 .0954 .0163
LL 0127  .0386¢  .0025 .0240 .0006 .0169 .0049 .0123
GTR 1361 0595 1877  .0786  .1841 .0785 .1304 .0656
n = 50 NW D705 3934 4356 2540  .3413 1782 .2923  .1453
LL 0694 1252 1334 .0903 .1991 .1002 .2158 .1054

Model 2 densityl
GTR .0940  .0141 .0948 .0146 .0778 .0131 .0582 .0107
n = 500 NW 3520 1320 2854  .0887  .2343 .0627 .1951 .0454
LL 0458  .0300 .0955 .0263 .1327 .0305 .1517 .0358

Table 3.2: Bias and MSE of the indicated regression estimators at boundary
|Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE
c=.1 c=.2 c=.3 c= 4

GTR 1131 1189  .1064 .1084 .0876  .0813 .1216 .0769
n = 50 NW 8697  .8014  .6174 .4329  .4455 .2529 .2630 .1279
LL 2662 .7402  .0818 2944 .0245 .2785 .0044  .1955

Model 1 density?2
GTR .0496  .0196 .0520 .0167 .0455 .0131 .0391 .0107
n = 500 NW 7162 5180  .5016  .2577 .3621 .1374 2511 .0690
LL 0063 .0601 .0054 .0373 .0040 .0238 .0007 .0159
GTR 1257 1758 1205 1411 1339 1119 .1479  .0946
n = 50 NW 6272 4902 .6220 4794 .6345  .4856 .7076  .5848
LL 1849 1.8400 .0657 .2573 1288 1719 .2294  .1398

Model 2 density2
GTR .0505  .0260 .0562 .0201 .0663 .0179 .0575 .0135
n = 500 NW 3744 1526 3511 1344 .3218 1136 .3077  .1037
LL .0004 .0752 .0274 .0489 .0806 .0359 .1517 .0418
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Chapter 4

Boundary correction using the

Champernowne transformation

Inspired by Wand et al. (1991), Buch-Larsen et al. (2005) showed that for heavy-
tailed distributions, the tail performance of the classical kernel density estimator
could be significantly improved by using a tail flattening transformation. They
used modified Champernowne distribution to estimate loss distributions in insur-
ance which is categorically heavy-tailed distributions. Sayah et.al.(2010) produce
a kernel quantile estimator for heavy-tailed distributions using a modification of

the Champernowne distribution.
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4.1 Champernowne transformation

The original Champernowne distribution has density

ax* 1 Me
ta,M (CC) = m, xr Z 0,

The cumulative distribution function (cdf) is

Ta,M (l’) = m, x Z O,

with parameters o > 0. M is the median of the distribution.

The Champernowne distribution converges to a Pareto distribution in the tail,
whil looking more like a lognormal distribution near 0 when o > 0. The distri-
bution was mentioned for the first time in 1936 by D.G. Champernowne when
he spoke on The Theory of Income Distribution at the Oxford Meeting of the

Econometric Society.

Remark 4.1.1 In the transformation kernel density estimation method, if we
transform the data with the Champernowne cdf, the inflexible shape near 0 results
in boundary problems. We argue that a modification of the Champernowne cdf
can solve this inconvenience. The modified Champernowne cdf as proposed by
Buch-Larsen et al. (2005) is:

(x+0)* —

Ta c = o a y > s 4.1
e () @t +(Mto® 20 0 (4.1)
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with parameters a > 0, M > 0 and ¢ > 0. The associated pdf is

a(z+e)* (M +e) — )

5, >0
(x+ o)+ (M + ¢)* — 2¢*)

tamc (z) ==

Remark 4.1.2 The effect of the additional parameter c is different for « > 1 and

for a < 1 (see figures and . Moreover, this distribution is of Pareto type,

that s
«
; (x)wa((M+c) — %) s T oo
a,M,c Ioz-i—l s .
— ]
[ o
|
[ o]
|
[ ]
= _]
= =
=
o« |
—
. c = _1
= -——- c=.5
---- c=1
= - — c =2
= _|
—_—
T T T T
0 5 10 15

Figure 4.1: Modified Champernowne distribution function, (M =5,a = 2).
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4.2 Boundary correction for heavy-tailed distri-

butions

Kernel density estimator which is of the form

i (2) = %iK (x _hX) (4.2)

i=1

where h := h, (h — 0 and nh — o0) is the bandwidth and K is an integrable

smoothing kernel.

Definition 4.2.1 Given a set of data X1, Xs, ..., X,, cdf Ty mc(x), modified
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Champernowne distribution, then

{Zl, ceey Zn} = {Ta,M7c<X1)7 3] Ta,M1C<Xn)}

are new variable, Z is in the interval (0,1) and uniform distributed. The kernel

density estimation for the transforms data is given by

o - Z—ZZ
Frie) = e oK (55,

K is kernel function. The transformation kernel density estimator of f (x) :

fron(a) im o SO (Pl ST E ) gy ) (43)
=1

where To . (.) is the modified Champernowne transformation function, T}, 5. (.)

it’s derivative.

Remark 4.2.1 Boundary correction, k. is needed since z are in the interval (0, 1)
so that we have to divide by the area under the kernel that lies in this interval,

which defined by

max(1,(1—z)/h)
- / K (t) dt.

max(—1,—z/h)

Theorem 4.2.1 (Buch-Larsen et al., 2005) The bias and the variance of frcy, (x)
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are given by

Bias (fren (2)) = spa () 12 ((T,ff)(x)) - (@) Lo(i).

Var ( Fron (a:)) - % / K2 (8) dtT, . () f () + 0 (1/nh)

where py (K) == [ 2K (t) dt < cc.

4.3 Boundary correction in kernel quantile esti-

mation

4.3.1 Kernel quantile estimation

The estimation of population quantiles is of great interest when a parametric
form for the underlying distribution is not available. It plays an important role
in both statistical and probabilistic applications, namely: the goodness-of-fit, the
computation of extreme quantiles and Value-at-Risk in insurance business and
financial risk management. Also, a large class of actuarial risk measures can be

defined as functionals of quantiles (see, Denuit et al., 2005).

Quantile estimation has been intensively used in many fields, see Azzalini (1981),
Harrell and Davis (1982), Sheather and Marron (1990), Ralescu and Sun (1993),
Chen and Tang (2005). Most of the existing estimators suffer from either a

bias or an inefficiency for high probability levels. To solve this inconvenience,
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we suggest to use the so-called transformed kernel estimate, firstly used in the
density estimation context, by Devroye and Gyorfi (1985) for heavy-tailed ob-
servations. The idea is to transform the initial observations {Xj, ..., X,,} into a
sample {71, ..., Z,} = {T(Xy),...,T(X,)}, where T is a given function having
values in (0,1). Buch-Larsen et al. (2005) suggested to choose T so that T'(X)
is close to the uniform distribution. They proposed a kernel density estimation
of heavy-tailed distributions based on a transformation of the original data set
with a modification of the Champernowne cumulative distribution function (cdf)
(see, Champernowne, 1936 and 1952). While Bolancé et al. (2008) proposed the
Champernowne-inverse beta transformation in kernel density estimation to model
insurance claims and showed that their method is preferable to other transforma-

tion density estimation approaches for distributions that are Pareto-like.

In order to correct the bias problems, Charpentier and Oulidi (2010) suggested
several nonparametric quantile estimators based on the beta-kernel and applied
them to transformed data. For nonparametric estimation, the bandwidth con-
trols the balance between two considerations: bias and variance. Furthermore,
the mean squared error (MSE) which is the sum of squared bias and variance,
provides a composite measure of performance. Therefore, optimality in the sense
of MSE is not seriously swayed by the choice of the kernel but is affected by
that of the bandwidth (for more details, see Wand and Jones 1995). Sayah et al.
(2010) proposed a new estimator of the quantile function, based on the modified
Champernowne transformation and obtained an expression for the value of the

smoothing parameter that minimizes the AMSE of the obtained estimator. They
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show that, the use of this transformation in kernel estimation of quantile functions

for heavy-tailed distributions improves the already existing results.

Let X3, X5, ..., be independent and identically distributed (iid) random variables
(rv’s) drawn from an absolutely continuous (cdf) F' with probability density func-
tion (pdf) f. For each interger n, let X;,, < ... < X, , denote the order statistics
pertaining to the sample Xj,..., X,,. We define the pth quantile Qx (p) as the

left-continuous inverse of F' as

Qx(p):=inf{reR: F(x) >p}, 0<p<Ll.

A basic estimator of Qx (p) , is the sample quantile @, (p) = Xpup)+1.n Where [z]
denotes the integer part of x € IR. Suppose that K is a pdf symmetric about 0
and h .= h, is a sequence of real numbers (called bandwidth) such that h — 0
as n — oo. The classical kernel quantile estimator (CKQE) was introduced by

Parzen (1979) in the following form:

=1 n

where K, (t) := K (t/h) /h. Yang (1985) established the asymptotic normality
and the mean squared consistency of Q,, x (p) , while Falk (1984) showed that the
asymptotic performance of Qn, x (p) is better than that of the empirical sample
quantile. Sheather and Marron (1990) gave the AMSE of Q,, x (p). For further
details on kernel-based estimation, see Silverman (1986) and Wand and Jones

(1995).
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Chapitre 4: Boundary correction using the Champernowne transformation

4.3.2 Estimation procedure

In the context of quantile estimation, if T is strictly increasing, the p!* quantile of
T (X)isequal to T (Qx(p)) - The idea is to transform the initial data { Xy, ..., X,,}
into {Z1, ..., Z,}, where Z; := T (X;), i = 1,...,n. This can be assumed to have
been produced by a (0, 1)-uniform rv Z. Thus, yields the transformed kernel

quantile estimator

Qnx(p) =T (an(p)> ;

where T7! is the inverse of T and

C?n,Z (P) = Z Zz’,n /1:711 Kh (Z - P) dz. (45)
=1 n

The estimation procedure is described as follows:

1. Compute the estimates <d, M, é) of the parameters of the modified Cham-
pernowne distribution (4.1). Notice that T, a0 (M) = 0.5, this suggests
that M can be estimated by the empirical median (see Lehmann, 1991).
Then, estimate the pair («, ¢) which maximizes the log-likelihood function

(see, Buch-Larsen et al., 2005):

[(a,c) =nloga+nlog (M +¢)* — ) + (o — 1)Zlog (X +c¢)

=1

—2 Zn:log (Xi+0)*+ (M+0e)" —2¢). (4.6)

=1

71



Chapitre 4: Boundary correction using the Champernowne transformation

2. Transform the data Xi, ..., X,, into 71, ..., Z, by

The resulting transformed data belong to the interval (0,1).

3. Using 1' calculate the kernel quantile estimator Qn z(p) of the trans-
formed data: 71, ..., Z,.

4. The resulting of the original data X1, ..., X,, is given by

Qux(p) = Tk, (Quz). (4.7)

4.3.3 Asymptotic theory and bandwidth selection

Let Xi,..., X, be iid rv’s with cdf F' and pdf f. For each p in (0,1), let @n,X (p)

be the transformed estimator (4.7) of Qx (p).

Theorem 4.3.1 (Sayah et al. 2010) Assume that Q7 (+) is two-times diffiren-
tiable in a nieghborhood of p € (0,1) with continuous second derivative. Assume

further that the kernel K has compact support and fulfills:

/K(t)dt =1, /tK(t)dt =0 and /t2K(t)dt < 0.
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Chapitre 4: Boundary correction using the Champernowne transformation

Then the bias and the variance of Qn x (p) are respectively

2

Bias (Qux ) =5 [(T7) (@2 0) Q3 (1) + (1) (@2 (1) 2% )]

x po (K) + o0 (R?),

and

Var (Qux ) = (17 (@2 0) Q2 () (M e <K>> e (%) |

n n

where iy (K) = [#2K (t)dt, o (K) = 2 [ tK (t) ( It K(s)ds) dt, Q) and Q'
are the first and the second derivatives of Q7. The value of h that minimizes the

AMSE of Qn.x (p) is

hoprx :=Cn~ 3 C =

(T (@2 ) @ 1) 0 () (4.8)
V2, (9) 13 (K) | |

where

Urgo(p) == (T71)" (Qz (1) Q% () + (T7) (Qz (1) Q% (1)

Remark 4.3.1 If Q'y (p) > 0, the asymptotically optimal bandwidth for silmple

estimator Q. x (p) is
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Chapitre 4: Boundary correction using the Champernowne transformation

Remark 4.3.2 The first and the second derivatives of Q7 are

S T )
2= SN T Tox )
and
" —g (QZ (p))
70 =300 (o)

4.4 Examples and comparative study

For comparison perpose between Qn x (p) and the transformed estimator Qn x (p),

we consider the distributions described in Table [4.11

Table 4.1: Examples of heavy-tailed distributions

Distribution Density for x > 0
6 3
Burr (2,3, 1) %
z (14 23)
. 2723
Paralogistic (3,0.5) —
x (1 + 8z3)
1
Mixture of 70% log-normal(0,1) 0.7 exp {— (log z)? /2}
V21X
and 30% Pareto(1,1) +0.3————
z(l+x)

Remark 4.4.1 Note that, the mixture of log-normal and Pareto distributions was
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previously used in Buch-Larsen et al. (2005) and Charpentier and Oulidi (2010).

The performance of the estimators is measured by the AMSE criteria:

N

AMSE = 25 (080 - Q)

s=1
where QS)X(p) is the quantile correponding to the s simulated sample

{st), ey Xﬁf)} and N is the number of replications. The algorithm used to esti-

mate the quantile function with level p € (0,1) is described as follows:

1. Generate a sample Xj, ..., X,, of size n.
2. Estimate M by the empirical median M , solution of T, rro (M) = 0.5.
3. Estimate the pair («, ¢) maximizing the log-likelihood function (4.6)).

4. Transform X, ..., X, into 21, ..., Z, :
Zi =T,y (Xi), i=1,..,n.
5. Compute the estimate Qn z(p) by choosing the Epanechnikov kernel:
K(t) = % (1 - tz) 1(\t|<1)-
1. The resulting transformed quantile estimator of the original data is

Qnx(p) = Ta_ll\4c (an(p)> :
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2. The classical quantile estimator is directly obtained from the original data,

where the bandwidth h := A,y ¢ is such as in (4.9).

Let the sample size be 200 and compute both the transformed (TQ) and the classi-
cal (CQ) quantile estimators for probability levels p € {.05,.10,.25,.50,.75,.90, .95} .
All results are calculated by averaging over 200 simulation runs.. The results are
summarized in Tables [L.2HA.5 where we see that the transformed estimator is
better than the classical one for high probability levels p € {.75,.90,.95} . Table
is based on the mixture 30% log-normal and 70% Pareto distributions. Both

estimators are equal for p € {.05,.10,.25,.50} .

Table 4.2: Burr distribution, 200 samples of size 200.
P 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Q(p) 0.2962 0.3782 0.5368 0.7454 1.0000 1.2931 1.5143
TKQE 0.2966 0.3728 0.5345 0.7480 0.9946 1.2928 1.5150
CKQE 0.2988 0.3741 0.5345 0.7503 0.9852 0.5464 0.0367

Table 4.3: Paralogistic distribution, 200 samples of size 200.
P 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Q(p) 0.1075 0.1551 0.2622 0.4291 0.6667 0.9803 1.2422
TKQE 0.7983 0.1278 0.2526 0.4263 0.6705 0.9676 1.1626
CKQFE 0.1088 0.1547 0.2641 0.4330 0.7024 0.6079 0.4421
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Table 4.4: Mixtures ( rho= 0.3) distribution, 200 samples of size 200.
D 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Q(p) 0.0948 0.1611 0.3862 1.0000 2.6889  7.3807  14.8541
TKQE 0.2380 0.3391 0.6213 1.2560 2.7743 7.2812  15.2085
CKQE 0.2350 0.3380 0.6273 1.3246 16.4845 28.9263 21.5483

Table 4.5: Mixtures ( rtho= 0.7) distribution, 200 samples of size 200.
D 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Q(p) 0.1509 0.2277 0.4566 1.0000 2.2741 5.2216 9.3262
TKQE 0.2987 0.4200 0.7230 1.3483 2.5389 5.1070 8.4522
CKQE 0.3239 0.3981 0.7293 1.3805 2.6514 6.6738 29.6183

Next, we sample, 200 times, from the four distributions sets of sizes 50, 100 and
compute the transformed and the classical quantile estimators with their AMSE's
for levels p € {.90,.95} . The respective results are given in Tables and It
is clear that, for large probability levels, the transformation-based approach gives
results of higher quality with respect to the classical procedure. Note that, under
classical estimation, some AMSFE’s are seriously bad when samples come from
mixture distributions, especially when 70% of Pareto distribution is considered.
The same remark can be observed in Charpentier and Oulidi (2010) (see their

table’s 13-18 pages 52-53).
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Table 4.6: Classical and transformed pth quantile estimators (p= .9)

Distribution Burr Paralogistic  plog normal+4(1 — p)Pareto
p = 30% p =T170%

p=.90 Q(p) 1.2931 0.9803 7.3807 5.2216
n =250 walue T  1.2941  0.9796 7.8530 5.2474
CcQ 03864 0.4683 10.668 9.5797
AMSE Tq@  0.0201 0.0277 15.545 3.2335
CcQ 0.8230 0.2655 298.59 179.86
n =100 wvalue TR  1.2985 0.9819 7.3484 5.1982

CQ 04690 0.5341 12.540 11.3100
AMSE Tq¢  0.0084 0.0113 5.3956 1.5319
CcQ 0.6798 0.2012 352.99 324.23

Table 4.7: Classical and transformed pth quantile estimators (p=.95)

Distribution Burr Paralogistic  plog normal+4-(1 — p)Pareto
p=30% p="170%
p=.95 Q(p) 1.5143 1.2422 14.8541 9.3262
n =50 wvalue TQ  1.5506 1.0945 16.6389 9.0187
cR 0.0232 0.3396 12.2710 12.0748
AMSE T@  0.0443 0.0751 165.422 19.7341
cQ  2.2232 0.8165 1025.83 466.674
n =100 wvalue TQ  1.5332 1.1352 14.8011 8.6076
cQ  0.0291 0.3889 16.0566 17.5289
AMSE T¢  0.0211 0.0702 42.2056 4.8286
cR  2.2057 0.7294 1129.14 669.036
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Conclusion

Kernel estimators are not consistent near the finite end points of their supports. In
other words, these effects seriously affect the performance of these estimators. In
this thesis, we have studied the boundary effect in the kernel density and regression
estimations. We have mentioned some methods for correcting this effect. Both
density and regression functions are considered and their statistical properties are

given.

For heavy-tailed distributions, bias or inefficiency problems may occur in the clas-
sical kernel quantile estimation when considering high probability levels. To solved
this incontinence, the use of the transformation data modified based on the Cham-

pernowne distribution is recommended.

The variables studied are fully observed, the case of incomplete data: truncated
or censored is interesting for future study. Note also that the density function
18 often encountered in the estimation of the distribution function, quantile and
conditional densities. Therefore, the study of the boundary effect in the estimation

of these functions offers good perspectives.

79



Bibliography

1] Abramson, 1. S. (1982). On bandwidth variation in kernel estimates-a

square root law. The annals of Statistics, 1217-1223.

[2] Azzalini, A. (1981). A note on the estimation of a distribution function and

quantiles by a kernel method. Biometrika, 68(1), 326-328.

[3] Berlinet, A. (1993). Hierarchies of higher order kernels. Probability theory
and related fields, 94(4), 489-504.

[4] Bierens, H. J. (1987). Kernel estimators of regression functions. In Advances

in econometrics: Fifth world congress (Vol. 1, pp. 99-144).

[5] Bolancé, C., Guillén, M., & Nielsen, J. P. (2008). Inverse Beta transformation
in kernel density estimation. Statistics & Probability Letters, 78(13), 1757-

1764.

[6] Breiman, L., Meisel, W., & Purcell, E. (1977). Variable kernel estimates of

multivariate densities. Technometrics, 19(2), 135-144.

80



Bibliography

[7] Buch-Larsen, T., Nielsen, J. P., Guilléen, M., & Bolancé, C. (2005). Kernel
density estimation for heavy-tailed distributions using the Champernowne

transformation. Statistics, 39(6), 503-516.

[8] Champernowne, D. G. (1936). The Oxford meeting, September 25-29, by
Brown P. Econometrica, 5, 361-383.

[9] Champernowne, D. G. (1952). The graduation of income distributions.

Econometrica: Journal of the Econometric Society, 591-615.

[10] Charpentier, A., & Oulidi, A. (2010). Beta kernel quantile estimators of

heavy-tailed loss distributions. Statistics and computing, 20(1), 35-55.

[11] Cheng, M. Y. (1997). Boundary aware estimators of integrated density deriv-
ative products. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 59(1), 191-203.

[12] Chen, S. X., & Tang, C. Y. (2005). Nonparametric inference of value-at-
risk for dependent financial returns. Journal of Financial Econometrics, 3(2),

227-255.

[13] Cheng, M. Y. (2006). Choice of the bandwidth ratio in Rice’s boundary

modification. Journal of the Chinese Statistical Association, 44, 235-251.

[14] Cheng, K. F., & Lin, P. E. (1981). Nonparametric estimation of a regression
function. Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete,

57(2), 223-233.

81



Bibliography

[15]

[16]

[19]

[20]

[21]

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing
scatterplots. Journal of the American statistical association, 74(368), 829-

836.

Cleveland, W. S.; & Devlin, S. J. (1988). Locally weighted regression: an
approach to regression analysis by local fitting. Journal of the American

Statistical Association, 83(403), 596-610.

Cleveland, W. S., & Loader, C. (1996). Smoothing by local regression: Princi-
ples and methods. In Statistical theory and computational aspects of smooth-

ing (pp. 10-49). Physica-Verlag HD.

Cline, D. B. H., & Hart, J. D. (1991). Kernel estimation of densities with dis-
continuities or discontinuous derivatives. Statistics: A Journal of Theoretical

and Applied Statistics, 22(1), 69-84.

Cowling, A., & Hall, P. (1996). On pseudodata methods for removing bound-
ary effects in kernel density estimation. Journal of the Royal Statistical So-

ciety. Series B (Methodological), 551-563.

Dai, J., & Sperlich, S. (2010). Simple and effective boundary correction for
kernel densities and regression with an application to the world income and
Engel curve estimation. Computational Statistics & Data Analysis, 54(11),
2487-2497.

Denuit, M., Dhaene, J., Goovaerts, M., & Kaas, R. (2006). Actuarial theory

for dependent risks: measures, orders and models. John Wiley & Sons.

82



Bibliography

[22] Devroye, L., & Gyorfi, L. (1985). Nonparametric density estimation: the L1

view (Vol. 119). John Wiley & Sons Incorporated.

[23] Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate

probability density. Theory of Probability & Its Applications, 14(1), 153-158.
[24] Eubank, R. L. (1988). Spline smoothing and nonparametric regression.

[25] Eubank, R. L., & Speckman, P. L. (1991). A bias reduction theorem with
applications in nonparametric regression. Scandinavian Journal of Statistics,

211-222.

[26] Falk, M. (1984). Relative deficiency of kernel type estimators of quantiles.

The Annals of Statistics, 261-268.

[27] Fan, J. (1992b). Design-adaptive nonparametric regression. Journal of the

American statistical Association, 87(420), 998-1004..

[28] Fan, J. (1993). Local linear regression smoothers and their minimax efficien-

cies. The Annals of Statistics, 196-216.

[29] Fan, J., & Gijbels, I. (1992). Variable bandwidth and local linear regression

smoothers. The Annals of Statistics, 2008-2036.

[30] Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applica-
tions: monographs on statistics and applied probability 66 (Vol. 66). CRC

Press.

[31] Gasser, T. and Miiller, H. G. (1979). Kernel estimation of regression functions
(pp. 23-68). Springer Berlin Heidelberg.

83



Bibliography

[32] Gasser, T. and Miiller, H. G. (1984). Estimating regression functions and
their derivatives by the kernel method. Scandinavian Journal of Statistics,

171-185.

[33] Gasser, T., Muller, H. G., & Mammitzsch, V. (1985). Kernels for nonpara-
metric curve estimation. Journal of the Royal Statistical Society. Series B

(Methodological), 238-252.

[34] Gray, H. L., & Schucany, W. R. (1972). The generalized jackknife statistic.
New York: Marcel Dekker.

[35] Hall, P., & Marron, J. S. (1988). Variable window width kernel estimates of
probability densities. Probability Theory and Related Fields, 80(1), 37-49.

[36] Hall, P. (1990). On the bias of variable bandwidth curve estimators. Bio-
metrika, 77(3), 529-535.

[37] Hall, P., & Park, B. U. (2002). New methods for bias correction at endpoints

and boundaries. Annals of Statistics, 1460-1479.

[38] Hérdle, W. (1990). Applied nonparametric regression (Vol. 27). Cambridge:

Cambridge university press.

[39] Hérdle, W., & Vieu, P. (1992). Kernel regression smoothing of time series.
Journal of Time Series Analysis, 13(3), 209-232.

[40] Harrell, F. E., & Davis, C. E. (1982). A new distribution-free quantile esti-
mator. Biometrika, 69(3), 635-640.

84



Bibliography

[41]

[42]

[43]

[47]

[48]

Jones, M. C. (1993). Simple boundary correction for kernel density estima-

tion. Statistics and Computing, 3(3), 135-146.

Jones, M. C. (1990). Variable kernel density estimates and variable kernel

density estimates. Australian Journal of Statistics, 32(3), 361-371.

Jones, M. C., & Foster, P. J. (1993). Generalized jackknifing and higher order

kernels. Journal of Nonparametric Statistics, 3(1), 81-94.

Karunamuni, R. J., & Alberts, T. (2003). A locally adaptive generalized
reflection method of boundary correction in kernel density estimation. Tech-

nical report.

Karunamuni, R. J., & Alberts, T. (2005). On boundary correction in kernel

density estimation. Statistical Methodology, 2(3), 191-212.

Karunamuni, R. J., & Alberts, T. (2006). A locally adaptive transforma-
tion method of boundary correction in kernel density estimation. Journal of

Statistical Planning and Inference, 136(9), 2936-2960.

Lejeune, M. (1985). Estimation non-paramétrique par noyaux: régression

polynomiale mobile. Revue de Statistique Appliquée, 33(3), 43-67.

Lehmann, E. L. (1991). Theory of Point Estimation Wadsworth. Monterey,
CA.

Marron, J. S.; & Ruppert, D. (1994). Transformations to reduce boundary
bias in kernel density estimation. Journal of the Royal Statistical Society.

Series B (Methodological), 653-671.

85



Bibliography

[50] Miiller, H. G. (1984). Boundary effects in nonparametric curve estimation

models. In Compstat 1984 (pp. 84-89). Physica-Verlag HD.

[51] Miiller, H. G. (1984a). Smooth optimum kernel estimators of densities, re-

gression curves and modes. The Annals of Statistics, 766-774.

[52] Miiller, H. G. (1987). Weighted local regression and kernel methods for non-
parametric curve fitting. Journal of the American Statistical Association,

82(397), 231-238.

[53] Miiller, H. G. (1988). Nonparametric Analysis of Longitudinal Data (Lecture

Notes in Statistics 46).

[54] Miiller, H. G. (1991). Smooth optimum kernel estimators near endpoints.
Biometrika, 78(3), 521-530.

[55] Miiller, H. G. (1993). On the boundary kernel method for non-parametric

curve estimation near endpoints. Scandinavian Journal of Statistics, 313-328.

[56] Miiller, H. G. (1993). [Local Regression: Automatic Kernel Carpentry]: Com-

ment. Statistical Science, 134-139.

[57] Miiller, H. G., & Wang, J. L. (1994). Hazard rate estimation under random

censoring with varying kernels and bandwidths. Biometrics, 61-76.

[58] Nadaraya, E. A. (1964). On estimating regression. Theory of Probability &

Its Applications, 9(1), 141-142.

[59] Parzen, E. (1979). Nonparametric statistical data modeling. Journal of the

American statistical association, 74(365), 105-121.

86



Bibliography

[60] Parzen, E. (1962). On estimation of a probability density function and mode.

The annals of mathematical statistics, 1065-1076.

[61] Priestley, M. B., & Chao, M. T. (1972). Non-parametric function fitting.

Journal of the Royal Statistical Society. Series B (Methodological), 385-392.

[62] Ralescu, S. S., & Sun, S. (1993). Necessary and sufficient conditions for the
asymptotic normality of perturbed sample quantiles. Journal of statistical

planning and inference, 35(1), 55-64.

[63] Rice, J (1984). Boundary modification for kernel regression. Communications

in Statistics-Theory and Methods, 13(7), 893-900.

[64] Rice, J., & Rosenblatt, M. (1983). Smoothing splines: regression, derivatives

and deconvolution. The annals of Statistics, 141-156.

[65] Reiss, R. D. (1981). Nonparametric estimation of smooth distribution func-

tions. Scandinavian Journal of Statistics, 116-119.

[66] Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a den-

sity function. The Annals of Mathematical Statistics, 27(3), 832-837.

[67] Sayah, A., Yahia, D. & Necir, A. (2010). Champernowne transformation in
kernel quantile estimation for heavy-tailed distributions. Afrika Statistika,

5(1).

[68] Schucany, W. R., & Sommers, J. P. (1977). Improvement of kernel type
density estimators. Journal of the American Statistical Association, 72(358),

420-423.

87



Bibliography

[69] Schuster, E. F. (1985). Incorporating support constraints into nonparametric
estimators of densities. Communications in Statistics-Theory and methods,

14(5), 1123-1136.

[70] Schucany, W. R., Gray, H. L., & Owen, D. B. (1971). On bias reduction in

estimation. Journal of the American Statistical Association, 66(335), 524-533.

[71] Serfling, R. J. (2009). Approximation theorems of mathematical statistics
(Vol. 162). John Wiley & Sons.

[72] Sheather, S. J., & Marron, J. S. (1990). Kernel quantile estimators. Journal

of the American Statistical Association, 85(410), 410-416.

[73] Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel
method. The Annals of Statistics, 898-916.

[74] Silverman, B. W. (1986). Density Estimation London. UK: Chapman and
Hall.

[75] Stone, C. J. (1977). Consistent nonparametric regression. The annals of sta-

tistics, 595-620.

[76] Tapia, R. A., & Thompson, J. R. (1978). Nonparametric probability density

estimation.

[77] Wand, M.P. & Jones, M.C., (1995). Kernel Smoothing, London: Chapman
and Hall.

[78] Wand, M. P., Marron, J. S., & Ruppert, D. (1991). Transformations in density

estimation. Journal of the American Statistical Association, 86(414), 343-353.

88



Bibliography

[79] Wand, M. P., & Schucany, W. R. (1990). Gaussian-based kernels. Canadian
Journal of Statistics, 18(3), 197-204.

[80] Watson, G. S. (1964). Smooth regression analysis. Sankhya: The Indian Jour-

nal of Statistics, Series A, 359-372.

[81] Yang, S.S. (1985). A smooth nonparametric estimator of a quantile function.

Journal of the American Statistical Association, 80(392), 1004-1011.

[82] Zhang, S., & Karunamuni, R. J. (1998). On kernel density estimation near

endpoints. Journal of Statistical Planning and Inference, 70(2), 301-316.

[83] Zhang, S., Karunamuni, R. J., & Jones, M. C. (1999). An improved estimator
of the density function at the boundary. Journal of the American Statistical

Association, 94(448), 1231-1240.

[84] Zhang, S., & Karunamuni, R. J. (2000). On nonparametric density estimation

at the boundary. Journal of nonparametric statistics, 12(2), 197-221.

89



Symbols and Notations

We list the notations that will be used in this thesis

f‘/7 fll’ f//l

predictor variable

variable of interest

expectation or mean of X
distribution function

marginal density of X

min (¢, 1)

f right continuous at the point 0
estimator of f

bandwidth

independent and identically distributed
kernel function

the j'"-derivative

the first, the second and the third derivatives of f.
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Symbols and Notations

the reflection and transformation density estimator

Cut and Normalized density estimator

the generalized reflection and transformation density estimator
the reflection density estimator

the transformation density estimator

Translation in the Argument of the Kernel density

The kernel density estimation for the transforms data
Transformation Champernowne kernel density estimator of f (z)
Rice’s boundary modification density estimator

transformation function

the inverse function of ¢

regression curve of Y on X

estimator of m(.)

classical estimator

local linear regression estimator

kernel regression estimator of Gasser and Miiller 1979

the generalized reflection and transformation regression estimator
the generalized Jackknifing regression estimator

Cut and Normalized kernel regression estimator

the Rice’s modification kernel regression estimator
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Symbols and Notations

rv random variable

MSE Mean Squared Error

AMSE Asymptotic Mean Squared Error

AMISE Asymptotic Mean Integrated Squared Error

Q quantile function

Qx(p) the pth quantile

Qn’ x (p) The classical kernel quantile estimator

Qnx (p) the transformed estimator (CKQE) of Qx (p)
b, The original Champernowne density

taMe (T) The associated pdf

Tom The cumulative distribution function (cdf)

Toe () The modified Champernowne cdf

{(Xi,Y) i1, sample of n observations

14 indicator function of set A

o2 (Y|X =) conditional variance of Y given X = z

o(.) f(x)=o0(g9(x))asx — xo: f(x)/g(x)as z — xg
O(.) f(@)=0(g(x))asx— xo: IM > 0,|f (z) /g ()] < M as x — x¢
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e.g.
gauss
grt
GTR
ie.
LL
opt
NW
pdf
refl
Tag
TAK

positive interval

variance of X

Epanechnikov

biweight

cumulative distribution function

The classical kernel quantile estimator
Cut-and-Normalized

the classical quantile estimator

Cross Validation

for example

gaussian

generalized reflection and transformation
Generalized Transformation and Reflection
that is to say

Local Linear

optimal

Nadaraya and Watson

probability density function

reflection

Tanslation in the argument of the kernel

Translation in the Argument of the Kernel
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Résumé

Dans cette thése nous éudions certaines méthodes de correction des effets de bord
des estimatenrs a novaux des fonctions de densité et de la régression er leurs
propriétés  siatistigues. Les estimatenrs 4 novau présentent des problémes de
convergence aux bords de leurs supporis. En dauntre termes, ces effets de bord
affectent séricusement les performances de ces estimatenrs. Pour corrigé ces effets
de bord. une variéié de méthodes ont été développées dans la [littérature. la plus
largement ntifisée est la réflexion, la transformation et fa finéaire locale... Dans cette
theése, nons combinons les méthodes de transformation et de réflexion, pour introduire
une nouvelle méthode générale de corrvection de l'effet de bord lors de Uestimarion de
fa régression. Le probléme de leffer de bord des estimateurs a novaw des fonctions de
densité on des guantiles en cas de diswibution a guene lowrde est dgalement étndié

Abstract

In this thesis we studyv some boundary corvection methods for kernel estimators of
hoth density and regression functions and theiv statistical properties. Kernel
estimators are not consistent near the finite end points of their supports. In other
words, these effects seriously affect the performance of these estimators. To remove
the boundary effecis, a variety of methods have been developed in the lierature, the
most widely used is the reflection, the wansformaiion and the local {inear methods...
In this thesis, we combine the transformation and the veflection methods in order to
introduce a new general method of bhoundary corvection when estimating the
regression function. Boundary problems for Kernel densitv or gquantile functions
estimators in heavy-tailed case are also studied.
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