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Chapter 1

Preliminary

One, remember to look up at the
stars and not down at your feet.
Two, never give up work. Work
gives you meaning and purpose
and life is empty without it. Three,
if you are lucky enough to find
love, remember it is there and don’t
throw it away.

Stephen Hawking
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CHAPTER 1. PRELIMINARY

1.1 Cryptography

The development of computer and networks in our everyday lives has made protecting

data a necessity and adding security an important issue. Most data transmitted over a

network is sent in clear text making it easy for unwanted persons to capture and read

sensitive information. Algorithms used in encryption methods has protecting data from

intruders and making sure that only the intended recipient can decode and read the in-

formation.

1.1.1 Cryptography

Definition 1 Cryptography is the practice of encoding data, so that it can only be decoded

by specific individuals.

A system for encrypting and decrypting data is a cryptosystem. These usually employ

an algorithm for combining the original data called "plaintext" with one or more "keys"-

numbers or strings of characters known only by the sender and/or recipient; the resulting

output is known as "ciphertext".

The security of a cryptosystem usually relies on the secrecy of the keys rather than the

supposed secrecy of the algorithm. The width of range of possible keys involve a strong

cryptosystem so that it is not possible to just try all possible keys. A strong cryptosystem

has producing ciphertext which appears random to all standard statistical test and can

resist all known breaking codes methods.

Figure 1.1: Cryptography
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1.1.2 Encryption and Decryption

Usually, encryption is a mechanism which transform message in order that only the sender

and the recipient can see.

Encryption is simply the translation of data into a secret code (is a formula used to turn

data into a secret code), and it is considered the perform way to ensure data security. To

read an encrypted file, you must have access to secret key or password (string of bits) that

you make enables to decrypt it.

Modern encryption is achieved using algorithms based on key to encrypt information into

digital nonsense and then decrypting it by return it to its original form. Not that the lager

of key is the more bits in the key.

the number of potential combinations that can be created must be greater to be harder to

break the code and unscramble the contents.

1.1.3 Common Types of Encryption

There are tow main types of encryption: symmetric encryption or secret key cryptography

(one key) and asymmetric encryption also known as public (private)-key encryption (tow

keys) and there are many algorithms for encrypting data based on these types.

Secret Key (Symmetric) Encryption

Symmetric encryption, also referred to as conventional encryption or single key (ie: using

the same key to encrypt and decrypt message) was the only type of encryption in use prior

to the development of public-key encryption.

Figure 1.2: Model of Symmetric Encryption
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CHAPTER 1. PRELIMINARY

• The advantages of secret key cryptography

1. It is Perform and very fast.

2. It has been well tested.

• The disadvantages of secret key cryptography

There are two requirements for a symmetric key cryptosystem

1. We assume it is impractical to decrypt a message on the basis of the ciphertext

plus knowledge of the encryption/decryption algorithm. In other words, we

do not need to keep the algorithm secret; we need to keep only the key secret.

2. Sender and the receiver must have obtained copies of the secret key in a secure

fashion and must keep the key secure. If someone can discover the key and

knows the algorithm, all communications using this key is readable.

Public Key (Asymmetric) Encryption

This encryption type gives each person a pair of keys (a public key and a private key),

where Each person’s public key is published but the private key is kept secret.

Encryption of messages use the intended recipient’s public key while its decryption re-

quire only this private key.

This method of encryption eliminates the need for the sender and the receiver to share

secret information (key) with a secure channel. All communications use only public keys,

and no private key is ever transmitted or shared.

• The advantages of public key cryptography

1. Only one part must be kept secret (public keys)

2. We don’t need to change the public/private key pair (unless someone finds the

public key)

3. Communication of N people need only be N public/private key pairs.

4. There is no need for initial key exchange.

4



CHAPTER 1. PRELIMINARY

Figure 1.3: Model of Public Key Encryption

• The disadvantages of public key cryptography

1. Slow do to the enormous amount of computation involved.

2. Keys must be long (at least 1024 bits these days).

3. There is no proof for that any public key scheme is secure.

4. It has not been around long enough to be tested as much.

1.1.4 Classification Attacks

As we said previously in several areas there are transmitted message which may in differ-

ent attacks.

There are several families of cryptanalytic attacks, the best known being the frequency

analysis, differential cryptanalysis and linear cryptanalysis, the latter are often character-

ized by the data they require as follows:

• Cipher text-only: The cryptanalyst has copies of encrypted messages, it can make

assumptions about the original messages it does not have. Cryptanalysis is more

5
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difficult by the lack of information available.

• Known-plaintext attack: The cryptanalyst has messages or parts of messages in

plain and encrypted versions. Linear cryptanalysis is part of this category.

• Chosen-plaintext attack: the cryptanalyst has text messages, it can generate the

encrypted versions of these messages with the algorithm that can therefore be con-

sidered as a black box. Differential cryptanalysis is an example of attack chosen

plaintext.

• Chosen-ciphertext attack: The cryptanalyst has encrypted messages and calls for

clear version of some of these messages to lead the attack.

1.1.5 The Importance of Encryption

With the rapid development of multimedia exchanges, it is necessary to dispose secure

systems to protect data and ensure the security of transfer; so it would be careless to un-

dervalued the role that encryption technology plays in safeguarding our public and pri-

vate networks. it is important because it protects things such as email, medical record,

confidential corporate information, data on personal buying habits and transaction, legal

documents, credit histories , and government and regulatory agency databases. securing

this data is critical to peace of mind in communicating business and personal informa-

tion.

1.2 Signals and Systems

We are all immersed in a sea of signals. All of us from the smallest living unit, a cell, to

the most complex living organism(humans) are all time time receiving signals and are

processing them. Survival of any living organism depends upon processing the signals

appropriately. So what is signal? To define this precisely is a difficult task. Anything which

carries information is a signal. In this section we will learn some of the mathematical

representations of the signals, which has been found very useful in making information

processing systems. But before that we must distinct between signals and systems and

6
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the relation between them:

A signal is a function representing a physical quantity, and it contains information about

the behavior or nature of the phenomenon. From a communication point of view a signal

is any function that carries some information; where A system is a function that maps sig-

nals from its domain—its input signals—into signals in its range—its output signals. Both

the domain and the range are sets of signals (signal spaces). Thus, systems are functions

that operate on functions.

Figure 1.4: Model of Signals

1.2.1 Signals

Definition 2 A signal is a real (or complex) valued function of one or more real variable(s).

• When the function depends on a single variable, the signal is said to be one- dimen-

sional.

A speech signal, daily maximum temperature, annual rainfall at a place, are all ex-

amples of a one dimensional signal.

• When the function depends on two or more variables,the signal is said to be multi-

dimensional.

7
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An image is representing the two dimensional signal,vertical and horizontal coor-

dinates representing the two dimensions. Our physical world is four dimensional

(three spatial and one temporal).

Mathematically

Definition 3 A signal is a sequence of numbers {x(n)}n∈Z satisfying
∑

n∈Z |x(n)| <∞. Such

a sequence is also referred to as being in 1(Z), or just in 1. A sequence {x(n)} satisfying∑
n∈Z |x(n)|2 <∞ is referred to as an 2) sequence.

1.2.2 Classification of Signals

Here we introduce briey from BARANIUK [2009] some of the basic classifications of signals

and the most important properties of these signals are explained.

1. Continuous-Time and Discrete-Time

As the names suggest,

• A continuous-time signal will contain a value for all real numbers along the

time axis.

In contrast to this,

• A discrete-time signal is often created by using the sampling theorem to sam-

ple a continuous signal, so it will only have values at equally spaced intervals

along the time axis.

2. Analog and Digital

There are similarity between analog and digital, and continuous-time and discrete-

time signals; but here with respect to the value of the function (y-axis). Analog cor-

responds to a continuous y-axis, while digital corresponds to a discrete y-axis.We

have an example of a digital signal is a binary sequence, where the values of the

function can only be one or zero.

8
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3. Periodic and Aperiodic

Periodic signals has repeating with a period T, while aperiodic, or non-periodic,

signals don’t. We can define a periodic function through the following mathematical

expression, where we take t any number and T is a positive constant: f (t ) = f (T+t ).

The fundamental period of our function f (t ), is the smallest value of T that allows

the above mathematical expression, to be true.

4. Causal and Anti-causal and Non-causal

• Causal signals are signals that are zero for all negative time.

• Conversely, anti-causal are signals that are zero for all positive time.

• But Non-causal signals are signals that have nonzero values in both positive

and negative time.

5. Even and Odd

An even signal is any signal f satisfying: f (−t ) = f (t ). Which means that even sig-

nals are symmetric around the vertical axis. On the other hand, an odd signal is a

signal f such that f (t ) = −( f (−t )). Using the definitions of even and odd signals, we

can show that any signal can be written as a combination of an even and odd signal.

That is, every signal has an odd-even decomposition. Demonstration of this, drive

us to look no further than a single equation.

f (t ) =
1

2
( f (t )+ f (−t )+ 1

2
( f (t )− f (−t ))

By multiplying and adding this expression out, it can be shown to be true. Also, it

can be shown that:

• f (t )+ f (−t ) fulfills the requirement of an even function,while

• f (t )− f (−t ) fulfills the requirement of an odd function.

9
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6. Deterministic and Random

• Deterministic signal is a signal in which each value of the signal is fixed and

can be determined by a mathematical expression, rule, or table. Because of

this the future values of the signal can be calculated from past values with

complete confidence.

• On the other hand, a random signal has a lot of uncertainty about its behavior.

The future values of a random signal cannot be accurately predicted and can

usually only be guessed based on the averages of sets of signals.

7. Right-Handed and Left-Handed

A right-handed signal and left-handed signal are defined by signals whose value is

zero between a given variable and positive or negative infinity. Mathematically, a

right-handed signal is defined as any signal such that f (t ) = 0 for t < t1 <∞, and a

left-handed signal is defined as any signal such that f (t ) = 0 for t > t1 >−∞.

8. Finite and Infinite Length

As the name applies, signals can be characterized as to whether they have a finite or

infinite length set of values. We use finite length signals when dealing with discrete-

time signals or a given sequence of values. Mathematically speaking, f (t ) is a finite-

length signal if it is nonzero over a finite interval t1 < f (t ) < t2; where t1 > −∞ and

t2 <∞. Likewise, an infinite-length signal, is defined as nonzero over all real num-

bers: −∞≤ f (t ) ≤∞

1.2.3 Systems

Definition 4 A System is any physical set of components that takes a signal, and produces

a signal. In terms of engineering, the input is generally some electrical signal x, and the

output is another electrical signal (response) y. However, this may not always be the case.

Mathematically,

10
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Definition 5 A system is any transformation T that takes an input signal x(n) to an output

signal y(n). We write Tx(n) = y(n).

1.2.4 Proprieties Of Systems

1. Linearity: a system is linear if

T(ax1 +bx2)(n) = aTx1(n)+bTx2(n)

where x1, x2 ∈ 1, and a,b are constants.

2. Stability: a linear system T is stable if for some C > 0,

∑
n∈Z

|Tx(n)| ≤ C
∑

n∈Z
|x(n)|

for all signals x(n).

3. Translation: for k ∈Z, the translation operator τk , for signals is τk x(n) = x(n −k).

4. LTI: a linear translation–invariant system is a linear system T for which:

T(τk x)(n) = τ−k(Tx)(n) = Tx(n −k)

5. Convolution: the convolution of signals x1, x2 ∈ 1, denoted: x1 ∗x2(n), is

y(n) = x1 ∗x2(n) =
∑

n∈Z
x1(k)x2(n −k)

.

11
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1.3 Blind Source Separation Problem

Blind Source Separation (BSS) is a prominent problem in signal processing. In the past

few decades, it was applied to many fields, in which separation of compound signals,

simultaneously observed by different sensors, is of interest. The problem can be con-

sidered as built-up of three physical elements: sources (also called transmitters), sensors

(also called receivers) and communication channels which reflect the properties of the

physical medium propagating the signals form the sources to the sensors.

The signals detected by the sensors are commonly referred to as observations and are as-

sumed to be algebraic combinations of the unknown sources signals.

BSS approach assumes limited a priory information on the communication channels (lin-

earity, memory properties. . . ) and tries to reconstruct the source signals out of the de-

tected signals only.

Analysis of the communication channels is important mainly for selection of a proper

processing technique.

1.3.1 Blind Source Separation Problem

Definition 6 The blind source separation (BSS) problem consists on recovering a set of

source signals s(τ) = (s1(τ), ..., sm(τ))T from a set o f mi xtur es x(τ) = (x1(τ), ..., xn(τ))T

formed with a mixing matrix A:

x(τ) = ATs(τ)

where τ ∈ tau is an index representing temporal or spatial variation of the signals.

The term blind means that the values of the mixing matrix A and the source signals s(τ)

are unknown.

The (BSS) problem is solved by finding an unmixing matrix W to reconstruct the sources

via the transformation:

y(τ) = WTx(τ)

12
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such that

y(τ) = DPs(τ)

where D is a diagonal matrix, and P is a permutation matrix. This means that the re-

constructed signals do not keep the original order of the source signals but their “wave”

form. A general approach to solve the BSS problem is assuming that the source signals

si (τ) satisfy a property P, and that they minimize (maximize) a measure q(s) related to

the property P . Thus, the BSS problem is yet regarded as an optimization problem: the

unmixing matrix W is an optimal parameter used to transform linearly the mixtures x(τ)

into the signals y(τ), which minimizes (maximizes) the “quality” of the reconstructed sig-

nals.

1.4 Genetic Algorithm

1.4.1 The Fundamental Theorem of Genetic Algorithms

Genetic algorithms (G.A) are a type of optimisation algorithm, meaning they are used

to find the optimal solution(s) to given computational problem that maximizes or mini-

mizes a particular function. Genetic algorithms represent one branch of the field of study

called “evolutionary” “computation” KINNEAR [1994], in that they imitate the biological

processes of reproduction and natural selection to solve for the fittest solutions. Like in

evolution, many of a genetic algorithm’s processes are random, however this optimization

technique allows one to set the level of randomization and the level of control.

These algorithms are far more powerful and efficient than random search and exhaustive

search algorithms, yet require no extra information about the given problem. these fea-

ture allows them to find solutions to problem that other optimization methods cannot

handle due to a lack of continuity, derivability, linearity, or other featuresCARR [2014].

Genetic algorithms are typically characterized by the following aspectsRANGEL-MERINO

13
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et collab. [2005]:

1. The G.A work with the base in the code of the variable group and not with the vari-

ables in themselves.

2. The G.A work with a set of potential solutions (population) instead of trying to im-

prove a single solution.

3. The G.A don’t use information obtained directly from object function, of its deriva-

tives, or of any other auxiliary knowledge of the same one

4. The G.A apply probabilistic transition rules, not deterministic rules

1.4.2 Working Principle of Genetic Algorithms

The Workability of genetic algorithms is base on Darwinian’s theory of survival of the

fittest. Genetic algorithms my contain a chromosome, a gene, set of population, fitness

function, breeding, mutation and selection.

Genetic algorithms begin with a set of solutions represented by chromosomes called pop-

ulation. solutions from one population are taken and used to form a new population,

which is motivated by the possibility that new population will be better than the old one.

Further, solutions are selected according to their fitness to form new solutions, that is

offspring (details or steps of work are found in MALHOTRA et collab. [2011])
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Chapter 2

Wavelets Transform

Never memorize something that

you can look up.

If we knew what it was we were

doing, it would not be called

research, would it?

Albert Einstein
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In recent years wavelets analysis (also called wavelets theory, or just wavelets) have

emerged as a powerful mathematical tool and a new framework within a common link is

established between diversified problems that are of interest to different fields including

electrical engineering (signal processing and image, data compression, sub-band cod-

ing, radar, optics....), mathematical analysis (harmonic analysis, operator theory, partial

differential equations...) and physics (fractals,quantum field theory, turbulence...). this

concept is based on analysing-localized variation of power within a time by decompos-

ing a time series into time-frequency spaces, one is able to determine both the dominant

modes of variability and how those mode vary in time. Mathematically, wavelets are func-

tions that satisfy certain mathematical requirement and are used in representing data or

other functions.

2.1 Multi-resolution Analysis

The method of multi-resolution is to represent a function (Signal) with a collection of

coefficients, where each of which provide information about the position as well as the

frequency of signal (function). Multi-resolution analysis (MRA) is a method for L2- ap-

proximation of functions with arbitrary precision; MRA give approximation on different

scales in such a way that an approximation on a fine scale can be obtained by adding the

" details" to an approximation on a coarse scale.

2.1.1 Multi-resolution Analysis and Orthonormal Wavelets Bases

The Scaling Function and the Subspaces V j

A multi-resolution analysis of L2(R) is a family M = {V j } j∈Z of embedded vectorial sub-

spaces with the properties below that we can group in three blocks :

1. {V j } j ∈Z is a set of approximation spaces i.e:-

• V j is a closed subspace of L2

• V j ⊂ V j−1

•
⋃

j∈ZV j = L2(R) and
⋂

j∈ZV j = {0}
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2. The V j spaces are obtained by dyadic dilatation or contraction of the function of the

single space, this property relates to the translation of functions.

∀ j ∈Z, v(t ) ∈ V j ⇐⇒ v(2t ) ∈ V j−1

3. It suppose the existence of function, with makes it possible to build a bases of V0 by

integer translation : φ ∈ V0 such that {φ(t −k}k∈Z is a Riesz base of V0 , where φ is

called scaling function.

Since φ ∈ V1 ⊂ V0, a sequence (hk ) in 2 exists such that the scaling function satisfies

φ(x) = 2
∑
k

hkφ(2x −k)

under conditions: ∑
k

hk = 1

∫ +∞

−∞
φ(x)d x = 1

The Relation of φ̂with m0

Taking the Fourier transform of functional equation:

φ(x) =
p

2
∑
k

hkφ(2x −k)

gives,

φ̂(ω) =
1p
2

∑
k

hk e−i k ω
2 φ̂(

ω

2
)

which can be written as:

φ̂(ω) = m0(
ω

2
)φ̂(

ω

2
) (2.1)

whith

m0(ω) =
1p
2

∑
k

hk e−i kω
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The function m0 is 2π-periodic, and m0 ∈ L2([0,2π]), because
∑

k∈Z |hk |2 <∞
We also know that, by definition,

∫ +∞

−∞
φ(x)d x = 1

Hence, φ̂(0) = 1, and therefore

m0(0) = 1 (2.2)

recursively on values: ω2 , ω4 , .... we get φ̂(ω = m0(ω2 )m0(ω4 )φ̂(ω4 ) and arrive at the infinite

product formula:

φ̂(ω) =
1p
2π

∞∏
j =1

m0(2− jω)

A very important point is to show that this product converge to a function in L2(R). Details

of this can be found in DAUBECHIES [1992]

Example of Scaling Function

• The cardinal B-spline of order 1 is the box function N1(x) = χ[0,1](x). For m > 1 the

cardinal B-spline Nm is defined recursively as a convolution:

Nm = Nm−1 ∗N1

this function satisfy,

Nm(x) = 2m−1
m∑

k=0

m

k

Nm(2x −k)

and

N̂m(ω) = (
1−e−iω

iω
)m .

• Classical example, is the Shannon sampling function.

φ(x) =
si n(πx)

πx
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with

φ̂(ω) = χ[−π,π](ω)

We may take

m0(ω) = χ[−π2 ,π2 ](ω) for ω ∈ [−π,π]

and consequently,

h2k = 1
2δk and h2k+1 = (−1)k

(2k+1)π for k ∈Z.

The Wavelet Function and the Detail Spaces W j

We will use W j to denote a space complimenting V j in V j−1, i.e: a space that satisfies

V j−1 = V j ⊕W j

In other words, each element of V j−1 can be written ( in a unique way) as the sum of

an element of V j and an element of W j . We note that the spaces W j themselves are not

necessary unique, they may be several ways to complement V j in V j−1.

the space W j contains the "det ai l" information needed to go from an approximation at

resolution j to an approximation at resolution j −1. Consequently,

⊕
j

W j = L2(R)

A functionψ is wavelet if the collection of functions {ψ(x−k) k ∈Z} is a Riesz basis of W0.

The collection of wavelet functions {ψ j ,k / j ,k ∈Z} is then a Riesz basis of L2(R).

Since the wavelets ψ is an element of V1, a sequence (gk ) ∈ 2(Z) exists such that:

ψ(x) = 2
∑
k

gkφ(2x −k)
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The Relations of ψ̂with m1

Similarly, if we distinct tow scales relations for the wavelet function ψ in the frequency

domain,

ψ(x) =
p

2
∑
k

gkψ(2x −k)

we get

ψ̂(ω) =
1p
2

∑
k

gk e−i k ω
2 φ̂(

ω

2
)

or:

ψ̂(ω) = m1(
ω

2
)φ̂(

ω

2
) (2.3)

whith

m1(ω) =
1p
2

∑
k

gk e−i kω

Where the function m1 is also 2π-periodic.

Note that, ψ̂ is defined in terms of φ̂ through m1, in the same wayψ is defined in terms of

φ through (gk ) in the spacial domain.

1. The definition of ψ j ,k is similar to the one of φ j ,k .

2. Each space V j and W j has a complement in L2(R) denoted by Vc
j and Wc

j , respec-

tively.

3. We have:

Vc
j =

⊕∞
i = j Wi and Wc

j =
⊕∞

i 6= j Wi

4. We define P j as the projection operator onto V j and parallel to Vc
j , and Q j as the

projection operator onto W j and parallel to Wc
j , so a function f can be written as:

f (x) =
∑

j Q j f (x) =
∑

j ,k D j
kψ j ,k (x)
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2.1.2 Orthogonal Wavelets

The class of orthogonal wavelets is particularly interesting. starting by introducing the

concept of an orthogonal multi-resolutionanalysis.

This is a multi-resolution analysis where the wavelet spaces W j is the orthogonal of com-

plement of V j in V j−1. Consequently, the spaces W j with j ∈Z are all mutually orthogonal,

the projections P j and Q j are orthogonal, and the expansion

f (x) =
∑

j
Q j f (x)

is an orthogonal expansion .

In this section we give series of properties for the {W j } j∈Z spaces which are useful for the

geometrical understanding of the construction:-

w(t ) ∈ W j ⇐⇒ w(2t ) ∈ W j−1 (2.4)

W j ⊥ Wk , j 6= k (2.5)

W j ⊥ Vk , j ≤ k (2.6)

VJ = Vk

⊕
Wk ........

⊕
WJ+1, J < k (2.7)

VJ =
+∞⊕

j =J+1
W j (2.8)

L2(R) = VJ
⊕

{
J⊕

j =−∞
W j } (2.9)

L2(R) =
+∞⊕

j =−∞
W j (2.10)
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Let us note A j = PV j ( f ) and D j = PW j ( f ), the orthogonal projections of f ∈ L2 on spaces

V j and W j respectively; then we have:-

A j−1 = A j +D j with A j ⊥ D j

Spaces {V j } are approximation spaces in the following sens: A j converge to f in L2(R)

when j tends to {−∞}; In the same way, spaces {W j } are detail spaces in the sens that in

L2(R) we have , on the one hand, D j which converge to 0 when j tends to {−∞} and on the

other hand, f = AJ +∑J
{−∞} D j . In the word, for a fixed level of approximation J, the D j are

correction to be added to the approximation to find f . Now we represent the fundamental

result associated with multi-resolution analysis; noting f j ,k (t ) = 2
− j
2 f (2− j t − k) for any

function.

Orthonormal Wavelets Bases

Let M be a multi-resolution analysis of L2(R). Starting from the sequence (g ), we can build

a scaling function φ then a wavelet ψ such that:- ∀J ∈ Z, {{φ j ,k }k∈Z, {ψ j ,k } j ,k∈Z, j ≤ J} is an

orthonormal base of L2(R) and {ψ j ,k } j ,k∈Zis an orthonormal wavelets base of L2(R).

2.2 Multi-resolution Analysis’s Construction

Here we establish on the links between the concept of multi-resolution analysis and the

orthogonal wavelet, and we propose a manner of building the second starting from the

first. This construction also shows the fundamental part played by the tow-scales equa-

tions in the time and frequency domain; starting by the construction of the scaling func-

tion.

2.2.1 Construction of the Scaling Function

Let us consider the scaling functionφdefined using its Fourier transform φ̂by: φ̂ = ĝ (ω)

(
∑

k∈Z |ĝ (ω+k)|2)
1
2

Then,

25



CHAPTER 2. WAVELETS TRANSFORM

• φ ∈ V0

• {φ0,k =φ(t −k)}k∈Zis an orthonormal base of V0

• tow-scale equation for φ:-

∃!h = {hk }k∈Z,h ∈ l 2(Z)

such that:

1
2φ( t

2 ) =
∑

k∈Zhkφ(t −k) in L2

• m0(ω) =
∑

hk e−2iπω is periodic with period 1, m0 ∈ L2(0,1) and verifies

φ̂(2ω) = m0(ω)φ̂(ω) p.p.ω ∈R

|m0(ω)|2 +|m0(ω+ 1

2
)|2 = 1 p.p.ω ∈R

• more generally, {∀ j ∈Z,φ j ,k = 2
− j
2 φ(2− j t −k)}k∈Z is an orthonormal base of V j

2.2.2 Characterization of m0

In order to define the properties of m0, the fact that φ(x −k), the integer translates of φ

from an orthonormal basis of V0 is used. this impose some restrictions on m0.

26



CHAPTER 2. WAVELETS TRANSFORM

∫ ∞

−∞
φ(x)φ(x −k)d x =

∫ ∞

−∞
|φ̂(ξ)|2e i kξdξ

= δk,0

=
∫ ∞

−∞
e i kξ

∑
l∈Z

|φ̂(ξ+2πl )|2dξ

= δk,0

The above equation implies that,

∑
l
|φ̂(ξ+2πl )|2 =

1

2π
(2.11)

substituting equation 2.1 in the above equation, with ω = ξ
2 , we have

∑
l
|m0(ω+πl )|2|φ̂(ω+πl )|2 =

1

2π

We can split the sum into terms with even and odd l , and because m0 is 2π-periodic we

have:

|m0(ω)|2 ∑
l
|φ̂(ω+2lπ)|2 +|m0(ω+π)|2 ∑

l
|φ̂(ω+ (2l +1)π)|2 =

1

2π

Substituting 2.11 and simplifying, we obtain,

|m0(ω)|2 +|m0(ω+π)|2 = 1 (2.12)

This is the first important condition characterizing m0, via orthonormality of φ. If we

put together equation 2.2 with 2.11, we obtain that,

m0(π) = 0

This gives us a hint that m0 is of the form

m0(ω) = (
1+e iω

2
)mQ(ω)
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with m ≥ 1, and where Q is a 2π-periodic function. (Observe that e iπ = −1. So, when

ω = π the first term vanishes, and the product has to vanish.) We impose Q(0) = 1, to

ensure that m(0) = 1, and also Q(π) 6= 0, so that the multiplicity of the root of m0 at π is not

increased by Q.

2.2.3 Construction of the Wavelets

Wavelet ψ is defined using its Fourier transform ψ̂. Let ρ be a periodic function with a

period of 1
2 , for almost allω ∈R, and let us pose m1(ω) = ρ(ω)e−2iπkωm0(ω+ 1

2 ) and define:

ψ̂ = m1(ω2 )φ̂(ω2 )

• ψ ∈ W0

• {ψ0,k =ψ(t −k)}k∈Z is an orthonormal base of W0

• tow-scale equation for ψ:-

∃!g = {gk }k∈Z, g ∈ l 2(Z) such that: m1(ω) =
∑

gk e−2iπkω and

1
2ψ( t

2 ) =
∑

k∈Z gkφ(t −k) in L2

• m1 is periodic with period of 1, m0 ∈ L2(0,1) and verifies

|m1(ω)|2 +|m1(ω+ 1

2
)|2 = 1 p.p.ω ∈R

m0(ω)m1(ω)+m0(ω+ 1
2 )m1(ω+ 1

2 ) = 0 for almost all ω ∈R

• more generally, {∀ j ∈Z,ψ j ,k = 2
− j
2 ψ(2− j t −k)}k∈Z is an orthonormal base of W j

• {ψ j ,k } j ,k∈Z is an orthonormal base of L2(R)
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2.2.4 Characterization of m1

To link m0 with m1, we use the orthogonality between φ and ψ. More precisely, the con-

straint that W0 ⊥ V0 implies that ψ⊥φ0,k and

∫ ∞

−∞
ψ̂(ω)φ̂(ω)e i kωdω = 0

or, in terms of the Fourier series

∫ 2π

0
e i kω

∑
l∈Z

ψ̂(ω+2πl )φ̂(ω+2πl )dω = 0

hence ∑
l
ψ̂(ω+2πl )φ̂(ω+2πl ) = 0

for all ω ∈R;

Substituting in the above equation the expression 2.1 and 2.3 of φ̂ and ψ̂ in terms of,

respectively m0 and m1 we obtain after regrouping the sums for even and odd l ,

m1(ω)m0(ω)+m1(ω+π)m0(ω+π) = 0 (2.13)

This is the second important condition characterizing m0 and m1.

We also know that, m0(ω) and m0(ω+π) can not be zero simultaneously because of 2.12

therefore m1 can be written using m0 and a function λ

m1(ω) = λ(ω)m0(ω+π) = 0

such that λ satisfies

λ(ω)+λ(ω+π)

The simple choice of λ is λ(ω) = e iω, which gives m1, satisfying the above equation

m1(ω) = e−iωm0(ω+π), (2.14)
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Note that m1 is defined in term of m0, as expected. This also give ψ̂ in term of φ̂

ψ̂(ω) = e i ω2 m0(
ω

2
+π)φ̂(

ω

2
)

From the above relations, we can construct an orthogonal wavelet from a scaling function

φ, using 2.14 and choosing the coefficients {gk } as :

gn = (−1)k h−k+1

that is

ψ(x) =
p

2
∑
k

(−1)k h−k+1φ(2x −k)

We conclude that, since m1 is trivially defined from m0, all we need to construct or-

thogonal scale and wavelet bases, is to find a function m0 satisfying 2.12 and 2.13, or

equivalently, find the coefficients (hk ) of the representation sequence of m0.

2.3 Bi-orthogonal Multi-resolution Analysis and Filters

Bi-orthogonal wavelets constitute a generalisation of orthogonal wavelet. Under this frame-

work, instead of a signal orthogonal basis, a pair of dual bi-orthogonal basis functions is

employed: One for the analysis step and other for the synthesis step, i.e: we have recipro-

cal frame as defined in MRA.

Recall that, in the context of orthogonal multi-resolution analysis we have defined the

projection operator onto the subspaces V j and W j respectively.

Pr o j V j ( f ) =
∑

k〈 f ,φ j ,k〉φ j ,k and Pr o j W j ( f ) =
∑

k〈 f ,ψ j ,k〉ψ j ,k

Where the function φ and ψ perform a double duty i.e: they are used:

Analysis: compute the coefficient of the representation of f in therms of the basis φ

and ψ of the spaces V j and W j respectively; and we have ak
j = 〈 f ,φ j ,k〉 and d k

j = 〈 f ,ψ j ,k〉.

Synthesis: reconstruct the projection of f into V j and W j ; from the coefficient of the

representation respectively Pr o j V j ( f ) = ak
j φ j ,k and Pr o j W j ( f ) = d k

j ψ j ,k .
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The more general framework of bi-orthogonal multi-resolution analysis employ simi-

lar projection operators: P j ( f ) =
∑

k〈 f ,φ j ,k〉φ̃ j ,k and Q j ( f ) =
∑

k〈 f ,ψ j ,k〉ψ̃ j ,k

2.3.1 Properties of Bi-orthogonal Wavelets

Let us suppose that wavelets are constructed, and let us analyze their properties. The two

families M = {V j } j∈Z and M̃ = {Ṽ j } j∈Z are multi-resolution analysis of L2(R). They were

characterized by the property: L2(R) = V0 + Ṽ0
⊥

Let us note by V j ,W j , Ṽ j and W̃ j the spaces generated respectively by families of func-

tions: {φ j ,k }k∈Z, {ψ j ,k }k∈Z, {φ̃ j ,k }k∈Z and{φ̃ j ,k }k∈Z.

These spaces and these functions verify a set of relations highlighting multi-resolution

and bi-orthogonality properties.

Let us start with the first aspect.

For each family of spaces {E j } j∈Z we pass from E j to E j−1 by dilatation. We have the in-

clusions:

V j ⊂ V j−1,W j ⊂ W j−1, Ṽ j ⊂ Ṽ j−1 and W̃ j ⊂ W̃ j−1

Finally, there are the decomposition:

V j = V j+1 ⊕W j+1 and Ṽ j = Ṽ j+1 ⊕W̃ j+1

note that, they are not orthogonal.

Let us now pass to the relations of duality as follow:

〈φ0,k ,φ̃0,p〉L2 = δk,p (= 1 if k = p;0 if not)

The couple of spaces (V j , Ṽ j ) and (W j ,W̃ j ) satisfy

〈φ j ,k ,φ̃ j ,p〉L2 = δk,p and 〈ψ j ,k ,ψ̃ j ,p〉L2 = δk,p

The couple of spaces (V j ,W̃ j ) and (Ṽ j ,W̃ j ) are orthogonal and with this we have:-

〈φ j ,k ,ψ̃ j ,p〉L2 = 0 and 〈φ̃ j ,k ,ψ j ,p〉L2 = 0
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Thanks to inclusions: Vn ⊥ W̃ j and Ṽn ⊥ W j for n ≥ j which imply that for n 6= j we

have bi-orthogonality relations:

〈ψ j ,k ,ψ̃ j ,p〉L2 = δn, jδk,p where-from Wn ⊥ W̃ j for n 6= j

The usable projections here, are oblique projection P j to V j parallel to the direction of

(Ṽ j )⊥ which are written for a signal f :

P j ( f ) =
∑

k∈Z ãk
j φ j ,k where ãk

j = 〈 f ,φ̃ j ,k〉

2.3.2 Bi-orthogonality and Filters

The two pairs of scaling functions and wavelets φ,ψ and φ̃,ψ̃ are defined recursively by

the two pairs of filters m0,m1 and m̃0,m̃1

In the frequency domain these relations are JAWERTH et SWELDENS [1994]:

φ̂(ω) = m0(ω2 )φ̂(ω2 ), ψ̂(ω) = m1(ω2 )φ̂(ω2 )

ˆ̃φ(ω) = m̂0(ω2 ) ˆ̃φ(ω2 ), ˆ̃ψ(ω) = m̂1(ω2 ) ˆ̃φ(ω2 )

where,

m0(ω) = 1
2

∑
hk e−i kω, m1(ω) = 1

2

∑
gk e−i kω,

m̃0(ω) = 1
2

∑
h̃k e−i kω, m̃1(ω) = 1

2

∑
g̃k e−i kω,

By computing the Fourier Transform of inner products in equation:

〈φ̃(x),ψ(x −k)〉 =
∫
φ̃(x)ψ(x −k)d x = 0

〈ψ̃(x),ψ(x −k)〉 =
∫
ψ̃(x)ψ(x −k)d x = δk

and using the same argument of the characterization of m0 and m1; we can see that the

bi-orthogonality condition in the frequency domain is equivalent to:

∑ ˆ̃φ(ω+2kπ)φ̂(ω+2kπ) = 1
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∑
ˆ̃ψ(ω+2kπ)ψ̂(ω+2kπ) = 1

∑
ˆ̃ψ(ω+2kπ)φ̂(ω+2kπ) = 0

∑ ˆ̃φ(ω+2kπ)ψ̂(ω+2kπ) = 0

This means that the filters m0,m1 and their duals m̃0 and m̃1 have to satisfy:

m̃0(ω)m0(ω)+m̃0(ω+π)m0(ω+π) = 1

m̃1(ω)m1(ω)+m̃1(ω+π)m1(ω+π) = 1

m̃1(ω)m0(ω)+m̃1(ω+π)m0(ω+π) = 0

m̃0(ω)m1(ω)+m̃0(ω+π)m1(ω+π) = 0

The set of equations above can be written in Matrix form as:

∀ω ∈R;

 m̃0(ω) m̃0(ω+π)

m̃1(ω) m̃1(ω+π)


 m0(ω) m1(ω)

m0(ω+π) m1(ω+π)

=

 1 0

0 1


Or

M̃(ω)Mt (ω) = I

Where M is the modulation matrix introduced as follow:

M(ω) =

 m0(ω) m0(ω+π)

m1(ω) m1(ω+π)


By interchanging the matrices on the left-hand side, we get:

∀ω ∈R,

m0(ω)m̃0(ω) + m1(ω)m̃1(ω) = 1

m0(ω)m̃0(ω+π)+m1(ω)m̃1(ω+π) = 1
(2.15)

Note that, the orthogonal case corresponds to M being a unitary matrix. Crammer’s

rule now states that:

m̃0(ω) =
m1(ω+π)

∆(ω)
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and

m̃1(ω) = −m0(ω+π)

∆(ω)

Where

∆(ω) = detM(ω)

The fact that the wavelets form a basis for the complementary spaces ensures that ∆ does

not vanish. The projection operators take the form:

P j f (x) =
∑

k〈 f ,φ̃ j ,k〉φ j ,k and Q j f (x) =
∑

k〈 f ,ψ̃ j ,k〉ψ j ,k

and

f =
∑
j ,k

〈 f ,ψ̃ j ,k〉ψ j ,k

Not that this can be viewed as a discrete wavelet transform and that the conditions on

ψ are less restrictive than in the orthogonal case. From the equations 〈φ̃ j ,l ,φ j ,l ′〉 = δl−l ′

and 〈ψ̃ j ,l ,ψ j ′,l ′〉 = δ j− j ′δl−l ′ such that: j , j ′, l , l ′ ∈Zwe see that:

h̃k ′−2k = 〈φ̃(x −k),φ(2x −k ′)〉 and g̃k−2k ′ = 〈ψ̃(x −k),φ(2x −k ′)〉

In particular, by writing φ(2x −k) ∈ V1 in the bases of V0 and W0, we obtain that

φ(2x −k ′) =
∑

h̃k−2k ′φ(x −k)+∑
g̃k−2k ′ψ(x −k)

2.4 The Discrete Wavelet Transform (DWT)

2.4.1 One Dimensional DWT

Discrete wavelet transform is computed with a cascade of filtering followed by a factor 2

sub-simpling KOCIOŁEK et collab. [2001]

where,

• H and L denote respectively high and low pass filters
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Figure 2.1: Wavelet Decomposition for One-Dimensional Signal

• 2 ↓ denote sub-simpling

• a j and d j are called wavelet coefficients, determine out put of transform given by

the following equations:-

a j+1(k) =
∑

L(n −2k)a j (n)

d j+1(k) =
∑

H(n −2k)d j (n)

2.4.2 Two Dimensional DWT

One dimensional DWT can be easily extended to two dimensions which can be used for

two-dimensional pictures.

The DWT is performed firstly for all images rows and then for all columns using high and

low pass-filters. This process is also called multi-level decomposition.

Figure 2.2: Wavelet Decomposition for Tow-Dimensional Signal

1. By using the wavelets, given function can be analysed at various level of resolution.

2. The main feature of DWT is multiscale presentation of functions.

3. The DWT is also invertible and can be orthogonal.
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Chapter 3

Blind-Source Separation Based on

Wavelet Transform and Spearman’s Rho

The important thing is not to stop

questioning. Curiosity has its own

reason for existence. One cannot

help but be in awe when he

contemplates the mysteries of

eternity, of life, of the marvelous

structure of reality. It is enough if

one tries merely to comprehend a

little of this mystery each day.

Albert Einstein
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CHAPTER 3. BLIND-SOURCE SEPARATION BASED ON WAVELET
TRANSFORM AND SPEARMAN’S RHO

3.1 Introduction

Blind sources separation has been among the essential parts of development in signal

processing (see for example CARDOSO [1992]; CARDOSO et LAHELD [1996]; COMON et col-

lab. [1991]; GAETA et collab. [1990]). We assume here the simplest case where N sequences

X1(t ), ...,XN(t ) are observed, each one is a linear combination of N independent unknown

sequences S1(t ), ...,SN(t ). Thus we can write X(t ) = MS(t ) where X(t ) and S(t ) denote the

vectors of components X1(t ), ...,XN(t ) and S1(t ), ...,SN(t ) respectively, M is a square matrix

that is called the mixing matrix.

The problem is to recover the unknown sources S1(t ), ...,SN(t ) from the observations,

without any priori knowledge on their probabilistic structure. It is only assumed that

the sources are mutually independent. The first solution of this problem proposed in

HÉRAULT et collab. [1985], was based on cancellation of higher order moments. However,

it has been proved COMON et collab. [1991]; FORT [1991], that the algorithm can diverge if

the sources have not even probability density function.

Other criteria have been used by several researchers which are based on minimization

of cost functions, such as the sum of square forth-order cumulants COMON [1989]; LA-

COUME et RUIZ [1988], or contrast function CARDOSO [1989]; COMON [1994]. Other au-

thors related this problem of BSS to the independent component analysis (ICA) which

was introduced by Common COMON [1994], and improved by PHAM [1996] .

Given a random vector X with a probability distribution Px , the ICA problem is to find a

square transformation matrix B such that the components of transformed vector BX are as

independent as possible, if X = AS with S having independent components, then B = A−1

(such as A is the mixing matrix), then B is a solution to the ICA problem. In this chapter

we propose a method of blind source separation based on the discrete wavelet transform,

exploiting the fundamental characteristic of this transform which is the preservation of

the signal shape in the approximation sub-band of the wavelet domain, and we use the

spearman’s rho as a measure of dependence between the random variables, so in this case

the spearman’s rho represents our criterion to minimize using genetic algorithms. Finally,

some simulations are executed showing the behavior of this method SOUALHI et collab..
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3.2 Spearman’s Rho

Spearman’s rho represent a measure of dependence between random variables. In our

method we use the estimator of multivariate spearman’s rho introduced by F. Schmid in

SCHMID et SCHMIDT [2007], such as in this chapter authors estimate the spearman’s rho

trough the copula function, so we try to summarize some essential notions concerning

this estimation of spearman’s rho. Let X1, ...,Xd be the set of d random variables with joint

distribution function:

F(x) = P(X1 ≤ x1,X2 ≤ x2, ...,Xd ≤ xd ), where x = (x1, x2, ..., xd ) ∈ Rd and marginal func-

tion Fi (x) = P(Xi ≤ x) for x ∈ Rd and i = 1,2, ...,d . If not stated otherwise, we will as-

sume that the Fi are continuous functions. Thus, Sklar’s theorem states that there exists a

unique copula C : [0,1]d → [0,1] such that F(x) = C(F1(x1), ...,Fd (xd )) for all x ∈Rd

The copula C is the joint distribution function of the random variables

Ui = Fi (Xi ), i = 1,2, ...,d where Ui ∼ U[0,1].

Moreover:

C(u) = F(F−1
1 (u1),F−1

2 (u2), ...,F−1
d (ud )) for all u ∈ [0,1]d

where F−1 represents the generalized inverse of F such as:

F−1(u) := i n f {x ∈R∪ {∞}/F(x) ≥ u} ∀u ∈ [0,1]

and

F−1(0) := sup{x ∈R∪ {−∞}/F(x) = 0}

According to the detailed treatment of copulas, we can state some important results

concerning the copulas.

1. Every copula C is bounded in the following sense:

W(u) ≤ C(u) ≤ M(u)
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such as

W(u) := max{u1 +u2 + ...+ud − (d −1),0} .

and

M(u) := mi n{u1,u2, ...,ud } for all u ∈ [0,1]d .

Where M and W are called the upper and lower frechet-hoeffding bounds, respec-

tively.

2. An other important copula is the independence copula
∏

(u) =
∏d

i =1(ui ),u ∈ Rd de-

scribing the dependence structure of stochastically independent random variables

X1,X2, ...,Xd .

Authors in GAETA et collab. [1990] give the expression of the Spearman’s rho in the case

of d-dimensional random vector X with copula C by:

ρ =

∫
[0,1]d C(u)du −∫

[0,1]d
∏

(u)du∫
[0,1]d M(u)du −∫

[0,1]d
∏

(u)du

=
d +1

2d − (d +1)
(2d

∫
[0,1]d

C(u)du −1)

Thus, ρ can be interpreted as the normalized average distance between the copula C and

the independent copula
∏

(u). In the case of d = 2, with a simple calculation we can obtain

these results

∫
[0,1]2

M(u1,u2)du1du2 =
1

3

And ∫
[0,1]2

∏
(u1,u2)du1du2 =

1

4

Then the formula of ρ can be rewritten as:

ρ = 12
∫ 1

0

∫ 1

0
C(u1,u2)du1du2 −3
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3.2.1 Non Parametric Estimation

The aim of this estimation is to estimate spearman’s rho via the copula. Let (Xk )k=1,n be a

random sample from a d-dimensional random vector X with joint distribution function F

and copula C which are completely unknown.

The non parametric estimator of the marginal distribution functions is:

F̂i ,n(x) =
1

n

n∑
i =1

1Xi k ≤ x ∀x ∈R

And

Ûi k,n := F̂i ,n(Xi k ) i = 1, ...,d k = 1, ...,n

Note that

Ûi k :=
1

n
( Rank of (Xi k ) in (Xi 1, ...,Xi n))

The copula C is estimated by the empirical copula which is defined as:

Ĉn(u) =
1

n

n∑
k=1

d∏
i =1

1{Ûi k,n≤ui } ∀u = (u1, ...,ud ) ∈ [0,1]d

Finally the estimator of ρ is given by:

ρ̂ = h(d)(2d
∫

[0,1]d
Ĉn(u)du −1) (3.1)

= h(d)(
2d

n

n∑
k=1

d∏
i =1

(1− Ûi k,n)−1) (3.2)

with

h(d) =
d +1

2d − (d +1)

3.3 Proposed Algorithm

In this section, we propose the following algorithm to achieve the fast separation of a

several unknown source signals. This algorithm is based on discrete wavelet transform

DWT. The role of this transform is to estimate the inverse of the mixing matrix from the

approximation sub-band. Concerning the criterion to minimize it is the absolute value of
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the spearman’s rho (|ρ| ), algorithm genetics represent a tool for the minimization of this

criterion, so we can divide our algorithm in the following steps:

• Step 1

Figure 3.1: Decomposition of Observed Signals

Such as

DWTXi = [CA3
i ,CD3

i ,CD2
i ,CD1

i ], f or i = 1, ...,n

• CA j
i : Approximation coefficient at level j .

• CD j
i : Detail coefficient at level j

In this step we decompose each observed signal by the pyramidal digital wavelet trans-

form, using the bi-orthogonal wavelet Bior(4.4) up to the level 3.

• Step 2

From the previous step we can formulate our objective function with the following

way:

Let IM is the inverse mixing matrix such as:

IM =


m11 ... m1n

... ... ...

mn1 ... mnn


Where IM is an unknown square matrix and, CA = [CA3

i ,CA3
2, ...,CA3

n] is the vector of

the approximation coefficients wavelets decomposition.
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The formula of the objective function is calculated by:

f (m) = |Rho(IM.CD)|

Where Rho is the spearman’s rho,IM.CD is the simple product between the matrix IM and

the vector CD and m is a vector of the variables with dimension n ×n.

Figure 3.2: Formulate the Objective Function

• Step 3

In this part of the algorithm, we estimate the inverse mixing matrix by the optimum

m∗ of the objective function which is calculate with genetic algorithms.

• Step 4

In this step we estimate the source signals Ŝ1, Ŝ2, ..., Ŝn with the simple product be-

tween the observed signals X1,X2, ...,Xn and the previous estimated mixing matrix ÎM
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3.4 Experimental Results

We present here some experimental examples of signals, we choose the case of two and

three source signals, therefore we present some visual results that we obtained with the

aim to prove the effectiveness of the proposed method in the recovering of the source sig-

nals shape . In our case we obtain the source signals within determinations. Using some

treatment techniques after the separation operation we can obtain the source signals al-

most exactly.

Figure 3.3: A Sinisoidal Signal with the Gaussian Noise

Figure 3.4: Two Sources Signals
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Figure 3.5: Three Sources Signals
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Chapter 4

Crypting Methods Based on Singular

Values Decomposition

An expert is a person who has

made all the mistakes that can be

made in a very narrow field.

Niels Bohr
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4.1 Introduction

It is now common to transfer multimedia data via internet with the coming era of elec-

tronic commerce (images, messages, Videos . . . ; etc), but digital images are easy to copy,

edit, modify from the internet, television and other medias MOHAMED [2014], MOKHTARI

et MELKEMI [2011], Than there is an urgent need to solve the problem of ensuring in-

formation safety in today’s increasingly open network environment, so many encryption

techniques been proposed in recent yearsALFALOU et collab. [2011].

Since cryptography is the science of securing data which categorized generally into two

parts, encoding and decoding LEE et collab. [2014] it coming to solve this problem (to pro-

tect information security).

Cryptography is the science of using mathematics to crypting and decrypting; the singu-

lar value decomposition SVD is one of the mathematics tools that used (also SVD is very

important tools that used in other applications SHIH et collab. [2012], WAZWAZ [2002],

YADANI et collab. [2010].

The main problem in this paper HOUAS et collab. [2016] is how to propose new methods

of cryptography, in which the level of security is increasing and improving the contrast

to achieve the perfect blackness and whiteness of the recovered image NAOR et SHAMIR

[1996], RUFAI et collab. [2014]. By using (SVD) two methods of crypting images are pro-

posed such that the second method is the simple modification of the first one and the

application of this methods is on rectangular and square PNG’s images.

The using of the singular value decomposition in images encryption is come from the fact

that the SVD is one of the mathematical tools of matrix reduction.

The SVD procedure is already used for several purposes, we have for examples: Curve

fitting, Resolution of the system Ax=B bay the least square, Comparison matrices and Ap-

proximation matrices.

Since the matrix analysis is a useful tool in the image processing generally and specially in

image compression, this fact give chance to compress and crypt in the same scheme. This

work includes cryptography with compression and other uncompressed HOUAS et col-

lab. [2016].
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4.2 Singular Value Decomposition (SVD)

This decomposition is used in :

• Theoretical and practical solution of linear system on / unknown.

• Application to geometry problems for computer vision.

Definition 7 Singular value decomposition (SVD) is a lossy compression technique which

achieves compression by using a small rank to approximate the original matrix represent-

ing an image.

Let M be a matrix, M ∈M(Kn ×Km), K =R or C then, there exist a factorization of the form

: M = USVT

Where,

• U: is a (n ×n) unitary matrix on K, it contains a set of orthonormal basis vectors of

KM called “output”.

• S: is a (n ×m) matrix in which the diagonal coefficients are real or nulls called “sin-

gular values” of the matrix M and all the others coefficients are zeros.

• VT: is a (n×m) unitary matrix adjoint of V, it also contains a set of orthonormal basis

vectors of KM called input or analysis.

Definition 8 a singular value decomposition is a factorization of the matrix M into the

product three matrices as follow:

M = USVT

1. Singular values are the square roots of the eigenvalues of both: MTM and MMT

• U: is the matrix of eigenvectors of:MTM

• V: is the matrix of eigenvectors of: MMT.

2. the matrix S is uniquely determined from M, but U and V are not.

3. The value of Si ,i are ranked in decreasing order.
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4. We denote by Sk the matrix in which we conserve only the k first singular values

σ1,σ2, ...,σk .

Sk =



σ1 0 0 ... ... 0

0 σ2 0 ... ... 0

.. 0 ... ..

.. ... ... σk ... 0

0 ... ... 0

0 ... ... 0

0 ... .. 0



4.2.1 Existence and Uniqueness of SVD

Any matrix M ∈C(m×n) own a singular value decomposition (SVD).

The singular values σi are determined unique ways.

If M is square and singular values σi are distinct, the input and output vectors ui , vi are

determined uniquely to a complex factor unit.

4.2.2 Characterization of Singular Value Decomposition

(Theorem of Echart-Young) If the matrix Mk = USk VT, then Mk is the best rank k approx-

imation to M in the sense of Fubi ni nor m defined by:

‖M‖F =

√
m∑

i =1

n∑
i =1

M2
i j =

√
tr ace(MTM)

and we have:

‖M−Mk‖F =

√
m∑

i =k+1
σ2

i

So it is only necessary to store the first k columns of U and V in order to present Mk

Lets, M ∈C(n×n), we have:

σi (M) =
√

MI(MTM) ∀1 ≤ i ≤ n
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4.3 Proposed Schemes

As it’s mentioned previously, cryptography can be categorized into two parts, encoding

and decoding. In the encoding step of the scheme the original image is divided into three

parts or images U,S and V by SVD mentioned earlier, such as U,S and V are illegible im-

ages. After the images are successfully transmitted to the receiver; the secret image can

be decoded by transposing V to obtain VT and multiplying U,S and VT. To compress im-

ages U,S and V before transmission the SVD technique is again used, so after decoding

the secret image we obtain compressed image. The bellow results illustrate this scheme

in the two cases (with compression and without compression).

Figure 4.1: A Diagram Showing the First Scheme Proposed
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The second method is a result of a small change to the previous scheme, the purpose is

to obtaining a more complex and more secure Technique. This modification concerned

the original image which is decomposed on two images (image1, image2) and applying

the SVD procedure on these two last images. In this case the receiver received six illegible

pictures (U1,S1,V1) and (U2,S2,V2). get the secret image the receiver must follow the

same steps of the first scheme on each collection also get two images illegible, and by

summing this two he obtain the result.

Figure 4.2: A Diagram Showing the Second Scheme Proposed

4.4 Numerical Results and Discussion

4.4.1 Discussion of Results without Compression

The results obtained by the two methods (schemes) proposed above will be discussed by

calculating PSNR, NNZ and the distortion is very clear visually.

• Joulia is a rectangular image which reconstructed with PSNR = 34.84 by the first

method, with PSNR = 28.73 by the second method and with NNZ=216600 by the

two methods. Then the results obtained by the first method are better than them of

the second method.
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Table 4.1: Results of Reconstructed Images without Compression

Images Joulia Man Mandrill Boat
Method N1 PNSR 34.8141 8.8841 27.6011 5.4173

MSE 21.4621 8.4.104 112.9725 1.8.104

PNZ 216600 262144 57288 50625
Method N 2 PNSR 28.7399 29.3517 27.0861 30.419

MSE 86.941 75.4935 127.1945 59.0446
PNZ 216600 262144 57288 50625

• Man (resp: Boat) is square image (512*512) (resp: (225*225)) which reconstructed

with PSNR = 8.88 (resp: PSNR = 5,41) by the first method, with PSNR = 29.35 (resp:

PSNR = 30.41) by the second method and with the same NNZ=262144 (resp: NNZ=50625)

by the two method. Unlike to the rectangular images, in this case, the results ob-

tained by the second method are better, but the difference between them is very

prominent because MSE = 8.4075e+003 (resp: MSE=1.8679e+004) in the first method

and MSE=75.49 (resp: MSE=59.04) in the second.

• Mandrill a rectangular image with a small dimension constructed by the first method

with PSNR= 27.6 and by the second method, with PSNR =27.07, and the same NNZ=57288.

So, with this type of image the result is almost the same for both methods. We can

conclude:

1. In this case, generally the results of the first method are the better, but with

square images the result reversed.

2. Rectangular images with small dimension are almost the same behavior of the

square images.

3. The images "Man" and "Boat" reconstructed with the first method are the

worst results in this case.

The following examples illustrate the results:
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Figure 4.3: Some Examples of Scheme1, (a) and (c) Original Images, (b) and (d) Reconstructed
Images

Figure 4.4: Some Examples of Scheme2, (a) and (c) Original Images, (b) and (d) Reconstructed
Images

4.4.2 Discussion of Results with Compression

• Joulia’s image is reconstructed by the both methods with number of singular values

equal to 120 and NNZ=216600. In the first method PNSR=34.29 and PSNR =10.33 in

the second one, so in this case and with this image the first method is the best.

• Man’s image is reconstructed by the first method with number of singular values

equal to 290 and PSNR =37.53, by the second method with number of singular val-

ues equal to 230 and PSNR =5.85, and by the both methods with NNZ=262144, also

here the first method is the best.

• Boat’s image is reconstructed by the first method with number of singular values

equal to 150, NNZ=50625, PSNR =15.34, and by the second method with the number

of singular values equal to 112 and the same NNZ but with PSNR= 16.36. The image

reconstructed is not clear, than the result is not accepted.
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Table 4.2: Results of Julia’s Images with Compression

Number of Singular Values 200 230 260 290
Method N1 PNSR 35.3658 36.4287 37.1810 37.5306

MSE 18.9016 14.7983 12.4445 11.4822
PNZ 262141 262141 262141 262141

Method N 2 PNSR 10.3414 10.3374 10.3374 10.3374
MSE 6.01.103 6.0165.103 6.0165.103 6.0165.103

PNZ 216600 216600 216600 216600

Table 4.3: Results of Man’s Image Reconstructed with Compression

Number of Singular Values 90 120 180 210
Method N1 PNSR 34.7963 34.8141 34.8141 34.8141

MSE 21.5502 21.4621 21.4621 21.4621
PNZ 216600 216600 216600 216600

Method N 2 PNSR 28.7399 27.0861 27.0861 30.419
MSE 1.68.104 1.68.104 1.69.104 1.69.104

PNZ 262141 262141 262141 262141

Table 4.4: Results of Boat’s Image Reconstructed with Compression

Number of Singular Values 90 112 150 185
Method N1 PNSR 33.9261 35.4824 36.2717 36.2717

MSE 26.3314 18.4009 15.343 15.343
PNZ 50625 50625 50625 50625

Method N 2 PNSR 16.3566 16.361 16.361 16.361
MSE 1.504.103 1.504.103 1.504.103 1.504.103

PNZ 262141 262141 262141 262141
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We can say in the case of compression:

1. The results of the first method are the best.

2. The worst results obtained by applying the second method to square imge (boat).

The figures bellow illustrate this results:

Figure 4.5: Some Examples of Scheme1, (a) and (d) Original Images, (b) Reconstructed Image with
70 SV, (c) Reconstructed Image with 110 SV, (e) Reconstructed Image with 112 SV, (f) Reconstructed
Image with 150 SV.

Figure 4.6: Some Examples of Scheme2, (a) and (d) Original Images, (b) Reconstructed Image with
70 SV, (c) Reconstructed Image with 110 SV, (e) Reconstructed Image with 112 SV, (f) Reconstructed
Image with 150 SV.
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Conclusion

In the aim of improving the performance of security of : transmission, storage,compression

of the signal (information); the research work presented in this thesis consists to study in

detail the steps of techniques proposed in tow papers

• Blind-Source Separation Based on Wavelet Transform and Spearman’s Rho.

• Novel Crypting Methods Based on Singular Values Decomposition.

As well as the package used to achieve it.

that’s why;We have chosen to present this work in two parts:

The first one concern signal processing domain,especially, source separation in which

the problem of blind source separation is treated (solved) in the simplest case, where N

sequences X1(t ), ......,XN(t ) were observed (each one was a linear combination of N in-

dependent unknown sequences S1(t ), ......,SN(t ) using discrete wavelet transform and ge-

netic algorithm where we estimate the mixing matrix through the sub-band approxima-

tion . The proof of robustness of this method was done in the form of visual results that

obtained by choosing the case of tow and three sources signals.

The second method has relation with the world of secrets ; so it was a new encryption

technique ; The tool that we based on to develop this method was the singular values de-

composition, with which we benefit the compression of informations (signal) at the time

of encyption.

The efficiency of this technique was illustrate by numerical results given by calculation of

MSE and PNSR in form of tables and also some visual result as a consequence of applica-

tion of this method on png square and rectangular images.
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