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Abstract ——

Image segmentation is the problem of partitioning an image into different sub-regions
based on a preferred feature. Segmentation is an important research area in image processing
and plays a significant role in computer vision and object detection. A large number of
different approaches have been developed to deal with segmentation problem including the
active contour models (ACMSs). The fundamental idea is to evolve an initial curve under some
constraints from a given image to detect object boundaries by minimizing energy. Within this
framework, this thesis aims at developing models dealing with problems of detecting objects
(segmenting images) characterized by intensity inhomogeneity and noisy and poorly defined
boundaries. To deal with these challenges, we proposed a number of ACMs relying on the
level set method. The first one combines edge and region information based on an adaptive
weighting function. The second approach uses local region-based signed pressure force in a
simple and efficient level set formulation. Finally, the third one implements an edge-based
segmentation with a novel stopping function based on local binary pattern (LBP).
Experimental results demonstrate the high accuracy of segmentation obtained on various
synthetic and real gray value images compared with state of the art ACMs.

Keywords: Active contour model, edge stopping function, Object detection, image
segmentation, level set method, local binary pattern, region information, signed pressure
force.



Reéesume ——

La segmentation d'image est le probléme de partitionnement d'une image en différentes
sous-régions sur la base d'une caractéristique préférée. La segmentation est un domaine de
recherche important dans le traitement d'images et joue un role important dans la vision par
ordinateur et la détection d'objets. Un grand nombre d'approches différentes ont été
développées pour traiter le probléme de segmentation, y compris les modéles de contour actif
(MCA). L'idée fondamentale est d'¢laborer une courbe initiale sous certaines contraintes d'une
image donnée pour détecter les limites d'objet en minimisant une énergie. Dans ce cadre, cette
theése vise a développer des modéles traitant de problémes de détection d'objets (segmentation
d'images) caractérisés par inhomogénéité d'intensité et des limites bruyantes et mal définies.
Pour faire face a ces défis, nous avons proposé un certain nombre de MCAs s'appuyant sur la
méthode d’ensemble de niveaux. Le premier combine les informations de contour et de région
sur la base d'une fonction de pondération adaptative. La deuxiéme approche utilise la force de
pression signée locale basée-région dans une formulation d’ensemble de niveaux simple et
efficace. Enfin, le troisieme implémente une segmentation basée contour avec une nouvelle
fonction d'arrét basée sur le motif binaire local (LBP). Les résultats expérimentaux
démontrent la grande précision de la segmentation obtenue sur diverses images en niveaux de
gris synthétiques et réelles par rapport a 1’état de 1’art des MCAs.

Mots-clés: Modele de contour actif, fonction d'arrét de contour, détection d’objet,
segmentation d'image, méthode d’ensemble de niveaux, motif binaire local, information de
région, force de pression signée.
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Chapter 1

Introduction

1.1. Image segmentation

Image segmentation is the most studied problem in computer vision. We will start with
an example showed in Fig. 1.1 demonstrates that the segmentation is a difficult problem even
for humans; typically we are in stage today where things that are easy for humans are difficult
for computers. Refers to Fig. 1.1, not many humans recognize what’s on the image; it is a
Dalmatian dog (white dog with black spots), this problem of detecting and separating objects
from background is called segmentation. More specifically image segmentation can be
formally described as:

Definitionl. 1.

Let Q be an image domain. Image segmentation refers to the process of partitioning CQ into

disjoint sub-regions {02,.},r = 1, ..., N, which satisfy [1] :

1 UM, =0;

2. 0,N0N,=0,Va+b;

3. P(Q,) =true,Vr,

4. P(2,NQ,) = false,VYa # b.

P() is a logical predicate defined on groups of connected pixels.
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Figure 1.1: Binarized image of a Dalmatian dog in a background of leaves (left). The
dog is located to the right of the center with its back to the viewer (right) [2].

There exist many approaches to tackle segmentation problem, they typically differ in
the following ways:

- Which local properties are considered to compute segmentation (brightness, color,
texture, motion...).

- How the segmentation is computed; once the criterion which the segmentation is based
on is decided, the next question is what’s the algorithm used to group pixels (region
merging, region growing, level sets...).

Segmentation methods are generally classified into five categories [3]:

1.1.1 Thresholding segmentation

Thresholding methods are pixel based strategies, and usually convert an image into a
binary image containing two subsets (foreground and background) based on a threshold value
(6). The idea is to label each pixel as one “1” (object) if its brightness is larger than the
threshold value (6) or zero “0” (background) if it is darker than ().

The challenge in these methods is to find a good threshold value. There are a lot of
strategies doing that including Otsu’s thresholding [4] which is the most popular. This method
proposed a particular threshold such that the brightness variance of the object and background
are minimized; the algorithm tries to find brightness threshold between object and background
in such a way that the pixels that form the object have minimum variance of brightness and
similarly for the background. Thresholding has many advantages; typically is very fast and it
can be run in real time.
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In addition it has adaptive variants that can improve the performance
(brightness distribution and brightness variance). However thresholding neglect spatial
context (i.e the information that neighboring pixels are likely to be part of the same region.
Instead all pixels are treated independently).

1.1.2 Clustering methods

They are systematic approaches to tackle thresholding; the idea behind clustering is
to compute segmentation of an image by combining pixels of similar brightness in a
single region (cluster) and representing theses clusters by probabilistic distribution. There
are many clustering algorithms and the most common one is K-means clustering [5].
This method determines a given number of K clusters by iteratively assigning data points to
the nearest of K cluster center and subsequently re-computing these cluster centers to
represent the segmented image, each data point is replacing with the cluster center of
that cluster. In principle, this method is a form of segmentation because all pixels are
partitioned into groups, but it is actually a little more what is called “brightness
quantization”; by getting a good approximation of the original image with just K levels and
this could be used for example for image compression.

1.1.3 Edge-based segmentation

This method identify contours which approximate discontinuities of the gray level,
color, texture....The location of discontinuities is given by an extreme of either the first order
derivative of the image intensity [6,7] or the zero crossings of second order derivative [8], one
of the most accurate techniques in this category is the Canny edge detector [9]. The canny
edge detector is less sensitive to noise than other first derivative edge detector; taking image
derivatives leads to accentuate high frequencies as noise and the canny algorithm convolves
the image with a Gaussian filter (low pass filter) to smooth it. Although these methods are
easy to be implemented, they are very sensitive to noise and they are likely to produce gaps
between boundaries [10].

1.1.4 Region-based segmentation

This category is in some sense complementary to the previous category; that it identifies
regions in the images plane for which some criterion is more or less uniform (brightness,
color, texture...). Two rather old methods for computing region-based segmentations are
region merging and region growing [11,12]. Both methods are similar in their principle but
they go slightly different ways; the idea is to find segmentations by aggregating pixels into
regions. In region growing, one start with a couple of seed pixels and then iteratively include
neighboring pixels (grow regions) as long as their predefined criterion is sufficiently similar.
Region merging approach starts with a partitioning for which each pixel is its own region and
then, iteratively merges (fusion) neighboring regions as long as they are sufficiently similar.
The advantage of these techniques is that they are interactive in some way and they always
determine connected regions, but they typically lack a systematic optimization criterion.
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1.1.5 Energy-based segmentation

These methods form the segmentation problem as an optimization problem which tries
to divide the images into regions by optimizing some criterion (minimizing or maximizing
energy) [13].

Active Contour Models (ACMs) [14] are the most popular techniques in this category;
the idea behind the ACM is to drive an initial curve inside the image domain to be segmented
to reach the boundaries of the objects of interest by minimizing energy. Where the curve is
argument of this energy [15], one of the questions that we will look for: how does the
boundary is represented? According to curve representation there are two types of ACMs,
parametric models and geometric models. Parametric ACMs [16-18] are implemented
explicitly as parameterized curves with a set of control points, and evolving the curve is
reached by evolving these control points. However, by construction, parametric curves have a
fixed topology; without additional splitting or merging heuristics, the curve topology will
not change during its evolution. Geometric ACM are independently introduced by Casselles
et al [19,20] and Malladi et al [21]. These models combining curve evolution theory [25] and
level set method (LSM) [26], give sophisticated solution to overcome the limitation of
parametric ACM. The key idea is to evolve a level set function (LSF) where the curve is
representing its zero level. The main advantage of this approach is that the topological
changes of the curve represented by the LSF are handled automatically.

According to the LSM strategy, there are two different strategies to tackle segmentation
with LSM: partial differential equation (PDE) based ones [19-22] and variational ones
[23,24]. The level set evolution (LSE) of PDE based LSM is directly derived by
implementing the gradient descent equation for the curve using the level set equation. This
was done to derive the LSM for snake-like energies known as geodesic active contour (GAC)
[20,22]. The LSE of variational LSM is derived by rewriting the variational principle with
respect to the LSF rather than the curve, and then computing the gradient descent with respect
to this function [23,24]. This method presents advantages over PDE based one, that it is more
robust and more convenient for incorporating additional information such as shape and region
location [27].

The energy has two components, one is the regularity term or internal energy and one is
the data term or the external energy. The internal energy is a regularizer which induces some
smoothness on the curve. External energy is image-driven; that is based on different image
characteristics. According to image characteristics ACM can be classified into two main
categories: edge-based models and region-based models. Edge-based models [20,23] rely on
local image gradient information to construct an edge stopping function (ESF) to stop the
evolving curve on the desired objects boundaries. Although these models have been
successfully applied for images with height variation in gradient at objects boundaries even in
the presence of intensity inhomogeneity, they meet difficulty when dealing with object having
blurred or discrete boundaries and they hardly detect objects corrupted by noise [28]. Region-
based models form the foreground and background regions statistically and find an energy

optimum where the model best fits the image [29]. These models control the evolution of the
4
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curve with better performance including weak edge and noise. However, modelling regions
using global statistics [24,30] is not applicable to images with intensity inhomogeneity.
Although, some region-based models using local statistics have been proposed to deal with
intensity inhomogeneity [31-33] but they are found to act locally, to be easy to trap into local
minima and the local statistics are only defined empirically, which make these models
sensitive to the choice of those statistics [34].

1.2. Motivation

Current ACMs, either edge-based models or region-based models (using global or local
statistics) are efficient to some extent to handle segmentation problem. However, they have
shortcomings when dealing with noisy images for edge-based ACMs, or with images have
several intensity levels or with intensity inhomogeneity for region based-models even with the
use of the local statistics; such models are found to be less robust to noise and very time
consuming.

As a consequence, these problems need to be addressed, such as:

- Can edge and region information be combined in a single model?

- Is it possible to develop a local region-based model which is computationally efficient
and robust to noise?

- Can edge based models be ameliorated to deal with noise but keeping sophisticated edge
structures?

Motivated by these issues, we mainly focus on:

- Combining edge and region information in a variational level set formulation.

- Develop fast and robust local model to deal with images characterized by many intensity
level or intensity inhomogeneity by using a new level set formula and new regularizers.

- Construct a robust and effective edge-based model based on a new approach which is a
crossover between edge detection and texture analysis.

In this work, we will focus on the two regions case (object/background) with only gray
level images.

1.3. Organization of the dissertation

In this thesis, we focus on studying segmentation methods for images with noisy or
poorly defined objects boundaries and with intensity inhomogeneity or with several intensity
levels. For that, we begin by the review of the main concepts of the ACMs and the different
types. We will then discuss the weaknesses met with each type. Finally we will propose
possible solutions to address these problems.
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The remainder of this thesis is organized as follow:

In chapter 2, we review the state of art of ACMs and the different types based on the
curve representation, the LSM strategy and the information used, we will focus on their
strength and weaknesses.

Chapter 3 presents the proposed hybrid edge and region based ACM in a variational level
set formulation; by combining both edge and region information, the energy functional of
the proposed level set formulation is defined with a region term, which allows
bidirectional motion of the curve and drives it when it is far away from object boundaries,
and an auxiliary edge term which attracts the curve and stop it at objects boundaries. In
addition, a regularization term is added to the energy functional to ensure accurate
computation and avoid expensive re-initialization of the evolving LSF.

In chapter 4, we propose within a PDE level set formalism an ACM based on local image
region statistics. The proposed model has the following strength: it can handle intensity
inhomogeneity problem by introducing a new region based signed pressure force (SPF)
function which uses the local region means values inside and outside the curve to guide
the curve evolution; it offers high efficiency and rapid convergence by using a simple and
efficient level set formula which uses directly current LSF instead of its curvature
approximation, and it is robust to some extent to noise by using a new regularizer such as
morphological opening and closing operations to remove small objects and smooth the
curve.

Chapter 5 describes our proposed ACM based on the Local Binary Pattern (LBP). The
gradient stopping function that is widely used in edge-based ACM as an edge indicator is
high sensitive noise and poorly defined boundaries. Inspired by recent development for
edge detection, we use LBP textons to construct an LBP stopping function (LBPSF). The
classification of image regions by LBP textons into noisy, homogeneous regions, and
edges helps to generate a filter rejecting pixel positions of noise and detect edges using a
modified Canny edge detector in such a way, the new stopping function takes the value of
“0” on edge to stop the motion of the curve while has value of “I” on noisy and
homogeneous regions.

Finally the last chapter concludes the present work and presents a number of limitations
of the proposed methods and some possible future work directions.
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Active contour models

2.1. Introduction

Classical image segmentation methods lack a mathematically or rigueur transparent
optimization criterion. This is where energy-based segmentation enters the picture. The key
idea is to define cost functionals over a solution space and to compute optima by solving the
corresponding extremality principle. This method allows solving segmentation problem in a
mathematically transparent manner. Instead of performing a heuristic sequence of
processing steps, one starts by defining what properties a solution should have. The
most popular technique in this method are ACMs; The main idea is to segment an
object by iteratively deforming (evolving) a given initial curve until it reaches the
edges of the object by minimizing energy calculated from different criteria. During
the minimizing process, the points of the curve will move so that the curve at the
following iteration has a lower energy, and the curve evolves until it reaches the border of
the desired object [35].

To build an ACM, there are mainly three criterions that we based on; the
curve representation, the level set strategy used and the information or image
characteristics used. This chapter reviews the main types into each category, its theoretical
framework, advantages and weaknesses.

The goal of this chapter is to give an introduction to the theory behind ACMs, their
similarities, differences and problems to motivate the proposed methods those will solve
some of these problems later on.

The outline of this chapter is as follow: we start with describing two well-known
categories of ACMs based on image characteristics. Namely snakes (edge-based method)
and the Mumford-Shah (M-S) functional (region-based method).

This helps us to study other categories based on the curve representation (parametric
and geometric), the level set strategy (PDE and variational) which is the content of the
next section. The last section focuses on using local regions statistics to build local region-
based ACMs that will be presented and discussed.

2.2. Snakes

The snake model proposed by Kass et al [14] in the late 80", to our knowledge, is the

first ACM. The idea is to minimize an energy gi})}/en by:
E(C) = [GICI* +51Css|* = IVI(O)?}ds 2.

7
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Here C denotes an explicit parametric curve, C; and C,s denote the first and the second
derivative with respect to the curve parameter. The first two terms of (2.1) weighted by a and
[ are the regularity term or the internal energy of the contour, measuring the length and the
stiffness of the contour.

The last term is the data term or external energy which accounts for image information,
in the sense that the minimizing contour will favor locations of large image gradient [2],
minimizing the total energy leads to curves which are short and stiff while passing through
locations of large gradient. Minimizing of (2.1) by gradient descent results in the following
evolution equation':

dc(s,t) dE
a4t dc aCss — PClssss + |7||7](C)|2 (2.2)
The snake is among the most influential publications in image processing and is
considered as the first variational approach to image segmentation”. However, it still has

several limitations:

e The initial curve must therefore be initialized sufficiently close to the desired solution
because the external energy is active only close to object boundary. Alternatively one can
presmooth the input image (to propagate gradient information). Yet, the smoothing also
removes possibly important edge information (Fig. 2.1). Several methods have been
proposed to address problem of initialization of the curve [17-18,36-38] in aim of
propagating the edge information into the image to increase the capture range of external
energy.

e The evolution of parametric curves is a challenging problem as one needs to avoid self
intersections. More details about this problem are given in section 2.4.

- C
-

NS

Figure 2.1: Segmentation example using snake model [14]. From left to right: input image
with the initial contour, Gaussian-smoothed input image, the final segmentation
(implementation: D. Cremers).

"The theory behind functional minimization is developed in Appendix A.

’To Dec’16, it has acquired more than 19000 citations.
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2.3. The Mumford-Shah model

The M-S model [39] was proposed to compute segmentation integrated with image de-
noising. It searches for a piecewise smooth approximation by minimizing the functional:

E(u,C) =21, (I —u)2dx +3 [, . |Vul?dx +v|C]| 2.3)

Simultaneously with respect to the image u and with respect to the curve C. the three
terms have the following meaning:

e The data term (first term) assures that u is a faithful approximation of the input image I; it
just that we want to compute an approximation u of the original image that matches the
image in a least square sense.

e The smoothness term (second term) weighted by A > 0, assures that u is smooth
everywhere except for the boundary C.

e A further regularizer weighted by v > 0 assures that this boundary has minimal length |C]|.

For increasing value of the weight A, the approximation u is forced to be smoother and
smoother outside of C. In the limit 1 —oo0, we obtain a piecewise constant approximation of

the image I3:
E(u,c) = [, U(x) —u(x))?dx + v|C| (2.4)

Where u(x) is constant in each of the regions separated by the boundary C. If we denote
these regions by {Q4, Q, ..., } and the constants u;; this can be rewritten as:

E({ug,uy .u,},C0) =31, fni (I(x) — u;)*dx + v|C| (2.5)

Minimizing of (2.5) results in an approximation of the input images / by a function u
which is piecewise constant on a set of regions (); separated by the boundary set C, where the
constants u;; are given by the average brightness in each region:

fﬂil(x)dx

fﬂi dx

9k - 2, () —u)?dx =0 = u; =

aui -

(2.6)

For the piecewise constant M-S functional, and only two regions separated by a curve
C. Zhu and Yuille [40] proposed to minimize the piecewise constant M-S as*:

aC(s,t dE .
—;i }= —— = (I = uex)? = (I = uine)? — vKINL (2.7

Where 1, is the outer normal and K, denotes the local curvature of C.

If the local brightness I(x) at a point x in the curve C is more similar to the average
brightness of the interior, then x is assigned to the interior (the curve moves outward) and
vice versa (Fig. 2.2). In addition the evolution aims at suppressing large curvature of the

*ForA = O we get the same cost function, but the constraint is = cste, and with A = 0, U can be equal

to I and this solve the problem.
* The technical details of this implementation are described in Appendix B.
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Figure 2.2: Competition between two adjacent regions; at each boundary point, displace the
curve: outwards, if |I — uj,e| < |I — Upyt|, inwards if |[I — wjpe| > 11 — Uyt

curve; this is what leads to a local minimization of the boundary length |C|. Other
implementation of the M-S functional within the level set framework has been proposed by
Chan and Vese [24] and by Yezzi ef al [41].

2.4. Level set methods

The level set methods have been extremely popular as a representation for evolving
curves, and what we saw in the previous sections, one very straightforward way is to represent
a curve as points of the boundary and that could be in the simplest case a polygon, and in a
more sophisticated setting a spline; this is called a parametric representation of the boundary
or explicit representation. The level set method is very different from that; it is what called an
implicit representation.

2.4.1. Explicit VS implicit curve representation

Gradient descent on respective Functional E (x) leads to an evolution of the boundary in
normal direction, which can be implemented explicitly or implicitly. Explicit boundary
evolution has the following strength (+) and weaknesses (-):

+  Explicit evolutions are runtime and memory efficient, allowing a fast evolution of highly
detailed boundaries.

+  Prior shape knowledge can be imposed directly on the evolving boundary.

- The numerical propagation of explicit boundaries is prone to instabilities, as self-
intersections have to be avoided and re-gridding of control points may be necessary.

- Respective functionals are typically not convex with respect to the boundary C. hence
solutions are typically only locally optimal.

2.4.1.1. Explicit curve evolution

Gradient descent on a functional E (x) leads to an evolution of the curve C:

SIS

C=>=Fn (2.8)
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With some speed F in direction of the outer normal n. A parametric representation of
the curve as a spline is given by:

C(s,t) = XY= x;(t)B;(s) (2.9)

With control points x;, X, ...x, € R? and basis functions By, ... B, (Fig. 2.3). Inserting
the spline representation into the evolution equation gives:

C =Y%,(t)Bi(s) =Fn (2.10)
Projection into the basis function By leads to:
< By, C >=3;%;(t) < By, B; >=< By, F, >= [ B,(s) F(s)n(s)ds (2.11)
This is a linear equation system in X;, namely:
Bx = q with By; =< By, B; > and q;, =< By, F, > (2.12)
The temporal evolution of control points is given by:
x =B lq (2.13)
Time discretization leads to an update of the control points x:
x(t+1) = x(t) + x(t) = x(t) + TB 1q(t) (2.14)

Fig. 2.4 is an example for M-S cost function and the propagation of the curve to the
interior of the object. As we can see, the curve can evolve and move of a fairly large
distances, but we should say here that there is that aspect of re-gridding that you have to do;
and in this context this curve was represented with around 800 control points[42].

By construction, parametric curves have a fixed topology (typically a single closed
curve). Without additional splitting or merging heuristics, the curve topology will not change
during the curve evolution (Fig. 2.5). In order to reach this aims, some schemes have been
developed [43-45]; as disadvantages we may cite their complex algorithms and computational
burden [46].

T
: TERN - QN | G —— Brna
=
o %
; I "
q I
0.5 .
/ H
! H
I
/
/
’
0 1

Figure 2.3: The basis functions and example of spline curve. The control points are
represented by squares.
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JNIN
e QGE

Figure 2.4: Example of propagation of the curve for M-S cost function [42].

Figure 2.5: The problem of fixed topology with explicit curve evolution [42].
2.4.1.2. Implicit curve representation

Alternatively to an explicit curve representation, one can represent a curve C implicitly,
for example as the zero level set of an embedding function ®: () - R

C={xe Q\ox) =0} (2.15)

Refer to Fig. 2.6, let’s say the green plane is the image plane, and the red curve is the
boundary that we want to represent, and we represent it implicitly by this embedding function
or level set function (LSF).

This has several advantages:

+ The representation does not require a choice of parameterization.
+  The topology of the curve is not fixed.

12
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Figure 2.6: Non parametric implicit curve representation via Level set.

The evolution of curves by means of a dynamical embedding function is known as the
level set method (LSM). It was first published by Dervieux and Thomasset [47] and was later
reinvented by Osher and Sethian [26].

The key idea is to model the temporal evolution of a curve C(t) using a family of
embedding functions ®(x, t) such that: C(t) = {x € Q P(x,t) = 0}.

The central question is how to evolve the embedding function ® such that the implicitly
represented curve C follows a prescribed motion.

Let the motion of the curve C be given by:

dc _

= Fn (2.16)

With some local speed F along the outer normal n, by definition, for any time the
embedding function @ is zero at all points of the curve.

Ve, ®C(),t)=0 (2.17)

As a consequence, the temporal derivative of this expression must be zero.

d dc = 9o
0 —ECD(C(t),t) _VCD'EJFE (2.18)
We can solve for the temporal evolution of ®@ and insert (2.16) and the definition of the
outer normaln = — Yo :
V|
D dc Vo
E = _VCDE = —V®Fn = V‘DFE = F|Vd>| (219)

The above derivation shows that for a curve evolution with speed F in normal direction,
the embedding function at the zero level must follow the equation:

13
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22 = F|vo| (2.20)
at
Curves can thus be evolved simply by iterating this partial differential equation called
the level set equation (LSE). For visualization of the curve, one simply reads out the zero

level of ®@(x, t) at any time t. Over time, this curve may undergo splitting and merging.

While the LSE specifies the motion of @ at the boundary (curve) the evolution outside
the curve location can in principle be arbitrary. Typically, one imposes that the LSF remains a
signed distance function (SDF), i.e.:

®(x,t) = tdist(x,C) (2.21)
Where @ is positive inside and negative outside the curve.
2.4.2. Level set methods for image segmentation

The first level set formulation for image segmentation were introduced in the 1990s by
Casselles et al [19,20], Malladi et al [21], Kichenassamy et al/ [22]. Starting from a
variational principle (snakes or M-S model) there are two alternative approaches [48]:

- Partial Differential Equation (PDE) based ones: where the level set evolution is
directly derived from the geometric consideration of the motion equation (2.16). This was
done to derive a LSM for snakes like energies known as GACs [20, 22].

- Variational ones: in which the variational principle is re-written with respect to the LSF
(rather than the curve) and compute the gradient descent with respect to the LSF. This
was proposed by Chan and Vese [24] to derive a LSM for the M-S model.

Both of these approaches are popular and both have advantages and drawbacks, the
GAC is an approach for the snake, so edge-based segmentation method and C-V is proposed
for the M-S, so more region-based segmentation method.

In the following, we will discuss both of these approaches.
2.4.2.1. The Geodesic Active Contours

Consider the edge-based segmentation energy:

E(C) = [ g(c)dc (2.22)

It looks a little bit like the snakes in sense that we have some cost function that we
integrate over the curve to undergo strong edges; the difference is that the data term—|VI|? in
the snakes is replacing with some edge indicator function g:

1
1+|VIgy(x)|?

gx) = (2.23)

Assigning small values to strong gradients of the smoothed image I,. The gradient
descent equation for C is given by:

14



Chapter 2. Active contour models

% = gkn + (nVg)n (2.24)

With curvature k and normal n. the LSE is:

D . v\ . (VD
22 = |voldiv (g(x) ﬁ) = g.|Vo|div (|v¢|) +Vg.Vd (2.25)

GAC is a generalization of the snakes; that its cost function is a mix of a data term and
regularity; in a way that the length of the curve is cheaper in locations of strong gradient and

more expansive in locations of low gradient.

Usually, the first term in the right hand side of (2.25) can be extended by replacing

div (IZ_:;I) with div (IZ_ZI

balloon force [36], is included [1].

)+ a, so that a shrinking or an expansion force, similar to the

One thing that we should mention it, that this type of level set does not compute global
minima; from Fig. 2.7, the interior part of the keys should be segmented as a part of the
background, and curves in this type can split and remerge but cannot jump (create curves in
different locations).

2.4.2.2. The Chan and Vese LSM

In [24], Chan and Vese (C-V) proposed a LSM for the M-S energy, and in that method,
interestingly curves can jump. This method is complementary to some sense to GAC in the
sense that it tackles not edge-based segmentation but region-based segmentation. For the
piecewise constant M-S model with two regions (; and Q, = Q — Q,, and this partitioning
can be represented by the LSF and more specifically, the Heaviside step function:

if ®>0(.ex€)
0, else (l.ex€Q,)

Hy = H(®) = {1’ (2.26)

Figure 2.7: Geodesic Active Contours via Level-sets (example from [53]).
15
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With this, we can write the M-S energy as follow:
EQu;, 90, = f (1) = ugne)?dx + [, (1) = Uge)2dlx + [0, 2.27)
E(ui! q)) = fQ (I - uint)zHCD + (I - uext)z(l - Hd))dx + va |VHq>|dX
= fﬂ (I - uint)2 + (1 - uext)2 Hd> + (I - uext)zdx + va |VH¢'|dx (2-28)
Local minimization of the C-V energy can be done by gradient descent. To this end, one

assumes the Heaviside step function is slightly smoothed (to make it differentiable). Its
derivative is the smoothed delta function:

“CH(®) = () (2.29)

The gradient descent equation can be computed with standard Euler-Lagrange calculus:

[o1e) 0E . Vo
= =32 = 8PV div (To) + U = Uexe)? = (I = in)?] (2.30)
. _ _ Jo 1(X).H(¢p) dx _ Jo 1(0).(1-H()) dx
With (@) = RS and ue(9) = BT (231)

For the smoothed delta function, one has various choices, for example:

8(P) = - (ezj o7 Withe >0 (2.32)

What’s important in these examples, that this method is robust to noise and it allows
jumps of the curve (Fig. 2.8). Why does the boundary jump? Strictly speaking, it doesn’t; if
we really have a delta function § (@), the embedding function will only move at the zero level
because & () is zero everywhere else. But since we have a blurred version of §(®)that has a
certain width in the range of ¢, it means that the embedding function will also move slightly
inside and outside the boundary and so that, region competition term ((I — Upy)? —
(I — uine)?) will also be active everywhere in the image to create an interior boundary.

Figure 2.8: Level set evolution of the C-V model (implementation: D. Cremers).
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Although this region-based model is quit robust to initializations and noise, it is build
on the assumption that each region should be start statistically homogeneous that make such
model sensitive to intensity inhomogeneity (Fig. 2.9).

2.5. Local region-based ACMs

In order to accurately segment and detect inhomogeneous objects, some work using
local image statistics within the level set framework have been recently proposed. The key
idea is to introduce a spatial window K to define the locality, suppose x and y to be two
district points in image domain (2. The local region can be defined by the following Kernel

[]:

K(x,y)z{l lx =yl <h (2.33)
0 otherwise

The local region at a given point x € C will be denoted by O(x) = {y:||x — y|| } < h.
It is represented by the area inside of the blue circle shown in Fig. 2.10. Then the local
neighborhood of x is divided into a local interior and exterior by the curve C. In the
following, we will focus on some important local region-based ACMs.

2.5.1. Local binary fitting model

The idea of incorporating local region statistics in a variational framework begins to our
knowledge with the work of Li and his co-workers [31]; the data term using the LSM is
defined as follow:

Epor(®, fines fext) = A [ Kot = ¥) (10 = fine ()" H(@(y))dy] dx
+ 22 [[ Kot =) (10) = fuxe () (A = H(@W))dy|dx  (2.34)

Where 1,, 4, are weighting positive constant. K; is a Gaussian Kernal Function with
scaling parameter ¢ with a localization property that K, (u) decreases and approaches zero as |

u| increases, and the scale parameter ¢ is a constant to control the local region size, f;,; and
fext are approximation of the local image intensities inside and outside the curve, respectively
given by:

Figure 2.9: Segmentation examples of synthetic image with intensity inhomogeneity
(red curve: initial contour, pink curve: result). Left: results of the C-V model, right: the LBF
model [1].
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Figure 2.10: Graphical representation of local region [1].

JoKa*[1GH(®)]
4 fine ) =" 7% @y

Jo Ko*[10)(1-H(®))]
X =
Ve’“( ) [ Ko*(1-H(®))

(2.35)

In general, the LBF model can produce good segmentations of objects with intensity
inhomogeneity. However, the LBF model only takes into account the local mean intensity
information. Thus, this model is easy to be trapped into local minimum of the energy
functional and the model is also sensitive to initial location of the curve [32].

2.5.2. Local Gaussian distribution fitting model

Wang et al [49] proposed the LGDF model by considering more complete statistical
characteristics of local intensities; where these intensities are described by Gaussian
distributions with different means and variances. The energy functional of this model is
defined as [50]:

ELopr(®, Uy, up, 04%,05%) = f - Zi2=1 f w(x — Y)IOQPi,x(I(J’))Mi( @ (y))dy dx (2.36)

Where M;(®) = H(®) and M,(®P) = 1 — H(P). w(x — y) is a nonnegative weighting
function, u;(x) and g; are local intensity means and standard deviations respectively given
by:

w;(x) = J wl=y)Mi(@y)NI)dy and O'i(x)z _ [ wx=y)M(() (i) -1())2dy

L i=1,2(2.37)
[ wx-y)Mi(@@))dy [ wx-y)Mi(@(y)dy

The LGDF model can distinguish region with similar intensity means but different
variances. However it has also shortcomings as the LBF model, that is may introduce many
local minimums and the result is more dependent on the initialization of the curve [51].
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Chapter 2. Active contour models

2.5.3. Locally statistical ACM

This model has been proposed with aim of handling intensity inhomogeneity problem
and of being robust to initial contour location. It is applicable for both simultaneous
segmentation and bias correction. A multiplicative model of intensity inhomogeneity is
considered where the observed image I(x) can be expressed as:

I(x) =bx)](x) +n(x), x€Q (2.38)

Where b(x): Q — R is the bias field which is spatially variant; J(x): Q = R is the true
signal which is assumed to be piecewise constant and n(x) is the additive noise that assumed
to be Gaussian distributed with zero mean and variance o2 [34].

In order to establish a local external energy for this model Zhang et a/ [34] first, model
the distribution of intensity belonging to each object domain {2; as a Gaussian distribution
with spatially varying means and variances:

1 (I(y)—b(x)c;)?
PUMa) = m—exp (- 5220) y e (2:39)

Where a; = {b, ¢;, 5;}, 0; is the standard derivation of intensity domain (); and b(x)c; is
the local mean.

Then a sliding window is used to transform the intensity domain to another domain,
where the distribution overlap between different domains is significantly suppressed as
observed from Fig. 2.11:

= 1
I(x|a;) = mxyeainoxl(ymi) (2.40)
Where m;(x) = ||Q; N O4||. A maximum likelihood function is defined for each point in the

transformed domain, which is integrated over the entire domain to form a variational level set
formulation as follow [52].

- )2
E@) = Ty [y Jo, %G y)(log (yf2mo, + 222 dydx (241)
b, P
Cop()

be, be, 1.1

Figure 2.11: Distributions of adjacent regions in the original image intensity domain (blue
solid curves) and the transformed domain (red dashed curves) [34].
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Chapter 2. Active contour models

Where K, (x,y) is a kernel defined as in (2.33).

Although, this model is robust to initialization and can handle intensity inhomogeneity,
it is characterized by high computational cost, in addition to the limitation of relying on a
particular probabilistic model [3].

2.6. Conclusion

In this chapter, after a brief introduction to the principle of classical ACM, we have
introduced geometric ACM based on the LSM, then within this framework, we introduced
two different strategies using the level set method (PDE ones and variational ones) with two
complementary informations (Edge-based and region-based). Edge-based approaches are
applied for images with height variation in gradient at object boundaries even in the presence
of intensity inhomogeneity while region-based approaches solve problems met with edge-
based models such as poorly defined boundaries and noise, but they are sensitive to intensity
inhomogeneity problem. We also reviewed the general framework of local region-based
models and some methods that can handle intensity inhomogeneity problem. However, these
models are sensitive to contour initialization to some extent, very time consuming and the
results are also highly dependent on the choice of the Kernel size (size of the locality). The
following chapters will introduce several possible solutions to these problems.
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Chapter 3

A Hybrid ACM

without re-initialization

3.1. Introduction

Region-based ACMs are surely better alternatives to edge-based ones for images with
noise or discrete edges. However, they do not often work for images with intensity
inhomogeneity. Therefore, this brings out to the problem of the combination of edge and
region information in one level set formulation. Facing with this problem, the rest of this
chapter is organized as follow:

- We can learn several methods that regularize the LSF in its evolution, in implementing
the LSM, the LSF is initialized to be a signed distance function (SDF). Since the LSF
often becomes very flat or steep near the zero level, a remedy called re-initialization is
applied periodically to enforce the degraded LSF being a SDF [48]. However, it is very
time consuming. In recent years, some variational level set formulations [54,23] to
regularize the LSF during its evolution, and hence the re-initialization procedure can be
eliminated. These variational LSMs without re-initialization have many advantages over
traditional methods [20,21,24], including higher efficiency and easier implementation
[54].

- A first ACM which uses both edge and region information within the level set framework
has been proposed by Chen ef al [55] their approach incorporate the GAC model into the
C-V model called the geodesic aided Chan Vese (GACV) model to improve the Active
Contour performance on image segmentation.

Similar to this method that combine edge and region information, a hybrid model is
proposed in variational level set formulation without re-initialization which consists of both
gradient and region information.

3.2. LSM regularization methods
3.2.1. Re-initialization

In [26], Osher and Sethian proposed to initialize the LSF as ®(x) = 1 + dist?(x),
where dist(.) is a distance function and " + " denotes the signs inside and outside the
contour. Later, Mulder et al [56] initialized the LSF as ®(x) = 1 * dist(x),which is a SDF
that can result in accurate numerical solutions. However, in evolution the LSF can become too
steep or flat near the contour, leading to serious numerical errors. In order to reduce numerical
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Chapter 3. A Hybrid ACM without re-initialization

errors, Chopp [57] periodically re-initialized the LSF to be a SDF. Unfortunately, this re-
initialization method straightforwardly computes the SDF in the whole domain and it is very
time-consuming. Chopp also proposed [57] to restrict the re-initialization to a band of points
close to the zero level set. Such a narrow band method [58] can reduce the computational
complexity to some extent.

In summary, re-initialization has many problems, such as the expensive computational
cost, blocking the emerging of new contours [48]. Therefore, some formulations have been
proposed to regularize variational LSF to eliminate the re-initialization procedure [54,23].

3.2.2. Distance regularized level set evolution (DRLSE)

In [54,23], Li et al proposed a signed distance penalizing energy functional:
1 2
P(®) = Efﬂ (V| —1)“dx (3.1)

Eq (3.1) measures the closeness between a LSF & and a SDF. By calculus of variation,
the gradient flow of P(®) is obtained as:

@, = —Pg(P) = div[r(P)VP] (3.2)

Eq (3.2) is a diffusion equation with rater(®) =1 — 1/|V®|. The mechanism of
maintain SDF is that if [V®| > 1, we have positive diffusion rate that will decrease the
gradient of the LSF, while if |V®| < 1, a negative diffusion rate is obtained and accordingly,
the gradient of the LSF will be increased (Fig. 3.1).

In the rest of this chapter, we will first introduce a typical ACM which uses both edge
and region information. Then our contribution will be detailed; we will concentrate on
combining edge and region information on a level set framework without re-initialization.
Finally, we will discuss the performance of the proposed approach with synthetic and real
images.

t o)

~f

C%/ B

Figure 3.1: Mechanism of maintaining signed distance function [54].
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3.3. Combination of edge and region information
3.3.1. Geodesic- Aided C-V method

Chen et al [55] have proposed to add geodesic curves advantages in the C-V model to
raise ACM performance on image segmentation by inserting the ESF of the GAC model in
the regularity term of the C-V model. Thus, its PDE level set formulation is:

0 (Vo , ,
5 =170l idiv (9 152) = 2400 = C)? + 2000 = Cou)?

= gIve| |u div (%) = L = Ci)? + Ao = Cou)?| + Vg .V (3.3)

In (3.3), there are two terms in right, the first one is called the region detector and the
last one is the local detector; the region detector uses statistics of homogeneous regions as in
the C-V model, while multiplying g |V®| as a controller of the speed evolution. The second
term functions as attractive detector, which attracts the evolving curve to real boundary of
objects [55]. In addition, the smoothed Dirac function §.(®P) of the original C-V model is
replaced in this approach by |V®|, which has an effective range on the whole image. In
conclusion, the competition between the region detector and the attractive detector is
controlled by the gradient flow (ESF) described in [20]; that is in location with high variation
of gradient, the model will favor using attractive detector, while region detector is suitable for
locations of small gradient variation.

3.3.2. The proposed hybrid model without re-initialization

In order to raise the performance of Active contours, edge and region information have
been combined. However, the regularization of the LSF must be taken into account. To cope
with this problem, we propose a hybrid edge and region ACM in a variational level set
framework without re-initialization.

For a LSF @, we define energy functional E(®) by [46]:
1
E(®) =-p [((IV® — 1))?dx + [, gIVH(®)ldx + [, gF H(—P)dx (3.4)

The proposed Energy contain three terms, we call the first term controlled by u > 0 the
penalizing term [54] that penalize the deviation of the LSF from a SDF, the second term is the
edge term [23] excepted from the GAC model [20], this term is minimized when the curve is
located at object boundaries, and the last term is the area term also called balloons energy
[36]; this term measure the area inside the curve which speed up the motion of the curve. g is
the ESF defined in [20] and F is a region detector function defined as:

F=(- Cl'n)2 + U - Cout)2 (3.5

Where C;,, and C,,; are the average intensities of [ inside and outside the curve,
respectively defined as in (2.31).

Different to the usually used balloons energy in edge-based models which is given by
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E(®)paioons = @ f g H(—®)dx, depending whether a is positive or negative. The area
inside the curve is favored to be large or small, and accordingly the curve will contract
(a > 0) or expand (a < 0), while multiplying g as the controller of shrinkage or expansion
of the curve. In the proposed model, inserting the region detector F in this balloon energy
gives the model the advantages of the C-V model in robustness against noise and detecting
discrete edges, in addition the region detector allows bidirectional motion of the curve in a
single process of the curve evolution; i.e. shrinking or expanding at different location of the
curve depending whether the function F is positive or negative.

In conclusion, the proposed model contains both edge and region terms by means of an
implicit weight function that is the ESF; when there are any sharp edge, according to the
definition of ESF in [20], it becomes very little making the region term becomes very little
too, favoring use of the edge term, otherwise, the information of region acts as the main force
to attract the curve to object boundaries with advantages described above.

3.4. Implementation

In practice, the Heaviside function and the Dirac function in (3.4) are approximated by
smooth functions H,and J, respectively, defined by the following two forms:

%(1+%+%sin(%)),|x| <p

Hyp(x) =41, x>p (3.6)
0, x<—p
1 X
2(1 = <
and 81,(x) = (L eos(T)) Ixl <o (3.7)
0, x>p
1 1
Or Hy,(x) = 5 (1 +5arctan (E)) (3.8)
_1 P
and 8y,(x) = - 1+ szer) (3.9)

As shown in Fig. 3.2, the support of d;,(x) is restricted into a neighborhood of zero
level set so that the LSF can only act locally. The evolution is easy to be trapped into local
minima. In contrast, J,,(x) acts on all level curves, and hence new contours can appear
spontaneously, which makes it tend to yield a global minimum [24]. In the next Section, we
will give some examples to show the local /global segmentation property.

The energy functional in (3.4) can be minimized by solving the following gradient

5
flow™:

o = u[a0 —div (Z2)] - 8,(@)div (g:75) — 9 8,(®) F (3.10)

> More details on the derivation of this equation can be found in Appendix C.
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15p-—mom -

()

Figure 3.2: Two different regularizations delta functions [48].

The partial derivative aai; can be discretized using the forward differences. Thus, (3.10)

1s approximated as:

O = AtR(D; )" + O (3.11)
Where At is the time step, ®;'; = ®(nAt, x; ;) is an approximation of @ (¢, x), x(x;, ¥;)
is the grid points and R(®; ;) is the approximation of the right hand side in (3.10).
The different steps, of the proposed algorithm, are as follow:

1. Initialization of the LSF @ to be a binary function as follow:
—d (x;y) € 2y — 00,
Po(x,y) =4 0 (x;y) € 0402 (3.12)
+d (x;y) € 2—10

Where d > 0 is a constant, (2, is a subset in the image domain 2, and 0.2, be all the
points in the boundaries of (2.
2. Compute the ESF g, using (2.23).
3. Compute the function F, as in (3.5).
4. Compute '/ according to (3.11).

5. If (D}fj’l satisfies a stationary solution, stop, else go to step 2.
3.5. Experimental results

In this section, we compare the proposed model with the GAC model [20], the C-V
model [24] and the GACV model [55]. Experiments are implemented by Matlab 7 on a
computer with core i3, 3.30 GHz CPU, 4G RAM and windows 7. Unless otherwise specified,
the parameters are fixed as follow: @ = 0.4 and ¢ = 1.0 for the GAC, A, =4, =1 and
v = 0.8 for C-V model, 44 = 4, = u =1 for the GACV model, and 4 = 0.4, 0 = 1.5 for the
proposed model, At = 0.1 for all models.
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3.5.1. Comparison with the GAC model

Fig. 3.3.A shows the convergence results with three typical initializations. The original
synthetic image (gourd) with three different initial contours (inside, outside, and across the
boundaries) is listed in Fig. 3.3.A(a), while the segmentation results of the GAC model
(implemented with re-initialization procedure) and the proposed model are shown in Fig.
3.3.A(b) and 3.3.A(c) respectively. From Fig. 3.3.A, it is clear that the proposed model could
well segment the image for the different initializations, while the GAC model fails to segment
the synthetic image for the last initial contour; this is because using only edge information,
and so, it cannot allow bidirectional motion (i.e., shrinking or expanding at different
locations). These results illustrate the robustness of the proposed model to contour
initialization.

Moreever, we add the zero-mean Gaussian white noise with a variance 0.005 to the same
image of Fig. 3.3.A , and the segmentation results are shown in Fig. 3.3.B we observe that the
GAC fails to detect the object and is trapped into local minima induced by gradient maxima
of noise Fig. 3.3.B(b), even with increasing the size of Gaussian kernel o, the Gaussian
smoothing may remove possibly important edge and the curve will pass throught real edges of
the object Fig. 3.3.B(c). Compared to the GAC model, the proposed model better capture the
object, because it takes into account in its formulation the region information inserted in the
area term, which is convenient with images including weak edge and noise. Furthermore, the
iterations and CPU time are listed in Table 3.1. It can be observed that the proposed model is
much faster than the GAC model.

(A)

8848

(@ (b) ©

Figure 3.3: A Segmentation results for synthetic image: (a) initial contours, (b) the GAC
model, (c) the proposed model. B Segmentation results for noisy synthetic image: (a) initial
contours, (b) the GAC model, (¢) the GAC model ¢ = 3, (d) the proposed model.
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Image Image of Fig. 3.3.A (second row) Image of Fig. 3.3.B

Model GAC model Proposed model GAC model Proposed model
Iterations 600 110 1500 110

Time(s) 24.67 1.84 50.01 1.84

Table 3.1: Iterations and CPU time by the GAC model and the proposed model.

3.5.2. Comparison with the C-V model

We also compare our method with the C—V model (implemented with re-initialization
procedure) on a real microscope cell image where the objects boundaries are distinctive while
interior intensities are not homogeneous. Fig. 3.4(a) shows the original image with initial
contour and the segmentation results by the C—V model and the proposed model are shown in
Fig. 3.4(b) and 3.4(c), respectively. It can be seen that the C—V model which based only on
region information fails to extract the object boundary, while the proposed model achieve
information in its energy

better results, because our model wuses edge

formulation. Accordingly, it takes advantage of the GAC model.

3.5.3. Application on real images

In order to validate the proposed model, we apply it on real noisy images with different
types of shapes. Four test images, shown in upper row of Fig. 3.5, which are (from left to
right): a fluorescence microscopic image, MR Image of a human brain, a breast cyst image
and a skin lesion image. Although, these images are corrupted by noise and / or texture tissue,
the proposed model successfully can extract the desired object.

(b)

Figure 3.4: Applications to a microscope cell image: (a) initial contour. Segmentation result

by: (b) the C-V model and (c) the proposed model.
27



Chapter 3. A Hybrid ACM without re-initialization

Figure 3.5: Segmentation results for real images: Row 1: original images with initial contour;
Row 2: results of the proposed model.

3.5.4. Global/Local property and comparison with GACV model

Fig. 3.6 demonstrates the global segmentation property of the proposed model. The
initial contour is far from all the objects (first row of Fig. 3.6). The second row shows the
segmentation results using &; ,(x), which fails to extract all the objects, while the use of
8,,5(x), could extract all the objects, as shown in the third row of Fig. 3.6, which is the same

result with the GACV model.

Fig. 3.7 demonstrates the local segmentation property in medical image segmentation.
Two magnetic resonance images of the left ventricle of a human heart are shown on the left

two columns of Fig. 3.7, and the right two columns show two noisy ultrasound images of the
same organ. The third row shows the corresponding segmentation results using & ,(x), which

are more accurate than the corresponding segmentation results when using &, ,(x) that are
shown in the second row, which are always similar to the results of GACV model.

The proposed model is a generalization of the GACV model if we set §,(x) = &, ,(x),
which has an effective range on the whole image and the global property to detect all objects
in the image.

Different to GACV model, the proposed model has the property of local segmentation
when 6,(x) = &, ,(x) that is suitable when segmenting objects with intensity inhomogeneity

and distinctive boundaries.
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Figure 3.6: Comparisons of the global segmentation property. The first row shows the initial
contours, the second row shows the segmentation results using 8; ,(x), and the third row

shows the segmentation results using &, ,(x).

Figure 3.7: Comparisons of the local segmentation property. First row shows the initial
contours. The segmentation results using &, ,(x)are shown in the second row, and the

segmentation results using §; ,(x) are in the third row.
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3.6. Conclusion

In this Chapter, we proposed a hybrid active contour for image segmentation, in a
variational level set formulation without re-initialization. The proposed model embeds both
edge and region information in its energy formulation, so that, it works better than traditional
edge-based and region-based methods. Experimental results on both synthetic and real images
demonstrate the robustness and efficiency of the proposed model. Combining edge and region
information raises the performance of active contour. However, segmenting intensity
inhomogeneity problem depends on the choice of the smoothed Dirac function used, and here
where local image statistics enter to the picture.
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Chapter 4

Fast region-based ACM

driven by local signed pressure force

4.1. Introduction

Combining edge and region information gives the hybrid ACM the advantages of
both model, but the result model still sensitive to the choice of some parameters (the
smoothed delta function) and to the initialization of the curve to segment objects with
intensity inhomogeneity. This leads to use another method which shares the advantages of
the C-V model and the GAC; in this method a signed pressure force function (SPF) [59] is
defined by statistical information substitutes the ESF in the GAC updating formulation.

A first model based on SPF was proposed by Zhang et al [59] to ameliorate contour
initialization, this model uses region-based SPF function to update curve evolution and a
special processing named Selective Binary and Gaussian Filtering Regularized Level Set
(SBGFRLS) method to regularize the LSF. This model is robust and simple to implement,
but it is found to be slow and parameter dependable (speed parameter) [60].

An Online region-based ACM (ORACM) using a new level set formulation was
proposed in [60], which present the advantage by providing less time without changing
segmentation accuracy and parameter free. Different to the ACM with SBGFRLS, ORACM
uses a simple and efficient level set updating formulation by using directly current LSF
instead of the curvature approximation and a simple morphological opening and closing
processes instead of Gaussian smoothing to smooth the LSF. However, this model is hard to
deal with the images having inhomogeneous intensity [60].

Inspired by the work in [60] and [31], we propose a fast local region-based ACM which
deals well under the intensity inhomogeneity problem. It is implemented by introducing a new
SPF function that utilizes the local image information provided by the LBF model in the level
set updating formulation of the ORACM model. Similar to ORACM model, the proposed
model uses a simple morphological opening and closing regularization operation to regularize
the LSF, and in addition to ORACM model advantages, the proposed model can effectively
segment images with intensity inhomogeneity. Experiments on some synthetic and real
images show desirable segmentation results of our model. Moreover, comparisons with the
related models also show that our model is less sensitive to initial contour location and more
computationally efficient.
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This Chapter is organized as follow: In section 4.2, we review some ACMs and
their limitations. Section 4.3 describes the proposed model. Experimental results are
shown in section 4.4. Finally, Section 4.5 concludes the Chapter.

4.2. Related methods

4.2.1. The ACM with SBGFRLS model

Zhang et al [59] proposed a region-based GAC which incorporates the GAC and C-V
model by constructing a SPF function replacing the ESF of the GAC model. The SPF function
is defined as follow:

C1+Co

2 4.1)

C1+Co
=)

SPF(I(x)) = — o

max (I(x)—

Where C; and C, are defined as in (2.31). The SPF function modulates the signs of the
pressure force inside and outside the region of interest so that the curve shrinks when outside
the object, or expands when inside the object. Substituting the SPF of (4.1) for the ESF g in
the GAC evolution equation (2.25), the level set formulation of this model is given as:

o = SPF(IC0)I70ldiv (Lo + @) + VSPF(1(x)). Vo (42)

Ve
V|
the level set function @; the evolution of a function with its Laplacian is equivalent to a

The curvature-based term |V®|div ( ) can be rewritten as A®, which is the Laplacian of

Gaussian kernel filtering the initial condition of the function. Thus this model uses a Gaussian
filtering process to further regularize the level set function. Since this model utilizes a

Gaussian filter to smooth the level set function to keep the interface regular, the term

Vo

|V |div (ﬁ) i1s unnecessary. In addition, the term VSPF (I (x)). V® can also be removed,

because this model utilizes the statistical information of regions, which has a larger capture
range and capacity of anti-edge leakage. Finally, (4.2) can be written as follows [59]:

22 = SPF(I(x)). . |V (4.3)

The use of the SPF function makes the model controls the direction of the evolution and
to stop the evolving curve at weak or blurred edges. Moreover, the LSF of this model is
regularized by the SBGFRLS which reduces the computational coast of the re-initialization
step which in turn makes it more efficient than the traditional LSMs [61]. However, the ACM
with SBGFRLS has two major disadvantages: the parameter @ must be tuned according to
images which make the model parameter dependable. The second disadvantage is slowness
causes by the gradient of the level set function [60].

4.2.2. The ORACM model

ORACM [60] is a region-based active contour which covers the drawbacks provided by
ACM with SBGFRLS; it necessitates no parameter and takes less time to detect objects
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boundaries. Unlike the ACM with SBGFRLS, ORACM uses a simple and efficient level set
updating formulation given as follow:

2—?’ =H (SPF(I(x))) LD (x) (4.4)

Where H(.) is the Heaviside function and SPF(.) is the SPF function defined in (4.1).
Comparing with the level set formulation of the ACM with SBGFRLS, ORACM does not
need parameters to be tuned according to input images, which make it parameter free. The
directly use of current LSF instead of its curvature approximation propagates the result of the
SPF on the entire current level set ®(x) instead of its boundary |v®|. This situation leads to an
increase in the current level set update rate without affecting the accuracy of the algorithm. In
addition, ORACM uses a simple morphological opening and closing processes instead of
Gaussian smoothing to smooth updated level set.

In spite of having a considerable amelioration from the perspective of speed and
parameter dependability, using global information in the SPF function tends to erroneous
segmentation results with images having inhomogeneity of intensity.

4.3. The Proposed method

Based on the level set updating formulation of the ORACM model, the proposed model
is constructed by replacing the SPF function with a new SPF function, taking into account the
local intensity information.

4.3.1. Local SPF function

In our model, we introduce a new SPF function based on the local properties of the
image by replacing the global mean values inside and outside the curve with the local mean
values provided by the LBF model. The new SPF function is called Local Signed Pressure
Force (LSPF) function which is constructed as follow:

I(x)_fl';fz

LSPF(I(x)) = (4.5)

max (| 100)-11212))

Where f; and f, are defined as in (2.35).

Similar to the SPF defined in [59], the sign and value of LSPF ranges in [-1, 1] so that,
it adjusts the signs of the pressure force inside and outside the region of interest so that the
curve shrinks when outside the object and expands when inside the object; the only difference
is that the LSPF is constructed using local mean values inside and outside the curve which
help the model to work well with the intensity inhomogeneous regions, where the LSPF can
be minimized when the curve is exactly on the region boundary; the local mean
intensities which are computed using the Gaussian kernel as in (2.35), lead to assign
different signs for both inside and outside region presenting inhomogeneous intensity.

In addition, the proposed model is a generalization of the ORACM model, and it is
degenerated when the Kernel function in (2.35) is an averaging filter and the size of its
window is infinity; the functions f; and f, become representing average intensities inside and
outside the curve C; and C,, respectively.
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4.3.2. Implementation

In practice, the Heaviside function H(.) in (2.35) is approximated by a smoothed
functional H,(.) defined, as proposed in [31], by:

H.(x) = % [1+ %arctan (E)] (4.6)

Substituting the SPF function in (4.3) with the LSPF function defined in (4.4), we
obtain the level set updating formulation of the proposed model as follow:

0D

Z=H (LSPF(I(x))) LD (x) (4.7)
Similar to ORACM model, the proposed model uses a simple morphological opening

and closing processes to smooth updated level set. These two operations performed

sequentially are commonly used in computer vision and image processing for noise removal

and smoothing [60].
Finally, the different steps of the proposed algorithm are as follow:

Initialization of the LSF @ to be a binary function as in (3.12)

Compute the local mean values f;(x) and f,(x) according to (2.35).

Calculate the LSPF function LSPF(I(x)) using (4.5).

Evolve the level set function according to (4.7).

Check whether the evolution is stationary, stop, else go to step 2.

Regularize the LSF using a simple morphological opening and closing processes.

AN O e

4.4. Results

In this section, we apply and compare the proposed model with the different models
using both synthetic and real images. All models are implemented using Matlab 7.0 in
Windows 7; on 3.3 GHz Intel core i3 PC with 4GB of RAM. Unless otherwise specified, the
parameters are described in Table 4.1.

Fig. 4.1 shows the segmentation results of the related methods and the proposed method
on a synthetic image with two objects with blurred boundaries. From the first row, we can
observe that the right segmentation results cannot be obtained from the GAC model which
uses edge information that causes the curve to pass over real boundaries, while the other
models using region information, including the proposed one, can satisfactorily segment the
two objects. Furthermore, the iterations and CPU time are listed in Table 4.2. It can be
observed that both ORACM model and the proposed model are much faster than the related
models. Accordingly, the proposed model is more efficient.

The second row of Fig. 4.1 demonstrates the segmentation results with tuned parameters of
the related methods as follow: C-V: v = 0.8, SBGFRLS: a = 10 and LBF: 4; = 1.5. As
shown, they cannot detect the boundaries of the two objects after the same number of
iterations mentioned in Table 4.2. While ORACM model and the proposed model, without the
need of any parameter, they correctly detect the boundaries of the objects after only 5
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iterations. This efficiency by the proposed method caused by using the simple level
set updating formulation defined in (4.4).

Parameters Description

d To initialize the level set function, d > 0 is a constant.

Scale parameter in Gaussian kernel (LBF and our model: ¢ determined according to
images).

A Ay Inner/ outer weight of curve C (LBF: 4, =1, =I).

At Time step (LBF, GAC: 4t = 0.1; C-V, SBGFRLS, ORACM and our model: 4t = 1).

o Balloon force (SBGFRLS: o =25).
£ The parameter of smoothed Heaviside function (LBF: & = [; our model: ¢ = 1.5).
v Regularization parameter of curve C (C-V: v=0.2).

Table 4.1: Description of the parameters used in the study.

clelelelelele
cleleeleeie

Figure 4.1: Segmentation results on a synthetic image: (a) initial contour. Segmentation result
by: (b) the GAC model, (c) the C-V model (d) the ACM with SBGFRLS model (e¢) the LBF
model (f) the ORACM model (g) the proposed model. The parameter o = 30.

Method Iterations | CPU time (s)
The GAC model 2000 72.44
The C-V model 80 5.22
The ACM with SBGFRLS model 25 3.30
The LBF model 10 233
The ORACM model 5 1.71
The Proposed model 5 1.71

Table 4.2: Iterations and CPU time needed by the methods compared when segmenting the
image in Fig. 4.1.
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To demonstrate the local segmentation property of the proposed model, in Fig. 4.2 we
compare our method with the related methods on a real microscope cell image where the
objects boundaries are distinctive while interior intensities are not homogeneous. It can be
observed that the GAC model based on edge information can extract the objects boundaries,
while other related methods which are based on region information fail to extract them.
Compared to the related models based on region information, the proposed model achieve
better results, because our model uses local signed pressure force in its level set formulation
that has the property of local segmentation.

Fig. 4.3 shows a segmentation result comparison with the related methods on image
with intensity inhomogeneity. It can be seen that the methods using global region information
(C-V, SBGFRLS and ORACM) cannot segment well when image has intensity
inhomogeneous region in it, while the LBF model and the proposed method that uses local
region information, could accurately segment intensity inhomogeneous region. For the GAC
which based on edge information where no global constraints are placed on the image, this
method can segment intensity inhomogeneity but suffer from the leakage problem as shown
in Fig. 4.3(b).

In the next experiments, we will focus on comparisons between the LBF model and the
proposed model on intensity inhomogeneity problem from different sides.

In Fig. 4.4, we apply the LBF model and the proposed model to a synthetic image with
intensity inhomogeneity, the first row shows various initial contours, the second and the third
rows show the segmentation results by the LBF model and the proposed model, respectively.
From some initial contours, as in columns 1 and 5, the LBF model can segment well intensity
inhomogeneity image, while giving bad segmentation results for other initial contours.
Otherwise, the proposed model is much more robust to initial contour location and can
achieve good segmentation results for all initial contours.

(d)

Figure 4.2: Applications to a microscope cell image (downloaded from [23]): (a) initial
contour. Segmentation result by: (b) the GAC model, (c) the C-V model (d) the ACM with
SBGFRLS (e) the LBF model (f) the ORACM model (g) the proposed model. The parameter
o=4.
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(a) (b) (c) (d) (e) ® (®

Figure 4.3: Comparison of segmentation results using synthetic image with intensity
inhomogeneity (downloaded from [62]): (a) initial contour. Segmentation result by: (b) the
GAC model, (c) the C-V model (d) the ACM with SBGFRLS (e) the LBF model (f) the
ORACM model (g) the proposed model. The parameter o = 2.

Figure 4.4: Segmentation results on the synthetic image with intensity inhomogeneity. Row1:
initial contours. Row2: results of the LBF model. Row3: results of the proposed model. The

parameter ¢ = 5.

In order to compare the LBF model and the proposed model, we use other synthetic
images in Fig. 4.5 and Fig. 4.6.

Fig. 4.5(a) shows the original image with initial contour. The results of the LBF model
and the proposed model are shown in Fig. 4.5(b) and 4.5(d), respectively. It is obvious that
the proposed model attains better segmentation precision; it separates the boundary of each
finger of the palm and reflects its shape (as can be seen clearly in the zoomed view of Fig.
4.5(e) better than the LBF model (zoomed up in Fig. 4.5(c)).

Fig. 4.6 shows the segmentation results of another synthetic image with intensity
inhomogeneity by the LBF model and the proposed model, which are shown in Fig. 4.6(b)
and 4.6(c) respectively, while Fig 4.6(a) shows the original image with initial contour. From
the results, it is clear that the LBF model fails to get the correct segmentation result and traps
into local minimum, while the proposed model gets right segmentation result.
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(2) (b) (©) (d) (e)

Figure 4.5: Segmentation results on a hand phantom (downloaded from [59]) using
the LBF and the proposed model: (a) initial contour, (b) segmentation result by the
LBF model, (c) zoomed view of the narrow, blue rectangle in (b), (d) segmentation result by
our method, and (e) zoomed view of the narrow, blue rectangle in (d). The parameter o = 3.

(a) (b) (c)

Figure 4.6: Segmentation results of an inhomogeneous image (downloaded from [63]). (a)
The original image with initial contour, (b) the final contour with the LBF model and (c) the
final contour with the proposed model. The parameter o = 30.

To furthermore compare the performance of the proposed model and the LBF model, on
images whose intensity inhomogeneity has different strength. Fig. 4.7 shows the segmentation
results provided by the LBF model (first row) and the proposed model (second row), on five
synthetic images with different intensity inhomogeneity. Clearly, the proposed model can
segment the object with different strength of intensity inhomogeneity, while the LBF model
fails to segment the object when the strength of intensity inhomogeneity is strong (last two
Columns).

To quantitatively validate the segmentation performance of the proposed model from
Fig 4.7, the Jaccard Similarity (JS) index is used. The JS index between the segmented object
region Rs and the real object region Ro is calculated as JS(Rg, Rp) = |[Rs N Ry| / |Rs U Ry .
Clearly, when Rg is more similar to R, the JS value is close to 1. Fig 4.8 shows that the JS
values obtained by our method change in a small range for intensity inhomogeneity with
different strength, while the LBF model, when the strength of intensity inhomogeneity is
strong (last two columns of Fig 4.7) the segmentation accuracy of this method decreases
strictly. These results illustrate the robustness of the proposed model to image intensity
inhomogeneity.
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% % okt

Figure 4.7: Segmentation results on a synthetic image where the strength of intensity
inhomogeneity is gradually increased from left to right (downloaded from [64]). Rowl:
results of the LBF model. Row2: results of the proposed model. The parameter o = 2.
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Figure 4.8: The corresponding /S values yielded by the LBF model and the proposed model
on the five images with different intensity inhomogeneity.

In Fig 4.9, we apply the proposed model to segment typical medical images with
different modalities and compare it to LBF model. The segmentation results provided by the
LBF model are in the upper row, while the lower row presents our results. The first two
columns show the results of two X-ray images of blood vessels. It can be seen that all models
give satisfying segmentation results because of the use of the image local region information,
which can better separate the object from background. The last three columns, from left to
right, show the segmentation results of a CT image of heart and two MRI brain images with
intensity inhomogeneity. It can be seen that the LBF model fails to distinguish between the
intensity between the object and its background and lead to inaccurate segmentation result.
While the proposed model gives much better segmentation results. These results represent the
abilities of the proposed model to deal with intensity inhomogeneity and complex
background.
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(a) (b) () (d) (e)

Figure 4.9: Comparison of segmentation results of the LBF model (top row) and the
proposed model (bottom row) on several medical images (a, b, d and e: downloaded from
[64], while c: from [33]).

Furthermore, the iterations and CPU time of segmenting the images in Fig 4.9,
moreover the values of the parameter o are listed in Table 4.3 for the LBF model and the
proposed model. It can be observed that the number of iterations and the required CPU time
of the proposed model are much less than those of the LBF model. Accordingly, the proposed
model is much faster than the LBF model.

To compare the performance between the LBF model and the proposed model on noisy
image, we add the salt and pepper noise with various levels on the synthetic image of Fig. 4.4,
and the segmentation results are shown in Fig. 4.10; the first column shows the original image
with initial contour, the second, third and fourth Columns show the segmentation results on
image added noise with densities: 0.05, 0.1 and 0.2 respectively. From the results, it is
obvious that the proposed model has higher anti-noise than the LBF model; this performance
is because of using the opening and closing morphological operations respectively to remove
small objects and to smooth the active contour.

Finally, Fig. 4.11 shows the influence of the parameter o on the segmentation results of
our model for an MR image of bladder with intensity inhomogeneity. The initial contour is
shown in Fig 4.11(a) and the results for the parameter ¢ = 8 and o = 30 are shown in Fig
4.11(b) and 4.11(c), respectively. It is clear that the corresponding result with ¢ = 8 is more
desirable, where the bladder and all small structures surrounding it are segmented. While
some part of the bladder and these structures are missed in the segmentation result using o =
30, which is similar to the result of the ORACM model, shown in Fig 4.10(d). As an
advantage of the proposed method from these results, that it allows the choice of the scale
parameter o to exploit intensity information in regions of different scales, so that, when the
intensity inhomogeneity is severe, the accuracy of segmentation relies on the local SPF, in
such case, we choose small o, while in smooth regions, a bigger o is chosen; the local SPF
becomes degenerating the global SPF so that the contour is attracted to the object boundary
quickly.
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Method The LBF model The proposed model

Figure |Parameter o| iterations | CPU time (s) | Parameter o | iterations | CPU time (s)
Fig. 9(a) 4 160 343 7 3 0.55
Fig. 9(b) 4 120 2.04 10 11 1.55
Fig. 9(c) 10 300 10.06 10 10 1.40
Fig. 9(d) 3 60 5.06 10 4 1.01
Fig. 9(e) 5 100 10.08 25 4 1.39

Table 4.3: Iterations, CPU time and values of ¢ needed when segmenting the images in Fig
4.9.

Figure 4.10: Comparisons of the segmentation results with salt and pepper noise by the LBF
model and the proposed model on Rowl and Row2, respectively. Columnl: the original
image with initial contour; Columns 2, 3 and 4 added the salt and pepper noise with densities
0.05, 0.1 and 0.2, respectively. The parameter ¢ = 10.

(b) ' (©) (d)

Figure 4.11: Experiments on an MR image of bladder (downloaded from [31]): (a) Initial
contour. Result of our model for: (b) ¢ = 8. (¢) 0 = 30. (d) Result of the ORACM model.
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4.5. Conclusion

In this Chapter, a region-based active contour method for image segmentation is
presented which can efficiently segment the images with intensity inhomogeneity by
exploiting the local image information. In particular, A new SPF function is constructed
which uses local mean image information provided by the LBF model and helps to segment
intensity inhomogeneous regions. Experimental results on both synthetic and real images
demonstrated the advantages through accuracy, rapidity and insensitivity to the initial contour
location of the proposed model over the related models.

Although using local SPF overcomes the sensitivity of local region-based method to
curve initialization and to noise when segmenting image with intensity inhomogeneity, its
result is sensitive to the choice of size of the locality. Edge-based models of highly localized
image information, based on gradient information are adequate in segmenting intensity
inhomogeneity, but they are found to be sensitive to image noise and poorly defined
boundaries. The following chapter will introduce possible solution to these problems, such as
the use of texture analysis in constructing new edge stopping function.
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Chapter 5

Robust ACM guided by

local binary pattern stopping function

5.1. Introduction

To solve problems met with ESF based on gradient information, we propose a stopping
function based on the Local Binary Pattern (LBP) textons [65,66]. This new function is called
LBP stopping function (LBPSF). The LBP textons was originally used to perform adaptive
gradient calculation for edge detection [67] in which, the LBP textons is used to classify
regions of an image around a pixel into noisy, homogenous and edge regions, and then,
accordingly, an adaptive filter is introduced while calculating the gradient.

The classification of the image regions into: noisy, homogeneous and edge regions
using the LBP textons, helps to generate a filter rejecting pixel positions of LBPs which are
likely to be produced by noise and calculate gradient magnitudes at the accepted pixel
positions to detect the edges using a modified canny edge detector based on LBP, and then,
constructing a LBPSF which takes values of “1” on noisy and homogeneous regions, while
having values of “0” on edges. Consequently, the curve will stop at these edges. Substituting
the ESF based gradient information of the GAC model [20] with the proposed LBPSF in a
variational formulation; we obtain a fast ACM which is robust to the leakage and noise
problems.

The rest of this Chapter is organized as follow: Section two presents a theoretical
background of the LBP and introduces the derivation of the LBPSF and the proposed ACM
based on it. Section three provides experimental results and comparisons to the models
proposed in [20], [60] and [34]. Finally, Section four concludes the Chapter.

5.2. The proposed method

5.2.1. Local binary pattern

The LBP operator was first introduced by Ojala ef a/ [65] and Mienpdd [66] for texture
analysis. It has been applied in many active studies such as texture classification and face
recognition [68]. The LBP operator combines characteristics of statistics and structural texture
analysis; it describes the texture with primitives called textons [69].

The derivation of an LBP code is shown in Fig. 5.1(a); taking a neighbourhood of 3x3
of a central pixel, thresholding it into two levels “0” or “1” whether the neighbour of that
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pixel has smaller or larger value than the central pixel, respectively. An LBP code is obtained
by multiplying the threshold values of eight pixels with binomial weights and summing up the
result. This leads to the equation:

LBPp g = Xp=55(gp — 9c)2° (5.1)
Where P is the number of neighbours, R is the radius, g. corresponds to the gray value of
the center pixel, gp are the gray values of surrounding pixels and s(x) is given by:

s(x)={1’ x=0

0, x<O0 (5-2)

Different texture primitives can be detected by the LBP code, Fig. 5.1(b) shows examples
where ones and zeros are indicated with white and black circles respectively. A special kind
of LBP, which will be used for edge detection, is called rotation-invariant uniform LBP
giving by:

LBPY2 = {Zg;(l) s(gp — 9c)2",if U(LBPpR) < 2 (5.3)
’ P+ 1,else

Where U is the number of bitwise 0/1 and 1/0 transitions in an LBP, only two or less are

allowed for uniform LBP [67]. Fig. 5.2 shows the nine classes of the uniform LBP.

(a) basic LBP calculation (b) texture primifives

threshold multiply

/ I:I-‘J(
Sy4 3 (1 rfrp2)4)10)214 P [

o8 0.0 o a8 0,8
AERE 1.0 s I 16 s.o A O O ¢ O

20003 ((00|1|[32|64(128 |00 128

bright spot dark spot dark corner  edge  bright corner

LBP = 1+2+4+8+128 =143

Figure 5.1: Calculation and interpretation of Local Binary Patterns (LBPs) [67].

Figure 5.2: Classes of the non uniform rotation invariant LBPs.
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5.2.2. Edge detection with LBP

For some example images with different levels and types of artificial noise, Teutsch et
al [67] have calculated LBP}%? with variable radius R for each pixel and accumulated in LBP
histograms. Each histogram has ten bins: nine for the different LBP,?J"}E‘2 equivalence classes,
which are displayed in Fig. 5.2, and one for all other LBPs. From Fig 5.3, it can be seen that

riu2

the number of edges of different orientations (LBPp'g“classes 2-6) decreases when the noise

level increases while other LBPs (classes 0, 1, 7, 8 and 9) are much affected by noise [70].

The main idea in this approach is that all pixels of those classes affected by noise are
not considered for gradient calculation in edge detection and then, accordingly, noise can be
suppressed. Edge detection using LBPs is based on the Canny edge detector algorithm with
modified steps as follow:

5.2.2.1. Noise suppression

Unlike in Canny’s algorithm where noise is suppressed by smoothing with Gaussian
kernel, in this approach, a filter is generated which rejects pixel positions of LBPs which are
likely to be produced by noise (classes 0, 1, 7, 8 and 9); a binary function f is applied
pixelwise to all image pixel positions c=(x, ) of the following formula:

1if LBP}'¥? € classes (2 — 6)
0, else.

£ =1 (5.4)

Only pixel positions with f(c) = 1 will be considered for the next step.
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B no noise

3 weak noise
250000 -| pwm moderate noise ]
El severs noise

ﬂ@@@@%ﬁﬁ@ﬁ@

Figure 5.3: LBP histogram for Lena with different noise levels [70].
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5.2.2.2. Gradient magnitude

Gradient magnitudes G (¢) in this approach are calculated at the accepted pixel positions
(f (c) = 1) using the local variance VARp

G(C) {Z RV VARP T lf f(C) =1 (55)

0 else

Where r is the variation of the radius R to calculate several LBPs and summed up for the
gradient magnitude in order to increase the robustness against noise. Variance tends to focus
too much on bright objects. So, standard-deviation is used instead of variance as it produces
more homogeneous edge images [67]:

1 —
VARp, = +5523(gp — )? where u =3 SPz3g, (5.6)

5.2.2.3. Non-maximum suppression

As in Canny's algorithm, four discretized gradient orientations: 0°, 45°, 90°, and 135°
are used. While these orientations are calculated using the atan? function in Canny, this
approach doesn't need to calculate anything in order to get the orientation. Instead, four sets:
DOLBp, D45LBP, D90LBP and D" 3 gp of LBP that represent the orientations are simply defined.
Each set D consists of 16 LBP as in Fig. 5.4. Since LBP with an even number of bright/dark
dots are ambiguous, we simply say that they belong to two sets [67].

5.2.2.4. Determination of edge pixels

The final step is to generate a binary edge pixel image B using the hysteresis operator,
in which pixels are marked as either edges, non edges and in-between, this is done based on
two thresholds #; and 1, with ¢, < 1,. If a gradient magnitude G(c) exceeds #,, it is accepted as
edge pixel, while all pixels with gradient value less than #; are marked as non edges. The next
step is to consider each of the pixels that are in-between, if they are connected to edge pixels
these are marked as edge pixels as well. The result of this edge detector is the binary image B
in which the white pixels closely approximate the true edges of the original image.
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Figure 5.4: The four sets with LBPs of different orientations.
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5.2.3. The ACM based LBP stopping function

We firstly introduce the LBPSF and to motivate it, we will present the classical ESF and
some of its shortcoming.

The philosophy behind the edge-based ACM is finding curve that undergoes strong
edges (object boundaries), and to achieve this goal, an external energy is defined that we
integrate over the curve to move it toward the object boundaries.

Let / be a given gray level image, the classical ESF is defined as in (2.23). This function
assigns small values to strong gradients of the smoothed image VG, * [ where the curve is
very close to the boundaries. However, these gradient based functions have two major
drawbacks:

In practice, the discrete gradients are bounded and then, the function g can be relatively
far from zero on the edges and the curve may pass through the boundaries [24,27].

The next issue is that for the noisy or textured regions, the image will have gradient
maxima which induce local minima in the external energy. Therefore, the curve will not stop
at the real object’s boundaries. Alternatively, the Gaussian smoothing is used to remove
spurious local minima. Yet, smoothing also removes possibly important edge information if
the kernel width ¢ is not chosen appropriately. Hence, based on the edge detection operation
with LBPs described in the previous sub-section, we construct the LBPSF as follow:

9gpp =1—B (5.7)

where B is the binary image resulting from the Canny edge detector with LBPs.

The function g;zp is made such as it is zero on edges whereas it is equal to one on flat
and noisy regions, accordingly, the active contour will keep evolving in flat and noisy regions
till it attains the object boundaries (the edges). Replacing the ESF g of the GAC model in a
variational formulation by the proposed LBPSF g ;zp, the total energy function can be defined
as:

E(®) = %.“fg (VP - 1)%dx + Afg 9repd(P)|VP|dx + Vfg Jigp H(=P)dx  (5.8)

The first term in the right hand side of (5.8) controlled by x# > 0 is the internal energy
term that penalizes the deviation of the LSF & from a SDF, whereas the last two terms
controlled by 4 and v form the external energy excerpted from the GAC [20], this energy is
defined to drive the motion of the curve toward the object’s boundaries. §(.) and H(.) are the
Dirac function and the Heaviside function, respectively. By minimizing (5.8) with respect of
®, the steepest descent process is the following gradient flow:

Vo

%—T =u [A(D —div (IV¢I

)] +16(®)div (gLBP %) +v6(D)gpp (5.9)

where 4 and div(.) are the laplacien and the divergence operators, respectively.
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The method in [54] not only eliminates the need of costly re-initialization, but also
allows the use of more general initial LSF rather than a SDF initial function, a binary step
function is proposed as an initial LSF defined as in (3.12).

5.3. Results

In this section, in order to validate the performance of the proposed model, we apply
and compare it with the gradient based ACM of [20], the global region based ACM of [60]
and the local region based ACM proposed in [34] using both synthetic and real gray level
images. All models are implemented using Matlab 7.0 in Windows 7; on 3.3 GHz Intel core
13 PC with 4GB of RAM. Unless otherwise specified, the parameters are described in Table
5.1

This validation and comparison are performed on a set of 10 gray level images consists
of: a synthetic image with intensity inhomogeneity, a synthetic image with several intensity
levels, a fluorescence microscopic image, two noisy ultrasound images of the left ventricle of
a human heart, a magnetic resonance images of the same organ, a cardiac CT image, a liver
CT image, a radiographic image of weld defect and a ship in a thermal infrared image, and the
results are illustrated in Fig. 5.5 and Fig. 5.6.

Parameters Description

d To initialize the LSF, d > 0 is a constant.
Width of the Gaussian kernel in [20], region scale parameter in [34] (determined

»Pp according to images).

At Time step ([20] and [34]: 4t = 0.1, [60] our model: At = I).

u Regularization parameter of internal energy (our model: u = 0.04).

Av Regularization parameters of the curve (our model: 4 = 5, v = + 3 (-) if initial
curve is located inside or (+) if it is outside).

a Balloon parameter of the GAC [20].

PR LBP parameters (number of neighbors and LBP radius (P =8, R = I)).

t,t Threshold parameters determined empirically according to images.

Table 5.1: Description of the parameters used in the study.
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Image 1

Image 2

O
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Figure 5.5: Comparison between the different active contour models. (a) Original images
with initial contours. Segmentation output of: (b) GAC model [20] (o = 1.2 for all images),
(c) global region-based model [60], (d) local region based-model [34] (Image 1: p = 6.0,
Images: 2, 3, and 4: p = 3.0, Image 5: p = 1.5), and (e) the proposed model.
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Image 10

(a) (e)

Figure 5.6: Comparison between the different active contour models. (a) Original images
with initial contours. Segmentation output of: (b) GAC model [20] (¢ =4 for image 8,
o = 1.2 for others), (c) global region-based model [60], (d) local region-based model [34]
(Image 6, 7, and 8: p = 3.0, Image 9: p = 6.0, Image 10: p = 4.0), and (e) the proposed
model.
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From these results, it is clear that the proposed ACM based LBPSF outperforms the
other ACMs in term of efficiency (boundary detection).

In particular, Compared the proposed model to the GAC model [20], no smoothing is
necessary for the LBPSF, while the ESF deals with the problem that smoothing with big filter
size (eq. (2.23)) can suppress important edges and the curve will pass through them (Image 1
and 8), but small filter size may not be sufficient to remove noise and then, the curve will stop
evolving before reaching the real object boundaries (Images: 3, 4, 5, 7, 9 and 10).

For more comparison, some visualized LBPSF images of the set are contrasted with the
ESF images in Fig. 5.7. Contrary to the ESF, it is clearly seen that the LBPSF can accurately
distinguish the object boundaries.

Moreover, Fig. 5.8 shows the line profile plots for both LBPSF and ESF values across
the hat area of image 8. Here the noisy and poorly defined liver boundary (edge) along the
profile is located at the pixel number “15”; unlike the ESF, the value of the LBPSF is exactly
“0” on the edge and “1” in the two regions beside it. The graph shows that LBPSF is a robust
indicator of poorly defined or noisy edges.

(a) (b) (c)

Figure 5.7: Comparison between the ESF and the LBPSF. (a) Original images, (b) the
visualized ESF of the original images, and (c) the visualized LBPSF of the original images.
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Figure 5.8: Comparison between the ESF and the LBPSF. (a) Original liver CT image, (b)
ESF and LBPSF values along a line (red) segment in the original image.

Here the proposed model outperforms the model proposed in [60] since the set of
images used requires local segmentation property, and the global region-based ACMs
generally suffer from intensity inhomogeneity problem.

Comparing the proposed model to the model proposed in [34] which gives closely
similar results to those obtained by our model on images with several intensity levels (Image
2) or with intensity inhomogeneity (Images: 1, 6 and 7), this model seems to be sensitive to
noise (Images: 3, 4, 5 and 10) and the segmentation result relies on the size of the region scale
parameter (p) (Images: 8 and 9).

To show the sensitivity of this model to region scale parameter (p), we used images: 3,
6, 7 and 9 with three different sizes of p (1.5, 3.0, and 6.0). Fig. 5.9 shows that depending on
the image, small value of p leads to local segmentation when the intensity inhomogeneity is
severe (second and third row) while large value is chosen in noisy and smooth regions (first
and last row).

Moreover the Dice coefficient [71] is used to compare and measure the segmentation
accuracy. The Dice index D € [0,1] between the obtained segmentation result Ry and the
2Area(RRNRg)
Area(Rgr)+Area(RR)

1) indicates better segmentation performance.

ground truth R is given by: D(Rz N R;) = . A higher Dice value (close to

From the quantitative performance measure showed in Fig. 5.10 and Table 5.2, we
observe that the proposed model yields almost the best segmentation accuracy with an
average Dice score of 0.96, compared to 0.34, 0.89 and 0.91 for the models proposed in [60],
[20] and [34] respectively.

Computationally, we have not mention computation time in this study since the related
methods and the proposed one use different level set strategies (PDE based LSM for the
models proposed in [20] and [60] and variational LSM for the model proposed in [34] and our
model). More precisely, the number of iterations of the model proposed in [60] ranges from 5
to 7 iterations, while for other models including the proposed one, the range of these values
from 200 to 600 iterations over the set of images used.
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Chapter 5. Robust ACM guided by local binary pattern stopping function

(a) (b) (c) (d)

Figure 5.9: Segmentation results by the model of [34]. (a) Original images with initial
contours, (b), (c) and (d) are the segmentation results with p = 1.5, p = 3.0 and p = 6.0,
respectively.
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Figure 5.10: Segmentation accuracy as calculated via the Dice index for each model.
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e D of the D of the D of the D of the
model of [60] | model of [20] | model of [34] | proposed model
Image 1 0.03 0.96 0.992 0.999
Image 2 0.66 0.98 0.997 0.999
Image 3 0.988 0.992 0.997 0.999
Image 4 0 0.968 0.939 0.961
Image 5 0 0.87 0.9 0.97
Image 6 0.4 0.97 0.99 0.972
Image 7 0.64 0.88 0.997 0.996
Image 8 0.43 0.96 0.88 0.961
Image 9 0.05 0.77 0.776 0.82
Image 10 0.19 0.52 0.68 0.93

Table 5.2: Values of the Dice index (D) of the different models used in the study (Fig. 5.5
and Fig. 5.6).

5.4. Conclusion

In this Chapter, a robust and efficient active contour model has been proposed by
combining the local binary pattern stopping function (LBPSF) with the GAC model in a
variational level set formulation. Comparatively to edge stopping function (ESF), the LBPSF
accurately distinguishes the noisy and poorly defined boundaries or edges. Experimental
results and quantitative analysis showed that our method outperforms the related methods in
terms of boundary detection and segmentation accuracy.
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Chapter 6

Conclusion

and future work

In this thesis, we first provided a literature review behind ACMs to show various types
based on curve representation (parametric and geometric ACMs), the level set strategy (PDE
and variational) and the image information used (Edge-based models and region-based
models) to deal with object detection or segmentation problem. However, a number of models
have been presented to deal with segmentation problems met with some state of art ACMs. In
this final Chapter, the results from previous Chapters are summarized and additional research
is proposed that can extend the efforts described in the previous three Chapters of this thesis.

6.1. Summary of contributions

In Chapter 3, in order to raise the performance of ACM, we proposed a hybrid ACM
embeds both edge and region information within a variational level set framework. The
combination of the edge and region information gave the hybrid model their advantages; i.e.
bidirectional motion of the curve, robustness against noise and detecting discreet edges as
advantages of using region information, and detecting objects with high variation in gradient
at boundaries even in the presence of intensity inhomogeneity for edge information. In
addition, the variational level set formulation uses a penalizing term that forces the LSF to be
close to SDF to eliminate costly re-initialization and speed up the motion of the curve.
Experimental results on both synthetic and real images show that the hybrid model works
better than traditional edge-based and region-based models.

Chapter 4 gave several possible solutions to improve the robustness of local region-
based ACM, where a region-based ACM based on local signed pressure Force (LSPF)
function has been proposed. The LSPF considers local information which modulates the signs
of the pressure force inside and outside the curve locally, which helps the model to work well
with intensity inhomogeneity. The proposed model uses a simple and efficient level set
updating formulation by using directly current LSF instead of its curvature approximation and
a simple morphological opening and closing process to smooth the LSF which make it less
sensitive to noise and to the initialization of the curve compared with other ACMs.

Eventually, with the aim of developing an edge-based ACM that is at the same time
effective and robust in handling images with intensity inhomogeneity, we have proposed in
Chapter 5 an edge-based ACM guided with local binary pattern stopping function (LBPSF).

The main motivation is to improve the robustness of ESF against noise and poorly defined
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boundaries by introducing a new stopping function based on texture analysis with LBP
textons. Indeed, LBP textons are used to classify image regions into noisy, homogeneous and
edge regions which helps to construct LBPSF such as it is zero on edges whereas it is equal to
one on flat and noisy regions. Comparatively to ESF, the LBPSF accurately distinguishes the
noisy and poorly defined boundaries.

6.2. Recommended future work

There are still several issues that need to be further developed in the future.

All methods that have been proposed are defined and tested just on gray value images,
opening a possibility to extend them to color image.

In Chapter 3, the competition between edge and region information is made based on a
weighting function taking into account gradient information, and we may add other
information such as the degree of inhomogeneity based on local image contrast.

The size of the locality in local region-based ACMs affects the segmentation results,
developing a method adapting this parameter may raise the performance of local models.

Finally, for the ACM based on LBP proposed in Chapter 5, future work will be devoted
to improve its performance by developing an automatic method to define threshold parameter
in the hysteresis thresholding step.
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Appendix A

Functional minimization

A functional is a mapping E which assigns to each element of a vector-space (to each
function u) an element from the underlying field (a number).

Let’s consider a particular class of functionals, that we call it a canonical class:
E(u) = [ L(u,0)dx (A.1)

Where 1 = Z—Z is the derivative of the function u. (In physics £ is called the Lagrange

density).

We want to treat this class of cost functions (functionals) because the theory we will
develop should be independent of what exact cost function we use; it is some quantity
evaluated for each pixel and aggregated over all pixels, and this quantity in this example will
depend on u and its derivative at location x, but the theory can be generalized for high order
derivatives (second, third...).

Just as with real-valued functions defined on R™ the necessary condition for extremality
of the functional E states that the derivative with respect to u must be 0.

Yet how does one define and compute the derivative of a functional E (u) with respect
to the function u?

The Gateaux Derivative:

There are several ways to introduce functional derivatives. The following definition
goes back to works of the French mathematician R. Gateaux which were published
posthumously in 1919.

The Gateaux derivative extends the concept of directional derivative to infinite-
dimensional spaces. The derivative of the functional E (u) in direction h(x) is defined as:
E(u+e h)—E(u)

dE(w)| _ .
|y = lim_,, . (A.2)

As in finite dimensions, this directional derivative can be interpreted as the projection of
the functional gradient on the respective direction. We can therefore write:

dE(u)

| = G2 = [T (OhG)dx (A3)

du du
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Appendix A. Functional Minimization

For functionals of the canonical form: E(u) = [ £L(u,2)dx the Géteaux derivative is

given by:
W i ip h) — E
au |, = = lim = (u+e€eh)—E()

= lim— f(ll(u + eh, 1 + eh) L(u,1))dx

e—0 €

=i L o 2) L(u,1))d
=limz )¢ 7t 5 (e )
- [Gan 5
= aLh daLhd tial int, h = 0 on bound
F T )dx (partial int,h = 0 on boundary)
_j oL d dL
) J0u_ dxod
dE
du

Euler-Lagrange equation:
Thus the derivative of the functional E (1) in direction h is:

dE(u) _ f( d aL) h(x)dx

dE
du

(A.4)

As a necessary condition for minimality of the functional E (u) the variation of E in any
direction h(x)must vanish. Therefore at the extremum we have:

dE oL d 0L
— T — — — — O A.
du ou dx ot (A.3)

This condition is called the Euler-Lagrange equation.

The Euler-Lagrange equation is a differential equation which forms the necessary
condition for minimality.

The central idea of variational methods is to compute solutions to the respective Euler-
Lagrange equation.
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For general (non-quadratic) energies, one can start with an initial guess uy(x) of the
solution and iteratively improve the solution. Such methods are called descent methods.

How can one iteratively improve a given solution?
Gradient Descent:

Gradient descent or steepest descent is a particular descent method where in each
iteration one chooses the direction in which the energy decreases most. The direction of
steepest descent is given by the negative energy gradient.

To minimize a real-valued function f: R™ — R, the gradient descent for f(u) is defined
by the differential equation:

du

_ _af (A.6)
E o du (u)

{ u(0) = u,

. .. d
Discretization: Upyq = Up — Eﬁ (uyp), t=0,12,..

For minimizing functionals E'(u), the gradient descent is done analogously. For the
functional E (u) = [ L(u,%)dx, the gradient is given by:

dE 0L d oL

du " ou  dxod (A7)
Therefore the gradient descent is given by:
u(x,0) = uy(x)
ou(xt)  dE _ 9L 9 dL (A.8)
at du Ju Odxdu
. . dE ,
If the gradient descent converges, i.e. atu = — T = 0, then we have found a solution to

the Euler-Lagrange equation.
Addendum: Boundary Conditions:

When deriving the Euler-Lagrange equations we only considered perturbations h(x)
which are 0 on the boundary. Without this assumption, Gateaux’s directional derivative is:

b oL 6 dr .

dE(uw)| _ (_
W toxda

du

j boc d oL 0L
(au dx ou
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dE (u)
du

a

_jb(a,a daz:)h e (oo .,
= \Gu " dan) Max (G | =
a

dE 0L d oL _

du~ ou dxou
b (A9)
oL
2) (@ h(x))a

=

Depending on the application one can distinguish two kinds of boundary conditions:

e Dirichlet boundary conditions: the function u(x) is fixed on the boundary (u,(x)), i.e.
h(x) = 0 on the boundary. One only considers variations of u(x) inside the domain:

du du dxou (A.10)

dE _ 0L  d 9L _
{u(x)lboundary = Uy (x)

e Neumann boundary conditions: one additionally allows for variations of u(x) on the
boundary:

dE 0L d L _

du  du dxou

A1l
oL — 0 (A.11)

ou boundary
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Implementation for the piecewise

constant M-S functional (two regions case)

Unfortunately, the M-S functional in its original formulation is not in a canonical

form E(u) = L(u,u, ). Since the variable of interest (the boundary C) appears in the
integrand.

Following green’s theorem [40], we will derive the Euler Lagrange equation:

Assume we are given energy of the form

E(C) = [y fC0,y) dxdy (B.1)

Where int(C) denotes the region inside a curve C. Let C:[0,1] » R? be a parametric
closed curve, with C(s) = (x(s),y(s)).

Green’s theorem: For a victor field of the form V = (a(x, v), b(x, y)) eR? and a
closed boundary C < (1, we have:

Jineiy(V xVydx = [, V ds (B.2)

Where the rotation of V is defined as V x V = Oxb — 0y a, thus:
fint(c)(bx —ay)dxdy = [, adx+bdy (B.3)

Closing a vector field V such that f= (bx — ay), we can rewrite the energy in the
canonical form:

E(C) = fyo f dxdy = J, adx +bdy = [ (at +by)dS = [} L(x,%,y,7)dS (B.4)
Where x = da;_gS) andy = dJ;—(SS)

The functional E(C) is equal to an integral along the curve C and we can compute the
functional derivative with respect to C(S) = (x(S), y(S)):
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9x dsox ox' TaxY dstT

9L_doL_oda, 0b, d _( 6b|6a)x__fx ac  dsac (B.5)
dy dsay oy~ ayY as’ \“ox ay)*"

9L doL_da, db. d _(db da\. .
=(Geay)7=rv | oz aox

In summary we obtain the simple functional gradient

dE _ 0L _d oL _ VY= f
dc ~ ac dsac'_f(x’y)(—a‘c)_fnC (B.6)

Where n; is the outer normal for the piecewise constant M-S functional with two
regions (without boundary length term):

E(C) = [ UG = wime)?dx + [,y )T (0) — Uer)*d*x (BT

So the functional derivative is given by:

L = () = gne)? = (00 = e)?) TE (B.3)

For the two regions piecewise constant M-S with length regularity, we get:
E(Q) = [y 1) = uine)?d2x + [, UG = Ugw)?dx +IC B9)

And the gradient decent reads:

actgi’t) - dl(si(CC) = ((1 - uext)z_(l - uint)2 - ch) n—C> (B.10)

Where k. denotes the local curvature of the curve C.

This means that additional to separating bright and dark areas, the evolution aims at
suppressing large curvature of the curve.
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Minimization of the hybrid ACM energy

The energy functional of the proposed hybrid ACM is given by:

E(d) = %ufﬂ (Ive| — 1)%dx + [, gIVH(®)|dx + [, gF H(-®)dx (C.1)

So we can re-write the functional in the following form

L=L1+L2+L3

= ~u(I7®| — 1) + gIVH(®)| + gFH (@)

We can compute:

0E  aL L i=3 az;l
5o =50~ div(555) =23
So
e u(vel 1) ||7c1>|
=u(Vo — ﬁ
and
0Ly _
P 0
o L, =g|VH(P)| = g6(@)|VP|
0Ly _ ve
e go(®) V|
and
22 = §(@)g|vo|

. 22— —gF(5(®))

and
oLy
VD

(C.2)

aL;

~ G

) (C.3)
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Combining all results in (C.3), gives:

2 = —udiv [V — 7] + 8(@)gIV®| - div (9. 5(®) ) — gFE(®) (€4
Further evaluating of div(g §(®) & q’l) gives:
dw(g 5(d) 2= |l7<I>| =— (6(Cb)g|m| —(5( )gIVCDI)
(q’)g |\7<1>| (di'g |\7<1>|) §(@) +35 6@))9 |\7<I>I (ddyg |vc1>|) 5(®)

ax 9 |vq>|) 5(®) + 6@)@3’9 |\7<1>| N (di;g ||7d>|) (@)

=+ (5
= 6(@)div(g |ml) +§(d)g \7c1>ﬁ

= 5(®)div (g ﬁ) + §(®)g|V O

So the Euler Lagrange equation (C.4) becomes

g—i = —U [VCD — dw| ‘Dl] §(d)div (gl <1>|) gFs(d) (C.5)

Therefore the gradient descent of (C.5) is:

oL} 0E
o= —ae = kD + divo D) + S(D)div (g v q>|) + gFS(d)  (C.6)

with div (g Izzl) g div (I <I>I) + Vg |[VO|

So, (C.6) becomes:
0o O0E
90 = 22 = (T + div ) + 5(®)(g div (o) + Vg |V]) + gF5(®)
(C.7)
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