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                                                                                                    Abstract                      

            

Image segmentation is the problem of partitioning an image into different sub-regions 
based on a preferred feature. Segmentation is an important research area in image processing 
and plays a significant role in computer vision and object detection. A large number of 
different approaches have been developed to deal with segmentation problem including the 
active contour models (ACMs). The fundamental idea is to evolve an initial curve under some 
constraints from a given image to detect object boundaries by minimizing energy. Within this 
framework, this thesis aims at developing models dealing with problems of detecting objects 
(segmenting images) characterized by intensity inhomogeneity and noisy and poorly defined 
boundaries. To deal with these challenges, we proposed a number of ACMs relying on the 
level set method. The first one combines edge and region information based on an adaptive 
weighting function. The second approach uses local region-based signed pressure force in a 
simple and efficient level set formulation. Finally, the third one implements an edge-based 
segmentation with a novel stopping function based on local binary pattern (LBP). 
Experimental results demonstrate the high accuracy of segmentation obtained on various 
synthetic and real gray value images compared with state of the art ACMs. 

Keywords: Active contour model, edge stopping function, Object detection, image 
segmentation, level set method, local binary pattern, region information, signed pressure 
force. 

  



                                                                                                     Résumé                     

 

La segmentation d'image est le problème de partitionnement d'une image en différentes 
sous-régions sur la base d'une caractéristique préférée. La segmentation est un domaine de 
recherche important dans le traitement d'images et joue un rôle important dans la vision par 
ordinateur et la détection d'objets. Un grand nombre d'approches différentes ont été 
développées pour traiter le problème de segmentation, y compris les modèles de contour actif 
(MCA). L'idée fondamentale est d'élaborer une courbe initiale sous certaines contraintes d'une 
image donnée pour détecter les limites d'objet en minimisant une énergie. Dans ce cadre, cette 
thèse vise à développer des modèles traitant de problèmes de détection d'objets (segmentation 
d'images) caractérisés par inhomogénéité d'intensité et des limites bruyantes et mal définies. 
Pour faire face à ces défis, nous avons proposé un certain nombre de MCAs s'appuyant sur la 
méthode d’ensemble de niveaux. Le premier combine les informations de contour et de région 
sur la base d'une fonction de pondération adaptative. La deuxième approche utilise la force de 
pression signée locale basée-région dans une formulation d’ensemble de niveaux simple et 
efficace. Enfin, le troisième implémente une segmentation basée contour avec une nouvelle 
fonction d'arrêt basée sur le motif binaire local (LBP). Les résultats expérimentaux 
démontrent la grande précision de la segmentation obtenue sur diverses images en niveaux de 
gris synthétiques et réelles par rapport à l’état de l’art des MCAs. 

Mots-clés: Modèle de contour actif, fonction d'arrêt de contour, détection d’objet, 
segmentation d'image, méthode d’ensemble de niveaux, motif binaire local, information de 
région, force de pression signée. 

  



                     ملخص                                                                                                         

 

 بحثتجزئة ھو مجال ال .ةعينمبناء على ميزة  ةمختلففرعية مناطق الصورة إلى  جزئةت مشكلالصور ھي  سيمتق
وقد تم تطوير عدد كبير من المناھج   .الأجسامالكمبيوتر والكشف عن برؤية المھم في معالجة الصور ويلعب دورا ھاما في 

أولي تحت بعض  حيزطور يالفكرة الأساسية ھي أن   .النشطة الحيزتجزئة بما في ذلك نماذج الالمختلفة للتعامل مع مشكلة 
ف ھذه الأطروحة إلى تھدفي ھذا الإطار،  .عن طريق التقليل من الطاقة الجسمالقيود من صورة معينة للكشف عن حدود 

 المشوشة، والحدود الشدةتجانس  بعدم التي تتميز) ةبتجزئة الصور( جساملكشف عن الأالتعامل مع مشاكل لتطوير نماذج 
 مجموعةعلى طريقة  اعتمادا نماذج الحيز النشطة للتعامل مع ھذه التحديات، اقترحنا عددا من .محددة بشكل واضحغير الو

الثاني يستخدم قوة ضغط  نموذجال .ترجيحلل دالة مكيفةعلى  بالاعتمادحافة والمنطقة ال يمعلومت بين يجمع ھاأول .ياتالمستو
مبني على  النموذج الثالثوأخيرا،   .بسيطة وفعالة ياتمجموعة مستو معادلةالمنطقة المحلية في  مبنية على معلومة مؤشرة
تظھر النتائج التجريبية دقة  (LBP) .ثنائي المحليالنمط التقوم على  جديدة توقف دالةمع  تعتمد على معلومة الحافة تجزئة
  .المعروفة أمثلة الحيز النشطةمقارنة مع حقيقية اصطناعية ومختلفة  رمادية على صور محصل عليھاتجزئة الللعالية 

، ياتالمستو مجموعةصورة، طريقة التجزئة كشف الأجسام،  ،بالحافةالتوقف  دالة، نشطال الحيز نموذج: حيةامفتكلمات الال
 .المؤشرة ثنائي المحلي، معلومات المنطقة، قوة الضغطالنمط ال



                                                                                               Publications                      

 

The research outcomes of this thesis are reported in the following publications: 

Journal Papers: 

• Azizi, A., & Elkourd, K. (2016). Fast Region-based Active Contour Model 
Driven by Local Signed Pressure Force. ELCVIA Electronic Letters on 
Computer Vision and Image Analysis, 15(1), 1-13. 
 

• Azizi, A., Elkourd, K., & Azizi, Z. (2017). Robust Active Contour Model 
Guided by Local Binary Pattern Stopping Function. Cybernetics and 
Information Technologies, under review. 

 

Conference Papers: 

• Abdallah, A., & Kaouther, E. (2015, November). A Hybrid Active 
Contour without Re-initialization. In Proceedings of the International 
Conference on Intelligent Information Processing, Security and Advanced 
Communication (p. 45). ACM. 

 

 

 



                                                                                               Abbreviations                      

 

 

ACM: Active Contour Model. 

C-V: Chan-Vese. 

DRLSE: Distance Regularized Level Set Evolution. 

ESF: Edge Stopping Function. 

GAC: Geodesic Active Contour. 

GACV: Geodesic Aided Chan Vese. 

LBF: Local Binary Fitting. 

LBP: Local Binary Pattern. 

LBPSF: Local Binary Pattern Stopping Function. 

LGDF: Local Gaussian Distribution Fitting. 

LSE: Level Set Evolution. 

LSF: Level Set Function. 

LSM: Level Set Method. 

LSPF: Local Signed Pressure Force. 

M-S: Mumford-Shah. 

ORACM: Online Region-based Active Contour Model. 

PDE: Partial Differential Equation. 

SBGFRLS: Selective Binary and Gaussian Filtering Regularized Level Set. 

SDF: Signed Distance Function. 

SPF: Signed Pressure Force. 

 



i 

Contents 

Contents ................................................................................................................................... i   

List of figures ....................................................................................................................... iv 

List of tables ........................................................................................................................ vii    

1. Introduction ................................................................................................................... 1    

1.1. Image segmentation .......................................................................................................... 1 

1.1.1 Thresholding segmentation ................................................................................... 2 

1.1.2 Clustering methods ................................................................................................ 3 

1.1.3 Edge-based segmentation ...................................................................................... 3 

1.1.4 Region-based segmentation ................................................................................... 3 

1.1.5 Energy-based segmentation ................................................................................... 4 

1.2. Motivation .......................................................................................................................... 5 

1.3. Organization of the dissertation ...................................................................................... 5 

2. Active contour models ................................................................................................ 7 

2.1. Introduction ....................................................................................................................... 7 

2.2. Snakes ................................................................................................................................. 7 

2.3. The Mumford-Shah model ............................................................................................... 9 

2.4. Level set methods ............................................................................................................ 10 

2.4.1. Explicit VS implicit curve representation .......................................................... 10 

2.4.1.1. Explicit curve evolution ................................................................................ 10 

2.4.1.2. Implicit curve representation....................................................................... 12 

2.4.2. Level set methods for image segmentation ........................................................ 14 

2.4.2.1. The Geodesic Active Contours ..................................................................... 14 

2.4.2.2. The Chan and Vese LSM ............................................................................. 15 

2.5. Local region-based ACMs .............................................................................................. 17 

2.5.1. Local binary fitting model ................................................................................... 17 

2.5.2. Local Gaussian distribution fitting model ......................................................... 18 

2.5.3. Locally statistical ACM ....................................................................................... 19 

2.6. Conclusion ........................................................................................................................ 20 



ii 
 

3. A hybrid ACM without re-initialization ............................................................ 21 

3.1. Introduction ..................................................................................................................... 21 

3.2. LSM regularization methods ......................................................................................... 21 

3.2.1. Re-initialization .................................................................................................... 21 

3.2.2. Distance regularized level set evolution (DRLSE) ............................................ 22 

3.3. Combination of edge and region information .............................................................. 23 

3.3.1. Geodesic- Aided C-V method .............................................................................. 23 

3.3.2. The proposed hybrid model without re-initialization ....................................... 23 

3.4. Implementation ............................................................................................................... 24 

3.5. Experimental results ....................................................................................................... 25 

3.5.1. Comparison with the GAC model ...................................................................... 26 

3.5.2. Comparison with the C-V model ........................................................................ 27 

3.5.3. Application on real images .................................................................................. 27 

3.5.4. Global/Local property and comparison with GACV model ............................ 28 

3.6. Conclusion ........................................................................................................................ 30 

4. Fast region-based ACM driven by local signed pressure force ................. 31 

4.1. Introduction ..................................................................................................................... 31 

4.2. Related methods .............................................................................................................. 32 

4.2.1. The ACM with SBGFRLS model ....................................................................... 32 

4.2.2. The ORACM model ............................................................................................. 32 

4.3. The Proposed method ..................................................................................................... 33 

4.3.1. Local SPF function ............................................................................................... 33 

4.3.2. Implementation .................................................................................................... 34 

4.4. Results .............................................................................................................................. 34 

4.5. Conclusion ........................................................................................................................ 42 

5. Robust ACM guided by local binary pattern stopping function ............... 43 

5.1. Introduction ..................................................................................................................... 43 

5.2. The proposed method ..................................................................................................... 43 

5.2.1. Local binary pattern ............................................................................................ 43 

5.2.2. Edge detection with LBP ..................................................................................... 45 

5.2.2.1. Noise suppression .......................................................................................... 45 

5.2.2.2. Gradient magnitude ...................................................................................... 46 

5.2.2.3. Non-maximum suppression ......................................................................... 46 



iii 
 

5.2.2.4. Determination of edge pixels ........................................................................ 46 

5.2.3. The ACM based LBP stopping function ............................................................ 47 

5.3. Results .............................................................................................................................. 48 

5.4. Conclusion ........................................................................................................................ 54 

6. Conclusion and future work ................................................................................... 55 

6.1. Summary of contributions .............................................................................................. 55 

6.2. Recommended future work ............................................................................................ 56 

A. Functional minimization .......................................................................................... 57 

B. Implementation for the piecewise constant M-S functional ....................... 61 

C. Minimization of the hybrid ACM energy .......................................................... 63 

Bibliography ........................................................................................................................ 65 

 

 



iv 
 

                                                                                   List of figures                      

 
Figure 1.1: Binarized image of a Dalmatian dog in a background of leaves. The dog is                      
located to the right of the center with its back to the viewer, facing left [2]. ............................. 2 

Figure 2.1: Segmentation example using snake model [14]. From left to right: input image 
with the initial contour, Gaussian-smoothed input image, the final segmentation 
(implementation: D. Cremers). ................................................................................................... 8 

Figure 2.2: Competition between two adjacent regions; at each boundary point, displace the 
curve: outwards, if ܫ − ݐ݊݅ݑ < ܫ − ܫ inwards if ,ݐݔ݁ݑ − ݐ݊݅ݑ > ܫ −  10 ............................. ݐݔ݁ݑ

Figure 2.3: The basis functions and example of spline curve. The control points are 
represented by squares. ............................................................................................................. 11 

Figure 2.4: Example of propagation of the curve for M-S cost function [42]. ........................ 12 

Figure 2.5: The problem of fixed topology with explicit curve evolution [42]. ..................... 12 

Figure 2.6: Non parametric implicit curve representation via Level set ................................. 13 

Figure 2.7: Geodesic Active Contours via Level-sets (example from [53]) ........................... 15 

Figure 2.8: Level set evolution of the C-V model (implementation: D. Cremers). ................ 16 

Figure 2.9: Segmentation examples of synthetic image with intensity inhomogeneity (red 
curve: initial contour, pink curve: result). Left: results of the CV model, right: the LBF 
model[1]. .................................................................................................................................. 17 

Figure 2.10: Graphical representation of local region. The locality of point ܥ ߳ݔ is defined by 
the interior of the blue circle. All points within this neighborhood are classified as local 
interiors ࣩ(ݔ) ∩ Ω ݅and local exteriors ࣩ(ݔ) ∩ Ω 0[1]. ........................................................... 18 

Figure 2.11: Distributions of adjacent regions in the original image intensity domain (blue 
solid curves) and the transformed domain (red dashed curves) [34]. ....................................... 19 

Figure 3.1: Mechanism of maintaining signed distance function [54] .................................... 22 

Figure 3.2: Two different regularizations delta functions [48]. .............................................. 25 

Figure 3.3: A Segmentation results for synthetic image: (a) initial contours, (b) the GAC 
model, (c) the proposed model. B Segmentation results for noisy synthetic image: (a) initial 
contours, (b) the GAC model, (c) the GAC model ߪ = 3, (d) the proposed model.. ............... 26 

Figure 3.4: Applications to a microscope cell image: (a) initial contour. Segmentation result 
by: (b) the C-V model and (c) the proposed model. ................................................................. 27 

Figure 3.5: Segmentation results for real images: Row 1: original images with initial contour; 
Row 2: results of the proposed model. ..................................................................................... 28 

Figure 3.6: Comparisons of the global segmentation property. The first row shows the initial 
contours, the second row shows the segmentation results using 1ߜ,  and the third row ,(ݔ)ߩ
shows the segmentation results using 2ߜ,  29 ....................................................................... .(ݔ)ߩ



v 
 

Figure 3.7: Comparisons of the local segmentation property. First row shows the initial 
contours. The segmentation results using 2ߜ,  are shown in the second row, and theݔߩ
segmentation results using 1ߜ,  are in the third row. ....................................................... 29  (ݔ)ߩ

Figure 4.1: Segmentation results on a synthetic image: (a) initial contour. Segmentation result 
by: (b) the GAC model, (c) the C-V model (d) the ACM with SBGFRLS model (e) the LBF 
model (f) the ORACM model (g) the proposed model. The parameter ߪ = 30. ..................... 35 

Figure 4.2: Applications to a microscope cell image (downloaded from [23]): (a) initial 
contour. Segmentation result by: (b) the GAC model, (c) the C-V model (d) the ACM with 
SBGFRLS (e) the LBF model (f) the ORACM model (g) the proposed model. The parameter ߪ = 4. ....................................................................................................................................... 36 

Figure 4.3: Comparison of segmentation results using synthetic image with intensity 
inhomogeneity (downloaded from [62]): (a) initial contour. Segmentation result by: (b) the 
GAC model, (c) the C-V model (d) the ACM with SBGFRLS (e) the LBF model (f) the 
ORACM model (g) the proposed model. The parameter ߪ = 2. ............................................. 37 

Figure 4.4: Segmentation results on the synthetic image with intensity inhomogeneity. Row1: 
initial contours. Row2: results of the LBF model. Row3: results of the proposed model. The 
parameter ߪ = 5. ...................................................................................................................... 37 

Figure 4.5: Segmentation results on a hand phantom (downloaded from [59]) using the LBF 
and the proposed model: (a) initial contour, (b) segmentation result by the LBF model, (c) 
zoomed view of the narrow, blue rectangle in (b), (d) segmentation result by our method, and 
(e) zoomed view of the narrow, blue rectangle in (d). The parameter ߪ = 3. ......................... 38 

Figure 4.6: Segmentation results of an inhomogeneous image (downloaded from [63]). (a) 
The original image with initial contour, (b) the final contour with the LBF model and (c) the 
final contour with the proposed model. The parameter ߪ = 30. .............................................. 38 

Figure 4.7: Segmentation results on a synthetic image where the strength of intensity 
inhomogeneity is gradually increased from left to right (downloaded from [64]). Row1: 
results of the LBF model. Row2: results of the proposed model. The parameter ߪ = 2. ........ 39 

Figure 4.8: The corresponding ܵܬ values yielded by the LBF model and the proposed model 
on the five images with different intensity inhomogeneity. ..................................................... 39 

Figure 4.9: Comparison of segmentation results of the LBF model (top row) and the 
proposed model (bottom row) on several medical images (a, b, d and e: downloaded from 
[64], while c: from [33]). .......................................................................................................... 40 

Figure 4.10: Comparisons of the segmentation results with salt and pepper noise by the LBF 
model and the proposed model on Row1 and Row2, respectively. Column1: the original 
image with initial contour; Columns 2, 3 and 4 added the salt and pepper noise with densities 
0.05, 0.1 and 0.2, respectively. The parameter ߪ = 10. ........................................................... 41 

Figure 4.11: Experiments on an MR image of bladder (downloaded from [31]): (a) Initial 
contour. Result of our model for: (b) ߪ = 8. (c) ߪ = 30. (d) Result of the ORACM model. . 41 

Figure 5.1: Calculation and interpretation of Local Binary Patterns (LBPs) [67] .................. 44 

Figure 5.2: Classes of the non uniform rotation invariant LBPs ............................................. 44 



vi 
 

Figure 5.3: LBP histogram for Lena with different noise levels [70] ..................................... 45 

Figure 5.4: The four sets with LBPs of different orientations ................................................. 46 

Figure 5.5: Comparison between the different active contour models. (a) Original images 
with initial contours. Segmentation output of: (b) GAC model [20] (ߪ = 1.2 for all images), 
(c) global region-based model [60], (d) local region based-model [34] (Image 1: ߩ = 6.0, 
Images: 2, 3, and 4: ߩ = 3.0, Image 5: ߩ = 1.5), and (e) the proposed model ........................ 49 

Figure 5.6: Comparison between the different active contour models. (a) Original images 
with initial contours. Segmentation output of: (b) GAC model [20] (ߪ = 4 for image 8, ߪ = 1.2 for others), (c) global region-based model [60], (d) local region-based model [34] 
(Image 6, 7, and 8: ߩ = 3.0, Image 9: ߩ = 6.0, Image 10: ߩ = 4.0), and (e) the proposed 
model ........................................................................................................................................ 50 

Figure 5.7: Comparison between the ESF and the LBPSF. (a) Original images, (b) the 
visualized ESF of the original images, and (c) the visualized LBPSF of the original images . 51 

Figure 5.8: Comparison between the ESF and the LBPSF. (a) Original liver CT image, (b) 
ESF and LBPSF values along a line (red) segment in the original image ............................... 52 

Figure 5.9: Segmentation results by the model of [34]. (a) Original images with initial 
contours, (b), (c) and (d) are the segmentation results with ߩ = ߩ ,1.5 = 3.0 and ߩ = 6.0, 
respectively ............................................................................................................................... 53 

Figure 5.10: Segmentation accuracy as calculated via the Dice index for each model ........... 53 

 

 



vii 
 

                                                                                   List of tables                      

  
Table 3.1: Iterations and CPU time by the GAC model and the proposed model. ................. 27 

Table 4.1: Description of the parameters used in the study. ................................................... 35 

Table 4.2: Iterations and CPU time needed by the methods compared when segmenting the 
image in Fig. 4.1. ...................................................................................................................... 35 

Table 4.3: Iterations, CPU time and values of  needed when segmenting the images in Fig 
4.9. ............................................................................................................................................ 41 

Table 5.1: Description of the parameters used in the study . .................................................. 48 

Table 5.2: Values of the Dice index (D) of the different models used in the study (Fig. 5.5 
and Fig. 5.6). ............................................................................................................................ 54 

 

 

 

 

 



1 
 

                                                                                                               Chapter 1                      

            Introduction 

 

1.1. Image segmentation 

Image segmentation is the most studied problem in computer vision. We will start with 
an example showed in Fig. 1.1 demonstrates that the segmentation is a difficult problem even 
for humans; typically we are in stage today where things that are easy for humans are difficult 
for computers. Refers to Fig. 1.1, not many humans recognize what’s on the image; it is a 
Dalmatian dog (white dog with black spots), this problem of detecting and separating objects 
from background is called segmentation. More specifically image segmentation can be 
formally described as: 

Definition1.1. 

Let Ω be an image domain. Image segmentation refers to the process of partitioning Ω into 

disjoint sub-regions {ߗ௥}, ݎ = 1,… ,ܰ,  which satisfy [1] : 

1. ௥ܷୀଵே ௥ߗ =  ;ߗ

௔ߗ .2 ∩ ௕ߗ = ∅, ∀ܽ ≠ ܾ; 

3. ܲሺߗ௥ሻ = ,݁ݑݎݐ  ;ݎ∀

4. ܲሺߗ௔ ∩ ௕ሻߗ = ,݁ݏ݈݂ܽ ∀ܽ ≠ ܾ. 

P(.) is a logical predicate defined on groups of connected pixels. 
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Figure 1.1: Binarized image of a Dalmatian dog in a background of leaves (left). The 
dog is located to the right of the center with its back to the viewer (right) [2]. 

There exist many approaches to tackle segmentation problem, they typically differ in 
the following ways: 

- Which local properties are considered to compute segmentation (brightness, color, 
texture, motion...).

- How the segmentation is computed; once the criterion which the segmentation is based 
on is decided, the next question is what’s the algorithm used to group pixels (region 
merging, region growing, level sets…).
Segmentation methods are generally classified into five categories [3]: 

1.1.1 Thresholding segmentation 

Thresholding methods are pixel based strategies, and usually convert an image into a 
binary image containing two subsets (foreground and background) based on a threshold value 
 The idea is to label each pixel as one “1” (object) if its brightness is larger than the .(ߠ)
threshold value (ߠ) or zero “0” (background) if it is darker than (ߠ). 

The challenge in these methods is to find a good threshold value. There are a lot of 
strategies doing that including Otsu’s thresholding [4] which is the most popular. This method 
proposed a particular threshold such that the brightness variance of the object and background 
are minimized; the algorithm tries to find brightness threshold between object and background 
in such a way that the pixels that form the object have minimum variance of brightness and 
similarly for the background.  Thresholding has many advantages; typically is very fast and it 
can be run in real time. 



Chapter 1.  Introduction 

3 

In addition it has adaptive variants that can improve the performance 
(brightness distribution and brightness variance). However thresholding neglect spatial 
context (i.e the information that neighboring pixels are likely to be part of the same region. 
Instead all pixels are treated independently). 

1.1.2 Clustering methods 

They are systematic approaches to tackle thresholding; the idea behind clustering is 
to compute segmentation of an image by combining pixels of similar brightness in a 
single region (cluster) and representing theses clusters by probabilistic distribution. There 
are many clustering algorithms and the most common one is K-means clustering [5]. 
This method determines a given number of K clusters by iteratively assigning data points to 
the nearest of K cluster center and subsequently re-computing these cluster centers to 
represent the segmented image, each data point is replacing with the cluster center of 
that cluster. In principle, this method is a form of segmentation because all pixels are 
partitioned into groups, but it is actually a little more what is called “brightness 
quantization”; by getting a good approximation of the original image with just K levels and 
this could be used for example for image compression. 

1.1.3 Edge-based segmentation  
This method identify contours which approximate discontinuities of the gray level, 

color, texture….The location of discontinuities is given by an extreme of either the first order 
derivative of the image intensity [6,7] or the zero crossings of second order derivative [8], one 
of the most accurate techniques in this category is the Canny edge detector [9]. The canny 
edge detector is less sensitive to noise than other first derivative edge detector; taking image 
derivatives leads to accentuate high frequencies as noise and the canny algorithm convolves 
the image with a Gaussian filter (low pass filter) to smooth it. Although these methods are 
easy to be implemented, they are very sensitive to noise and they are likely to produce gaps 
between boundaries [10]. 

1.1.4 Region-based segmentation 

This category is in some sense complementary to the previous category; that it identifies 
regions in the images plane for which some criterion is more or less uniform (brightness, 
color, texture…). Two rather old methods for computing region-based segmentations are 
region merging and region growing [11,12]. Both methods are similar in their principle but 
they go slightly different ways; the idea is to find segmentations by aggregating pixels into 
regions. In region growing, one start with a couple of seed pixels and then iteratively include 
neighboring pixels (grow regions) as long as their predefined criterion is sufficiently similar. 
Region merging approach starts with a partitioning for which each pixel is its own region and 
then, iteratively merges (fusion) neighboring regions as long as they are sufficiently similar. 
The advantage of these techniques is that they are interactive in some way and they always 
determine connected regions, but they typically lack a systematic optimization criterion. 
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1.1.5 Energy-based segmentation 

These methods form the segmentation problem as an optimization problem which tries 
to divide the images into regions by optimizing some criterion (minimizing or maximizing 
energy) [13]. 

Active Contour Models (ACMs) [14] are the most popular techniques in this category; 
the idea behind the ACM is to drive an initial curve inside the image domain to be segmented 
to reach the boundaries of the objects of interest by minimizing energy. Where the curve is 
argument of this energy [15], one of the questions that we will look for: how does the 
boundary is represented? According to curve representation there are two types of ACMs, 
parametric models and geometric models. Parametric ACMs [16-18] are implemented 
explicitly as parameterized curves with a set of control points, and evolving the curve is 
reached by evolving these control points. However, by construction, parametric curves have a 
fixed topology; without additional splitting or merging heuristics, the curve topology will 
not change during its evolution. Geometric ACM are independently introduced by Casselles 
et al [19,20] and Malladi et al [21]. These models combining curve evolution theory [25] and 
level set method (LSM) [26], give sophisticated solution to overcome the limitation of 
parametric ACM. The key idea is to evolve a level set function (LSF) where the curve is 
representing its zero level. The main advantage of this approach is that the topological 
changes of the curve represented by the LSF are handled automatically.  

According to the LSM strategy, there are two different strategies to tackle segmentation 
with LSM: partial differential equation (PDE) based ones [19-22] and variational ones 
[23,24]. The level set evolution (LSE) of PDE based LSM is directly derived by 
implementing the gradient descent equation for the curve using the level set equation. This 
was done to derive the LSM for snake-like energies known as geodesic active contour (GAC) 
[20,22]. The LSE of variational LSM is derived by rewriting the variational principle with 
respect to the LSF rather than the curve, and then computing the gradient descent with respect 
to this function [23,24]. This method presents advantages over PDE based one, that it is more 
robust and more convenient for incorporating additional information such as shape and region 
location [27]. 

The energy has two components, one is the regularity term or internal energy and one is 
the data term or the external energy. The internal energy is a regularizer which induces some 
smoothness on the curve. External energy is image-driven; that is based on different image 
characteristics. According to image characteristics ACM can be classified into two main 
categories: edge-based models and region-based models. Edge-based models [20,23] rely on 
local image gradient information to construct an edge stopping function (ESF) to stop the 
evolving curve on the desired objects boundaries. Although these models have been 
successfully applied for images with height variation in gradient at objects boundaries even in 
the presence of intensity inhomogeneity, they meet difficulty when dealing with object having 
blurred or discrete boundaries and they hardly detect objects corrupted by noise [28]. Region-
based models form the foreground and background regions statistically and find an energy 
optimum where the model best fits the image [29]. These models control the evolution of the 

4 
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curve with better performance including weak edge and noise. However, modelling regions 
using global statistics [24,30] is not applicable to images with intensity inhomogeneity. 
Although, some region-based models using local statistics have been proposed to deal with 
intensity inhomogeneity [31-33] but they are found to act locally, to be easy to trap into local 
minima and the local statistics are only defined empirically, which make these models 
sensitive to the choice of those statistics [34].  

1.2. Motivation 

Current ACMs, either edge-based models or region-based models (using global or local 
statistics) are efficient to some extent to handle segmentation problem. However, they have 
shortcomings when dealing with noisy images for edge-based ACMs, or with images have 
several intensity levels or with intensity inhomogeneity for region based-models even with the 
use of the local statistics; such models are found to be less robust to noise and very time 
consuming. 

As a consequence, these problems need to be addressed, such as: 

- Can edge and region information be combined in a single model?
- Is it possible to develop a local region-based model which is computationally efficient

and robust to noise?
- Can edge based models be ameliorated to deal with noise but keeping sophisticated edge

structures?

Motivated by these issues, we mainly focus on: 

- Combining edge and region information in a variational level set formulation.
- Develop fast and robust local model to deal with images characterized by many intensity

level or intensity inhomogeneity by using a new level set formula and new regularizers.
- Construct a robust and effective edge-based model based on a new approach which is a

crossover between edge detection and texture analysis.

In this work, we will focus on the two regions case (object/background) with only gray 
level images. 

1.3. Organization of the dissertation 

In this thesis, we focus on studying segmentation methods for images with noisy or 
poorly defined objects boundaries and with intensity inhomogeneity or with several intensity 
levels. For that, we begin by the review of the main concepts of the ACMs and the different 
types. We will then discuss the weaknesses met with each type. Finally we will propose 
possible solutions to address these problems. 
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The remainder of this thesis is organized as follow: 

- In chapter 2, we review the state of art of ACMs and the different types based on the
curve representation, the LSM strategy and the information used, we will focus on their
strength and weaknesses.

- Chapter 3 presents the proposed hybrid edge and region based ACM in a variational level
set formulation; by combining both edge and region information, the energy functional of
the proposed level set formulation is defined with a region term, which allows
bidirectional motion of the curve and drives it when it is far away from object boundaries,
and an auxiliary edge term which attracts the curve and stop it at objects boundaries. In
addition, a regularization term is added to the energy functional to ensure accurate
computation and avoid expensive re-initialization of the evolving LSF.

- In chapter 4, we propose within a PDE level set formalism an ACM based on local image
region statistics. The proposed model has the following strength: it can handle intensity
inhomogeneity problem by introducing a new region based signed pressure force (SPF)
function which uses the local region means values inside and outside the curve to guide
the curve evolution; it offers high efficiency and rapid convergence by using a simple and
efficient level set formula which uses directly current LSF instead of its curvature
approximation, and it is robust to some extent to noise by using a new regularizer such as
morphological opening and closing operations to remove small objects and smooth the
curve.

- Chapter 5 describes our proposed ACM based on the Local Binary Pattern (LBP). The
gradient stopping function that is widely used in edge-based ACM as an edge indicator is
high sensitive noise and poorly defined boundaries. Inspired by recent development for
edge detection, we use LBP textons to construct an LBP stopping function (LBPSF). The
classification of image regions by LBP textons into noisy, homogeneous regions, and
edges helps to generate a filter rejecting pixel positions of noise and detect edges using a
modified Canny edge detector in such a way, the new stopping function takes the value of
“0” on edge to stop the motion of the curve while has value of “1” on noisy and
homogeneous regions.

- Finally the last chapter concludes the present work and presents a number of limitations
of the proposed methods and some possible future work directions.
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Chapter 2

Active contour models

2.1. Introduction 

Classical image segmentation methods lack a mathematically or rigueur transparent 
optimization criterion. This is where energy-based segmentation enters the picture. The key 
idea is to define cost functionals over a solution space and to compute optima by solving the 
corresponding extremality principle. This method allows solving segmentation problem in a 
mathematically transparent manner. Instead of performing a heuristic sequence of 
processing steps, one starts by defining what properties a solution should have. The 
most popular technique in this method are ACMs; The main idea is to segment an 
object by iteratively deforming (evolving) a given initial curve until it reaches the 
edges of the object by minimizing energy calculated from different criteria. During 
the minimizing process, the points of the curve will move so that the curve at the 
following iteration has a lower energy, and the curve evolves until it reaches the border of 
the desired object [35].  

To build an ACM, there are mainly three criterions that we based on; the 
curve representation, the level set strategy used and the information or image 
characteristics used. This chapter reviews the main types into each category, its theoretical 
framework, advantages and weaknesses. 

The goal of this chapter is to give an introduction to the theory behind ACMs, their 
similarities, differences and problems to motivate the proposed methods those will solve 
some of these problems later on. 

The outline of this chapter is as follow: we start with describing two well-known 
categories of ACMs based on image characteristics. Namely snakes (edge-based method) 
and the Mumford-Shah (M-S) functional (region-based method). 

This helps us to study other categories based on the curve representation (parametric 
and geometric), the level set strategy (PDE and variational) which is the content of the 
next section. The last section focuses on using local regions statistics to build local region-
based ACMs that will be presented and discussed. 

2.2. Snakes  

The snake model proposed by Kass et al [14] in the late 80th, to our knowledge, is the 
first ACM. The idea is to minimize an energy given by: (ܥ)ܧ = ఈଶ}׬ ௦|ଶܥ| + ఉଶ ௦௦|ଶܥ| − ݏ݀{ଶ|(ܥ)ܫߘ| (2.1) 
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Here ܥ denotes an explicit parametric curve, ܥ௦ and ܥ௦௦ denote the first and the second 
derivative with respect to the curve parameter. The first two terms of (2.1) weighted by ߙ and ߚ are the regularity term or the internal energy of the contour, measuring the length and the 
stiffness of the contour. 

The last term is the data term or external energy which accounts for image information, 
in the sense that the minimizing contour will favor locations of large image gradient [2], 
minimizing the total energy leads to curves which are short and stiff while passing through 
locations of large gradient. Minimizing of (2.1) by gradient descent results in the following 
evolution equation1:  ௗ஼(௦,௧)ௗ௧ = − ௗாௗ஼ = ௦௦ܥߙ − ௦௦௦௦ܥߚ + ଶ|(ܥ)ܫߘ|ߘ (2.2) 

The snake is among the most influential publications in image processing and is 
considered as the first variational approach to image segmentation2. However, it still has 
several limitations: 

• The initial curve must therefore be initialized sufficiently close to the desired solution
because the external energy is active only close to object boundary. Alternatively one can
presmooth the input image (to propagate gradient information). Yet, the smoothing also
removes possibly important edge information (Fig. 2.1). Several methods have been
proposed to address problem of initialization of the curve [17-18,36-38] in aim of
propagating the edge information into the image to increase the capture range of external
energy.

• The evolution of parametric curves is a challenging problem as one needs to avoid self
intersections. More details about this problem are given in section 2.4.

Figure 2.1: Segmentation example using snake model [14]. From left to right: input image 
with the initial contour, Gaussian-smoothed input image, the final segmentation 
(implementation: D. Cremers). 

1 The theory behind functional minimization is developed in Appendix A. 
2 To Dec’16, it has acquired more than 19000 citations.  

http://vision.in.tum.de/members/cremers
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,ݑ)ܧ (ܥ = ଵଶ ׬ ܫ) − ݔଶ݀(ݑ + ఒଶஐ ׬ ݔଶ݀|ݑߘ| + ஐିେ|ܥ|߭ (2.3) 

 Simultaneously with respect to the image ݑ and with respect to the curve ܥ. the three 
terms have the following meaning: 

• The data term (first term) assures that ݑ is a faithful approximation of the input image ܫ; it
just that we want to compute an approximation ݑ of the original image that matches the
image in a least square sense.

• The smoothness term (second term) weighted by ߣ > 0 , assures that ݑ  is smooth
everywhere except for the boundary ܥ.

• A further regularizer weighted by ߭ > 0 assures that this boundary has minimal length |ܥ|.
For increasing value of the weight ߣ, the approximation ݑ is forced to be smoother and 

smoother outside of ܥ. In the limit ߣ →∞, we obtain a piecewise constant approximation of 

the image ݑ)ܧ :3ܫ, ܿ) = ׬ (ݔ)ܫ) − ݔଶ݀((ݔ)ݑ + ߭|C|ஐ (2.4) 

Where (ݔ)ݑ is constant in each of the regions separated by the boundary ܥ. If we denote 
these regions by {Ωଵ, Ωଶ … Ω௡} and the constants ݑ௜; this can be rewritten as: ݑ})ܧଵ, ଶݑ … ,{௡ݑ (ܥ = ∑ ׬ (ݔ)ܫ) − ݔ௜)ଶ݀ݑ + ߭|C|ஐ౟௡௜ୀଵ  (2.5) 

Minimizing of (2.5) results in an approximation of the input images ܫ by a function ݑ 
which is piecewise constant on a set of regions Ω௜ separated by the boundary set C, where the 
constants ݑ௜; are given by the average brightness in each region: 

డாడ௨೔ = 2 ׬ (ݔ)ܫ) − ݔ௜)ଶ݀ݑ = 0 ⟹ ௜ݑ  = ׬ ூ(௫)ௗ௫ಈ೔׬ ௗ௫ಈ೔ஐ౟ (2.6) 

       For the piecewise constant M-S functional, and only two regions separated by a curve 
C. Zhu and Yuille [40] proposed to minimize the piecewise constant M-S as4:డ஼(௦,௧)డ௧ = − ௗாௗ஼ = ܫ)) − ௘௫௧)ଶݑ − ܫ) − ௜௡௧)ଶݑ − ௖)݊௖ሬሬሬሬԦܭ߭ (2.7) 

Where ݊௖ሬሬሬሬԦ is the outer normal and ܭ௖ denotes the local curvature of ܥ.  

If the local brightness (ݔ)ܫ at a point ݔ in the curve ܥ is more similar to the average 
brightness of the interior, then ݔ is assigned to the interior (the curve moves outward) and 
vice versa (Fig. 2.2). In addition the evolution aims at suppressing large curvature of the 

3 For ߣ = 0 we get the same cost function, but the constraint is ݑ = ߣ and with ,݁ݐݏܿ =  can be equal ݑ ,0
to ܫ and this solve the problem. 
4 The technical details of this implementation are described in Appendix B. 

2.3. The Mumford-Shah model 

The M-S model [39] was proposed to compute segmentation integrated with image de-
noising. It searches for a piecewise smooth approximation by minimizing the functional: 
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curve; this is what leads to a local minimization of the boundary length |ܥ| . Other 
implementation of the M-S functional within the level set framework has been proposed by 
Chan and Vese [24] and by Yezzi et al [41]. 

2.4. Level set methods 

The level set methods have been extremely popular as a representation for evolving 
curves, and what we saw in the previous sections, one very straightforward way is to represent 
a curve as points of the boundary and that could be in the simplest case a polygon, and in a 
more sophisticated setting a spline; this is called a parametric representation of the boundary 
or explicit representation. The level set method is very different from that; it is what called an 
implicit representation. 

2.4.1. Explicit VS implicit curve representation 

Gradient descent on respective Functional (ݔ)ܧ leads to an evolution of the boundary in 
normal direction, which can be implemented explicitly or implicitly. Explicit boundary 
evolution has the following strength (+) and weaknesses (-): 

+ Explicit evolutions are runtime and memory efficient, allowing a fast evolution of highly
detailed boundaries.

+ Prior shape knowledge can be imposed directly on the evolving boundary.
- The numerical propagation of explicit boundaries is prone to instabilities, as self-

intersections have to be avoided and re-gridding of control points may be necessary.
- Respective functionals are typically not convex with respect to the boundary C. hence

solutions are typically only locally optimal.

2.4.1.1. Explicit curve evolution 

Gradient descent on a functional (ݔ)ܧ leads to an evolution of the curve ܥ :ܥሶ = ௗ஼ௗ௧ = ݊ܨ (2.8) 

Figure 2.2: Competition between two adjacent regions; at each boundary point, displace the 
curve: outwards, if |ܫ − |௜௡௧ݑ < ܫ| − ܫ| ௘௫௧|, inwards ifݑ − |௜௡௧ݑ > ܫ| −  .|௘௫௧ݑ
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Figure 2.4: Example of propagation of the curve for M-S cost function [42]. 

Figure 2.5: The problem of fixed topology with explicit curve evolution [42]. 

2.4.1.2. Implicit curve representation

Alternatively to an explicit curve representation, one can represent a curve ܥ implicitly, 
for example as the zero level set of an embedding function Φ: Ω → ℛ ܥ = ݔ} ∈  Ω \Φ(ݔ) = 0} (2.15) 

Refer to Fig. 2.6, let’s say the green plane is the image plane, and the red curve is the 
boundary that we want to represent, and we represent it implicitly by this embedding function 
or level set function (LSF). 

This has several advantages: 

+ The representation does not require a choice of parameterization.

+ The topology of the curve is not fixed.
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Figure 2.6: Non parametric implicit curve representation via Level set. 

The evolution of curves by means of a dynamical embedding function is known as the 
level set method (LSM). It was first published by Dervieux and Thomasset [47] and was later 
reinvented by Osher and Sethian [26]. 

The key idea is to model the temporal evolution of a curve (ݐ)ܥ using a family of 
embedding functions Φ(ݔ, (ݐ)ܥ :such that (ݐ = ,Ω  Φ(x ߳ ݔ} t) = 0}. 

The central question is how to evolve the embedding function Φ such that the implicitly 
represented curve ܥ follows a prescribed motion. 

Let the motion of the curve ܥ be given by: ௗ஼ௗ௧ = ݊ܨ (2.16) 

With some local speed ܨ  along the outer normal ݊ , by definition, for any time the 
embedding function Ф is zero at all points of the curve. ∀ ݐ,      Φ((ݐ)ܥ, (ݐ = 0 (2.17) 

As a consequence, the temporal derivative of this expression must be zero. 0 = ௗௗ௧ Φ((ݐ)ܥ, (ݐ = ∇Φ. ୢେୢ୲ + ப஍ப୲ (2.18) 

We can solve for the temporal evolution of Ф and insert (2.16) and the definition of the 

outer normal ݊ = − ∇஍|∇஍| : డ஍డ௧ = −∇Φ ୢେୢ୲ = −∇ΦFn = ∇ΦF. ∇஍|∇஍| = F|∇Φ| (2.19) 

The above derivation shows that for a curve evolution with speed F in normal direction, 
the embedding function at the zero level must follow the equation: 
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డ஍డ௧ = |Φ∇|ܨ (2.20) 

Curves can thus be evolved simply by iterating this partial differential equation called 
the level set equation (LSE). For visualization of the curve, one simply reads out the zero 
level of Φ(ݔ,  .Over time, this curve may undergo splitting and merging .ݐ at any time (ݐ

While the LSE specifies the motion of Φ at the boundary (curve) the evolution outside 
the curve location can in principle be arbitrary. Typically, one imposes that the LSF remains a 
signed distance function (SDF), i.e.: Φ(ݔ, (ݐ = ,ݔ)ݐݏ݅݀± (ܥ (2.21) 

Where Φ is positive inside and negative outside the curve. 

2.4.2. Level set methods for image segmentation 

The first level set formulation for image segmentation were introduced in the 1990s by 
Casselles et al [19,20], Malladi et al [21], Kichenassamy  et al [22]. Starting from a 
variational principle (snakes or M-S model) there are two alternative approaches [48]: 

- Partial Differential Equation (PDE) based ones: where the level set evolution is
directly derived from the geometric consideration of the motion equation (2.16). This was
done to derive a LSM for snakes like energies known as GACs [20, 22].

- Variational ones: in which the variational principle is re-written with respect to the LSF
(rather than the curve) and compute the gradient descent with respect to the LSF. This
was proposed by Chan and Vese [24] to derive a LSM for the M-S model.

Both of these approaches are popular and both have advantages and drawbacks, the 
GAC is an approach for the snake, so edge-based segmentation method and C-V is proposed 
for the M-S, so more region-based segmentation method. 

In the following, we will discuss both of these approaches. 

2.4.2.1. The Geodesic Active Contours 

Consider the edge-based segmentation energy: (ܥ)ܧ = ׬ ݃(ܿ)݀ܿ (2.22) 

It looks a little bit like the snakes in sense that we have some cost function that we 
integrate over the curve to undergo strong edges; the difference is that the data term−|∇I|ଶ  in 
the snakes is replacing with some edge indicator function ݃: ݃(ݔ) = ଵଵା|ఇூ഑(௫)|మ (2.23) 

Assigning small values to strong gradients of the smoothed image ܫఙ . The gradient 
descent equation for ܥ is given by: 
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With this, we can write the M-S energy as follow: 

,௜ݑ)ܧ                 Ω௜) = ׬ (ݔ)ܫ) − ݔ௜௡௧)ଶ݀ݑ + ׬ (ݔ)ܫ) − ݔ௘௫௧)ଶ݀ݑ + Ωଵ|ஐమஐభߜ|ߥ (2.27) 

,௜ݑ)ܧ  Φ) = ׬ ܫ) − ஍ܪ௜௡௧)ଶݑ + ܫ) − ௘௫௧)ଶ(1ݑ − ݔ݀(஍ܪ + ߥ ׬ ஐஐݔ݀|஍ܪߘ| ===========        == ׬ ܫ) − ௜௡௧)ଶݑ + ܫ) − ௘௫௧)ଶஐݑ ஍ܪ + ܫ) − ݔ௘௫௧)ଶ݀ݑ + ߥ ׬ ஐݔ݀|஍ܪߘ|              (2.28) 

Local minimization of the C-V energy can be done by gradient descent. To this end, one 
assumes the Heaviside step function is slightly smoothed (to make it differentiable). Its 
derivative is the smoothed delta function: ௗௗ஍ (Φ)ܪ = (Φ)ߜ (2.29) 

The gradient descent equation can be computed with standard Euler-Lagrange calculus: డ஍డ௧ = − డாడ஍ = ቀ ݒ݅݀ ߥ](Φ)ߜ ఇ஍|ఇ஍|ቁ + ܫ) − ௘௫௧)ଶݑ − ܫ) −  ௜௡௧)ଶ]             (2.30)ݑ

    With            ݑ௜௡௧(߶)  = ׬    ூ(௫).ு(థ)ಈ ௗ௫׬ ு(థ)ಈ ௗ௫ and    ݑ௘௫௧(߶)  = ׬    ூ(௫).(ଵିு(థ))ಈ ௗ௫׬ ଵିு(థ)ಈ ௗ௫             (2.31) 

For the smoothed delta function, one has various choices, for example: ߜఌ(Φ) = ఌగ(ఌమା஍మ) ߝ ℎݐ݅ݓ  > 0 (2.32) 

What’s important in these examples, that this method is robust to noise and it allows 
jumps of the curve (Fig. 2.8). Why does the boundary jump? Strictly speaking, it doesn’t; if 
we really have a delta function ߜ(Φ), the embedding function will only move at the zero level 
because ߜ(Φ) is zero everywhere else. But since we have a blurred version of ߜ(Φ)that has a 
certain width in the range of ߝ, it means that the embedding function will also move slightly 
inside and outside the boundary and so that, region competition term ((ܫ − ௘௫௧)ଶݑ ܫ)− −  .௜௡௧)ଶ) will also be active everywhere in the image to create an interior boundaryݑ

Figure 2.8: Level set evolution of the C-V model (implementation: D. Cremers). 

http://vision.in.tum.de/members/cremers
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Although this region-based model is quit robust to initializations and noise, it is build 
on the assumption that each region  should be start statistically homogeneous that make such 
model sensitive to intensity inhomogeneity (Fig. 2.9). 

2.5. Local region-based ACMs 

In order to accurately segment and detect inhomogeneous objects, some work using 
local image statistics within the level set framework have been recently proposed. The key 
idea is to introduce a spatial window ܭ to define the locality, suppose ݔ  and ݕ to be two 
district points in image domain ߗ. The local region can be defined by the following Kernel 
,ݔ)ܭ :[1] (ݕ = ൜ 1     ห|ݔ − ห|ݕ < ℎ  0  ݐ݋ℎ݁(2.33)         ݁ݏ݅ݓݎ 

The local region at a given point ݔ ∈ ܥ  will be denoted by ࣩ(ݔ) = :ݕ} ݔ|| − ||ݕ } < ℎ. 
It is represented by the area inside of the blue circle shown in Fig. 2.10. Then the local 
neighborhood of ݔ is divided into a local interior and exterior by the curve  In the . ܥ 
following, we will focus on some important local region-based ACMs. 

2.5.1. Local binary fitting model 

The idea of incorporating local region statistics in a variational framework begins to our 
knowledge with the work of Li and his co-workers [31]; the data term using the LSM is 
defined as follow: ܧ௅஻ி(Φ, ௜݂௡௧, ௘݂௫௧) = ଵߣ ቂ׬ ݔ)ఙܭ − (ݕ)ܫ൫ (ݕ − ௜݂௡௧(ݔ)൯ଶܪ൫Φ(y)൯݀ݕቃ ݔ݀ + + + + + + ++ + + + + + + + + + ଶߣ ቂ׬ ݔ)ఙܭ − (ݕ)ܫ൫ (ݕ − ௘݂௫௧(ݔ)൯ଶ(1 − ቃݕ൫Φ(y)൯݀ܪ (2.34)          ݔ݀

Where ߣଵ, ߣଶ are weighting positive constant. ܭఙ  is a Gaussian Kernal Function with
scaling parameter σ with a localization property that ܭఙ(ݑ) decreases and approaches zero as |
u| increases, and the scale parameter σ is a constant to control the local region size, ௜݂௡௧ and ௘݂௫௧ are approximation of the local image intensities inside and outside the curve, respectively 

given by:

Figure 2.9: Segmentation examples of synthetic image with intensity inhomogeneity 
(red curve: initial contour, pink curve: result). Left: results of the C-V model, right: the LBF 
model [1]. 
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Figure 2.10: Graphical representation of local region [1]. 

௜݂௡௧(ݔ) = ׬ಈ ௄഑∗[ூ(௫)ு(஍)]׬ಈ ௄഑∗ு(஍)
௘݂௫௧(ݔ) = ׬ ௄഑∗[ூ(௫)(ଵିு(஍))]ಈ ׬ ௄഑∗(ଵିு(஍))ಈ

(2.35) 
In general, the LBF model can produce good segmentations of objects with intensity 

inhomogeneity. However, the LBF model only takes into account the local mean intensity 
information. Thus, this model is easy to be trapped into local minimum of the energy 
functional and the model is also sensitive to initial location of the curve [32]. 

2.5.2. Local Gaussian distribution fitting model 

Wang et al [49] proposed the LGDF model by considering more complete statistical 
characteristics of local intensities; where these intensities are described by Gaussian 
distributions with different means and variances. The energy functional of this model is 
defined as [50]: 

,௅ீ஽ி(Φܧ     ,ଵݑ ,ଶݑ ,ଵଶߪ (ଶଶߪ = ׬ − ∑ ׬ ݔ)ݓ − ௜(ଶ௜ୀଵܯ൯(ݕ)ܫ௜,௫൫݌݃݋݈(ݕ Φ(y))dy dx        (2.36) 

Where  ܯଵ(Φ) = H(Φ) and ܯଶ(Φ) = 1 − H(Φ). ݔ)ݓ −  is a nonnegative weighting (ݕ
function, ݑ௜(ݔ) and ߪ௜  are local intensity means and standard deviations respectively given 
by: 

(ݔ)௜ݑ = ׬ ௪(௫ି௬)ெ೔(஍(୷))ூ(௬)ௗ௬׬ ௪(௫ି௬)ெ೔(஍(୷))ௗ௬ ଶ(ݔ)௜ߪ ݀݊ܽ = ׬ ௪(௫ି௬)ெ೔൫஍(୷)൯(௨೔(௫)ିூ(௬))మௗ௬׬ ௪(௫ି௬)ெ೔(஍(୷))ௗ௬ , ݅ = 1,2 (2.37) 

The LGDF model can distinguish region with similar intensity means but different 
variances. However it has also shortcomings as the LBF model, that is may introduce many 
local minimums and the result is more dependent on the initialization of the curve [51]. 

ـــــــــــــــــــــــــــــــــ
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2.5.3. Locally statistical ACM 

This model has been proposed with aim of handling intensity inhomogeneity problem 
and of being robust to initial contour location. It is applicable for both simultaneous 
segmentation and bias correction. A multiplicative model of intensity inhomogeneity is 
considered where the observed image (ݔ)ܫ can be expressed as: (ݔ)ܫ = (ݔ)ܬ(ݔ)ܾ + ݔ      ,(ݔ)݊ ∈ Ω (2.38) 

Where ܾ(ݔ): Ω → ℝ is the bias field which is spatially variant;  (ݔ)ܬ: Ω → ℝ is the true 
signal which is assumed to be piecewise constant and ݊(ݔ) is the additive noise that assumed 
to be Gaussian distributed with zero mean and variance ߪଶ [34]. 

In order to establish a local external energy for this model Zhang et al [34] first, model 
the distribution of intensity belonging to each object domain ߗ௜  as a Gaussian distribution 
with spatially varying means and variances: ݌(ߙ|(ݕ)ܫ௜) = ଵ√ଶగఙ೔ exp ቀ− (ூ(௬)ି௕(௫)௖೔)మଶఙ೔మ ቁ , ݕ ∈ Ω௜ (2.39) 

Where ߙ௜ = {ܾ, ܿ௜,  ௜ isܿ(ݔ)ܾ ௜ is the standard derivation of intensity domain Ω௜ andߪ ,{௜ߪ
the local mean. 

Then a sliding window is used to transform the intensity domain to another domain, 
where the distribution overlap between different domains is significantly suppressed as 
observed from Fig. 2.11: ܫ(̅ߙ|ݔ௜) = ଵ௠೔(௫) ∑ ௬∈ஐ౟∩ࣩ౮(௜ߙ|ݕ)ܫ (2.40) 

Where ݉௜(ݔ) = ||Ω୧ ∩ ࣩ୶||. A maximum likelihood function is defined for each point in the 
transformed domain, which is integrated over the entire domain to form a variational level set 
formulation as follow [52]. (ߙ)ܧ = ∑ ׬ ׬ ఘࣥ(ݔ, ௜ߪߨlog (ඥ2)(ݕ + (ூ(௬)ି௕(௫)௖೔)మଶఙ೔మஐ೔ஐே௜ୀଵ ݔ݀ݕ݀( (2.41) 

Figure 2.11: Distributions of adjacent regions in the original image intensity domain (blue 
solid curves) and the transformed domain (red dashed curves) [34]. 
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Where ఘࣥ(ݔ,  .is a kernel defined as in (2.33) (ݕ

Although, this model is robust to initialization and can handle intensity inhomogeneity, 
it is characterized by high computational cost, in addition to the limitation of relying on a 
particular probabilistic model [3].  

2.6. Conclusion 

In this chapter, after a brief introduction to the principle of classical ACM, we have 
introduced geometric ACM based on the LSM, then within this framework, we introduced 
two different strategies using the level set method (PDE ones and variational ones) with two 
complementary informations (Edge-based and region-based). Edge-based approaches are 
applied for images with height variation in gradient at object boundaries even in the presence 
of intensity inhomogeneity while region-based approaches solve problems met with edge-
based models such as poorly defined boundaries and noise, but they are sensitive to intensity 
inhomogeneity problem. We also reviewed the general framework of local region-based 
models and some methods that can handle intensity inhomogeneity problem. However, these 
models are sensitive to contour initialization to some extent, very time consuming and the 
results are also highly dependent on the choice of the Kernel size (size of the locality). The 
following chapters will introduce several possible solutions to these problems. 
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Chapter 3

A Hybrid ACM 

without re-initialization

3.1. Introduction 

Region-based ACMs are surely better alternatives to edge-based ones for images with 
noise or discrete edges. However, they do not often work for images with intensity 
inhomogeneity. Therefore, this brings out to the problem of the combination of edge and 
region information in one level set formulation. Facing with this problem, the rest of this 
chapter is organized as follow: 

- We can learn several methods that regularize the LSF in its evolution, in implementing
the LSM, the LSF is initialized to be a signed distance function (SDF). Since the LSF
often becomes very flat or steep near the zero level, a remedy called re-initialization is
applied periodically to enforce the degraded LSF being a SDF [48]. However, it is very
time consuming. In recent years, some variational level set formulations [54,23] to
regularize the LSF during its evolution, and hence the re-initialization procedure can be
eliminated. These variational LSMs without re-initialization have many advantages over
traditional methods [20,21,24], including higher efficiency and easier implementation
[54].

- A first ACM which uses both edge and region information within the level set framework
has been proposed by Chen et al [55] their  approach incorporate the GAC model into the
C-V model called the geodesic aided Chan Vese (GACV) model to improve the Active
Contour performance on image segmentation.

Similar to this method that combine edge and region information, a hybrid model is 
proposed in variational level set formulation without re-initialization which consists of both 
gradient and region information. 

3.2. LSM regularization methods 
3.2.1. Re-initialization 

In [26], Osher and Sethian proposed to initialize the LSF as Φ(ݔ) = 1 ±  ,(ݔ)ଶݐݏ݅݀
where ݀݅ݐݏ(. ) is a distance function and " ± " denotes the signs inside and outside the 
contour. Later, Mulder et al [56] initialized the LSF as Φ(ݔ) = 1 ±  which is a SDF,(ݔ)ݐݏ݅݀
that can result in accurate numerical solutions. However, in evolution the LSF can become too 
steep or flat near the contour, leading to serious numerical errors. In order to reduce numerical 
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errors, Chopp [57] periodically re-initialized the LSF to be a SDF. Unfortunately, this re-
initialization method straightforwardly computes the SDF in the whole domain and it is very 
time-consuming. Chopp also proposed [57] to restrict the re-initialization to a band of points 
close to the zero level set. Such a narrow band method [58] can reduce the computational 
complexity to some extent. 

In summary, re-initialization has many problems, such as the expensive computational 
cost, blocking the emerging of new contours [48]. Therefore, some formulations have been 
proposed to regularize variational LSF to eliminate the re-initialization procedure [54,23]. 

3.2.2. Distance regularized level set evolution (DRLSE) 

In [54,23], Li et al proposed a signed distance penalizing energy functional: ܲ(Φ) = ଵଶ ׬ |Φߘ|) − 1)ଶ݀ݔஐ (3.1) 

Eq (3.1) measures the closeness between a LSF Φ and a SDF. By calculus of variation, 
the gradient flow of ܲ(Φ) is obtained as: Φ௧ = − ஍ܲ(Φ) = [Φߘ(Φ)ݎ]ݒ݅݀ (3.2) 

Eq (3.2) is a diffusion equation with rate ݎ(Φ) = 1 −  Φ|. The mechanism ofߘ|/1
maintain SDF is that if |∇Φ| > 1, we have positive diffusion rate that will decrease the 
gradient of the LSF, while if |∇Φ| < 1, a negative diffusion rate is obtained and accordingly, 
the gradient of the LSF will be increased (Fig. 3.1). 

In the rest of this chapter, we will first introduce a typical ACM which uses both edge 
and region information. Then our contribution will be detailed; we will concentrate on 
combining edge and region information on a level set framework without re-initialization. 
Finally, we will discuss the performance of the proposed approach with synthetic and real 
images. 

Figure 3.1: Mechanism of maintaining signed distance function [54]. 
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3.3. Combination of edge and region information 
3.3.1. Geodesic- Aided C-V method 

Chen et al [55] have proposed to add geodesic curves advantages in the C-V model to 
raise ACM performance on image segmentation by inserting the ESF of the GAC model in 
the regularity term of the C-V model. Thus, its PDE level set formulation is: ߲߲ݐߔ = ݒ݅݀ ߤ൤ |ߔߘ| ൬݃ ൰|ߔߘ|ߔߘ − ܫ)௜ߣ − ௜௡)ଶܥ + ܫ)଴ߣ − =௢௨௧)ଶ൨ܥ |ߔߘ|݃ ቂݒ݅݀ ߤ ቀ ఇః|ఇః|ቁ − ܫ)௜ߣ − ௜௡)ଶܥ + ܫ)଴ߣ − ௢௨௧)ଶቃܥ + . ݃ߘ  (3.3)   ߔߘ

In (3.3), there are two terms in right, the first one is called the region detector and the 
last one is the local detector; the region detector uses statistics of homogeneous regions  as in 
the C-V model, while multiplying ݃ |ߘΦ| as a controller of the speed evolution. The second 
term functions as attractive detector, which attracts the evolving curve to real boundary of 
objects [55]. In addition, the smoothed Dirac function ߜఌ(Φ) of the original C-V model is 
replaced in this approach by |ߘΦ|, which has an effective range on the whole image. In 
conclusion, the competition between the region detector and the attractive detector is 
controlled by the gradient flow (ESF) described in [20]; that is in location with high variation 
of gradient, the model will favor using attractive detector, while region detector is suitable for 
locations of small gradient variation. 

3.3.2. The proposed hybrid model without re-initialization 

In order to raise the performance of Active contours, edge and region information have 
been combined. However, the regularization of the LSF must be taken into account. To cope 
with this problem, we propose a hybrid edge and region ACM in a variational level set 
framework without re-initialization. 

For a LSF Φ, we define energy functional ܧ(Φ) by [46]: 

(Φ)ܧ               = ଵଶ ଶ(|Φ − 1ߘ|) ׬ ߤ ݔ݀ + ׬ ஐஐ ݔ݀|(Φ)ܪߘ|݃ + ׬ ஐݔ݀(Φ−)ܪ ܨ݃             (3.4) 

The proposed Energy contain three terms, we call the first term controlled by ߤ > 0 the 
penalizing term [54] that penalize the deviation of the LSF from a SDF, the second term is the 
edge term [23] excepted from the GAC model [20], this term is minimized when the curve is 
located at object boundaries, and the last term is the area term also called balloons energy 
[36]; this term measure the area inside the curve which speed up the motion of the curve. ݃ is 
the ESF defined in [20] and ܨ is a region detector function defined as: ܨ = ܫ) − ௜௡)ଶܥ + ܫ) − ௢௨௧)ଶܥ (3.5) 

Where ܥ௜௡ and ܥ௢௨௧ are the average intensities of ܫ inside and outside the curve, 
respectively defined as in (2.31). 

Different to the usually used balloons energy in edge-based models which is given by 
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ୠୟ୪୪୭୭୬ୱ(Φ)ܧ  = ߙ ׬  is positive or negative. The area ߙ depending whether ,ݔ݀(Φ−)ܪ ݃
inside the curve is favored to be large or small, and accordingly the curve will contract (ߙ > 0) or expand (ߙ < 0), while multiplying ݃ as the controller of shrinkage or expansion 
of the curve. In the proposed model, inserting the region detector ܨ in this balloon energy 
gives the model the advantages of the C-V model in robustness against noise and detecting 
discrete edges, in addition the region detector allows bidirectional motion of the curve in a 
single process of the curve evolution; i.e. shrinking or expanding at different location of the 
curve depending whether the function ܨ is positive or negative.  

In conclusion, the proposed model contains both edge and region terms by means of an 
implicit weight function that is the ESF; when there are any sharp edge, according to the 
definition of ESF in [20], it becomes very little making the region term becomes very little 
too, favoring use of the edge term, otherwise, the information of region acts as the main force 
to attract the curve to object boundaries with advantages described above. 

3.4. Implementation 

In practice, the Heaviside function and the Dirac function in (3.4) are approximated by 
smooth functions Hρ and δρ  respectively, defined by the following two forms: 

(ݔ)ଵ,ఘܪ = ൞ ଵଶ ቀ1 + ௫ఘ + ଵగ sin ቀగ௫ఘ ቁቁ , |ݔ| ≤ ,1ߩ ݔ > ,0   ߩ ݔ < ߩ− (3.6) 

and (ݔ)ଵ,ఘߜ = ൝ ଵଶఘ ቀ1 + cos ቀగ௫ఘ ቁቁ , |ݔ| ≤ ,0ߩ ݔ > ߩ (3.7) 

Or (ݔ)ଶ,ఘܪ = ଵଶ ቀ1 + ଵଶ ݊ܽݐܿݎܽ ቀ௫ఘቁቁ (3.8) 

and (ݔ)ଶ,ఘߜ = ଵగ (1 + ఘఘమା௫మ) (3.9)

As shown in Fig. 3.2, the support of δ1,ρ(x) is restricted into a neighborhood of zero 
level set so that the LSF can only act locally. The evolution is easy to be trapped into local 
minima. In contrast, δ2,ρ(x) acts on all level curves, and hence new contours can appear 
spontaneously, which makes it tend to yield a global minimum [24]. In the next Section, we 
will give some examples to show the local /global segmentation property. 

The energy functional in (3.4) can be minimized by solving the following gradient 
flow5: డ஍డ௧ = ߤ ቂΔΦ − ݒ݅݀ ቀ ఇ஍|ఇ஍|ቁቃ − ݒ݅݀ఘ(Φ)ߜ ቀ݃ ఇ஍|ఇ஍|ቁ − ܨ ఘ(Φ)ߜ ݃ (3.10)

5 More details on the derivation of this equation can be found in Appendix C. 
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 Figure 3.2: Two different regularizations delta functions [48]. 

The partial derivative డ஍డ௧  can be discretized using the forward differences. Thus, (3.10) 

is approximated as: Φ௜,௝௡ାଵ = Δܴݐ(Φ௜,௝)௡ + Φ௜,௝௡ (3.11)

Where Δݐ is the time step, Φ௜,௝௡ = Φ(݊Δݐ, ,ݐ)௜,௝) is an approximation of Φݔ ,(ݔ x(ݔ௜,  (௜ݕ

is the grid points and ܴ(Φ௜,௝) is the approximation of the right hand side in (3.10).  

The different steps, of the proposed algorithm, are as follow: 

1. Initialization of the LSF Φ to be a binary function as follow:ߔ଴(ݔ, (ݕ = ቐ−݀         (ݔ; ଴ߗ  ߳  (ݕ − ;ݔ)          ଴0ߗ߲ ݀+        ଴ߗ߲  ߳  (ݕ ;ݔ)         ߗ  ߳  (ݕ − ଴ߗ (3.12) 

Where ݀ > 0 is a constant,  ߗ଴ is a subset in the image domain ߗ, and ߲ߗ଴ be all the 
points in the boundaries of  ߗ଴. 
2. Compute the ESF ݃, using (2.23).
3. Compute the function ܨ, as in (3.5).

4. Compute ߔ௜,௝௡ାଵ  according to (3.11). 

5. If ߔ௜,௝௡ାଵ  satisfies a stationary solution, stop, else go to step 2. 

3.5. Experimental results 

In this section, we compare the proposed model with the GAC model [20], the C-V 
model [24] and the GACV model [55]. Experiments are implemented by Matlab 7 on a 
computer with core i3, 3.30 GHz CPU, 4G RAM and windows 7. Unless otherwise specified, 
the parameters are fixed as follow: ߙ = 0.4 and ߪ = 1.0 for the GAC,  ߣଵ = ଶߣ = 1 and ݒ = 0.8 for C-V model, ߣଵ = ଶߣ = ߤ = 1  for the GACV model, and ߤ = ߪ ,0.4 = 1.5 for the 
proposed model, Δt = 0.1 for all models. 
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Image Image of Fig. 3.3.A (second row) Image of Fig. 3.3.B 

Model GAC model Proposed model GAC model Proposed model 

Iterations 600 110 1500 110

Time(s) 24.67 1.84 50.01 1.84

Table 3.1: Iterations and CPU time by the GAC model and the proposed model. 

3.5.2. Comparison with the C-V model 

We also compare our method with the C–V model (implemented with re-initialization 
procedure) on a real microscope cell image where the objects boundaries are distinctive while 
interior intensities are not homogeneous. Fig. 3.4(a) shows the original image with initial 
contour and the segmentation results by the C–V model and the proposed model are shown in 
Fig. 3.4(b) and 3.4(c), respectively. It can be seen that the C–V model which based only on 
region information fails to extract the object boundary, while the proposed model achieve 
better results, because our model uses edge information in its energy 
formulation. Accordingly, it takes advantage of the GAC model.  

3.5.3. Application on real images 

In order to validate the proposed model, we apply it on real noisy images with different 
types of shapes. Four test images, shown in upper row of Fig. 3.5, which are (from left to 
right): a fluorescence microscopic image, MR Image of a human brain, a breast cyst image 
and a skin lesion image. Although, these images are corrupted by noise and / or texture tissue, 
the proposed model successfully can extract the desired object.  

Figure 3.4: Applications to a microscope cell image: (a) initial contour. Segmentation result 
by: (b) the C-V model and (c) the proposed model.  

(b) (c) (a) 



Chapter 3. A Hybrid ACM without re-initialization 

28 

Figure 3.5: Segmentation results for real images: Row 1: original images with initial contour; 
Row 2: results of the proposed model. 

3.5.4. Global/Local property and comparison with GACV model    

Fig. 3.6 demonstrates the global segmentation property of the proposed model. The 

initial contour is far from all the objects (first row of Fig. 3.6). The second row shows the 
segmentation results using ߜଵ,ఘ(ݔ), which fails to extract all the objects, while the use of ߜଶ,ఘ(ݔ), could extract all the objects, as shown in the third row of Fig. 3.6, which is the same 

result with the GACV model. 

Fig. 3.7 demonstrates the local segmentation property in medical image segmentation. 

Two magnetic resonance images of the left ventricle of a human heart are shown on the left 

two columns of Fig. 3.7, and the right two columns show two noisy ultrasound images of the 
same organ. The third row shows the corresponding segmentation results using ߜଵ,ఘ(ݔ), which 

are more accurate than the corresponding segmentation results when using ߜଶ,ఘ(ݔ) that are 

shown in the second row, which are always similar to the results of GACV model. 

The proposed model is a generalization of the GACV model if we set ߜఘ(ݔ) =  ,(ݔ)ଶ,ఘߜ

which has an effective range on the whole image and the global property to detect all objects 

in the image. 

Different to GACV model, the proposed model has the property of local segmentation 
when ߜఘ(ݔ) =  that is suitable when segmenting objects with intensity inhomogeneity (ݔ)ଶ,ఘߜ

and distinctive boundaries. 
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Figure 3.6: Comparisons of the global segmentation property. The first row shows the initial 
contours, the second row shows the segmentation results using ߜଵ,ఘ(ݔ), and the third row 

shows the segmentation results using ߜଶ,ఘ(ݔ). 

 

Figure 3.7: Comparisons of the local segmentation property. First row shows the initial 
contours. The segmentation results using ߜଶ,ఘ(ݔ)are shown in the second row, and the 

segmentation results using ߜଵ,ఘ(ݔ)  are in the third row. 
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3.6. Conclusion 

In this Chapter, we proposed a hybrid active contour for image segmentation, in a 
variational level set formulation without re-initialization. The proposed model embeds both 
edge and region information in its energy formulation, so that, it works better than traditional 
edge-based and region-based methods. Experimental results on both synthetic and real images 
demonstrate the robustness and efficiency of the proposed model. Combining edge and region 
information raises the performance of active contour. However, segmenting intensity 
inhomogeneity problem depends on the choice of the smoothed Dirac function used, and here 
where local image statistics enter to the picture. 
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Chapter 4

Fast region-based ACM 

            driven by local signed pressure force

4.1. Introduction
Combining edge and region information gives the hybrid ACM the advantages of 

both model, but the result model still sensitive to the choice of some parameters (the 
smoothed delta function) and to the initialization of the curve to segment objects with 
intensity inhomogeneity. This leads to use another method which shares the advantages of 
the C-V model and the GAC; in this method a signed pressure force function (SPF) [59] is 
defined by statistical information substitutes the ESF in the GAC updating formulation. 

A first model based on SPF was proposed by Zhang et al [59] to ameliorate contour 
initialization, this model uses region-based SPF function to update curve evolution and a 
special processing named Selective Binary and Gaussian Filtering Regularized Level Set 
(SBGFRLS) method to regularize the LSF. This model is robust and simple to implement, 
but it is found to be slow and parameter dependable (speed parameter) [60].  

An Online region-based ACM (ORACM) using a new level set formulation was 
proposed in [60], which present the advantage by providing less time without changing 
segmentation accuracy and parameter free. Different to the ACM with SBGFRLS, ORACM 
uses a simple and efficient level set updating formulation by using directly current LSF 
instead of the curvature approximation and a simple morphological opening and closing 
processes instead of Gaussian smoothing to smooth the LSF. However, this model is hard to 
deal with the images having inhomogeneous intensity [60]. 

Inspired by the work in [60] and [31], we propose a fast local region-based ACM which 
deals well under the intensity inhomogeneity problem. It is implemented by introducing a new 
SPF function that utilizes the local image information provided by the LBF model in the level 
set updating formulation of the ORACM model. Similar to ORACM model, the proposed 
model uses a simple morphological opening and closing regularization operation to regularize 
the LSF, and in addition to ORACM model advantages, the proposed model can effectively 
segment images with intensity inhomogeneity. Experiments on some synthetic and real 
images show desirable segmentation results of our model. Moreover, comparisons with the 
related models also show that our model is less sensitive to initial contour location and more 
computationally efficient. 
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This Chapter is organized as follow: In section 4.2, we review some ACMs and 
their limitations. Section 4.3 describes the proposed model. Experimental results are 
shown in section 4.4. Finally, Section 4.5 concludes the Chapter. 

4.2. Related methods 

4.2.1. The ACM with SBGFRLS model 

Zhang et al [59] proposed a region-based GAC which incorporates the GAC and C-V 
model by constructing a SPF function replacing the ESF of the GAC model. The SPF function 
is defined as follow: 

൯(ݔ)ܫ൫ܨܲܵ   = ூ(௫)ି಴భశ಴మమ୫ୟ୶ (ூ(௫)ି಴భశ಴మమ )      (4.1) 

Where ܥଵ and ܥଶ are defined as in (2.31). The SPF function modulates the signs of the 
pressure force inside and outside the region of interest so that the curve shrinks when outside 
the object, or expands when inside the object. Substituting the ܵܲܨ of (4.1) for the ESF ݃ in 
the GAC evolution equation (2.25), the level set formulation of this model is given as: డ஍డ௧ = ݒ݅݀|Φߘ|൯(ݔ)ܫ൫ܨܲܵ ቀ ఇ஍|ఇ஍| + ቁߙ + .൯(ݔ)ܫ൫ܨܲܵߘ Φߘ         (4.2)  

The curvature-based term |ߘΦ|݀݅ݒ ቀ ఇ஍|ఇ஍|ቁ can be rewritten as ΔΦ, which is the Laplacian of 

the level set function Φ; the evolution of a function with its Laplacian is equivalent to a 
Gaussian kernel filtering the initial condition of the function. Thus this model uses a Gaussian 
filtering process to further regularize the level set function. Since this model utilizes a 
Gaussian filter to smooth the level set function to keep the interface regular, the term |ߘΦ|݀݅ݒ ቀ ఇ஍|ఇ஍|ቁ is unnecessary. In addition, the term ܨܲܵߘ൫(ݔ)ܫ൯.  ,Φ can also be removedߘ

because this model utilizes the statistical information of regions, which has a larger capture 
range and capacity of anti-edge leakage. Finally, (4.2) can be written as follows [59]: 

డ஍డ௧ = .൯(ݔ)ܫ൫ܨܲܵ .ߙ   Φ|           (4.3)ߘ|

The use of the SPF function makes the model controls the direction of the evolution and 
to stop the evolving curve at weak or blurred edges. Moreover, the LSF of this model is 
regularized by the SBGFRLS which reduces the computational coast of the re-initialization 
step which in turn makes it more efficient than the traditional LSMs [61]. However, the ACM 
with SBGFRLS has two major disadvantages: the parameter ߙ must be tuned according to 
images which make the model parameter dependable. The second disadvantage is slowness 
causes by the gradient of the level set function [60]. 

4.2.2. The ORACM model 

ORACM [60] is a region-based active contour which covers the drawbacks provided by 
ACM with SBGFRLS; it necessitates no parameter and takes less time to detect objects 
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boundaries. Unlike the ACM with SBGFRLS, ORACM uses a simple and efficient level set 
updating formulation given as follow: డ஍డt

= ܪ ቀܵܲܨ൫(ݔ)ܫ൯ቁ . Φ(ݔ)            (4.4)   

Where ܪ(. ) is the Heaviside function and ܵܲܨ(. ) is the SPF function defined in (4.1). 
Comparing with the level set formulation of the ACM with SBGFRLS, ORACM does not 
need parameters to be tuned according to input images, which make it parameter free. The 
directly use of current LSF instead of its curvature approximation propagates the result of the 

SPF on the entire current level set Φ(ݔ) instead of its boundary |ߘΦ|. This situation leads to an 

increase in the current level set update rate without affecting the accuracy of the algorithm. In 
addition, ORACM uses a simple morphological opening and closing processes instead of 
Gaussian smoothing to smooth updated level set. 

In spite of having a considerable amelioration from the perspective of speed and 
parameter dependability, using global information in the SPF function tends to erroneous 
segmentation results with images having inhomogeneity of intensity. 

4.3. The Proposed method       

Based on the level set updating formulation of the ORACM model, the proposed model 
is constructed by replacing the SPF function with a new SPF function, taking into account the 
local intensity information. 

4.3.1. Local SPF function 

In our model, we introduce a new SPF function based on the local properties of the 
image by replacing the global mean values inside and outside the curve with the local mean 
values provided by the LBF model. The new SPF function is called Local Signed Pressure 
Force (LSPF) function which is constructed as follow: 

ூ(௫)ି೑భశ೑మమ୫ୟ୶ (| ூ(௫)ି೑భశ೑మమ ൯(ݔ)ܫ൫ܨܲܵܮ  (4.5)    (| =
Where ଵ݂ and ଶ݂ are defined as in (2.35).   

Similar to the SPF defined in [59], the sign and value of LSPF ranges in [-1, 1] so that, 
it adjusts the signs of the pressure force inside and outside the region of interest so that the 
curve shrinks when outside the object and expands when inside the object; the only difference 
is that the LSPF is constructed using local mean values inside and outside the curve which 
help the model to work well with the intensity inhomogeneous regions, where the LSPF can 
be minimized when the curve is exactly on the region boundary; the local mean 
intensities which are computed using the Gaussian kernel as in (2.35), lead to assign 
different signs for both inside and outside region presenting inhomogeneous intensity.   

In addition, the proposed model is a generalization of the ORACM model, and it is 
degenerated when the Kernel function in (2.35) is an averaging filter and the size of its 
window is infinity; the functions ଵ݂ and ଶ݂ become representing average intensities inside and 
outside the curve ܥଵ and ܥଶ, respectively.  
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4.3.2. Implementation 

In practice, the Heaviside function ܪ(. ) in (2.35) is approximated by a smoothed 
functional ܪఌ(. ) defined, as proposed in [31], by: 

(ݔ)ఌܪ = ଵଶ [1 + ଶగ arctan ቀ௫ఌቁ]          (4.6) 

Substituting the SPF function in (4.3) with the LSPF function defined in (4.4), we 
obtain the level set updating formulation of the proposed model as follow: 

డ஍డt = ܪ ቀܨܲܵܮ൫(ݔ)ܫ൯ቁ . Φ(ݔ)              (4.7) 

Similar to ORACM model, the proposed model uses a simple morphological opening 
and closing processes to smooth updated level set. These two operations performed 
sequentially are commonly used in computer vision and image processing for noise removal 
and smoothing [60]. 

Finally, the different steps of the proposed algorithm are as follow: 

1. Initialization of the LSF Φ to be a binary function as in (3.12)
2. Compute the local mean values ଵ݂(ݔ) and ଶ݂(ݔ) according to (2.35).
3. Calculate the LSPF function ((ݔ)ܫ)ܨܲܵܮ using (4.5).
4. Evolve the level set function according to (4.7).
5. Check whether the evolution is stationary, stop, else go to step 2.
6. Regularize the LSF using a simple morphological opening and closing processes.

4.4. Results 
In this section, we apply and compare the proposed model with the different models 

using both synthetic and real images. All models are implemented using Matlab 7.0 in 
Windows 7; on 3.3 GHz Intel core i3 PC with 4GB of RAM. Unless otherwise specified, the 
parameters are described in Table 4.1.   

Fig. 4.1 shows the segmentation results of the related methods and the proposed method 
on a synthetic image with two objects with blurred boundaries. From the first row, we can 
observe that the right segmentation results cannot be obtained from the GAC model which 
uses edge information that causes the curve to pass over real boundaries, while the other 
models using region information, including the proposed one, can satisfactorily segment the 
two objects. Furthermore, the iterations and CPU time are listed in Table 4.2. It can be 
observed that both ORACM model and the proposed model are much faster than the related 
models. Accordingly, the proposed model is more efficient. 

The second row of Fig. 4.1 demonstrates the segmentation results with tuned parameters of 
the related methods as follow: C-V: ߥ = 0.8, SBGFRLS: ߙ = 10 and LBF: ߣଵ = 1.5. As 
shown, they cannot detect the boundaries of the two objects after the same number of 
iterations mentioned in Table 4.2. While ORACM model and the proposed model, without the 
need of any parameter, they correctly detect the boundaries of the objects after only 5 
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iterations. This efficiency by the proposed method caused by using the simple level 
set updating formulation defined in (4.4). 

Table 4.1: Description of the parameters used in the study. 

Figure 4.1: Segmentation results on a synthetic image: (a) initial contour. Segmentation result 
by: (b) the GAC model, (c) the C-V model (d) the ACM with SBGFRLS model (e) the LBF 
model (f) the ORACM model (g) the proposed model. The parameter ߪ = 30. 

Table 4.2: Iterations and CPU time needed by the methods compared when segmenting the 
image in Fig. 4.1. 

Method Iterations CPU time (s) 

The GAC model 2000 72.44 

The C-V model 80 5.22 

The ACM with SBGFRLS model 25 3.30 

The LBF model 10 2.33 

The ORACM model 5 1.71 

The Proposed model 5 1.71 

(a) (b) (c) (d) (e) (f) (g) 

Parameters Description 

d To initialize the level set function, d > 0 is a constant. 

σ 
Scale parameter in Gaussian kernel (LBF and our model: σ determined according to 
images). 

λ1/ λ2 Inner/ outer weight of curve C (LBF: λ1 = λ2 =1). 

Δt Time step (LBF, GAC: Δt = 0.1; C-V, SBGFRLS, ORACM and our model: Δt = 1). 

α Balloon force (SBGFRLS: α =25). 

ε The parameter of smoothed Heaviside function (LBF: ε = 1; our model: ε = 1.5). 

ν Regularization parameter of curve C (C-V: ν=0.2). 
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To demonstrate the local segmentation property of the proposed model, in Fig. 4.2 we 
compare our method with the related methods on a real microscope cell image where the 
objects boundaries are distinctive while interior intensities are not homogeneous. It can be 
observed that the GAC model based on edge information can extract the objects boundaries, 
while other related methods which are based on region information fail to extract them. 
Compared to the related models based on region information, the proposed model achieve 
better results, because our model uses local signed pressure force in its level set formulation 
that has the property of local segmentation.  

Fig. 4.3 shows a segmentation result comparison with the related methods on image 
with intensity inhomogeneity. It can be seen that the methods using global region information 
(C-V, SBGFRLS and ORACM) cannot segment well when image has intensity 
inhomogeneous region in it, while the LBF model and the proposed method that uses local 
region information, could accurately segment intensity inhomogeneous region. For the GAC 
which based on edge information where no global constraints are placed on the image, this 
method can segment intensity inhomogeneity but suffer from the leakage problem as shown 
in Fig. 4.3(b). 

In the next experiments, we will focus on comparisons between the LBF model and the 
proposed model on intensity inhomogeneity problem from different sides.   

In Fig. 4.4, we apply the LBF model and the proposed model to a synthetic image with 
intensity inhomogeneity, the first row shows various initial contours, the second and the third 
rows show the segmentation results by the LBF model and the proposed model, respectively. 
From some initial contours, as in columns 1 and 5, the LBF model can segment well intensity 
inhomogeneity image, while giving bad segmentation results for other initial contours. 
Otherwise, the proposed model is much more robust to initial contour location and can 
achieve good segmentation results for all initial contours. 

 

 
Figure 4.2: Applications to a microscope cell image (downloaded from [23]): (a) initial 
contour. Segmentation result by: (b) the GAC model, (c) the C-V model (d) the ACM with 
SBGFRLS (e) the LBF model (f) the ORACM model (g) the proposed model. The parameter ߪ = 4. 

 

(b) (c) (d) 

(e) (f) (g) 

(a) 
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Figure 4.3: Comparison of segmentation results using synthetic image with intensity 
inhomogeneity (downloaded from [62]): (a) initial contour. Segmentation result by: (b) the 
GAC model, (c) the C-V model (d) the ACM with SBGFRLS (e) the LBF model (f) the 
ORACM model (g) the proposed model. The parameter ߪ = 2. 

 

 

Figure 4.4: Segmentation results on the synthetic image with intensity inhomogeneity. Row1: 
initial contours. Row2: results of the LBF model. Row3: results of the proposed model. The 
parameter ߪ = 5. 

In order to compare the LBF model and the proposed model, we use other synthetic 
images in Fig. 4.5 and Fig. 4.6. 

Fig. 4.5(a) shows the original image with initial contour. The results of the LBF model 
and the proposed model are shown in Fig. 4.5(b) and 4.5(d), respectively. It is obvious that 
the proposed model attains better segmentation precision; it separates the boundary of each 
finger of the palm and reflects its shape (as can be seen clearly in the zoomed view of Fig. 
4.5(e) better than the LBF model (zoomed up in Fig. 4.5(c)). 

Fig. 4.6 shows the segmentation results of another synthetic image with intensity 
inhomogeneity by the LBF model and the proposed model, which are shown in Fig. 4.6(b) 
and 4.6(c) respectively, while Fig 4.6(a) shows the original image with initial contour. From 
the results, it is clear that the LBF model fails to get the correct segmentation result and traps 
into local minimum, while the proposed model gets right segmentation result.  

(a) (b) (c) (d) (e) (f) (g) 
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Figure 4.5: Segmentation results on a hand phantom (downloaded from [59]) using 
the LBF and the proposed model: (a) initial contour, (b) segmentation result by the 
LBF model, (c) zoomed view of the narrow, blue rectangle in (b), (d) segmentation result by 
our method, and (e) zoomed view of the narrow, blue rectangle in (d). The parameter ߪ = 3.

Figure 4.6: Segmentation results of an inhomogeneous image (downloaded from [63]). (a) 
The original image with initial contour, (b) the final contour with the LBF model and (c) the 
final contour with the proposed model. The parameter ߪ = 30. 

To furthermore compare the performance of the proposed model and the LBF model, on 
images whose intensity inhomogeneity has different strength. Fig. 4.7 shows the segmentation 
results provided by the LBF model (first row) and the proposed model (second row), on five 
synthetic images with different intensity inhomogeneity. Clearly, the proposed model can 
segment the object with different strength of intensity inhomogeneity, while the LBF model 
fails to segment the object when the strength of intensity inhomogeneity is strong (last two 
Columns).  

To quantitatively validate the segmentation performance of the proposed model from 
Fig 4.7, the Jaccard Similarity (ܵܬ) index is used. The JS index between the segmented object 
region Rs and the real object region Ro is calculated as ܵܬ(ܴௌ, ܴை) = |ܴௌ ∩ ܴை| ∕ |ܴௌ ∪ ܴை|. 
Clearly, when ܴௌ is more similar to ܴை, the ܵܬ value is close to 1. Fig 4.8 shows that the ܵܬ 
values obtained by our method change in a small range for intensity inhomogeneity with 
different strength, while the LBF model, when the strength of intensity inhomogeneity is 
strong (last two columns of Fig 4.7) the segmentation accuracy of this method decreases 
strictly. These results illustrate the robustness of the proposed model to image intensity 
inhomogeneity. 

(a) (b) (c) 

(a) (b) (c) (d) (e)
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Figure 4.7: Segmentation results on a synthetic image where the strength of intensity 
inhomogeneity is gradually increased from left to right (downloaded from [64]). Row1: 
results of the LBF model. Row2: results of the proposed model. The parameter ߪ = 2. 

 

 
 

Figure 4.8: The corresponding ܵܬ values yielded by the LBF model and the proposed model 
on the five images with different intensity inhomogeneity. 

 
In Fig 4.9, we apply the proposed model to segment typical medical images with 

different modalities and compare it to LBF model. The segmentation results provided by the 
LBF model are in the upper row, while the lower row presents our results. The first two 
columns show the results of two X-ray images of blood vessels. It can be seen that all models 
give satisfying segmentation results because of the use of the image local region information, 
which can better separate the object from background. The last three columns, from left to 
right, show the segmentation results of a CT image of heart and two MRI brain images with 
intensity inhomogeneity. It can be seen that the LBF model fails to distinguish between the 
intensity between the object and its background and lead to inaccurate segmentation result. 
While the proposed model gives much better segmentation results. These results represent the 
abilities of the proposed model to deal with intensity inhomogeneity and complex 
background. 
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Figure 4.9: Comparison of segmentation results of the LBF model (top row) and the 
proposed model (bottom row) on several medical images (a, b, d and e: downloaded from 
[64], while c: from [33]). 

Furthermore, the iterations and CPU time of segmenting the images in Fig 4.9, 
moreover the values of the parameter ߪ are listed in Table 4.3 for the LBF model and the 
proposed model. It can be observed that the number of iterations and the required CPU time 
of the proposed model are much less than those of the LBF model. Accordingly, the proposed 
model is much faster than the LBF model. 

To compare the performance between the LBF model and the proposed model on noisy 
image, we add the salt and pepper noise with various levels on the synthetic image of Fig. 4.4, 
and the segmentation results are shown in Fig. 4.10; the first column shows the original image 
with initial contour, the second, third and fourth Columns show the segmentation results on 
image added noise with densities: 0.05, 0.1 and 0.2 respectively. From the results, it is 
obvious that the proposed model has higher anti-noise than the LBF model; this performance 
is because of using the opening and closing morphological operations respectively to remove 
small objects and to smooth the active contour.  

Finally, Fig. 4.11 shows the influence of the parameter ߪ on the segmentation results of 
our model for an MR image of bladder with intensity inhomogeneity. The initial contour is 
shown in Fig 4.11(a) and the results for the parameter ߪ = 8 and ߪ = 30 are shown in Fig 
4.11(b) and 4.11(c), respectively. It is clear that the corresponding result with ߪ = 8 is more 
desirable, where the bladder and all small structures surrounding it are segmented. While 
some part of the bladder and these structures are missed in the segmentation result using ߪ =30, which is similar to the result of the ORACM model, shown in Fig 4.10(d). As an 
advantage of the proposed method from these results, that it allows the choice of the scale 
parameter ߪ to exploit intensity information in regions of different scales, so that, when the 
intensity inhomogeneity is severe, the accuracy of segmentation relies on the local SPF, in 
such case, we choose small ߪ, while in smooth regions, a bigger ߪ is chosen; the local SPF 
becomes degenerating the global SPF so that the contour is attracted to the object boundary 
quickly. 
 

(a) (b) (c) (d) (e) 
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Table 4.3: Iterations, CPU time and values of ߪ needed when segmenting the images in Fig 
4.9. 

 
Figure 4.10: Comparisons of the segmentation results with salt and pepper noise by the LBF 
model and the proposed model on Row1 and Row2, respectively. Column1: the original 
image with initial contour; Columns 2, 3 and 4 added the salt and pepper noise with densities 
0.05, 0.1 and 0.2, respectively. The parameter ߪ = 10. 
 

 
Figure 4.11: Experiments on an MR image of bladder (downloaded from [31]): (a) Initial 
contour. Result of our model for: (b) ߪ = 8. (c) ߪ = 30. (d) Result of the ORACM model. 

 

(a) (b) (c) (d) 

Method The LBF model The proposed model 

Figure Parameter σ iterations CPU time (s) Parameter σ iterations CPU time (s) 

Fig. 9(a) 4 160 3.43 7 3 0.55 

Fig. 9(b) 4 120 2.04 10 11 1.55 

Fig. 9(c) 10 300 10.06 10 10 1.40 

Fig. 9(d) 3 60 5.06 10 4 1.01 

Fig. 9(e) 5 100 10.08 25 4 1.39 
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4.5. Conclusion 

In this Chapter, a region-based active contour method for image segmentation is 
presented which can efficiently segment the images with intensity inhomogeneity by 
exploiting the local image information. In particular, A new SPF function is constructed 
which uses local mean image information provided by the LBF model and helps to segment 
intensity inhomogeneous regions. Experimental results on both synthetic and real images 
demonstrated the advantages through accuracy, rapidity and insensitivity to the initial contour 
location of the proposed model over the related models. 

Although using local SPF overcomes the sensitivity of local region-based method to 
curve initialization and to noise when segmenting image with intensity inhomogeneity, its 
result is sensitive to the choice of size of the locality. Edge-based models of highly localized 
image information, based on gradient information are adequate in segmenting intensity 
inhomogeneity, but they are found to be sensitive to image noise and poorly defined 
boundaries. The following chapter will introduce possible solution to these problems, such as 
the use of texture analysis in constructing new edge stopping function. 
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                                                                                                               Chapter 5                      

            Robust ACM guided by 

           local binary pattern stopping function 

 

5.1. Introduction 

To solve problems met with ESF based on gradient information, we propose a stopping 
function based on the Local Binary Pattern (LBP) textons [65,66]. This new function is called 
LBP stopping function (LBPSF). The LBP textons was originally used to perform adaptive 
gradient calculation for edge detection [67] in which, the LBP textons is used to classify 
regions of an image around a pixel into noisy, homogenous and edge regions, and then, 
accordingly, an adaptive filter is introduced while calculating the gradient.  

The classification of the image regions into: noisy, homogeneous and edge regions 
using the LBP textons, helps to generate a filter rejecting pixel positions of LBPs which are 
likely to be produced by noise and calculate gradient magnitudes at the accepted pixel 
positions to detect the edges using a modified canny edge detector based on LBP, and then, 
constructing a LBPSF which takes values of “1” on noisy and homogeneous regions, while 
having values of “0” on edges. Consequently, the curve will stop at these edges. Substituting 
the ESF based gradient information of the GAC model [20] with the proposed LBPSF in a 
variational formulation; we obtain a fast ACM which is robust to the leakage and noise 
problems. 

The rest of this Chapter is organized as follow: Section two presents a theoretical 
background of the LBP and introduces the derivation of the LBPSF and the proposed ACM 
based on it. Section three provides experimental results and comparisons to the models 
proposed in [20], [60] and [34]. Finally, Section four concludes the Chapter.  

5.2. The proposed method 

5.2.1. Local binary pattern 

The LBP operator was first introduced by Ojala et al [65] and Mäenpää [66] for texture 
analysis. It has been applied in many active studies such as texture classification and face 
recognition [68]. The LBP operator combines characteristics of statistics and structural texture 
analysis; it describes the texture with primitives called textons [69].  

The derivation of an LBP code is shown in Fig. 5.1(a); taking a neighbourhood of 3×3 
of a central pixel, thresholding it into two levels “0” or “1” whether the neighbour of that 
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5.2.3. The ACM based LBP stopping function 

We firstly introduce the LBPSF and to motivate it, we will present the classical ESF and 
some of its shortcoming. 

The philosophy behind the edge-based ACM is finding curve that undergoes strong 
edges (object boundaries), and to achieve this goal, an external energy is defined that we 
integrate over the curve to move it toward the object boundaries. 

Let I be a given gray level image, the classical ESF is defined as in (2.23). This function 
assigns small values to strong gradients of the smoothed image ܩߘఙ ∗  where the curve is ܫ
very close to the boundaries. However, these gradient based functions have two major 
drawbacks: 

In practice, the discrete gradients are bounded and then, the function g can be relatively 
far from zero on the edges and the curve may pass through the boundaries [24,27]. 

The next issue is that for the noisy or textured regions, the image will have gradient 
maxima which induce local minima in the external energy. Therefore, the curve will not stop 
at the real object’s boundaries. Alternatively, the Gaussian smoothing is used to remove 
spurious local minima. Yet, smoothing also removes possibly important edge information if 
the kernel width σ is not chosen appropriately. Hence, based on the edge detection operation 
with LBPs described in the previous sub-section, we construct the LBPSF as follow: 

  
                                                ݃௅஻௉ = 1 −  (5.7)                                                             ܤ

where B is the binary image resulting from the Canny edge detector with LBPs. 
The function gLBP is made such as it is zero on edges whereas it is equal to one on flat 

and noisy regions, accordingly, the active contour will keep evolving in flat and noisy regions 
till it attains the object boundaries (the edges). Replacing the ESF g of the GAC model in a 
variational formulation by the proposed LBPSF g LBP, the total energy function can be defined 
as: 

(Φ)ܧ         = ଵଶ ߤ ׬ Φߘ|) − 1)ଶ݀ݔ + ߣ ׬ ݃௅஻௉ߜ(Φ)|ߘΦ|݀ݔ ஐஐ + ߥ ׬ ݃௅஻௉ ܪ(−Φ)݀ݔஐ      (5.8) 

The first term in the right hand side of (5.8) controlled by µ > 0 is the internal energy 
term that penalizes the deviation of the LSF Φ from a SDF, whereas the last two terms 
controlled by λ and ν form the external energy excerpted from the GAC [20], this energy is 
defined to drive the motion of the curve toward the object’s boundaries. ߜ(. ) and ܪ(. ) are the 
Dirac function and the Heaviside function, respectively. By minimizing (5.8) with respect of Φ, the steepest descent process is the following gradient flow: 

              
డ஍డ௧ = ߤ ቂΔΦ − ݒ݅݀ ቀ ఇ஍|ఇ஍|ቁቃ + ݒ݅݀(Φ)ߜ ߣ ቀ݃௅஻௉ ఇ஍|ఇ஍|ቁ +  ௅஻௉          (5.9)݃(Φ)ߜߥ

where Δ and div(.) are the laplacien and the divergence operators, respectively. 
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The method in [54] not only eliminates the need of costly re-initialization, but also 
allows the use of more general initial LSF rather than a SDF initial function, a binary step 
function is proposed as an initial LSF defined as in (3.12). 

5.3. Results 

In this section, in order to validate the performance of the proposed model, we apply 
and compare it with the gradient based ACM of [20], the global region based ACM of [60] 
and the local region based ACM proposed in [34] using both synthetic and real gray level 
images. All models are implemented using Matlab 7.0 in Windows 7; on 3.3 GHz Intel core 
i3 PC with 4GB of RAM. Unless otherwise specified, the parameters are described in Table 
5.1. 

This validation and comparison are performed on a set of 10 gray level images consists 
of: a synthetic image with intensity inhomogeneity, a synthetic image with several intensity 
levels, a fluorescence microscopic image, two noisy ultrasound images of the left ventricle of 
a human heart, a magnetic resonance images of the same organ, a cardiac CT image, a liver 
CT image, a radiographic image of weld defect and a ship in a thermal infrared image, and the 
results are illustrated in Fig. 5.5 and Fig. 5.6. 

Parameters Description 

d To initialize the LSF, d > 0 is a constant. 

σ, ρ 
Width of the Gaussian kernel in [20], region scale parameter in [34] (determined 
according to images). 

Δt Time step ([20] and [34]: Δt = 0.1, [60] our model: Δt = 1). 

μ Regularization parameter of internal energy (our model: μ = 0.04). 

λ,ν Regularization parameters of the curve (our model: λ = 5, ν = ± 3 (-) if initial 
curve is located inside or (+) if it is outside).  

α Balloon parameter of the GAC [20]. 

P,R LBP parameters  (number of neighbors and LBP radius  (P = 8, R = 1)). 

t1,t2 Threshold parameters determined empirically according to images. 

Table 5.1: Description of the parameters used in the study. 



Chapter 5. Robust ACM guided by local binary pattern stopping function 

49 
 

 

Figure 5.5: Comparison between the different active contour models. (a) Original images 
with initial contours. Segmentation output of: (b) GAC model [20] (ߪ = 1.2 for all images), 
(c) global region-based model [60], (d) local region based-model [34] (Image 1: ߩ = 6.0, 
Images: 2, 3, and 4: ߩ = 3.0, Image 5: ߩ = 1.5), and (e) the proposed model. 
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Figure 5.6: Comparison between the different active contour models. (a) Original images 
with initial contours. Segmentation output of: (b) GAC model [20] (ߪ = 4 for image 8, ߪ = 1.2 for others), (c) global region-based model [60], (d) local region-based model [34] 
(Image 6, 7, and 8: ߩ = 3.0, Image 9: ߩ = 6.0, Image 10: ߩ = 4.0), and (e) the proposed 
model. 
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From these results, it is clear that the proposed ACM based LBPSF outperforms the 
other ACMs in term of efficiency (boundary detection). 

In particular, Compared the proposed model to the GAC model [20], no smoothing is 
necessary for the LBPSF, while the ESF deals with the problem that smoothing with big filter 
size (eq. (2.23)) can suppress important edges and the curve will pass through them (Image 1 
and 8), but small filter size may not be sufficient to remove noise and then, the curve will stop 
evolving before reaching the real object boundaries (Images: 3, 4, 5, 7, 9 and 10). 

For more comparison, some visualized LBPSF images of the set are contrasted with the 
ESF images in Fig. 5.7. Contrary to the ESF, it is clearly seen that the LBPSF can accurately 
distinguish the object boundaries. 

 Moreover, Fig. 5.8 shows the line profile plots for both LBPSF and ESF values across 
the hat area of image 8. Here the noisy and poorly defined liver boundary (edge) along the 
profile is located at the pixel number “15”; unlike the ESF, the value of the LBPSF is exactly 
“0” on the edge and “1” in the two regions beside it. The graph shows that LBPSF is a robust 
indicator of poorly defined or noisy edges. 

 

Figure 5.7: Comparison between the ESF and the LBPSF. (a) Original images, (b) the 
visualized ESF of the original images, and (c) the visualized LBPSF of the original images. 
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Figure 5.8: Comparison between the ESF and the LBPSF. (a) Original liver CT image, (b) 
ESF and LBPSF values along a line (red) segment in the original image. 

Here the proposed model outperforms the model proposed in [60] since the set of 
images used requires local segmentation property, and the global region-based ACMs 
generally suffer from intensity inhomogeneity problem. 

Comparing the proposed model to the model proposed in [34] which gives closely 
similar results to those obtained by our model on images with several intensity levels (Image 
2) or with intensity inhomogeneity (Images: 1, 6 and 7), this model seems to be sensitive to 
noise (Images: 3, 4, 5 and 10) and the segmentation result relies on the size of the region scale 
parameter (ߩ) (Images: 8 and 9). 

To show the sensitivity of this model to region scale parameter (ߩ), we used images: 3, 
6, 7 and 9 with three different sizes of ߩ (3.0 ,1.5, and 6.0). Fig. 5.9 shows that depending on 
the image, small value of ߩ leads to local segmentation when the intensity inhomogeneity is 
severe (second and third row) while large value is chosen in noisy and smooth regions (first 
and last row).  

Moreover the Dice coefficient [71] is used to compare and measure the segmentation 
accuracy. The Dice index ܦ ∈ [0,1] between the obtained segmentation result ܴோ and the 

ground truth ܴீ is given by: ܦ(ܴோ ∩ ܴீ) = ଶ஺௥௘௔(ோೃ∩ோಸ)஺௥௘௔(ோೃ)ା஺௥௘௔(ோೃ)  . A higher Dice value (close to 

1) indicates better segmentation performance.  

From the quantitative performance measure showed in Fig. 5.10 and Table 5.2, we 
observe that the proposed model yields almost the best segmentation accuracy with an 
average Dice score of 0.96, compared to 0.34, 0.89 and 0.91 for the models proposed in [60], 
[20] and [34] respectively. 

Computationally, we have not mention computation time in this study since the related 
methods and the proposed one use different level set strategies (PDE based LSM for the 
models proposed in [20] and [60] and variational LSM for the model proposed in [34] and our 
model). More precisely, the number of iterations of the model proposed in [60] ranges from 5 
to 7 iterations, while for other models including the proposed one, the range of these values 
from 200 to 600 iterations over the set of images used.  

 

 

 

 

 
 
 (a) (b) 
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Figure 5.9: Segmentation results by the model of [34]. (a) Original images with initial 
contours, (b), (c) and (d) are the segmentation results with ߩ = ߩ ,1.5 = 3.0 and ߩ = 6.0, 
respectively. 

 

Figure 5.10: Segmentation accuracy as calculated via the Dice index for each model. 
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Image 
D of the 

model of [60] 
D of the 

model of [20] 
D of the 

model of [34] 
D of the 

proposed model 

Image 1 0.03 0.96 0.992 0.999 

Image 2 0.66 0.98 0.997 0.999 

Image 3 0.988 0.992 0.997 0.999 

Image 4 0 0.968 0.939 0.961 

Image 5 0 0.87 0.9 0.97 

Image 6 0.4 0.97 0.99 0.972 

Image 7 0.64 0.88 0.997 0.996 

Image 8 0.43 0.96 0.88 0.961 

Image 9 0.05 0.77 0.776 0.82 

Image 10 0.19 0.52 0.68 0.93 

Table 5.2: Values of the Dice index (D) of the different models used in the study (Fig. 5.5 
and Fig. 5.6). 

 

5.4. Conclusion  

In this Chapter, a robust and efficient active contour model has been proposed by 
combining the local binary pattern stopping function (LBPSF) with the GAC model in a 
variational level set formulation. Comparatively to edge stopping function (ESF), the LBPSF 
accurately distinguishes the noisy and poorly defined boundaries or edges. Experimental 
results and quantitative analysis showed that our method outperforms the related methods in 
terms of boundary detection and segmentation accuracy.  
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Chapter 6

Conclusion  

and future work

In this thesis, we first provided a literature review behind ACMs to show various types 

based on curve representation (parametric and geometric ACMs), the level set strategy (PDE 
and variational) and the image information used (Edge-based models and region-based 
models) to deal with object detection or segmentation problem. However, a number of models 
have been presented to deal with segmentation problems met with some state of art ACMs. In 
this final Chapter, the results from previous Chapters are summarized and additional research 
is proposed that can extend the efforts described in the previous three Chapters of this thesis.

6.1. Summary of contributions 

In Chapter 3, in order to raise the performance of ACM, we proposed a hybrid ACM 
embeds both edge and region information within a variational level set framework. The 
combination of the edge and region information gave the hybrid model their advantages; i.e. 
bidirectional motion of the curve, robustness against noise and detecting discreet edges as 
advantages of using region information, and detecting objects with high variation in gradient 
at boundaries even in the presence of intensity inhomogeneity for edge information. In 
addition, the variational level set formulation uses a penalizing term that forces the LSF to be 
close to SDF to eliminate costly re-initialization and speed up the motion of the curve. 
Experimental results on both synthetic and real images show that the hybrid model works 
better than traditional edge-based and region-based models. 

Chapter 4 gave several possible solutions to improve the robustness of local region-
based ACM, where a region-based ACM based on local signed pressure Force (LSPF) 
function has been proposed. The LSPF considers local information which modulates the signs 
of the pressure force inside and outside the curve locally, which helps the model to work well 
with intensity inhomogeneity. The proposed model uses a simple and efficient level set 
updating formulation by using directly current LSF instead of its curvature approximation and 
a simple morphological opening and closing process to smooth the LSF which make it less 
sensitive to noise and to the initialization of the curve compared with other ACMs. 

Eventually, with the aim of developing an edge-based ACM that is at the same time 
effective and robust in handling images with intensity inhomogeneity, we have proposed in 
Chapter 5 an edge-based ACM guided with local binary pattern stopping function (LBPSF). 
The main motivation is to improve the robustness of ESF against noise and poorly defined 
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boundaries by introducing a new stopping function based on texture analysis with LBP 
textons. Indeed, LBP textons are used to classify image regions into noisy, homogeneous and 
edge regions which helps to construct LBPSF such as it is zero on edges whereas it is equal to 
one on flat and noisy regions. Comparatively to ESF, the LBPSF accurately distinguishes the 
noisy and poorly defined boundaries. 

6.2. Recommended future work 

There are still several issues that need to be further developed in the future. 

All methods that have been proposed are defined and tested just on gray value images, 
opening a possibility to extend them to color image. 

In Chapter 3, the competition between edge and region information is made based on a 
weighting function taking into account gradient information, and we may add other 
information such as the degree of inhomogeneity based on local image contrast. 

The size of the locality in local region-based ACMs affects the segmentation results, 
developing a method adapting this parameter may raise the performance of local models. 

Finally, for the ACM based on LBP proposed in Chapter 5, future work will be devoted 
to improve its performance by developing an automatic method to define threshold parameter 
in the hysteresis thresholding step. 
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                                                                                                               Appendix A                      

Functional minimization 

 

A functional is a mapping ܧ which assigns to each element of a vector-space (to each 
function ݑ) an element from the underlying field (a number). 

Let’s consider a particular class of functionals, that we call it a canonical class:  

(ݑ)ܧ                                              = ׬ ℒ(ݑ,  (A.1)                                                 ݔ݀(ݑ̀

Where ́ݑ = ௗ௨ௗ௫  is the derivative of the function ݑ. (In physics ℒ is called the Lagrange 

density). 

We want to treat this class of cost functions (functionals) because the theory we will 
develop should be independent of what exact cost function we use; it is some quantity 
evaluated for each pixel and aggregated over all pixels, and this quantity in this example will 
depend on ݑ and its derivative at location ݔ, but the theory can be generalized for high order 
derivatives (second, third…). 

Just as with real-valued functions defined on ℝ௡ the necessary condition for extremality 
of the functional ܧ states that the derivative with respect to ݑ must be 0. 

Yet how does one define and compute the derivative of a functional (ݑ)ܧ with respect 
to the function ݑ? 

The Gâteaux Derivative: 

There are several ways to introduce functional derivatives. The following definition 
goes back to works of the French mathematician R. Gâteaux which were published 
posthumously in 1919. 

The Gâteaux derivative extends the concept of directional derivative to infinite-
dimensional spaces. The derivative of the functional (ݑ)ܧ in direction ℎ(ݔ) is defined as:              

                                    
ௗா(௨)ௗ௨ ቚ௛ = limఢ→଴ ா(௨ାఢ ௛)ିா(௨)ఢ                                        (A.2) 

As in finite dimensions, this directional derivative can be interpreted as the projection of 
the functional gradient on the respective direction. We can therefore write: 

                       
ௗா(௨)ௗ௨ ቚ௛ = 〈ௗா(௨)ௗ௨ , ℎ〉 = ׬ ௗா(௨)ௗ௨  (A.3)                                ݔ݀(ݔ)ℎ(ݔ)
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For functionals of the canonical form: (ݑ)ܧ = ׬ ℒ(ݑ,  the Gâteaux derivative is ݔ݀(ݑ̀
given by: ݀ݑ݀(ݑ)ܧ ฬ௛ = limఢ→଴ 1߳ ݑ)ܧ + ߳ ℎ) −  (ݑ)ܧ

= limఢ→଴ 1߳ න(ℒ൫ݑ + ߳ℎ, ݑ́ + ߳ℎሖ ൯ − ℒ(ݑ,  ݔ݀((ݑ́

= limఢ→଴ 1߳ න(൭ℒ(ݑ, (ݑ́ + ߲ℒ߲ݑ ߳ℎ + ߲ℒ߲́ݑ ߳ℎሖ + ൱(ଶ߳)݋ − ℒ(ݑ, ݔ݀((ݑ́
= න(߲ℒ߲ݑ ℎ + ߲ℒ߲́ݑ ℎሖ )  ݔ݀

= න(߲ℒ߲ݑ ℎ − ݔ݀݀ ߲ℒ߲́ݑ ℎ) ,ݐ݊݅ ݈ܽ݅ݐݎܽ݌)    ݔ݀ ℎ =  (ݕݎܽ݀݊ݑ݋ܾ ݊݋ 0

= න (߲ℒ߲ݑ − ݔ݀݀ ߲ℒ߲́ݑ)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ ℎ(ݔ)݀ݑ݀ܧ݀ݔ
 Euler-Lagrange equation: 

Thus the derivative of the functional (ݑ)ܧ in direction ℎ is: ௗா(௨)ௗ௨ ቚ௛ = ׬ (డℒడ௨ − ௗௗ௫ డℒడ௨́)ᇣᇧᇧᇤᇧᇧᇥ ℎ(ݔ)݀ݔௗாௗ௨ (A.4) 

As a necessary condition for minimality of the functional (ݑ)ܧ the variation of ܧ in any 
direction ℎ(ݔ)must vanish. Therefore at the extremum we have: ௗாௗ௨ = డℒడ௨ − ௗௗ௫ డℒడ௨́ = 0 (A.5) 

This condition is called the Euler-Lagrange equation. 

The Euler-Lagrange equation is a differential equation which forms the necessary 
condition for minimality. 

The central idea of variational methods is to compute solutions to the respective Euler-
Lagrange equation. 
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For general (non-quadratic) energies, one can start with an initial guess ݑ଴(ݔ) of the 
solution and iteratively improve the solution. Such methods are called descent methods. 

How can one iteratively improve a given solution? 

Gradient Descent:  

Gradient descent or steepest descent is a particular descent method where in each 
iteration one chooses the direction in which the energy decreases most. The direction of 
steepest descent is given by the negative energy gradient. 

To minimize a real-valued function ݂: ℝ௡ → ℝ,  the gradient descent for ݂(ݑ) is defined 
by the differential equation: 

                                                             ቊ (0)ݑ = ଴ௗ௨ௗ௧ݑ = − ௗ௙ௗ௨  (A.6)                                                    (ݑ)

 

Discretization:   ݑ௧ାଵ = ௧ݑ − ߳ ௗ௙ௗ௨ ݐ                 ,(௧ݑ) = 0,1,2, … 

For minimizing functionals (ݑ)ܧ, the gradient descent is done analogously. For the 
functional (ݑ)ܧ = ׬ ℒ(ݑ,  :the gradient is given by ,ݔ݀(ݑ́

                                                         
ௗாௗ௨ = డℒడ௨ − ௗௗ௫ డℒడ௨́                                                       (A.7) 

Therefore the gradient descent is given by: 

                                                 ቊ ,ݔ)ݑ 0) = డ௨(௫,௧)డ௧(ݔ)଴ݑ = − ௗாௗ௨ = − డℒడ௨ + డడ௫ ௗℒௗ௨́                                   (A.8) 

If the gradient descent converges, i.e. ߲௧ݑ = − ௗாௗ௨ = 0, then we have found a solution to 

the Euler-Lagrange equation. 

Addendum: Boundary Conditions: 

When deriving the Euler-Lagrange equations we only considered perturbations ℎ(ݔ) 
which are 0 on the boundary. Without this assumption, Gâteaux’s directional derivative is: ݀ݑ݀(ݑ)ܧ ฬ௛ = ⋯ = න (߲ℒ߲ݑ ℎ + ݔ߲߲ ݀ℒ݀́ݑ ℎሖ ௕ݔ݀(

௔  

                 = න (߲ℒ߲ݑ ℎ − ݔ݀݀ ߲ℒ߲́ݑ ℎ)݀ݔ௕
௔ +  ൭߲ℒ߲́ݑ ℎ(ݔ)൱௔

௕
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ݑ݀(ݑ)ܧ݀ ฬ௛ = න ൬߲ℒ߲ݑ − ݔ݀݀ ߲ℒ߲́ݑ൰ ℎ(ݔ)݀ݔ௕
௔ + ൭߲ℒ߲́ݑ ℎ(ݔ)൱௔

௕ = 0 

⇒ ൞ 1) ݑ݀ܧ݀ = ߲ℒ߲ݑ − ݔ݀݀ ߲ℒ߲́ݑ = 0 2) ൬߲ℒ߲́ݑ ℎ(ݔ)൰ܾܽ = 0         (A.9) 

Depending on the application one can distinguish two kinds of boundary conditions: 

• Dirichlet boundary conditions: the function (ݔ)ݑ is fixed on the boundary (ݑ௥(ݔ)), i.e.ℎ(ݔ) = 0 on the boundary. One only considers variations of (ݔ)ݑ inside the domain:

൝ ௗாௗ௨ = డℒడ௨ − ௗௗ௫ డℒడ௨́ = ௕௢௨௡ௗ௔௥௬|(ݔ)ݑ0 = (ݔ)௥ݑ (A.10) 

• Neumann boundary conditions: one additionally allows for variations of (ݔ)ݑ on the
boundary:

ቐௗாௗ௨ = డℒడ௨ − ௗௗ௫ డℒడ௨́ = 0డℒడ௨́ቚ௕௢௨௡ௗ௔௥௬ = 0 (A.11) 
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Appendix B         

Implementation for the piecewise  

  constant M-S functional (two regions case) 

Unfortunately, the M-S functional in its original formulation is not in a canonical 

form (ݑ)ܧ = ℒ(ݑ, ,ݑ̀ ሗݑ̀ ). Since the variable of interest (the boundary ܥ) appears in the 
integrand. 

Following green’s theorem [40], we will derive the Euler Lagrange equation: 

Assume we are given energy of the form (ܥ)ܧ = ׬ ,ݔ)݂ ௜௡௧(஼)ݕ݀ݔ݀ (ݕ (B.1) 

Where ݅݊(ܥ)ݐ denotes the region inside a curve ܥ. Let ܥ: [0,1] → ℝଶ be a parametric 
closed curve, with (ݏ)ܥ = ,(ݏ)ݔ)  .((ݏ)ݕ

Green’s theorem: For a victor field of the form ሬܸԦ = ൫ܽ(ݔ, ,(ݕ ,ݔ)ܾ  ൯ ߳ ℝଶ and a(ݕ

closed boundary ܥ ⊂  Ω, we have: ׬ ߘ) ×௜௡௧(஼) ሬܸԦ)݀ݔ = ׬ ሬܸԦ ݀ܵ஼ (B.2) 

Where the rotation of ሬܸԦ is defined as ߘ × ሬܸԦ ≡ ߲௫ܾ − ߲௬ܽ, thus: ׬ ൫ܾ௫ − ܽ௬൯݀ݕ݀ݔ = ׬ ݔ݀ ܽ + ஼௜௡௧(஼)ݕ݀ ܾ (B.3) 

Closing a vector field ሬܸԦ such that ݂ = ൫ܾ௫ − ܽ௬൯, we can rewrite the energy in the 

canonical form: (ܥ)ܧ = ׬ ݕ݀ݔ݀ ݂ =௜௡௧(஼) ׬ ݔ݀ ܽ + ஼ݕ݀ ܾ = ׬ ሶݔܽ) + ሶ)݀ܵଵ଴ݕܾ ≡ ׬ ℒ(ݔ, ሶݔ , ,ݕ ሶݕ )݀ܵଵ଴  (B.4) 

Where ݔሶ ≡ ௗ௫(ௌ)ௗௌ and ݕሶ ≡ ௗ௬(ௌ)ௗௌ
The functional (ܥ)ܧ is equal to an integral along the curve ܥ and we can compute the 

functional derivative with respect to ܥ(ܵ) = ,(ܵ)ݔ)  :((ܵ)ݕ
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       ങℒങೣି ೏೏ೄങℒങ ሶೣ ୀങೌങೣ௫ሶାങ್ങೣ௬ሶ ି ೏೏ೄ௔ୀቀങ್ങೣିങೌങ೤ቁ௬ሶ ୀ௙௬ሶങℒങ೤ି ೏೏ೄങℒങ೤ሶ ୀങೌങ೤௫ሶାങ್ങ೤௬ሶ ି ೏೏ೄ௕ୀቀିങ್ങೣାങೌങ೤ቁ௫ሶୀି௙௫ሶൡ   డℒడ஼ − ௗௗௌ డℒడ஼ሶ                   (B.5) 

 

In summary we obtain the simple functional gradient  

                                 
ௗாௗ஼ = డℒడ஼ − ௗௗௌ డℒడ஼ሶ = ,ݔ)݂ ൫   ௬ሶି௫ሶ(ݕ   ൯ = ݂ ݊஼ሬሬሬሬԦ                                  (B.6) 

Where ݊஼ሬሬሬሬԦ is the outer normal for the piecewise constant M-S functional with two 
regions (without boundary length term): 

(ܥ)ܧ              = ׬ (ݔ)ܫ) − ௜௡௧ݔ௜௡௧)ଶ݀ଶݑ + ׬ (ݔ)ܫ) − ௘௫௧(஼)ݔ௘௫௧)ଶ݀ଶݑ         (B.7) 

So the functional derivative is given by: 

                             
ௗாௗ஼ = (ݔ)ܫ)) − ௜௡௧)ଶݑ − (ݔ)ܫ) −  ௘௫௧)ଶ) ݊஼ሬሬሬሬԦ                      (B.8)ݑ

For the two regions piecewise constant M-S with length regularity, we get: 

(ܥ)ܧ    = ׬ (ݔ)ܫ) − ௜௡௧(஼)ݔ௜௡௧)ଶ݀ଶݑ + ׬ (ݔ)ܫ) − ௘௫௧(஼)ݔ௘௫௧)ଶ݀ଶݑ +  (B.9)        |ܥ|ݒ

And the gradient decent reads: 

          
డ஼(ௌ,௧)డ௧ = − ௗா(஼)ௗ஼ = ܫ)) − ܫ)−௘௫௧)ଶݑ − ௜௡௧)ଶݑ −  ஼) ݊஼ሬሬሬሬԦ           (B.10)݇ݒ 

Where ݇஼ denotes the local curvature of the curve ܥ. 

This means that additional to separating bright and dark areas, the evolution aims at 
suppressing large curvature of the curve. 
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Appendix C         

Minimization of the hybrid ACM energy 

The energy functional of the proposed hybrid ACM is given by: ܧ(Φ) = ଵଶ ߤ ׬ |Φߘ|) − 1)ଶ݀ݔ + ׬ ஐஐ ݔ݀|(Φ)ܪߘ|݃ + ׬ ஐݔ݀(Φ−)ܪ ܨ݃    (C.1) 

So we can re-write the functional in the following form ℒ = ℒଵ + ℒଶ + ℒଷ     = ଵଶ |Φߘ|)ߤ − 1) + |(Φ)ܪߘ|݃ +  (C.2)                (Φ−)ܪܨ݃

We can compute: డாడ஍ = డℒడ஍ − ݒ݅݀  ቀ డℒడఇ஍ቁ = ∑ (డℒ೔డ஍ − )ݒ݅݀ డℒ೔డఇ஍)௜ୀଷ௜ୀଵ ) (C.3) 

So  

• 
డℒభడఇ஍ = |Φߘ|)ߤ − 1). ఇ஍|ఇ஍|        = Φߘ)ߤ − ఇ஍|ఇ஍|)

          and  

            
డℒభడ஍ = 0 

• ℒଶ = |(Φ)ܪߘ|݃ = |Φߘ|(Φ)ߜ݃
డℒమడఇ஍ = (Φ)ߜ݃ ఇ஍|ఇ஍|
and 

 
డℒమడ஍ =   |ሖ(Φ)g|∇Φߜ

• 
డℒయడ஍ =  ((Φ)ߜ)ܨ݃−

and డℒయడఇ஍ = 0 
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Combining all results in (C.3), gives: 

డாడ஍ = ݒ݅݀ߤ− ቂߘΦ − ఇ஍|ఇ஍|ቃ + |Φߘ|݃ሖ(Φ)ߜ − ݒ݅݀ ቀ݃. (Φ)ߜ ఇ஍|ఇ஍|ቁ −  (C.4)   (Φ)ߜܨ݃

Further evaluating of ݀݅ߜ ݃)ݒ(Φ) ఇ஍|ఇ஍|) gives:

(Φ)ߜ ݃)ݒ݅݀ ఇ஍|ߘΦ| = ௗௗ௫ ݃(Φ)ߜ) ஍ೣ|ఇ஍|) + ௗௗ௬ ݃(Φ)ߜ) ஍೤|ఇ஍|)= ௗௗ௫ ݃(Φ)ߜ ஍ೣ|ఇ஍| + ቀ ௗௗ௫ ݃ ஍ೣ|ఇ஍|ቁ (Φ)ߜ + ௗௗ௬ ݃(Φ)ߜ ஍೤|ఇ஍| + ቀ ௗௗ௬ ݃ ஍೤|ఇ஍|ቁ = (Φ)ߜ Φ௫݃(Φ)ߜ ஍ೣ|ఇ஍| + ቀ ௗௗ௫ ݃ ஍ೣ|ఇ஍|ቁ (Φ)ߜ + Φ௬݃(Φ)ߜ ஍೤|ఇ஍| + ቀ ௗௗ௬ ݃ ஍೤|ఇ஍|ቁ = (Φ)ߜ ݒ݅݀(Φ)ߜ ቀ݃ ఇ஍|ఇ஍|ቁ + Φߘ݃ሖ(Φ)ߜ ఇ஍|ఇ஍|= ݒ݅݀(Φ)ߜ ቀ݃ ఇ஍|ఇ஍|ቁ +  |Φߘ|݃ሖ(Φ)ߜ
So the Euler Lagrange equation (C.4) becomes 

డாడ஍ = ߤ− ቂߘΦ − ݒ݅݀ ఇ஍|ఇ஍|ቃ − ݒ݅݀(Φ)ߜ ቀ݃ ఇ஍|ఇ஍|ቁ −  (C.5)        (Φ)ߜܨ݃

Therefore the gradient descent of (C.5) is: 

డ஍డ௧ = − డாడ஍ = Φߘ)ߤ + ݒ݅݀ ఇ஍|ఇ஍|) + ݒ݅݀(Φ)ߜ ቀ݃ ఇ஍|ఇ஍|ቁ +  (C.6)      (Φ)ߜܨ݃

with ݀݅ݒ ቀ݃ ఇ஍|ఇ஍|ቁ = ݒ݅݀ ݃ ቀ ఇ஍|ఇ஍|ቁ +  |Φߘ| gߘ
So, (C.6) becomes: 

డ஍డ௧ = − డாడ஍ = Φߘ)ߤ + ݒ݅݀ ఇ஍|ఇ஍|) + ݒ݅݀ ݃)(Φ)ߜ ቀ ఇ஍|ఇ஍|ቁ + (|Φߘ| gߘ +  (Φ)ߜܨ݃

(C.7) 
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