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Abstract

In this thesis we are interested by optimal control of systems driven by stochastic di¤er-

ential equations of the mean-�eld type. In these equations, the coe¢ cients depend not

only on the state but also on the distribution of the state process, via the expectation of

some function of the state. We establish existence of relaxed and strict optimal controls

for this type of problems in the case of controlled drift as well as wher both the drift and

di¤usion coe¢ cient are controlled. Moreover we derive necessary optimality conditions in

the form of a stochastic maximum principle for an optimal relaxed control.
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Resume

Dans cette thèse, nous nous sommes intéressés au contrôle optimal des équations di¤éren-

tielles stochastiques de type champ moyen. Dans ces équations les coe¢ cients dépendent

non seulement de l�état du sytème, mais aussi de la loi de l�état par l�intermédiaire de

l�espérance d�une certaine fonction de l�état. On établit l�existence de contrôles optimaux

relaxés et stricts dans les cas ou le drift est controlé, aussi bien que dans le cas ou le drift

et le coe¢ cient de di¤usion son contrôlés. Aussi, on démontre des conditions nécessaires

d�optimalité, sous la forme d�un principe du maximum, véri�ées par un contrôle optimal

relaxé.
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Introduction

The main goal of this thesis is to investigate the problem of existence of an optimal control

as well as the necessary conditions for optimality, for a system governed by a stochastic

di¤erential equation of the mean-�eld type, (MFSDE in short), taking the form:8<: dXt = b(t;Xt; E ( (Xt)) ; ut)dt+ �(t;Xt; E (�(Xt)) ; ut)dWt

X0 = x:
(1)

(Wt; t � 0) is a d-dimensional Brownian motion de�ned on some �ltered probability space
(
;F ; (Ft); P ), x is the initial state and ut stands for the control variable. �; b ,  ; � are
deterministic maps.

The expected cost on the time interval [0; T ] is of mean �eld type also and is given by

J(u) = E

0@ TZ
0

h(t;Xt; E'(Xt); ut)dt+ g(XT ; E�(XT )

1A : (2)

In the state equation and the cost functional, the functions depend not only on the state

of the system, but also on the distribution of the state process, via the expectation of some

function of the state. MFSDEs are obtained as mean square limits of interacting particle

systems of the form:

dX i;n
t = b(t;X i;n

t ; 1=n

nX
j=1

 (X i;n
t ); ut)dt+ �(t;X i;n

t ; 1=n

nX
j=1

�(X i;n
t ); ut)dWt (3)

When n goes to in�nity, it is proved in [43] , in the linear case, that X i;n
t converges to

X
i

t , where all the processes X
i

t (i = 1; ::::); are independent copies of the same process,

called the non linear process or the McKean-Vlasov process, which is the unique solution

1



Introduction

of the MFSDE (2.1). We refer to [31], to the general case of a non linear dependence of

the coe¢ cients upon the process and its distribution and the driving process is a general

Lévy process.

Motivated by a recent interest in di¤erential games, control problems where the state

process is a MFSDE, where the coe¢ cients depend on the marginal probability law of the

solution, have been studied in [1] and provide interesting models in applications, in par-

ticular to game problems [15; 34]. A typical example is the continuous-time Markowitz�s

mean-variance portfolio selection problem, where one should minimize an objective func-

tion involving a quadratic function of the expectation, due to the variance term, see

[2; 19; 47; 51]: The main drawback, when dealing with mean �eld stochastic control prob-

lems, is that the state process is not a Markov process and as a consequence, the dynamic

programming principle is no longer valid. For this kind of problems, the stochastic maxi-

mum principle, provides a powerful tool to solve them, see [2, 11, 17, 35, 38, 46, 47]. The

SMP gives necessary optimality conditions in terms of the maximization of some hamil-

tonian and an adjoint process which is the solution of a backward SDE of mean �eld type,

see [12; 14].

In this work, we are interested by the existence of an optimal control, where the state

equation, as well as the cost function are of mean �eld type. This kind of result is

interesting in itself and particularly when one deals with the stochastic maximum principle.

So, it is interesting to know if an optimal control exists and to try to characterize it,

by deriving necessary conditions. A control u� is called optimal if it sati�es J(u�) =

inffJ(u); u 2 Uadg; where Uad is the space of admissible controls, that is measurable,
adapted processes with values in some action space A. If moreover, u� is in Uad, it is called
strict.

Th �rst chapter is an introduction to stochastic calculus. We recall the necessary tools

such as Brownian motion, stochastic di¤erential equations, backward stochastic di¤erential

equations, which will be used in the sequel.

In the second chapter, we establish two main results. We �rst show the existence of an

optimal relaxed control, for control problems driven by non linear MFSDEs. The proof is

based on tightness properties of the underlying processes and Skorokhod selection theorem.

Our results extend in particular those in [21, 26, 3], for mean �eld SDEs. Moreover, due

to the compactness of the action space, we show that the relaxed control could be choosen

2



Introduction

among the so-called sliding controls, which are convex combinations of Dirac measures. As

a consequence and under some Fillipov convexity condition, the relaxed control is shown to

be strict.The second main result is an existence result for control problems driven by linear

MFSDEs. For this particular class of problems, we prove the existence of a strict strong

optimal control, that is a control process in Uad; which is adapted to the initial �ltration.
This means that the admissible controls in this case are adapted to a �xed �ltration.

The method of proof is based essentially on weak convergence techniques on the space

L2F of square integrable processes and Mazur�s theorem on the equality of the strong and

weak closure of a convex set. It should be noted that for this case, there is no need to

use tightness techniques and to change the initial probability space. The reason is that

roughly speaking, in the linear case, the problem reduces to �nite dimensional techniques.

In particular, our result extends [49], Theorem 5.2, to mean-�eld control problems.

In the third chapter, we deal with mean-�eld stochastic conbrol problems where both the

drift and the di¤usion coe¢ cient are controlled. As it will be shown, the stochastic equa-

tion associated with the relaxed generator will be governed by a continuous orthogonal

martingale measure, rather than a Brownian motion. For this model, we prove that the

strict and relaxed control problems have the same value function and that an optimal

relaxed control exists. Our result extends in particular [3, 21, 39] to mean �eld controls.

The proof is based on tightness properties of the underlying processes and Skorokhod

selection theorem. Moreover, due to the compactness of the action space, we show that

the relaxed control could be choosen among the so-called sliding controls, which are con-

vex combinations of Dirac measures. As a consequence and under the so-called Fillipov

convexity condition, the optimal relaxed control is shown to be strict.

In the fourth chapter, we establish necessary conditions for optimality in the form of a

relaxed stochastic maximum principle, obtained via the �rst and second order adjoint

processes, extending Peng�s maximum principle [41] to mean �eld control problems and

[11] to relaxed controls. The advantage of our result is that the maximum pinciple applies

to a natural class of controls, which is the closure of the class of strict controls, for which

we know that an optimal control exists. The proof of the main result is based on the ap-

proximation of the relaxed control problem by a sequence of strict control problems. Then

Ekeland�s variational principle is applied to get necessary conditions of near-optimality

for the sequence of nearly optimal strict controls. The result is obtained by a passage

3



Introduction

to the limit in the state equation as well as in the adjoint processes. The resulting �rst

and second order adjoint processes are solutions of linear backward SDEs driven by a

Brownian motion and an orthogonal square integrable martingale. The advantage of our

result is that it is given via an approximation procedure, so that it could be convenient

for numerical computation.

4



Chapter 1

An introduction to stochastic

calculus

1.1 Introduction

In this chapter, we�ll introduce the necessary tools, which will be used in the sequel. In

particular we�ll present brie�y the theory of stochastic di¤erential equations driven by a

Brownian motion. These equation play a great role in this work. For this end, we present

a brief history and some properties of the Brownian motion and the Ito existence and

uniqueness theorem of solutions of stochastic di¤erential equations, in the case of globally

Lipschitz coe¢ cients. Moreover, due to their importance in control theory, we present a

brief account of backward stochastic di¤erential equations (BSDE). In particular we give

without proof the Pardoux-Peng theorem on existence and uniqueness of adapted square

integrables solutions of BSDEs. It should be mentioned that the notion of BSDE has

been introduced by J.M.Bismut, in connection with stochastic control. More precisely the

adjoint process arizing in stochastic control satis�es a linear BSDE.

1.2 Some properties of stochastic processes

1.2.1 Notion of stochastic process

To represent a random phenomenon dependent of the time, suitable mathematical model

is given by a space of probability (
;F ; P ) and a function :

5



Stochastic calculus

X : 
� R+ �! E

(!; t) �! X (!; t)

For a �xed t, the state of the system is a random variable X (!; t)

If �xed ! 2 
;the states are represented by the function t �! X (!; t) called path.

De�nition 1.2.1 Let T a set of indices (R, R+, N...). We Call a stochastic process

de�ned on T with values in a measurable set(E; E), a family of random variables (Xt)t2T

with values in (E; E):

Let T be any set, we denote ET the set of applications of T in E .

We denote

�t : E
T �! E

f �! �t(f) = f(t)

�t :is called coordinate of index t:

If E is equipped with the ��algebra E , then the space ET can be endowed with the
product ��algebra de�ned as ��algebra generated by the sets of the form ��1t1 (A1) \
��1t2 (A2) \ ::: \ �

�1
tn (An); where A1; A2; :::; An belong to E and (t1; t2; :::; tn) � T:

This ��algebra can be de�ned as the smallest ��algebra making measurable coordinate
applications �t for all t 2 T:
The process (�t) is called the canonical processassociated to the process (Xt):

The essential tool for the construction of process is the theorem of Kolmogorov. It is

valid, particularly when the measurable space (E; E) is(R;B(R)) or (Rd;B(Rd)); or E is

a complete metric space with a countable basis of open sets, equipped with his Borel

��algebra.

Theoreme 1.2.1 (Kolmogorov)Let T be a set of indices and (E; E) a space of the pre-
vious form. Let for each �nite subset S of T let a probability measure �S de�ned over

(ES; E
S); so that these measures form a compatible system, ie- for each S and S 0 such

that S � S 0 we are �S(�S0) = �S: Then there exist only one probability measure � over

(ET ; E
T ) such that �S(�) = �S:

The Kolmogorov theorem is used to construct a probability measure on the canonical

space (which is generally an in�nite dimensional space) equipped with in�nite product

��algebra. So it is useful to prove the existence of a stochastic process.

6



Stochastic calculus

1.2.2 Equivalence of Processes

Equivalents Processes

De�nition 1.2.2 we say that two processes are equivalent if they have the same marginal

distributions.

Let (Xt) de�ned on (
1;F1; P1) whith values in (E; E) and (Yt) de�ned on (
2;F2; P2)
with values in (E; E):
(Xt) and (Yt) are equivalent processes if for each (t1; t2; :::; tn), the random vectors (Xt1 ; Xt2 ; :::; Xtn)and

(Yt1 ; Yt2 ; :::; Ytn) have the same probability distribution. This probability distribution is

de�ned on (En; E
n) :
Two processes are equivalent if they have the same canonical process.

Modi�cation of a process

De�nition 1.2.3 It is said that two processes (Xt) and (Yt) de�ned on the same proba-

bility space (
;F ; P ) with values in the same state space (E; E), are modi�cations of one
another if:

8t 2 T : Xt = Yt; P � p:s

Remark 1.2.1 it is obvious that if (Xt) and (Yt) are two modi�cations processes from

one another, then, they are equivalent.

Indistinguishable processes

De�nition 1.2.4 It is said that two processes (Xt) and (Yt) de�ned on the same prob-

ability space (
;F ; P ) with values in the same state space (E; E), are indistinguishables
if:

P (Xt = Yt; 8t 2 T ) = 1

Remark 1.2.2 It is clear that if two processes are indistinguishable then they are modi-

�cations of one another. The converse is false in general.

7



Stochastic calculus

1.2.3 Measurability of processes

Measurable process

Assume that the set of indices is R+:

De�nition 1.2.5 Let (
;F) a measurable space. A �ltration on (
;F) is any increasing
family (Ft)t2R+of sub-��algebras of F . ie: for each s; t 2 R+ such that s � t we have:

Fs � Ft:

Let us de�neFt+ = \
s>t
Fs; we say that the �ltration (Ft)t2R+ is right continuous ifFt+ = Ft:

Remark 1.2.3 the �ltration (Ft+) is always right continuous.

De�nition 1.2.6 Let (Xt)t2R+ a process de�ned on (
;F) and (Ft)t2R+ the �ltration of
F . We will say that (Xt)t2R+ is adapted to the �ltration (Ft)t2R+ or Ft�adapted if for
each t 2 R+; the random variable Xt is Ft�measurable.

Remark 1.2.4 It is clear that any process (Xt)t2R+ is adapted to his natural �ltration

de�ned as:

Ft = � (Xs; s � t)

De�nition 1.2.7 We say that a process (Xt)t2R+ is measurable if the map:

X : (
� R+;F 
 B(R+)) �! (E; E)
(!; t) �! Xt(!)

is measurable.

De�nition 1.2.8 We say that (Xt)t2R+ is progressively measurable if for each t 2 R+ the
map:

X : (
� [0; t] ;Ft
B( [0; t] )) �! (E; E)
(!; s) �! Xs(!)

is measurable.

Theoreme 1.2.2 If the state space E is a metric space and the processus (Xt)t2R+ is

adapted and whose paths are continuous from the right, then the process (Xt)t2R+ is pro-

gressively measurable.

8



Stochastic calculus

Predictable and optional processes

De�nition 1.2.9 Let (
;F ; P ) probability space equipped whith the �ltration (Ft). We
say that the �ltration is complete if the space (
;F ; P ) is complete and that F0 contains
all subsets negligible compared to P .

We say that the �ltration (Ft) satis�es the usual conditions if it is complete and continuous
from the right.

De�nition 1.2.10 Let (Ft) the �ltration on (
;F ; P ) : we call stopping time compared to
(Ft) or Ft�stopping time any random variable T : 
 �! R+ [ f+1g such that for all
t 2 R+; the set fT � tg 2 Ft:

De�nition 1.2.11 (Predictable process) we call the predictable ��algebra on 
�R+; the
smallest ��algebra on 
�R+ which makes measurable the processes which are continuous
from the left. A process is predictable if it is measurable with respect to the predictable

�_algebra.

De�nition 1.2.12 (optional processes)We call the optional ��algebra on 
 � R+; the
smallest ��algebra on 
�R+making measurable the processes which are continuous from
the right and limited from the left (càdlàg). A process is optional if it is measurable with

respect to the optional ��algebra.

1.3 Brownian motion

1.3.1 Brief history

The discovery of Brownian motion is attributed to the Scottish botanist, Robert Brown

in 1827, after a study of the irregular motion of pollen grains suspended in water. Now,It

is known that this movement is the result of the cumulative e¤ects of the shock of water

molecules with the particle in question. Also, in the early twentieth century A. Einstein

met the Brownian movement, when determining the diameters of some molecules. Bache-

lier also studied some properties of Brownian motion, in relation with the modeling of

price changes of certain shares on the stock exchange, in particular the Markov property.

9



Stochastic calculus

He discovered the link of Brownian motion with the heat equation. The rigorous math-

ematical de�nition and existence of this process, was established by Norbert Wiener in

1923. In particular he constructed a probability measure on the space of trajectories under

which the process of coordinates is the Wiener process or Brownian motion.

In1933, Paul Lévy proved that the Brownian motion is a continuous martingale whose

quadratic variation is equal to t. It gives a useful characterization in practice in terms of

martingales.

Brownian motion is the most popular process and is of very deep interest in many branches

of mathematics: the theory of Markov processes, martingale theory, potential theory,

partial di¤erential equations, complex analysis etc...

Today Brownian motion is very used by practitioners of �nance, engineering sciences,

biology and economics.

1.3.2 De�nitions

De�nition 1.3.1 A Brownian motion B de�ned on a probability space equipped with a

�ltration (Ft) is a continous Ft�adapted process satisfying:
1)B0 = 0 ,P:p:s

2)For all 0 � s � t , the random variable Bt �Bs is independent from Fs:
3)For all 0 � s � t , Bt �Bs is a gaussian random variable such that:

E (Bt �Bs) = 0 and var (Bt �Bs) = t� s

De�nition 1.3.2 (Generalization) X is called a generalized Brownian motion or a

Brownien motion with drift � if Xt = x + �t + �Bt where B is a Brownin motion. The

rando variable Xt is gaussian with mean x+ �t and variance �2t.

1.3.3 Properties of the Brownian motion

Proposition 1.3.1 1) The Brownian motion is a homogeneous Markov process with gaussian

transition probabilities:

Pt(x; dy) =
1p
2�t
exp�( (x�y)

2

2t
)dy

2)The symetry property:f�Btgt�0 is a Brownian motion.
3)The scaling property: pour tout c > 0; fcBt=c2gt�0 is a Brownian motion.

10
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Theoreme 1.3.1 (Regularity)

Theoreme 1.3.2 1)The Brownian motion is of unbounded variation in every interval.

2) The Brownian motion is nowhere di¤erentiable (Paley,Wiener,Zygmud, 1933).

3) The trajectories of the Brownian motion are locally Hölder continuous of order �;with

� < 1=2; and are not locally Hôlder for:� � 1=2:

Brownian motion and martingales

Theoreme 1.3.3 ( Paul Levy) Let (Xt)t�0 a continuous process, then (Xt)t�0 is a

Brownian motion if and only if:

i)(Xt) is a martingale.

ii)(X2
t � t) is a martingale.

The following inequality is very useful in the study of stochastic di¤erential equations and

to prove boundness of martingales.

Theoreme 1.3.4 Burkholder�Davis�Gundy inequality

Let p 2]0;1[,there exist two constants cp et Cp suach that, for every continuous local
martingale X; nul at 0, we have:

cpE
h
hX;Xip=21

i
� E

�
sup
t�0
jXtjp

�
� CpE

h
hX;Xip=21

i
For every T > 0

cpE
h
hX;Xip=2T

i
� E

�
sup
0�t�T

jXtjp
�
� CpE

h
hX;Xip=2T

i
Ito�s representation theorem for Brownian martingales

Let (
;F ; (Ft)t�0; P ) be a probability space satisfying thge usual conditions, B a Brownian
motionon this space. We assume that (Ft)t�0 is the natural �ltration of B that is Ft =
� (Bs; s � t) :

Theoreme 1.3.5 (Itô) Let M 2 M2 [0; T ] (resp:M2loc [0; T ]); then there exist a unique

11
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process Z 2 L2F(0; T ;Rm)(resp:L2locF (0; T ;Rm)) such that:

M(t) =

tZ
0

hZ(s):dB(s)i ; 8t 2 [0; T ]; P � a:s:

Proof. See [29] Page(80-83)]

1.4 Stochastic di¤erential equations

The stochastic di¤erential equations are extensions of ordinary di¤erential equations taking

into account the random perturbations. This theory has been introduced by K. Itô, to give

a pathwise representation of di¤usion processes. It allows one to study random trajectories

and to treat certain problems coming the theory of partial di¤erential equations, both

theoritically and numerically.

A stochastic di¤erential equation (SDE) is de�ned as follows:

dX(t) = b(X(t))dt+ �(X(t))dBt

This equation has a sense, if we write it in integral form, taking into account that the �rst

integral is a Lebesgue integral, while the second integral is an Itô stochastic integral, with

respect to a Brownian motion (Bt):

Xt = x0 +

tZ
0

b(Xs)ds+

tZ
0

�(Xs; )dBs

We can allow the coe¢ cients b and � to depend also on the time t: Then we have the

following SDE

Xt = x0 +

tZ
0

b(s;Xs)ds+

tZ
0

�(s;Xs)dBs (1.1)

12
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1.4.1 The Itô existence and uniqueness theorem

De�nition 1.4.1 Theoreme 1.4.1 Let (
;F ; (Ft); P ) a �ltered probability space satis-
fynig the usual conditions and let � and b such that:

b : R+ � Rd �! Rd

� : R+ � Rd �!Md�m(R)

are measurable functions such that:

1)There exist a constant k such that for all t 2 [0; T ],and x; y 2 Rd

jb(t; x)� b(t; y)j+ j�(t; x)� �(t; y)j � k jx� yj

Theoreme 1.4.2

jb(t; x)j2 � k�(t; y)k2 � k
��1 + jxj2�� (1:5)

2)The initial condition X0 is independent of (Bt; t � 0) and square inetgrable.
Then the SDE 1.1 has a unique solution (Xt) such that E( sup

0�t�T
jXtj2) <1

Theoreme 1.4.3 Inégalités de Burkholder�Davis�Gundy

Soit p 2]0;1[,Il existe deux constantes cp et Cp telles que, pour toute martingale locale
continue X; nulle en zéro,

cpE
h
hX;Xip=21

i
� sup

t�0
E [jXtjp] � CpE

h
hX;Xip=21

i
Pour T > 0

cpE
h
hX;Xip=2T

i
� sup

0�t�T
E [jXtjp] � CpE

h
hX;Xip=2T

i
1.4.2 Strong and weak solutions of SDEs

Let us denote the SDE 1.1 by Ex(�; b)

Strong solution

De�nition 1.4.2 A strong solution of SDE Ex(�; b) on a probability space (
;F ; P ) with
a Brownian motion B ,a process X de�ned on (
;F ; P ) satisfying:

13
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i)Xt is adapted to FB
t = �(Bs; s � t) the natural �ltration of B:

ii)X satis�es the SDE Ex(�; b):

iii)X est continous in t and P (

TZ
0

(�2(s;Xs)ds <1) = 1; P (
TZ
0

(b(s;Xs)ds <1) = 1:

Weak solution

De�nition 1.4.3 A weak solution of Ex(�; b);is a collection ((
;F ; P ); (Ft); B;X) such
that:

i)X is adapted to Ft:
ii)B is a Brownian motion adapted to Ft:

iii)P (

TZ
0

(�2(s;Xs)ds <1) = 1; P (
TZ
0

(b(s;Xs)ds <1) = 1:

iv)(B;X) satis�es SDE Ex(�; b):

Remark 1.4.1 1)The weak solution are not necessarily adapted to FB
t : This is the fun-

damental di¤erence with the strong solutions

2)A stron g solution is a weak solution.

1.4.3 Strong and weak uniqueness

Strong or pathwise uniqueness

De�nition 1.4.4 Let X ,X 0 two solutions of Ex(�; b; B); Ex0(�; b; B0) respectively:We

have strong uniqueness if:

i)X ,X 0; B;B0 are de�ned on the same probability space.

ii)if X0 = X 0
0 P:a:s, B = B0 P:a:s;the : P (Xt = X 0

t; t 2 [0; T ]) = 1:
iii)X et X 0are indistinguishable.

Weak uniqueness

De�nition 1.4.5 Let (X;B) ,(X 0; B0) two solutions of Ex(�; b); Ex0(�; b) respectively:We

say that we have weak uniqueness or uniqueness in law if:

law(X;B) = law(X 0; B0)

14
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Remark 1.4.2 Theoreme 1.4.4 (Yamada-Watanabe) i)The pathwise uniqueness implies

the uniqueness in law.

ii)The weak existence and pathwise uniqueness imply strong existence and uniqueness.

Remark 1.4.3 The Yamada-Watanabe is very useful in practice to prove strong existence

and uniqueness. It is su¢ cient to prove that a solution exists in law and prove then the

pathwise uniqueness.

1.5 Linear stochastic di¤erential equations and and

backward stochastic di¤erential equations

Due to their importance in stochastic control, we recall some of the main properties of

linear SDEs and BSDEs.

1.5.1 Linear stochastic di¤erential equations

The one domensional case

Consider the linear SDE8<: dXt = [A(t)Xt + b(t)] dt+ [C(t)Xt + �(t)] dBt

X(0) = x
(1.2)

where:

1)Bt is a Brownian motion of dimension 1 .

2)A(:); C(:) 2 L1 [0; T ]� Rn � Rn

3)b(:); �(:) 2 L1 [0; T ]� Rn:
Using Itô�s theorem, and under assumptions it is clear that equation 1.2 has a unique

strong solution of the form:

Xt = 'tx+ 't

tZ
0

'�1s [b(s)� C(s)�(s)] ds+ 't

tZ
0

'�1s �(s)dBs; t 2 [0; T ] (1.3)

Let 't be the solution of:

15
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8<: d't = A(t)'tdt+ C(t)'tdBs

't(0) = I
(1.4)

then 't(:) admits an inverse '�1t = 	t satisfying:8<: d	t = 	t [�A(t)dt+ C(t)2] dt�	tC(t)dBt
	t(0) = I

(1.5)

By applying Ito�s formula to '(t)	(t) we get d['(t)	(t)] = 0, then '(t)	(t) = I:Therefore

	(t) = '�1(t):

By applying again Ito�s formula to 	(t)X(t) where X(t) is the solution of 1.2 we get:

d['(t)	(t)] = 	(t)dX(t) +X(t)d(t) + d h	:; X:it
= 	(t) [A(t)X(t) + b(t)] dt+ [C(t)X(t) + �(t)] dB(t) +X(t)	(t)

�
�A(t)dt+ C(t)2

�
dt

�	(t)C(t)dB(t)� C2(t)	(t)X(t)dt+ �(t)C(t)	(t)dt

= 	(t)(b(t)� C(t)�(t))dt+	(t)�(t)dB(t):X(t)

Then the explicit formula 1.3 holds by using :	(t) = '�1(t):

The case of a multidimensional Brownian motion

Let Xt be the solution of the linear SDE8>><>>:
dXt = [A(t)Xt + b(t)] dt+

mX
j=1

[Cj(t)Xt + �j(t)] dBj
t

X(0) = x

(1:13)

Let 't be the solution of the matrix SDE8>><>>:
d't = A(t)'tdt+

mX
j=1

Cj(t)'tdB
i
s

't(0) = I
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One can prove that the inverse '�1t satis�es8>><>>:
d('�1t ) = '�1t

"
�A(t)dt+

mX
j=1

Cj(t)2

#
dt�

mX
j=1

'�1t Cj(t)dBi
t

'�1t (0) = I

By using multidomensional Ito�s formula we get

Xt = 'tx+ 't

tZ
0

'�1s

"
b(s)�

mX
j=1

Cj(s)�j(s)

#
ds+

mX
j=1

't

tZ
0

'�1s �j(s)dBj
s ; t 2 [0; T ]

Remark 1.5.1 The explicit formula has been obtained by J.M.Bismut.

1.5.2 Backward stochastic di¤erential equations

Introduction

Let (
;F ; (Ft)t�0; P ) a �ltered probability space and let � be a square integrableFT�measurable
random variable.

Consider the di¤erential equation8<: �dYt = f(Yt); t 2 [0; T ]
YT = �

where the process Yt is adapted to the �ltration (Ft)t�0:
Suppose that f � 0 then:

�dYt
dt

= 0

It is clear that the solution is given by:

YT = � ) Yt = �

But Yt is not Ft�measurable.
If we seach for an adapted solution we set:

17
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Yt = E(�=Ft) which Ft � adapted

From Ito�s representation theorem ,there exist an adapted square integrable process Z

such that:

Yt = E(�=Ft) = E(�) +

tZ
0

ZsdBs , avec YT = �

We see that :YT = � = E(�) +

TZ
0

ZsdBs:

By computing the di¤erence Yt � YT ; we have:

Yt � YT =

tZ
0

ZsdBs �
TZ
0

ZsdBs = �
TZ
t

ZsdBs:

) Yt = YT �
TZ
t

ZsdBs:

Therefore 8<: dYt = ZtdBt

YT = �

In di¤erntial form we have8<: �dYt = �ZtdBt
YT = �

i.e. Yt = � �
TZ
t

ZsdBs

Now let f be a function depending also on Z , such that:

�dYt = f(t; Yt; Zt)dt� ZtdBt

YT = �

or in integral form:
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8>>><>>>:
Yt = � +

TZ
t

f(r; Yr; Zr)dr �
TZ
t

ZrdBr , 0 � t � T

YT = �

(1.6)

where f is called the driver of the backward SDE ;and � is the terminal value.

Notation and de�nition of the solution

Consider (
;F ; (Ft)t�0; P ) a probability space with a �ltration, on which a Brownian
motion B is de�ned.

We suppose that Ft is the natural �ltration of B.
We denote S2(Rm) the space of processes Y progressively measurable, continuous and with
values in Rm such that:

kY k2S2 = E

�
sup
0�t�T

jYtj2
�
< +1

Let M2(Rm�d) the space of processes Y progressively measurable, with values in Rm�d

such that:

kZk2M2 = E

24 TZ
0

kZtk2
35 < +1

We denote B2 the Banach space :S2c (Rm)�M2(Rm�d)

We search for a couple (Y; Z) 2 S2 �M2 solution of equation 1.6.

De�nition 1.5.1 A solution of the BSDE 1.6 is a couple (Y; Z) = f(Yt; Zt)gt2[0;T ]of
processes in S2c (Rm)�M2(Rm�d);satisfying:

1)P � a:s:

TZ
0

�
jf(r; Yr; Zr)j+ kZrk2

	
dr <1:

2)P � a:s::

Yt = � +

TZ
t

f(r; Yr; Zr)dr �
TZ
t

Zrdwr , 0 � t � T
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The Pardoux Peng theorem

Let � be a random variable,Ft�adapted with values in Rm;and let f be a driver de�ned

on [0; T ]�
�Rm�Rm�d;with values in Rm,such that for any (y; z) �Rm�Rm�d;the
process f is progressively measurable .

Theoreme 1.5.1 (Pardoux-Peng).Under the following assumptions,:

1) f is uniformly Lipschitz in y et z ,i.e for all t; y; y0; z; z0 :

jf(t; y; z)� f(t; y0; z0)j � k (jy � y0j+ kz � z0k)

2)

E
�
j�j2 + jf(t; 0; 0)j2 dt

�
< +1

the BSDE 1.6 admits a unique solution (Y; Z) 2 S2c (Rm)�M2(Rm�d):
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Chapter 2

Existence of optimal controls for

mean-�eld stochastic di¤erential

equations: the case where only the

drift is controlled

Abstract

In this paper we study the existence of an optimal control for systems, governed by stochas-

tic di¤erential equations of mean-�eld type. In these equations, the drift and the di¤usion

coe¢ cient depend not only on the state of the system, but also on the expectation of some

function of the state. These equations are obtained as limits of some interacting particle

systems and are important in game theory with a large number of small players. For non

linear systems, we prove the existence of an optimal relaxed control, by using tightness

techniques and Skorokhod selection theorem. The optimal control is a measure valued

process de�ned on another probability space. In the case where the coe¢ cients are linear

maps and the cost functions are convex, we prove by using weak convergence techniques,

the existence of an optimal strict control, adapted to the initial �ltration.

Keys words. Mean-�eld, stochastic di¤erential equation, relaxed control, existence, tight-

ness,

weak convergence.

MSC 2010 subject classi�cations. 93E20, 60H30.
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2.1 Introduction

The purpose of this paper is to study the problem of existence of an optimal control, for

a system governed by a stochastic di¤erential equation of the mean-�eld type, (MFSDE

in short), taking the form:8<: dXt = b(t;Xt; E ( (Xt)) ; ut)dt+ �(t;Xt; E (�(Xt)) ; ut)dWt

X0 = x:
(2.1)

(Wt; t � 0) is a d-dimensional Brownian motion de�ned on some �ltered probability space
(
;F ; (Ft); P ), x is the initial state and ut stands for the control variable. �; b ,  ; � are
deterministic maps.

The expected cost on the time interval [0; T ] is of mean �eld type also and is given by

J(u) = E

0@ TZ
0

h(t;Xt; E'(Xt); ut)dt+ g(XT ; E�(XT )

1A : (2.2)

In the state equation and the cost functional, the functions depend not only on the state

of the system, but also on the distribution of the state process, via the expectation of some

function of the state. MFSDEs are obtained as mean square limits of interacting particle

systems of the form:

dX i;n
t = b(t;X i;n

t ; 1=n
nX
j=1

 (X i;n
t ); ut)dt+ �(t;X i;n

t ; 1=n
nX
j=1

�(X i;n
t ); ut)dWt (2.3)

When n goes to in�nity, it is proved in [43] , in the linear case, that X i;n
t converges to

X
i

t , where all the processes X
i

t (i = 1; ::::); are independent copies of the same process,

called the non linear process or the McKean-Vlasov process, which is the unique solution

of the MFSDE (2.1). We refer to [31], to the general case of a non linear dependence of

the coe¢ cients upon the process and its distribution and the driving process is a general

Lévy process.

Motivated by a recent interest in di¤erential games, control problems where the state

process is a MFSDE, where the coe¢ cients depend on the marginal probability law of the

solution, have been studied in [1] and provide interesting models in applications, in par-
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ticular to game problems [15; 34]. A typical example is the continuous-time Markowitz�s

mean-variance portfolio selection problem, where one should minimize an objective func-

tion involving a quadratic function of the expectation, due to the variance term, see

[2; 19; 47; 51]: The main drawback, when dealing with mean �eld stochastic control prob-

lems, is that the state process is not a Markov process and as a consequence, the dynamic

programming principle is no longer valid. For this kind of problems, the stochastic maxi-

mum principle, provides a powerful tool to solve them, see [2, 11, 17, 35, 38, 46, 47]. The

SMP gives necessary optimality conditions in terms of the maximization of some hamil-

tonian and an adjoint process which is the solution of a backward SDE of mean �eld type,

see [12; 14].

In this paper, we are interested by the existence of an optimal control, where the state

equation, as well as the cost function are of mean �eld type. This kind of result is

interesting in itself and particularly when one deals with the stochastic maximum principle.

So, it is interesting to know if an optimal control exists and to try to characterize it,

by deriving necessary conditions. A control u� is called optimal if it sati�es J(u�) =

inffJ(u); u 2 Uadg; where Uad is the space of admissible controls, that is measurable,
adapted processes with values in some action space A. If moreover, u� is in Uad, it is called
strict.

For classical control problems, driven by classical SDEs without the mean �eld part,

existence of such a strict optimal control follows from the Filipov-type convexity condition.

In the absence of this condition, a strict optimal control may fail to exist. The idea is

then to introduce the class of relaxed controls, in which the controller chooses at time t,

a probability measure �t(da) on the action space A, rather than an element ut 2 A. The
set of relaxed controls, when equipped with stable convergence, is a compact separable

metrizable space. Note that the class of strict controls could be seen as a subset of the

space of relaxed controls, by identifying a strict control (ut) with the Dirac measure �ut(da).

The �rst existence of an optimal relaxed control has been proved in [23], for classical Ito

SDEs, where only the drift is controlled. The case of an SDE where the di¤usion coe¢ cient

depends explicitly on the control variable has been solved in [21, 25], where the optimal

relaxed control is shown to be Markovian, see also [26, ?, 3]. Existence results for systems

driven by backward and forward-backward SDEs have been investigated in [4, 5, 13].

We establish two main results. We �rst show the existence of an optimal relaxed control,
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for control problems driven by non linear MFSDEs. The proof is based on tightness

properties of the underlying processes and Skorokhod selection theorem. Our results

extend in particular those in [21, 26, 3], for mean �eld SDEs. Moreover, due to the

compactness of the action space, we show that the relaxed control could be choosen among

the so-called sliding controls, which are convex combinations of Dirac measures. As a

consequence and under some Fillipov convexity condition, the relaxed control is shown to

be strict.The second main result is an existence result for control problems driven by linear

MFSDEs. For this particular class of problems, we prove the existence of a strict strong

optimal control, that is a control process in Uad; which is adapted to the initial �ltration.
This means that the admissible controls in this case are adapted to a �xed �ltration.

The method of proof is based essentially on weak convergence techniques on the space

L2F of square integrable processes and Mazur�s theorem on the equality of the strong and

weak closure of a convex set. It should be noted that for this case, there is no need to

use tightness techniques and to change the initial probability space. The reason is that

roughly speaking, in the linear case, the problem reduces to �nite dimensional techniques.

In particular, our result extends [49], Theorem 5.2, to mean-�eld control problems.

2.2 Existence of optimal relaxed controls for systems

driven by non linear MFSDEs

2.2.1 Controlled mean �eld stochastic di¤erential equations

Let (Wt) is a d-dimensional Brownian motion, de�ned on a probability space (
;F ; P );
endowed with a �ltration (Ft) ; satisfying the usual conditions. Let A be some compact

subset of Rk called the action space or the control set.

We study the existence of optimal controls for systems driven non linear mean �eld SDEs

of the form 8<: dXt = b(t;Xt; E(	(Xt)); ut)dt+ �(t;Xt; E(�(Xt))dWt

X0 = x
(2.4)

and the cost functional over the time interval [0; T ] is given by
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J(U) = E

0@ TZ
0

h(t;Xt; E('(Xt); ut

1A dt+ g(XT ; E�(XT )) (2.5)

where b; �; l; h, g and  are given functions. The control variable ut, is a measurable,

Ft� adapted process with values in the action space A.
Let us assume the following conditions:

(H1) Assume that

b : [0; T ]� Rd � Rd � A �! Rd

� : [0; T ]� Rd � Rd �! Rd 
 Rd

	 : Rd �! Rd;� : Rd �! Rd
(2.6)

are bounded continuous functions and there exists K > 0 such that for any pairs (x1; y1)

and (x2; y2) in Rd � Rd :

jb(t; x1; y1; u)� b(t; x2; y2; u)j � K(jx1 � x2j+ jy1 � y2j)
j�(t; x1; y1; u)� �(t; x2; y2; u)j � K(jx1 � x2j+ jy1 � y2j)
j	(x1)�	(x2)j � K(jx1 � x2j)
j�(x1)� �(x2)j � K(jx1 � x2j)

(2.7)

(H2) Assume that

h : [0; T ]� Rd � Rd � A �! R

g : Rd � Rd �! R

' : Rd �! Rd

� : Rd �! Rd

are bounded continuous functions and h is K-Lipschiz continuous in the variables (x; y),

that is there exists K > 0 such that for any pairs (x1; y1) and (x2; y2) in Rd � Rd :

jh(t; x1; y1; u)� h(t; x2; y2; u)j � K(jx1 � x2j+ jy1 � y2j) (2.8)

Proposition 2.2.1 Under assumption (H1) the MFSDE (2.4) has a unique strong solu-

tion. Moreover for each p > 0 we have E(jXtjp) < +1:
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Proof. Let us de�ne b(t; x; �; a) on [0; T ]�Rd�M1(Rd)�Rk and �(t; x; �; a) on [0; T ]�
Rd �M1(Rd) by

b(t; x; �; a) = b(:; :;

Z
	(x)d�(x); :)

�(t; x; �) = �(t; x;

Z
�(x)d�(x))

(2.9)

where M1(Rd) denotes the space of probability measures in Rd:

According to Proposition 1.2 in [31] it is su¢ cient to check that b and � are Lipschitz

in (x; �). Indeed since the coe¢ cients b and � are Lipschitz continuous in x; then b and

� are also Lipschitz in x: Moreover one can verify easily that b and � are also Lipshitz

continuous in �; with respect to the Wasserstein metric

d (�; �) = inf
n�
EQ jX � Y j2

�1=2
;Q 2M1(Rd � Rd); with marginals �; �

o
= sup

�Z
hd (�� �) ; jh(x)� h(y)j � jx� yj

�
;

(2.10)

where M1(Rd�Rd) is the space of probability measures on Rd�Rd: Note that the second

equality is given by the Kantorovich-Rubinstein theorem [33]. Since the mappings b and

	 in the the MFSDE are Lipschitz continuous in x we have����b(:; :;Z 	(x)d�(x); :)� b(:; :;

Z
	(x)d�(x); :)

����
� K

����Z 	(x)d(�(x)� �(x))

����
� K 0:d (�; �)

(2.11)

Similar arguments can be used for �: Using similar techniques as in Proposition 1.2 in [31],

it holds that for each p > 0, E(jXtjp) < +1:

2.2.2 Relaxed controls

Our objective is to minimize the cost function, over the class Uad of admissible controls,
that is, adapted processes with values in the set A, called the action space. A control bu is
called optimal if it satis�es J (bu) = inf fJ (u) ; u 2 Uadg.
If we do not assume convexity conditions, an optimal control may fail to exist in the
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set Uad of strict controls even in deterministic control. It should be noted that the set
Uad is not equipped with a compact topology. The idea is then to embedd the set of
strict controls into a wider class of controls, in which the controller chooses at time t, a

probability measure �t(du) on the control set A, rather than an element ut 2 A. These

measure valued controls are called relaxed controls. It turns out that this class of controls

enjoys good topological properties. If �(du) = �ut (du) is a Dirac measure charging ut for

each t, then we get a strict control as a special case. Thus the set of strict controls may

be identi�ed as a subset of of relaxed controls.

Let us consider a simple deterministic example.

The problem is to minimize the following cost function: J(u) =
R T
0
(Xu(t))2 dt over the

set Uad of open loop controls, that is, measurable functions u : [0; T ] ! f�1; 1g, where
Xu(t) denotes the solution of dXu(t) = u(t)dt; X(0) = 0: We have infu2Uad J(u) = 0.

Indeed, consider the following sequence of controls:

un(t) = (�1)k if kTn � t � (k+1)T
n
, 0 � k � n� 1.

Then clearly jXun(t)j � 1=n and jJ(un)j � T=n2 which implies that infu2Uad J(u) = 0.

There is however no control bu such that J(bu) = 0. If this would have been the case, then
for every t, Xbu(t) = 0. This in turn would imply that ut = 0, which is impossible.
The problem is that the sequence (un) has no limit in the space of strict controls. This

limit, if it exists, will be the natural candidate for optimality. If we identify un(t) with the

Dirac measure �un(t)(du); then (�
n
t (du))n converges weakly to (T=2)�[��1 + �1](du). This

suggests that the set of strict controls is too narrow and should be embedded into a wider

class with a reacher topological structure for which the control problem becomes solvable.

The idea of relaxed control is to replace the A-valued process (ut) with a M1(A)-valued

process (�t), whereM1(A) is the space of probability measures equipped with the topology

of weak convergence.

In the relaxed form of our control problem we replace in the state equation the process ut

by �t which a process with values on the space of proability measures on the control set

A. Then the state process will satisfy, instead of (2.4), the following equation
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8<: Xt = x+
R t
0

R
A
b (s;Xs; E(	(Xs); a)�s(da):ds+

R t
0
� (s;Xs; E(�(Xs)) dWs;

X0 = x
(2.12)

�t is called a relaxed control applied at time t. If �t is a Dirac measure concentrated at a

single point ut then we get a strict control as a particular case of a relaxed control.

The canonical space of the set of relaxed controls

LetM1(A) be the space of probability measures on the control set A: Let V be the space of

measurable tranformations � : [0; T ] �!M1(A); then � can be identi�ed as a nonnegative

measure on the product [0; T ]� A; by putting for C 2 B([0; T ]) and D 2 B(A)

�(C �D) =
R
C
�t(da)dt

� can be extended uniquely to an element of M+([0; T ]�A) the space of Radon measures
on [0; T ] � A; equipped with the topology of stable convergence. This topology is the

weakest topology such that the mapping

� �!
R T
0

R
A
�(t; a):�(dt; da)

is continuous for all bounded measurable functions � which are continuous in a.

Equipped with this topology, M+([0; T ] � A) is a compact separable metrizable space.

Therefore V as a closed subspace ofM+([0; T ]�A) is also compact (see El Karoui, Hauss-
Lepeltier, [30]) for more details.

Notice that V can be identi�ed as the space of positive Radon measures on [0; T ] � A,

whose projections on [0; T ] coincide with Lebesgue measure.

Let us de�ne the Borel ���eld V as the smallest ���eld such that the mappings

R T
0

R
A
�(t; u):�t(du)dt

are measurable, where � is a bounded measurable function which is continuous in a:

Let us also introduce the �ltration
�
Vt
�
on V, where Vt is generated by

�
1[0;t]�; � 2 V

	
.

De�nition 2.2.1 A measure-valued control on the �ltered probability space (
;F ;Ft; P )
is a random variable � with values in V such that �(!; t; da) is progressively measurable

with respect to (Ft) and such that for each t, 1(0;t]:� is Ft�measurable.
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Now let us introduce the precise de�nitions of a strict control and relaxed control.

De�nition 2.2.2 A strict control is a term � = (
;F ;Ft; P; ut;Wt; Xt) such that

(1) (
;F ;Ft; P ) is a probability space equipped with a �ltration (Ft)t�0 satisfying the usual
conditions.

(2) ut is a A-valued process, progressively measurable with respect to (Ft).
(3) Wt is a (Ft; P )- Brownian motion and (Wt; Xt) satis�es MFSDE (2.4).

We denote by Uad the space of strict controls.

The controls as de�ned in the last de�nition are called weak controls, because of the

possible change of the probability space and the Brownian motion with ut:

De�nition 2.2.3 A relaxed control is a term � = (
;F ;Ft; P; �t;Wt; Xt) such that

(1) (
;F ;Ft; P ) is a probability space equipped with a �ltration (Ft)t�0 satisfying the usual
conditions.

(2) � is a measure-valued control on (
;F ;Ft; P ) :
(3) Wt is a (Ft; P )- Brownian motion and (Wt; Xt) satis�es the following MFSDE (2.12).

We denote by R the space of relaxed controls.

Accordingly, the relaxed cost functional will be given by

J(�) = E

0@ TZ
0

Z
A

h(t;Xt; E('(Xt); a)�t(da)dt+ g(XT ; E�(XT )

1A : (2.13)

By putting eb (t;Xt; E(	(Xt); �t) =
R
A
b (t;Xt; E(	(Xt); a)�t(da), it follows that the new

drift eb satis�es the same Lipschitz assumptions (H1) as b: Therefore Equation 2.12 has a

unique solution such that for each p > 0 we have E(jXtjp) < +1:

Approximation of the relaxed model

By de�ning the relaxed control problem, a natural question arises on the relation between

the strict control problem and the relaxed one. Thanks to the so-called chattering lemma

and the continuity of the state process with respect to the control variable, one can prove

that the two problems are equivalent. That is the value functions for the two problems

are the same. In other words, the in�mum of the cost function among strict controls is

equal to the in�mum of the cost function taken among relaxed controls.
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Lemma 2.2.1 (Chattering lemma)

i) Let (�t) be a relaxed control: Then there exists a sequence of adapted processes (un(t))

with values in A, such that the sequence of random measures
�
�unt (da) dt

�
converges in V

to �t(da) dt; P � a:s:

ii) For any g continuous in [0; T ]�M1(A) such that g(t; :) is linear, we have P � a:s

lim
n!+1

tZ
0

g(s; �uns )ds =

tZ
0

g(s; �s)ds uniformly in t 2 [0; T ] : (2.14)

Proof. See [21] and [23] Lemma 1 page 152.

Proposition 2.2.2 1) Let Xt; X
n
t be the solutions of state equation (2.12) corresponding

to � and un; where � and un are de�ned as in the last lemma. Then

lim
n!1

E

�
sup
0�t�T

jXn
t �Xtj2

�
= 0: (2.15)

2) Let J(un) and J(�) the expected costs corresponding respectively to un and �: Then

there exists a subsequence (unk) of (un) such that J (unk) converges to J (�) :

Proof. 1) Let � a relaxed control and
�
�unt (da)

�
the sequence of atomic measures as-

sociated to the sequence of strict controls (un) ; as in the last Lemma. Let Xt; X
n
t the

corresponding state processes. Then

jXt �Xn
t j �

���R t0 RA b (s;Xs; E(	(Xt); u)�s(du):ds�
R t
0

R
A
b (s;Xn

s ; E(	(X
n
s ); u) �uns (da)ds

���
+
���R t0 � (s;Xs; E(�(Xt)) ds�

R t
0
� (s;Xn

s ; E(�(X
n
s )) ds

���
�
���R t0 RA b (s;Xs; E(	(Xt); u)�s(du):ds�

R t
0

R
A
b (s;Xs; E(	(Xs); u) �uns (da)ds

���
+
���R t0 RA b (s;Xs; E(	(Xt); u) �uns (da):ds�

R t
0

R
A
b (s;Xn

s ; E(	(X
n
s ); u) �uns (da)ds

���
+sup
s�t

���R s0 � (v;Xv; E(�(Xv)) dWv �
R t
0
� (v;Xn

v ; E(�(X
n
v )) dWv

���
Then by using Burkholder-Davis-Gundy inequality for the martingale part and the fact

that all the functions in equation ( 2.12) are Lipschitz continuous, it holds that

E

�
sup
0�t�T

jXt �Xn
t j
2

�
� K

�Z T

0

E

�
sup
0�s�t

jXs �Xn
s j
2

�
dt+ "n

�
(2.16)
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where K is a nonnegative constant and

"n = E

�
sup
0�t�T

����Z t

0

Z
A

b (s;Xs; E(	(Xt); u)�s(du):ds�
Z t

0

Z
A

b (s;Xs; E(	(Xs); u) �uns (da)ds

�����
(2.17)

By using Lemma 2.5 ii) and the dominated convergence theorem it holds that lim
n!+1

"n = 0:

We conclude by using Gronwall lemma.

2) Property 1) implies that the sequence (Xn
t ) converges to Xt in probability uniformly in

t; then there exists a subsequence (Xnk
t ) which converges to Xt; P -a:s uniformly in t:We

have

jJ (unk)� J (�)j � E

�
TR
0

R
A
jh(t;Xnk

t ; E('(Xn
t ); a)� h(t;Xt; E('(Xt); a)j �unkt (da) dt

�
+E

����� TR
0

R
A
h(t;Xt; E('(Xt); a)�unkt (da) dt�

TR
0

R
A
h(t;Xt; E('(Xt); a)�t(da) dt

�����
+E [jg(Xnk

T ; E(�(Xnk
T ))� g(XT ; E(�(XT ))j]

It follows from the continuity and boundness of the functions h, g, ' and � with respect

to x and y; that the �rst and third terms in the right hand side converge to 0 . The

second term in the right hand side tends to 0 by the weak convergence of the sequence

�n to �; the continuity and the boundness of h in the variable a. We use the dominated

convergence theorem to conclude.

Remark 2.2.1 As a consequence of Proposition 2.6, it holds that the value functions for

the strict and relaxed control problems are the same.

Notation

In the sequel we denote by:

C([0; T ];Rd): the space of continuous functions from [0; T ] into Rd, equipped with the

topology of uniform convergence.

2.2.3 The main result

The main result of this section is given by the following theorem. Note that this result

extends [23, 21, 24] to systems driven by mean �eld SDEs with uncontrolled di¤usion

coe¢ cient.
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Theoreme 2.2.1 Under assumptions (H1), (H2), the relaxed control problem has an op-

timal solution.

The proof is based on some auxiliary results related to the tightness of the processes under

consideration and the identi�cation of their limits.

Let (�n)n�0 be a minimizing sequence, that is limn!1
J (�n) = inf

q2R
J (�) and let (W n; Xn) be

the unique solution of our MFSDE:

8<: Xn
t = x+

R t
0

R
A
b (s;Xn

s ; E(	(X
n
s ); u)�

n
s (du):ds+

R t
0
� (s;Xn

s ; E(�(X
n
s )) dW

n
s ;

Xn
0 = x:

(2.18)

The proof of the main result consists in proving that the sequence of distributions of

the processes (�n;W n; Xn) is tight for a certain topology on the state space and then

show that we can extract a subsequence which converges in law to a process (bq;cW; bX);
which satis�es the same MFSDE. To achieve the proof we show that under some regularity

conditions the sequence of cost functionals (J(�n))n converges to J(b�) which is equal to
inf
�2R

J (�) and then (bq;cW; bX) is optimal.
Lemma 2.2.2 The sequence of distributions of the relaxed controls (�n)n is relatively

compact in V.

Proof. The relaxed controls �n are random variables on the space V which is compact.

Then by applying Prohorov�s theorem yields that the family of distributions associated to

(�n)n�0 is tight then it is relatively compact.

Lemma 2.2.3 Let (W n
t ; X

n
t ) be the solution of the MFSDE (2.18), then the sequence

P(Wn;Xn) of distributions of (W n; Xn) is relatively compact on the space C
�
[0; T ] ;Rd

�
�

C
�
[0; T ] ;Rd

�
; where C

�
[0; T ] ;Rd

�
is endowed with the topology of uniform convergence.

Proof. To prove that the sequence
�
P(Wn;Xn)

�
is relatively compact in C

�
[0; T ] ;Rd

�
�

C
�
[0; T ] ;Rd

�
it is su¢ cient to prove that (PWn) and (PXn) are relatively compact in

C
�
[0; T ] ;Rd

�
: According to Kolmogorov�s theorem [29] page 18, we need to verify that
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a) limA!+1 infn P
n (kx(0)k � A) = 0

b) lim�!0 lim supP
n

0B@ sup
0�s�t�T
t�s<�

kx(t)� x(s)k � 

1CA = 0

Condition a) is an immediate consequence of the fact that W n(0) = 0 and Xn(0) = x:

To prove b) it is su¢ cient to chech that

E(kW n(t)�W n(s)k4) � C jt� sj2

E(kXn(t)�Xn(s)k4) � C jt� sj2

for some constants C1 and C2 independant from n:

The �rst inequality is obvious. Let us verify the second one. We have

E
�
kXn

t �Xn
s k

4� �M:E

�R ts RA b (u;Xn
u ; E(	(X

n
u ); a)�

n
s (da):ds

4 + R ts � (u;Xn
u ; E(�(X

n
u )) dW

n
s

4�where
M is some positive constant. Using Burkholder-Davis-Gundy inequality to the martingale

part and the fact that b and � are bounded functions yield the desired result.

Proof. of Theorem 2.8

By using Lemmas 2.9 and 2.10, it holds that the sequence of processes (�n;W n; Xn) is tight

on the space V�C
�
[0; T ] ;Rd

�2
. Then by the Skorokhod representation theorem, there

exists a probability space
�

;F ;P

�
, a sequence n =

�
�n;W

n
; X

n�
and  =

�
q;W;X

�
de�ned on this space such that:

(i) for each n 2 N, law(n) = law(n),
(ii) there exists a subsequence (nk) of (n), still denoted (n), which converges to ;P-a.s.

on the space �:

This means in particular that the sequence of relaxed controls (�n) converges in the stable

topology to �; P� a:s: and
�
W

n
; X

n�
converges uniformly to

�
W;X

�
; P� a:s:

According to property (i), we get

8>><>>:
X
n

t = x+
R t
0

R
A
b
�
s;X

n

s ; E(	(X
n

s ); u
�
�ns (du)ds+

R t
0
�
�
s;X

n

s ; E(�(X
n

s )
�
dW

n

s ;

X
n

0 = x:

(2.19)

The coe¢ cients b; �; 	 and � being Lipschitz continuous in (x; y);then according to

property (ii) and using similar arguments as in [42] page 32, it holds that

Z t

0

Z
A

b
�
s;X

n

s ; E(	(X
n

s ); u
�
�ns (du)ds converges in probability to

Z t

0

Z
K

b
�
s;Xs; E(	(Xs); u

�
�s(du)ds
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andZ t

0

�
�
s;X

n

s ; E(�(X
n

s )
�
dW

n

s converges in probability to
Z t

0

�
�
s;Xs; E(�(Xs)

�
dW s:

Therefore X satis�es the MFSDE8<: X t = x+
R t
0

R
K
b
�
s;Xs; E(	(Xs); u

�
�s(du)ds+

R t
0
�
�
s;Xs; E(�(Xs)

�
dW s;

X
n

0 = x:
(2.20)

To �nish the proof of Theorem 2.8, it remains to verify that � is an optimal control.

According to above properties (i)-(ii) and assumption (H2), we have

inf
�2R

J (�) = lim
n!1

J (�n) ;

= lim
n!1

E

24 TZ
0

Z
A

h(t;Xn
t ; E('(X

n
t ); a)�

n
t (da)dt+ g(Xn

T ; E�(X
n
T ))

35
= lim

n!1
E

24 TZ
0

Z
A

h(t;X
n

t ; E('(X
n

t ); a)�
n
t (da)dt+ g(X

n

T ; E�(X
n

T ))

35
= E

24 TZ
0

Z
A

h(t;X t; E('(X t); a)�t(da)dt+ g(XT ; E�(XT ))

35 :
Hence � is an optimal control.

The action space A being compact, we prove in the next proposition that the investigation

for an optimal relaxed control can be reduced to the so called sliding controls also known

as chattering controls. A sliding control is a relaxed control of the form

qt =

pX
i=1

�i(t)�ui(t)(da); ui(t) 2 A;�i(t) � 0and
pX
i=1

�i(t) = 1: (2.21)

Proposition 2.2.3 Let � be a relaxed control and X the corresponding state process.

Then one can choose a sliding control

�t =

pX
i=1

�i(t)�ui(t)(da); ui(t) 2 A; �i(t) � 0 and
pX
i=1

�i(t) = 1 (2.22)
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such that

1) X is a solution of the controlled MFSDE8>><>>:
dXt =

pX
i=1

�i(t)b(t;Xt; E(	(Xt)); ui(t))dt+ �(t;Xt; E(�(Xt))dWt

X0 = x

(2.23)

2) J(�) = J(�):

Proof. Let � denote the d+1-dimensional simplex � =

(
� = (�0; �1; :::; �d+1) ; �i � 0;

d+1X
i=0

�i = 1

)
and W the (d+ 2)-cartesian product of the set A

W = fw = (u0; u1; :::; ud+1) ; ui 2 Ag
De�ne the function

g(t; �; w) =
d+1X
i=0

�ieb(t;Xt; E(	(Xt); ui)�
Z
A

eb (t;Xt; E(	(Xt); u)�t(du)

where t 2 [0; T ] ; � 2 �; w 2 W and eb(t;Xt; E(	(Xt); ui) =

0@b(t;Xt; E(	(Xt); ui)

h(t; xt; E(	(Xt); ui)

1A
Let eb(t;Xt; E(	(Xt); ui); i = 0; 1; :::; d + 1 be the subset of (d + 1) arbitrary points in

P (t;Xt) where

P (t;Xt) = f(b(t;Xt; E(	(Xt); a); h(t;Xt; E(	(Xt); a)) ; a 2 Ag � Rd+1

Then the convex hull of this set is the collection of all points of the form
d+1X
i=0

�ieb(t;Xt; E(	(Xt); ui)

If � is a relaxed control, then
Z
A

eb (t;Xt; E(	(Xt); a)�t(da) 2 Conv (P (t;Xt)), the convex

hull of P (t;Xt): Therefore it follows from Carathéodory�s Lemma (which says that the

convex hull of a d-dimensional set M coincides with the union of the convex hulls of d+1

points of M), that for each (w; t) 2 
� [0; T ] the equation g(t; �; w) = 0 admits at least
one solution. Moreover the set(
(!; �; w) 2 
� ��W :

d+1X
i=0

�ieb(t;Xt; E(	(Xt); ui) =

Z
A

eb (t; xt; E(	(xt); a)�t(da))
is measurable with respect to Ft
B(Rd+1)
B(Ad+1) with non empty !�sections for each
!.

Hence by using a selection theorem [21], there exist measurable Ft�adapted processes �t
and wt with values, respectively in � and W such that:
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Z
A

eb (t;Xt; E(	(Xt); a)�t(du) =
d+1X
i=0

�i(t)eb(t; xt; ui(t))
This implies in particular thatZ
A

b (t;Xt; E(	(Xt); a)�t(du) =
d+1X
i=0

�i(t)b(t;Xt; E(	(Xt); ui(t))Z
A

h (t;Xt; E(	(Xt); a)�t(du) =
d+1X
i=0

�i(t)h(t;Xt; E(	(Xt); ui(t))

which ends the proof.

The next corollary is important in applications. It says that under the so-called Fillipov

condition an optimal strict control exists.

Corollary 2.2.1 Assume that the set

P (t;Xt) = f(b(t;Xt; E(	(Xt); a); h(t;Xt; E(	(Xt); a)) ; a 2 Ag � Rd+1

is convex. Then the relaxed optimal control is realized by a strict control.

Proof. The proof is a direct consequence of Proposition 2.11. Indeed by mimicking the

proof of Proposition 2.11, it follows that for each relaxed control � we haveZ
A

eb (t;Xt; E(	(Xt); a)�t(da) 2 Conv (P (t;Xt))

Since P (t;Xt) is convex then Conv (P (t;Xt)) = P (t;Xt):

Then applying the same arguments, there exists a measurable Ft�adapted process u(t)
such thatZ
A

b (t;Xt; E(	(Xt); a)�t(du) = b(t;Xt; u(t))Z
A

h (t;Xt; E(	(Xt); a)�t(du) = h(t;Xt; u(t))

which implies that Xt is a solution of the MFSDE8<: dXt = b(t;Xt; E(	(Xt)); u(t))dt+ �(t;Xt; E(�(Xt))dWt

X0 = x

and J(�) = J(u): This ends the proof.
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2.3 Existence of an optimal strong control for linear

SDEs

2.3.1 Formulation of the problem

In this section, we assume that the coe¢ cients of our mean �eld SDE are linear, while

the running and �nal costs remain non linear. Moreover we assume convexity of the

instantaneous and terminal cost functions, as well as the action space A. We prove the

existence of an optimal strong control, that is a control which is adapted to the initial

�ltration. Note that for this kind of problems there is no need to use tightness techniques

and Skorokhod selection theorem. The techniques used are based on weak convergence

techniques in L2F
�
0; T;Rk

�
and Mazur�s theorem.

De�nition 2.3.1 Let A be a subset in Rd called the action space. An admissible control

is a measurable, Ft�adapted process with values on the action space A such that:

E

24 TZ
0

jutj2 dt

35 < +1 (2.24)

Let us denote Uad the space of all admissible controls which can be written as:

Uad
4
=
�
u 2 L2F

�
0; T;Rd

�
= u(t) 2 A; dt� a:e: P � a:s

	
: (2.25)

where L2F
�
0; T;Rd

�
is the space of measurable Ft�adapted processes with values in Rd:

Assume that for any ablissible control u; the state of our system is driven by the following

linear MFSDE

8<: dXt = (A:Xtdt+B:E(Xt) + C:u(t)) dt+ (A1:Xt +B1:E(Xt) + C1:u(t)) dWt

X0 = x0
(2.26)

where

� A;B;A1; B1 are d� d matrices:

� C; C1 are d� d matrices:
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The cost functional is given as follows:

J(u) = E

24 TZ
0

h(t;Xt; E (Xt) ; ut)dt+ g(XT ; E (XT ))

35 (2.27)

where

h : [0; T ]� Rd � Rd � A! R

g : Rd � Rd ! R

Let us assume the following.

(H3) The set A � Rd is convex and closed and the functions h and g are convex and for
some �; k > 0

h(t; x; y; u) � �
��u2��� k ; g(x; y) � �k; for every (t; x; y; u) 2 [0; T ]� Rd � Rd � A

(H4) The set A � Rd is convex and compact and the functions h and g are convex.

Lemma 2.3.1 For every admissible control u, equation 2.26 admits a unique strong so-

lution such that for any p � 1

E

�
sup
0�t�T

jXtjp
�
< +1: (2.28)

Proof. The coe¢ cients of equation 2.26 are linear mappings, then they are globally

Lipschitz on the state variable. Then using similar technqiues as in Proposition 2.1, they

are also Lipschitz on the marginal distribution of the state process X. Then applying [31],

Proposition 1.2, it holds that equation 2.26 has a unique strong solution, such that for any

p � 1; E
�
sup
0�t�T

jXtjp
�
< +1:

Existence of an optimal control

The following theorem could be seen as a generalization of [49]; Theorem 5.2, to systems

driven by mean-�eld stochatic di¤erential equations.

Theoreme 2.3.1 Under (H3) or (H4);if the control problem is �nite, then it admits an

optimal control.
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Proof. Suppose that the control problem is �nite ie: inf fJ(u); u 2 Uadg < +1: In

particular, this assumption is ful�lled if the running cost h(t; x; y; u) and the �nal cost

g(x; y) have linear growth with respect to (x; y):

Then 8" > 0;9u" 2 Uad, J(u") � inf fJ(u); u 2 Uadg+ "

If we take "j = 1=2j; then 9uj 2 Uad; J(uj) � inf fJ(u); u 2 Uadg+ 1=2j

It is clear that limj!+1 J(u
j) = inf fJ(u); u 2 Uadg and then a minimizing sequence exists.

By using assumption (H1) we obtain:

J(uj) = E

24 TZ
0

h(t;Xj
t ; E

�
Xj
t

�
; ujt)dt+ g(Xj

T ; E
�
Xj
T

�
)

35 � E

24 TZ
0

(�
��uj(t)��2 �K)dt�K)

35
(2.29)

Then for each j � 1

E

TZ
0

��uj(t)��2 dt � KT +K + J(uj) (2.30)

Since the sequence (J(uj)) is convergent, then sup
j
jJ(uj)j � C: This implies that

E

24 TZ
0

��uj(t)��2 dt
35 = uj2

L2F
< KT +K + C

Therefore, the sequence of admissible controls (uj) is uniformly bounded in the space

L2F
�
0; T;Rk

�
: Alternatively, if we assume (H4), then the set A is compact in Rd and the

sequence (uj) is bounded in L2F :

Then assuming either (H3) or (H4), the sequence (uj) is bounded in L2F :

This implies that under assumption (H3) or (H4); (uj) is relatively compact in L2F equipped

with the weak topology. Then there exists a subsequence, still denoted by (uj) and a

process u; such that (uj) converges weakly in L2F to u:

By Mazur�s theorem [48], Theorem 2 page 120, there exists a sequence of convex combi-

nations of (uj) which converges strongly to u:

This means that there exist real numbers (�ij), with �ij � 0;
X
i�1

�ij = 1; �ij are equal

to zero except for a �nite number, such that if we denote euj =X
i�1

�ij:ui+j; then euj ! u

strongly in L2F :
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Since A � Rd is convex and closed, then u is an admissible control belonging to Uad.
Let us denote by eXj (resp. X) the solution of the state equation 2.26, associated to

the admissible control euj (resp. u): Then, by using classical arguments, from stochastic

calculus, one can prove that

eXj �! X strongly in CF ([0; T ] ;Rn)

where

CF ([0; T ] ;Rn) =
�
X : 
� [0; T ]! Rn;Ft � adapted; continuous such that: E( sup

0�t�T
jXtj) < +1

�
Let us give the outlines of the proof.

( eXj
t �X t) =

tZ
0

�
(A( eXj

s �Xs) +B(E( eXj
s )� E(Xs)) + C(eujs � us)

�
ds

+

tZ
0

�
A1( eXj

s �Xs) +B1(E( eXj
s )� E(Xs)) + C1(eujs � us

�
dWs

(2.31)

Then�
sup
s�t

��� eXj
s �Xs

����2 �
tZ
0

kAk2
�
sup
0�v�s

���( eXj
v �Xv

����2 + kBk2� sup
0�v�s

���E( eXj
v)� E(Xv)

����2 dt
+

tZ
0

kCk2 jeujv � uvj2 dt

+sup

0@������
tZ
0

A1

� eXj
s �Xs

�
+B1

�
E( eXj

s )� E(Xs)
�
+ C1 (eujs � us) dW

������
1A2

By

applying the Burkholder-Davis-Gundy inequality to the martingale part, we obtain:

E

�
sup
s�T

��� eXj
s �Xs

���2� � C1

tZ
0

E

�
sup
u�s

��� eXj
u �Xu

���2� ds+ C2E

tZ
0

��eujs � us
��2 ds: (2.32)
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If we set f(t) = E

�
sup
s�t

��� eXj
s �Xs

���2� ; then
f(t) � C1

tZ
0

f(s)ds+ C2E

tZ
0

��eujs � us
��2 ds (2.33)

By applying Gronwall�s lemma, there exists a positive constant C such that:

E

�
sup
s�T

��� eXj
s �Xs

���2� � C:E

tZ
0

��eujs � us
��2 ds (2.34)

Since (euj) converges to u strongly in L2F ; that is lim
j!1

E

tZ
0

jeujs � usj2 = 0; we conclude that

lim
j!1

E

�
sup
s�T

��� eXj
s �Xs

���2� = 0 (2.35)

:Now, let us verify that u is an optimal control. The continuity and the convexity of the

cost functions h and g imply that

J(u) = lim
j!1

J(euj) � lim
j!1

X
i�1

�ij:J(u
i+j)

� lim
j!1

ijX
i�1

�ij:max fJ(ui+j); i = 1; :::; ijg

= lim
j!1

ijX
i=1

�ij:J(u
j0+j)

= lim
j!1

J(uj0+j) = inf
u2Uad

J(u)

(2.36)

because (uj) is a minimizing sequence. The proof is now complete.
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Chapter 3

General mean-�eld stochastic control

problems I: Existence

Abstract

This paper is concerned with optimal control problems for systems governed by mean-�eld

stochastic di¤erential equation, in which the control enters both the drift and the di¤usion

coe¢ cient. We consider the relaxed model in which admissible controls are measure valued

and the state process is governed by an orthogonal martingale measure. We prove the

existence of an optimal relaxed control. Moreover under some convexity conditions, we

show that the optimal control is realized by a strict control.

Key words: Mean-�eld stochastic di¤erential equation, relaxed control, martingale mea-

sure, approximation, tightness, weak convergence.

MSC 2010 subject classi�cations, 93E20, 60H30.

3.1 Introduction

In this part, we investigate stochastic control problems, where the state is governed by a

mean-�eld stochastic di¤erential equation and the admissible controls are relaxed controls

which are measure-valued processes.

We give a precise formulation of this kind of problems in terms of stochastic d=i¤erntial

equations driven by orthogonal martingale measures. One is tempted to relax the state

equation, by replacing simply the drift and di¤usion coe¢ cient by their relaxed couterparts
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Existence of optimal controls for genreal controlled MFSDEs

ie: the integrals of the drift and di¤usion coe¢ cient with respect to the relaxed control,

adopting the same method as in deterministic control. As it will be shown in a simple

counter example, the suggested "relaxed" state equation is not continuous with respect to

the control variable. This implies in particular that the value functions for the original and

relaxed problems are not the same. In addition, there is no mean to prove the existence

of an optimal control for this model. The fundamental reason is that one has to relax

the quadratic variation of the stochastic integral part of the state equation, which is a

Lebesgue integral, rather than the stochastic integral itself. Roughly speaking, the idea is

to relax the generator of the process, which is intimately linked to the weak solutions of

the relaxed stochastic equation, rather than the equation itself. As it will be shown, the

stochastic equation associated with the relaxed generator will be governed by a continuous

orthogonal martingale measure, rather than a Brownian motion. For this model, we prove

that the strict and relaxed control problems have the same value function and that an

optimal relaxed control exists. Our result extends in particular [3, 21, 39] to mean �eld

controls. The proof is based on tightness properties of the underlying processes and

Skorokhod selection theorem. Moreover, due to the compactness of the action space, we

show that the relaxed control could be choosen among the so-called sliding controls, which

are convex combinations of Dirac measures. As a consequence and under the so-called

Fillipov convexity condition, the optimal relaxed control is shown to be strict.

Mean-�eld stochastic di¤erential equations are obtained as limits of some interacting par-

ticle systems. This kind of approximation result is called "propagation of chaos", which

says that when the number of particles tends to in�nity, the equations de�ning the evo-

lution of the particles could be replaced by a single equation, called the McKean-Vlasov

equation. This mean-�eld equation, represents in some sense the average behavior of the

in�nite number of particles, see [43, 31] for details.

Since the earlier papers [34], [28], mean-�eld control theory has raised a lot of interest, mo-

tivated by applications to various �elds such as game theory, mathematical �nance, com-

munications networks, management of oil ressources. The main drawback, when dealing

with mean-�eld stochastic control problems, is that the Bellmann principle of optimality

does not hold. For this kind of problems, the stochastic maximum principle, provides a

powerful tool to solve them, see [2, 11, 15, 17, 19, 35]. One can refer also to the recent

book [10] and the references therein.
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3.2 Existence of optimal relaxed controls

3.2.1 Controlled mean �eld stochastic di¤erential equations

Let (Wt) is a d-dimensional Brownian motion, de�ned on a probability space (
;F ; P );
endowed with a �ltration (Ft) ; satisfying the usual conditions. Let A be some compact
metric space called the control set.

We study the existence of optimal controls for systems driven non linear mean-�eld sto-

chastic di¤erential equations (MFSDE in short) of the form:8<: dXt = b(t;Xt; E(	(Xt)); ut)dt+ �(t;Xt; E(�(Xt); ut)dWt

X0 = x:
(3.1)

The cost functional over the time interval [0; T ] is given by

J(u) = E

0@ TZ
0

h(t;Xt; E('(Xt); ut

1A dt+ g(XT ; E�(XT )); (3.2)

where b; �; l; h, g and  are given functions. The control variable ut called a strict control,

is a measurable, Ft� adapted process with values in the action space A. We denote Uad
the space of strict controls. Let us point out that the probability space and Brownian

motion may change with the control u:

The objective is to minimize the cost functional J(u) over the space Uad ie: �nd u� 2 Uad
such that J(u�) = inf fJ(u�); u 2 Uadg :
The following assumptions will be in force throughout this paper.

(H1) Assume that

b : [0; T ]� Rd � Rd � A �! Rd

� : [0; T ]� Rd � Rd � A �! Rd 
 Rd

	 : Rd �! Rd;� : Rd �! Rd
(3.3)

are bounded continuous functions such that b(t; :; :; a); �(t; :; :; a);	(:) and �(:) are Lip-

schitz continuous, uniformly in (t; a).

(H2) Assume that
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h : [0; T ]� Rd � Rd � A �! R

g : Rd � Rd �! R

' : Rd �! Rd

� : Rd �! Rd

(3.4)

are bounded continuous functions and h(t; :; :; a) is Lipschiz continuous uniformly in (t; a).

Proposition 3.2.1 Under assumption (H1) the MFSDE (3.1) has a unique strong solu-

tion, such that for each p > 0 we have E(jXtjp) < +1:

Proof. Let us de�ne b(t; x; �; a) and �(t; x; �; a) on [0; T ]�Rd�M1(Rd)�A by b(t; x; �; a) =
b(t; x;

Z
	(x)d�(x); a) and �(t; x; �; a) = �(t; x;

Z
�(x)d�(x); a); where M1(Rd) denotes

the space of probability measures in Rd: According to [31] Prop.1.2, it is su¢ cient to

check that b and � are Lipschitz in (x; �) where M1(Rd) is equipped with the Wasser-

stein metric d (�; �) = inf
n�
EQ jX � Y j2

�1=2
;Q 2M1(Rd � Rd); with marginals �; �

o
:

This follows from the Lipschitz continuity of b and � with respect to (x; y):

Using similar techniques as in [31] Prop.1.2, it holds that for each p > 0, E(jXtjp) < +1:

3.2.2 The relaxed control problem

As it is well known in control theory, in the absence of convexity conditions, an optimal

control may fail to exist in the set Uad of strict controls (see e.g. [23, 36, 44]). This suggests
that the set of strict controls is too narrow and should be embedded into a wider class of

relaxed controls, with nice compactness properties. For the relaxed model, to be a true

extension of the original control problem, must satisfy the following two conditions:

i) The value functions of the original and the relaxed control problems must be equal.

ii) The relaxed control problem must have an optimal solution.

The idea of relaxed control is to replace the A-valued process (ut) with a M1(A)-valued

process (�t), whereM1(A) is the space of probability measures equipped with the topology

of weak convergence. Then (�t) may be identi�ed as a random product measure on

[0; T ]� A, whose projection on [0; T ] coincides with Lebesgue measure.
Let V be the set of product measures � on [0; T ]�A whose projection on [0; T ] coincides
with the Lebesgue measure dt. It is clear that every � in V may be disintegrated as
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� = dt:�t(da), where �t(da) is a transition probability. The elements of V are called

Young measures in deterministic theory, see [44].

V as a closed subspace of the space of positive Radon measuresM+([0; T ]�A); is compact
for the topology of weak convergence. In fact it can be proved that it is compact also for the

topology of stable convergence, where test functions are measurable, bounded functions

f(t; a) continous in a; see [21, 30] for further details.

De�nition 3.2.1 A relaxed control on the �ltered probability space (
;F ;Ft; P ) is a ran-
dom variable � = dt:�t(da) with values in V, such that �t(da) is progressively measurable

with respect to (Ft) and such that for each t, 1(0;t]:� is Ft�measurable.

Remark 3.2.1 The set Uad of strict controls is embedded into the set of relaxed controls
by identifying ut with dt�ut(da):

Discussion on the relaxation of the state process

A natural question arises: what is the natural SDE associated with a relaxed control. Note

that in the deterministic case or in the stochastic case where only the drift is controlled,

one has just to replace in equation 3.1 the drift by the same drift integrated against the

relaxed control. Now we are in a situation where both the drift and di¤usion coe¢ cient

are controlled. Let us try a direct relaxation of the original equation. The "relaxed"

control problem will be governed by the MFSDE8>><>>:
dXt =

Z
A

b(t;Xt; E(	(Xt)); a)�t(da)dt+

Z
A

�(t;Xt; E(	(Xt)); a)�t(da)dWt

X0 = x

As it will be shown in the sequel, this model does not full�ll the requirements of a true

relaxed model. The reason is that the relaxed process is not continuous in the control

variable and as a consequence, the value functions of the original and relaxed control

problems are not equal. Let us consider the following example. Consider a control problem

governed by the following SDE without mean-�eld terms:8<: dXt = ut.dWt

X0 = x
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where the control u 2 Uad : the set of measurable functions u : [0; 1]! [�1; 1] :
The "relaxed" model will be governed by the equation8<: dXt =

Z
A

a�t(da)dWt

X0 = x

Consider the sequence of Rademacher functions

un(t) = (�1)k if kn � t � (k+1)
n
, 0 � k � n� 1:

Lemma 3.2.1 Let dt:�un(t)(da) the relaxed control associated to un(t); then the sequence�
dt:�un(t)(da)

�
converges weakly to dt(1=2)(��1 + �1)(da):

Proof. See [36] Lemma 1.1, page 20

Remark 3.2.2 The sequence Rademacher functions is a typical example of a minimising

sequence with no limit in the set of stric controls. However its weak limit dt(1=2)(��1 +

�1)(da) is an optimal relaxed control [36, 44].

It is clear that Xn
t =

tZ
0

un(s).dWs =

tZ
0

�Z
A

a�un(s)(da)

�
dWs is a continuous martingale

with quadratic variation hXn; Xnit =
tZ
0

u2n(s).ds = t: Therefore (Xn
t ) is a Brownian

motion.

By Lemma 2.4, the sequence of relaxed controls dt:�un(t)(da) converges weakly inM+([0; T ]�
A) to �� = (1=2)dt(��1 + �1)(da): Let X� be the relaxed state process corresponding to

the limit ��; then

X�(t) =

tZ
0

Z
A

a:(1=2)(��1 + �1)(da)dWt = 0:

It is obvious that the sequence of state processes (Xn
t ) cannot converge in any way to X

�
t :

Indeed

E
�
jXn

t �X�
t j
2� = E

�
jXn

t j
2� = E

24������
tZ
0

un(s):dWs

������
235 = tZ

0

u2n(s).ds = t
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This implies in particular that the state process is not continuous in the control variable

and as a byproduct, the value functions of the strict and "relaxed" control problems are

not equal. Moreover, even if the set V is compact, there is no mean to prove existence of

an optimal control for this model.

What is the right relaxed state process?

The reason why the proposed model is not a true extension of the original strict control

problems, is that the stochastic integral part does not behave as a Lebesgue integral. In

fact, one should relax the drift and the quadratic variation of the martingale part, which

is a Lebesgue integral.

In the relaxed model, the quadratic variation process must be

tZ
0

Z
A

���(t;Xt; E(�(Xt); a)�t(da)dt;

which is more natural than relaxing the stochastic integral itself. Now, one has to look for a

square integrable martingale whose quadratic variation is given by

tZ
0

Z
A

���(t;Xt; E(�(Xt); a)�t(da)dt;

which is equivalent to the search of an object which is a martingale whose quadratic varia-

tion is dt�t(da): This object is an orthogonal martingale measure whose covariance measure

is dt�t(da): This is equivalent to the relaxation of the in�nitesimal generator associated

to the state process.

Following [31] Prop. 1.10, existence of a weak solution of equation 3.1 is equivalent to

existence of a solution for the non linear martingale problem:

f(Xt)� f(X0)�
tR
0

LPXsf(s;Xs; us) ds is a P�martingale;

for every f 2 C2b ; for each t > 0; where L is the in�nitesimal generator associated with

equation 3.1,

L�f(t; x; a) =
1

2

X
i;j

�
ai;j

@2f

@xi@xj

�
(t; x; a) +

X
i

�
bi
@f

@xi

�
(t; x; a);

b = b(t; x; h	; �i ; a) and ai;j = ���(t; x; h�; �i ; a); � 2M1(Rd):

The natural relaxed martingale problem associated to the relaxed generator is de�ned as

follows:
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f(Xt)� f(X0)�
tZ
0

Z
A

LPXsf(s;Xs; a)�s(da)ds is a P �martingale (3.5)

for each f 2 C2b ; for each t > 0:
Now, what is the stochastic di¤erential equation corresponding to the relaxed martingale

problem 4.5? The answer is given by the following theorem.

Theoreme 3.2.1 1)Let P be the solution of the martingale problem 4.5. Then P is the

law of a d�dimensional adapted and continuous process X de�ned on an extension of the

space (
;F ;Ft; P ) and solution of the following MFSDE starting at x:

8<: dX t=
R
A b(t ;X t;E (	 (Xt)) a)�t(da)dt+

R
A �(t ;X t;E (�(Xt); a)M (da; dt);

X0 = x
(3.6)

where M = (Mk)dk=1 is a family of d-strongly orthogonal continuous martingale measures,

each having intensity dt�t(da):

2) If the coe¢ cients b and � are Lipschitz in x, y, uniformly in t and a, the SDE (2.6 )

has a unique pathwise solution.

Proof. 1) The proof is based essentially on the same arguments as in [20] Theorem IV-2

and [31] Prop. 1.10.

2) The coe¢ cients being Lipschitz continuous, following the same steps as in [31] and [20],

it is not di¢ cult to prove that Equation 3.6 has a unique solution such that for each p > 0

we have E(jXtjp) < +1:

Remark 3.2.3 Note that the othogonal martingale measure corresponding to the relaxed

control dt�t(da) is not unique.

Let us give the precise de�nition of a martingale measure introduced by Walsh [45], see

also [20, 37] for more details.

De�nition 3.2.2 Let (
;F ;Ft; P ) be a �ltered probability space, and M(t; B) a random
process, where B 2 B (A) : M is a (Ft; P )�martingale measure if:
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1)For each B 2 B (A) ; (M(t; B))t�0 is a square integrable martingale, M(0; B) = 0.
2)For every t > 0, M(t; :) is a ���nite L2-valued measure.
It is called continuous if for each B 2 B (A) ; M(t; B) is continuous and orthogonal if
M(t; B):M(t; C) is a martingale whenever B \ C = �:

Remark 3.2.4 When the martingale measure M is orthogonal, it is proved in [45] the ex-

istence of a random positive �-�nite measure � (dt; da) on [0; T ]�A such that hM(:; B);M(:; B)it =
� ([0; t]�B) for all t > 0 and B 2 B (A) : � (dt; da) is called the covariance measure of
M .

Example Let A = fa1; a2; � � � ; ang be a �nite set. Then every relaxed control dt �t(da)
will be a convex combination of the Dirac measures dt �t(da) =

Pn
i=1 �

i
t dt �ai(da); where

for each i, �it is a real�valued process such that 0 � �it � 1 and
Pn

i=1 �
i
t = 1. It is obvious

that the solution of the relaxed martingale problem 4.5 is the law of the solution of the

SDE

dXt =
nX
i=1

b(t;Xt; E (	 (Xt)) ; ai)�
i
tdt+

nX
i=1

�(t;Xt; E (	 (Xt)) ; ai)
�
�it
�1=2

dBi
s; X0 = x;

(3.7)

where the Bi�s are independant d-dimensional Brownian motions, on an extension of the

initial probability space. The process M de�ned by

M(A� [0; t]) =
nX
i=1

tZ
0

�
�is
�1=2

1fai2AgdB
i
s

is in fact an orthogonal continuous martingale measure (cf. [21, 45]) with intensity

�t(da)dt =
P
�it �ai(da)dt. Thus, the SDE 4.7 can be expressed in terms of M and �

as follows:

dX t=

Z
A
b(t ;X t;E (	 (Xt)) a)�t(da)dt+

Z
A
�(t ;X t;E (�(Xt); a)M (da; dt)

Approximation of the relaxed model

The relaxed control problem is now driven by equation
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8<: dX t=
R
A b(t ;X t;E (	 (Xt)) a)�t(da)dt+

R
A �(t ;X t;E (�(Xt); a)M (da; dt);

X0 = x
(3.8)

and accordingly the relaxed cost functional is given by

J(�) = E

0@ TZ
0

Z
A

h(t;Xt; E('(Xt); a)�t(da)dt+ g(XT ; E�(XT )

1A : (3.9)

We show in this section that the strict and the relaxed control problems have the same

value function. This is based on the chattering lemma and the stability of the state process

with respect to the control variable.

Lemma 3.2.2 (Chattering lemma) i) Let (�t) be a relaxed control: Then there exists a

sequence of adapted processes (unt ) with values in A, such that the sequence of random

measures
�
�unt (da) dt

�
converges in V to �t(da) dt; P � a:s:

ii) For any g continuous in [0; T ]�M1(A) such that g(t; :) is linear, we have P � a:s

lim
n!+1

tZ
0

g(s; �uns )ds =

tZ
0

g(s; �s)ds uniformly in t 2 [0; T ] : (3.10)

Proof. See [21] and [23] Lemma 1 page 152.

Proposition 3.2.2 1) Let � = �t(da) dt a relaxed control. Then there exist a continuous

orthogonal martingale measure M(dt; da) whose covariance measure is given by �t(da) dt:

2) If we denote Mn(t; B) =
R t
0

R
B
�uns (da)dWs; where (un) is de�ned as in the last Lemma,

then for every bounded predictable process ' : 
 � [0; T ] � A ! R, such that '(!; t; :) is

continuous; we have

E

��R t
0

R
A '(!; t; a)M

n(dt; da)�
R t
0

R
A '(!; t; a)M(dt; da)

�2�
! 0 as n �! +1;

Proof. See [37] page 18.

Proposition 3.2.3 1) Let Xt; X
n
t be the solutions of state equation (3.6) corresponding

to � and un; where � and un are de�ned as in the chattering lemma. Then

lim
n!1

E

�
sup
0�t�T

jXn
t �Xtj2

�
= 0: (3.11)
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2) Let J(un) and J(�) the expected costs corresponding respectively to un and �: Then

there exists a subsequence (unk) of (un) such that J (unk) converges to J (�) :

Proof. 1)Let � a relaxed control and
�
dt�unt (da)

�
the sequence of atomic measures asso-

ciated to the sequence of strict controls (un) ; as in the last Lemma. Let Xt; X
n
t the corre-

sponding state processes. If we denoteMn(t; B) =
R t
0

R
B
�uns (da)dWs; thenXn may be writ-

ten in a relaxed form

8>><>>:
dXn

t =

Z
A

b(t;Xn
t ; E(	(X

n
t )); a)�unt (da)dt+

Z
A

�(t;Xt; E(�(Xt)); a)M
n(dt; da)

X0 = x

We have

jXt �Xn
t j �

���R t0 RA b (s;Xs; E(	(Xt); u)�s(du):ds�
R t
0

R
A
b (s;Xn

s ; E(	(X
n
s ); u) �uns (da)ds

���
+
���R t0 RA � (s;Xs; E(�(Xt); a)M(ds; da)�

R t
0

R
A
� (s;Xn

s ; E(�(X
n
s ); a)M

n(ds; da)
���

�
���R t0 RA b (s;Xs; E(	(Xt); u)�s(du):ds�

R t
0

R
A
b (s;Xs; E(	(Xs); u) �uns (da)ds

���
+
���R t0 RA b (s;Xs; E(	(Xt); u) �uns (da):ds�

R t
0

R
A
b (s;Xn

s ; E(	(X
n
s ); u) �uns (da)ds

���
+sup
s�t

���R s0 RA � (v;Xv; E(�(Xv); a)M(dv; da)�
R t
0

R
A
� (v;Xv; E(�(Xv); a)M

n(dv; da)
���

+sup
s�t

���R s0 RA � (v;Xv; E(�(Xv))M
n(dv; da)�

R t
0

R
A
� (v;Xn

v ; E(�(X
n
v ))M

n(dv; da)
���

Then by using Burkholder-Davis-Gundy inequality for the martingale part and the fact

that all the functions in equation ( 3.6) are Lipschitz continuous, it holds that

E

�
sup
0�t�T

jXt �Xn
t j
2

�
� K

�Z T

0

E

�
sup
0�s�t

jXs �Xn
s j
2

�
dt+ "n

�
(3.12)

where K is a nonnegative constant and

"n = E

 
sup
0�t�T

����Z t

0

Z
A

b (s;Xs; E(	(Xt); u)�s(da):ds�
Z t

0

Z
A

b (s;Xs; E(	(Xs); a) �uns (da)ds

����2
!

(3.13)

+ E

 
sup
0�t�T

����Z t

0

Z
A

� (s;Xs; E(	(Xt); a)�s(da):ds�
Z t

0

Z
A

� (s;Xs; E(	(Xs); a) �uns (da)ds

����2
!

(3.14)

By using the chattering lemma and the Lebesgue dominated convergence theorem, it holds

that lim
n!+1

"n = 0: We conclude by using Gronwall�s Lemma.
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2) Property 1) implies that the sequence (Xn
t ) converges to Xt in probability uniformly in

t; then there exists a subsequence (Xnk
t ) which converges to Xt; P -a:s uniformly in t:We

have

jJ (unk)� J (�)j � E

�
TR
0

R
A
jh(t;Xnk

t ; E('(Xn
t ); a)� h(t;Xt; E('(Xt); a)j �unkt (da) dt

�
+E

����� TR
0

R
A
h(t;Xt; E('(Xt); a)�unkt (da) dt�

TR
0

R
A
h(t;Xt; E('(Xt); a)�t(da) dt

�����
+E [jg(Xnk

T ; E(�(Xnk
T ))� g(XT ; E(�(XT ))j]

It follows from the continuity and boundness of the functions h, g, ' and � with respect

to x and y; that the �rst and third terms in the right hand side converge to 0 . The

second term in the right hand side tends to 0 by the weak convergence of the sequence

�n to �; the continuity and the boundness of h in the variable a. We use the dominated

convergence theorem to conclude.

Remark 3.2.5 As a consequence of the last proposition, it holds that the in�mum among

relaxed controls is equal to the in�mum among strict controls, that is the relaxed model is

a true extension of the original control problem.

3.2.3 Existence of optimal relaxed controls

The following theorem which is the main result of this section, extends [3, 21, 23] to

systems driven by mean �eld SDEs with controlled di¤usion coe¢ cient.

Theoreme 3.2.2 Under assumptions (H1), (H2), there exist an optimal relaxed control.

The proof is based on some auxiliary Lemmas and will be given later.

Let (�n)n�0 be a minimizing sequence, that is limn!1
J (�n) = inf

q2R
J (�) and let Xn be the

unique solution of 3.6, associated with �n: We will prove that the sequence (�n;Mn; Xn)

is tight and then show that we can extract a subsequence, which converges in law to a

process (b�;cW; bX); which satis�es the same MFSDE. To �nish the proof we show that the
sequence of cost functionals (J(�n))n converges to J(b�) which is equal to inf

�2R
J (�) and

then conclude that (b�;cM; bX) is optimal.
Lemma 3.2.3 The sequence of distributions of the relaxed controls (�n)n is relatively

compact in V.
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Proof. The relaxed controls �n are random variables on the space V which is compact.

Then Prohorov�s theorem yields that the family of distributions associated to (�n)n�0 is

tight then it is relatively compact.

Lemma 3.2.4 The family of martingale measures (Mn)n�0 is tight in the space C ([0; 1] ;S 0)
of continuous functions from [0; 1] into S 0; the topological dual of the Schwartz space S of
rapidly decreasing functions:

Proof. The martingale measures Mn; n � 0; can be considered as random variables with
values in C ([0; 1] ;S 0) (see [40]). By [40], Lemma 6.3, it is su¢ cient to show that for

every ' in S the family (Mn (') ; n � 0) is tight in C
�
[0; T ] ;Rd

�
where Mn (!; t; ') =R

A '(a)M
n(!; t; da): Let p > 1 and s < t, by the Burkholder-Davis-Gundy inequality we

have

E
�
jMn

t (')�Mn
s (')j

2p� � CpE

240@ tZ
s

Z
A
j'(a)j2 �nt (da) dt

1Ap35
� Cpsup

a2A
j'(a)j2p jt� sjp = Kp jt� sjp ;

where Kp is a constant depending only on p. Then, the Kolmogorov tightness criteria in

C
�
[0; T ] ;Rd

�
is ful�lled and the sequence (Mn (')) is tight.

Lemma 3.2.5 The sequence (Xn)n�0 is tight in the space C
�
[0; T ] ;Rd

�
Proof. Let p > 1 and s < t. Using usual arguments from stochastic calculus and the

boundness of the coe¢ cients b and �; it is easy to show that

E
�
jXn

t �Xn
s j
2p� � Cp jt� sjp

which yields the tightness of (Xn
t ; n � 0) in C

�
[0; T ] ;Rd

�
.

Proof. of Theorem 2.14. By using Lemmas 2.15, 2.16 and 2.17, it holds that the se-

quence of processes (�n;Mn; Xn) is tight on the space � = V�C ([0; 1] ;S 0)�C
�
[0; T ] ;Rd

�
.

Then by the Skorokhod representation theorem, there exists a probability space
�b
; bF ; bP�,

a sequence bn = �b�n;dMn; cXn
�
and b = �b�;cM; bX� de�ned on this space such that:

(i) for each n 2 N, law(n) = law(bn),
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(ii) there exists a subsequence (bnk) of (bn), still denoted by (bn), which converges tob; bP -a:s. on the space �:
This means in particular that the sequence of relaxed controls (b�n) converges in the weak
topology to b�; bP � a:s: and

�dMn; cXn
�
converges to

�cM; bX� ; bP � a:s:in C ([0; 1] ;S 0) �
C
�
[0; T ] ;Rd

�
.

According to property (i), we get

8>><>>:
cXn
t = x+

R t
0

R
A
b
�
s; cXn

s ; E(	(
cXn
s ); a

� b�ns (da)ds+ R t0 RA � �s; cXn
s ; E(�(

cXn
s ); a

�dMn(ds; da);cXn
0 = x:

(3.15)

The coe¢ cients b; �; 	 and � being Lipschitz continuous in (x; y);then according to

property (ii) and using similar arguments as in [42] page 32, it holds that

Z t

0

Z
A

b
�
s; cXn

s ; E(	(
cXn
s ); a

� b�ns (da)ds converges in probability to Z t

0

Z
A

b
�
s;cXs; E(	(cXs); a

� b�s(da)ds
andZ t

0

Z
A

�
�
s; cXn

s ; E(�(cXn
s ); a

�dMn(ds; da) converges in probability to
Z t

0

Z
A

�
�
s;cXs; E(�(cXs); a

� cM(ds; da):
b and � being Lipschitz continuous, then bX is the unique solution of the MFSDE8<: X t = x+

R t
0

R
A
b
�
s;cXs; E(	(cXs); a

� b�s(da)ds+ R t0 RA � �s;cXs; E(�(cXs); a
� cM(ds; da);

X
n

0 = x:

(3.16)

55



Existence of optimal controls for genreal controlled MFSDEs

To �nish the proof of Theorem 2.14, it remains to check that b� is an optimal con-

trol.According to above properties (i)-(ii) and assumption (H2), we have

inf
�2R

J (�) = lim
n!1

J (�n) ;

= lim
n!1

E

24 TZ
0

Z
A

h(t;Xn
t ; E('(X

n
t ); a)�

n
t (da)dt+ g(Xn

T ; E�(X
n
T ))

35
= lim

n!1
bE
24 TZ
0

Z
A

h
�
t; cXn

t ; E('(cXn
t ); a

� b�nt (da)dt+ g(cXn
T ; E�(

cXn
T ))

35
= bE

24 TZ
0

Z
A

h
�
t;cXt; E('(cXt); a

� b�t(da)dt+ g(cXT ; E�(cXT ))

35 :
Hence b� is an optimal control.
Remark 3.2.6 The proof of the last Theorem is based on tightness and weak convergence

techniques. Then it is possible to prove it by using the non linear martingale problem

and following the same steps as in [21] without using the pathwise representation of the

solution.

We prove that in the next proposition that we can restrict the investigation for an optimal

relaxed control to the class of so-called sliding controls also known as chattering controls,

having the form

�t =

pX
i=1

�i(t)�ui(t)(da); ui(t) 2 A; �i(t) � 0 and
pX
i=1

�i(t) = 1: (3.17)

where �i(t) and ui(t) are adapted stochastic processes.

Proposition 3.2.4 Let � be a relaxed control and X the corresponding state process.

Then one can choose a sliding control

�t =

pX
i=1

�i(t)�ui(t)(da); ui(t) 2 A; �i(t) � 0 and
pX
i=1

�i(t) = 1 (3.18)

such that
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1) X is a solution of the controlled MFSDE8>><>>:
dXt =

pX
i=1

�i(t)b(t;Xt; E(	(Xt)); ui(t))dt+

pX
i=1

�i(t)
1=2�(t;Xt; E(�(Xt); ui(t))dW

i
t

X0 = x

(3.19)

where (W i) are independant Brownian motions de�ned on an extension of the probability

space..

2) J(�) = J(�):

Proof. Let � denote the d+ d2 + 1-dimensional simplex

� =

(
� = (�0; �1; :::; �d+d2+1) ; �i � 0;

d+d2+1X
i=0

�i = 1

)
andW the (d+d2+2)-cartesian product of the setAW = fw = (u0; u1; :::; ud+d2+1) ; ui 2 Ag
De�ne the function

g(t; �; w) =
d+d2+1X
i=0

�ieb(t;Xt; E(	(Xt); ui)�
Z
A

eb (t;Xt; E(	(Xt); a)�t(da)

where t 2 [0; T ] ; � 2 �; w 2 W and eb(t;Xt; E(	(Xt); ui) =

0BB@
b(t;Xt; E(	(Xt); ui)

���(t;Xt; E(�(Xt); ui)

h(t; xt; E('(Xt); ui)

1CCA
Let eb(t;Xt; E(	(Xt); ui); i = 0; 1; :::; d + d2 + 1; be the subset of (d + 1) arbitrary points

in P (t;Xt) where

P (t;Xt) = f(b(t;Xt; E(	(Xt); a); ��
�(t;Xt; E(�(Xt); ui); h(t;Xt; E(	(Xt); a)) ; a 2 Ag �

Rd+d2+1

Then the convex hull of this set is the collection of all points of the form
d+d2+1X
i=0

�ieb(t;Xt; E(	(Xt); ui)

If � is a relaxed control, then
Z
A

eb (t;Xt; E(	(Xt); a)�t(da) 2 Conv (P (t;Xt)), the convex

hull of P (t;Xt): Therefore it follows from Carathéodory�s Lemma (which says that the

convex hull of a d-dimensional set M coincides with the union of the convex hulls of d+1

points of M), that for each (!; t) 2 
 � [0; T ] the equation g(t; �; !) = 0 admits at least
one solution. Moreover the set(
(!; �; w) 2 
� ��W :

d+d2+1X
i=0

�ieb(t;Xt; E(	(Xt); ui) =

Z
A

eb (t; xt; E(	(xt); a)�t(da))
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is measurable with respect to Ft
B(Rd+1)
B(Ad+1) with non empty !�sections for each
!.

Hence by using a measurable selection theorem [21], there exist measurable Ft�adapted
processes �t and wt with values, respectively in � and W such that:Z
A

eb (t;Xt; E(	(Xt); a)�t(du) =

d+d2+1X
i=0

�i(t)eb(t; xt; ui(t)):
Then it is easy to verify that the process de�ned by its drift

d+d2+1X
i=0

�i(t)b(t;Xt; E(	(Xt); ui(t))

and its quadratic variation
d+d2+1X
i=0

�i(t)��
�(t;Xt; E(	(Xt); ui(t)) is the solution of the MFSDE

3.19, de�ned (possibly on an extension of the initial probability space because of the pos-

sible degeneracy of the matrix ���).

Corollary 3.2.1 Assume that the set

P (t;Xt) = f(b(t;Xt; E(	(Xt); a); h(t;Xt; E(	(Xt); a)) ; a 2 Ag � Rd+d
2+1

is convex. Then the relaxed optimal control is realized by a strict control.

Proof. Using Proposition 2.18, it follows that for each relaxed control � we haveZ
A

eb (t;Xt; E(	(Xt); a)�t(da) 2 Conv (P (t;Xt))

Since P (t;Xt) is convex then Conv (P (t;Xt)) = P (t;Xt): Then applying the same argu-

ments as in Prop. 2.18, there exists a measurable Ft�adapted process ut such thatZ
A

eb (t;Xt; E(	(Xt); a)�t(du) = eb(t;Xt; ut)

which implies that Xt is a solution of the MFSDE8<: dXt = b(t;Xt; E(	(Xt)); ut)dt+ �(t;Xt; E(�(Xt); ut)dWt

X0 = x

and J(�) = J(u): This ends the proof.

3.3 Conclusion

We have proved existence of an optimal relaxed control, for mean-�eld stochastic control

problems, where both the drift and di¤usion coe¢ cient are controlled. The natural sto-

chastic equation corresponding to a relaxed control is a stochastic equation driven by an

orthogonal martingale measure. As we have proved in a counter-example, replacing the
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drift and di¤usion coe¢ cient by their relaxed counterparts in the relaxed equation, does

not lead to a true extension of the original problem. In fact, the case where the di¤usion

coe¢ cient is controlled is not a direct extension of the deterministic case and re�ects the

stochastic nature of the problem.
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Chapter 4

General mean-�eld stochastic control

problems II: the relaxed maximum

principle

Abstract

We consider optimal control problems for systems governed by mean-�eld stochastic dif-

ferential equation, where the control enters both the drift and the di¤usion coe¢ cient. We

consider the relaxed model, in which admissible controls are measure-valued processes and

the natural relaxed state process is governed by stochastic di¤erential equation driven by

an orthogonal martingale measure, whose covariance measure is the relaxed control.We es-

tablish optimality necessary conditions, in terms of two adjoint processes extending Peng�s

maximum principle.

Key words: Mean-�eld stochastic di¤erential equation, relaxed control, martingale mea-

sure,

adjoint process, stochastic maximum principle, variational principle.

MSC 2010 subject classi�cations, 93E20, 60H30.

4.1 Introduction

We consider mean-�eld control problems, where the state process is governed by a mean-

�eld stochastic di¤erential equation (MFSDE in short). In these equations the drift and
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di¤usion coe¢ cient are controlled and depend not only on the state but also on the distri-

bution of the state. The present paper is the natural continuation of [7], in which we have

proved the existence of an optimal solution for the relaxed model. We refer also to [6] for

the case where only the drift is controlled. The relaxed control problem is a natural exten-

sion of the original problem, in the sense that they have the same value function. Moreover

admissible controls are measure valued processes and the state process is governed by a

MFSDE, driven by an orthogonal martingale measure. In the present article, we establish

necessary conditions for optimality in the form of a relaxed stochastic maximum princi-

ple, obtained via the �rst and second order adjoint processes, extending Peng�s maximum

principle [41] to mean �eld control problems and [11] to relaxed controls. The advantage

of our result is that the maximum pinciple applies to a natural class of controls, which

is the closure of the class of strict controls, for which we know that an optimal control

exists. The proof of the main result is based on the approximation of the relaxed control

problem by a sequence of strict control problems. Then Ekeland�s variational principle is

applied to get necessary conditions of near-optimality for the sequence of nearly optimal

strict controls. The result is obtained by a passage to the limit in the state equation as

well as in the adjoint processes. The resulting �rst and second order adjoint processes

are solutions of linear backward SDEs driven by a Brownian motion and an orthogonal

square integrable martingale. The other advantage of our result is that it is given via an

approximation procedure, so that it could be convenient for numerical computation.

Note that in [16] (A. Chala, The relaxed optimal control problem for Mean-Field SDEs

systems and application, Automatica 50 (2014) 924�930), the author has addressed the

same problem and obtained a maximum principle by using only the �rst order adjoint

process. In the case where the optimal control is a strict control and there are no mean-

�eld terms, this result seems to improve fundamentally Peng�s maximum principle [41],

obtained earlier with two adjoint processes. But there are many counter-examples (see [49];

page 117), for which the �rst order adjoint process only, is not su¢ cient to get necessary

conditions. In fact, the "relaxed" model considered in [16], even if it seems natural, does

not ful�ll the minimal requirements of a true extension of the original problem. As it was

proved in [7] by a simple counter example, the "relaxed" state process considered is not

continuous in the control variable and as a byproduct, the original and relaxed control

problems are not equivalent. In fact the problem lies in the type of relaxation itself. The
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author has established a stochastic maximum principle for a problem where admissible

controls are measure valued and the coe¢ cients are linear in the control variable, in the

same convex framework, as in Bensoussan [9]. Therefore it is not surprising that the

resulting maximum principle is given via only the �rst order adjoint process. However,

this problem cannot, in any case, be considered as the relaxed model for the original

control problem.

Mean-�eld stochastic di¤erential equations describe limits of interacting particle systems,

as the number of particles tends to in�nity. This property which is called "propagation of

chaos", says that all the limiting particles are independent and satisfy the same MFSDE,

called the Mc Kean-Vlasov equation. It represents the average behavior of the in�nite num-

ber of particles, see [43, 31] for details. Since the pioneering papers [34], [28], mean-�eld

control theory has interested many researchers, motivated by applications to various �elds

such as game theory, mathematical �nance, communications networks and management of

oil ressources [1, 10, 15]. It should be pointed out that the Bellmann optimality principle

does not hold for mean-�eld stochastic control problems. For this kind of problems, the

stochastic maximum principle, provides a powerful tool, see [2, 11, 17, 19, 35, 38, 47]. For

classical control problems, the stochastic maximum principle has been investigated �rst by

Kushner [32], then by Haussmann [24] for feed-back controls by using Girsanov theorem.

The case of controlled di¤usion coe¢ cient has been treated by Bensoussan [9], by making

convex perturbations and obtained a weak maximum principle, by using only the �rst

order adjoint process. The general non convex case has been solved by Peng [41], in the

framework of the modern theory of backward stochastic di¤erntial equations (BSDEs).

It should be pointed out that Peng�s maximum principle was obtained via the �rst and

second order adjoint processes. Relaxed classical control problems have been investigated

in [3, 39].We refer to the book by Yong and Zhou [49] for a systematic study of the suject

and a complete list of references.

4.2 Assumptions and preliminaries

Let (
;F ; P ) be a probability space; equipped with a �ltration (Ft) ; satisfying the usual
conditions and (Wt) a (Ft; P )�Brownian motion. Let A be some compact metric space
called the action space. A strict control (ut) is a measurable, Ft� adapted process with
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values in the action space A. We denote Uad the space of strict controls.
The state process corresponding to a strict control is the unique solution, of the mean-�eld

stochastic di¤erential equations (MFSDE)8<: dXt = b(t;Xt; E(Xt); ut)dt+ �(t;Xt; E(Xt); ut)dWt

X0 = x:
(4.1)

The cost functional associated to a strict control u is given by

J(u) = E

0@ TZ
0

h(t;Xt; E(Xt); ut

1A dt+ g(XT ; E(XT )): (4.2)

The coe¢ cients in the state equation as well as in the cost functional are of mean-�eld

type, in the sense that they depend not only on the state process, but also on its marginal

law through its expectation.

The objective is to minimize J(u) over the space Uad , that is �nd u� 2 Uad such that
J(u�) = inf fJ(u�); u 2 Uadg :
The following assumptions will be in force throughout this paper.

(H1) Assume that

b : [0; T ]� R� R� A �! R

� : [0; T ]� R� R� A �! R
(4.3)

are bounded continuous functions such that b(t; :; :; a) and �(t; :; :; a) are twice continuously

di¤erentiable with respect to (x; y). Assume also that the derivatives of b; �; up to the

second order with respect to (x; y) are bounded and continuous in (x; y; a).

(H2) Assume that

h : [0; T ]� R� R� A �! R

g : R� R �! R
(4.4)

are bounded continuous functions such that h(t; :; :; a) and g(:; :) are twice continuously

di¤erentiable with respect to (x; y). Assume also that the derivatives of h; g; up to the

second order with respect to (x; y) are bounded and continuous in (x; y; a).

The coe¢ cients are assumed to be one dimensional as in [11] to avoid heavy notations in

the de�nition of adjoint processes. In fact, the results remain valid for multidimensional
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processes.

Under assumption (H1); according to [31] Prop.1.2, for each u 2 Uad the MFSDE (4.1)
has a unique strong solution, such that for each p > 0 we have E(jXtjp) < +1: Moreover

the cost functional is well de�ned.

4.3 The relaxed control problem

4.3.1 The space of relaxed controls

In the absence of Fillipov type convexity conditions, an optimal control may fail to exist

in the set Uad of strict controls (see e.g. [23]). Let us consider a deterministic example.
Minimize J(u) =

R T
0
(Xu(t))2 dt over the set Uad of measurable functions u : [0; T ] !

f�1; 1g, whereXu(t) is the solution of dXu(t) = u(t)dt; X(0) = 0:We have infu2Uad J(u) =

0.

Indeed, consider the sequence of Rademacher functions:

un(t) = (�1)k if kTn � t � (k+1)T
n
, 0 � k � n� 1.

Then clearly jXun(t)j � 1=n and jJ(un)j � T=n2 which implies that infu2Uad J(u) = 0.

There is however no control bu such that J(bu) = 0. If this would have been the case, then
for every t, Xbu(t) = 0. This in turn would imply that but = 0, which is impossible.
The problem is that the sequence (un) has no limit in the space of strict controls. This

limit, if it exists, will be the natural candidate for optimality. If we identify un(t) with the

Dirac measure �un(t)(du); then (dt�un(t)(du))n converges weakly to (dt=2)�[��1 + �1](du).

The idea is to embedd the set Uad into the set R of relaxed controls.

Let V be the set of product measures � on [0; T ]�A whose projection on [0; T ] coincides
with the Lebesgue measure dt. It is clear that every � in V may be disintegrated as

� = dt:�t(da), where �t(da) is a transition probability.

Then V equipped with the topology of stable convergence is a compact metric space,

where test funtions are measurable, bounded functions f(t; a) continous in a; see [21, 30]

for further details.

De�nition 4.3.1 A relaxed control on the �ltered probability space (
;F ;Ft; P ) is a ran-
dom variable � = dt:�t(da) with values in V, such that �t(da) is progressively measurable
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with respect to (Ft) and such that for each t, 1(0;t]:� is Ft�measurable. Let us denote R
the space of relaxed controls.

Remark 4.3.1 The set Uad of strict controls is embedded into the set R of relaxed controls

by identifying ut with the random measure dt�ut(da):

4.3.2 The relaxed state equation

Following [31] Prop. 1.10, existence of a weak solution of equation 4.1 associated to a

strict control u is equivalent to the existence of a solution for the non linear martingale

problem:

f(Xt)� f(X0)�
tR
0

LPXsf(s;Xs; us) ds is a P�martingale;

for every f 2 C2b ; for each t > 0; where L is the in�nitesimal generator associated with

equation 4.1,

L�f(t; x; a) =
1

2

X
i;j

�
ai;j

@2f

@xi@xj

�
(t; x; a) +

X
i

�
bi
@f

@xi

�
(t; x; a);

b = b(t; x; hy; �i ; a) and ai;j = ���(t; x; hy; �i ; a); � 2M1(Rd):

Therefore, the natural generator associated to a relaxed control is given
Z
A

L�f(s; x; a)�s(da)ds

and accordingly the relaxed martingale problem is de�ned as follows:

f(Xt)� f(X0)�
tZ
0

Z
A

LPXsf(s;Xs; a)�s(da)ds is a P �martingale (4.5)

for each f 2 C2b ; for each t > 0:
The following theorem gives a pathwise reprsentation of the solution of the relaxed mar-

tingale problem, in terms of a mean-�eld stochastic di¤erential equation driven by an

orthogonal martingale measure.

Theoreme 4.3.1 1)Let P a the solution of the martingale problem 4.5. Then P is the

law of a d�dimensional adapted and continuous process X de�ned on an extension of the

space (
;F ;Ft; P ) and solution of the following MFSDE starting at x:
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8<: dX t=
R
A b(t ;X t;E (Xt) a)�t(da)dt+

R
A �(t ;X t;E (Xt); a)M (da; dt);

X0 = x
(4.6)

where M = (Mk)dk=1 is a family of d-strongly orthogonal continuous martingale measures,

each having intensity dt�t(da):

2) If the coe¢ cients b and � are Lipschitz in x, y, uniformly in t and a, the SDE (2.6 )

has a unique pathwise solution.

Proof. 1) The proof is based essentially on the same arguments as in [20] Theorem IV-2

and [31] Prop. 1.10.

2) The coe¢ cients being Lipschitz continuous, following the same steps as in [31] and [20],

it is not di¢ cult to prove that Equation 4.6 has a unique solution such that for each p > 0

we have E(jXtjp) < +1:

Remark 4.3.2 i) Note that the othogonal martingale measure corresponding to the relaxed

control dt�t(da) is not unique.

ii) From now on, the probability space is an extension of the initial probability space. The

Brownian motion (Wt) remains a Brownian motion on this new probability space, but the

�ltration is no longer the natural �ltration of (Wt) :

Martingale measures have been introduced by Walsh [45], see also [20, 37] for more details.

De�nition 4.3.2 Let (
;F ;Ft; P ) be a �ltered probability space, and M(t; B) a random
process, where B 2 B (A) : M is a (Ft; P )�martingale measure if:
1)For each B 2 B (A) ; (M(t; B))t�0 is a square integrable martingale, M(0; B) = 0.
2)For every t > 0, M(t; :) is a ���nite L2-valued measure.
It is called continuous if for each B 2 B (A) ; M(t; B) is continuous and orthogonal if
M(t; B):M(t; C) is a martingale whenever B \ C = �:

Remark 4.3.3 When the martingale measure M is orthogonal, it is proved in [45] the ex-

istence of a random positive �-�nite measure � (dt; da) on [0; T ]�A such that hM(:; B);M(:; B)it =
� ([0; t]�B) for all t > 0 and B 2 B (A) : � (dt; da) is called the covariance measure of
M .

Example Let A = fa1; a2; � � � ; ang be a �nite set. Then every relaxed control dt �t(da)
will be a convex combination of the Dirac measures dt �t(da) =

Pn
i=1 �

i
t dt �ai(da); where
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for each i, �it is a real�valued process such that 0 � �it � 1 and
Pn

i=1 �
i
t = 1. It is obvious

that the solution of the relaxed martingale problem 4.5 is the law of the solution of the

SDE

dXt =

nX
i=1

b(t;Xt; E (	 (Xt)) ; ai)�
i
tdt+

nX
i=1

�(t;Xt; E (	 (Xt)) ; ai)
�
�it
�1=2

dW i
s ; X0 = x;

(4.7)

where the W i�s are independant Brownian motions, on an extension of the initial proba-

bility space. The process M de�ned by

M([0; t]� A) =
nX
i=1

tZ
0

�
�is
�1=2

1fai2AgdB
i
s

is in fact an orthogonal continuous martingale measure (cf. [21, 45]) with intensity

�t(da)dt =
P
�it �ai(da)dt. Thus, the SDE 4.7 can be expressed in terms of M and �

as follows:

dX t=

Z
A
b(t ;X t;E (	 (Xt)) a)�t(da)dt+

Z
A
�(t ;X t;E (�(Xt); a)M (da; dt)

4.4 Maximum principle for relaxed control problems

From now on, the relaxed control problem is de�ned via the relaxed state process, which

satis�es the following relaxed MFSDE8>><>>:
dXt =

Z
A

b(t;Xt; E(Xt); a)�t(da)dt+

Z
A

�(t;Xt; E(Xt); a)M(dt; da)

X0 = x;

(4.8)

and the relaxed cost functional is given by

J(u) = E

24 TZ
0

Z
A

h(t;Xt; E(Xt); a)�t(da)dt+ g(XT ; E(XT ))

35 : (4.9)

M(dt; da) is a vector of continuous orthogonal martingale measures with common covari-

ance measure �t(da)dt:

It is proved in [7] that, the relaxed control problem is a natural extension of the strict
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control problem, in the sense that the value functions of the strict and relaxed control

problems are equal. Morever, the relaxed control problem admits an optimal control.

In this section, we�ll derive necessary conditions for optimality, satis�ed by an optimal

relaxed control. We begin by deriving necessary conditions for near optimality satis�ed

by the minimizing sequence of stict controls, which converge to the relaxed control. Then

we pass to the limit in the state equation as well as in the adjoint processes to obtain

the relaxed maximum principle. To achieve this program, the following approximation

lemmas will play a key role in the sequel.

Lemma 4.4.1 (Chattering lemma) i) Let (�t) be a relaxed control: Then there exists a

sequence of adapted processes (unt ) with values in A, such that the sequence of random

measures
�
�unt (da) dt

�
converges weakly in V to �t(da) dt; P � a:s:

ii) For any g continuous in [0; T ]�M1(A) such that g(t; :) is linear, we have P � a:s

lim
n!+1

tZ
0

g(s; �uns )ds =

tZ
0

g(s; �s)ds uniformly in t 2 [0; T ] : (4.10)

Proof. See [21] and [23] Lemma 1 page 152.

Proposition 4.4.1 1) Let � = �t(da) dt a relaxed control. Then there exist a continuous

orthogonal martingale measure M(dt; da) whose covariance measure is given by �t(da) dt:

2) If we denote Mn(t; B) =
R t
0

R
B
�uns (da)dWs; where (un) is de�ned as in the last Lemma,

then for every bounded predictable process ' : 
 � [0; T ] � A ! R, such that '(!; t; :) is

continuous; we have

E

��R t
0

R
A '(!; t; a)M

n(dt; da)�
R t
0

R
A '(!; t; a)M(dt; da)

�2�
! 0 as n �! +1;

Proof. See [37] page 18.

Proposition 4.4.2 1) Let Xt; X
n
t be the solutions of state equation (4.6) corresponding

to � and un; where � and un are de�ned as in the chattering lemma. Then

lim
n!1

E

�
sup
0�t�T

jXn
t �Xtj2

�
= 0: (4.11)

2) Let J(un) and J(�) the expected costs corresponding respectively to un and �: Then

there exists a subsequence (unk) of (un) such that J (unk) converges to J (�) :
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Proof. See [7]

4.4.1 Necessary conditions for near optimality

Let � = dt�t(da) be an optimal relaxed control and X be the corresponding state process

solution of 4.6. According to the optimality of � and the chattering lemma, there exists a

sequence (un) � Uad such that:

J(un) = J(�n) � inf fJ(�); � 2 Rg+ "n;

where �n = dt�unt (da) and lim
n!+1

"n = 0:

In this section, we give necessary conditions for near-optimality satis�ed by the minimizing

sequence (un): Let us recall Ekeland�s variational principle [18].:

Lemma 4.4.2 (Ekeland) Let (V; d) be a complete metric space and F : V �! R [ f+1g
be lower-semicontinuous and bounded from below. Given � > 0; suppose u� 2 V satis�es

F (u�) � inf fF (v) ; v 2 V g+ �. Then for any � > 0, there exists v 2 V such that:

i) F (v) � F (u�)

ii) d(u�; v) � �

iii) 8w 6= v ; F (v) < F (w) + "=�:d(w; v):

For u; v in Uad; de�ne d(u; v) = P
dt f(!; t) 2 
� [0; T ] ; u(!; t) 6= v(!; t)g ;where P
dt
is the product measure of P and the Lebesgue measure. It is clear that d de�nes a metric

in Uad:

Lemma 4.4.3 i) ( Uad; d) is a complete metric space.
ii) For any p � 1 , there exists M > 0 such that for any u; v 2 Uad

E

�
sup
0�t�T

jXu
t �Xv

t j
2p

�
�M: (d(u; v))1=2 ;

where Xu
t ; X

v
t are the solutions of 4:1 corresponding to u and v:

iii) The cost functional J : (Uad; d) �! R is continuous. More precisely if u, v are two

elements in Uad then
jJ(u)� J(v)j � C: (d(u; v))1=2
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Proof. The proof goes as in [50] Lemma 3.1 and uses classical arguments from stochastic

calculus, such as Burkholder-Davis-Gundy and Hölder�s inequalities and Gronwall lemma.

The fact that the coe¢ cients are of mean-�eld type and depend on the expectation of the

solution, does not add new di¢ culties.

Let us de�ne the Hamiltonian of the system associated to a random variable X

H(t;X; u; p; q) = b(t;X;E(X); u):p+ �(t;X;E(X); u):q � h(t;X;E(X); u) (4.12)

For any strict control u 2 U , we denote (p; q) and (P;Q) the �rst and second order adjoint
processes satisfying the following backward SDEs

8>><>>:
dp(t) = � [bx(t)p(t) + E (by(t)p(t)) + �x(t)q(t) + E (�y(t)q(t))

�hx(t)� E (hy(t))] dt+ q(t)dWt + dMt

p(T ) = �gx(T )� E (gy(T ))

(4.13)

8>><>>:
�dP (t) = � [2bx(t)P (t) + �2x(t)P (t) + 2�x(t)Q(t) +Hxx(t)]dt

+Q(t)dWt + dNt

P (T ) = �gxx(x(T ))

(4.14)

where X(t) is the state process associated with u, fx(t) = fx(t;Xt; E(Xt); ut) for f = b;

�; h and

Hxx(t;X; u; p; q) = bxx(t;X;E(X); u):p+ �xx(t;X;E(X); u):q � hxx(t;X;E(X); u):

M and N are square integrable martingales which are orthogonal to the Brownian motion

and are parts of the solutions. The appearance of such martingales is due to the fact that

(Ft) is not necessarily the Brownian �ltration.
Equation 4.13 is a mean �eld backward stochastic di¤erential equation (MFBSDE), whose

driver is Lipshitz continuous, then by [14] Theorem 3.1, it has a unique Ft�adapted
solution (p; q;M) such that:

E

�
sup
0�t�T

jp(t)j2 +
Z T

0

jq(t)j2 dt+ [M;M ]T

�
< +1 (4.15)
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Note that in [14] Theorem 3.1, (Ft) is the Brownian �ltration. Considering general �ltra-
tions on which a Brownian motion is de�ned does not bring additional di¢ culties in the

proof of existence and uniqueness (see e.g [22] Theorem 5.1, page 54).

Equation 4.14 is a classical backward stochastic di¤erential equation, whose driver is Lip-

shitz continuous, then by [22] Theorem 5.1, it has a unique Ft�adapted solution (P;Q;N)
such that:

E

�
sup
0�t�T

jP (t)j2 +
R T
0
jQ(t)j2 dt+ [N;N ]T

�
< +1

The following lemma is a stability result of the adjoints processes with respect to the

control variable.

Lemma 4.4.4 For any 0 < � < 1 and 1 < p < 2 satisfying (1 + �) < 2; there exists a

constant C1 = C1(�; p) > 0 such that for any strict controls u, u0 along with the corre-

sponding trajectories X, X 0 and the solutions (p; q; P;Q;M;N), (p0; q0; P 0; Q0;M 0; N 0) of

the backward SDEs 4.13 and 4.14, the following estimates hold

E
hR T
0
(jp(t)� p0(t)jp + jq(t)� q0(t)jp) dt+ [M �M 0;M �M 0]

p=2
T

i
� C1d(u; u

0)
�p
2

E
hR T
0
(jP (t)� P 0(t)jp + jQ(t)�Q0(t)jp) dt+ [N �N 0; N �N 0]

p=2
T

i
�C2d(u; u0)

�p
2

Proof. The proof goes as in [50] Lemma 3.2. The only di¤erence is that the driver is of

mean-�eld type. But this does not add new di¢ culties, as the driver is linear and then

Lipschitz in the state variable as well as in its expectation.

Necessary conditions for near optimality

The H�function or generalized Hamiltonian (see [49] page 118), associated with a strict
control u and its state process X is de�ned as follows:

H(X(:);u(:))(t; Y; E(Y ); a) = H(t; Y; E (Y ) ; a; p(t); q(t)� P (t):�(t;Xt; E(Xt); u(t)))

�1
2
�2(t; Y; E (Y ) ; a)P (t)

where (p(t); q(t)) ; (P (t); Q(t)) are solutions of the adjoint equations 4.13 and 4.14.

The next proposition gives necessary conditions for near-optimality satis�ed by the min-

imizing sequence (un) (ie : (�n) =
�
dt�unt (da)

�
converges to the optimal relaxed control

dt�t (da)):
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Proposition 4.4.3 Let un be an admissible strict control such that

J(un) = J(�n) � inf fJ(�); � 2 Rg+ "n;

then there exist adapted (pn; qn;Mn) and (P n; Qn; Nn); solutions of the adjoint equations

4.13 and 4.14, corresponding to the admissible pair (un; Xn) such that:

E

0@ TZ
0

H(Xn(t);un(t))(t;Xn(t); un(t))dt

1A � sup
a2A

E

0@ TZ
0

H(Xn(t);un(t))(t;Xn(t); a)dt

1A� "1=3

(4.16)

Proof. According to Lemma 4.5, the cost functional J(u) is continuous with respect to

the topology induced by the metric d: Then by applying Ekeland�s variational principle

for un with � = "2=3, there exists an admissible control vn such that

d(un; vn) � "2=3;bJ(vn) � bJ(u) for all u 2 U ;bJ(u) = J(u) + "1=3d(u; vn):

The control vn which is "n�optimal is in fact optimal for the new cost functional bJ(u):
We proceed as in the classical mean-�eld maximum principle [11] to derive a maximum

principle for vn: Let t0 2 (0; 1) ; a 2 A and de�ne the spike variation of vn(t)

vn� =

8<: a on (t0; t0 + �)

vn(t) otherwise

The fact that bJ(vn) � bJ(u) and d(vn; vn� ) � � imply that

J(vn� )� J(vn) � �"1=3n �:

Proceeding as in [11], we can expand Y n
� (:) (the solution of 4.1 corresponding to v

n
� ) to

the second order, to get the following inequality

E

"
t0+�R
t0

1
2
(�(t; Y n(t); a)� �(t; Y n(t); vn)2 P nt + pnt (b(t; Y

n(t); a)� b(t; Y n(t); vn))

+qnt (�(t; Y
n(t)(t); a)� �(t; Y n(t); vn))

+ (h(t; Y n(t); a)� h(t; Y n(t); vn))dt] + o(�) � �"n �;

where Y n(t) is the state process (solution of 4.1) corresponding to the control vn and

(pn; qn) and (P n; Qn) are the �rst and second order adjoint processes, solutions of 4.13
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and 4.14 corresponding to (vn; Y n).

The variational inequality is obtained for vn by dividing by � and tending � to 0:

The same claim can be proved for un by using the stability of the state equations and the

adjoint processes with respect to the control variable (Lemma 4.5 and Lemma 4.6)

Remark 4.4.1 The variational inequality (4.7) can be proved with the supremum over

a 2 A replaced by the supremum over u 2 Uad by simply putting u(t) in place of a in the
de�nition of the strong perturbation.

4.4.2 The relaxed maximum principle

We know that the relaxed control problem has an optimal solution �: Let X(:) be the

corresponding optimal state process. Let (p; q;M) and (P;Q;N) the solutions of the �rst

and second order adjoint equations, associated with the optimal relaxed pair (�;X).

8>><>>:
dp(t) = �

�
bx(t)p(t) + E

�
by(t)p(t)

�
+ �x(t)q(t) + E (�y(t)q(t))

�hx(t)� E
�
hy(t)

��
dt+ q(t)dWt + dMt

p(T ) = �gx(T )� E
�
gy(T )

� (4.17)

8>><>>:
�dP (t) = �

�
2bx(t)P (t) + �2x(t)P (t) + 2�x(t)Q(t) +Hxx(t)]dt

+Q(t)dWt + dNt

P (T ) = �gxx(x(T ))

(4.18)

where we denote f(t) = f(t; x(t); �(t)) =
R
A
f(t; x(t); a)�(t; da) and f stands for bx, �x;

hx; by, �y; hy; Hxx:

(Mt) and (Nt) are square integrable martingales which are orthogonal to the Brownian

motion (Wt) :

The drivers of the BSDEs 4.17 and 4.18 being Lipschitz continuous, then by [14] Theorem

3.1 and [22] Theorem 5.1, they admit unique solutions (p; q;M) and (P;Q;N) satisfying:

E

�
sup
0�t�T

jp(t)j2 +
R T
0
jq(t)j2 dt+ [M;M ]T

�
< +1;

E

�
sup
0�t�T

jP (t)j2 +
R T
0
jQ(t)j2 dt+ [N;N ]T

�
< +1:

De�ne the generalized Hamiltonian function associated with the optimal pair (�;X(:))

and the corresponding adjoint processes;
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H(X(:);�(:))(t; Y; E(Y ); a) = H(t; Y; E (Y ) ; a; p(t); q(t)� P (t):�(t;Xt; E(Xt); �(t)))

�1
2
�2(t; Y; E (Y ) ; a)P (t)

The main result of this paper is the following.

Theoreme 4.4.1 (Relaxed maximum principle)

Let (�; x) be an optimal relaxed pair, then there exist adapted pairs (p; q) and (P ;Q);

solutions of the adjoint equations 4.17 and 4.18 respectively, such that

E

0@ 1Z
0

H(X(t);�(t))(t;X(t); �(t))dt

1A = sup
a2A

E

0@ 1Z
0

H(X(t);�(t))(t;X(t); a)dt

1A (4.19)

The proof of Theorem 4.9 is based will be given later.

Corollary 4.4.1 Under the same conditions as in Theorem 4.9 it holds that

E

0@ 1Z
0

H(X(t);�(t))(t;X(t); �(t))dt

1A = sup
�2P(A)

TZ
0

E
�
H(X(t);�(t))(t;X(t); �)

�
dt (4.20)

where H(x(t);�(t))(t; x(t); �) =
R
AH

(x(t);�(t))(t; x(t); a)�(da):

Proof. The inequality

sup
�2P(A)

TR
0

E
�
H(x(t);�(t))(t; x(t); �)

�
dt � sup

a2A
E

�
1R
0

H(x(t);�(t))(t; x(t); a)dt

�
is obvious. Indeed it su¢ ces to take � = �a where a is any element of A: Now if � 2 P (A)
is a probability measure on A; then
TR
0

E
�
H(x(t);�(t))(t; x(t); �)

�
dt 2 conv

�
E

�
1R
0

H(x(t);�(t))(t; x(t); a)dt

�
; a 2 A

�
Hence, by using a result on convex analysis, it holds that
TR
0

E
�
H(x(t);�(t))(t; x(t); �)

�
dt � sup

u2A
E

�
1R
0

H(x(t);�(t))(t; x(t); a)dt

�
:

Remark . Since P(A) is a subspace of V whose elements are constant (in (!; t)) relaxed

controls, then 4.20 may be replaced by

E

0@ 1Z
0

H(x(t);�(t))(t; x(t); �(t))dt

1A = sup
�2V

TZ
0

E
�
H(x(t);�(t))(t; x(t); �(t))

�
dt (4.21)

74



Relaxed maximum principle in the control of MFSDEs

Corollary 4.4.2 (The Pontriagin relaxed maximum principle).

If (�;X) denotes an optimal relaxed pair, then there exists a Lebesgue negligible subset N

such that for any t not in N

H(X(t);�(t))(t; x(t); �(t)) = sup
�2P(A)

H(x(t);�(t))(t; x(t); �); P � a:s: (4.22)

Proof. Let � 2 ]0; T [ and B 2 F�; for small h > 0 de�ne the relaxed control

�ht =

8<: �1B for � < t < � + hb�t otherwise.
where � is a probability measure on A: It follows from 4.20 that

1=h
�+hR
�

E
�
1BH(X(t);�(t))(t; x(t); �(t))

�
dt � 1=h

�+hR
�

E
�
1BH(X(t);�(t))(t; x(t); �)

�
dt

Therefore passing at the limit as h tends to zero, we obtain

E
�
1BH(X(�);�(�))(�; x(�); �(�))

�
� E

�
1BH(X(�);�(�))(�; x(�); �)

�
for any � not in some Lebesgue null set N:

The last inequality is valid for all B 2 F�; then for any bounded F�-measurable random
variable F it holds that

E
�
FH(X(t);�(t))(t; x(t); �(t))

�
� E

�
FH(X(t);�(t))(t; x(t); �)

�
which leads to

E
�
H(X(�);�(�))(�; x(�); �(�))=F�

�
� E

�
H(X(�);�(�))(�; x(�); �)=F�

�
The result follows from the measurability with respect to F� of the quantities inside the
conditional expectation.

The proof of theorem (4.6) is based on the following lemma.

Lemma 4.4.5 Let (pn; qn), (P n; Qn) (resp. (p; q), (P;Q)) be the solutions of �rst and

second order adjoint equations 4.13 and 4.13 associated with the pair (un; Xn); (resp.

solutions of �rst and second order adjoint equations 4.17 and 4.18 associated to (�;X)),

then it holds that

i) lim
n!+1

E
hR T
0

�
jpn(t)� p(t)j2 + jqn(t)� q(t)j2

�
dt+ [Mn �M;Mn �M ]T

i
= 0

ii) lim
n!+1

E
hR T
0

�
jP n(t)� P (t)j2 + jQn(t)�Q(t)j2

�
dt+ [Nn �N;Nn �N ]T

i
= 0

iii) lim
n!+1

E

�
1R
0

H(Xn(t);un(t))(t;Xn(t); un(t))dt

�
= E

�
1R
0

H(X(t);�(t))(t;X(t); �(t))dt

�
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Proof. i)Let us write down the drivers of the �rst order adjoint equations 4.13 and 4.17

corresponding to (un; Xn) and (�;X):

Hn(t; pnt ; q
n
t ) = �bnx(t)pn(t)+E

�
bny (t)p

n(t)
�
+�nx(t)q

n(t)+E
�
�ny (t)q

n(t)
�
�hnx(t)�E

�
hny (t)

�
H(t; pt; qt) = �bx(t)p(t) + E

�
by(t)p(t)

�
+ �x(t)q(t) + E (�y(t)q(t))� hx(t)� E

�
hy(t)

�
where

fn(t) = f(t;Xn
t ; E(X

n
t ); u

n
t ) =

Z
A
f(t;Xn

t ; E(X
n
t ); a)�unt (da) for f = bx; �x; hx; by; �y; hy:

f(t) = f(t;X(t); E(Xt); �(t)) =
R
A
f(t;X(t); E(Xt); a)�(t; da) where f stands for bx, �x;

hx;

by; �y; hy:

By using a subtil stability result of Hu and Peng [27], Theorem 2.1, it is su¢ cient to show

that:

lim
n!1

E

"����Z T

t

(Hn(t; pt; qt)�H(t; pt; qt)) dt

����2
#
= 0

We have����Z T

t

(Hn(t; pt; qt)�H(t; pt; qt)) dt

���� �
����Z T

t

�
bnx(t)� bx(t)

�
p(t)dt

����+ ����Z T

t

E
��
bny (t)� by(t)

�
p(t)

�
dt

����
+

����Z T

t

(�nx(t)� �x(t)) q(t)dt

����+ ����Z T

t

E
��
�ny (t)� �y(t)

�
q(t)

�
dt

����
+

����Z T

t

�
hnx(t)� hx(t)

�
dt

����+ ����Z T

t

E
�
hny (t)� hy(t)

�
dt

����
(4.23)

Let us treat the �rst term in the right hand side .

Z T

t

�
bnx(t)� bx(t)

�
p(t)dt =

Z T

t

�Z
A
bx(t;X

n
t ; E(X

n
t ); a)�unt (da)�

R
A
bx(t;Xt; E(Xt); a)�t(da)

�
p(t)dt

=

Z T

t

�Z
A
bx(t;X

n
t ; E(X

n
t ); a)�unt (da)�

R
A
bx(t;Xt; E(Xt); a)�unt (da)

�
p(t)dt

+

Z T

t

�Z
A
bx(t;Xt; E(Xt); a)�unt (da)�

R
A
bx(t;Xt; E(Xt); a)�t(da)

�
p(t)dt

(4.24)

The facts that bx is Lipshitz continuous in (x; y) and (Xn
t ) converges to Xt uniformly in t

in probability imply that the �rst term in the right hand side of ?? converges in probability

to 0:

Furthermore E
�
sup
0�t�T

jp(t)j2
�
< +1; then sup

0�t�T
jp(t)j < +1; P � a:s; which implies the

existence of a P�negligible set N; such that for each ! =2 N; there exist M(!) < +1 s.t

sup
0�t�T

jp(t)j �M(!): In particular for each ! =2 N; the function bx(t;Xt; E(Xt); a)p(t):1[0;t]
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is a measurable bounded function in (t; a) and continuous in a, therefore it is a test function

for the stable convergence: Hence by using the fact that
�
�unt (da) dt

�
converges in V to

�t(da) dt; P�a:s:, it follows that the second term in the right hand side tends to 0; P�a:s.
We conclude by using the Lebesgue dominated convergence theorem.

The other terms containing p(t) can be handled by using the same techniques.

The terms in 4.23 containing q(t) can be treated similarily. However one should pay a

little more attention as q(t) is just square integrable (in (t; !)). More precisely����Z T

t

(�nx(t)� �x(t)) q(t)dt

���� �
����Z T

t

(�nx(t)� �x(t)) q(t)1fjq(t)j�Ngdt

����
+

����Z T

t

(�nx(t)� �x(t)) q(t)1fjq(t)j�Ngdt

����
The �rst integral in the right hand side may be handled by using similar argument as

precedently as the function (�nx(t)� �x(t)) q(t)1fjq(t)j�Ng is measurable bounded and con-

tinuous in a: The second term tends to 0 by Tchebychev�s inequality, using the square

integrability of q(t):

ii) and iii) are proved by using similar arguments.

Proof. of Theorem 4.9

The result is proved by passing to the limit in inequality 4.16 and using Lemma 4.12.
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