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The different symbols and abbreviations used in this thesis.

a.e : almost evrywhere.

a.s : almost surely.

càdlàg : right continuous with left limits.

e.g : for example.

R : real numbers.

Rn : n-dimensional real Euclidean space.

Rn×d : the set of all (n× d) real matrixes.

Ā : the closure of the set A.

1A : the indicator function of the set A.

σ (A) : σ-algebra generated by A.
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(Ω,F ,P) : probability space.
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E (x) : expectation at x.

E (· | G) : conditional expectation.
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W· = (Wt)t∈[0,T ] : Brownian motion.

L· = (Lt)t∈[0,T ] : R-valued Lévy process.(
H

(i)
t

)∞
i=1

: Teugels martingale.

P⊗dt : the product measure of P with the Lebesgue measure dt.

(a, b) : the inner product in Rn.

|a| =
√

(a, b) : the norm of Rn.

(A, B) : the inner product in Rn×d.

|A| =
√

(A, B) : the norm of Rn×d.

l2 : the Hilbert space of real-valued sequences x = (xn)n≥0 with the

norme ‖x‖ =

( ∞∑
i=1

xi

) 1
2

<∞.

P2 (Rn) : the space of Rn-valued processes {f i}i≥0 such that( ∞∑
i=1

‖f i‖2
Rn

) 1
2

<∞.

l2F (0, T,Rn) : the Banach space of P2 (Rn) -valued Ft-predictable processes {f i}i≥0

such that
(
E
∫ T

0

∞∑
i=1

‖f i (t)‖2
(Rn) dt

) 1
2

<∞.

S2
F (0, T,Rn) : the Banach space of Rn-valued Ft-adapted and càdlàg processes (ft)t∈[0,T ]

such that
(
E sup

0≤t≤T
|ft|2

) 1
2

<∞.

L2
F (0, T,Rn) : the Banach space of Rn-valued, square integrable and Ft-progressively

measurable processes (ft)t∈[0,T ] such that E
[∫ T

0

|ft|2 dt
]
<∞.

L2 (Ω,F ,P,Rn) : the Banach space of Rn-valued, square integrable random

variables on (Ω,F ,P) .

τ : stopping time.

l2F (0, τ,Rn) : the Banach space of l2 (Rn) -valued Ft-predictable processes (ft)t≥0

such that
(
E
∫ τ

0

∞∑
i=1

‖f it‖
2
P2(Rn) dt

) 1
2

<∞.

L2
F (0, τ,Rn) : the Banach space of Rn-valued Ft-adapted processes (ft)t≥0

such that
(
E
∫ τ

0
‖ft‖2

Rn dt
) 1

2 <∞.
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S2
F (0, τ,Rn) : the Banach space of Rn-valued Ft-adapted and càdlàg processes (ft)t≥0

such that
(
E sup

0≤t≤τ
|ft|2

) 1
2

<∞.

SDEs : Stochastic differential equations.

BSDEs : Backward stochastic differential equations.

FBSDEs : Forward-backward stochastic differential equations.
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Résumé

Cette thèse contient deux thèmes. Le premier porte sur le problème de l’existence et

l’unicité des solutions pour certain type d’équations différentielles stochastiques progres-

sives rétrogrades fortement couplées dirigées par une famille de martingales de Teugels

associées à certains processus de Lévy. Le second est consacré au contrôle stochastique

optimal pour des systèmes gouvernés par des équations différentielles stochastiques (EDS

en abréger). Dans la première partie qui contient deux documents, nous donnons et prou-

vons certains résultats d’existence et d’unicité dans deux cas différents: (i) Le temps final

est une donnée fixée et grande, (ii) le temps final est supposé aléatoire .

La deuxième partie de cette thèse concerne les problèmes de contrôle stochastique pour

optimiser un problème d’entreprise d’assurance dans le cas où son processus de richesse

est supposé dirigé par une équation différentielle stochastique gouvernée par une famille

de martingales de Teugels. Nous traitons plusieurs cas selon le processus de taux d’intérêt,

nous supposons dans un premier temps que la société d’assurance investit uniquement dans

un compte monétaire avec un taux d’intérêt composé. Ensuite, nous discutons ce problème

de prime optimal, dans le cas où le taux d’intérêt est autorisé à être stochastique. Plus

précisément, nous considérons le cas dans lequel la fonction de paiement et le taux d’intérêt

stochastique sont donnés par le même mouvement brownien, puis nous considérons le cas

où ils sont donnés par des mouvements browniens différents et indépendants.

Mots clés: Equation differentielle stochastique progressive rétrograde; Martingales de

Teugels; Processus de Lévy; Temps d’arrêt; Politique de prime optimale.
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Abstract

This thesis contains two themes. The first topic considers the problem of the well-posedness

for a kind of fully coupled forward backward stochastic differential equations driven by

Teugels martingales associated with some Lévy processes. The second one is devoted

to the stochastic optimal control for systems driven by stochastic differential equations

(SDE for short). In the first part which contains two papers, we provide and prove some

existence and uniqueness results in two different cases: (i) The final time is assumed to

be fixed and large; (ii) the final time is allowed to be random.

The Second part of this thesis is concerned with the stochastic control problems to optimize

an insurance firm problem in the case where its cash-balance process is assumed to be

governed by a stochastic differential equation driven by Teugels martingales. We deal with

several cases according to the interest rate process; we first suppose that the insurance

firm only invests in a money account with compounded interest rate. Then we discuss this

optimal premium problem, in the case where the interest rate is allowed to be stochastic.

More precisely, we consider the case in which the payment function and the stochastic

interest rate are given by the same Brownian motion, in addition to the case where we

assume that they are given by different and independent Brownian motions.

Keywords: Forward-backward stochastic differential equations; Teugels Martingale; Lévy

process; Stopping time; Optimal premium policy.
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General introduction

This thesis consists of two research topics that can be read independently in one

hand and related in the other hand. The first part consists in solving fully

coupled forward backward stochastic differential equations (FBSDE for short) driven by

Lévy process having moments of all orders in addition to some applications to problems

of optimal stochastic control. The second part deals with the resolution of a stochastic

optimal control problem, under a type of constraint to optimize an insurance firm problem

in the case where its cash-balance process is assumed to be governed by such type of

equations. To make the link between the two parts, let us mention that we can translate

the control problem into existence and uniqueness result for coupled FBSDE. This done

by coupling the controlled state equation with its adjoint equation. Consequently, this

technique allow us to prove the existence and uniqueness of an optimal control under

suitable conditions.

First of all, let us focus on a backward stochastic differential equations theory, which makes

the foundation of FBSDEs theory. It is well known that the first work to prove the existence

and uniqueness solution of a nonlinear BSDE under Lipschitz case, began with work of

Pardoux and Peng [38]. This work was the starting point for the development of studing

this type of equations. Since the purpose of this thesis is to study FBSDEs with jumps

rather then thy driven by contionuous Brownian motion, let us recall some very important

result in this direction. So, for BSDE driven by the non-continuous martingales, Tang

and Li [47] have been discussed the existence and uniqueness theorem for the solution to

1



General Introduction

BSDE driven by Poisson point process. In the same paper they also proved the maximum

principle for optimal control of stochastic systems with random jumps. Later, Situ [46]

have studied BSDEs driven by a Brownian motion and Poisson point process. As in [47]

and [46], BSDE driven by Poisson random measure have been carried out by Ouknine

[37]. It is worth mentioning that the proof of the existence and uniqueness results for

FSDE (resp. BSDE) is based on the fixed point theorem. In fact, this is often done using

a change of norm which consists in multiplying the solution by exp (αt) , where |α| is

assumed to be large enough, with α < 0 (resp. α > 0) . Since then, the theory of BSDEs

had found many applications, for example, in the stochastic control, mathematical finance

and partial differential equation.

The theory of fully coupled FBSDEs with continuous Brownian motion develops also very

dynamically in the last two decades. Comparing with the existing results in the literature

for semi-coupled FBSDEs systems, one can say that the main diffi culty to deal with the

general fully coupled FBSDE appears from the coupling between the forward and the

backward equations. This leads to a roundabout reliance between the state variables of

both of equations. In general, there are several methods to get around this diffi culty. The

first one is the method of contraction mapping. This method is based on the fixed point

theorem, where the final time is assumed to be small enough. Antonelli in its earlier paper

[1], have been used it in order to prove an existence and uniqueness result. Then it has

been detailed by Pardoux and Tang [39], Delarue [12] and Zhang [53].

The second one is the method of optimal control. This method gives the solvability for

some classes of FBSDEs in any finite time duration so that the solvability problem is

converted to a problem of finding the nodal set of the viscosity solution to a certain

Hamilton-Jacobi-Bellman equations. Notice that Ma and Young [29] are the first who are

used this method for FBSDE.

The third method is the Four-Step-Scheme initiated by Ma, Protter and Young [28]. Such

method requires the coeffi cients to be deterministic and the diffusion coeffi cient of the

2



General Introduction

forward equation to be nondegenerate. Duffe et all [14] have also used this approach to

deal with the case of FBSDEs in infinite time duration. To be more precise, this approach,

takes the advantage of some solvable parabolic partial differential equations systems to

get construct solution of FBSDEs in large time duration.

The fourth method is inspired by the numerical approaches, we refer the reader to Delarue

and Menozzi [13]. In that paper, the authers proposed a time-space discretization scheme

for quasi-linear parabolic PDEs. They gave an algorithm that relies on the theory of

fully coupled FBSDE, and provides an effi cient probabilistic representation for this type

of equations. We point out that the derivated algorithm holds for strong solutions defined

on any interval of arbitrary length.

Another method is called the method of continuation. It has been extensively used in

proving the existence of solution to FBSDE for any arbitrary large time duration. This

method was initiated by Hu and Peng [23] and Peng and Wu [40] and later was developed

by Young [52]. In 1995, Hu and Peng [23], first established an existence and uniqueness

result under some monotonicity conditions on the coeffi cients by considering the case

where the forward and backward components have the same dimension. Then, in 1998,

Hamadène [20] improved their result by proving it under weaker monotonicity assumptions.

Later, in 1999, Peng andWu [40], provided more general results by extending the two above

results, without the restriction on the dimensions of the forward and backward parts. An

interesting account with many applications about the four previous methods, is given in

the useful book of Ma and Young [30].

Recently, motivated by studying numerical methods for FBSDEs, Jianfeng Zhang [53]

have investigated a wellposedness of a class of FBSDEs by imposing some assumptions

on the derivatives of the coeffi cients. She also provided a comparison theorem under the

same conditions.

To the best of our knowledge, the first paper deals with the existence and uniqueness

problems of fully coupled FBSDEs driven by Teugels martingales, is due to Pereira and

3



General Introduction

Shamarova [41], where they solve FBSDEs via the solution to the associated PIDEs and

prove its uniqueness. As a second result in this direction, Baghery et al. [3], show an

existence and uniqueness result for this type of equations, using the so called monotonicity

conditions on the coeffi cients. Throughout this thesis, we extend known results result by

Jianfeng Zhang [53], proved for FBSDEs driven by a Brownian motion, to FBSDEs driven

by general Lévy processes. We also extend those of Peng and Wu [40], to the jump case

in stopping time duration.

This thesis is organized as follows:

In the first chapter, we give some basic proprieties of Lévy processes and Teugels mar-

tingales. After this, we show some existing results lie to theory of backward stochastic

differential equation driven by Teugels martingales.

In chapter 2, Under some assumptions on the derivatives of the coeffi cients, we prove the

existence and uniqueness of a global solution on an arbitrarily large time interval. After

that, we establish stability and comparison theorems for the solutions of such equations.

In chapter 3, we first study a class of backward stochastic differential equation driven by

Teugels martingales associated with some Lévy processes having moment of all orders and

an independent Brownian motion. We obtain an existence and uniqueness results for this

type of BSDEs when the final time is allowed to be random. Then, we prove, under some

monotonicity conditions, an existence and uniqueness result for possibly degenerate fully

coupled forward-backward stochastic differential equation driven by Teugels martingales

in stopping time duration. At the end of this chapter, as an illustration of our previous

theoretical results, we deal with a portfolio selection problem in Lévy-type market.

The last chapter in this thesis is devoted to a problem of optimal stochastic control which

consists in finding the best strategies of an insurance firm in the case where its cash-

balance process is described by a stochastic differential equation with jumps. We treat

several cases according to the definition of the interest rate process.

4



General Introduction

To wind up this introduction, let us recall that the content of this thesis is the subject of

the following papers:

1) Guerdouh, D., & Khelfallah, N. (2017). Forward—Backward SDEs Driven by Lévy

Process in Stopping Time Duration. Communications in Mathematics and Statistics,

5(2), 141-157.

2) Guerdouh, D., Khelfallah, N., & Mezerdi, B. (2017). On the solvability of forward-

backward stochastic differential equations driven by Teugels Martingales. arXiv preprint

arXiv:1701.08396.(submit)

3) Guerdouh, D., Khelfallah, N., & Vives, J.(2017). Optimal Control Strategies for Pre-

mium Policy of an Insurance Firm with Jump Diffusion Assets and Stochastic Interest

Rate. Submitted for publication in Insurance Mathematics and Economics.
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Chapter 1

Background on Lévy processes and

Teugels martingales

The term Lévy process honours the work of the French mathematician Paul Lévy,

this process play a crucial role in several fields of science, such as a mathematical

finance. Recall that in many situations we need to show that there is a sudden crashes in

finance for instance. It is then quite natural to permit random jumps in the models thus

they can describe the observed reality of financial markets in a more accurate.

This chapter consists of four sections. In section 1, we introduce Lévy processes and

discuss some of their general properties. In section 2, we give Itô’s formula. Section 3

presents power jump process and Teugels martingales. Finally, in Section 4 we show the

existence and uniqueness of a solution to backward stochastic differential equation driven

by such processes. For more details on Lévy processes, we refer the reader to the books

of Bertoin [5], Sato [43], Applebaum [2] and Kyprianou [27]. See also Schoutens [45] and

Cont and Tankov [9] for some applications concern Lévy processes. The book of Protter

[42] are essential readings for semimartingale theory.
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Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

1.1 Lévy processes

1.1.1 Definitions

We first define a complete probability space, (Ω,F ,P) . On this space we define the Lévy

processes.

Definition 1.1 (Lévy process) A process L = (Lt)t≥0 on R is called a Lévy process if

the following conditions are satisfied:

(1) P (L0 = 0) = 1;

(2) L has independent increments, that is, for all t > 0 and s > 0, the increment Lt+s−Lt

is independent of Ls and s ≤ t;

(3) L has stationary increments, that is, for all t > 0 and s > 0, the increment Lt+s − Lt

has the same distribution as Ls;

(4) Lt is continuous in probability, that is, lim
t→s

Lt = Ls, where the limit is taken in

probability.

A Lévy processes on Rd is called a d-dimensional Lévy process.

A stochastic process L satisfying (1), (2) and (4) is called an additive process.

Remark 1.1 (i) According to the properties of stationary and independent increments,

that the Lévy process is a Markov process.

(ii) Thanks to almost sure right continuity of paths, one may show in addition that Lévy

processes are also strong Markov processes.

Example 1.1 (i) The linear drift of the form dt = at, a ∈ R is the simplest Lévy process,

a deterministic process.

(ii)The standard Brownian motion and the Poisson process are fundamental example of

Lévy process, where the Brownian motion is the only Lévy process with continuous sample

paths.

7



Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

(iii)The sum of a linear drift, a Brownian motion and a compound Poisson process is

again a Lévy process; it is often called a jump-diffusion process. We shall call it a Lévy

jump-diffusion process.

Figure 1.1: Examples of Lévy processes: linear drift.

Figure 1.2: Examples of Lévy processes: Lévy jump-diffusion.

Remark 1.2 There exist jump-diffusion processes which are not Lévy processes.

We give the definitions of Brownian motion and the Poisson process in the following.

Definition 1.2 (Brownian motion) A stochastic processW = (Wt)t≥0 on R is a Brown-

ian motion if it is a Lévy process and if

(1) For all t > 0, has a Gaussian distribution with mean 0 and covariance t.

(2) has continuous sample paths.

8



Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

Figure 1.3: Examples of Lévy processes: Brownian motion.

Definition 1.3 (Poisson process) A stochastic process N = (Nt)t≥0 on R such that

P [Nt = n] =
(βt)n

n!
exp (−βt) ; n = 0, 1...

is a Poisson process with parameter β > 0 if it is a Lévy process and for t > 0, Nt has a

Poisson distribution with mean βt.

Figure 1.4: Examples of Lévy processes: Poisson process.

9



Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

1.1.2 Jumps processes and Lévy measure

Let L be a Lévy process and denote by

Lt− = lim
s→t,s<t

Ls, t > 0,

the left limit process.

The jump process ∆L = (∆Lt)0≤t≤T associated to the Lévy process L is defined, for each

0 ≤ t ≤ T,

∆Lt = Lt − Lt− .

The condition of stochastic continuity of a Lévy process yields immediately that for any

Lévy process L and any fixed t > 0, then

∆Lt = 0, ...a.s,

so, a Lévy process has no fixed times of discontinuity.

If sup
0≤t≤T

|∆Lt| ≤ c, where c is a constant, then we say that Lt has bounded jumps.

In general, the sum of the jumps of a Lévy process does not converge, in other words, it

is possible that ∑
s≤t
|∆Ls| =∞ a.s.,

but we always have that

∑
s≤t
|∆Ls|2 <∞ a.s.,

which allows us to handle Lévy processes by martingale techniques.

The random measure of jumps of a Lévy process is a convenient tool for analyzing the

jumps of this process.

Put R0 = R� {0} and let B (R0) be a σ-algebra generated by the family of all Borel

10



Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

subsets Γ ⊂ R0, such that Γ̄ ⊂ R0. If A ∈ B (R0) with Γ̄ ⊂ R0 and t > 0, we define the

random measure of the jumps of the process L by

NΓ
t (w) =

∑
s≤t

1Γ (∆Ls (w)) ,

hence, the measure NΓ
t (w) counts the jumps of the process L of size in Γ up to time t.

We will show that N verify the following properties:

(i) property of independent increment:

NΓ
t −NΓ

s ∈ σ ({Lu − Lv; s ≤ v < u ≤ t}) ,

therefore NΓ
t −NΓ

s is independent of Fs, i.e. NA
· has independent increments.

(ii) property of stationary increments:

NΓ
t − NΓ

s is defined as the number of jumps of Ls+u − Ls in Γ for 0 ≤ u ≤ t − s, hence,

by the stationarity of the increment of L , we get NΓ
t −NΓ

s has the same distribution as

NΓ
t−s, i.e. N

Γ
· has stationary increments.

Then, by (i) and (ii) we conclude NΓ
· is a Poisson process and N is a Poisson random

measure. The intensity of this Poisson process is ν (Γ) = E
(
N

Γ

1 (w)
)
.

Next, we give the definitions of Poisson random measure, compensated Poisson random

measure and Lévy measure.

Definition 1.4 (Poisson random measure) Nt : Γ→ NΓ
t is called the Poisson random

measure of the Lévy process (Lt)t≥0 .

Definition 1.5 (Compensated Poisson random measure) We call the random mea-

sure Ñ
·
t (w) = N

·
t (w) − E

(
N
·
t (w)

)
= N

·
t (w) − tν (·) the compensated Poisson random

measure of the Lévy process (Lt)t≥0 .

11



Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

Definition 1.6 (Lévy measure) The measure ν (Γ) defined by

ν (Γ) = E
(
N

Γ

1 (w)
)

= E

[∑
s≤1

1Γ (∆Ls (w))

]
,

is called the Lévy measure of L, ν (Γ) is the expected number, per unit time, of jumps

whose size belongs to Γ.

The Lévy measure is a measure on R that satisfy

ν ({0}) = 0 and
∫
R0

min (1, z2) ν (dz) <∞. (1.1)

Proposition 1.1 Let L be a Lévy process, then

(i) If ν (R) < ∞, then almost all paths of L have a finite number of jumps on every

compact interval. In that case, the Lévy process has finite activity.

(ii) If ν (R) = ∞, then almost all paths of L have an infinite number of jumps on every

compact interval. In that case, the Lévy process has infinite activity.

Proof. See Theorem 21.3 in Sato [43].

To gain the full understanding of how the Lévy measure works, the following relation is

useful.

Definition 1.7 For f : Rd → Rd, bounded, vanishing in neighborhood of 0, that

E

{∑
0<s≤t

f (∆Ls)

}
= t

+∞∫
−∞

f (z) ν (dz) . (1.2)

In the case where f (z) = 1S (z), where S is some set in Rd the relation tells us that the

expected sum of jump ∆Ls ∈ S is the integral over S with the Lévy measure.

12



Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

1.1.3 Proprieties of Lévy processes

The most important property of the Lévy processes is that any Lévy process can be

represented by a triplet consisting of a matrix, a vector and a measure.

Let L be a real valued Lévy process, denotes its characteristic function by φL and its law

by PL, hence
φL (u) =

∫
R

exp (iuz)PL (dz) .

Let 0 < t ≤ T , for any n ∈ N and any 0 = t0 < t0 < ... < tn = t is a partition of [0, t] with

ti − ti−1 =
1

n
we trivially have that

Lt =
(
Lt − Ltn−1

)
+
(
Ltn−1 − Ltn−2

)
+ ...+ (Lt1 − Lt0) .

The stationarity and independent of the increments yield that
(
Lti − Lti−1

)
is an i.i.d

sequence of random variables, hence we can conclude that the law PL of L is infinitely

divisible with characteristic function of the form

E [exp (iuLt)] = (φ (u))t ,

where we have denoted by φ (u), the characteristic function of L1. If we set ψ (u) =

log (φ (u)), the characteristic exponent function ψ (u) satisfies the following Lévy-khintchine

formula.

Theorem 1.1 (The Lévy-khintchine formula) Let (Lt)t≥0 be a Lévy process on Rd

with characteristic triplet (A, ν, α) (or Lévy triplet ) . Then

E
[
eizLt

]
= etψ(z), z ∈ Rd

(
i =
√
−1
)
, (1.3)

13



Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

with the characteristic exponent

ψ (z) := iαz − 1

2
z.Az +

∫
Rd

(
eizx − 1− izx1|x|≤1

)
ν (dx) , (1.4)

where the parameters α ∈ Rd, A is a symmetric nonnegative-definite d × d matrix and ν

is a σ-finite measure on B (R0) satisfying (1.1).

Proof. See Cont and Tankov [9] (Section 3.4) .

For real-valued Lévy process, the formula (1.3) takes the form

E
[
eizLt

]
= etψ(z), z ∈ R

(
i =
√
−1
)
,

with

ψ (z) := iαz − 1

2
σ2

0z
2 +

+∞∫
−∞

(
eizx − 1− izx1|x|≤1

)
ν (dx) ,

where α ∈ R, is called drift term σ2
0 ≥ 0, the Gaussian or diffusion coeffi cient and ν

satisfies (1.1). In this case the Lévy triplet is given by (σ2
0, ν, α) .

Example 1.2 (i)- Brownian motion with drift: Lt is given by

Lt = L0 + σ0Wt + βt,

where Wt is standard Brownian motion and σ0, β ∈ R. The Lévy triplet given as (σ0, 0, β) ,

that is ν (S) = 0 for all Borel sets S ⊂ R.

(ii)- Poisson process: is the most pure jump Lévy process with jumps of fixed size 1 and

intensity λ. The Lévy triplet for this process is given as (0, λδ1 (dx) , 0) . δ1 denotes the

Dirac δ-measure on 1.

Whether a Lévy process has finite variation or has not also depends on the Lévy measure

( and on the presence or absence of a Brownian part).

14
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Proposition 1.2 (Finite variation Lévy processes) A Lévy process is of finite varia-

tion if and only if its characteristic triplet (A, ν, α) satisfies:

A = 0 and
∫
|z|≤1

|z| ν (dz) <∞.

Proof. See Proposition 3.9 in Cont and Tankov [9].

The finiteness of the moments of a Lévy process is related to the finiteness of an integral

over the Lévy measure.

Proposition 1.3 Let L be a Lévy process with triplet (σ2
0, ν, α) . Then

(i) Lt has finite p-th moment for p ∈ R+ (E |Lt|p <∞) if and only if
∫
|z|≥1

|z|p ν (dz) <∞.

(ii) Lt has finite p-th exponential moment for p ∈ R+ (E [exp (pLt)] <∞) if and only if∫
|z|≥1

[exp (pLt)] ν (dz) <∞.

Proof. See Theorem 25.3 in Sato [43].

Next, we give another important decomposition formula for Lévy processes. This decom-

position expresses sample functions of a Lévy process as a sum of deterministic component,

Brownian motion and integrals with respect to non-compensated and compensated Poisson

random measures.

Theorem 1.2 (The Lévy Itô decomposition) . Let L be a Lévy process. Then L =

(Lt)t≥0 , admits the following integral representation

Lt = a1t+ βWt +

t∫
0

∫
|z|<1

zÑ (ds, dz) +

t∫
0

∫
|z|≥1

zN (ds, dz) ,

for some constants a1, β ∈ R. Here W = (Wt)t≥0 , (W0 = 0) , is a Brownian motion.
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1.2 Itô’s formula

The following result is fundamental in the stochastic calculus of Lévy process.

Theorem 1.3 (The one-dimensional Itô formula). Let X be a semimartingale and

let f be a C2 real function. Then f (X) is again a semimartingale, and the following

formula holds:

f (Xt)− f (X0) =

t∫
0+

f ′
(
Xs−

)
dXs +

1

2

t∫
0+

f ′′
(
Xs−

)
d [X,X]cs

+
∑

0<s≤t

{
f (Xs)− f

(
Xs−

)
− f ′

(
Xs−

)
∆Xs

}
,

(1.5)

where [X,X]c is the continuous part of the quadratic variation [X,X] .

Proof. See Theorem 32 in Protter [42] (2004. P. 78− 79) .

We can write

[X,X]t = [X,X]ct +X2 (0) +
∑

0<s≤t
(∆Xs)

2

= [X,X]ct +
∑

0≤s≤t
(∆Xs)

2 .

Observe that [X,X]c0 = 0.

Remark 1.3 If X is already continuos and X0 = 0, then 〈X,X〉 = [X,X] = [X,X]c .

Definition 1.8 A semimartingale X will be called quadratic pure jump if [X,X]c = 0.

We also note that, in the case where f (X) = X2, formula (1.5) can be written in the form

X2
t = X2

0 +

t∫
0

2Xs−dXs +

t∫
0

d [X,X]s .

Next we formulate the corresponding multi-dimensional version of Theorem 1.3.
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Theorem 1.4 (The multi-dimensional Itô formula) Let X be an n-tuple of semi-

martingales, and let f have continuous second order partial derivatives. Then f (X) is

again a semimartingale, and the following formula holds:

f (Xt)− f (X0) =

n∑
i=1

t∫
0+

∂f

∂xi

(
Xs−

)
dX i

s +
1

2

∑
1≤i,j≤n

t∫
0+

∂2f

∂xi∂xj

(
Xs−

)
d [X i, Xj]

c
s

+
∑

0<s≤t

{
f (Xs)− f

(
Xs−

)
−

n∑
i=1

∂f

∂xi

(
Xs−

)
∆X i

s

}
.

Proof. See Theorem 4.57 in Jacord and Shiryaev [25].

Lemma 1.1 (Integration by parts) Let X, Y be semimartingale. Then XY is also a

semimartingale and

XY =

∫
X−dY +

∫
Y−dX + [X, Y ] ,

where [X, Y ] the quadratic covariation of X, Y (or bracket process of X, Y ) .

Proof. See Corollary II.6.2 in Protter [42].

1.3 Power jump processes and Teugels martingales

Let (Lt)t≥0 be a Lévy process. In the rest of the this thesis, we assume that all Lévy

measures concerned satisfy the following hypothesis:

Hypothesis 1.3

For some ε > 0 and λ > 0,

∫
(−ε,ε)c

exp (λ |z|) ν (dz) <∞.

This condition implies that

∫ ∞
−∞
|z|i ν (dz) <∞, i ≥ 2,
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and

λ 7→ E [exp (iλLt)] ,

is analytic in a neighborhood of 0. Then, Lt has moments of all orders, and the polynomials

are dense in L2
(
R,P ◦ L−1

t

)
for all t > 0.

Power jump processes and Teugels martingales.

For each integer i ≥ 1, define the process L(i) =
(
L

(i)
t

)
t≥0

by

L
(i)
t =


Lt if i = 1;∑

0<s≤t
(4Ls)i if i ≥ 2.

It’s called the power jump processes. These processes jump at the same time as L, but the

amplitude of their jumps is possibly different. From this definition, we obtain that

E
[
L

(1)
t

]
= E [Lt] = tm1,

where m1 = E [L1] , by relation (1.2), we have also

E
[
L

(i)
t

]
= E

[ ∑
0<s≤t

(4Ls)i
]

= t
+∞∫
−∞

ziν (dz) = tmi, for i ≥ 2,

where mi =
+∞∫
−∞

ziν (dz) .

Remark 1.4 If L is a Brownian motion, then L(i) = 0 for all i ≥ 2, and if L is a Poisson

process, then L(i) = L for all i ≥ 1.

Now, define the processes

Y
(i)
t = L

(i)
t − E

[
L

(i)
t

]
= L

(i)
t − tmi, i ≥ 1,

the compensated power jump process (or Teugels martingale) of order i. Y (i) is a normal
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martingale, since for an integrable Lévy process L, the process {Lt − E [Lt] , t ≥ 0} is a

martingale. This process is introduced by Nualart and Schoutens [34].

The predictable quadratic covariation process of Y (i) and Y (j) is given by

〈
Y (i), Y (j)

〉
t

= mi+jt, i, j ≥ 2.

The quadratic covariation of Y (i) and Y (j) is given by

[
Y (i), Y (j)

]
t

= L
(i+j)
t + 1{i=j=1}σ

2
0t, i, j ≥ 1.

Orthogonalization

The idea to orthogonalize Teugels martingales is to associate with each a polynomial from

the same space then to orthogonalize these polynomials. Specifically, construct a family

of martingales
(
H(i)

)∞
i=1

such that its elements are pairwise strongly orthonormal.

We denote byM2 the space of square integrable martingaleM such that sup
t
E {M2

t } <∞,

and M0 = 0 a.s.

Notice that if M ∈M2, then lim
t→∞

E [M2
t ] = E [M2

∞], and ,Mt = E {M∞ | Ft} . Thus each

M ∈M2 can be identified with its terminal value M∞.

As in Protter [42], we say that

• a martingale M̃ ∈M2 is (weakly) orthogonal to M if E
{
M∞M̃∞

}
= 0.

• two martingales M, M̃ ∈ M2 are said strongly orthogonal if their product N =

M × M̃ is a uniformly integrable martingale.

ThenM, M̃ ∈M2 are strongly orthogonal, if and only if
[
M, M̃

]
is a uniformly integrable

martingale.

If M and M̃ are strongly orthogonal then

E
{
M∞M̃∞

}
= E {N∞} = E {N0} = 0,
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so, strong orthogonality implies orthogonality. The converse is not true however.

Example 1.3 LetM ∈M2 and Y ∈ F0, independent ofM, with P (Y = 1) = P (Y = −1) =

1

2
. Let Nt = YMt. Then Nt ∈M2 and

E {N∞M∞} = E {YM2
∞} = E {Y }E {M2

∞} = 0,

then M and N are orthogonal. However, MN = YM2 is not a martingale ( unless M = 0

) because E {YM2
t | F0} = Y E {M2

t | F0} = YM2
0 6= 0.

Definition 1.9 Let X, Y ∈ L2 (Ω,F), we say that X and Y are weakly orthogonal, if

E [XY ] = 0,

this relationship is denoted X⊥Y.

Let {Pn (x) , n ∈ N} the system of polynomials where Pn (x) is a polynomial of exact

degree n ∈ N.

Definition 1.10 (Orthogonality relations) The system of polynomials {Pn (x) , n ∈ N}

is an orthogonal system of polynomials with respect to some real positive measure φ, if we

have the following orthogonality relation

∫
S

Pn (x)Pm (x) dφ (x) = d2
nδn,m, n,m ∈ N, (1.6)

where S is the support of the measure φ and dn are nonzero constants.

Remark 1.5 In the case where dn = 1, we say the system is orthonormal.

The measure φ usually has a density ρ (x) or is discrete measure with weights ρi at the

points xi, the relation (1.6) can be written in the form

∫
S

Pn (x)Pm (x) ρ (x) dx = d2
nδn,m, n,m ∈ N,

20



Chapter 1. An introduction to Lévy process and BSDEs for Lévy processes

in the former case and

q∑
i=0

Pn (xi)Pm (xi) ρidx = d2
nδn,m, n,m ∈ N,

in latter case where it is possible that q =∞.

It was shown by Nualart and Schoutens [34] that the set of pairwise strongly orthogonal

martingales
(
H(i)

)∞
i=1

is a linear combination of the Y (j)
t , j = 1, ... defined by

H
(i)
t = Y

(i)
t + ai,i−1Y

(i−1)
t + ...+ ai,1Y

(1)
t , i ≥ 1. (1.7)

Then, we get

[
H(i), Y (i)

]
t

= L
(i+j)
t + ai,i−1L

(i+j−1)
t + ...+ ai,1L

(1+j)
t + σ2

0t1{j=1},

and thus
[
H(i), Y (i)

]
is a martingale if and only if we have E

[
H(i), Y (i)

]
1

= 0.

So we are looking for a set of pairwise strongly orthonormal martingales
(
H(i)

)∞
i=1
. For

this end, we consider two spaces:

(i) The first space S1 is the space of all real polynomials on the positive real line. We

endow this space with the scalar product 〈., .〉1 , given by

〈
P (x) , P̂ (x)

〉
1

=

+∞∫
−∞

P (x) P̂ (x)x2ν (dx) + σ2
0P (0) P̂ (0) .

According to hypothesis 1.3, this scalar product is well defined. Note that

〈xi−1, xj−1〉1 =

+∞∫
−∞

xi+jν (dx) + σ2
01{i=j=1}

= mi+j + σ2
01{i=j=1}, i, j = 1, 2, ....
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(ii) The second space S2 is the space of the process of the form

a1Y
(1) + a2Y

(2) + ...+ anY
(n), ai ∈ R, n = 1, 2, ....

We endow this space with the scalar product 〈., .〉2 , given by

〈
Y (i), Y (j)

〉
2

= E
[[
Y (i), Y (j)

]
1

]
= E

[
L

(i+j)
1

]
+ σ2

01{i=j=1},

= mi+j + σ2
01{i=j=1}, i, j = 1, 2, ...

So it’s clearly that xi−1 ←→ Y (i) is an isometry between S1 and S2. It is therefore suffi cient

to orthogonalize the polynomials {1, x, x2, ...} in to obtain an orthogonalization of the

martingale
{
Y (1), Y (2), ...

}
in S2.

Then, we get this strong orthonormality is equivalent to the existence of coeffi cients ai,k

correspond to the orthonormalization of the polynomials 1, x, x2, .. with respect to the

measure

µ (dx) = x2ν (dx) + σ2
0δ0 (dx) , (1.8)

where δ0 (dx) = 1 when x = 0 and zero otherwise, that is, the polynomials qi defined by

qi−1 (x) = ai,ix
i−1 + ai,i−1x

i−2 + ...+ ai,1,

then {qi (x)} is the system of orthonormalized polynomials such that qi−1 (x) corresponds

to H(i) (t) . Also we define the polynomials

pi (x) = xqi−1 (x) = ai,ix
i + ai,i−1x

i−1 + ...+ ai,1x,

p̃i (x) = x (qi−1 (x)− qi−1 (0)) = ai,ix
i + ai,i−1x

i−1 + ...+ ai,2x
2.

We assume from now on that the family
(
H(i)

)∞
i=1

of strongly orthonormal martingales is
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the one thus obtained such that its predictable quadratic variation process (or the compen-

sator of
[
H(i), H(j)

]
) is

〈
H(i), H(j)

〉
= δijt and

[
H(i), H(j)

]
−
〈
H(i), H(j)

〉
is a martingale.

Example 1.4 (Simple Lévy process) The simple Lévy process is given by

Lt = σ0Wt + α1N1 (t) + ...+ αkNk (t) , ...t ≥ 0.

where (Wt)t≥0 is a standard Brownian motion, {Nk (t) , t ≥ 0} are independent Poisson

processes (and independent of Brownian motion) of parameter λ1, ..., λk, respectively, σ0 >

0 and α1, ..., αk are different non-null numbers. The Lévy measure of L is ν =
k∑
j=1

λjδαj

and satisfies the hypothesis 1.3.

However, in this context, in addition to the family
(
H(i)

)k
i=1
, we also have the set of

martingales: {Wt, Nj (t)− λ1t, ..., Nk (t)− λkt}. It seems sensible to use the last family

instead of the former. Indeed observe that

L
(1)
t = Lt = σ0Wt +

k∑
j=1

αjNj (t) ,

and

L
(i)
t =

∑
0<s≤t

(4Ls)i =
k∑
j=1

αijNj (t) , i ≥ 2,

because two Poisson processes define in the same filtration are independent if and only if

they do not jump at the same time ( See Bertoin [5], p.5). Since

Y
(i)
t = L

(i)
t −mit, i ≥ 1,

we have

Y
(1)
t = σ0Wt +

k∑
j=1

αj (Nj (t)− λjt) ,
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and

Y
(i)
t =

k∑
j=1

αij (Nj (t)− λjt) , i ≥ 2.

Then, the martingales Y (i), i ≥ 1, are linear combinations of Wt, N1 (t)− λ1t, ..., Nk (t)−

λkt. Since the martingales H(i) are a linear combination of Y (1), ..., Y (i) it follows that

H(i) are also a linear combination of Wt, N1 (t)− λ1t, ..., Nk (t)− λkt.

Furthermore, we know that H(i) = 0 for all i ≥ k + 1.

The following result gives the decomposition of Teugels martingale which used in the

second chapter and in this case take σ2
0 = 1.

Lemma 1.2 (i) The process H(i)
t can be represented as follows:

H
(i)
t = qi−1 (0)Wt +

∫
R
pi (x) Ñ (t, dx) ,

where Wt be a Brownian motion, and Ñ (t, dx) is the compensated Poisson random mea-

sure that corresponds to the pure jump part of Lt and the polynomials qi−1 (0) and pi (x)

associated to Lt.

(ii) The polynomials pi and qj are linked by the relation:

∫
R
pi (x) pj (x) v (dx) = δij − qi−1 (0) qj−1 (0) .

Proof. See Lemma 2.1 in Pereira and Shamarova [41].

The main result in Nualart and Schoutens [34] is the predictable representation property

(PRP).

Theorem 1.5 (Predictable representation property) Every random variable F in L2 (Ω,F ,P)

has representation of the form

F = E [F ] +

∞∑
i=1

+∞∫
0

ϕ(i)
s dH

(i)
s ,
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where ϕ(i)
s is predictable.

Proof. See Theorem 2 in Nualart and Schoutens [34].

1.4 Backward stochastic differential equations for Lévy

processes (BSDE)

Let (Lt)t≥0 be a Lévy process defined on a complete probability space (Ω,F ,P) , we denote

by (Ft)t≥0 the natural filtration generated by (Lt) .

We consider the following BSDE:


−dYt = f

(
t, w, Yt− , Zt

)
dt−

∞∑
i=1

Z
(i)
t dH

(i)
t ,

YT = ξ,

(1.9)

where H(i)
t is the orthonormalized Teugels martingale of order i associated with the Lévy

process L, ξ is some givenFT -measurable real-valued with value inR, and (f (t, Y, Z))0≤t≤T

is a progressively measurable processes.

The map f is called the generator and ξ the terminal datum.

We consider the following assumptions:

(H1.1) there exist a constant C, such that ∀t ∈ [0, T ] ,∀ (Y, Z) and (Y ′, Z ′) in R× P2 (R)

|f (t, Y, Z)− f (t, Y ′, Z ′)| ≤ C
(
|Y − Y ′|+ ‖Z − Z ′‖P2(R)

)
;

(H1.2) the integrability condition:

E

|ξ|2 +

T∫
0

|f (s, 0, 0)|2 ds

 <∞.
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If (f, ξ) satisfies the assumption (H1.1) and (H1.2) , the pair (f, ξ) is said to be

standard data for the BSDE (1.9) .

Definition 1.11 A solution of the BSDE (1.9) is a couple of processes {(Yt, Zt) , 0 ≤ t ≤ T}

which belongs to space L2
F (0, T,R)× l2F (0, T,R) and satisfies the following relation holds

for all t ∈ [0, T ] :

Yt = ξ +

T∫
t

f
(
s, w, Ys− , Zs

)
ds−

∞∑
i=1

T∫
t

Z(i)
s dH

(i)
s . (1.10)

Note that the progressive measurability of {(Yt, Zt) , 0 ≤ t ≤ T} implies that (Y0, Z0) is

deterministic.

The following result was proved by Nualart and Schoutens [35].

Theorem 1.6 Under assumptions (H1.1) and (H1.2) the BSDE (1.10) has a unique solu-

tion.

Proof. See Theorem 1 in Nualart and Schoutens [35].

The next two chapters, are devoted to study the solvability of fully coupled forward-

backward stochastic differential equations driven by jumps Teugels martingales.
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Chapter 2

Forward-backward stochastic

differential equations driven by

Teugels Martingales

2.1 Introduction

Let (Lt)0≤t≤T be a R−valued Lévy process defined on a complete filtered probability space(
Ω,F , (Ft)t≥0 , P

)
satisfying the usual conditions.

We also assume that Ft = F0 ∨ σ (Ls, s ≤ t) ∨N .

The aim of this chapter is to prove an existence and uniqueness result of solutions of the

following coupled forward-backward stochastic differential equation (FBSDE for short)


Xt = X0 +

t∫
0

f (s, w,Xs, Ys, Zs) ds+
∞∑
i=1

t∫
0

σi
(
s, w,Xs− , ys−

)
dH

(i)
s ,

Yt = ϕ (XT ) +
T∫
t

g (s, w,Xs, Ys, Zs) ds−
∞∑
i=1

T∫
t

Zi
sdH

(i)
s ,

(2.1)

where t ∈ [0, T ] , Ht = (H i
t)
∞
i=1 are pairwise strongly orthonormal Teugels martingales

associated with the Lévy process Lt. For any R-valued and F0-measurable random vector
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x0, satisfying E |X0|2 <∞, we are looking for an R×R×P2 (R)-valued solution (xt, yt, zt)

on an arbitrarily fixed large time duration, which is square-integrable and adapted with

respect to the filtration Ft generated by Lt and F0 satisfying

E
t∫

0

(
|Xt|2 + |Yt|2 + ‖Zt‖2

P2(R)

)
dt <∞.

This type of equations has been introduced by R.S. Pereira and E. Shamarova [41], then

by Baghery et al. [3].

Let us point out that our work extends the results of Jianfeng Zhang [53], to FBSDEs

driven by general Lévy processes. We note that much of the technical diffi culties coming

from the Teugels martingales are due to the fact that the quadratic variation [H i, Hj]

is not absolutely continuous, with respect to the Lebesgue measure. To overcome these

diffi culties, we use the fact that the predictable quadratic variation process 〈H i, Hj〉t is

equal to δijt and that [H i, Hj]t − 〈H i, Hj〉t is a martingale.

This chapter is organized as follows. In the second section, we formulate the problem of

the existence and uniqueness of the solution to FBSDEs (2.1). The main idea of the proof

is to construct a solution on small intervals, and then extend it piece by piece to the whole

interval. The third section is devoted to prove stability and comparison theorems for the

solutions to FBSDEs (2.1).

2.2 Existence and uniqueness of solutions

In this section, we will show that, under some assumptions on the derivatives of the

coeffi cients, one can prove the existence and uniqueness of a solution of FBSDE (2.1).
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Consider the FBSDEs :


Xt = X0 +

t∫
0

f (s,Xs, Ys, Zs) ds+
t∫

0

σ
(
s,Xs− , Ys−

)
dHs,

Yt = ϕ (XT ) +
T∫
t

g (s,Xs, Ys, Zs) ds−
T∫
t

ZsdHs,

(2.2)

where

f : [0, T ]× Ω× R× R× P2 (R)→ R,

σ : [0, T ]× Ω× R× R→ P2 (R) ,

g : [0, T ]× Ω× R× R× P2 (R)→ R,

ϕ : Ω× R→ R,

are progressively measurable. Here, for notational simplicity, we shall denote

∫ t
0
σ
(
s, w,Xs− , Ys−

)
dHs and

∫ T
t
ZsdHs

instead of
∞∑
i=1

∫ t
0
σi
(
s, w,Xs− , Ys−

)
dH

(i)
s and

∞∑
i=1

∫ T
t
Zi
sdH

(i)
s

respectively, where zs = {zis}
∞
i=1 , σs = {σis}

∞
i=1 , σ

i : [0, T ]×Ω×R×R→ P2 (R) .We also

use the following notation

M2 (0, T ) = S2
F (0, T,R)× S2

F (0, T,R)× l2F (0, T,R) .

Furthermore, we say that FBSDE (2.2) is solvable if it has an adapted solution. An

FBSDE is said to be nonsolvable if it is not solvable.

The following assumptions will be considered in this chapter:

(H2.1) There exist λ, λ0 > 0, such that ∀t ∈ [0, T ] ,∀ (x, y, z) and (x′, y′, z′) in R× R×
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P2 (R)

|f (t, x, y, z)− f (t, x′, y′, z′)| ≤ λ
(
|x− x′|+ |y − y′|+ ‖z − z′‖P2(R)

)
,

|σ (t, x, y)− σ (t, x′, y′)|2 ≤ λ2
(
|x− x′|2 + |y − y′|2

)
,

|g (t, x, y, z)− g (t, x′, y′, z′)| ≤ λ
(
|x− x′|+ |y − y′|+ ‖z − z′‖P2(R)

)
,

|ϕ (x)− ϕ (x′)| ≤ λ0 (|x− x′|) .

(H2.2) The functions f, g, σ, ϕ are differentiable with respect to x, y, z with uniformly

bounded derivatives such that

σyfz = 0 and fy + σxfz + σygz = 0. (2.3)

(H2.3) Assume that, for every p ≥ 1,

V2p
0

4
= E

{
|X0|2p + |ϕ (0)|2p +

∫ T
0

[
|f (t, 0, 0, 0)|2p + ‖σ (t, 0, 0)‖2p

P2(R)

+ |g (t, 0, 0, 0)|2p
]
dt
}
<∞.

Let us mention that assumption (H2.2) has been introduced for the first time by Zhang

[53] in the case of FBSDEs without jumps.

2.2.1 Small time duration

In this subsection we try to adopt the method of contraction mapping to prove the solv-

ability of FBSDE (2.2) in small time durations.

We shall start by giving and proving the following technical Lemma. Let us introduce the

following semi-coupled FBSDE:

 X̃t = X0 +
∫ t

0
f
(
s, X̃s, Ys, Zs

)
ds+

∫ t
0
σ
(
s, X̃s−, Ys−

)
dHs,

Ỹt = ϕ (XT ) +
∫ T
t
g
(
s, X̃s, Ỹs, Z̃s

)
ds−

∫ T
t
Z̃sdHs.

(2.4)
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Lemma 2.1 Assume that (H2.1) and (H2.3) are satisfied (for p = 1). Let
(
X̃s, Ỹs, Z̃s

)
and

(
Ũt, Ṽt, Ĩs

)
belong to M2 (0, T ) and satisfy the equation (2.4), then there exists three

constants c, c′ and c′′ depending on λ and λ0, such that the following estimates hold true

(
1− cT 1

2

)
E sup

0≤t≤T

∣∣∣X̃s − Ũt
∣∣∣2 ≤ cT

1
2

E sup
0≤s≤T

|Ys − Vs|2 + E
T∫

0

‖Zs − Is‖2
P2(R) ds

 ,

(2.5)

(1− c′′T )E
(

sup
0≤t≤T

∣∣∣Ỹt − Ṽt∣∣∣2) ≤ c′′ (1 + T )E
(

sup
0≤s≤T

∣∣∣X̃s − Ũs
∣∣∣2) , (2.6)

E
[∫ T

0

∥∥∥Z̃s − Ĩs∥∥∥2

P2(R)
ds

]
≤ c′

(
(1 + T )E

(
sup

0≤s≤T

∣∣∣X̃s − Ũs
∣∣∣2)+ TE

(
sup

0≤s≤T

∣∣∣Ỹs − Ṽs∣∣∣2)) .
(2.7)

Proof. Let us consider (Xt, Yt, Zt)0≤t≤T ,
(
X̃t, Ỹt, Z̃t

)
0≤t≤T

, (Ut, Vt, It)0≤t≤T ,
(
Ũt, Ṽt, Ĩt

)
0≤t≤T

∈

M2 (0, T ) .

First, we proceed to prove (2.5).

Applying Itô’s formula to
∣∣∣X̃t − Ũt

∣∣∣2 , taking expectation and using assumption (H2.1), the

fact that [H i, Hj]t − 〈H i, Hj〉t is an Ft-martingale and 〈H i, Hj〉t = δijt, then there exists

a constant c, depending on λ such that

E sup
0≤t≤T

∣∣∣X̃t − Ũt
∣∣∣2 ≤ c

[
E
∫ T

0

∣∣∣X̃s − Ũs
∣∣∣ (∣∣∣X̃s − Ũs

∣∣∣+ |Ys − Vs|+ ‖Zs − Is‖2
P2(R)

)
ds

+E
∫ T

0

(∣∣∣X̃s − Ũs
∣∣∣2 + |Ys − Vs|2

)
ds

]
+2E sup

0≤t≤T

∣∣∣∫ t0 (X̃s− − Ũs−
)
σ
(
s, X̃s−, Ys−

)
− σ

(
s, Ũs−, Vs−

)
dHs

∣∣∣ .
Burkholder-Davis-Gundy’s inequality applied to the martingale

∫ t

0

(
X̃s − Ũs

)
σ
(
s, X̃s−, Ys−

)
− σ

(
s, Ũs−, Vs−

)
dHs,
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yields the existence of a constant C > 0, such that

E sup
0≤t≤T

∣∣∣∫ t0 (X̃s − Ũs
)(

σ
(
s, X̃s−, Ys−

)
− σ

(
s, Ũs−, Vs−

))
dHs

∣∣∣
≤ CE

([∫ ·
0

(
X̃s− − Ũs−

)(
σ
(
s, X̃s−, Ys−

)
− σ

(
s, Ũs−, Vs−

))
dHs

]) 1
2
.

Moreover, since 〈H i, H i〉 = δijt and [M ]t = 〈M〉t + ψt, where ψt is a uniformly integrable

martingale starting at 0, then

E
(

sup
0≤t≤T

∣∣∣∫ t0 (X̃s − Ũs
)(

σ
(
s, X̃s−, Ys−

)
− σ

(
s, Ũs−, Vs−

))
dHs

∣∣∣)1/2

= CE
(〈 ·∫

0

(
X̃s− − Ũs−

)
σ
(
s, X̃s−, Ys−

)
− σ

(
s, Ũs−, Vs−

)
dHs

〉
t

+ ψt

)1/2

≤ CE
(
T∫
0

∣∣∣X̃s − Ũs
∣∣∣2 ∥∥∥σ (s, X̃s, Ys

)
− σ

(
s, Ũs, Vs

)∥∥∥2

P2(R)
ds

)1/2

.

Then, modifying c if necessary, we have

E
[

sup
0≤t≤T

∣∣∣X̃t − Ũt
∣∣∣2]

≤ cT 1/2

(
E
(

sup
0≤s≤T

∣∣∣X̃s − Ũs
∣∣∣2)+ E

(
sup

0≤s≤T
|Ys − Vs|2

)
+ E

(∫ T
0
‖Zs −Ws‖2

P2(R) ds
))

;

which implies that,

(
1− cT 1/2

)
E
(

sup
0≤t≤T

∣∣∣X̃t − Ũt
∣∣∣2) ≤ cT 1/2

(
E
(

sup
0≤s≤T

|Ys − Vs|2
)

+ E
(∫ T

0

‖Zs − Is‖2
P2(R) ds

))
.

On the other hand, by applying Itô’s formula to
∣∣∣Ỹt − Ṽt∣∣∣2, we get

∣∣∣Ỹt − Ṽt∣∣∣2 +
T∫
t

∥∥∥Z̃s − Ĩs∥∥∥2

P2(R)
ds

=
∣∣∣ϕ(X̃T

)
− ϕ

(
ŨT

)∣∣∣2 + 2
T∫
t

(
Ỹs − Ṽs

)(
g
(
s, X̃s, Ỹs, Z̃s

)
− g

(
s, Ũs, Ṽs, Ĩs

))
ds

−2
T∫
t

(
Ỹs − Ṽs

)(
Z̃s − Ĩs

)
dHs −

∑
i,j

T∫
t

(
Z̃i
s − Ĩ is

)(
Z̃j
s − Ĩjs

)
d [H i, Hj]s .

(2.8)

Thus, by taking expectations, invoking the assumption (H2.1) and using the fact that
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[H i, Hj]t − 〈H i, Hj〉t is an Ft-martingale and 〈H i, Hj〉t = δijt, one can show that there

exists a constant c′, depending on λ and λ0, such that

E
∫ T

0

∥∥∥Z̃s − Ĩs∥∥∥2

P2(R)
ds ≤ c′

[
E
∣∣∣X̃T − ŨT

∣∣∣2
+E

∫ T
0

∣∣∣Ỹs − Ṽs∣∣∣ (∣∣∣X̃s − Ũs
∣∣∣+
∣∣∣Ỹs − Ṽs∣∣∣+

∥∥∥Z̃s − Ĩs∥∥∥2

P2(R)

)
ds

]
.

Using the fact that |ab| ≤ 1
2

(
|a|2 + |b|2

)
for any a, b ∈ R, we have

E
∫ T

0

∣∣∣Z̃s − Ĩs∣∣∣2 ds ≤ c′
[
(1 + T )E sup

0≤s≤T

∣∣∣X̃s − Ũs
∣∣∣2

+TE sup
0≤s≤T

∣∣∣Ỹs − Ṽs∣∣∣2]+
1

2
E
∫ T

0

∥∥∥Z̃s − Ĩs∥∥∥2

P2(R)
ds.

By modifying c′ if necessary, we obtain

E
∫ T

0

∥∥∥Z̃s − Ĩs∥∥∥2

l2(R)
ds

≤ c′
[
(1 + T )E sup

0≤s≤T

∣∣∣X̃s − Ũs
∣∣∣2 + TE sup

0≤s≤T

∣∣∣Ỹs − Ṽs∣∣∣2] . (2.9)

Using equality (2.8) once again, and the Burkholder-Davis-Gundy inequality, we show that

there exists a constant c′′, only depending on λ and λ0, such that

E sup
0≤t≤T

∣∣∣Ỹt − Ṽt∣∣∣2 ≤ c′′

[
E
∣∣∣X̃T − ŨT

∣∣∣2 + E
(∫ T

0

∣∣∣Ỹs − Ṽs∣∣∣2 ∥∥∥Z̃s − Ĩs∥∥∥2

l2(R)
ds

)1/2

+E
∫ T

0

∣∣∣Ỹs − Ṽs∣∣∣ (∣∣∣X̃s − Ũs
∣∣∣+
∣∣∣Ỹs − Ṽs∣∣∣+

∥∥∥Z̃s − Ĩs∥∥∥2

P2(R)

)
ds

]
.

Then, Taking into account (2.9) , using Young’s inequality one more time, and modifying

c′′ if necessary, we get

E
(

sup
0≤t≤T

∣∣∣Ỹt − Ṽt∣∣∣2) ≤ c′′
[
(1 + T )E

(
sup

0≤s≤T

∣∣∣X̃s − Ũs
∣∣∣2)+ TE

(
sup

0≤s≤T

∣∣∣Ỹs − Ṽs∣∣∣2)]
+1

2
E
(

sup
0≤t≤T

∣∣∣Ỹt − Ṽt∣∣∣2)
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Then, modifying c′′ if necessary, we have

(
1− c′′T

)
E
(

sup
0≤t≤T

∣∣∣Ỹt − Ṽt∣∣∣2) ≤ c′′ (1 + T )E
(

sup
0≤s≤T

∣∣∣X̃s − Ũs
∣∣∣2) .

Lemma 2.1 is proved.

We now state and prove main result.

Theorem 2.1 Suppose that (H1.1) and (H1.3) (for p = 1) are satisfied. Then, for every

F0-measurable random vector X0, there exists a constant δ depending only on λ and λ0,

such that for T ≤ δ, equation (2.2) has a unique solution which belongs to M2 (0, T ).

Proof. Let (Xt, Yt, Zt)0≤t≤T be a possible solution of FBSDE (2.2) and
(
X̃, Ỹ, Z̃

)
be

defined as in Lemma 2.1. It is clear that the process X̃ is a solution of a Forward component

of the SDE (2.4), whereas the couple
(
Ỹ, Z̃

)
is a solution of a Backward component of the

SDE (2.4) SDE. Then
(
X̃, Ỹ, Z̃

)
is a solution of the above semi-coupled Forward Backward

SDE (2.4). To prove the existence and the uniqueness of the solution in M2 (0, T ), we use

the fixed point method. Let us define a mapping Ψ from M2 (0, T ) into itself defined by

Ψ (X, Y, Z) =
(
X̃, Ỹ, Z̃

)
.

We want to prove that there exists a constant δ > 0, only depending on λ and λ0, such

that for T ≤ δ, Ψ is a contraction on M2 (0, T ) equipped with the norm

‖Ψ (X, Y, Z)‖2
M2(0,T ) = E

{
sup

0≤t≤T

[
|Xt|2 + |Yt|2

]
+
∫ T

0
‖Zt‖2

P2(R) dt

}
.

In order to achieve this goal, we firstly assume that T ≤ 1. Further, we set

Ψ (X, Y, Z) =
(
X̃, Ỹ, Z̃

)
, Ψ (U, V, I) =

(
Ũ, Ṽ, Ĩ

)
.

where(Xt, Yt, Zt)0≤t≤T , (Ut, Vt, It)0≤t≤T be two elements of M
2 (0, T ) . Thus, by invoking
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and combining the results (2.5) , (2.6) and (2.7) of the Lemma 2.1, a simple computation

shows that there exists a constant δ depending on λ and λ0, such that for T ≤ δ, the

following estimate holds true

‖Ψ (X, Y, Z)−Ψ (U, V, I)‖M2(0,T ) ≤ D ‖(X, Y, Z)− (U, V, I)‖M2(0,T ) ,

For some constant 0 < D < 1.This proves that the map Ψ is contraction from M2 (0, T )

into itself. Furthermore, It follows immediately that this mapping has a unique fixed point

(Xt, Yt, Zt) progressively measurable which is the unique solution of FBSDE (2.1). The

proof is complete.

In the above proof, it is crucial that the time duration is small enough, besides condition

(H2.1). Starting from the next chapter, we are going to use different methods to approach

the solvability problem for the fully coupled FBSDE driven by Teugels martingales associ-

ated with some Lévy processes having moment of all orders and an independent Brownian

motion in stopping time duration.

The following proposition gives a priori estimates, which shows in particular the continuous

dependence of the solution upon the data.

Proposition 2.1 Under the same assumptions of the Theorem 2.1, there exist δ and C0

depending on λ and λ0, such that for T ≤ δ, the following estimates hold true:

i)

‖Π‖ = E
(

sup
0≤t≤T

[
|Xt|2 + |Yt|2

]
+

∫ T

0

‖Zt‖2
P2(R) dt

) 1
2

≤ C0V0.

ii)

E
{

sup
0≤t≤T

[
|Xt|2p + |Yt|2p

]
+

(∫ T

0

‖Zt‖2
P2(R) dt

)p}
<∞. (2.10)

Proof. Arguing as in the proof of Lemma 2.1 and standard arguments of FBSDEs (see

for example [1] for the Brownian case), one can prove (i) .
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Now we proceed to prove (ii) , we want to prove that there exists a constant δ > 0, only

depending on λ, λ0 and p, such that for T ≤ δ, the process satisfy the inequality 2.10. For

this end, we firstly assume that T ≤ 1. Let us define the stopping time

Rk = inf {t : |Xt|+ |Yt| > k} with X0 = 0.

Applying Itô’s formula to |Xt|2p , we obtain

|Xt|2p = |X0|2p + 2p
∫ t∧Rk

0
X2p−1
s f (s,Xs, Ys, Zs) ds+ 2p

∫ t∧Rk
0

X2p−1
s σ

(
s,Xs− , Ys−

)
dHs

+p (2p− 1)
∫ t∧Rk

0
X2p−2
s d [X,X]s

+
∑

0<s≤t∧Rk

{
X2p
s −X2p

s− − 2pX2p−1
s ∆Xs − p (2p− 1)X2p−2

s (∆Xs)
2} .

Then

sup
0≤t≤T∧Rk

|Xt|2p ≤ |X0|2p + 2p
∣∣∣∫ T∧Rk0

X2p−1
s f (s,Xs, Ys, Zs) ds

∣∣∣
+2p sup

0≤t≤T∧Rk

∣∣∣∫ t∧Rk0
X2p−1
s σ

(
s,Xs− , Ys−

)
dHs

∣∣∣+ p (2p− 1)
∫ T∧Rk

0
|Xs|2p−2 |σ (s,Xs, Ys)|2 ds

+p (2p− 1)
∞∑

i,j=1

∫ T∧Rk
0

|Xs|2p−2 (σi (s,Xs, Ys) , σ
j (s,Xs, Ys)) d ([H i, Hj]t − 〈H i, Hj〉t) + Ĩ1.

Taking expectation, using Burkholder-Davis-Gundy inequality and the fact that [H i, Hj]t−

〈H i, Hj〉t is an Ft-martingale and 〈H i, Hj〉t = δijt, we show that there exists a constant c

such that

E sup
0≤t≤T∧Rk

|Xt|2p ≤ E |X0|2p + 2pE
(∫ T∧Rk

0
|Xs|2p−1 |f (s,Xs, Ys, Zs)| ds

)
+2pcE

(∫ T∧Rk
0

|Xs|4p−2 |σ (s,Xs, Ys)|2 ds
) 1

2

+p (2p− 1)E
(∫ T∧Rk

0
|Xs|2p−2

∣∣∣σ (s, X̃s, Ỹs

)∣∣∣2 ds)+ E
∣∣∣Ĩ1

∣∣∣ .
Therefore, using assumption (H1) , there exists a constant c′p,λ, only depending on p and
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λ, we get

E sup
0≤t≤T∧Rk

|Xt|2p ≤ E |X0|2p + E
∣∣∣Ĩ1

∣∣∣+ c′p,λ

[
E
∫ T∧Rk

0
|Xs|2p−1 (|Xs|+ |Ys|

+ ‖Zs‖P2(R)

)
+ E

∫ T∧Rk
0

|Xs|2p−1 |f (s, 0, 0, 0)| ds
]

+ +E
(∫ T∧Rk

0
|Xs|4p−2 |σ (s,Xs, Ys)|2 ds

) 1
2

+E
(∫ T∧Rk

0
|Xs|2p−2 |σ (s,Xs, Ys)|2 ds

)
.

We deduce, by using Young’s estimate and modifying c′p,λ if necessary,

E sup
0≤t≤T∧Rk

|Xt|2p ≤ c′p,λ

[
E |X0|2p + E

∣∣∣Ĩ1

∣∣∣+ E
(∫ T∧Rk

0
|f (s, 0, 0, 0)| ds

)2p

+E
(∫ T∧Rk

0
|σ (s, 0, 0)|2 ds

)p
+ E

∫ T∧Rk
0

(
|Xs|2p + |Ys|2p

)
ds

+T pE
(∫ T∧Rk

0
||Z||2P2(R) ds

)p)
.

(2.11)

On the other hand, applying Itô’s formula to |Ys|2p , we have for every t ∈ [0, T ∧Rk]

|Yt|2p = |ϕ (XT )|2p + 2
∣∣∣∫ T∧Rkt

Y 2p−1
s g (s,Xs, Ys, Zs)

∣∣∣ ds
+2p

∣∣∣∫ T∧Rkt
Y 2p−1
s ZsdHs

∣∣∣− p (2p− 1)
∞∑

i,j=1

∫ T∧Rk
t

Y 2p−2
s (Zi

s, Z
j
s) d [H i, Hj]s

+
∑

0<s≤t∧Rk

{
Y 2p
s − Y 2p

s− − 2pY 2p−1
s ∆Ys − p (2p− 1)Y 2p−2

s (∆Ys)
2} .

(2.12)

Taking expectation, and using the fact that [H i, Hj]t − 〈H i, Hj〉t is an Ft-martingale and

〈H i, Hj〉t = δijt, one can show that there exists a constant c such that

E |Yt|2p + p (2p− 1)E
∫ T∧Rk
t

|Ys|2p−2 ||Z||2P2(R) ds ≤ E |ϕ (XT )|2p

+2pE
(∫ T∧Rk

t
|Ys|2p−1 |g (s,Xs, Ys, Zs)| ds

)
+ E

(
Ĩ2

)
.

This leads to the following inequality,

E
∫ T∧Rk
t

|Ys|2p−2 ||Z||2P2(R) ds ≤
1

p (2p− 1)

(
E |ϕ (XT )|2p + E

(
Ĩ2

))
+2pE

(∫ T∧Rk
t

|Ys|2p−1 |g (s,Xs, Ys, Zs)| ds
)) (2.13)
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Now, by invoking the inequality (2.12) one more time, using Burkholder-Davis-Gundy

inequality, one can show that there exists a constant cp,such that

E sup
0≤t≤T∧Rk

|Yt|2p ≤ cp

[
E |ϕ (XT )|2p + E

(
Ĩ2

)
+ E

(∫ T∧Rk
0

|Ys|2p−1 |g (s,Xs, Ys, Zs)| ds
)]

+E
∫ T∧Rk

0
|Ys|2p−2 ||Z||2P2(R) ds

]
We substitute the inequality (2.13) into the previous one , we get

E sup
0≤t≤T∧Rk

|Yt|2p ≤ cp

[
E |ϕ (XT )|2p + E

(
Ĩ2

)
+ E

(∫ T∧Rk
0

|Ys|2p−1 |g (s,Xs, Ys, Zs)| ds
)]
.

Using assumption (H2.1) and Young’s inequality, there exists a constant c′′p,λ,λ0
, depending

upon p, λ and λ0, such that

E sup
0≤t≤T∧Rk

|Yt|2p + E
∫ T∧Rk

0
|Ys|2p−2 ||Z||2P2(R) ds ≤ c′′p,λ,λ0

[
E sup

0≤t≤T∧Rk
|Xt|2p + E |ϕ (0)|2p + E

(
Ĩ2

)
+E

∫ T∧Rk
0

|Ys|2p−1 |Zs| ds+ E
∫ T∧Rk

0

(
|Xs|2p + |Ys|2p

)
ds+ E

(∫ T∧Rk
0

|g (s, 0, 0, 0)| ds
)2p
]
.

Hence, by modifying c′′p,λ,λ0
,

E sup
0≤t≤T∧Rk

|Yt|2p ≤ c′′p,λ,λ0

[
E sup

0≤t≤T∧Rk
|Xt|2p + E |ϕ (0)|2p + E (I2)

+E
∫ T∧Rk

0

(
|Xs|2p + |Ys|2p

)
ds+ E

(∫ T∧Rk
0

|g (s, 0, 0, 0)| ds
)2p
]
.

(2.14)

In the other hand, by applying Itô’s formula to |Yt|2 , one can get

∫ T∧Rk
t

‖Zs‖2
P2(R) ds+

∞∑
i,j=1

∫ T∧Rk
t

(Zi
s, Z

j
s) d ([H i, Hj]s − 〈H i, Hj〉s) ≤ |ϕ (XT )|2

+2
∫ T∧Rk
t

|Ys| |g (s,Xs, Ys, Zs)| ds− 2
∫ T∧Rk
t

|Ys| ‖Zs‖P2(R) dHs,

Using assumption (H2.1) and Young’s inequality, then there exists a constant c′′p,λ,λ0
, only
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depending on p, λ and λ0, such that

E
(∫ T∧Rk

0
‖Zs‖2

P2(R) ds
)p
≤ c′′p,λ,λ0

[
E |ϕ (0)|2p + E

(∫ T∧Rk
0

|g (s, 0, 0, 0)| ds
)2p

+E sup
0≤s≤T

|Xs|2p + E sup
0≤s≤T

|Ys|2p
] (2.15)

So, considering (2.11), (2.14) and (2.15), this proves that there exists two constants δ′ > 0

and C1 only depend on λ, λ0 and p, such that for T ≤ δ′,

E sup
0≤s≤T∧Rk

|Xs|2p + E sup
0≤s≤T∧Rk

|Ys|2p + E
(∫ T∧Rk

0
‖Zs‖2

P2(R) ds
)p
≤ C1E

[
|X0|2p + |ϕ (0)|2p

+E
∣∣∣Ĩ1

∣∣∣+ E
∣∣∣Ĩ2

∣∣∣+
(∫ T∧Rk

0
(|f (s, 0, 0, 0)|+ |g (s, 0, 0, 0)|) ds

)2p

+
(∫ T∧Rk

0
‖σ (s, 0, 0)‖2

P2(R) ds
)p]

.

Using Fatou’s Lemma, we obtain

E sup
0≤s≤T

|Xs|2p + E sup
0≤s≤T

|Ys|2p + E
(∫ T

0
‖Zs‖2

P2(R) ds
)p
≤ C1E

[
|X0|2p + |ϕ (0)|2p

+E |I1|+ E |I2|+
(∫ T

0
(|f (s, 0, 0, 0)|+ |g (s, 0, 0, 0)|) ds

)2p

+
(∫ T

0
‖σ (s, 0, 0)‖2

P2(R) ds
)p]

,

(2.16)

where

I1 = lim Ĩ1,

I2 = lim Ĩ2.

For each k, denoting
(
X̃, Ỹ, Z̃

)
=
(
X1[0,Rk), Y 1[0,Rk), Z1[0,Rk)

)
. It is clear that the stopped

process X̃ = X1[0,Rk) is bounded by k, and is a semimartingale as a product of two

semimartingles, which is valid for Ỹ as well. Now, we proceed to prove that

∑
0<s≤t

{
X̃2p
s − X̃

2p
s− − 2pX̃2p−1

s ∆X̃s − p (2p− 1) X̃2p−2
s

(
∆X̃s

)2
}
< C

[
X̃, X̃

]
t
.

Since X̃ takes its values in intervals of the form [−k, k], for h (x) = x2p, it is easy to show
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that ∣∣∣h (x)− h (y)− (y − x)h
′
(x)− (y − x)2 h

′′
(x)
∣∣∣ ≤ C (y − x)2

Thus

I1 =
∑

0<s≤t

∣∣∣∣X̃2p
s − X̃

2p
s− − 2pX̃2p−1

s ∆X̃s − p (2p− 1) X̃2p−2
s

(
∆X̃s

)2
∣∣∣∣

≤ C
∑

0<s≤t

(
∆X̃s

)2

≤ C
[
X̃, X̃

]
t
<∞, P − a.s.

(2.17)

Arguing symmetrically, one can show,

I2 =
∑

0<s≤t

∣∣∣∣Ỹ 2p
s − Ỹ

2p
s− − 2pỸ 2p−1

s ∆Ỹs − p (2p− 1) Ỹ 2p−2
s

(
∆Ỹs

)2
∣∣∣∣

≤ C
∑

0<s≤t

(
∆Ỹs

)2

≤ C
[
Ỹ, Ỹ

]
t
<∞.P − a.s.

(2.18)

Combining (2.17) and (2.18) with (2.16), we get

E sup
0≤s≤T

∣∣∣X̃s

∣∣∣2p + E sup
0≤s≤T

∣∣∣Ỹs∣∣∣2p + E
(∫ T

0

∥∥∥Z̃s∥∥∥2

P2(R)
ds

)p
<∞.P − a.s.

Since the last inequality is valid for
(
X̃, Ỹ, Z̃

)
for each k, it also remains valid for (X, Y, Z)

and this completes the proof.

2.2.2 Large time duration

In this subsection, under same assumption of Theorem 2.1 we extend the result in Theorem

2.1 to arbitrary large time duration.

The following lemma gives estimates of λ̄0 in terms of λ and λ0. This estimation is the

key step for the proof of the main result.
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Lemma 2.2 Consider the following linear FBSDE:

 Xt = 1 +
∫ t

0
(a1
sXs + b1

sYs + c1
sZs) ds+

∫ t
0

(a2
sXs + b2

sYs) dHs,

Yt = FXT +
∫ T
t

(a3
sXs + b3

sYs + c3
sZs) ds−

∫ T
t
ZsdHs.

(2.19)

Assume |ait| , |bit| , |cit| ≤ λ, i = 1, 2, 3 and |F | ≤ λ0. Let δ be as in Theorem 2.1. And assume

further that

b2
t c

1
t = 0; b1

t + a2
t c

1
t + b2

t c
3
t = 0. (2.20)

Then for T ≤ δ,

i) The LFBSDE (2.19) admits a unique solution.

ii)

|Y0| ≤ λ̄0, (2.21)

where

λ̄0 = c
(

[λ0 + 1] e(2λ+λ2)T − 1
)
. (2.22)

Proof. First, we can easily check that LFBSDE (2.19) satisfy assumptions of Theorem

2.1, then it has a unique solution (Xt, Yt, Zt) which belongs to the space M2 (0, T ). This

gives the proof of the assertion (i) .

We shall prove the assertion (ii). We split the proof into two steps.

Step1. For any t ∈ [0, T ) and any ξ ∈ L2 (F0) , we put Π̄s
4
= (Xtξ, Ytξ, Ztξ) , s ∈ [t, T ] .

Then Π̄s satisfies the following linear FBSDE


X̄s = Xtξ +

s∫
t

[
a1
rX̄r + b1

rȲr + c1
rZ̄r
]
dr +

s∫
t

[
a2
rX̄r + b2

rȲr
]
dHr,

Ȳs = FX̄T +
T∫
s

[
a3
rX̄r + b3

rȲr + c3
rZ̄r
]
dr −

T∫
s

Z̄rdHr.

By assertion (i) of Proposition 2.1, we get

E
{∣∣Ȳt∣∣2} = E

{
|Ytξ|2

}
≤ C2

0E
{
|Xtξ|2

}
.
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Since ξ is arbitrary, we have |Yt| ≤ C0 |Xt| , P -a.s.,∀t.

Step2. We define

%
∆
= inf {t > 0 : Xt = 0} ∧ T ; and %n

∆
= inf

{
t > 0 : Xt =

1

n

}
∧ T.

Then %n ↑ % and Xt > 0 for t ∈ [0, %) . We also define the pure jump process η, by the

following formula

ηt =
∏

0<s≤t

(
1− (Xs)

−1 ∆Xs

) (Xs−

)−1

(Xs)
−1

The above product is clearly càdlàg, adapted, converges and is of finite variation. We put

for any t ∈ [0, %) ,

At = ηt (Xt)
−1 .

It should be noted that when we apply Itô’s formula to (Xt)
−1 , a sum of discontinuous

quantities appears. To eliminate this, we shall apply Itô’s formula to At = ηt (Xt)
−1

instead of (Xt)
−1 . Firstly, applying Itô’s formula to At, we have

At = A0 −
∫ t

0
ηs−
(
Xs−

)−2
dXs +

∫ t
0

(
Xs−

)−1
dηs +

∫ t
0
As− (Xs)

−2 d [X,X]cs

+
∑

0<s≤t

(
As − As− + As−

(
Xs−

)−1
(∆Xs)−

(
Xs−

)−1
∆ηs

)
,

(2.23)

Note that η is a pure jump process. Hence [η,X]c = [η, η]c = 0 and

∫ t

0

(
X̃s−

)−1

dηs =
∑

0<s≤t

(
X̃s−

)−1

∆ηs.

Then (2.23) becomes

At = A0 −
∫ t

0
ηs−
(
Xs−

)−2
dXs +

∫ t
0
As−

(
Xs−

)−2
d [X,X]cs

+
∑

0<s≤t

(
As − As− + As−

(
Xs−

)−1
∆Xs

)
,
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The following equality is obvious, from the definition of the process A,

As = As−
(
1− (Xt)

−1 ∆Xt

)
.

Now by replacing the above equality into the previous one, one can get

∑
0<s≤t

(
As − As− + As−

(
Xs−

)−1
∆Xs

)
= 0.

Therefore,

At = A0 −
∫ t

0

As (Xs)
−1 dXs +

∫ t

0

As− (Xs)
−2 d [X,X]cs ,

with

d [X,X]cs =
∑
i,j

(
a2,i
s Xs + b2,i

s Ys
) (
a2,j
s Xs + b2,j

s Ys
)
qi−1 (0) qj−1 (0) ds.

Thanks to Lemma 1.2 in Chapter 1, we get

d [X,X]cs =

[(
a2
sXs + b2

sYs
)2 −

∑
i,j

(
a2,i
s Xs + b2,i

s Ys
) (
a2,j
s Xs + b2,j

s Ys
) ∫

R
pi (x) pj (x) v (dx)

]
ds.

=
[(
a2
sXs + b2

sYs
)2 −Ψs

]
ds.

Hence

At = A0 −
∫ t

0

[
As (Xs)

−1 (a1
sXs + b1

sYs + c1
sZs)− As (Xs)

−2 (a2
sXs + b2

sYs)
2
]
ds

−
∫ t

0
As−

(
Xs−

)−1 (
a2
sXs− + b2

sYs−
)
dHs −

∫ t
0
As (Xs)

−2 Ψsds.

Let us define the following processes

Ŷt = YtAt; Ẑt
4
= AtZt − At (Xt)

−1 Yt
(
a2
tXt + b2

tYt
)
.
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Then after the result of the Step 1, we have

∣∣∣Ŷt∣∣∣ ≤ C0.

Now, applying Itô’s formula to Ŷt, we obtain

dŶt = −At (a3
tXt + b3

tYt + c3
tZt) dt

−
[
YtAt (Xt)

−1 (a1
tXt + b1

tYt + c1
tZt) dt− At (Xt)

−2 (a2
tXt + b2

tYt)
2
]
dt

−
[
At (Xt)

−1 (a2
tXt + b2

tYt)Zt
]
dt−

[
YtAt (Xt)

−2 Ψt

]
dt

+
[
At−Zt − Yt−At−

(
Xt−

)−1 (
a2
tXt− + b2

tYt−
)]
dHt + dÃt,

where we have denoted by Ãt = [A, Y ]t−〈A, Y 〉t . By using the definition of the processes
(
Ŷ, Ẑ

)
it follows that

dŶt = ẐtdHt −
[
c3
t + c1

tη
−1
t Ŷt + a2

t + b2
tη
−1
t Ŷt

]
Ẑtdt

−
[
c1
t b

2
t

(
η−1
t

)2
Ŷ 3
t + (b1

t + a2
t c

1
t + c3

t b
2
t ) η

−1
t Ŷ 2

t

]
dt−

[
a3
tηt + (b3

t + a1
t + c3

ta
2
t ) Ŷt

]
dt

−
[
YtAt (Xt)

−2 Ψt

]
dt+ dÃt.

Thus, by taking into account (2.20),

dŶt = ẐtdHt −
[
c3
t + c1

tη
−1
t Ŷt + a2

t + b2
tη
−1
t Ŷt

]
Ẑtdt

−
[
a3
tηt + (b3

t + a1
t + c3

ta
2
t ) Ŷt

]
dt−

[
YtAt (Xt)

−2 Ψt

]
dt+ dÃt.

We put

Γt = 1 +

∫ t

0

Γs (Xs)
−2 Ψs1{%>s}ds.

Mt = 1 +

∞∑
i=1

∫ t

0

(qi−1 (0))−1Ms

((
c3
s + a2

s

)
+
(
c1
s + b2

s

)
η−1
s Ŷs

)
1{%>s}dWs;

Nt = 1 +

∫ t

0

Ns

(
a1
s + b3

s + a2
sc

3
s

)
1{%>s}ds.
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Applying Itô’s formula to
(

ΓtNtMtŶt

)
, we obtain

d
(

ΓtNtMtŶt

)
= ΓtNtMtẐt1{%>t}dHt

+

∞∑
i=1

(
ΓtŶtNtMt (qi−1 (0))−1 (c3

t + a2
t ) + (c1

t + b2
t ) η

−1
t Ŷt

)
1{%>t}dWt

−ηtΓtNtMta
3
t1{%>s}dt+ ΓtMtNtdÃt.

Taking expectations, we get

Y0 = E
(

Γ%nN%nM%nŶ%n +

∫ %n

0

ηtΓtNtMta
3
tdt

)
. (2.24)

Since
∣∣∣Ŷt∣∣∣ ≤ C0, M is an Ft—martingale and |Nt| ≤ e(2λ+λ2)t. Moreover, we observe that

if τ = T, |Yτ | = |YT | = |FXT | = |FXτ | ≤ λ0 |Xτ | .

If τ < T, Xτ = 0, and thus |Yτ | ≤ C0 |Xτ | = 0.

Therefore, in both cases it holds that |Yτ | ≤ λ0 |Xτ | .

Now, applying Ito’s formula to |Yt|2 from s = %n to s = %, we obtain

|Y%n|
2 + E

(∫ %
%n
‖Zt‖2

P2(R) dt | F%n
)

= E
(
|Yτ |2 + 2

∫ %
%n
Yt (a3

tXt + b3
tYt + c3

tZt) dt | F%n
)

≤ E
(
λ2

0 |X%|2 + C
∫ %
%n

(
|Xt|2 + |Yt|2

)
dt+

1

2

∫ %
%n
‖Zt‖2

P2(R) dt | F%n
)
.

Similarly, applying Ito’s formula to |Xt|2 from s = %n to s = %, we obtain,

E
(
|X%|2 | F%n

)
≤ E

(
|X%|2 + C

∫ %

%n

(
|Xt|2 + |Yt|2

)
dt+

1

2λ2
0

∫ %

%n

‖Zt‖2
P2(R) dt | F%n

)
.

Thus

|Y%n|
2 ≤ E

(
λ2

0 |X%n|
2 + C

∫ %

%n

(
|Xt|2 + |Yt|2

)
dt | F%n

)
.
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Note that |X%n| ≥ 1
n
, then

∣∣∣Ŷ%n∣∣∣ ≤ λ0 |η%n|+ CE 1
2

(∫ %
%n

(∣∣∣X̃t

∣∣∣2 +
∣∣∣Ỹt∣∣∣2) dt | F%n)

≤ λ0 |η%n|+ CE 1
2

(
sup

%n≤t≤%

(∣∣∣X̃t

∣∣∣2 +
∣∣∣Ỹt∣∣∣2) (%− %n) | F%n

)
,

where

X̃t
4
= Xt |η%n| (X%n)−1 ; Ỹt

4
= Yt |η%n| (X%n)−1 .

Now by (2.24), we get

∣∣∣Ŷ0

∣∣∣ ≤ λE (ΓtMt)
∫ T

0
|ηt| e(2λ+λ2)tdt

+E
{
e(2λ+λ2)TM%nΓ%n

(
|η%n|λ0 + CE 1

2

(
sup

%n≤t≤%

(∣∣∣X̃t

∣∣∣2 +
∣∣∣Ỹt∣∣∣2) (%− %n) | F%n

))}
≤ c′

(
e(2λ+λ2)T − 1

)
+ c′′λ0e

(2λ+λ2)T

+CE
{
M%nΓ%nE

1
2

(
sup

%n≤t≤%

(∣∣∣X̃t

∣∣∣2 +
∣∣∣Ỹt∣∣∣2) (%− %n) | F%n

)}
≤ λ̄0 + CE 1

2

(
|M%n|

2 |Γ%n|
2)E 1

2

(
sup

%n≤t≤%

(∣∣∣X̃t

∣∣∣2 +
∣∣∣Ỹt∣∣∣2) (%− %n)

)
≤ λ̄0 + CE 1

4

(
sup

%n≤t≤%

(∣∣∣X̃t

∣∣∣4 +
∣∣∣Ỹt∣∣∣4))E 1

4

(
|%− %n|2

)
.

Note that
(
X̃t, Ỹt

)
satisfies the following LFBSDE:


X̃t = 1 +

∫ t
0

[
a1
r1{%n≤r}X̃r + b1

r1{%n≤r}Ỹr + c1
r1{%n≤r}Z̃r

]
dr

+
∫ t

0

[
a2
r1{%n≤r}X̃r + b2

r1{%n≤r}Ỹr

]
dHr,

Ỹt = FX̃T +
∫ T
t

[
a3
r1{%n≤r}X̃r + b3

r1{%n≤r}Ỹr + c3
r1{%n≤r}Z̃r

]
dr −

∫ T
t
Z̃rdHr.

By (ii) of Proposition 2.1 (We choose p = 2), we have

E
(

sup
%n≤t≤%

(∣∣∣X̃t

∣∣∣4 +
∣∣∣Ỹt∣∣∣4)) ≤ E( sup

0≤t≤T

(∣∣∣X̃t

∣∣∣4 +
∣∣∣Ỹt∣∣∣4)) ≤ C1.
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Thus ∣∣∣Ŷ0

∣∣∣ ≤ λ̄0 + CE
1
4

(
|%− %n|2

)
.

Then for n → ∞, we get
∣∣∣Ŷ0

∣∣∣ ≤ λ̄0.That is, |Y0| ≤ λ̄0 |X0| |η0| = λ̄0.This complete the

proof.

The following result is important.

Proposition 2.2 Let Πi, i = 0, 1, be the solution to FBSDEs:

 X i
t = xi +

∫ t
0
f (s,Πi

s) ds+
∫ t

0
σ
(
s,X i

s−, Y
i
s−
)
dHs,

Y i
t = ϕ (X i

T ) +
∫ T
t
g (s,Πi

s) ds−
∫ T
t
Zi
sdHs.

Assume that (H2.1) and (H2.3) (for p = 1) are satisfied. Then

∣∣Y 1
0 − Y 0

0

∣∣ ≤ λ̄0 |x1 − x0| ,

where λ̄0 is defined by (2.22).

Proof. The proof is the same as in Corollary 1 in [53], by replacing the Brownian part

by the Teugels martingales and using the above lemma.

Now we are able to state and prove of our main result by using similar arguments intro-

duced in [53] consisting in solving the system iteratively in small intervals having fixed

length.

Theorem 2.2 Assume (H2.2) and (H2.3) (for p = 1) are satisfied. Then

i) Equation (2.1) has a unique solution Π ∈M2 (0, T ) .

ii) The following estimate holds

‖Π‖2 ≤ CV 2
0 .

Proof. First we prove (i). Let λ and λ0 be as in Theorem 2.1, and λ̄0 is a constant defined

as in (2.22). Let δ be a constant as in Theorem 2.1, but corresponding to λ and λ̄0 instead
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of λ and λ0. For some integer n, we assume (n− 1) δ < T ≤ nδ and consider a partition

of [0, T ] , with Ti
M
= iT

n
, i = 0, ..., n.

We consider the mapping:

Gn : Ω× R→ R

ω × x 7→ ϕ (ω, x)

Let us consider the following FBSDE over the small interval [Tn−1, Tn],

 Xn
t = x+

∫ t
Tn−1

f (s,Πn
s ) ds+

∫ t
Tn−1

σ
(
s,Xn

s− , Y
n
s−

)
dHs,

Y n
t = Gn

(
Xn
Tn

)
+
∫ Tn
t
g (s,Πn

s ) ds−
∫ Tn
t
Zn
s dHs.

(2.25)

Let LGn denotes the Lipschitz constant of the mapping Gn. Then, by Theorem 2.1 the

required solution of FBSDE (2.25) exists and is unique. Define Gn−1(x)
M
= Y n

Tn−1
, then for

fixed x, Gn−1(x) ∈ FTn−1 . Further, in view of the Proposition 2.2, it’s straightforward to

verify that

LGn−1 ≤ λ1
M
= c

(
[λ0 + 1] e(2λ+λ2)(Tn−Tn−1) − 1

)
≤ λ̄0.

Next, for t ∈ [Tn−2, Tn−1], we consider the following FBSDE:

 Xn−1
t = x+

∫ t
Tn−2

f (s,Πn−1
s ) ds+

∫ t
Tn−2

σ
(
s,Xn−1

s− , Y n−1
s−

)
dHs,

Y n−1
t = Gn−1

(
Xn−1
Tn−1

)
+
∫ Tn−1

t
g (s,Πn−1

s ) ds−
∫ Tn−1

t
Zn−1
s dHs.

(2.26)

Once again, since LGn−1 ≤ λ̄0, by Theorem 2.1, the FBSDE (2.26) has a unique solution.

Then as well, we may define Gn−2 (x) , such that

LGn−2 ≤ λ2
M
= c

(
[λ1 + 1] e(2λ+λ2)(Tn−1−Tn−2) − 1

)
= c

(
[λ0 + 1] e(2λ+λ2)(Tn−Tn−2) − 1

)
≤ λ̄0.

Repeating this procedure backwardly for i = n, ..., 1, we may define Gi such that

LGi ≤ λn−i
M
= c

(
[λ0 + 1] e(2λ+λ2)(Tn−Ti) − 1

)
≤ λ̄0.
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As a conclusion, one can repeat the above construction and, after a finite number of

steps, we obtain the required unique solution in each subinterval of the type [Ti−1, Ti] for

i = 0, ..., n.

Now, we prove by induction that FBSDE (2.1) has a unique solution in the whole time

interval [0, T ]. Our starting point is the small time interval [0, Ti] with i = 1, we know

from the first stage that the following FBSDE has a unique solution in the small time

interval [0, T1] for any X0 ∈ L2 (F0) and t ∈ [0, T1]

 Xt = X0 +
∫ t

0
f (s,Πs) ds+

∫ t
Ti−1

σ (s,Xs−, Ys−) dHs,

Yt = G1 (XT1) +
∫ T1

t
g (s,Πs) ds−

∫ T1

t
ZsdHs.

Once again, for i = 2, one can easily check that the following FBSDE

 Xt = XT1 +
∫ t
T1
f (s,Πs) ds+

∫ t
T1
σ (s,Xs−, Ys−) dHs,

Yt = G2 (XT2) +
∫ T2

t
g (s,Πs) ds−

∫ T2

t
ZsdHs.

t ∈ [T1, T2]

has a unique solution in the time interval [0, T2] .

Repeating this procedure forwardly for i = 2, ..., n and for any X0 ∈ L2 (F0), by extending

the time interval piece by piece, we construct a solution for the following FBSDE

 Xt = XTi−1
+
∫ t
Ti−1

f (s,Πs) ds+
∫ t
Ti−1

σ (s,Xs−, Ys−) dHs,

Yt = Gi (XTi) +
∫ Ti
t
g (s,Πs) ds−

∫ Ti
t
ZsdHs.

t ∈ [Ti−1, Ti]

Clearly this provides a solution to the FBSDE (2.1). From the construction and the

uniqueness of each step, it is clear that this solution is unique.

Now, we turn out to prove (ii). Denote

V 2
t = |f (t, 0, 0, 0)|2 + ‖σ (t, 0, 0)‖2

P2(R) + |g (t, 0, 0, 0)|2 .
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From Theorem 2.1 and by the definition of Gi, we get

E
{
|Gi−1 (0)|2

}
≤ C0E

{
|Gi (0)|2 +

∫ Ti

Ti−1

V 2
t dt

}
.

By induction one can easily prove that

max
0≤i≤n

E
{
|Gi (0)|2

}
≤ Cn

0E
{
|ϕ (0)|2 +

∫ T
0
V 2
t dt
}

= CE
{
|ϕ (0)|2 +

∫ T
0
V 2
t dt
}
.

Set n ≤ T
δ

+ 1 is a fixed constant depending only on λ, λ0 and T , then so is C. Now for

t ∈ [T0, T1], by using (ii) of Theorem 2.1, we get

E

{
sup

0≤t≤T
|Xt|2 + sup

0≤t≤T
|Yt|2

}
≤ CE

{
|X0|2 + |G1 (0)|2 +

∫ T1

T0
V 2
t dt
}

≤ CE
{
|X0|2 + |ϕ (0)|2 +

∫ T
0
V 2
t dt
}
.

Then by induction one can prove

E

{
sup

0≤t≤T
|Xt|2 + sup

0≤t≤T
|Yt|2

}
≤ CE

{
|X0|2 + |ϕ (0)|+

∫ T

0

V 2
t dt

}
. (2.27)

On the other hand, applying Ito’s formula to Yt , we obtain

E
{
|Y0|2 +

∫ T
0
|Zt|2 dt

}
= E

{
|YT |2 + 2

∫ T
0
Ytg (t,Πt) dt

}
≤ E

{
|YT |2 + C

∫ T
0

[
|g (t, 0, 0, 0)|2 + |Xt|2 + |Yt|2

]
dt+

1

2

∫ T
0
‖Zt‖2

P2(R) dt

}
.

Therefore

E

{∫ T

0

|Z|2t dt
}
≤ CE

{
|X0|2 + |ϕ (0)|+

∫ T

0

V 2
t dt

}
. (2.28)

Finally, combining (2.27) and (2.28) leads to ‖Π‖2 ≤ CV 2
0 , which achieves the proof.
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2.3 Proprieties of solutions

In this section, we establish some further properties of the solution to the FBSDE (2.1).

These will include a stability result and a comparison theorem for FBSDE.

2.3.1 Stability theorem

The following results state the stability of the solution of FBSDE (2.1) with respect to the

initial condition and the data. This means that the solution of equation (2.1) does not

change too much under small perturbations of the data. In other words, the trajectories

which are close to each other at specific instant should therefore remain close to each other

at all subsequent instants. To state the next theorem and its corollary, let us consider

Πi, i = 0, 1 the solutions of (2.1) corresponding to (f i, σi, gi, ϕi). We shall consider the

following notations, ∆Π
∆
= Π1−Π0 and for any function h ∆

= f, σ, g, ϕ, we set∆h
∆
= h1−h0.

We now give the stability of the solutions.

Theorem 2.3 Assume that (f i, σi, gi, ϕi, X i
0) , i = 0, 1, satisfy the same conditions of The-

orem 2.2. Then

‖∆Π‖2 ≤ CE
{
|∆X0|2 +

∣∣∆ϕ (X1
T

)∣∣2 +

∫ T

0

[
|∆f |2 + ‖∆σ‖2

P2(R) + |∆g|2
] (
t,Π1

t

)
dt

}
.

Proof. For 0 ≤ ε ≤ 1, let Πε be the solution to the following FBSDE:


Xε
t = X0 + ε∆X0 +

∫ t
0

(f 0 (s,Πε
s) + ε∆f (s,Π1

s)) ds

+
∫ t

0

(
σ0
(
s,Xε

s− , Y
ε
s−

)
+ ε∆σ

(
s,X1

s− , Y
1
s−

))
dHs;

Y ε
t = (ϕ0 (Xε

T ) + ε∆ϕ (X1
T )) +

∫ T
t

(g0 (s,Πε
s) + ε∆g (s,Π1

s)) ds−
∫ T
t
Zε
sdHs.
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and OΠε be the solution of the following variational linear FBSDE



∇Xε
t = ∆X0 +

∫ t
0

(
f 0
x (s,Πε

s)∇Xε
s + f 0

y (s,Πε
s)∇Y ε

s + f 0
z (s,Πε

s)∇Zε
s + ∆f (s,Π1

s)
)
ds

+
∫ t

0

(
σ0
x

(
s,Xε

s− , Y
ε
s−

)
∇Xε

s + σ0
y

(
s,Xε

s− , Y
ε
s−

)
∇Y ε

s + ∆σ (s,Π1
s)
)
dHs;

∇Y ε
t = ϕ0

x (Xε
T ) + ∆ϕ (X1

T ) +
∫ T
t

(
g0
x (s,Πε

s)∇Xε
s + g0

y (s,Πε
s)∇Y ε

s + g0
z (s,Πε

s)∇Zε
s

+∆g (s,Π1
s)) ds−

∫ T
t
∇Zε

sdHs;

Then by Theorem 2.1, the above FBSDEs has a unique solution. Moreover, a simple

calculation shows that

∆Πt =

∫ 1

0

d

dε
Πε
tdε =

∫ 1

0

∇Πε
tdε.

since (f 0, σ0, g0) satisfies (2.20), by Lemma 2.2, we obtain

‖∆Πε‖2 ≤ CE

{
|∆X0|2 +

∣∣∆ϕ (X1
T

)∣∣2 +

∫ T

0

[
|∆f |2 + |∆σ|2 + |∆g|2

] (
t,Π1

t

)
dt

}
,

which implies the desired result.

Corollary 2.1 Suppose that (fn, σn, ϕn, gn, Xn
0 ) , for n = 0, 1... satisfy the same condi-

tions of Theorem 2.2. Moreover assume that:

i) Xn
0 → X0

0 in L
2.

ii) For h ∆
= f, σ, ϕ, g , hn (t,Π)→ h0 (t,Π) as n→∞.

iii) E
{
|Xn

0 −X0
0 |

2
+ |ϕn − ϕ0|2 (0) +

∫ T
0

[
|fn − f 0|2 + ‖σn − σ0‖2

P2(R) + |gn − g0|2
]

(t, 0, 0, 0) dt
}
→

0

Then if Πn (resp.Π) denotes the solution of (2.1) corresponding to (fn, σn, ϕn, gn, Xn
0 )

(resp. (f, σ, ϕ, g,X0
0 ), we obtain

∥∥Πn − Π0
∥∥→ 0 as n −→ +∞.
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Proof. Using Theorem 2.3 we have

‖Πn − Πn‖2 ≤ CE
{
|Xn

0 −X0
0 |

2
+ |ϕn − ϕ0|2 (X0

T )

+
∫ T

0

[
|fn − f 0|2 + ‖σn − σ0‖2

P2(R) + |gn − g0|2
]

(t,Π0
t ) dt

}
.

Thus, the desired result follows immediately, by letting n tend to 0, and using the domi-

nated convergence theorem.

2.3.2 Comparison theorem

In what follows we provide, under the same assumptions as for the existence and uniqueness

results, another important result, which is the comparison theorem. Let (X, Y, Z) be the

solution to the following LFBSDE:

 Xt =
∫ t

0
(a1
sXs + b1

sYs + c1
sZs) ds+

∫ t
0

(a2
sXs + b2

sYs) dHs,

Yt = PXT + α +
∫ T
t

(a3
sXs + b3

sYs + c3
sZs + βs) ds−

∫ T
t
ZsdHs.

(2.29)

Firstly, we state and show the following proposition„which is the linear version of the

comparison theorem.

Proposition 2.3 Assume |ait| , |bit| , |cit| ≤ λ, |P | ≤ λ0 and (H2.2) holds true. Assume

further that α ≥ 0 and βs ≥ 0. Then

Y0 ≥ 0.

In order to prove Proposition 2.3, we need the following two Lemmas. Let us introduce

the following linear FBSDE

 Xt =
∫ t

0

(
ā1
sXs + b̄1

sȲs + c̄1
sZ̄s
)
ds+

∫ t
0

(
ā2
sXs + b̄2

sȲs
)
dHs,

Ȳt =
∫ T
t

(
ā3
sXs + b̄3

sȲs + c̄3
sZ̄s
)
ds−

∫ T
t
Z̄sdHs.

(2.30)
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Here, Ȳt
4
= Yt − PtXt, Z̄t

4
= Zt − Pt (a2

tXt + b2
tYt) − gtXt, where P = E (P ) +

∫ T
0
ptdHt,

Pt
4
= E (P ) +

∫ t
0
ptdHt;and



ā1
t

4
= a1

t + Ptb
1
t + Pta

2
t c

1
t + |Pt|2 b2

t c
1
t + ptc

1
t ;

b̄1
t

4
= b1

t + Ptb
2
t c

1
t = b1

t ;

c̄1
t

4
= c1

t ;

ā2
t

4
= a2

t + Ptb
2
t ;

b̄2
t

4
= b2

t ;

ā3
t

4
= a3

t + pta
2
t + Pta

1
t + (b3

t + ptb
2
t + Ptb

1
t )Pt

+ (c3
t + Ptc

1
t )
(
pt + Pta

2
t + |Pt|2 b2

t

)
;

b̄3
t

4
= b3

t + ptb
2
t + Ptb

1
t + Ptb

2
t c

3
t + |Pt|2 b2

t c
1
t ;

c̄3
t

4
= c3

t + Ptc
1
t .

Lemma 2.3 Let (X, Y, Z) be the solution of LFBSDE (2.29) , assume β = 0 and p ≤ C

.Then
(
X, Ỹ, Z̃

)
is the solution of the linear FBSDE (2.30).

Proof. By the definition of Pt, Ȳt and Z̄t, we get

dXt =
(
a1
tXt + b1

t

(
Ȳt + PtXt

)
+ c1

t

(
Z̄t + Pta

2
tXt + Ptb

2
t

(
Ȳt + PtXt

)
+ ptXt

))
dt

+
(
a2
tXt + b2

t

(
Ȳt + PtXt

))
dHt

=
(
ā1
tXt + b̄1

t Ȳt + c̄1
t Z̄t
)
dt+

(
ā2
tXt + b̄2

t Ȳt
)
dHt,

and

dȲt = − (a3
tXt + b3

tYt + c3
tZt) dt+ ZtdHt − pt (a2

tXt + b2
tYt) dt

−Pt (a1
tXt + b1

tYt + c1
tZt) dt− Pt (a2

tXt + b2
tYt) dHt − ptXtdHt

= Z̄tdHt −
[
(a3
t + pta

2
t + Pta

1
t )Xt + (b3

t + ptb
2
t +Gtb

1
t )
(
Ȳt + ptXt

)
+ (c3

t + Ptc
1
t )
(
Z̄t + (pt + Pta

2
t )Xt + Ptb

2
t

(
Ȳt + PtXt

))
dt
]

= −
(
ā3
tXt + b̄3

t Ȳt + c̄3
t Z̄t
)
dt+ Z̄tdHt,
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Is easy to prove that āit, b̄
i
t, c̄

i
t are bounded and still satisfy the assumptions (2.20). Then

this gives the desired result.

Lemma 2.4 Assume α = 0, c3
t = 0, for some integer m, we assume 1

m
≤ κ2 ≤ m. Then

there exist small constants δ and C depending on λ and λ0, such that T ≤ δ, and that for

some ε > 0, ∣∣∣∣E (PXt +

∫ T

0

(
a3
tXt + b3

tYt
)
dt

)∣∣∣∣ ≤ Cm
√
εT.

Proof. By standard arguments and using Young’s inequality, for every ε > 0, there exist

constant C depending only on λ, λ0, that

sup
0≤t≤T

E
(
|Xt|2 + |Yt|2

)
+ E

(∫ T
0
‖Zt‖2

P2(R) dt
)
≤ Cε−1E

(∫ T
0

(
|Xt|2 + |Yt|2

)
dt
)

+
ε

2
E
(∫ T

0
|βt|2 dt

)
≤ Cε−1T sup0≤t≤T E

(
|Xt|2 + |Yt|2

)
+
ε

2
m2T.

If we choose the constant δ =
ε

2C
and will specify ε later. Then for T ≤ δ, we get

sup
0≤t≤T

E
(
|Xt|2 + |Yt|2

)
+ E

(∫ T

0

‖Zt‖2
P2(R) dt

)
≤ m2εT.

And

E
(
|Xt|2

)
≤ CE

(∣∣∣∫ T0 (a1
tXt + b1

tYt + c1
tZt) dt

∣∣∣2 +
∣∣∣∫ T0 (a2

tXt + b2
tYt) dHt

∣∣∣2)
≤ CE

(
T
∫ T

0

(
|Xt|2 + |Yt|2 + ‖Zt‖2

P2(R)

)
dt+

∫ T
0

(
|Xt|2 + |Yt|2

)
dt
)

≤ Cm2εT 2.

Thus ∣∣∣E (PXt) +
∫ T

0
(a3
tXt + b3

tYt) dt
∣∣∣

≤ CE
1
2

(
|XT |2

)
+ CT sup

0≤t≤T
E

1
2

(
|Xt|2 + |Yt|2

)
≤ Cm

√
εT.

This ends the proof.

Proof of Proposition.2.3. The proof of this proposition will be divided into several

steps.
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Step 1. Assume that P = 0 and β = 0. If Y0 < 0, let us define the following stopping time

τ
4
= inf {t : Yt = 0} ∧ T.

Since YT = α ≥ 0, we get Y τ = 0. Define

âit
4
= ait1{τ>t}; b̂

i
t

4
= bit1{τ>t}; ĉ

i
t

4
= cit1{τ>t}

X̂t
4
= Xτ∧t; Ŷt

4
= Yτ∧t; Ẑt

4
= Zτ∧t

In view of Lemma 2.2, the following LFBSDE:

 X̂t =
∫ t

0

(
â1
sX̂s + b̂1

sŶs + ĉ1
sẐs

)
ds+

∫ t
0

(
â2
sX̂s + b̂2

sŶs

)
dHs,

Ŷt =
∫ T
t

(
â3
sX̂s + b̂3

sŶs + ĉ3
sẐs

)
ds−

∫ T
t
ẐsdHs,

has a unique solution, with ŶT = 0.That is to say Y0 = Ŷ0 = 0, obviously this leads to a

contradiction. In other words, we have proved that Y0 ≥ 0.

Step 2. Assume that all the conditions in Lemma 2.3 are fulfilled, then ȲT = α ≥ 0.

Applying Step 1 we get Y0 = Ŷ0 ≥ 0.

Step 3. Assume β = 0. One can find Pn satisfying the condition in Lemma 2.3 such that

Pn → P a.s. and |Pn| ≤ λ. Let (Xn, Y n, Zn) denotes the solution corresponding to Gn.

Apply the result of Step2 to conclude that Y n
0 ≥ 0. Then from Corollary 2.1, we get

Y0 = lim
n→∞

Y n
0 ≥ 0.

Step 4. Assume all the conditions in Lemma 2.4 are in force. Then

Y0 = E
(
PXT +

∫ T
0

(a3
tXt + b3

tYt + βt) dt
)

≥ m−1T −
∣∣∣E (PXT +

∫ T
0

(a3
tXt + b3

tYt) dt
)∣∣∣

≥ m−1T − Cm
√
εT.
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Now choose ε = C−2m−4, we get Y0 ≥ 0.

Step 5. Assume 1
m
≤ β ≤ m and T ≤ δ, where δ is the same as in Lemma 2.4. Denote

 X ′t =
∫ t

0
(a1
sX
′
s + b1

sY
′
s + c1

sZ
′
s) ds+

∫ t
0

(a2
sX
′
s + b2

sY
′
s ) dHs,

Y ′t = PX ′T + α +
∫ T
t

(a3
sX
′
s + b3

sY
′
s + c3

sZ
′
s) ds−

∫ T
t
Z ′sdHs,

and  X ′′t =
∫ t

0
(a1
sX
′′
s + b1

sY
′′
s + c1

sZ
′′
s ) ds+

∫ t
0

(a2
sX
′′
s + b2

sY
′′
s ) dHs,

Y ′′t = LX ′′T +
∫ T
t

(a3
sX
′′
s + b3

sY
′′
s + c3

sZ
′′
s + βs) ds−

∫ T
t
Z ′′s dHs,

By Step 3, Y ′0 ≥ 0 , and by Step 4, Y ′′0 ≥ 0. Then, Y0 = Y ′0 + Y ′′0 ≥ 0.

Step 6. Assume 1
m
≤ β ≤ m. Let δ be as in Lemma 2.4 but corresponding to

(
λ, λ̄0,m

)
instead of (λ, λ0,m), and assume (n− 1) δ < T < nδ. Denote Ti

4
= iT

n
, Ln

4
= L and

αn
4
= α. For t ∈ [Tn−1, Tn], let

 Xn,1
t = 1 +

∫ t
Tn−1

(a1
sX

n,1
s + b1

sY
n,1
s + c1

sZ
n,1
s ) ds+

∫ t
Tn−1

(a2
sX

n,1
s + b2

sY
n,1
s ) dHs,

Y n,1
t = PnX

n,1
T +

∫ Tn
t

(a3
sX

n,1
s + b3

sY
n,1
s + c3

sZ
n,1
s ) ds−

∫ Tn
t
Zn,1
s dHs,

and Xn,2
t = 1 +

∫ t
Tm−1

(a1
sX

n,2
s + b1

sY
n,2
s + c1

sZ
n,2
s ) ds+

∫ t
Tn−1

(a2
sX

n,2
s + b2

sY
n,2
s ) dHs,

Y n,2
t = PnX

n
T + αn +

∫ Tn
t

(a3
sX

n,2
s + b3

sY
n,2
s + c3

sZ
n,2
s + βs) ds−

∫ Tn
t
Zn,2
s dHs,

Denote

Pn−1
4
= Y n,1

Tn−1
, αn−1

4
= Y n,2

Tn−1
.

By the proof of Theorem 2.2, we know that |Pn−1| ≤ λ1 ≤ λ̄0. Apply the result of Step 5,

we get αn−1 ≥ 0. We note that, for t ∈ [0, Tn−1], (X, Y, Z) satisfies

 Xt =
∫ t

0
(a1
sXs + b1

sYs + c1
sZs) ds+

∫ t
0

(a2
sXs + b2

sYs) dHs,

Yt = Pn−1XTn−1 + αn−1 +
∫ Tn−1

t
(a3
sXs + b3

sYs + c3
sZs + βs) ds−

∫ Tn−1

t
ZsdHs.
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Repeating the same arguments, we may define L1 and α1 ≥ 0, and it holds that

 Xt =
∫ t

0
(a1
sXs + b1

sYs + c1
sZs) ds+

∫ t
0

(a2
sXs + b2

sYs) dHs,

Yt = P1XT1 + α1 +
∫ T1

t
(a3
sXs + b3

sYs + c3
sZs + βs) ds−

∫ T1

t
ZsdHs.

By step 5, we have Y0 ≥ 0.

Step 7. In the general case, we put βm
4
= (β ∧m) ∨ 1

m
and let (Xm, Y m, Zm) denote the

solution corresponding to βm. We know by Step 6, that Y m
0 ≥ 0. Then by Corollary 2.1,

Y0 = lim
m→∞

Y m
0 ≥ 0. This gives the result.�

We are now in position to give the comparison theorem. Let Πi, i = 0, 1, be the solution

of the following FBSDE:

 X i
t = X0 +

∫ t
0
f (s,Πi

s) ds+
∫ t

0
σ
(
s,X i

s− , Y
i
s−

)
dHs,

Y i
t = ϕi (X i

T ) +
∫ T
t
gi (s,Πi

s) ds−
∫ T
t
Zi
sdHs, i = 0, 1

(2.31)

Theorem 2.4 Let Πi, i = 0, 1, be the solutions of the FBSDEs (2.1). If

i) (f, σ, gi, ϕi) , i = 0, 1 satisfy all the conditions in Theorem 2.2.

ii) For any (t,Π) , ϕ0 (X) ≤ ϕ1 (X) and g0 (t,Π) ≤ g1 (t,Π) . Then

Y 0
0 ≤ Y 1

0 .

Proof. For 0 ≤ ε ≤ 1, let Πε and ∇Πε be as in the prove of Theorem 2.3. Then, we get

∆X0 = 0,∆f = 0,∆σ = 0,∆g ≥ 0, ∆ϕ ≥ 0. From Proposition 2.3, we have ∇Y ε
0 ≥ 0.

This proves the theorem.

We would like to mention that the above comparison theorem holds true only at time

t = 0. We cannot get the result in the whole interval [0, T ] , even in the Brownian case.

See for instance, the counterexample which is given in [50].
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Chapter 3

Forward-backward SDEs driven by

Lévy process in stopping time

duration

3.1 Introduction

Let
(
Ω,F , (Ft)t≥0 , P

)
be a complete probability space. Let (Wt)t≥0 is a standard Brownian

motion in Rd and (Lt)t≥0 is an R−valued Lévy process independent of (Wt)t≥0 .

Let τ ≥ 0 be a given Ft-stopping time with value in [0,∞] . For any t ≥ 0, we assume that

Ft = F0 ∨ σ (Ls, s ≤ t) ∨ σ (Ws, s ≤ t) ∨N .

The purpose of the current chapter is to discuss the problem of existence, uniqueness for a

class of FBSDEs driven by Teugels martingales associated with some Lévy processes and

an independent Brownian motion in stopping time duration of the type
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

xt = x0 +
∫ t∧τ

0
f (s, w, xs, ys, zs, ks) ds+

∫ t∧τ
0

σ (s, w, xs, ys, zs, ks) dWs

+

∞∑
i=1

∫ t∧τ
0

θi
(
s, w, xs− , ys− , zs, ks

)
dH

(i)
s ,

yt = ϕ (xτ ) +
∫ τ
t∧τ g (s, w, xs, ys, zs, ks) ds−

∫ τ
t∧τ zsdWs −

∞∑
i=1

∫ τ
t∧τ k

i
sdH

(i)
s ,

(3.1)

where t > 0, Bt is a d-dimensional Brownian motion and Ht = (H i
t)
∞
i=1 are pairwise

strongly orthonormal Teugels martingales associated with a Lévy process Lt such that

〈H i, Hj〉t = δij.t and that [H i, Hj]− 〈H i, Hj〉 is an Ft-martingale.

In this chapter, we will use a completely different method to approach the solvability of

(3.1) in stopping time duration. Such a method is called the method of continuation. The

main assumptions for this method is the so called monotonicity conditions, and the proofs

are based on point fix theorem.

The rest of this chapter is organized as follows. In section 2, we give the existence and

uniqueness result for backward stochastic differential equation driven by Teugels mar-

tingales associated with some Lévy processes and an independent Brownian motion in

stopping time duration. In section 3, under a monotonicity condition, we prove an ex-

istence and uniqueness result for fully coupled FBSDE driven by Teugels martingales

associated with some Lévy processes and an independent Brownian motion on a stopping

time duration. As an application, we deal in Section 4 a model of hedging options for a

large investor in a Lévy-type market. Finally, section 5 concludes the chapter.

3.2 BSDE in stopping time duration

Let us first present the existence and uniqueness result of the following backward SDE

driven by a family of Teugels martingales and an independent Brownian motion in stopping
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time duration:

yt = ξ +

∫ τ

t∧τ
g (s, ys, zs, ks) ds−

∫ τ

t∧τ
zsdWs −

∫ τ

t∧τ
ksdHs, (3.2)

where

g : [0,∞]× Ω× Rm × Rm×d × P2 (Rm)→ Rm,

is progressively measurable. Here, we have used the following shorthand notational,∫ τ
t∧τ ksdHs :=

∞∑
i=1

∫ τ
t∧τ k

i
sdH

i
s, where ks = {kis}

∞
i=1 . We introduce the following basic as-

sumption on coeffi cients:

(H3.1) ξ ∈ L2 (Ω,F , P,Rm) .

(H3.2) E
(∫∞

0
|g (s, 0, 0, 0)| ds

)2
<∞.

(H3.3) ∀ (y, z, k) ∈ Rm × Rm×d × P2 (Rm) and ∀ (y′, z′, k′) ∈ Rm × Rm×d × P2 (Rm), there

exists three positive deterministic functions u1 (t) , u2 (t) and u3 (t) satisfying

∫ ∞
0

u1 (t) dt <∞,
∫ ∞

0

u2
2 (t) dt <∞,

∫ ∞
0

u2
3 (t) dt <∞,

such that

|g (t, y, z, k)− g (t, y′, z′, k′)| ≤ u1 (t) |y − y′|+u2 (t) ‖z − z′‖+u3 (t) ‖k − k′‖P2(Rm) , t ≥ 0.

We also denote by

B2
τ = S2

F (0, τ,Rm)× L2
F
(
0, τ,Rm×d

)
× l2F (0, τ,Rm) ,

In the following theorem, we show an existence and uniqueness result for the equation (3.2)

on [s, τ ] . That is a triplet (y·, z·, k·) of adapted Rm × Rm×d × P2 (Rm)-valued processes

belong to B2 and satisfying BSDE (3.2) .
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Theorem 3.1 Assume that (H3.1) , (H3.2) and (H3.3) are in force.

Then equation (3.2) has a unique solution π = (y, z, k) ∈ B2
τ .

Proof. (A) The uniqueness part.

In this part, we will adopt the proof in [35] to our case, with suitable changes. This will be

done by replacing the fixed time duration T by stopping time and the Lipschitz constants

by u1 (t) , u2 (t) and u3 (t) , t ≥ 0.

First, we assume that π = (y, z, k) and π′ = (y′, z′, k′) are two solution of equation (3.2).

Setting ŷ = y−y′, ẑ = z−z′ and k̂ = k−k′. Then, by applying Itô’s formula to |ŷt|2 , owing

the fact that [H i, Hj]t−〈H i, Hj〉t is an Ft-martingale, 〈H i, Hj〉t = δijt, using assumption

(H3.3), we get

E |ŷt|2 + E
τ∫
t

‖ẑs‖2 ds+ E
τ∫
t

∥∥∥k̂s∥∥∥2

P2(Rm)
ds ≤ cE

τ∫
t

|ŷt|2 ds.

The uniqueness result follows immediately, by using Gronwall’s lemma.

(B) The existence part.

In this part we shall use the fix point argument to prove the existence part of theorem

3.1. Noting that the stopping time duration is unbounded and can be infinite, so we shall

divide the proof into two steps.

Step1. Firstly, we assume that the following condition holds true,

(∫∞
0
u1 (t) dt

)2
+
∫∞

0
u2

2 (t) dt+
∫∞

0
u2

3 (t) dt <
1

15
.
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For each (y·, z·, k·) ∈ B2
τ , we set Mt = E

(
ξ +

∫ τ
0
g (t, yt, zt, kt) dt | Ft∧τ

)
. Then M· is a

square integrable martingale. Indeed

E
[
ξ +

∫ τ
0
g (t, yt, zt, kt) dt

]2
≤ E

[
|ξ|+

∫ τ
0

(
|g (t, 0, 0, 0)|+ u1 (t) |yt|+ u2 (t) ‖zt‖+ u3 (t) ‖kt‖P2(Rm)

)
dt
]2

= c

[
E |ξ|2 + E

(∫∞
0
|g (s, 0, 0, 0)| ds

)2
+
(∫ τ

0
u1 (t) dt

)2 E sup
0≤t≤τ

|yt|2(∫ τ
0
u2

2 (t) dt
)
E
∫ τ

0
‖zt‖2 dt+

(
τ∫
0

u2
3 (t) dt

)
E
∫ τ

0
‖kt‖2

P2(Rm) dt

]
<∞.

It can be shown by using the martingale representation theorem, that there exists (Z·, K·) ∈

L2
F
(
Rm×d

)
× P2 (Rm) satisfying

Mt = E
[
ξ +

∫ τ
0
g (t, yt, zt, kt) dt

]
+
∫ t∧τ

0
ZsdBs +

∫ t∧τ
0

KsdHs.

Again we set Yt∧τ = E
[
ξ +

∫ τ
t∧τ g (t, yt, zt, kt) dt/Ft∧τ

]
, hence Y· ∈ S2

F and (Y·, Z·, K·) is

the solution of the following BSDE

Yt∧τ = ξ +
∫ τ
t∧τ g (s, ys, zs, ks) ds−

∫ τ
t∧τ ZsdWs −

∫ τ
t∧τ KsdHs. (3.3)

Next, we define the mapping Φ : B2
τ → B2

τ such that Φ (πt) = Φ (y, z, k) = (Y, Z,K) .

We want to prove that the mapping Φ is contract on B2
τ . Suppose that (y, z, k) , (y′, z′, k′)

are two elements of B2
τ , such that Φ (y, z, k) = (Y, Z,K) and Φ (y′, z′, k′) = (Y, Z,K).

Denote
(
ŷ, ẑ, k̂

)
= (y − y′, z − z′, k − k′) ,

(
Ŷ, Ẑ, K̂

)
= (Y − Y ′, Z − Z ′, K −K ′) and

ĝs = g (s, ys, zs, ks) − g (s, y′s, z
′
s, k
′
s) . An application of Doob’s and Jensen inequalities

leads to,

∥∥∥Ŷ·∥∥∥2

S2
F (Rm)

= E sup
0≤t≤τ

∣∣E (∫ τ
t
ĝsds | Ft

)∣∣2 ≤ 4E
(∫ τ

0
|ĝs| ds

)2
,∥∥∥Ẑ·∥∥∥2

L2
F(Rm×d)

+
∥∥∥K̂t

∥∥∥2

l2F (Rm)
= E

∣∣∫ τ
0
ĝsds

∣∣2 − ∣∣E ∫ τ
0
ĝsds

∣∣2 ≤ E (∫ τ
0
|ĝs| ds

)2
.
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So

‖Φ (y, z, k)− Φ (y′, z′, k′)‖B2
τ

=
∥∥∥Ŷ·∥∥∥2

S2
F (Rm)

+
∥∥∥Ẑ·∥∥∥2

L2
F(Rm×d)

+
∥∥∥K̂·∥∥∥2

l2F (Rm)
≤ 5E

 τ∫
0

|ĝs| ds

2

≤ 15

[(∫ ∞
0

u1 (t) dt

)2

+

∫ ∞
0

u2
2 (t) dt+

∫ ∞
0

u2
3 (t) dt

]

×
[
‖ŷ·‖2

S2
F (Rm) + ‖ẑ·‖2

L2
F(Rm×d) +

∥∥∥k̂·∥∥∥2

l2F (Rm)

]
.

Since
(∫∞

0
u1 (t) dt

)2
+
∫∞

0
u2

2 (t) dt +
∫∞

0
u2

3 (t) dt ≤ 1

15
, the above inequality has it that

the mapping Φ is a contraction, and therefore it has a unique fixed point which is the

unique solution of BSDE (3.2).

Step 2. Assume
(∫∞

0
u1 (t) dt

)2
+
∫∞

0
u2

2 (t) dt +
∫∞

0
u2

3 (t) dt < ∞. Then there exists T >

0, such that
(∞∫
T

u1 (t) dt

)2

+
∞∫
T

u2
2 (t) dt +

∞∫
T

u2
3 (t) dt <

1

15
. Denoting g1 (t, yt, zt, kt) =

1[T,∞]g (t, yt, zt, kt) , ū1 (t) = 1[T,∞]u1 (t) , ū2 (t) = 1[T,∞]u2 (t) , ū3 (t) = 1[T,∞]u3 (t) , we see

that g1 satisfies (H3.3) with ū1 (t) , ū2 (t) and ū3 (t) such that

(∫∞
0
ū1 (t) dt

)2
+
∫∞

0
ū2

2 (t) dt+
∫∞

0
ū2

3 (t) dt <
1

15
.

By the first step, we know that, for t ≥ T there exists a solution
(
ỹ·, z̃·, k̃·

)
satisfying

ỹt∧τ = ξ +

∫ τ

t∧τ
g1

(
s, ỹs, z̃s, k̃s

)
ds−

∫ τ

t∧τ
z̃sdBs −

∫ τ

t∧τ
k̃sdHs.

Then for t ∈ [0, T ∧ τ ] , we consider the following BSDE

ȳt = ỹT∧τ +

∫ T∧τ

t

g
(
s, ȳs, z̄s, k̄s

)
ds−

∫ T∧τ

t

z̄sdBs −
∫ T∧τ

t

k̄sdHs.
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Arguing as in the proof of the Theorem 3.1 in [3] or Theorem 1 in [35], one can prove

that there exists a unique solution
(
ȳ·, z̄·, k̄·

)
∈ B2. Putting yt = 1[0,T∧τ ]ȳt + 1(T∧τ,τ ]ỹt,

zt = 1[0,T∧τ ]z̄t + 1(T∧τ,τ ]z̃t, kt = 1[0,T∧τ ]k̄t + 1(T∧τ,τ ]k̃t, it follows that the process y· is a

solution of BSDE (3.2) and this complete the proof.

3.3 Fully coupled FBSDE in stopping time duration

In this section, we establish the existence and uniqueness theorem to the fully coupled

FBSDE driven by a family of Teugels martingales and independent Brownian motion in

stopping time duration. Let us, consider FBSDE (3.1) with the following coeffi cients

f : [0,∞]× Ω× Rn × Rm × Rm×d × P2 (Rm)→ Rn,

σ : [0,∞]× Ω× Rn × Rm × Rm×d × P2 (Rm)→ Rn×d,

θ : [0,∞]× Ω× Rn × Rm × Rm×d × P2 (Rm)→ P2 (Rn) ,

g : [0,∞]× Ω× Rn × Rm × Rm×d × P2 (Rm)→ Rm,

ϕ : Ω× Rn → Rm.

We also denote by

M2
τ = S2

F (0, τ,Rn)× S2
F (0, τ,Rm)× L2

F
(
0, τ,Rm×d

)
× l2F (0, τ,Rm) .

Let us recall the definition of a solution of FBSDE (3.1) .

Definition 3.1 A solution of the FBSDE (3.1) is an adapted process (x·, y·, z·, k·) which

belongs to the spaceM2
τ and satisfies (3.1) .
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Let us define

λ =



x

y

z

k


, A (t, λ) =



−G∗g

Gf

Gσ

Gθ


(t, λ) ,

where G is givenm×n full-rank matrix, Gσ =
(
Gσ1, ..., Gσd

)
and Gθ = (Gθ1, ..., Gθn, ...) .

We use the usual inner product 〈·, ·〉 and Euclidean norm |.| in Rn,Rm and Rm×d. And,

we consider the following conditions:

(H3.4) For every (x, y, z, k) ∈ Rn × Rm × Rm×d × P2 (Rm) , ϕ (x) ∈ L2, f, σ, g and θ are

progressively measurable and

E
(∫∞

0
|f (s, 0, 0, 0, 0)| ds

)2
+ E

(∫∞
0
|g (s, 0, 0, 0, 0)| ds

)2

+E
(∫∞

0

(
‖σ (s, 0, 0, 0, 0)‖2 + ‖θ (s, 0, 0, 0, 0)‖2

P2(Rm)

)
ds
)
<∞.

(H3.5) ∀ (x, y, z, k) ∈ Rn ×Rm ×Rm×d ×P2 (Rm) and ∀ (x′, y′, z′, k′) ∈ Rn ×Rm ×Rm×d ×

P2 (Rm), there exists a positive deterministic bounded function u1 (t) satisfying

∫ ∞
0

u1 (t) dt <∞,
∫ ∞

0

u2
1 (t) dt <∞,

such that

|ρ (t, x, y, z, k)− ρ (t, x′, y′, z′, k′)|

≤ u1 (t)
[
|x− x′|+ |y − y′|+ ‖z − z′‖+ ‖k − k′‖P2(Rm)

]
, t ≥ 0

where ρ = f, σ, g, θ resp. Besides, ∀x, x′ ∈ Rn × Rn, there exists a constant C > 0,

such that

|ϕ (x)− ϕ (x′)| ≤ C |x− x′| .
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(H3.6) For every λ = (x, y, z, k) , λ′ = (x′, y′, z′, k′) and λ̂ =
(
x̂, ŷ, ẑ, k̂

)
= (x− x′, y − y′, z − z′, k − k′) ,


〈
A (t, λ)− A (t, λ′) , λ̂

〉
≤ −β1u1 (t) |Gx̂|2 − β2u1 (t)

(
|G∗ŷ|2 + ‖G∗ẑ‖2 +

∥∥∥G∗k̂∥∥∥2

P2(Rm)

)
,

〈ϕ (x)− ϕ (x′) , G (x− x′)〉 ≥ β3 |Gx̂|2 ,

where β1, β2 and β3 are given nonnegative constants with β1 + β2 > 0, β2 + β3 > 0.

Moreover, we have β1 > 0, β3 > 0 (resp. β2 > 0) , where m ≥ n (resp. m < n) .

(H3.7) For every λ = (x, y, z, k) , λ′ = (x′, y′, z′, k′) and λ̂ =
(
x̂, ŷ, ẑ, k̂

)
= (x− x′, y − y′, z − z′, k − k′) ,


〈
A (t, λ)− A (t, λ′) , λ̂

〉
≥ β1u1 (t) |Gx̂|2 + β2u1 (t)

(
|G∗ŷ|2 + ‖G∗ẑ‖2 +

∥∥∥G∗k̂∥∥∥2

P2(Rm)

)
,

〈ϕ (x)− ϕ (x′) , G (x− x′)〉 ≤ −β3 |Gx̂|2 ,

where β1, β2 and β3 are given nonnegative constants with β1 + β2 > 0, β2 + β3 > 0.

Moreover, we have β1 > 0, β3 > 0 (resp. β2 > 0) , where m ≥ n (resp. m < n) .

We note that, to simplify the notations, we take the same function u1 (t) in (H3.5) , (H3.6)

and (H3.7), and we assume that the state variables x· and y· have the same dimensional

n = m, in that case the matrix G ≡ In.

We also mention that, in what follows, we shall handle two different cases according to

the signs of β1, β2 and β3.

Case1. β1 > 0, β3 > 0 and β2 ≥ 0. We introduce the following family of FBSDE,

parameterized by α ∈ [0, 1] ,



xαt = x0 +
∫ t∧τ

0
[αf (s, λαs ) + φ1

s] ds+
∫ t∧τ

0
[ασ (s, λαs ) + φ2

s] dWs

+
∫ t∧τ

0

[
αθ
(
s, λαs−

)
+ φ3

s−

]
dHs,

yαt = αϕ (xατ ) + (1− α)xατ + ξ +
∫ τ
t∧τ [(1− α) β1u1 (s)xαs + αg (s, λαs ) + φ4

s] ds

−
∫ τ
t∧τ z

α
s dWs −

∫ τ
t∧τ k

α
s dHs,

(3.4)

67



Chapter 3. Forward-backward SDEs driven by Lévy process in stopping time duration

where ξ ∈ L2, x0 is inRn, φ1, φ2, φ3 and φ4 are given processes with values inRn,Rn×d,P2 (Rn)

and Rn respectively, such that

E
(∫ τ

0

∣∣φ1
s

∣∣ ds)2

+ E
(∫ τ

0

∣∣φ2
s

∣∣ ds)2

+ E
∫ τ

0

∥∥φ3
s

∥∥2

P2(Rn)
ds+ E

∫ τ

0

∣∣φ4
s

∣∣2 ds <∞.
Obviously, when α = 0, we can easily check that equation (3.4) has a unique solution.

Furthermore, when α = 1, the existence of solution of equation (3.4) implies that of

FBSDE (3.1).

Lemma 3.1 We assume (H3.4), (H3.5) and (H3.6) , If for an α0 ∈ [0, 1) equation (3.4) has

a unique solution λα0
· = (xα0

· , y
α0
· , z

α0
· , k

α0
· ) ∈M2

τ , then there exists a positive constant ε0,

such that for each ε ∈ [0, ε0] , there exists a unique solution λα0+ε
· = (xα0+ε

· , yα0+ε
· , zα0+ε

· , kα0+ε
· )

of FBSDE (3.4).

Proof. Since for each φ1 (t) , φ2 (t) , φ3 (t) and φ4 (t) and α ∈ [0, 1) , there exists a unique

solution of (3.4), then for each λs = (xs, ys, zs, ks) ∈ M2
τ we can define the following

FBSDE:



Xt = x0 +
∫ t∧τ

0
[α0f (s,Λs) + εf (s, λs) + φ1

s] ds+
∫ t∧τ

0
[α0σ (s,Λs) + εσ (s, λs) + φ2

s] dWs

+
∫ t∧τ

0

[
α0θ

(
s,Λs−

)
+ εθ

(
s, λs−

)
+ φ3

s−

]
dHs,

Yt = α0ϕ (Xτ ) + (1− α0)Xτ + ε (ϕ (xτ )− xτ ) + ξ

+
∫ τ
t∧τ [(1− α0) β1u1 (s)Xs + α0g (s,Λs) + ε (−β1u1 (s)xs) + g (s, λs) + φ4 (s)] ds

−
∫ τ
t∧τ ZsdWs −

∫ τ
t∧τ KsdHs,

where Λt = (Xt, Yt, Zt, Kt) . Define the mapping Φα0+ε from M2 × L2 into itself, as fol-

lows: for (λ, xτ ) ∈M2 × L2, Φα0+ε (λ, xτ ) = Λ×Xτ . We want to prove that the mapping

Φα0+ε is a contraction if M2 × L2 is endowed with the norm
[
E

τ∫
0

|λs|2 ds+ E |xτ |2
]1/2

.

Indeed, let λt = (xt, yt, zt, kt) and λ′ = (x′t, y
′
t, z
′
t, k
′
t) be two elements of M2 such that

Φα0+ε (λt, xτ ) = (Λt, Xτ ) and Φα0+ε (λ′t, x
′
τ ) = (Λ′t, X

′
τ ) . Putting λ̂ =

(
x̂, ŷ, ẑ, k̂

)
=

(xt − x′t, yt − y′t, zt − z′t, kt − k′t) , and Λ̂ =
(
X̂, Ŷ, Ẑ, K̂

)
= (X −X ′, Y − Y ′, Z − Z ′, K −K ′) .
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Applying Itô’s formula to
〈
X̂s, Ŷs

〉
, using the fact that [H i, Hj]t − 〈H i, Hj〉t is an Ft-

martingale and 〈H i, Hj〉t = δijt, one can obtain

α0E
〈
ϕ (Xτ )− ϕ (X ′τ ) , X̂τ

〉
+ (1− α0)E

∣∣∣X̂τ

∣∣∣2 + εE 〈ϕ (xτ )− ϕ (x′τ )− x̂τ , x̂τ 〉

= E
τ∫
0

〈
α0 (A (s, λs)− A (s, λ′s)) , λ̂s

〉
ds− β1 (1− α0)E

τ∫
0

u1 (s)
∣∣∣X̂τ

∣∣∣2 ds
+εE

τ∫
0

[
β3u1 (s)

〈
X̂s, x̂s

〉
+
〈
X̂s,−gs

〉
+
〈
Ŷs, f̂s

〉
+
〈
Ẑs, σ̂s

〉
+
∞∑
i=1

〈
K̂i, θ̂is

〉]
ds,

where ρ̂s = ρ (s, λs) − ρ (s, λ′s) for ρ = g, f, σ and θ. Then by invoking the assumptions

(H3.4) , (H3.5) and (H3.6), seeing that β1 > 0, β3 > 0, one can show that there exists a

constant C1 depends on β1, β3 and C, such that

[α0β3 + (1− α0)]E
∣∣∣X̂τ

∣∣∣2 + β1E
τ∫
0

u1 (s)
∣∣∣X̂s

∣∣∣2 ds
≤ εC1

[∫∞
0
u2

1 (s) ds+
(∫∞

0
u1 (s) ds

)2
]
E

τ∫
0

[∣∣∣Λ̂s

∣∣∣2 +
∣∣∣λ̂s∣∣∣2] ds

+εC1

(
E |x̂τ |2 + E

∣∣∣X̂τ

∣∣∣2) .
Again, Itô’s formula applied to

∣∣∣Ŷs∣∣∣2 together with Gronwall’s Lemma and Burkholder-
Davis-Gundy inequality, lead to

E
τ∫
0

(∣∣∣Ŷ ∣∣∣2 +
∥∥∥Ẑ∥∥∥2

+
∥∥∥K̂∥∥∥2

P2(Rn)

)
ds

≤ C2

[
E

τ∫
0

u1 (s)
∣∣∣X̂s

∣∣∣2 ds+ E
∣∣∣X̂τ

∣∣∣2]+ εC2E |x̂τ |2

+εC2

[∫∞
0
u2

1 (s) ds+
(∫∞

0
u1 (s) ds

)2
]
E

τ∫
0

∣∣∣λ̂s∣∣∣2 ds,
here the constant C2 depends on β1, β3 and C. Now, combining the two above inequalities,

taking under consideration that, β1 > 0, β3 > 0, one can indicate the existence of a

constant C3 only depending on β1, β3 and C, such that

E
τ∫

0

(∣∣∣Λ̂s

∣∣∣2) ds+ E
∣∣∣X̂τ

∣∣∣2 ≤ εC3

E τ∫
0

(∣∣∣λ̂s∣∣∣2) ds+ E |x̂τ |2
 .
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Clearly, by taking ε0 = 1
2C3

, we get, for each fixed ε ∈ [0, ε0] ,

∥∥∥Λ̂
∥∥∥2

M2
τ

+
∣∣∣X̂τ

∣∣∣2
L2
≤ 1

2

[∥∥∥λ̂∥∥∥2

M2
τ

+ |x̂τ |2L2

]
.

Hence, the mapping Φα0+ε is a contraction and has a unique fixed point

Λα+ε
· = (Xα+ε

· , Y α+ε
· , Zα+ε

· , Kα+ε
· ) , which is the unique solution of FBSDE (3.4). The

proof of Lemma is complete.

Case 2. β2 > 0, β1 ≥ 0 and β3 ≥ 0.

We consider the following FBSDE for each α ∈ [0, 1] :



xαt = x0 +
∫ t∧τ

0
[(1− α) β2 (−u1 (s) yαs ) + αf (s, λαs ) + φ1

s] ds

+
∫ t∧τ

0
[(1− α) β2 (−u1 (s) zαs ) + ασ (s, λαs ) + φ2

s] dWs

+
∫ t∧τ

0

[
(1− α) β2

(
−u1 (s) kαs−

)
+ αθ

(
s, λαs−

)
+ φ4

s−

]
dHs,

yαt = αϕ (xατ ) + ξ +
∫ τ
t∧τ (αg (s, λαs ) + φ4

s) ds−
∫ τ
t∧τ z

α
s dWs −

∫ τ
t∧τ k

α
s dHs,

(3.5)

Here φ1, φ2, φ3, φ4 and ξ satisfy the same assumptions as those in case 1.

Lemma 3.2 Assume that hypotheses (H3.4) , (H3.5) and (H3.6) hold. If for an α0 ∈ [0, 1)

equation (3.5) has a unique solution λα0
· = (xα0

· , y
α0
· , z

α0
· , k

α0
· ) ∈ M2

τ , then there exists a

positive constant ε0, such that for each ε ∈ [0, ε0] , there exists a unique solution λα0+ε
· =

(xα0+ε
· , yα0+ε

· , zα0+ε
· , kα0+ε

· ) of FBSDE (3.5).

Proof. For each λs = (xs, ys, zs, ks) there exists a unique process Λs = (Xs, Ys, Zs, Ks)

satisfying the following FBSDE:



Xt = x0 +
∫ t∧τ

0
[(1− α0) β2 (−u1 (s)Ys) + α0f (s,Λs) + εf (s, λs) + φ1 (s) + εβ2u1 (s) ys] ds

+
∫ t∧τ

0
[(1− α0) β2 (−u1 (t)Zs) + α0σ (s,Λs) + εσ (s, λs) + φ1 (s) + εβ2u1 (t) zs] dWs

+
∫ t∧τ

0

[
(1− α0) β2 (−u1 (s) ks) + α0θ

(
s,Λs−

)
+ εθ

(
s, λs−

)
+ φ3 (s−) + εβ2u1 (s) ks

]
dHs,

Yt = α0ϕ (Xτ ) + εϕ (xτ ) + ξ +
∫ τ
t∧τ [α0g (s,Λs) + εg (s, λs) + φ4 (s)] ds

−
∫ τ
t∧τ zsdWs −

∫ τ
t∧τ ksdHs.
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Arguing as in the proof of Lemma 3.1. First, let Φα0+ε be described as in the above

lemma. Then, we are going to prove that the mapping Φα0+ε is a contraction onM2×L2.

Applying Itô’s to
〈
X̂s, Ŷs

〉
, using the assumptions (H3.4) , (H3.5) and (H3.6) , and taking

under consideration that β2 > 0, one can get

β2E
τ∫

0

u1 (s)

[∣∣∣Ŷs∣∣∣2 +
∥∥∥Ẑs∥∥∥2

+
∥∥∥K̂s

∥∥∥
P2(Rn)

]
ds

≤ εC1

 T∫
0

u2
1 (s) ds+

 T∫
0

u1 (s) ds

2
E τ∫

0

[∣∣∣Λ̂s

∣∣∣2 +
∣∣∣λ̂s∣∣∣2] ds

+ εC1E
∣∣∣X̂τ

∣∣∣2 + εC1E |x̂τ |2 .

Then, we obtain, by using a standard arguments to the forward part,

sup
0≤s≤τ

E
∣∣∣X̂ (s)

∣∣∣2 ≤ εC1

(∫ ∞
0

u2
1 (s) ds+

(∫ ∞
0

u1 (s) ds

)2
)
E
∫ τ

0

∣∣∣λ̂s∣∣∣2 ds
+ C1E

∫ τ

0

u1 (s)

(∣∣∣Ŷs∣∣∣2 +
∥∥∥Ẑs∥∥∥+

∥∥∥K̂s

∥∥∥
P2(Rn)

)
ds

Here the constant C1 depends on the Lipschitz constant C as well as β2. Now, let us

combine the above two inequalities, to get

E
∫ τ

0

[∣∣∣Λ̂s

∣∣∣2] ds+ E
∣∣∣X̂τ

∣∣∣2 ≤ εC2

[
E
∫ τ

0

∣∣∣Λ̂s

∣∣∣2 ds+ E |x̂τ |2
]
.

Here the constant C2 depending only on β2, and the Lipschitz constant C. We now pick

up ε0 = 1
2C2
, and obtain for each fixed ε ∈ [0, ε0],

∥∥∥Λ̂
∥∥∥2

M2
+
∣∣∣X̂τ

∣∣∣2
L2
≤ 1

2

[∥∥∥λ̂∥∥∥2

M2
+ |xτ |2L2

]
.

So that the mapping Φα0+ε is a contraction and consequently, there exists a unique fixed

point Λ̂α0+ε
· =

(
X̂α0+ε
· , Ŷ α0+ε

· , Ẑα0+ε
· , K̂α0+ε

·

)
which is the required unique solution to the
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FBDSDE (3.5). The proof is complete.

We are now in a position to state your main result in this section.

Theorem 3.2 Under the conditions (H3.4) , (H3.5) and (H3.6) (or (H3.7)), there exists a

unique solution (x·, y·, z·, k·) ∈M2
τ of the FBSDE (3.1) .

Proof. (A) Proof of the uniqueness part. Let λs = (xs, ys, zs, ks) and λ′s =

(x′s, y
′
s, z
′
s, k
′
s) are two solutions of (3.1). We set λ̂s = (xs − x′s, ys − y′s, zs − z′s, ks − k′s) =(

x̂s, ŷs, ẑs, k̂s

)
.

Using Itô’s formula applied to 〈x̂s, ŷs〉 from t to τ and using the fact that [H i, Hj]t −

〈H i, Hj〉t is an Ft-martingale and 〈H i, Hj〉t = δijt, we get

E 〈ϕ (xτ )− ϕ (x′τ ) , x̂τ 〉 − E 〈x̂τ , ŷτ 〉 = E
∫ τ
t

〈
A (s, λs)− A (s, λ′s) , λ̂s

〉
ds

≤ −β1E
∫ τ
t
u1 (s) |x̂s|2 ds− β2E

∫ τ
t
u1 (s)

[
|ŷs|2 + ‖ẑs‖2 +

∥∥∥k̂s∥∥∥2

P2(Rn)

]
ds.

This together with the monotonicity conditions of ϕ and A imply,

β1E
τ∫

0

u1 (s) |x̂s|2 ds+ β2E
τ∫

0

u1 (s)

[
|ŷs|2 + ‖ẑs‖2 +

∥∥∥k̂s∥∥∥2

P2(Rn)

]
ds ≤ 0.

Case 1. In this case β1 > 0. Thus xs = x′s. In particular, ϕ (xτ ) = ϕ (x′τ ) . Thus from

Theorem ??, it follows that ys = y′s, zs = z′s and ks = k′s.

Case 2. In this case β2 > 0, then ys = y′s, zs = z′s and ks = k′s, s ∈ [0, τ ]. Returning

to the forward part of (3.1) , similarly as in the proof of the uniqueness result to SDEs

driven by Teugels martingales, for fixed time duration T , see for instance [?], one can get

xs = x′s.

(A) Proof of the existence part.

First case: When β1 > 0, β3 > 0 and β2 ≥ 0, we know that equation (3.4) has a unique

solution for α = 0. It then follows from Lemma 3.1 that there exists a positive constant

ε0 such that, for each ε ∈ [0, ε0] , for α = α0 + ε equation (3.4) has a unique solution.
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We can repeat this process for N -time white 1 ≤ Nε0 < 1 + ε0. It then follows that, in

particular, for α = 1 with φ1 = 0, φ2 = 0, φ3 = 0, φ4 = 0 and ξ = 0, FBSDE (3.1) has a

unique solution.

Second case: When β1 ≥ 0, β3 ≥ 0 and β2 > 0, for α = 0, FBSDE (3.5) has a unique

solution. Using Lemma 3.2, and repeating the same process as in the first case, one can

get the desired conclusion. This achieve the proof.

We note that we will give the proof of the above theorem only under the assumptions

(H3.4) , (H3.5) and (H3.6) . The proof under (H3.4) , (H3.5) and (H3.7) is similar.

Remark 3.1 We can replace u1 (t) by a constant. Then if the stopping time verify this

condition τ ≤ T <∞, one can consider the existence and uniqueness result of FBSDE in

bounded time duration as a special case of our Theorem 3.2.

3.4 Application

In this section, we consider an option pricing problem with a Large Investor motivated

by a portfolio selection in Lévy-type market, that is a market whose price processes are

semimartingales with the martingale parts represented as a sum of stochastic integrals

with respect to a Lévy process. Note that the Brownian continuous case has been treated

by Cvitanic and Ma [10], where they developed a model for hedging options in the presence

of a large investor in a Brownian market. See also [41] for other approaches in the context

of Lévy jump processes. In our approach, we shall use the existence and uniqueness result

established in the preceding sections.

Let τ ≥ 0 be a given Ft-stopping time with value in [0,∞]. We assume that in the financial

market, there are two kind of assets:

i) A non risky asset, also called a money market account, whose price process S0 (t) at

time t is given by the following forward stochastic differential equation:
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 dS0
t = S0

t r (t,Xt, Zt, Kt) dt, 0 ≤ t ≤ τ

S0
0 = 1,

(3.6)

where X· is the wealth process, Z· and K· are the portfolio processes they will be deter-

mined in the sequel.

ii) A d-dimensional risky asset, which called the stock, whose price process S· = {Si·}
d
i=1at

time t, evolves according to the following stochastic differential equation:



dSit = Sitfi (t, St, Xt, Zt, Kt) dt

+Si (t)σi (t, St, Xt, Zt, Kt) dW (t)

+
∞∑
j=1

Sitθ
i
j

(
t, St− , Xt− , Zt, Kt

)
dH(j) (t) ,

Si0 = pi, pi ≥ 0, 1 ≤ i ≤ d, t ∈ [0, τ ] .

(3.7)

Our starting point is to derive the BSDE for the wealth process X· with the final condition

Xτ = h (Sτ ) , Arguing as in [10], by using the following formula,

dXt =
d∑
i=1

αitdS
i
t +

Xt −
d∑
i=1

αitS
i
t

S0
t

dS0
t

where α· = (αi·)
i=d
i=1 is the portfolio process. Now, due to the definition of (3.6) and (3.7),

one can easily derive the following BSDE:

dXt =
d∑
i=1

αit {Sitfi (t, St, Xt, Zt, Kt) dt

+Sitσi (t, St, Xt, Zt, Kt) dWt

+Sitθ
i
(
t, St− , Xt− , Zt, Kt

)
dHt

}
+

(
Xt −

d∑
i=1

αitdS
i
t

)
r (t,Xt, Zt, Kt) dt.

Consequently,

74



Chapter 3. Forward-backward SDEs driven by Lévy process in stopping time duration

dX (t) = g (t, S (t) , X (t) , Zt, Kt, αt) dt+ ZtdBt +KtdHt, (3.8)

where we have used the following notations,

g (t, π, x, z, k, a) =
d∑
i=1

aiπif i (t, π, x, z, k, a) +

(
x−

d∑
i=1

qiπi

)
r (t, x, z, k) ,

a =
{
ai
}d
i=1

, π =
{
πi
}d
i=1

,

Zt =
d∑
i=1

αitσ
i (t, St, Xt, Zt, Kt) , (3.9)

Kt =
d∑
i=1

αitθ
i
j (t, St, Xt, Zt, Kt) i = 1, 2, .... (3.10)

Noting that, From the relations (3.9) and (3.10) , one can rule out the dependence on α (.)

in (3.8) . In addition, the BSDE (3.8) takes the following form:

dXt = h (ST ) + g (t, St, Xt, Zt, Kt, αt) dt

+ZtdWt +KtdHt.
(3.11)

Combining (3.7) and (3.11), to obtain



dSt = p+
∫ t

0
Srf (r, Sr, Xr, Zr, Kr) dt

+
∫ t

0
Srσ (r, Sr, Xr, Zr, Kr) dWr

+
t∫

0

Srσ
(
r, Sr− , Xr− , Zr, Kr

)
dHr,

dXt = h (Sτ ) +
∫ τ
t
g (r, Sr, Xr, Zr, αr) dr

+
∫ τ
t
ZrdWr +

∫ τ
t
KrdHr,

(3.12)

where p = {pi}i=di=1 . Finally, we deduce the following theorem:

Theorem 3.3 Let α· = (αi·)
i=d
i=1 be an Rd-valued stochastic process such that αit ≥ 0.

Assume that the relations (3.9) and (3.10) hold true on top of the assumptions of Theorem
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3.2. Then, FBSDEs (3.12) has a unique solution (S,X,Z,K) such that the pair (S,X) is

càdlàg and α· is a replicating portfolio.

3.5 Conclusion

Through this previous chapter, we have proved some existence and uniqueness theorems

for BSDE and fully coupled FBSDE driven by Teugels martingales associated to some

Lévy processes and an independent Brownian motion in the case where the final time T is

allowed to be random. Our main results could be perceived as an extension of the results

in [3] and [35] to more general cases. Indeed, in one hand, if ν = 0, then, H(1)
t is a standard

Brownian motion and H(i)
t = 0, for i ≥ 2, this case has been studied by many authors,

see for instance [11], [23], [30], [39], [40]. In the other hand, if we assume that µ only has

mass at 1, then H(1)
t is the compensated Poisson process and also H(i)

t = 0, for i ≥ 2, for

this case we refer the reader to [49] and [50] for more details in this respect. Motivated

by our theoretical results, we have applied a Lévy-FBSDE approach to select a replicating

portfolio for a large investor in a Lévy-type market.
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Chapter 4

Optimal Control Strategies for

Premium Policy of an Insurance

Firm with Jump Diffusion Assets

and Stochastic Interest Rate

4.1 Introduction

It is well known that an insurance is a contract, represented by a policy, used as a

method of protection against losses, whether big or small. This means that the insured

can receive or reimburse some financial amount to offset his or her losses from an insurance

company. Due the fact that an insurance premium is the amount of money that a person or

a company ought to pay for an insurance policy, one can perceive it in two different ways.

In one side, it can be considered as an income by the insurance company. In the other

side it can be also considered as a liability in that the insurer must provide coverage for

claims being made against the policy. In the current paper we focus on the first case where

the policy maker look forward to maximize the terminal wealth of its firm’s cash-balance
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under a demand law.

The main problem in optimal control theory is to characterize an optimal control process.

There are two main approaches, the Pontryagin’s maximum principle and Bellman’s dy-

namic programming. We note that optimal control theory has been used for example in

[21] in order to determine an optimal dynamic unlimited excess of loss reinsurance strategy

to minimize infinite time ruin probability, see also [22], where the authors applied a pro-

portional reinsurance policy for diffusion models in order to find a policy that maximizes a

given return function before the time of ruin. In [6], Cairns study the optimization problem

of stochastic pension fund models in continuous time. The mean-variance portfolio man-

agement for an insurance company is studied by Josa-Fombellida and Rincon-Zapatero

[26] by using dynamic programming techniques and also by Xie et al. [51] using the

general stochastic linear quadratic control technique. In [32], Moore and Young solve an

optimal dynamic consumption, investment, and insurance strategies, using the dynamic

programming principle and a Markov chain approximation method. Ngwira and Gerrad

in [33] show that the optimal contribution and asset allocation policies have similar forms

as in the pure diffusion case, but with a modification due to the effect of jumps. In [24],

Huang et al. explicitly derived the insurance company’s optimal premium strategy and

the associated optimal cost function.

Motivated by the above results, in this chapter, we solve an optimal premium policy prob-

lem of an insurance firm. The main tool used in proving our main results is Pontryagin

maximum principle. More precisely, the suffi cient condition of optimality. Noting that,

in pretty much all of the previous papers, the authors dealt with the problem of optimal

insurance in continuous-time models, we impose here to work with a quite general semi-

martingale framework assuming that the liability process is driven by both a Brownian

motion and a family of pairwise orthogonal martingales associated with a Lévy process.

This kind of models comes naturally from the fact that in many real cases the continuity

of trajectories condition cannot be satisfied. Indeed, the empirical distribution of cash
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balance process tend to deviate from normal distributions, either due to inspected dusters

or huge profits, many successive incidents or even because of the lack of continuity in the

real world of applications.

4.2 Problem statement and description of the model

Let be T > 0 and (Ω,F ,F, P ) a complete filtered probability space supporting a

standard Brownian motions W and a Lévy process L with triplet (σ2
0, ν, α), defined on

[0, T ], and all of them independent each other.

We also assume that F is the complete right-continuous natural filtration generated by

processes W and L.

Throughout this chapter we address an optimal premium policy problem of an insurance

firm under stochastic interest rate when the liability process, also called the payment

function, Bt, is modeled by the stochastic differential equation:

−dBt = (bt + vt) dt+ σtdWt +
∞∑
i=1

πitdH
i
t ,

where b denotes the liability rate, that is, the expected liability per unit time due to

premium loading, v is the premium rate (premium policy) and σ and {πi}∞i=1 are the

volatility rates measuring the liability risks belonging respectively to the Brownian and

Teugels martingale components. Assume moreover that the cash balance process of the

insurer Xt is described by the formula,

Xt = e∆t

(
X0 −

∫ t

0

e−∆sdBs

)
, (4.1)

where X0 = x ≥ 0 represents the initial reserve and

d∆ (t) = δ (t) dt+ α (t) dW (t) , t ∈ [0, T ] , ∆ (0) = ∆0 (4.2)
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is a stochastic process which represents the interest rate. Note that Xt is the difference

between the initial capital and the net expenses up to time t.

Now the Itô’s formula applied to the process X. leads to the following controlled SDE dXt = f (t,Xt, vt) dt+ σ (t,Xt, vt) dWt + πtdHt,

X0 = x,
(4.3)

where

f (t,Xt, vt) =

(
δt +

1

2
α2
t

)
Xt + αtσt + bt + vt,

and

σ (t,Xt, vt) = Xtαt + σt.

Herein, the process v. stands for the control variable. We require that process v. is adapted,

with càdlàg trajectories and taking values in U, a non-empty convex subset of R, such that

the following fourth-power condition E
∫ T

0
|vt|4 dt <∞ holds true. Furthermore, we assume

there exists a positive constant c0 such that the SDE (4.3) has a unique solution satisfying

the terminal constraint

E [XT ] = c0. (4.4)

This last equality means that the insurance firm is looking for some regulatory requirement

c0 described by the average value of its cash balance process at the terminal time T .

Herein, a control variable is said to be an admissible control if and only if satisfies all the

above three conditions.

Let us point out that the aim of the policy maker is to minimize simultaneously the

deviation between the firm’s cash-balance process and its dynamic benchmark over the

set of all admissible controls which will be denoted by U , the cost of the premium policy
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over the whole time interval [0, T ] , and the terminal variance of the cash-balance process

under some given constraint. Therefore, it is quite natural that the cost functional takes

the following form

J (v·) = E
[∫ T

0

e−βtg1 (t,Xt, vt) dt+ e−βTϕ (XT )

]
, (4.5)

with

g1 (t, x, v) =
1

2

(
Rt (x− At)2 +Ntv

2
)
, (4.6)

and

ϕ (x) =
1

2
M (x− c0)2 . (4.7)

Here β is a discounting factor, At is some dynamic pre-set target, representing the dynamic

benchmark of X. Processes R, N and constant M are the weighting factors which make

the cost functional (4.5) more general and flexible to control the preference of the policy-

maker. Furthermore, we suppose that process A converges to c0 as t goes to T.

Now we can formulate the firm’s optimal premium problem as

Problem A: To find v̂ ∈ U such that v̂ minimizes the cost function (4.5) subject to (4.3)

and the state constraint (4.4) .

To deal with this problem, we need to impose the following assumptions on the previous

coeffi cients.

Assumption (H4.1): Functions R. ≥ 0, N. > 0, N−1
. , ∆., b., σ. and A. are all deterministic

and uniformly bounded on the time interval [0, T ] . Moreover, M ≥ 0 and β > 0.

Let us now reformulate the above control problem (4.3)− (4.5) as a generalized stochastic

recursive optimal control with state constraint by introducing the following backward

stochastic differential equation

81



Chapter 4. Optimal Control Starategies for Premium Policy of an Insurance Firm with
Assets of Jump Diffusion and Stochastic Interest Rate..


−dYt = [g1 (t,Xt, v (t))− βYt] dt− ZtdWt −

∞∑
i=1

Ki
tdH

(i)
t ,

YT = ϕ (XT ) .

(4.8)

To conclude this subsection let us notice that (4.3) together with (4.8) form a semi-coupled

FBSDE driven by both the Teugels martingales and an independent Brownian motion.

Then Lemma 2.1 in [31] shows that under (H4.1), (4.3) admits a unique solution Xt for

each v ∈ U and satisfies

sup
0≤t≤T

E
(
X4
t

)
dt < +∞.

For proof of the above estimate, we use the same technique as in Proposition 2.1 in Chapter

2.

As consequence, the terminal condition of (4.8) is square-integrable. Then, for the fore-

going vt and Xt, thanks to Theorem 3.1 in [4], the BSDE (4.8) admits a unique solution

pair (Yt, Zt) under (H4.1) . That is, for any v ∈ U semi-coupled FBSDE consisting of (4.3)

with (4.8) admits a unique solution (X., Y., Z., K.) .

Obviously, by using the dual technique to the BSDE (4.8) one can get Y0 = J (v·) , then

we can reformulate Problem A in the following way:

Problem B: To find v̂ ∈ U such that

J (v̂·) = E(Ŷ0) (4.9)

subject to (4.3) , (4.4) , and (4.8) .

In the next section we are going to prove a suffi cient condition of optimality for the above

problem but in a more general form by assuming that coeffi cients are not necessarily linear

with respect to the state variables.
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4.3 Suffi cient condition of optimality

4.3.1 Problem formulation

Motivated by the above optimal premium policy of an insurance firm, we are now

going to focus on the following control problem where the state process is described by

the following controlled stochastic differential equation driven by both a Brownian motion

and a family of Teugels martingales,


dXt = f (t,Xt, vt) dt+ σ (t,Xt, vt) dWt +

∞∑
i=1

πi
(
t,Xt− , vt

)
dH

(i)
t ,

X0 = x,

(4.10)

and the general stochastic differential utility is given by the BSDE


−dYt = g (t,Xt, vt) dt− ZtdWt −

∞∑
i=1

Ki
tdH

(i)
t ,

YT = ϕ (XT )

(4.11)

where Xt := (Xt, Yt, Zt, Kt) , and

f : [0, T ]× Ω× R× U →R,

σ : [0, T ]× Ω× R× U →R,

π : [0, T ]× Ω× R× U → P2 (R) ,

g : [0, T ]× Ω× R× R× R× P2 (R)× U →R,

ϕ : [0, T ]× Ω× R→R,

are progressively measurable functions.

In the sequel, for notational simplicity, we shall use the shorthand notation

π
(
t,Xt− , vt

)
dHt and KtdHt,

instead of
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∞∑
i=1

πi
(
t,Xt− , vt

)
dH(i) (t) and

∞∑
i=1

Ki
tdH

(i)
t ,

respectively, where Kt = {Ki
t}
∞
i=1 , πt = {πit}

∞
i=1 and π

i : [0, T ]×Ω×R×U → P2 (R) is a

progressively measurable function for any i

Let us now introduce the following basic assumption on coeffi cients which will be needed

in the sequel.

Assumption (H4.2):

i) The function g is Ft-progressively measurable for all (y, z, k) ∈ R×R×P2 (R) and

for any vt ∈ U ,

g (t,Xt, vt) = G (t, Yt, Zt, Kt) +Rt (Xt − At)2 +Ntv
2
t ,

with

E

 T∫
0

|g (s, 0, 0, 0, 0, vs)|2 ds

 <∞.

ii) For every x ∈ R, ϕ ∈ L2, f, σ and π are progressively measurable and

E

 T∫
0

|f (s, 0, vs)|4 ds

+ E

 T∫
0

(
|σ (s, 0, vs)|4 + ‖π (s, 0, vs)‖4

P2(R)

)
ds

 <∞.

iii) The functions G, f, σ and π are continuous and continuously differentiable with re-

spect to x, y, z, k, and v. Moreover, their derivatives are bounded.

Noting that, Lemma 2.1 in [31] shows that under the assumptions (H4.2), the SDE (4.10)

admits a unique solution belongs to S2
F (0, T,R). On the other hand, since the function
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g is uniformly Lipschitz with respect to y, z and k, by using the assumptions (H4.2) one

can easily check that the BSDE (4.11) , satisfies all the conditions in Theorem 3.1 in [4],

and hence it has a unique solution belongs to S2
F (0, T,R)× L2

F (0, T,R)× l2F (0, T,R).

4.3.2 Suffi cient maximum principle

In this subsection, we study Problem B with more general state process. We establish a

suffi cient stochastic maximum principle for stochastic control of forward-backward SDEs

driven by Brownian motion and Teugels martingales where the control domain is assumed

to be convex.

First, by combining (4.10) and (4.11) we get the following controlled semi-coupled FBSDE

driven by Brownian motion and Teugels martingales:



Xt = X0 +

t∫
0

f (s,Xs, vs) ds+

t∫
0

σ (s,Xs, vs) dWs

+

t∫
0

π (s,Xs, vs) dH (s) ,

Yt = ϕ (XT ) +

T∫
t

g (s, χs, vs) dt−
T∫
t

ZsdWs −
T∫
t

KsdHs.

(4.12)

We introduce the following cost functional

J (v) = E

 T∫
0

g (s, χs, vs) ds+ ϕ (XT )

 , (4.13)

The optimal control problem is to minimize the cost functional J (·) over the set of all

admissible controls.

To deal with the above control problem, We first define the Hamiltonian function

H : [0, T ]× Ω× R× R× R× P2 (R)× U × R× R× R× P2 (R)→ R
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by

H (t, x, y, z, k, v, p, q, λ, ρ) = g (t, x, y, z, k, v)λ+ f (t, x, v) p

+σ (t, x, v) q + π (t, x, v) ρ.
(4.14)

Using the shorthand notation

Hy (t) =
∂H
∂y

(t, x, y, z, k, v, p, q, λ, ρ) ,

and similarly, with Hz (t) , Hk (t), Hv (t),Hx (t) , and similar notations are made for H (t)

and l (t) where l = f, σ, π and g.

The adjoint equations are described by the following stochastic Hamiltonian systems,



dλt = Hy (t) dt+Hz (t) dWt +Hk (t) dHt,

dpt = −Hx (t) dt+ qtdWt + ρtdHt,

λ0 = 1,

pT = λTϕ
′ (XT ) , qT = ρT = 0.

(4.15)

In addition to (H4.2) we need the following assumptions:

Assumption (H4.3): We assume,

i) Functions x→ ϕ (x) and (t, x, v, y, z, k)→ H
(
t, x, v, y, z, k, p̂t, q̂t, λ̂t, ρ̂t

)
are convex.

ii) Function H satisfies

H
(
t, X̂t, Ŷt, Ẑt, K̂t, vt, p̂t, q̂t, λ̂t, ρ̂t

)
−Ĥ(t, X̂t, Ŷt, Ẑt, K̂t, v̂t, p̂t, q̂t, λ̂t, ρ̂t) ≥ 0,

(4.16)

for v• ∈ U and any for almost all (t, w) ∈ [0, T ]× Ω.

Then we have the following suffi cient condition for an optimal control of Problem B.
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Theorem 4.1 (Suffi cient maximum principle) Assume (H4.3). Let v̂ ∈ U with cor-

responding solutions X̂·,
(
Ŷ·, Ẑ·, K̂·

)
and

(
λ̂·, p̂·, q̂·, ρ̂·

)
of (4.10) , (4.11) and (4.15) respec-

tively. Then, v̂· is an optimal control for Problem B.

Proof. Let (Xv
· , Y

v
· , Z

v
· , K

v
· , v·) be an admissible solution of (4.12) , it follows from the

definition of the cost functional (4.13) that

J (v̂·)− J (v·) = E
[
Ŷ0 − Y v

0

]
.

From a forward component of SDE (4.15), the right hand side of the above equality can

be rewritten

E
[
Ŷ0 − Y v

0

]
= E

[(
Ŷ0 − Y v

0

)
λ̂0

]
.

Applying Itô’s formula to (Ŷt − Y v
t )λvt from t = 0 to t = T and using the fact that〈

H(i), H(j)
〉
t

= δijt and
[
H(i), H(j)

]
−
〈
H(i), H(j)

〉
is a martingale, to obtain

E
[(
Ŷ0 − Y v

0

)
λ̂0

]
= E

[(
ϕ
(
X̂T

)
− ϕ (Xv

T )
)
λ̂T

]
−E

[∫ T
0

(
Ŷt − Y v

t

)
dλ̂t

]
− E

[∫ T
0
λ̂td
(
Ŷt − Y v

t

)]
−E

[∫ T
0
Hz (t)

(
Ẑt − Zv

t

)
dt
]
− E

[∫ T
0
Hk (t)

(
K̂t −Kv

t

)
dt
]
.

Since ϕ is convex, one can get

E
[(
ϕ
(
X̂T

)
− ϕ (Xv

T )
)
λ̂T

]
≤ E

[(
X̂T −Xv

T

)
ϕ′ (Xv

T ) λ̂T

]
.

We remark that p̂T = ϕ′ (Xv
T ) λ̂T , then

E
[(
Ŷ0 − Y v

0

)
λ̂0

]
≤ E

[(
X̂T −Xv

T

)
p̂T

]
−E

[∫ T
0
Hy (t)

(
Ŷt − Y v

t

)
dt
]

+ E
[∫ T

0
(λ̂t (ĝt − gvt ))dt

]
−E

[∫ T
0
Hz (t)

(
Ẑt − Zv

t

)
dt
]
− E[Hk (t)

(
K̂t −Kv

t

)
dt],

(4.17)
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on the other hand, Itô’s formula applied to
(
X̂t −Xt

)
p̂t, gives us

E
[(
X̂T −Xv

T

)
p̂T

]
= E

[∫ T
0

(
X̂t −Xv

t

)
dp̂t

]
+E

[∫ T
0
p̂td
(
X̂t −Xv

t

)]
+ E

[∫ T
0

(σ̂t − σt) q̂tdt
]

+E
[∫ T

0
(π̂t − πt) ρ̂tdt

]
,

(4.18)

Substituting (4.18) into (4.17), it follows immediately that,

E
[(
Ŷ0 − Y v

0

)]
≤ E

[∫ T
0
−Hx (t)

(
X̂t −Xv

t

)
dt

+
∫ T

0

{(
f̂t − ft

)
p̂t + (σ̂t − σt) q̂t + (π̂t − πt) ρ̂t

+λ̂t (ĝt − gt)−Hy (t)
(
Ŷt − Y v

t

)
−Hz (t)

(
Ẑt − Zv

t

)
−Hk (t)

(
K̂t −Kv

t

)}
dt
]
.

Then

E
[(
Ŷ0 − Y v

0

)]
≤ E

[∫ T
0

{(
Ĥ (t)−Ht

)
−Hx (t)

(
X̂t −Xv

t

)
−Hy (t)

(
Ŷt − Y v

t

)
−Hz (t)

(
Ẑt − Zv

t

)
−Hk (t)

(
K̂t −Kv

t

)}
dt
]
.

By virtue of the convexity property of the Hamiltonian H with respect to (x, y, z, k) for

almost all (t, w) ∈ [0, T ]× Ω, one can get

E
[(
Ŷ0 − Y v

0

)]
≤ E

[∫ T
0

{
Hx (t)

(
X̂t −Xv

t

)
+Hy (t)

(
Ŷt − Y v

t

)
+Hz (t)

(
Ẑt − Zv

t

)
+Hk (t)

(
K̂t −Kv

t

)
+Hv (t) (v̂t − vt)

−Hx (t)
(
X̂t −Xv

t

)
−Hy (t)

(
Ŷt − Y v

t

)
−Hz (t)

(
Ẑt − Zv

t

)
−Hk

(
K̂t −Kv

t

)}
dt
]

= E
[∫ T

0
Hv (t) (v̂t − vt) dt

]
.
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By invoking the necessary condition of optimality (4.16) , we conclude that

E
[(
Ŷ0 − Y v

0

)]
≤ 0,

which implies,

J (v̂·)− J (v·) ≤ 0, ∀v. ∈ U .

This achieves the proof.

4.4 Applications

4.4.1 Optimal premium problem

In this subsection, firstly, we will use the Lagrangian method to treat the terminal state

constraint and after that we apply a suffi cient maximum principle to deal with the resulting

unconstrained optimization problem. Throughout this subsection, we assume that α =

0 in (4.2) which means that the insurance firm only invests in a money account with

compounded interest rate δt, and hence, ∆t =
∫ t

0
δsds. We recall that this kind of problem

in the continuous Brownian case was solved in [24].

Then, SDE (4.3) becomes

 dXt = (δtXt + bt + vt) dt+ σtdWt + πtdHt,

X0 = x.
(4.19)

By using the Lagrangian multiplier method the cost function (4.5) becomes

J (v) = E
[∫ T

0

e−βtg1 (t,Xt, vt) dt+ e−βTϕ (XT ) + θ ((XT − c0))

]
, (4.20)

where θ, the Lagrange multiplier, is some constant to be determined. Then we can refor-

mulate the problem A, as the following:
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We look forward to find v̂ ∈ U which minimize the cost function (4.20) subject to (4.19)

and (4.4).

For this end, let us firstly define the Hamiltonian function

H : [0, T ]× R× U × R× R× P2 (R)→R,

by

H (t,X, v, p, q, ρ) = (δtX + bt + v) p+ σtq + πtρ (4.21)

+
1

2
e−βt

[
Rt (X − At)2 +Ntv

2
]
.

Then, the adjoint equation can be rewritten in a Hamiltonian form:

 −dpt =
[
δtpt + (Xt − At)Rte

−βt] dt− qtdWt − ρtdHt,

pT = θ +Me−βT (XT − c0) ,
(4.22)

where X. stands for the optimal process under the optimal premium policy v and satisfies

the equation (4.19) .

Let φ and ψ the solutions of

 φ′t + 2δtφt −N−1
t eβtφ2

t +Rte
−βt = 0,

φT = Me−βT ,
(4.23)

and

 ψ′t +
(
δt −N−1

t eβtφt
)
ψt + btφt − AtRte

−βt = 0,

ψT = θ − c0Me−βT .
(4.24)

We now in position to stat and prove the main result of this section.

90



Chapter 4. Optimal Control Starategies for Premium Policy of an Insurance Firm with
Assets of Jump Diffusion and Stochastic Interest Rate..

Theorem 4.2 Under Assumption (H4.1), the optimal premium policy is given by

v̂t = −N−1
t eβt (φtXt + ψt) ,

where X. satisfies (4.19) and φt and ψt are the solution of (4.23) and (4.24) respectively.

Moreover, the optimal cost functional is given by

J (v̂) =
1

2

(∫ T
0
e−βtRtA

2
tdt+Me−βT c2

0

)
+

1

2
φ0x

2 + ψ0x− c0θ

+
1

2

∫ T
0

[
φtσ

2
t + φtπ

2
t + ψt

(
2bt −N−1

t eβtψt
)]
dt.

(4.25)

Proof. We shall divide the proof into several steps.

Step 1: We start by proving the existence of optimal premium policy. Since for each

t, (4.5) is quadratic with respect to Xt, vt, XT , and the weight Nt of v2
t is larger than 0,

then there exists an optimal premium policy v̂. which solves Problem A. Indeed, from the

maximum principle, the optimal premium policy v̂ satisfy

0 =
∂H
∂vt

(t,Xt, vt, pt, qt, ρt)

=
∂

∂vt
{(δtXt + bt + vt) pt + σtqt + πtρt

+
1

2
e−βt

[
Rt (Xt − At)2 +Ntv

2
t

]}
= pt + e−βtNtvt,

and is given by

v̂t = −N−1
t eβtpt. (4.26)

Substituting (4.26) into (4.19) and combining it with (4.22), we get the generalized Hamil-
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tonian system


dXt =

(
δtXt −N−1

t eβtpt + bt
)
dt+ σtdWt + πtdHt,

−dp (t) =
[
δtpt + (Xt − At)Rte

−βt] dt− qtdWt − ρtdHt,

X0 = x, pT = θ +Me−βT (XT − c0) ,

(4.27)

which is a coupled FBSDE system. Using si a similar argument as the ones used in Baghery

and al. [3], we can verify that FBSDE (4.27) admits a unique solution under (H4.1). Note

that the optimal premium policy exists and is unique. Furthermore the relation (4.26)

implies that it is linear with respect to p.

Step 2: In this step, we are going to prove that the optimal premium policy v̂ is in fact a

linear feedback of the optimal process X.. First of all, according to the terminal condition

of p in (4.27), it is quite natural to suggest that

pt = φtXt + ψt, (4.28)

with φT = Me−βT and ψT = θ − c0Me−βT . Then, we apply Itô’s formula to p to obtain

dpt =
[
(φ′t + δtφt)Xt + ψ′t +

(
bt −N−1

t eβtpt
)
φt
]
dt

+φtδtdWt + φtπtdHt.

Comparing their generator terms with those of the BSDE in (4.27) we get (4.23) and

(4.24) .

It is well known that (4.23) is a standard Riccati differential equation which admits a

unique solution under (H4.1), so does (4.24) and

ψt =

∫ T

t

(
bsφs − AsRse

−βs)Λt (s) ds+
(
θ − c0Me−βT

)
Λt (T ) , (4.29)
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where

Λt (s) = exp{
∫ s

t

(
δr −N−1

r eβrφr
)
dr}.

Step 3: In this step we are going to find the value of θ. Combining (4.26) and (4.28), we

get 
dXt =

[(
δt −N−1

t eβtφt
)
Xt + bt −N−1

t eβtψt
]
dt

+σtdWt + πtdHt,

X0 = x.

Define X̃t = E [Xt] , then X̃ ′t =
(
δt −N−1

t eβtφt
)
X̃t + bt −N−1

t eβtψt,

X̃0 = x
(4.30)

Solving (4.30) and keeping in mind the terminal constraint (4.4), we easily derive

c0 = xΛ0 (T ) +

∫ T

0

(
bt −N−1

t eβtψt
)

Λt (T ) dt, (4.31)

where

Λt (s) = exp{
∫ s

t

(
δr −N−1

r eβrφr
)
dr}.

Note that φ in (4.23) does not depend on θ and ψ in (4.24) is linear with respect to θ.

Inserting (4.24) into (4.31), we get the equation

θ =

∫ T
0

{
bt −N−1

t [Ft −Qt] Λt (T )
}
dt+ xΛ0 (T )− c0∫ T

0
N−1
t eβtΛ2

t (T ) dt

where

Ft =

∫ T

t

(
eβtbsφs − AsRse

β(t−s))Λt (s) ds,

Qt = c0M exp{
∫ T

t

(
δs −N−1

s eβsφs − β
)
ds}
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and

Λt (s) = exp{
∫ s

t

(
δr −N−1

r eβrφr
)
dr}.

Step 4: We now proceed to determine the optimal cost functional. Substituting (4.26)

into (4.5) we have

J (v̂) =
1

2
E
{∫ T

0
e−βt

[(
Rt +N−1

t e2βtφ2
t

)
X2
t − 2 (AtRt

−N−1
t e2βtφtψt

)
Xt +N−1

t e2βtψ2
t

]
dt

+Me−βTX2
T − 2c0Me−βTXT

}
+

1

2

(∫ T
0
e−βtRtA

2
tdt+Me−βT c2

0

)
.

(4.32)

From Itô’s formula,

d (φtX
2
t + 2ψtXt) =

[
φtσ

2
t + 2ψt

(
bt −N−1

t eβtψt
)

+2e−βt
(
AtRt −N−1

t e2βtφtψt
)
Xt

−e−βt
(
Rt +N−1

t e2βtφ2
t

)
X2
t

]
dt

+2σt (φtXt + ψt) dWt

+2πt (φtXt + ψt) dHt + φt
∑
i,j

πisπ
j
sd [H i, Hj]s .

Integrating from 0 to T , taking expectations on both sides of the above equality and using

the fact that [H i, Hj]t − 〈H i, Hj〉t is an Ft-martingale and 〈H i, Hj〉t = δijt, we get

E (φTX
2
T + 2ψTXT )

=
∫ T

0

[
φt (σ2

t + π2
t ) + 2ψt

(
bt −N−1

t eβtψt
)]
dt+ φ0x

2 + 2ψ0x

+2E
∫ T

0
e−βt

(
AtRt −N−1

t e2βtφtψt
)
Xtdt

−E
∫ T

0
e−βt

(
Rt +N−1

t e2βtφ2
t

)
X2
t dt.
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On the other hand, it follows from (4.23) and (4.24) that

E
[
φTX

2
T + 2ψTXT

]
= E

[
Me−βTX2

T − 2c0Me−βTXT + 2θXT

]
.

Inserting the above two equalities into (4.32) we get the optimal cost functional (4.25) .

This gives the desired result.

Specifically, in case we rule out the terminal constraint (4.4), that is, θ = 0, Theorem 4.2

solves Problem A without constraint (4.4) .

Note also that φ, ψ and θ don’t depend on σ and π. This leads to the fact that the optimal

cost function J (v) increases with respect to σ and π (describing the liability risk). This

implies that more uncertainty in the liability process, the higher the operation costs of our

optimal premium policy.

4.4.2 Optimal premium problem under stochastic interest rate.

In the current subsection we want to discuss the optimal premium problem (Problem B),

in the case where the interest rate is allowed to be stochastic. More precisely, we shall

consider two different cases, where in the first case we assume that the payment function

and the stochastic interest rate are given by the same Brownian motion and in the second

case, we assume that they are given by a different and independent Brownian motions.

First case.

In this case we proceed to solve problem B, assuming that the utility function is that of

(4.9) and the cash-balance process satisfies (4.3) where the stochastic interest rate is given

by (4.2) . We also point out that we also solve a mean variance problem in this section as

a particular case of the problem B.

Since the coeffi cients in (4.3) , (4.6) and (4.7) are linear, we shall assume
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
dXt = (a1 (t)Xt + a2 (t) vt + a3 (t)) dt

+ (b1 (t)Xt + b2 (t) vt + b3 (t)) dW (t) + πtdH (t) ,

X0 = x > 0,

(4.33)

and 
dYt =

(
1

2
(c1 (t)X2

t + c2 (t)Xt + c3 (t) v2
t + c4 (t))− βYt

)
dt

−ZtdWt −KtdHt

YT =
1

2
(XT − a)2 ,

(4.34)

where a is real constant and a1, a2, a3, b1, b2 6= 0, b3, c1, c2, c3, c4 are deterministic functions

satisfying some properties. Note that, a particular choices of the coeffi cients of (4.33) and

(4.34) generate the SDE (4.10) and the BSDE (4.11) .

We shall derive the solution of ProblemB where Y·. satisfies (4.34) . Here, the Hamiltonian

(4.14) gets the form

H =

[
1

2
(c1 (t)X2

t + c2 (t)Xt + c3 (t) v2
t + c4 (t))− βYt

]
λt

+ (a1 (t)X (t) + a2 (t) v (t) + a3 (t)) pt

+ (b1 (t)Xt + b2 (t) vt + b3 (t)) qt + πtρt,

λt = e−βt and (p·, q·, ρ·) satisfies the following adjoint backward equation


dpt = −

(
c1 (t)Xtλt + a1 (t) pt + b1 (t) qt +

1

2
c2 (t)λt

)
dt

+qtdWt + ρtdHt,

pT = θ + λtϕ
′ (XT ) .

(4.35)

By using the suffi cient condition (4.16) given in Section 3, we get

λ (t) c3 (t) vt + a2 (t) pt + b2 (t) qt = 0. (4.36)

To solve (4.35) , we try a process p of the form
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pt = φtXt + ψt, (4.37)

where φ and ψ are deterministic C1 functions.

Applying Itô’s formula to (4.37) and using (4.33), we get

dpt = [(φta1 (t) + φ′t)Xt + φta2 (t) vt + φta3 (t) + ψ′t] dt (4.38)

+ φt [b1 (t)Xt + b2 (t) vt + b3 (t)] dWt + φtπtdHt

Comparing with (4.35) we get

ρt = φtπt,

qt = φt [b1 (t)Xt + b2 (t) vt + b3 (t)] , (4.39)

−
(
c1 (t)Xtλt + a1 (t) pt + b1 (t) qt +

1

2
c2 (t)λt

)
(4.40)

= (φta1 (t) + φ′t)Xt + φta2 (t) vt + φta3 (t) + ψ′t.

Substituting (4.39) into (4.36), we get

v̂t = −(a2 (t) + b1 (t) b2 (t))φtX̂t + a2 (t)ψt + b2 (t) b3 (t)φt
λtc3 (t) + b2

2 (t)φt
. (4.41)

On the other hand, from (4.40) we have

v̂t = −(c1 (t)λt + 2a1 (t)φt + b2
1 (t)φt + φ′t) X̂t

(a2 (t) + b1 (t) b2 (t))φt
(4.42)

−
a1 (t)ψt + b1 (t) b3 (t)φt +

1

2
c2 (t)λt + a3 (t)φt + ψ′t

(a2 (t) + b1 (t) b2 (t))φt
.
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Combining (4.41) and (4.42) , we get

φ2
t

[
(a2 (t) + b1 (t) b2 (t))2 − b2

2 (t) (2a1 (t) + b2
1 (t))

]
− φtφ′tb2

2 (t)

− [c3 (t) (2a1 (t) + b2
1 (t)) + c1 (t) b2

2 (t)]φtλt

−c3 (t)φ′tλt = c1 (t) c3 (t)λ2 (t) , φT = λT .

(4.43)

and

ψt [φt (a2 (t) (a2 (t) + b1 (t) b2 (t))− a1 (t) b2
2 (t))− c3 (t) a1 (t)λt]

−ψ′ (t) (c3 (t)λt + φtb
2
2 (t))

= −φ2
t [(a2 (t) + b1 (t) b2 (t)) b2 (t) b3 (t)− b2

2 (t) (b1 (t) b3 (t) + a3 (t))]

+c3 (t) (b1 (t) b3 (t) + a3 (t))φtλt

+
1

2
(c2 (t) b2

2 (t)φt + c3 (t) c2 (t)λt)λt, ψT = θ − λT c0.

(4.44)

It is well-known that (4.43) is a standard Riccati differential equation which admits a

unique solution. Equation (4.44) has and explicit solution given by

ψt = (θ − λT c0) exp (−Λt (T ))− exp Λt (T )
∫ T
t
e−Λt(s)Gt (s) ds,

with

Λt (T ) =
∫ T
t

φs [(a2 (s) + b1 (s) b2 (s)) a2 (s)− a1 (s) b2
2 (s)]

c3 (s)λ (s) + b2
2 (s)φs

ds

−
∫ T
t

c3 (s) a1 (s)λs
c3 (s)λs + φsb2

2 (s)
ds,

and

Gt (s) = −
∫ T
t

φ2
sb2 (s) b3 (s) (a2 (s) + b1 (s) b2 (s))

c3 (s)λs + φsb2
2 (s)

ds

+
∫ T
t

φ2
sb

2
2 (s) (b1 (s) b3 (s) + a3 (s))

c3 (s)λs + φsb2
2 (s)

ds

+
∫ T
t

c3 (s) (b1 (s) b3 (s) + a3 (s))λsφs
c3 (s)λs + φsb2

2 (s)
ds.

+
∫ T
t

1
2

(c2 (s) b2
2 (s)φs + c3 (s) c2 (s)λs)λs

c3 (s)λs + φsb2
2 (s)

ds
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Thus, we have the following theorem.

Theorem 4.3 Let Xv
t be the cash balance satisfying (4.33), the optimal premium policy

of Problem B is

v̂t = −(a2 (t) + b1 (t) b2 (t))φtX̂t + a2 (t)ψt + b2 (t) b3 (t)φt
c3 (t)λt + b2

2 (t)φt
,

where λ = e−βt and φ and ψ are the solutions of (4.43) and (4.44) , respectively.

This is clearly the unique solution under Assumption (H4.1). Notice that we can get

explicit solutions in some particular cases. For example, if g1 = 0 we can see the problem

as a mean-variance one, where our objective is to find v (t) such that it minimizes

var (XT ) = E
[
(XT − E (XT ))2] ,

under the terminal constraint condition (4.4).

By the Lagrangian multiplier method the problem can be reduced to minimize the following

equivalent problem

J (v·) = E
[

1

2
(Xv

T − c0)2 + θ (Xv
T − c0)

]
. (4.45)

In this case, the Hamiltonian (4.14) gets the form

H = ((a1 (t)Xt + a2 (t) vt + a3 (t))) pt + ((b1 (t)Xt + b2 (t) vt + b3 (t))) qt

+ π (t) ρt.

Hence the adjoint equation takes the following form

 dpt = − (a1 (t) pt + b1 (t) qt) dt+ qtdWt + ρtdHt

pT = θ + (XT − c0) .
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Note that in this case λt = 1, ∀t ∈ [0, T ] .

In the following corollary, we solve problem (4.45) assuming that Xv
t satisfies (4.33).

Corollary 4.1 Let Xv
t be the cash balance satisfying (4.33) . Then, the optimal premium

policy of Problem (4.45) is

v̂t = −(a2 (t) + b1 (t) b2 (t))φtX̂t + a2 (t)ψt + b2 (t) b3 (t)φt
b2

2 (t)φt
,

where φ and ψ are given respectively by

φt = exp

[
−
∫ T
t

(a2 (s) + b1 (s) b2 (s))2 − (2a1 (s) + b2
1 (s)) b2

2 (s)

b2
2 (s)

ds

]

and

ψt = (θ − c0) exp (Λt (T ))

− exp (Λt (T ))
∫ T
t

exp (−Λt (s))φs (a3 (s) b2 (s)− a2 (s) b3 (s)) b2 (s) ds,

with

Λt (T ) = −
∫ T
t

(a2 (s) (a2 (s) + b1 (s) b2 (s)))− a1 (s) b2
2 (s)

b2
2 (s)

ds.

Second case

In this case, we assume the liability of the surplus process and the interest rate are

given by two different Brownian motions. Let V̄· =
(
V̄t
)
t≥0

be an other Brownian motion

defined in (Ω,F ,P) . Assume that V̄· is independent of W· and L·. In this subsection, we

also assume that

Ft = σ
(
Ws, V̄s, 0 ≤ s ≤ t

)
∨ σ (Ls, s ≤ t) ∨N .

We consider that the interest rate is given by the following stochastic differential equation:

d∆t = δtdt+ αtdVt, t ∈ [0, T ] , ∆ (0) = ∆0. (4.46)
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Itô’s formula applied to the process X· described by (4.1) in section 2, leads to


dXt =

(
Xt

(
δt +

1

2
α2
t

)
+ bt + vt

)
dt+XtαtdV̄t

+σtdWt + πtdHt,

X0 = x.

(4.47)

Define a process V such that

XtαtdV̄t + σtdWt =
(
X2
t α

2
t + σ2

t

) 1
2 dVt,

that is,

Vt =

∫ t

0

(
X2
t α

2
t + σ2

t

)− 1
2
(
XtαtdV̄t + σtdWt

)
.

Clearly, the process V is a continuous martingale with quadratic variation 〈V 〉t = t, and

so, it must be a standard Brownian motion, see for example Theorem 6.1 in [8]. Thus, we

can write equation (4.47) by


dXt =

(
Xt

(
δt +

1

2
α2
t

)
+ bt + vt

)
dt+ (X2α2

t + σ2
t )

1
2 dVt

+π (t) dHt,

X0 = x.

(4.48)

We shall derive the solution of Problem (4.5). Here, the Hamiltonian (4.14) gets the form

H =

(
Xt

(
δt +

1

2
α2
t

)
+ bt + vt

)
p+ (X2

t α
2
t + σ2

t )
1
2 q

+πtρ+
1

2
e−βt

[
Rt (Xt − At)2 +Ntv

2
t

]
.

The adjoint process (p (t) , q (t) , ρ (t)) satisfies the following BSDE:
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
−dpt =

((
δt +

1

2
α2
t

)
pt +

α2
tXtqt√

X2
t α

2
t + σ2

t

+Rt (Xt − At) e−βt
)
dt

−qtdVt − ρtdHt,

pT = θ +Me−βT (XT − c0) .

Note in this case λt = 1, ∀t ∈ [0, T ] .

By the same technique used in Subsection 4.1, we infer that the optimal premium policy

is given by

v̂t = −N−1
t eβt (φtXt + ψt) ,

where X· satisfies (4.48) and φ and ψ are respectively the solutions of the equations

 φ′t + 2 (δt + α2
t )φt −N−1

t eβtφ2
t +Rte

−βt = 0

φT = Me−βT ,

and


ψ′t +

(
δt +

1

2
α2
t −N−1

t eβtφt

)
ψt + btφt − AtRte

−βt = 0,

ψT = θ − c0Me−βT .

Moreover, the optimal cost functional is given by

J (v̂·) =
1

2

(∫ T
0
e−βtRtA

2
tdt+Me−βT c2

0

)
+

1

2
φ0x

2 + ψ0x− c0θ

+
1

2

∫ T
0

[
φtσ

2
t + φtα

2
t + ψt

(
2bt −N−1

t eβtψt
)]
dt.
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This study aimed to highlight some novel existence and uniqueness results to fully cou-

pled forward-backward stochastic differentials equations driven by a family of Teugels

martingales associated to some Lévy processes. For this purpose, we have extended some

knowledge results for FBSDE driven by a Brownian motions to case of FBSDEs with

jumps. Such jumps come out naturally, for instance, in models with default risk which

happen in default time. This type of equations turned out to be useful in many fields,

namely in the stochastic control problems, mathematical finance and partial differential

equations.

The most important results and the main contributions of this thesis are summarized as

follows:

1) Under some monotonicity conditions, we have provided an existence and uniqueness

solution to fully coupled FBSDEs associated to Lévy process, where the final time is

allowed to be random. As an intermediate result, we also have treated one kind of BSDEs

with jumps in stopping time duration.

2) The well-posedness of FBSDEs driven by Teugels martingales on an arbitrarily fixed

large time duration, is also investigated under some assumption on the derivatives of the

coeffi cient.

3) We have proved a verification theorem for an admissible control to be optima for a semi-

coupled FBSDEs driven by Teugels martingales, which is illustrated by various examples.

Finally, we provide a few prospects for future studies of FBSDEs driven by Lévy process
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as follows:

i) Applications to stochastic control problems.

ii) Generalization of the results provided in chapter two to the multi-dimensionnal case.

iii) State and prove a comparison theorem, under some suitable condition, for the system

that we have dealt with in chapter one.
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