
République Algérienne Démocratique et Populaire
Ministre de l’enseignement supérieur et de la recherche scientifique

UNIVERSITE MOHAMED KHIDER BISKRA

FACULTE DES SCIENCES EXACES, DES SCIENCES DE LA NATURE
ET DE LA VIE

DEPARTEMENT D’INFORMATIQUE

N° d’ordre :…..

Série :…..

THESE

Présentée pour obtenir le grade de

 DOCTORAT EN SCIENCES EN INFORMATIQUE

Extending Petri Nets for Modeling and
Analysis of Reconfigurable Systems

Présentée par :

M. Kahloul Laid

Soutenue le: …/ ….. /20…

Devant le jury:

Pr. Noureddine Djeddi Université de Biskra Président

Dr. Allaoua Chaoui Université Mentouri Constantine Rapporteur

Pr. Djamel Eddine Saidouni Université Mentouri Constantine Examinateur

Dr. Okba Kazar Université de Biskra Examinateur

Dr. Mustapha Bourahla Université de M'SILA Examinateur

Dr. Kamel Eddine Melkmi Université de Biskra Examinateur

Pr. Karim Djouani Université Paris Est (UPEC) Invité

Dedicatee

I dedicate this work to:

My mother who pries always for me to success in my life

My wife who offers many sacrifices during the achievement of this thesis

Acknowledgments

The achievement of this thesis is due to the assistant and orientations of many

persons that I have meet in these last five years. I want here to present my

acknowledgments to my reporter Dr Alloaua Chaoui, for his orientation, his patience

with me and his disposability during these years. I have to thank also all the team in

the Computer Science Department, where I have done my graduate and post-graduate

studies, and where I am working. My thanks also are presented to the University which

gave me the chance to pass two years in the laboratory LISSI (Paris 12) during the

finalization of this thesis. And so, I have to thank all the team of the LISSI laboratory

in Paris 12 University: Pr Djouani Karim who is my co-reporter and Pr Amirat

Yacine who is the laboratory director. I hope that they find here all my

acknowledgments for all the helps that they gave me during my formation in the

laboratory. I want also to present my thanks to all colleagues and friends in the

laboratory: Khaled, Nadeem, Safdar, Noura, Souhil, Fouzi, Hossine, Brahim, Walid,

Karim, ... with whom I have shared many days, and many events, during two years in

France. Finally, I present my thanks to the members of the jury who give me the

honour by accepting to evaluate this work.

 Abstract

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems I

Abstract

Abstract: Petri nets are a formal and graphical tool proposed to model and to analyze

behavior of concurrent systems. In its basic version, this model is defined as a fixed

graph, where the behavior of the system is modeled as the marking of the graph that

changes over time. This constraint makes the Petri Nets a poor tool to deal with

reconfigurable systems where the structure of the system can change as its behavior,

during time. Many extended Petri nets were proposed to deal with this weakness. The

aim of this work is to present an extension where the structure of the graph can be

highly flexible. This flexibility gives a rich model with complex behaviors, not allowed

in previous extensions. The second aim is to prove that even these behaviors are so

complex; they can be encoded in other models and so be analyzed.

Keywords: Petri Nets, Dynamic Nets, Reconfigurable Systems, Extended Petri Nets,

Flexible Nets.

 Table of contents

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems I

Table of contents

Introduction...1

Chapter I: Mobile Computing

1 Introduction .. 9

2 Definitions .. 9

3 Why Mobility? ... 10

3.1 Motivations for Hard Mobility .. 10

3.2 Motivations for Soft Mobility .. 10

3.3 Motivations for Mobile Agents ... 11

4 Origins of the Soft Mobility Idea ... 12

5 Architectures and Mechanisms for MCSs .. 13

5.1 Architectures for mobility ... 13

5.2 Mechanisms for mobility ... 14

5.2.1 Kinds of mobility ... 14

5.2.2 Managing bindings ... 15

6 Programming Languages .. 15

6.1.1 The Emerlad system ... 16

6.1.2 Telescript .. 16

6.1.3 Agent Tcl .. 17

6.1.4 Java ... 17

6.1.5 Objective Caml ... 17

6.1.6 Aglet ... 17

7 Conceptual Paradigms .. 18

8 Applications of Mobility .. 19

9 Mobility Problems .. 20

9.1 Shortcomings of hard mobility .. 20

9.2 Shortcomings of mobile agents ... 20

10 Industrial Realizations .. 21

11 Standardization Efforts ... 23

12 Conclusion .. 23

Chapter II: Formal Methods for Mobile Computing

1 Introduction .. 26

2 The Distributed Join Calculus .. 27

2.1 The Syntax of the Distributed Join Calculus ... 28

2.2 The Execution in the Distributed Join Calculus .. 29

2.3 Examples of specifications in DJC .. 32

3 Towards Dynamic Petri Nets ... 33

3.1 Petri Nets ... 33

3.2 Mobile Petri Nets ... 35

3.3 Dynamic Petri Nets .. 38

3.4 Verification of Dynamic Nets .. 40

4 Conclusion .. 41

 Table of contents

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems II

Chapter III: Extended Petri Nets

1 Introduction .. 44

2 Labeled Reconfigurable Nets: A naïve idea ... 45

2.1 Formal Definition .. 45

2.2 Dynamic of labeled reconfigurable nets .. 46

2.3 Examples of Modeling ... 47

2.3.1 Remote Evaluation ... 48

2.3.2 Code On Demand ... 49

2.3.3 Mobile Agent .. 50

2.4 Shortcomings and Extensions .. 51

3 Colored Reconfigurable Nets ... 51

3.1 Formal Definition .. 52

3.2 Dynamic of colored reconfigurable nets ... 53

3.3 Examples of Modeling ... 54

3.4 Shortcomings and Extensions .. 55

4 Flexible Nets: The mature idea .. 56

4.1 Formal Definition .. 57

4.2 Firing Rules ... 58

4.3 Examples of Modeling ... 61

4.3.1 Example of a Dynamic Join Calculus model ... 61

4.3.2 Example of a Mobile Petri Nets model .. 62

4.3.3 Example of a Dynamic Petri Nets model ... 64

5 Analysis Issues ... 66

6 Conclusion .. 69

Chapter IV: Encoding of Flexible Nets into Dynamic Nets

1 Introduction .. 71

2 Adding a Place in the Flexible Net ... 72

2.1 The encoding ... 73

2.2 Example of an encoding .. 79

2.3 Simulation on the example .. 81

2.4 Correction of the encoding .. 83

3 Adding a Transition in the Flexible Net ... 87

3.1 The encoding ... 88

4 Adding an Arc in the Flexible Net ... 89

4.1 The encoding ... 89

5 Deleting a Place from the Flexible Net .. 90

5.1 The encoding ... 90

6 Deleting a Transition from the Flexible Net .. 91

6.1 The encoding ... 91

7 Deleting an Arc from the Flexible Net ... 92

7.1 The encoding ... 92

8 Conclusion .. 92

Conclusion

1 Comparison with Similar works ... 95

 Table of contents

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems III

2 Perspectives .. 97

 References ………………………………………………………………………..….……99

 Table of Figures

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems IV

Tabled of figures

Chapter I: Mobile Computing

Figure I.1. Architectures for code mobility systems. ... 13

Table I.1 Mechanisms for managing links .. 15

Table I.2. Conceptual paradigms for mobility .. 18

Chapter II: Formal Methods for Mobile Computing

Figure II.1. A graphical representation of mobile nets‟ dynamic 38

Chapter III: Extended Petri Nets

Figure III. 1. REV-Model before and after firing rt ... 49

Figure III. 2. COD-Model before and after firing rt .. 50

Figure III. 3. MA-Model before and after firing rt .. 51

Figure III. 4. MA-Model (modeled with CRN) before and after firing rt 55

Figure III. 5. Flexible Nets first example ... 58

Figure III. 6. Flexible Nets second example. ... 59

Figure III. 7. Flexible Nets third example. ... 60

Figure III. 8. The initial configuration. .. 62

Figure III. 9. The configuration after firing the sequence t‟,t. ... 62

Figure III. 10. Flexible Nets: example of Mobile nets ... 63

Figure III. 11. Configuration after firing the sequence t0,t1 .. 63

Figure III. 12. Configuration after firing the sequence t3,t2 .. 64

Figure III. 13. The initial configuration ... 65

Figure III. 14. The configuration after the firing of the sequence t0, t 65

Figure III. 15. The configuration after the firing of the sequence t‟‟, t‟ 66

Figure III. 16. Interface of the prototype. ... 67

Figure III. 17. Example used as input for the realized prototype 67

Figure III. 18. Reachability tree ... 68

Chapter IV: Encoding of Flexible Nets into Dynamic Nets

Figure IV.1. Adding a place in the FN model ... 72

Figure IV.2. Adding a place in the labeled version ... 72

Figure IV.3. Transformation to deal with 0
int

i
. .. 74

Figure IV.4. Transformation to deal with 1
int

i
. .. 74

Figure IV.5. The indexed Dynamic Net .. 76

Figure IV.6. The final Dynamic net .. 78

Figure IV.7. Example of a Flexible Net. ... 79

Figure IV.8. Transformation of the example. .. 79

Figure IV.9. Indexed DN for the example. ... 80

Figure IV.10. DN for the example. ... 81

Figure IV.11. The model before firing rt. ... 82

Figure IV.12. The model after firing rt twice. ... 82

 Table of Figures

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems V

Figure IV.13. Adding a transition ... 87

Figure IV.14. Adding a transition (The encoding) .. 88

Figure IV.15. Adding an arc .. 89

Figure IV.16. Transformation to add an arc a=(p,t) ... 90

Figure IV.17. deleting a place ... 90

Figure IV.18. Deleting a transition .. 91

Figure IV.19. Transformation for deleting a transition ... 91

Figure IV.20. Deleting an arc .. 92

Introduction

 Introduction

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 1

Introduction

The development of computer science technologies and the increasing of users

requirements is the most reason of the born of sophisticated solutions. Mobility with its soft

and hard aspects is one of these solutions. When some disaster menaces a critical system

during its execution, it seems a good idea to transfer this system and to save its state to

another side more secure, where it can continue its execution. By soft mobility, we mean a

system where code can migrate from one site to another site. Many reasons can cause such

migration and many methods and techniques can be used. On the other hand, travelling users

who request some computing services need also some specific mobile devices. In this last

case, we talk about hard mobility. Solutions that study and consider soft mobility are

classified as mobile code studies. Solutions dealing with hard mobility concern wireless and

mobile networking. The most of current problems in computer science and also in

telecommunication fields require hybrid solutions where soft and hard mobility are employed

together.

Mobile Computing covers the two fields of Mobile devices and Mobile codes. Mobile

computing knows an increasing use in computer science and in telecommunication field. The

90
th

decade was known by the development and a particular concentration on mobile code

technologies [51]. In this period, researches on mobile code reached a maturated state. This

maturity allows researchers in the domain to propose many technologies as programming

languages and developing environment supporting mobility aspects. These programming

languages and environments spread mobile code technologies and make it one of the basic

solutions in computer science design methods. The second decade (after 2000) is more known

by the growing of mobile and wireless networking technologies [50]. With the development

and the elaboration of mobile computing technologies, some unresolved problems can be

resolved but also some traditional problems can have more sophisticated and adapted

solutions.

In software engineering, the development of any solution is realized through a set of

developing steps. Each step produces some middle-product that can be used as input for the

following step. The final product will be the requested solution as a software system. These

steps start always by an analysis of the requirements, the current problems, and the available

technologies and solutions. This analysis opens road to a series of other phases. Briefly, a

design step offers the architecture of the system and the set of its modules, then a coding step

that transforms this architecture to a real system ready to be executed, finally test activity is

used to find errors and debug the system. The poorness of the test activity requires two other

activities: verification and validation. To ensure that the system realized is correct,

verification activities can be included into the design steps or after the coding of the system.

To insure that the system conforms to the first requirements defined by the future users,

validation activities must also be achieved between steps of the development process and on

the final product of the development. The middle-products can be described using formal

languages. A formal language uses a well defined syntax to describe the product, and has a

formal semantics. This formal semantics allows the developer to apply formal verification.

When a formal language is used in a developing process, some of the products are presented

as formal description that we call formal specifications of the system. In a Complete Formal

Approach, all steps of the development are realized using formal tools. A formal language is

used to present the result of the analysis, the architecture of the system is described formally,

 Introduction

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 2

and the architecture can be transformed formally (some time also automatically) to a code. In

a formal approach, the verification can be realized through all phases (and also can be

automated). Formal methods are methods where the developer uses some formal language to

describe its product at some level as a formal specification, and then apply some technique to

verify some properties in this specification. The use of formal methods was proposed with the

first proposition of software engineering as a discipline to guide developers to produce high

quality software. However the use of formal methods was always limited. This is due,

sometimes to the difficulties that seems as a disadvantage of these methods, and sometimes to

the non-conscience of developers of the power of such techniques to produce software with

no errors. Though these problems, researches on formal methods were not stopped, many

formal languages and many verification techniques were elaborated, developed, and used in

some applications. In the most approach of software engineering, we consider that a system is

always a combination of a set of structures (representing data used by the software) and a

dynamic that represents the execution of the system. Following this last consideration, formal

methods were proposed to specify and verify even the structure of the system or the dynamic

of this system. Some formal methods are more general and allow the developer to specify the

structure and the dynamic of the system. The idea of mobility in computer science imposes

challenges to the developer in many levels and on many aspects. Programmers were interested

to proposing technologies that allow the implementation of mobility in computing, and their

efforts make it possible to implement many ideas that seem fantasy firstly. Designers were

interested to propose approaches, and design/specification languages to guide developers in

this new area. On the other hand, researchers on formal methods, tried to give their part in this

evolution.

To specify mobility in computing, some researchers propose the use of classical formal

tools and methods. They argue their choice to the maturity of these classical techniques and

their richness on the verification aspect. Other researchers consider that classical formal tools

and methods are poor and have not the expressive power to handle a complex aspect as

mobility. These researchers consider that the specification of mobility requires new formal

methods or at least an important update of the classical methods. The motivation behind the

proposition of a new formal method for mobility is always to give a tool with more

expressiveness or a tool that can treat some aspect not considered by existing tools. Through

our investigation in this research, we have concluded that formal methods proposed in mobile

computing can be divided into three families: methods based on Processes Algebra calculi

[9], those based on Petri Nets [27], and finally someone which were based on Rewriting

Logic [39]. In a Processes-Algebra, processes are considered as algebra-operands and a set

of operators are defined to manipulate these processes as their operands. The CCS [1]

(calculus of communicating systems) is the famous classical formalism proposed as a

processes-algebra. This algebra has been extended to handle mobility, the obtained calculus is

-calculus [2]. With CCS, one can specify a set of processes that communicate through a set

of gates. These gates are used as a synchronization tools between processes. In the -calculus,

a sender uses its output gate to send some information to a receiver; this last one receives the

information through its input gate. The idea in the -calculus is that the communicated

information can be the name of a gate. So a sender can send to a receiver the name of a gate.

The receiver can use this new name as an input or output gate. With this idea, the -calculus

can be used to specify a system where its configuration can be changed during its execution.

The -calculus is more adequate to specify systems where processes are fixe, but their

 Introduction

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 3

communication gates can be updated through the execution of the system. To give more

expressiveness to this calculus, the HO-calculus [3] (high order -calculus) was proposed. In

this extension, processes can exchange other processes through gates (the exchanged

processes are called agents). With HO-calculus, one can specify systems where processes

migrate. One of the most important notions in mobility is the processes‟ localities. Mobility in

a computing system can be inspected through the change of processes localities. The

precedent calculi don‟t specify this notion. Mobile ambient [4], and Join calculus [5] are two

calculi which can be considered as extension of -calculus, and that allow to specify explicitly

processes localities. In mobile ambients, agents (or processes) can be into an ambient. Agents

can migrate from one ambient to another ambient; this can model a code that migrates from

one device to another device. Ambients can be structured hierarchically. An ambient can

surround a set of ambients, and an internal ambient can change its locality (its surrounding

ambient). Migration of ambients can model hard mobility in wireless and mobile networks.

The join-calculus is proposed as a calculus for mobile agents programming. In this calculus,

agents are called locations. Locations can migrate and they are transparent. The transparency

of locations makes interactions between them implicitly. A location can interact with another

location if it knows its name. Other extensions of these calculi were proposed to deal with

some specific aspects of mobility like: s-claculus [7], and sjoin-caclulus [10], proposed to

deal with the security aspect in mobile computing. The probabilistic mobile ambients [6] is an

augmented version of mobile ambients. If in mobile ambients, the behavior of the modeled

system is nondeterministic; in this augmented version the behavior can be also probabilistic.

Petri Nets represent another formal approach adopted by researchers to develop

specification and verification techniques for mobile computing systems. A Petri Net (PN) [27]

is a bipartite graph where nodes can be places or transitions. These nodes can be connected

by a set of arcs. This graph describes what we call the structure of a Petri net, which never

changes. The places in a Petri net can be marked with tokens. The set of tokens distributed on

these places is called the marking of the Petri net. The transitions in a Petri net can be fired if

some preconditions are satisfied. When a transition is fired, the marking of the net is updated.

Some tokens disappear from some places (input places of the transition) and other tokens

appear in some other places (output places of the transition). Firing transitions and updating of

the marking of the Petri net describe the dynamic of the Petri net. In their originality, Petri

nets were proposed as a formalism to describe the dynamic of concurrent systems. The

classical model is so simple and with a poor expressiveness. This model was extended to

solve some problems inherent to the classical one and to deal with new systems that require

more expressive power. Colored Petri Nets (CPN) [31] was proposed to give a formalism

where tokens can be structured data. More complex systems can be modeled using CPN and

where the model stays always controllable. The use of Petri nets to model mobility requires

the development of new versions of this formalism. The classical one seems to be so poor to

deal with the aspect of mobility. Researchers have identified early that the most problem

using Petri net to model mobility is that PN model only the dynamic of the system, though in

mobile systems it is no more the dynamic, only is changing, but the structure also changes

over time. The most proposed extensions of PN to model mobility have as objective to give to

the formalism the expressive power to model a system where its configuration changes during

its execution. Through our study, we have concluded that works on extending Petri Nets to

model mobility can be classified into three classes. This classification is based on the degree

of dynamicity allowed to reconfigure the graph of the Petri Net. In the first class (for example

 Introduction

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 4

in [25]), the graph does not change. So there is no reconfiguration of the graph, and mobility

is only simulated on the graph of the Petri net. In the second class, even the graph doesn‟t

change the tokens are not simple data. Tokens can be themselves nets (for example the works

[21, 22, 23, 29, 30]) or tokens can be algebraic expressions (like in [26]). Mobility of agents is

modelled by the movement of these tokens, and behaviour of mobile agents will be modelled

by executions in these tokens. A third class of extensions is the one where the idea is to allow

a modification in the graph of the net during the firing of some transitions (as examples in

[19, 20, 24]). In this kind of extension, the structure of the net can be modified and this

modification will be used to model dynamicity in mobile computing systems. In the three

following paragraphs, we present in more details these kinds of extensions.

Predicate/Transition nets (PrNets) [25] is an extension of CPN for mobile agents. In this

formalism, a set of agents with common behaviour can be modelled as a net (a template). A

location is modelled as system net (a set of template nets). Connectors are used to connect

locations, and to allow the migration of mobile agents. Migration of an agent is modelled by

the transfer of some token from the local location to the destination one, through a connector.

This transfer of token will make the agent inactive in the first location and active in the

destination one. With PrNets, authors give a technique to simulate agent‟s mobility through

token transferring between interconnected PrNets.

In Object Petri Nets [30], and Elementary Object Nets (EON) [21], tokens can be Petri nets

themselves. In an EON, we distinguish between System Nets and Object Nets. Object Nets

play the role of object tokens that can appear in places of a System Net. Here, a two-level

system modelling technique is introduced. The System Net which represents the external level

and the Object Net which represents the internal level can have some synchronous transitions.

In this case, these transitions must be fired simultaneously in the two levels. Object Nets used

as tokens in a System Net can also interact. EON formalism was proposed to model some

kind of systems like: workflow, flexible manufacturing, and mobile agents. Based on the

EON formalism, other proposals were done: Nested Nets [22], Petri Hypernets [23], Nets

within Nets [29], … etc In Nested Nets [31], firing some transitions creates new nets (called

token nets) in their output places. Nested nets are also hierarchic nets, where we have different

levels of details. Places can contain nets, and these nets can contain also nets as tokens in their

places. This formalism was proposed to adaptive workflow systems. Adaptivity means an

ability to modify processes in a structured way, for example by replacing a subprocess or

extending it. Petri Hypernets [23] are proposed to model mobile agents. Mobile agents are

modelled as nets. These mobile agents are manipulated by other agents (modelled as nets)

who can be also mobile. We call Open Net a net used to model a mobile agent. This open net

plays the role of a token in another net; this last one is called hyper-marking Net. As a

difference with Valk‟s proposal [21, 30], the inter-level synchronization in Hyper-Nets is

achieved solely by means of exchanging messages. PEPA nets [26], are a combination

between Coloured Stochastic Petri Nets [32] and the Stochastic Processes Algebra PEPA [8].

The PEPA algebra can be used to specify systems composed of a set of components that can

be concurrent and that can cooperate. These components will be called PEPA components.

Stochastic variables are used to specify the durations of activities executed by these

components. In PEPA Nets, the set of colours used in the definition of the net are a set of a

PEPA Components. In [26], authors present an example of modelling a mobile agent system

using a PEPA Net. Places of the PEPA Net are used to model the set of hosts that the agent

 Introduction

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 5

can visited. Transitions in the PEPA Nets model the activities that the agents can execute. The

agent itself is modelled as a token specified as a component in PEPA algebra. In this

formalism, the structure of the PEPA Nets does not change. The mobility is modelled through

the firing of some transition, and the transfer of one token (an agent or a process) from one

place to another.

Self Modifying Nets (SMN) [28] is an extension of Petri Nets. In this formalism, edges can

be labelled by names of places. If the name p is used as the weight of an arc, then this means

that the number of tokens to be moved through this arc is equal to the current marking of the

place p. So, in self modifying nets, the weights of arcs are dynamic. These weights depend on

the current marking of the net. Even SMN offers more computational power than PN;

mobility was not the objective of this extension. Though, this formalism was the basis for

other more important formalisms like “Reconfigurable Nets” [19]. In Reconfigurable Nets, a

set of rewriting rules are used to modify the structure of the net. In this formalism, the set of

transitions does not change; however, some places can appear or disappear. Appearance and

disappearance of places change the interconnection of the net. This formalism is proposed to

model nets with fixed components but where connectivity can be changed over time. This

formalism was also proposed for dynamic workflow systems. A dynamic workflow system

retains the same set of tasks, but the order in which these tasks are executed can be changed

over time. Reconfigurable Nets can be translated into Self Modifying Nets. In [24], authors

proposed Mobile synchronous Petri nets (MSPN) as formalism to model mobile systems.

MSPN is an extension of CPN. In this formalism, two concepts are introduced: Nets (an entity

that can model an agent or a process) and disjoint Locations (which can model environments).

A net can change its location when some transition is fired. To explicit mobility, the marking

of a net in a MSPN is extended with the information of the current location of the net. The

marking of a net contains both: marking of all places as in ordinary CPN, and the identifier of

the current location of this net. To change the location of a net, this net must contain a specific

transition called go. Firing a go transition, in a net, moves this one from its locality towards

another locality. The destination locality is given through a token in an input place of the go

transition. Finally, Mobile Petri Nets (MPN) [20] extend coloured Petri nets to model

mobility. MPN is inspired from join-calculus [5]. In this formalism, the set of output-places of

a transition can be modified during the firing of this transition. A transition can change its

output places. The input-expressions of a transition define the set of its output-places. In the

same work [20], authors present Dynamic Petri Nets (DPN) which is an extension of MPN. In

DPN, the firing of a transition can add a new subnet to the original one.

Beside the use of process algebra and Petri net, the Rewriting Logic (RL) [39] was also

exploited to specify mobility. Firstly, Rewriting logic [39] was proposed as a unify framework

for all formal models dedicated for concurrency. Rewriting logic uses algebraic data type to

specify distributed systems. An algebraic data type is presented as an equational specification.

This specification consists of a signature (types and operators) and a collection of conditional

equations. The dynamic of the distributed system is then specified by set of rewrite rules.

Rewrite rules model actions that transfer the system from one state to another state.

Theoretical ideas developed in RL were implemented in Maude language [37]. Maude allows

the verification of specifications written in rewriting logic. To handle mobility, a Mobile

Maude [38] was proposed. Mobile Maude is an object oriented high level language with

asynchronous message passing. Mobile Maude introduces two new concepts: processes and

 Introduction

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 6

mobile objects. A process models the computational environment where one or more mobile

objects can reside and can be executed. Mobile objects are instances of classes that can

migrate from process to process and can communicate by message passing. The key feature of

mobile Maude is that it deals with various security aspects: Cryptographic authentication

which protects machine from malicious mobile code, redundant checks which insure

reliability and integrity of computations, and public-key infrastructure service which protects

communications.

In our study, we were interested to use Petri Nets to model and verify mobile agents. We

were interested to propose extension of Petri Nets where the structure of the net can change

during its execution. So we can classify the set of our works in the third class of previous

works. We have proposed several ideas presented in some papers. In [42], we have presented

Labelled Reconfigurable Nets (LRN). In this formalism, we have extended Petri Nets with

labelled reconfigure transitions. When a reconfigure transition is fired, it changes the structure

of the net. The change that occurs depends on some information (destination of migration,

type of migration, required and type of resources for processes or agents … etc). This

information is presented in a label associated to the reconfigure transition. With this idea, we

have showed how some basic concepts defined in mobility can be modelled like: Mobile

Agents, Remote Evaluation, and Code on Demand. This formalism was extended to handle

time property in [43, 44]. In [45], we have extended LRN toward Coloured Reconfigurable

Nets (CRN). In CRN, we have used structured tokens to compute information required to

mobility and so we have abandoned the idea of labels. Using structured tokens makes the

model more flexible because the information can be computed and so can change over time.

These previous formalisms are so naïve and they can model explicitly and easily mobility of

agents, but once trying verification, we have concluded that expressiveness power of these

models makes verification so hard. In [46], we have proposed a technique for modelling and

simulation of mobile agents using LRN and an extension of Maude [37]. This extension is

called Reconfigurable Maude (RM). In RM, we allow the possibility of changing the structure

of Maude theories, during their execution. We have introduced specific rules called

reconfigure rules (RR), that once executed can change the structure of a Maude theory. A RR

can have its effect on the local theory where it is defined, or it can have an over-effect on

other theories. RM theories can be distributed on a local net. A prototype of RM was realized

with some students. The idea was to firstly model mobile systems using LRN, then translate

these nets into RM, and finally simulate the execution of these specifications using the

realized prototype. The basic idea behind these works was always the give to the net some

mechanism allowing it to reconfigure its structure when some transition is fired. This

reconfiguration is done by adding some component (places, transitions, arcs) or deleting them

from the original structure. The components to be add or delete must be defined some were as

labels or as tokens. The problem of these formalism stays in the verification phase. Each time

we try to allow the most and fine reconfiguration possible in the net, the analysis will be

harder and sometimes impossible. Recently, we have exploited the Dynamic Petri Nets [20],

which makes it possible to add places and new nets to the original net when transitions are

fired. The reconfiguration in DPN is not general and must respect several conditions. Our

objective was to present a formalism more flexible than DPN and in which the structure can

be changed by adding or deleting any component. We have, so, proposed the Flexible Petri

Nets (FPN) [47, 49] as a generalization of DPN. The FPN is the more flexible formalism

based on Petri nets. Reconfiguration can be done in fine granularity, and in a free way. This

 Introduction

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 7

quality makes the formalism the more adequate to model the most sophisticated

Reconfigurable Systems (Mobile computing systems, mobile networks, mobile robots …).

One of the ways to analyse FPN model can be the translation of these models into some DPN

very complex. These DPN models can be themselves translated into CPN, like shown in [20].

We consider that our proposition about Flexible Nets seems to be the most elaborated

extension for Petri Nets with reconfigurable structure. Using this formalism, the designer of

reconfigurable systems has a tool with an expressiveness power, which makes formal

modelling easy.

This thesis is composed of four chapters. The first two chapters present a state of the art,

and the two last chapters present our contribution. We adopt the following organization:

Chapter 1: Mobile Computing. This chapter presents a state of the art on mobile

computing;

Chapter 2: Formal methods for mobile computing. This chapter gives in more details

some of the most important works in the domain of formal methods applied in mobile

computing. We will restrict the presentation only to the works that have inspired us, and

which have influenced our proposition;

Chapter 3: Extended Petri Nets: This chapter present our contribution at the modelling

level. The chapter present a set of extensions proposed to model mobility and in more general

reconfigurability in systems. For each extension, we will give the definition of the formalism,

its characteristics, some examples, and the analysis issues.

Chapter 4: The Encoding of Flexible Nets. This chapter present our second contribution

at the formal analysis level. We will present the translation of Flexible nets into Dynamic

Petri Nets, and we will prove this translation.

This thesis will be concluded by a conclusion in which we present a self-evaluation of our

work, present more comparisons with other works, and finally show some perspectives of the

present work.

Chapter I: Mobile

Computing

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 9

1 Introduction

With the apparition of distributed systems, the development of wireless computer networks

and the diffusion of portable devices, we experienced the emergence of mobile computing. In

this context, mobility concerns either movement of hardware devices or migration of software

applications. The purpose of this chapter is to present a state of the art on mobility. One

attempts to trace the way in which ideas have evolved. However, if we start with a broad

aspect of mobility, we will focus more and more on a particular axis: mobile agents. These are

autonomous software entities, performing tasks to the profiles of their owners.

In section (2), we begin by exposing definitions of some principal concepts in the field:

mobile computing, mobile code (or code mobility) and mobile agents. Motivations of

mobility with its both hardware and software versions will be presented in the third section.

The fourth section focuses on soft mobility and explores the origins of this idea. Considering

the concept of mobile code systems or mobile system components as a unifying concept of

different forms of soft mobility, section (5) presents an architectural vision (adopted in several

works) for such systems, as well as mechanisms derived below this architecture.

Section (6) presents some of the most relevant existing technologies (programming

languages and platforms). These technologies can be used to implement solutions based on

mobile code. However, such solutions must first be designed, and Section 7 presents

conceptual paradigms derived from the architectural vision presented in Section 5. These

conceptual paradigms can be implemented with different technological solutions, even if

some solutions are more suitable for specific paradigms. Section (8) describes the potential

scopes of mobility, and then in section (9) we mention some problems inherent to mobility.

Despite these problems, theoretical ideas have passed to industrial and commercial

realizations, which are completed or in progress. So, in section (10) we present a variety of

these realizations. Before concluding this chapter, section 11 refers to international

standardization efforts. The goal of these efforts is to bring near the existing heterogeneous

implementations and to avoid future discrepancies.

2 Definitions

In the domain of mobility, three concepts are common: Mobile Computing, Mobile Code

(or code mobility) and Mobile Agents. We present below a variety of definitions of these three

concepts.

Mobile computing: “Paradigm in which users carrying portable devices have access to a

shared infrastructure independent of their physical location”. [58]

Code Mobility: “Code mobility can be defined as the capability to dynamically change

the bindings between code fragments and the location where they are executed”. [54]

“Mobile code are soft-ware that travels on a heterogeneous network, crossing

administrative domains, and is automatically executed upon arrival at the destination …”.

[80]

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 10

Mobile agents: “Mobile agents are programs that can move through a network under

their own control, migrating from host to host and interacting with other agents and

resources on each”. [60]

“A mobile agent is not bound to the system where it begins execution. It has the unique

ability to transport itself from one system in a network to another. The ability to travel, allows

a mobile agent to move to a system that contains an object with which the agent wants to

interact, and then to take advantage of being in the same host or network as the object”. [59]

“Computations that are able to relocate themselves from one host to another”. [73]

 “A piece of code and its associated data moving about executing autonomously on behalf

of its owner”. [63]

“Mobile agents are software abstractions that can migrate across the network

representing users in various tasks… A mobile agent has the unique ability to transport itself

from one system in a network to another in the same network.” [53].

We consider that the first concept “mobile computing” concerns devices mobility (we call

it hard mobility). The other two express the mobility of applications (software mobility). The

novelty in the case of agents is that mobility is due to internal determination (autonomy of

decision). Agents move, without external intervention.

3 Why Mobility?

The two variants of mobility (hard and soft) have important motivations:

3.1 Motivations for Hard Mobility

It concerns the movement of computing devices (laptops, PDA: Personal digital assistant,

mobile phone ...). It is motivated by:

• The diffusion of wireless networks;

• The diffusion of cellular telecommunication networks. The devices used in these

networks (mostly cell phones) acquired day by day computing capacity and processing

important information;

• Mobile users: requiring computing mobile devices.

3.2 Motivations for Soft Mobility

Movement or migration of a code (a process, an object or procedure) may have different

reasons. According to [64], such a migration can provide:

• A load balancing between processors;

• A performance in the communication: by bringing together objects that communicate

intensively on the same nodes;

• An availability of the required objects in the nodes where these objects are requested;

• Make services available on a node: by downloading these services;

In addition to these reasons, the authors in [54] and [51] suggest other motivations:

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 11

• Need for scalability in large networks;

• Need for specialized services for a wide audience (networks WANs): Number of

customers grows rapidly and their needs differ. Predefined servers with a minimum of

specialized services may provide specific services through their enrichment by downloading

components;

• The dynamic nature of telecommunications infrastructure: These infrastructures are

characterized by a low flow and low reliability (frequent disconnects);

• Deployment and maintenance of system components on networks: In large scale

networks, components (with expertise on the maintainability and reconfiguration) run on the

network and visit the various nodes to do the needful;

• Creation of stand-alone applications: such applications run on the net, to provide complex

local interactions. These interactions are not possible with low-speed infrastructure and

frequent disconnections;

• Flexible Data Management: Data (accompanied by codes necessary for their treatment)

convey the network. Nodes in a network receive the data and their treatment protocols

(protocols encapsulation);

• Improve fault tolerance in distributed applications: Move existing applications from their

site, if it is subject to failure;

3.3 Motivations for Mobile Agents

Considering that an agent is an autonomous code, some characteristics of these agents

promote their use than other paradigms. In [63], we find the characteristics of mobile agents

that promote their use in mobile networks:

• They can migrate from one mobile computing device to a network for collecting

information and utilize resources. It is more effective to put itself in the network (resources

and information) than to send requests and wait for answers. During its work on the network,

the agent is disconnected from its source node. It may return with the results, later, when its

node will be connected;

• No obligation to handle network faults (except when migrating);

• They do not require pre-installation of applications on specific hosts;

• Surpass the rigid model of client-server to a peer-to-peer model. This last one seems to be

more suitable for program for which needs change (moving from a client to a server and vice

versa);

• Scalability of applications: Move the job to the most appropriate node;

• Experience shows that mobile agent‟s paradigm is easier to understand than others;

The authors in [66] offer seven good reasons for using mobile agents:

• They reduce the network load: Move the code to the service, once, then all interactions

will be local. Move the code to the data, if this data is huge to move.

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 12

• They overcome the latency of a network: In real-time applications, latency becomes

significant and unacceptable with large networks. Mobile agents can migrate to the

components (i.e. robots) and insure a local control;

• They encapsulate protocols: Mobile agents can move the appropriate protocols to the

sites concerned (i.e. to receive or transmit specific data formats). They enable efficient

updating of protocols;

• They run independently and asynchronously: For mobile devices with frequent

disconnections, mobile agents may migrate out of these devices towards the network. These

agents run on the network asynchronously and autonomous. Once achieving their tasks, these

agents return to their devices during a subsequent connection;

• They adapt dynamically: They feel the properties of their environment (the non trust

network segments, the segment where the flow is low ...), then they reconfigure themselves to

get an optimal configuration (load balancing ...);

• They are heterogeneous in nature: They are independent of the hosts and transportation.

They depend only on their execution software environment (of specific platforms such as

abstract or virtual machines, like the JVM). They offer a good model for heterogeneous

systems (hardware or software);

• They are robust and fault-tolerant: if a host risks falling down, mobile agents can migrate

from this host.

4 Origins of the Soft Mobility Idea

The idea of moving code from one machine to another machine is not new. It dates from

the seventieth. In the literature, one can find several innovative ideas: "Remote batch job

submission" [86], the rsh command of UNIX, and the printer language PostScript [101]. For

example, to print on a PostScript printer, the printer requires a PostScript program describing

all the properties of the printed page. This program will be sent to the printer, where it will

run. Other examples are: the processes migration in the Sprite System [55], The Apiary

network for knowledge base systems [61], and transparent migration of active objects in

distributed systems (i.e. Accent kernel [76], the Eden system [71], DEMOS/MP [75], Emerlad

[64], Chorus [77], Locus [79], V-system [78], and Cool [69]).

According to [52], novelty in current mobile systems compared to these backgrounds can

be found in three ideas:

• We are interested in large systems like the Internet (WAN), rather than the traditional

distributed systems LANs;

• Mobility is under the control of the programmer (Programmer is AWARE). Mobility is

not transparent;

• The goal of mobility is not only the load balancing.

Systems with these qualities are called Mobile Code Systems (MCSs).

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 13

5 Architectures and Mechanisms for MCSs

Running a MCS requires the presence of hardware/software architecture. Considering the

differences between the modern MCSs and classical mobility systems, [51] proposes a new

architecture of a soft/hard environment to implement MCSs.

5.1 Architectures for mobility

In [51], authors have presented two types of logical architectures that can be used to

implement code mobility (Figure I.1).

Figure I.1. Architectures for code mobility systems.

In both alternatives, the proposed architecture is composed of five layers:

• Layer 1: “hardware” consists of the hosts (nodes) and communication network

infrastructure;

• Layer 2: “Core operating system”, the core operating system for each host. This layer

should provide the basic functions: files, memory and processes management;

• Layer 3: “operating network system”, this layer provides the functions of network

management. In this layer, the communications are not transparent. The sockets service is an

example of services to be provided by this layer;

• Layer 4: it must provide the mobility service. It can be either a "true distributed system",

which provides the functions of a distributed system with transparent communication and

mobility or a "computational environment" where communication and mobility are not

transparent;

• Layer 5: “component”, this layer includes both resources (logical or physical) and

calculations (programs, processes or applications) called "executing units” (EUs).

Each E.U is composed of:

• The code segment: the source code. Static part of the unit;

Host Host Host

Core

operating

system

Core

operating

system

Core

operating

system

Network

operating

system

network

operating

system

Network

operating

system

True distributed system

Host Host Host

Core

operating

system

Core

operating

system

Core

operating

system

Network

operating

system

network

operating

system

Network

operating

system

Computational

environment
Computational

environment

Computational

environment

Component Component Component Component Component Component

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 14

• The state: composed of a data space (references to resources available for the EU. These

resources can be local or remote) and an execution state (consisting of private data, the stack

of calls, an instructions pointer ...)

A MCS must be executed on an architecture of type 2 (with a computational environment,

so, mobility is not transparent with respect to a programming vision).

5.2 Mechanisms for mobility

Considering the preceding vision, code mobility means moving an EU (in entire or some of

it parts). In [51], we find an exhaustive classification of possible mechanisms for mobility,

and how to how to manage bindings (or links) between the EU and its resources after

migration from its source computational environment (CE).

5.2.1 Kinds of mobility

 Based on this criterion, we find two kinds of mobility: strong mobility and weak mobility.

1. Strong mobility: consists on moving the code segment and the execution state. In

this class, we have two sub-mechanisms, Migration and Remote Cloning:

Migration: firstly, the EU is suspended on its local site, and then it is transferred to the

destination CE where it will be restarted. This migration may be pro-active or reactive. In

proactive migration, the destination and timing of migration are defined by the EU. In

reactive migration, time and destination of migration are not defined by an EU, but they are

defined external (i.e. EU manager).

Remote Cloning: consists to create a copy of the EU in the CE, where the EU wants to

move. This mechanism can also be pro-active or reactive.

2. Weak mobility: in this kind of mobility, only the code segment can be moved,

perhaps with some initialization data needed to restart it. In this class, the mechanisms

can be classified according to four criteria: (i) Direction of the transfer, (ii) Nature of the

transferred code, (iii) Synchronization between the source CE and the destination CE

and (iv) The time of restarting of the code after its transfer.

2.1. Shipping: the CE source sends the source code to the CE destination. The

transfer can be standalone or code-fragment.

Stand-alone code (run on the fly): in this kind of transfer, the code creates its own EU,

which will execute it. In this case, the source CE and the destination CE can be synchronous

or asynchronous. In the first case, the source CE is suspended waiting the termination of the

execution of the transferred code on the destination CE. In asynchronous case, the source CE

is not suspended. In this case, the transferred code may start running on the destination CE

immediately or differently (waits an event or condition, to get started).

 Code-fragment: in this case, the execution of the transferred code is realized in the context

of an EU that exists on the destination CE.

2.2. Fetching: a CE (Destination) downloads a code from its source CE. Like in

fetching, we can find the same kinds of transfer.

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 15

5.2.2 Managing bindings

Before its movement, the EU uses some resources. These resources can be local (on the

local node) or remote (on a remote node). These resources can be private to the EU or shared

with other EUs. These resources may be transferable or not transferable. The EU should have

links (references) to such resources. These references can be of three levels:

 Reference by identity: it is the strongest link. The EU must always have access to that

resource to run.

 Reference by value: EU is interested at the content of the resource not to the resource

itself. If it is possible to have a copy of the contents of this resource, the EU will be

satisfied.

 Reference by type: what is important is the type of the resource. A resource with the

same type can satisfy the EU.

Let DCE be a destination CE, U an execution unit, R a resource, and B the type of

reference between U and R. According to these different levels of references and the type of

resource (transferable or not), there are different mechanisms for managing links:

 By move: transferring R with U to DCE, without changing B.

 By Copy: creating a copy of R on DCE and update B.

 Network reference: R is not transferred and B will be updated to ensure the link

between U and R.

 Rebinding: a resource R‟ of the same type that R exists on the DCE. After that U

passes to the DCE, B is updated to ensure the link between U and R‟.

Depending on the type of the resource and the type of binding between the EU and the

resource, The Table I.1 shows how these different mechanisms can be used.

 Type of resource

 Type of reference

transferable Non transferrable

By identity By move and

Network reference

Network reference

By value By copy (by move by

network reference)

Network reference

By type Rebinding (or one of the

other mechanisms)

Rebinding

 (network reference)

Table I.1 Mechanisms for managing links

6 Programming Languages

Currently, there are several programming languages (more than 100) and a variety of

platforms for the development of MCSs. Some of these systems consider these codes as

mobile agents. The purpose of this section is not to present all these platforms, but we want to

discuss some of the most important ones. We will present some examples that provide strong

mobility (like telescript) or weak-mobility (like Aglet), and which are object oriented (Java)

or functional (Objective Caml).

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 16

6.1.1 The Emerlad system

Emerlad [64] is one of the first languages supporting migration of objects. Emerlad is an

object system (supporting the concept of abstract data type). Travelling objects can be simple

objects (data) as they may be processes. Emerlad runs on a LAN of 100 nodes (maximum)

homogeneous and trusts. It is even possible to move the arguments for a remote call. Mobility

is expressed with primitives available to programmers (i.e. move object to node).

Objects (with their operations) are distributed on the nodes of the network. Active objects

(accompanied by threads) can make calls to operations of other objects on remote nodes. The

execution of these operations creates a stack (below this stack, the process, over this process,

we can have records of this process where the operations of other objects are invoked).

A remote call is as follows:

• Either the calling process migrates completely to the node of the invoked object.

• Or just the part appealing the process migrates to the node of the object being invoked.

On the latter, a new stack is created, and thus a new process (A fine granularity).

6.1.2 Telescript

Telescript [83, 84] developed by General Magic Company is the first commercialized

languages. It is an object-oriented language which provides strong mobility. Telescript is not a

general programming language, but it is dedicated to specific applications (communication).

The central concept in Telescript is the agent. An agent moves autonomously in a remote-

sphere to conduct business profile client. A remote-sphere is a set of execution engines

(Telescript interpreter and a place). The places are stations where agents can be received. The

user can create such places.

A Telescript agent is a process characterized by:

1. The telename composed of two components: authority and identity.

2. The owner, the possessor of the new objects created.

3. The sponsor, the process that the authority will be attached to new created objects.

4. The client, the object whose code calls the current operation.

5. Permits, specifies the capabilities of this process.

6. Age: maximum lifetime in seconds of the process.

7. Extent: maximum size of the memory area where the process will be executed.

8. Priority: used to decide when to run the process.

9. canGo, canCreate, canGrant, and canDeney: boolean determining whether this process can

move, create, increase or reduce permits of an another process.

Telescript provides a primitive go that agent executes to move to another host. Security is

provided by the concepts of capabilities (permission) and authentications. The capabilities

define the rights of an agent; the authentication allows the sites to accept only some agents

(those authenticated). The agent is running on a virtual machine that detects any violation or

illegal instruction. The exception mechanism allows agents to cover certain errors.

Telecsript is the first commercialized system. It has been used for network management

[60], active e-mail, e-commerce ... It supports host mobility (hard mobility). It was used on

PDAs (Personal Digital Assistant) as the case of Sony Magic Link.

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 17

6.1.3 Agent Tcl

Agent-Tcl [85] is a language that provides a transparent migration of agents (the agent state

is collected by the system, transparent to the programmer). An agent can migrate between two

mobile machines, or between a mobile machine and another fixed machine. Agents (called

scripts) can be programmed in several languages (Agent-Tcl: an extension of Tcl “Tool

Command Language” (http://www.ensta.fr/~diam/tcl/) or java).

 Agent-Tcl is a system composed of a set of servers on the hosts of a network. One

statement: ”agent_jump” captures the agent state, encrypts, signs it and sends it to the server

on the destination host. The server authenticates the agent and starts a Tcl interpreter to

execute this agent. The Tcl interpreter restores the state of the agent and restarts the execution

of the agent from the statement that succeeds “agent_jump”. Agent-Tcl is not object oriented,

so actually it is a migration of procedures.

The statement “agent_meet” sent form an agent and accepted by another, allowing both to

communicate with low-level primitives. A high level communication is possible through the

mechanism of ARPC (Agent remote procedure call [74]). This language provides security in

an uncertain world (as in internet). It was originally used for information retrieval, then for

work-flow.

6.1.4 Java

Java [52] developed by Sun is a class-based language, object oriented. A general language,

whose objectives were portability and security. JavaSoft (http://www.javasoft.ch/), which is a

collection of Java libraries for different purposes, has created the model of the applet (mobile

code) downloaded and executed automatically when visiting a web page.

6.1.5 Objective Caml

Objective Caml [70] is developed in the INRIA (Institut National de Recherche en

Informatique et en Automatique: http://www.inria.fr/). It is a functional language like based

on ML (http://www.lfcs.inf.ed.ac.uk/software/ML/), enriched with object-oriented paradigm.

This language was used for the development of the web browser MMM

(http://pauillac.inria.fr/mmm/) in the INRIA. MMM allows linking and execution of applets

dynamically.

6.1.6 Aglet

Aglet [68] is developed by IBM Tokyo Research Lab. An aglet (agent-applet) is an

enhancement of java applets. Aglet offers a weak mobility. Agents are java threads. It uses the

concept of remote reference (Aglet Proxy), message passing (multicast, broadcast) and ATP

Protocol (Agent Transfer Protocol) [67]. It also provides some sense of security by limiting

resources for aglets (using protocols: SSL “Secure Sockets Layer protocol”, and X.501

“http://rfc-ref.org/RFC-TEXTS/2116/kw-x.501.html”).

Two primitives are proposed: dispatch, which sends an agent (stand-alone shipping) to a

destination passed in parameter, and retract which, downloads an aglet (fetching stand-alone).

Aglet complies with the standards MASIF [72] and FIPA (http://www.fipa.org/).

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 18

7 Conceptual Paradigms

 In a development process, the design phase tries to identify the architecture (components

and their interactions) of the system. Paradigms used in the design phases are independent of

the technology used to implement the system. With respect to [51], designing a system with

mobile components differs from the classical systems design (systems with static component).

In the development of a mobile system, the sites of mobile components must be clarified

during the design phase of the system. Authors in [51] have identified three major conceptual

paradigms for the design of mobile computing systems: Remote evaluation (RE), Code on

Demand (CoD) and Mobile Agent (MA).

To show the difference between these three paradigms, three concepts are introduced:

component, site and interaction. The component is the set of know-how, resources and

computational component (the interpreter responsible for the execution of the know-how). A

site is a place where a component resides and can run. An interaction can occur between two

components on the same site or two remote sites.

Let A and B be two components initially residing on the two sites SA and SB. The

component A needs a service. A may have the know-how and resources necessary for this

service, or some this know-how and resources can be held by B. The three paradigms differ

according to the positions of A (here A is intuitively computational component), the know-

how and the resources, both before and after completion of service. Table I.3 summarizes

these differences:

 Before the completion of the service After the completion of the service

paradigms SA SB SA SB

Client-server A Know-how,

ressources, B

A Know-how,

ressources, B

Remote evaluation A+know-how Rssources, B A Know-how,

ressources, B

Code on demand A+Ressource Know-how, B A+know-

how+ressources

B

Mobile agent A+know-how ressources A+know-

how+ressources

Table I.2. Conceptual paradigms for mobility

The client-server paradigm is not a paradigm for mobility. Its presence on the table is for

comparison only.

In addition to these paradigms, another paradigm has been proposed: the Push Pardigm

[57], [62]. Its principle is opposed to those of RE and CoD. The idea is that a client sends a

profile from the beginning to the server. Then, the server determines what treatments and

when must they be forwarded to the client. At the right time, the server transmits the active

treatment to the client. The advantage of this method is that the client will be relieved of this

download.

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 19

8 Applications of Mobility

Different applications have been considered for systems with mobile components (MCSs).

These applications use different paradigms in a chaotic and ambiguous manner. If it is clear

that java applets is not an application of mobile agent paradigm (no autonomy, one direction

of mobility), for some applications things are not quite clear.

Several authors report various possible applications:

Authors in [51] cite:

1. Distributed research of information [70], [59],

2. Active Documents: Active e-mail, web page (hypertext),

3. Advanced telecommunications services: video-conferencing [81], mobile users (with the

potential disconnections),

4. Monitoring and remote configuration of devices: industrial processes, network

management,

5. Management and cooperation in the work-flow: the work-flow defines activities, sites,

relationships, time for their implementation, to achieve an industrial product. Mobile agents

are responsible for conveying information between co-workers in a work-flow,

6. Active networks: flexible and dynamic networks according to application needs. Two

approaches are proposed: (i) Programmable switches: dynamically extends the network. This

approach is based on CoD paradigm; and (ii) Capsule approach: attach codes to the

transferred packets. The node that receives the packet performs the associated code to process

the data in the packet.

7. E-commerce: an agent looks in a market for catalogs, and then it returns to the laptop of

a customer with the best rates available.

8. Applications deployment and maintenance of components in distributed environments

[73].

In addition, [66] proposes as applications:

 • Personal assistant: a mobile agent moves in the network to dispatch a request meeting

the profile of its client. During this period, the client machine can be disconnected. Once it

connects, the agent sends the response, the date, invited ... to the customer.

• Secure Mediation: When non-trust inter-agent negotiation, these agents can migrate and

meet on a secure host, approved by all. This host should not favour any of the agents.

• Monitoring and reporting: agents are dispatched to sense events, until the establishment

of information...

• Dissemination of information: the mobile agents seek and import the latest updates and

install software for some client.

• Parallel processing: the agents dispatch several computing units to parallelize certain

tasks.

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 20

9 Mobility Problems

On both axes hard and soft, mobility suffers from several limitations and receives a variety

of criticisms. Below we expose some weaknesses that know the discipline.

9.1 Shortcomings of hard mobility

With respect to [56], the development of mobile systems meets several challenges:

 Wireless communications suffer of disconnection, low bandwidth (1Mbps infrared, radio

2Mbps, 9-14 cell, by cons for 10Mbps Ethernet, 100 Mbps FDDI and 155 Mbps ATM, non-

portable wireless MOTOROLA 5.7 Mbps) ...

Mobile users are suffering from problems related to variables working conditions (areas

not covered, variable areas size), problems of heterogeneous networks, security issue (the

wireless networks are more susceptible to intrusions).

The network addresses, configurations (parameters: available printers, server address,

hourly) changes dynamically depending on location,

Problem of devices portability: low power, risk of data loss (physical damage), small

interface, limited storage, ...

9.2 Shortcomings of mobile agents

According to [65] and [63], mobility remains an immature approach. It suffers from

several shortcomings:

 Security Issue: The hosts in a network must be protected (i.e authenticated) against the

code (agents) and malicious visitors (for viruses, hackers ...). Agents must also be protected

(to be encrypted) for unknown sites.

Standardization problem: Lack of a standard mobile agent paradigm. Lack of a standard

infrastructure.

Coordination between agents: the arrangement of their actions in time and space. Mobility

makes the existence of spatial and temporal agent two aspects not predictable.

Many technologies (in general programming languages) have been proposed (over 100).

But these languages that emerge every day do not contribute to the crucial problems: security,

fault tolerance, ...

Limited performance compared to traditional solutions. The time needed for the

interpretation of agents and their migration.

In addition to these technical problems, the authors in [65] suggest that mobile agents

suffer from non-technical issues:

No killer application: everything is achievable by mobile agents can be achieved by

traditional techniques. The good point of mobile agents is that they must submit a complete

and effective solution, while other techniques dealing with partial aspects of the problem,

Lack of a path to transit from current technology (client server, applets, servlets) to mobile

agent systems. This transit path should be incremental and justified by a client motivation,

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 21

Problems of financial revenue of advertising sites: These sites will lose the advantage, if

mobile agents can browse the net directly discovering the services offered by suppliers.

In [82], authors report ten reasons for failure of mobile agents:

Expensive and not efficient compared to conventional solutions (exp. REV),

Their design is difficult: how to identify the interactive components and how to model

these interactions,

Difficult to implement: Current technologies in prototyping phase. Environments where

agents are executed are unpredictable,

Difficult to test and debug: because of the distribution and mobility,

Difficult to authenticate and control: it is not clear that identity must be authenticated and

how the access control mechanism must consider this information,

May be victims of attacks by malicious sites: A host can change the code of an agent. Such

a change can make a malicious agent,

MA cannot keep secrets: the lack of any practical application of cryptographic mechanisms

proposed,

Lack for an ubiquitous infrastructure: Existing infrastructure has proven to be vulnerable to

attacks,

Lack for a common ontology: interactions and data exchanged must meet specific formats.

Despite the proposals, none of them has been widely admitted,

Similar to worms: their propagation mechanism is similar to that of Internet-worms.

Infrastructure dedicated to mobile agents will be victims of attacks by worms.

10 Industrial Realizations

Despite the shortcomings and doubts surrounding mobility (and especially mobile agents),

[53] was able to identify fourteen projects from academia and industry in mobility domain.

The most of these projects use the mobile agent paradigm. Some of these projects are

completed successfully, others are still open.

1. ActComm (http://actcomm.dartmouth.edu/): 1997-2002 (USA) [87]. It uses the platform

D‟Agents (http://agent.cs.dartmouth.edu/). It is directed by AFOoSR (Air Force Office of

Scientific Research). This project emphasizes on wireless networks and modern applications

of control.

2. AMASE: An industrial project opened since 1998 (Deutsche Telekom, Almagne) [87]. It

uses a private platform. Its goal is to make platforms supporting mobile agents used in

wireless communication environments (i.e. access to multi-media information).

3. CoABS: Opened since 1998 (USA) [89]. It uses Java-Jini and directed by DARPA-AFRL

(Air Force Research Laboratory). Its objective is to develop different strategies to achieve the

maximum gain of multi-agent systems. It proposes and evaluates strategies for control which

must allow to military commanders to automate large orders, decision making, control

functions (search, filtering information, mission planning ...)

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 22

4. CogVis (Almagne): "Cognitive Vision", opened in 2001 [80]. It uses the platform Mobile

Agent Software. This is an industrial project (Information Society Technology). The objective

of this project is to develop mobile agents with vision capabilities.

5. DIAMOnDS (Pakistan): "Distributed Agents for Mobile and Dynamic Services", a

university project (University of Islamabad), 2002-2003 [91]. It uses the platform Jini 1.1 In

this system, agents are mobile. These agents perform tasks (communications, data-mining) for

users.

6. DILEMMA (IST European Commission): "Digital Design and Life-Cycle Management

for Distributed Information Supply Services in Innovation Exploitation and Technology

Transfer", an industrial project, 2000-2002 [92]. It uses the platform LANA. Agents are

mediators. The objective of this project is technology transfer and innovation between

European companies, research organizations, experts, public ...

7. HAWK (Almagne): "Harvesting The Widely Distributed Knowledge", a university project

(Stuttgart), 1998-2000 [93]. It uses JAVA. The objective of this project is the optimized

information search on the Internet.

8. LEAP (France): "Lightweight Extensible Agent Platform”, an industrial project

(Motorola), 2000-2002 [94]. It uses the JADE platform. The goal is to provide a standard

platform. This platform can run on mobile devices (PDAs), and it is expandable to

accommodate other features.

9. MadKit (France): a project of the University of Montpellier (a free ware), open since 2002

[95]. It is based on the organizational model (Agent / Group / Role). Agents can be

programmed by Java, Shem and Jess. This platform allows heterogeneity in the architecture

of agents and in communication languages.

10. MANTRIP (IST European Commission): "Management Testing and Reconfiguration of

IP based networks using mobile software agents," an industrial project (Solinet Germany),

2000-2002 [96]. It uses the platform (MAT). The objective of this project is the design, the

development, the test, and the validation of applications based on Mobile Agent Technology

(MAT) for managing IP networks.

11. MAP (Almagne): "Mobile Adaptive Procedure", an industrial project (Siemens), 1989-

2002 [97]. It uses the platform Semo. The objective of this system is the e-help. Domestic

agents interact with citizens. Software experts agents listen to such interactions, understand

interactions, and try and prepare the relevant information that can assist in domestic intrusion.

12. Mojave (USA): "Mobile Agent Jini Environment", an industrial project (Motorola) 2001-

2004 [98]. It uses the Jini platform. The objective of this project is to develop malleable

services. They must persist in dynamic environments. Examples of applications include:

network management and intrusion tolerant systems.

13. SysteMATech (Almagne): "System Management based on Mobile Agent Technology",

an industrial project (IVS (http://www.ivs.tu-berlin.de/), and DFS (http://www.dfs.de)

accisGMBH (http://www.accis.de)), opened since 1999 [99]. It uses the platform Mobile

Agent Software. The objective is the distributed management of networks.

http://www.ivs.tu-berlin.de/
http://www.dfs.de/
http://www.accis.de/

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 23

14. TeleCARE (IST European Commission): an industrial project (UNINOVA Portugal,

Synchronix Skill, Camara Spain and Roundrose Associated from UK), 2001-2004 [100]. It

uses a private platform. The objective of this project is to develop technology solutions for

remote monitoring, remote support, and thus improve the living conditions for the elderly and

their families. This platform should provide a virtual community of Help for olds.

11 Standardization Efforts

A variety of mobile agent systems (platforms and programming languages) have been

proposed. They are implemented using different technologies and offer specific languages for

programming agents. These factors contribute to their incompatibility and limit

interoperability. Standardization efforts are in place. The two most important standards are

FIPA and MASIF.

FIPA: Foundation for Intelligent and Physical Agents, established in 1996. Its goal is to

standardize the interfaces between heterogeneous agents. FIPA focuses on intelligence and

cooperation aspects.

MASIF: proposed by a set of companies: Crystalizer, General Magic, GMD Fokus, IBM,

and Open Group. MASIF (Mobile Agent System Interoperability Facility) was accepted as an

OMG standard in 1998 [72]. MASIF standard focuses on the interfaces between systems

written in the same programming language, but provided by different suppliers. MASIF does

not address the standardization of low-level operations: Interpretation of the agents, their

serialization or implementation.

MASIF addresses the following problems:

• Managing Agents: Make standard operations: Creating agents, suspension, restoration,

their termination.

• Migration of agent: provide a common infrastructure to ensure the transfer agent between

systems of different types of agents.

• Management of names of agents and agent systems: To facilitate the identification of

agents and agent systems by applications, MASIF standardizes the syntax and semantics of

names of agents and agent systems and resources localities.

12 Conclusion

With its various forms, mobility is a fulcrum of several innovations. Since the first

attempts to move processes for load balancing in distributed systems, the idea has evolved.

During decades of research on this topic, paradigms have been proposed and many

technologies have been implemented.

The late '90s were characterized by interesting work for the development of conceptual

paradigms. REV (Remote Evaluation) paradigm, COD (Cod On Demand) and MA (Mobile

Agent) represent one of the most admitted classification within the community.

On the technological stage, several programming languages and platforms for development

and implementation have been made. These technologies have enabled many companies and

universities to set up experimental or commercial systems based on mobile components.

 Chapter I: Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 24

Despite the elegance of the idea and the popularity of this area, many think that the

approach suffers from several shortcomings. Some ones suggest that this was only a failure.

The defendants of that opinion argue by the lack of performance, incompatibility and the

crucial issue of security. To cover these shortcomings, efforts should be undertaken on

standardization and on security policies.

Some of the shortcomings presented in this chapter like: Security problems (agents

attacked by malicious sites, sites attacked by malicious agent), test and debug difficulties and

costs, design and implementation difficulties, fault tolerance problems ... have been addressed

as problems in software engineering for mobile systems. Researchers in the software

engineering field tried to present solutions for these problems as development methodologies

and approaches. These approaches and methodologies define the process to be applied and

provide tools to guarantee the design and implementation of high quality mobile systems.

Formal approaches are software engineering approaches with a mathematical background.

These approaches provide description languages to specify the system, and then give tools

and methods to prove the required properties. The next chapter will present some proposed

formal methods dedicated to mobile systems. Those presented in the next chapter are only the

most important ones that will help us to present our own approach in the third chapter.

Chapter II: Formal

Methods for Mobile

Computing

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 26

1 Introduction

Applications using code mobility are increasing. Code mobility touches critical domains

(military, spacial, medicine …). Such domains require that used applications insure a set of

properties. Safety, liveness, no deadlock, fault tolerance, and security are example of such

required properties. Using formal methods, one can develop systems and proof (or verify)

presence or absence for specific properties. Formal methods are languages, tools, and

approaches allowing specification and verification of systems. Formal languages are based on

a well-defined syntax and a formal semantic. Their formal semantics allow developers to

verify specification written in such languages. For some languages, automatic tools are

proposed to edit and verify specifications. Using formal methods in code mobility is not

recent. Most currently methods can be considered as derived from process algebra area [9] or

state-transition systems.

The process algebra area is the field where processes are considered in a high level as

algebraic structures that respect a set of axioms. One of the most and former languages for

modeling mobility was the -calculus [3]. -calculus is an extension for CCS (calculus for

communicating systems) [1]. In CCS, a system is a set of processes. These processes are

concurrent and can communicate through gates. In pure CCS this communication is a simple

synchronization. In passes value CCS, processes can exchange values through their gates. In

an abstract vision, a system is considered as a set of indeterminist automatons. Operational

semantic of CCS is given through a labelled transition system. In CCS, processes are not

mobile. The idea of -calculus is to allow processes to exchange gates. Gates used to

communicate by a process can be passed as values and exchanged sent (or received) to (from)

other process. The receiver to communicate can then use the received gate. The structure of

the system is modified through communication of gates between processes. In monadic -

calculus, values passed must be scalar value, but with polyadic -calculus [11], tuples of

values can be exchanged through gates. The spi-calculus [7] is an extension proposed to deal

with security aspect. In another extension HO-calculus (high order -calculus) [52], beside

data or gates, values exchanged can be also processes (agents). So with HO-calculus, one

can specify mobility of agents explicitly. UPPAAL tool [12] can be used to edit and verify

HO-calculus specification (reachability, safety, bounded liveness properties). UPPAAL can

also be used to simulate the system. HO-calculus suffers of two limits. Firstly, the analyzing

of HO-calculus specification requires its transformation in -calculus. Secondly, in HO-

calculus there is no location concept. Location is an inherent concept in code mobility design

paradigms. To cover the second limits different extensions are proposed. Join-calculus [5] and

mobile ambient [4] are extension of -calculus where process locations are explicit in the

specification.

Petri Nets [27] was proposed to model concurrent and parallel systems. This formalism has

a graphic representation and a formal background. Using places, transitions and connecting

arcs, this formalism can specify states, actions and transitions between states through which

a system evolves. With Petri nets, one can analyze behavioural or structural properties of a

system. To model mobility with Petri nets, the most important contribution can be found in

high level PNets. Many extensions have been proposed to adapt Petri net to mobile systems:

Mobile Nets and Dynamic Petri nets [20], Nested Petri Nets [22], HyperPetriNets [23],

Mobile Synchronous Petri Net [24]...

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 27

Beside process algebra methods and Petri nets formalisms, rewriting logic [39] is proposed

as a unify framework for all formal models dedicated for concurrency. In rewriting logic, the

state space of a distributed system is formally specified by an algebraic data type. This

algebraic data type is specified through an equational specification. An equational

specification consists of a signature (types and operators) and a collection of conditional

equations. The dynamic of the distributed system is then specified by rewriting rules.

Rewriting rules model transitions from one state to another state, during the execution of the

distributed system. Maude [37] is a language proposed for writing and verifying specification

written in rewriting logic. Mobile Maude [38] is an extension of Maude for mobile systems

specification. Mobile Maude is an object oriented high level language with asynchronous

message passing. Mobile Maude introduces two new concepts: process and mobile objects. A

process models the computational environment where one or more mobile objects can reside

and can be executed. Mobile objects are instances of classes that can migrate from process to

process and can communicate by message passing. The key feature of mobile Maude is that it

deals with various security aspects. Cryptographic authentication protects machine from

malicious mobile code, redundant checks insure reliability and integrity of computations, and

public-key infrastructure service protects communications. Other works like Pigeon [40]

based on reflective rewriting logic [41] tries to give high-level specification language with

customizability feature. This last feature allows that Pigeon specifications can be realized on

various platforms. Also in Pigeon, it is possible to specify strong mobility as weak mobility

by simple modification in the specification.

The objective of this chapter is not to present in detail all these formalisms, but we will be

interested only by presenting those that we will need in the presentation and the analysis of

our proposition which will be presented in the next chapter. For this reason, this chapter will

present in more detail two formalisms, the Distributed Join Calculus [13] and the Dynamic

Pteri Nets [20]. The distributed join calculus is the formalism that has inspired the proposition

of the dynamic Petri nets and also will be the inspiration of our formalism. The understanding

of the dynamic Petri nets and the understanding of our proposed formalism require that the

reader must have some knowledge about this calculus. The dynamic Petri nets are the

formalism that can be used to unfold our formalism. So one issue that we will propose to

analyze our formalism is to unfold it into the dynamic Petri nets.

2 The Distributed Join Calculus

The Core Join Calculus [14] is a language that models distributed and mobile

programming. It is characterized by an explicit notion of locality, a strict adherence to local

synchronization, and a direct embedding of the ML programming language [15]. The join

calculus is used as the basis for several distributed languages and implementations, such as

JoCaml [16] and functional nets [17]. Local synchronization means that messages always

travel to a set of destinations, and can interact only after they reach that destinations. In the

core join calculus, the distribution of resources has been kept implicit so far. The Distributed

Join Calculus (DJC) [13] is a bit more complex than the core calculus. The DJC allows us to

express mobile agents that can move between physical sites. Agents are not only programs but

core images of running processes with their communication capabilities and their internal

state.

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 28

In the DJC, a location resides on a physical site, and contains a group of processes and

definitions. We can move atomically a location to another site. We represent mobile agents by

locations. Agents can contain mobile sub-agents represented by nested locations. Agents

move as a whole with all their current sub-agents, thereby locations have a dynamic tree

structure. Location names are treated as first class values with lexical scopes, as is the case for

channel names; the scope of every name may extend over several locations, and may be

dynamically extended as the result of message passing or agent mobility. A location controls

its own moves, and can move towards another location by providing the name of the target

location, which would typically be communicated only to selected processes. In this section,

we will present firstly the syntax of this calculus, and then some examples will be showed.

2.1 The Syntax of the Distributed Join Calculus

A system specified in the DJC is seen as a set of configurations. These configurations

evolve in time and can interact. A specification in a DJC is composed of a set of terms. Terms

in the DJC can be processes, definitions or configurations.

The grammar for processes is as follows:

P::=

0 // the inert process

| P|P‟ // Parallel Composition of two processes P and P‟

| x<ŷ> // an emission of an asynchronous polyadic message ŷ on the channel x

| Def D in P // a definition D in a process P, see the grammar of Definition

| go a; P // a request to migrate the current location toward the location a, then to

execute the process P in the destination location (which is a)

The grammar of definitions is as follows:

D::=

T // the empty definition

| D, D‟ // Composition of two definitions D and D‟

| JP // a reaction rule: this rule will wait for the arrival of a set of messages that match

messages defined in the join pattern J, then the process P will be executed

| a[D:P] // declares a new location which name is a. In this location, we have a

definition D and a running process P.

A pattern J is defined as follows:

J::=

x<ŷ> // waiting for a message ŷ on the channel x. The pattern J will be satisfied when the

message arrives.

| J|J‟ // Synchronization of two patterns J and J‟. The pattern J|J‟ is satisfied when the

two patterns are satisfied.

Finally, configurations have the grammar:

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 29

S::=

 // the empty configuration.

| S||S‟ // Composition of two configurations.

| D├

 P //where  is a sequence of locations that represents a path.

2.2 The Execution in the Distributed Join Calculus

The execution in the DJC is done using the principle defined in the Distributed CHemical

Abstract Machine (DCHAM). A system specified using the CHAM-model [18] is seen as a

set of molecules that evolves in a set of solutions. In a solution, molecules can evolve and

change when reaction conditions are satisfied. Formally a solution is written as: R├ M, where

M is the set of molecules and R is a set of reaction rules. The molecules M represent a join

calculus processes running in parallel, and R models the current reduction rules (join calculus

definitions). When a reaction is done, the molecules M can change into M‟. This reaction is

modelled through a reduction step denoted:

(R├ M)(R├ M‟)

In the DJC, a configuration can be considered as a solution. The unique reaction rule is the

join pattern matching: JP. This rule will change the processes P by instantiating the formal

parameters in P which match with the received parameters in the asynchronous messages

defined in J.

As an example, we have the solution:

├ ready(laser), job(1), job(2)

In this solution, we have a printer with the name laser which is ready to print (ready(laser)

is a molecule), and we have two jobs 1 and 2 (job(1), job(2) are two others molecules). In the

DJC concepts, we have three asynchronous emissions of messages: message laser sent on the

channel ready, messages 1 and 2 sent on the channel job. This solution has not a reaction

rules. We can also write the solution as:

├ ready(laser)| job(1), job(2)

We can add to this solution the reaction rule:

D= ready(printer)|job(file)  printer (file)

This reaction rule means that if we have some printer ready and some job which name is

file, so we can send this file to this printer and print it. Now if we add this reaction rule to our

solution, we will have the new solution:

D├ ready(laser)| job(1), job(2)

We see that (ready(laser)|job(1)) in the set of molecules matches with (

ready(printer)|job(file)) in the definition D, so the formal names printer and file in the

definition D can be instantiated to the two parameters : laser, and 1, and the join pattern

(ready(printer)|job(file)  printer (file)) can be satisfied. In this case, the solution can

evolve. A reduction step can be applied to send the job 1 to the printer which name is laser.

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 30

ready(printer)|job(file)  printer (file)├ ready(laser)| job(1), job(2)



ready(printer)|job(file)  printer (file)├ laser(1), job(2

Formally, we have applied a join reduction rule (Reaction-rule), this rule can be written

as:

Reaction-rule: (JP├ Jrv,…)  (JP├ Prv,…)

where rv is a substitution on received variables (parameters of reception messages in

joins). If we review the above example, the received variables are printer and file which will

be substituted to the two variables laser and 1. So we have the substitutions:

Jrv = (ready(printer)|job(file))rv = ready(laser)| job(1)

and

Prv = (printer (file))rv = laser(1)

Beside the join pattern matching reaction rule that can be used to create reactions rules in

solutions, the two following structural rule are also defined:

(├ Def D in P)  (D├P)

 (D├P)  (├ Def D in P)

These two rules show the reflexive property of the CHAM. We speak about a Reflexive

CHAM (RCHAM). These two rules can be combined in one single rule

str-def-rule: (├ Def D in P) ↔(D├P)

This structural definition rule shows that from a solution where we have only a process

(Def D in P) and no reaction rules, we can have a solution where the joins defined in D will be

considered as reactions rules for a solution that contained the process P.

In a DCHAM (Distributed CHAM), we have a set of solutions. We use the operator || to

model the composition of several solutions. Solutions can evolve each one separately and can

interact. Solutions interact using the communication reduction rule (COMM-rule):

COMM-rule: ((├ x<ŷ>)||(D├))  (D├ x<ŷ>)

In this rule, x must be a name of a port defined in the definition D. This rule means that a

message emitted in a solution on a port defined in another solution can be sent to that solution

where the port was defined.

To consider localities, solutions can be labelled with name of locations where they are

residing. For example the solutions: D├

P is labelled with the path  of locations. This path

 of locations can be only one location or a sequence of nested location. For example, in a

printing system, we can distinguish three sub-systems: A machine user u from which printing

requests are sent:

 ├
u
job<1>

a machine server s that hosts the printing spooler :

D=ready(printer)|job(file)  printer (file)

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 31

D├
s

and finally, a laser printer p which is registered to in the server as ready and which hosts

the printing code P

 laser(f)  P├
p
 ready<laser>

The whole distributed system will be modelled as:

 ├
u
job<1> || ready(printer)|job(file)  printer (file)├

s
|| laser(f)  P├

p
 ready<laser>

The above communication rule can be generalized to consider localities:

COMM-rule: ((├

 x<ŷ>)||(D├


))  ((├


)||((D├


 x<ŷ>)

Now, we can apply the two rules COMM-rule and Reaction-rule to make an execution in

the above distributed system, as following:

 ├
u
job<1> || D├

s
|| laser(f)  P├

p
 ready<laser>


COMM-Rule between u and s

├
u

|| D├
s

job<1> || laser(f)  P├
p

ready<laser>


COMM-Rule between p and s

 ├
u

|| D├
s

job<1>, ready<laser>|| laser(f)  P├
p


Reaction-Rule in s

 ├
u

|| D├
s
laser(1)

|| laser(f)  P├

p


COMM-Rule between s and p

 ├
u

|| D├
s

|| laser(f)  P├
p
 laser(1)

In this execution, the first step sends the job 1 from the user machine to the server

machine, and the second step sends the name of the ready printer laser to the server. The first

step is realized on the server machine and will affect the job 1 to the printer laser. The final

step resends the job 1 toward the printer laser which will print it.

The definition a[D:P] which defines a new location named a, where a definition D is

declared and a process P is running, corresponds to the solution D├
a

 P, where  is the path

of the local definitions in D. Two structural rules are defined that represent folding and

unfolding of path of locations:

LOC-rules: a[D:P]├

  D├

a
 P

 D├
a

 P  a[D:P]├


These two rules can be combined in one reflexive rule: a[D:P]├

 ↔ D├

a
 P

Finally migration of process is realized with an instruction go a; P which will transfer the

current location to the target location named a, where the process P will be executed. The

execution of the migration is done by the reaction rule:

GO-rules: ├
b

 go a; P || ├
a

  ├
b

 || ├
a

P

This rule shows the migration of the process P from the solution labelled with the location

b to the solution labelled with the location a.

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 32

2.3 Examples of specifications in DJC

In the DJC, Locality is explicitly controlled in the language; this locality can be adjusted

using migration. In contrast, resources such as definitions and processes are not silently

relocated or replicated by the system. As an example in the implementation JoCaml [16],

programs being run on different machines do not initially share any channel name; therefore,

they would normally not be able to interact with one another. To bootstrap a distributed

computation, it is necessary to exchange a few names; this is achieved using a built-in library

called the name server (NS). Once this is done, these names can be used to communicate

some more names and to build more complex communication patterns. The interface of the

name server consists of two functions to register and look up. The first example shows the use

of a remote function (cos) using a remote call. The second example shows how to use this

function when this function is defined in an explicit location and the using program of this

function is an agent which is located on a remote machine and which can migrate to the

machine where cos is defined.

Example 1:

In this first example, on the machine 1, a process defines a local name cos and registers it

to the name server NS. On the machine 2, a second process obtains the name cos and does a

remote call.

Example 2:

In this second example, on machine 1, the process explicitly, defines a named location.

This location wraps the function definition (cos). The process exports the location name under

the key “here”. On machine 2, we define a function f with one formal parameter machine.

This function defines a new location agent. This agent will start by migrate to the location

named machine (as written in the first instruction: go machine). On the location machine, the

agent will execute a program sum which will use the function cos defined on the location

def

 cos(x) = 1 − x2/2

in

 NS.register(”cos”, cos)

def

 cos = NS.lookup(“cos”)

in

 print(cos(0.1));

Machine 1
Machine 2

Def here[

cos(x) = 1 − x2/2 :

 NS.register(“cos00, cos); . . .

]

 in

 NS.register(“here”, here); . . .

Machine 1

Def f(machine) 

 agent [

 go machine;

 def cos = NS.lookup(”cos”) in

 def sum(s, n) = if n = 0 then s else

 sum(s + cos(n), n − 1) in

 return sum(0, 10)

]

print(f(NS.lookup(”here”))); . . .

Machine 2

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 33

machine. Effectively, the execution will start by the instruction: print(f(NS.lookup(”here”)))

which instantiates the formal name machine to an effective name : here.

3 Towards Dynamic Petri Nets

In this section, we will present the Dynamic Petri Nets formalism. This formalism is one

of the first one proposed to model mobile systems. The Dynamic Petri Nets extends Petri Nets

formalism to model dynamic reconfiguration of the structure of the net. This reconfiguration

of the structure is not possible in Classical Petri Nets. This reconfiguration of the structure

will enhance the expressiveness of Petri Nets, and of course allow the modelling of mobility.

The Dynamic Petri nets are also inspired from the Join Calculus. To present Dynamic Petri

Nets, we will present initially Petri nets and mobile Petri nets which are the two basic

formalisms for DPN.

3.1 Petri Nets

Definition 3.1.1.

Informally, A Petri net is a bipartite graph, where nodes are composed of two disjoint sets,

a set of places and a set of transitions. Arcs are used to link transitions and places in the

graph. Transitions can be linked only to places and places can be linked only to transitions. A

marked Petri net is a Petri net where places can store temporally some tokens. The tokens

stored in a place represent the marking of this place. A bounded place could not contain an

infinite number of tokens. Arcs can be labelled with weights. If all arcs are weighted 1, so the

Petri net is said to be ordinary. A place is said to be an input place of a transition, if there is

an arc from this place to this transition. A place is said to be an output place of a transition, if

there is an arc from this transition to this place. The dynamic of the Petri net is created by the

firings of transitions in the net. A transition can be fired if some conditions are insured. When

a transition is fired, the marking of its input places and the markings of its output places are

updated. We say that the firing of a transition will update the marking of the net. This

dynamic of Petri net can be used to model a system where there are some actions that can be

executed concurrently, or in parallel.

Definition 3.1.2.

Formally, a Petri net N can be seen as a 6-uplets N=(P, T, A, W, B, M0), where :

P: is a finite set of places, P={p1, ..., pn},

T: is a finite set of transitions, T={t1, ..., tm},

A: is a finite set of arcs, A(P x T)(T x P),

W: is a function of weights, W:AN. By N , we denote the natural numbers set. W maps

each arc to its weight,

B: is a function of bounds, B:P N. B maps each place to its bound,

M0: is a function that defines the initial marking of each place, M0: P N.

Dynamic of a Petri net:

For each transition tT, we denote by °t, the set of the input places of t, and by t° the set of

the output places of t.

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 34

From some marking M of the Petri net N, the transition t can be fired (and we say that t is

fireable) iff:

p°t: M(p)W(p,t)

pt°: M(p)< B(t,p)

if these two conditions are satisfied, t can be fired, and so the marking M will be updated to

a new marking M‟, such that:

p°t: M‟(p)=M(p)-W(p,t)

pt°: M‟(p)=M(p)+W(t,p)

and we say that the marking M‟ is reachable from M when t is fired. This can be denoted

as: M
t
M‟

With these few concepts, one can model many concurrent systems, where processes must

be synchronized on some resources. This model can also be used to verify many properties of

such systems. Reachability, liveness, soundness, reversibility … and other properties can all

be verified using this classical version of Petri nets. Currently, there are many maturated

techniques that the developer can apply to verify such properties in a system modeled using

Petri Nets. However, the use of this classical version to model some sophisticated systems

(like mobile, or reconfigurable systems) don‟t allow to the developer to catch all the

properties of this kind of system. The expressiveness of this model is so poor to specify some

new and inherent qualities in mobile systems. This poorness in expressivity oblige the

developer using classical Petri net, to have complex Petri net model that are difficult to

understand and so to verify if they represent really the needed system.

One of the important propositions to model mobility using Petri net is to extend this model

in order to catch the most important property of these systems, which is reconfigurability (or

dynamicity) of the system‟s structure. The easiest idea is to consider that the dynamic

structure of a mobile system can be directly coded in a Petri net where the structure of the

graph changes over time. The changing of a mobile system‟s structure is specified directly

and explicitly through the changing of the Petri net‟s graph. In Mobile Petri net, the idea was

to allow the creation of some new output places when some transition is fired. In dynamic

Petri nets, more ability will be offered, and the firing of a transition will add a new net to the

first one. The following paragraphs present in more details these two formalisms, which have

inspired our works in this thesis. The presentation of these two formalisms will use a new

syntax not commonly used in the definition of Petri nets. This syntax is inspired from the

Join-calculus. The reason of this syntax is due to the principal that authors of Mobile nets

have applied the idea of mobility in Join-calculus, to extend Petri net, with mobility. In the

following definitions, places are considered as names like those used in the terms of the Join-

calculus. Firstly, we will recall the definition of Petri nets using the syntax of the Join

Calculus. The presentation of Mobile Petri nets and Dynamic Petri nets will be done in the

next two subsections:

Definition 3.1.3. (multi-set)

Given a set X, a multi set over X is a function m, defined as: m: Xω∪{ω}. The set of all

multi sets over X is denoted by
X

M .

Let : () { , () 0}dom m x X m x   ,

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 35

A multi-set over X is said to be empty if for all , () 0x X m x  ,

We define two sets:

{ | () }
post

X
M m X dom x is finite 

{ | , () }

pre post

X X
M m M m is not em pty and x X m x     

We have:

(')() () '()m m x m x m x  

(\ ')() () '() () '()m m x m x m x iff m x m x  

(\ ')() 0 () '()m m x iff m x m x 

Definition 3.1.3. (Petri Net)

let X be a set of names, these names will be used to indicate names of places in a net.

let YX, Y can represent the names of the places of a net N,

let pre post

X X
T M M  , T can represent a set of transitions of the net N,

let
X

m M , m can represent an initial marking of the net N,

Where ()(,)N Y m T , Y denotes that the set Y represents fresh names; these names are

restricted in this net.

N is a Petri net iff all names occurring in its initial marking and in their transitions are

contained in the set of places. Formally:
(,)

() (() ())
c p T

dom m dom c dom p Y


   .

For a name x, we denote by m(x) the marking of the place x.

A transition t is denoted (c,p) or c p. In this transition, c denotes the tokens to be

consumed when t is fired, and p denotes the set of tokens to be produced.

The transition t= c p can be fired in a marking m iff cm. When t is fired, the marking m

of the net will change to m‟, ' (\)m m c p 

3.2 Mobile Petri Nets

Mobile Petri nets are an extension of Colored Petri nets. In Mobile Petri nets, names of

places can be tokens that mark some other places. Mobile Petri nets have a dynamic structure

in such way that the names of output places of a transition can be defined dynamically when

this transition is fired. It is clear, that this idea is inspired from -calculus, where the gates can

be sent from one process to another, and then, the received gate can be used. This idea is used

so in Mobile Petri nets to make dynamically links from one transition to some place, if this

last one marks one of the input places of the transition. In this section, we present the formal

basics necessary to the definition of Mobile Petri nets.

 We extend the definition of multi-sets defined previously on one set X, to two sets: X, and

Y:

Given two sets X and Y, the multi-sets over X Y is
,

(({ })).
X Y

M X Y     

An element ,X Y
m M can be interpreted as a marking. If for some x, y we have ()()m x y

>0, this means that the marking of the place x is y. In this interpretation, there is no constraint

on the name y. This means that this name y can denote also a name of a place.

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 36

 Let () {(,) / ()() 0},dom m x y m x y  this set can be interpreted as the set of marked places

(not empty) in a marking m of a net.

,

post

X Y
M

,
{ / () is finite}

X Y
m M dom m  , The set

,

post

X Y
M can be interpreted as the set of

finite markings defined on the tow sets X, and Y. Where X represents the set of places, and Y

represents the set of tokens that can mark the places defined in the set X.

 and , ,
{ / is not empty , ()() }

pre post

X Y X Y
M m M m x X y Y m x y        

.

The operator  is defined now as: (')()() ()() '()()m m x y m x y m x y   . The operator \ is

defined now as: (\ ')()() ()() \ '()()m m x y m x y m x y .

The set of colours denoted C can be defined as:

1
{(, ...,) / 0 , 1, .., }

n i
C x x n and x X i n    , in this definition of colours there is no

constraint on names that can appear in a tuple. These names can denote also places.

We denote by x the finite tuple of names
1

(, ...,)
n

x x . The length of the tuple
1

(, ...,)
n

x x is

defined as |
1

(, ...,)
n

x x |=n. The element
i

x is denoted by:
1

(, ...,)
i n

x x .

A substitution is a partial function defined over X as:

 (,)y if x y

x otherwise
x







This means that the name y can be substituted by the name x.

A substitution on a tuple is defined as: x  =
1

(, ...,)
n

x x  =
1

(, ...,)
n

x x 

Given
,X C

m M , the substitution on all names defined in a marking m is defined as:
()()() ()()

v x and z y
m x y m v z

 


 
 

In this substitution, the name x (which can represent the name of a place) is substituted by

the name v. The tuple y (a tuple of names that can represent the marking of the place x) is

substituted by the tuple z .

The substitution can be restricted only on the names occurring in the marking of a place. In

this case, the substitution is denoted and defined as:
()()() ()()

b z y
m x y m x z





 

A transition has a preset (the set of preconditions necessary to fire this transition) and a

postset (the new markings of the output places of this transition). To define the Dynamic Net

and the firing rules for transitions, we define the functions of free names (fn), bounded names

(bn), free names in pattern (fnP), free names in marking (fnM), bounded names in pattern

(bnP), and bounded names in marking (bnM). We will need to define free and bound names

in a transition. These free and bound names differ between the preset (a pattern) to the postset

(a marking). These functions are defined as bellow:

() { | , ()() 0}
p

fn m x y m x y   , this means that the free names in a preset are the set of

places with a marking>0.

() { | , , , () ()() 0}
p i

bn m x z y i y x and m z y      , this means that a bound name is a

name that occurs in the marking of a place z.
() () ()fn m fn m bn m

M p p
 

;

()bn m
M

 ; which means that in a postset all names are free.

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 37

Now we define free and bound names in a transition. In a transition (c p), we have:

() () (() \ ())
p M p

fn c p fn c fn p bn c  , this means that the set of free names in a transition

are all the free names defined in its preset added to the set a free names defined in its

postset which must not be bounded in the preset.

Definition 3.2.1. (Mobile Petri Net)

Let C be a set of colours, X a set of names.

Let ()(,)N Y m T , where: Y X represents the set of places,
,X C

m M is the initial

marking, and
, ,

pre post

X C X C
T M M  is the set of transitions.

N is a mobile net iff: () ()
M

fn T fn m Y  , this means that the free names defined in the

initial marking and the free names defined in all the transitions of N must be only names of

places declared previously in Y. This condition will insure that all new places that can be

added to the net when a transition is fired are previously declared in the net N. So this

condition will insure that the set of places are finite, even connections can be created

dynamically between transitions and output places.

Dynamic of mobile Petri nets:

The transition t= c p is enabled at a marking m, iff there is as substitution  that can

satisfy the conditions to fire t. The satisfaction of t is insured if  substitutes each set of

names in a marking of a place defined in the preset c with the marking of this place in the

marking m. So the t is enabled iff:
b

c m  . The substitution is restricted to the names

occurring as markings in m. The firing of t will update the marking m to a new marking m‟

defined as: ' (\)
b

m m c p   . The substitution applied on the postset p concerns as names

occurring in marking as names of places containing these markings. This substitution will so

make that output places of t depends on the preset of t. The set of output places of t is not

rigid but it is dynamic.

Example of mobile Petri nets:

As an example, let consider the net ()(,)N Y m T where:

1 2 3 4 5
{ , , , , },Y p p p p p

 1 2
{ , },T t t

1 1 2
{ (, ,), (,)} { (,)}t p x a p p y z p x y 

, 2 2 3
{ (, ')} { (1, 2), '(,), (6)}t p p p p p a b p 

Suppose that the initial marking is
1 5 2 4 5

{ (1, ,), (,)}m p a p p p p . From this initial marking,

the transitions t1 is enabled with the substitution:
1 5 4 5

{(1,), (,), (,), (,), (,)}x a a p p p y p z  .

The firing of t1 will update the marking to:
5 4

' { (1,)}m p p . From the initial marking, the

transitions t2 is enabled with the substitution:
2 4 5

{(,), (, ')}p p p p  . The firing of t2 will

update the marking to:
1 5 4 5 3

' { (1, ,), (1, 2), (,), (6)}m p a p p p a b p . The figure II.1 shows this

example.

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 38

Figure II.1. A graphical representation of mobile nets‟ dynamic

3.3 Dynamic Petri Nets

In the mobile Petri nets version, the dynamic of the structure of the net is so poor. We

allow only the change of output connections of some transitions. So there is not creation of

new places or new transitions. The only allowable dynamic consists of the modification of

output connections. In the Dynamic Petri nets, the idea is to extend mobile Petri nets with the

possibility to add not only output connections to some transitions, but also some whole

transitions to the net when some transitions are fired. So, in Dynamic Petri nets we allow the

creation of whole new nets when some transitions are fired.

We define the set DN as the least set that satisfies the following equations:

{()(,) |Y T m

 ,Y X

 ,
{ | , },

pre

X C
T c N c M N   

 ,
}

X C
m M

In this definition, the postset of a transition is a new net. This new net will be added to the

original net where the transition exists.

Free and Bound Names:

p1

(1,a,p5) (p4,p5)
p2

t1 t2

p3

p1

p2

t1 t2

(1,p4)
p5

p3

(1,a,p5)

p1

p2

t1 t2

(a,b)
p5

6
p3 (1,2)

p4

firing t1

firing t2

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 39

Let ()(,)Y T m DN  . Y is the set of places; T is the set of transitions and m the initial

marking. Here after, we show the free names in a transition, in a set of transition, and finally

in a net:

 () () (() \ ())
p p

fn c N fn c fn N bn c  ;

 () ()fn T fn tt T  ;

 (()(,)) (()) ()) \
M

fn Y T m fn T fn m Y   ;

Substitutions:

A a substitution  on an element m can be defined on all names in m (denoted (m )) (in

case where m is a postset) or only on names in tokens (denoted (
b

m )) (in case where m is a

pattern (i.e a preset)):

Let () () ;
p

t c N and bn c n     where
(,)

{ , }
x y

n x y





  . This means that when the

substitution  is applied there will not be confusion between new names appearing after the

substitution and the bounded names defined in c. This is necessary to avoid that the new

names due to the substitution will be captured by a binders defined in the preset c.

A substitution on transitions will be defined as:

 t c N   

 and { / }T t t T  

Let ()(,) and () ; N Y T m Y n     the substitution on nets will be defined as:

 ()(,)N Y T m   

Let 1 1 1 1 2 2 2 2
()(,) and ()(,)N Y T m N Y T m  

, to be two nets;

If
1 2 1 2

, () ,Y Y fn N Y     and
2 1

() fn N Y   , we extend the operation  to nets,

and we will have:

1 2 1 2 1 2 1 2

 ()(,)N N Y Y T T m m    

in case where:
1 2 1 2

, () ,Y Y fn N Y     or
2 1

() fn N Y   , we can apply some

alpha-conversion to avoid confusion between names defined in different sets.

If 1 2
 Y Y  
 then we have 1 2 1 2 2 2

() ()(,)Y N Y Y T m  

Definition 3.3.1. (Dynamic Nets)

A Dynamic Net N is an element of DN which is closed: ()fn N  .

Firing Rules:

 Let
1 1 1 1

()(,)N Y T m and t c N  be a transition in T1:

t is enabled in N1 iff there exists ()bn c X   such that:
1b

c m  ;

The firing of t in N1 with substitution  produces the new net:

2 1 1 1
()((, /))

b
N Y T m c N    . We denote this as: 1

1 2

t
N N

Example of a Dynamic net:

As an example, let consider the following dynamic net:

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 40

 ({ , })(A B

{ ()

({ })(

{ (), ()} (),

{ (), ()}

),

{ (), ()}

)

A X

Y

X W Y Z W Z

A Y Y B

A A B B







In this example, we have an external net with two places, one transition, and an initial

marking. The two places are: {A, B}, so these two names are bounded in all the net. The

initial marking is {A(A), B(B)}, the place A is marked with the name A which is the name of

this place itself, and the place B is marked with the name B, which is also the name of the

place itself. The transition has as preset: A(X), so the firing of the transition requires the

existing of some name X in the place A. The postset of this transition is a new net, so the

firing of this transition will add a new net. The new net, has one place {Y}, one transition

(internal), and its initial marking is A(Y), Y(B). The name Y is bounded in the internal net. The

internal transition has as preset: {X(W), Y(Z)}, so the firing of this transition requires the

existing of a name W in the place X, and a name Z in the place Y. The postset of the internal

transition consists to add the name Z in the place W. We see that all names of places are

bounded in this net. So this is a correct dynamic net.

The external transition can be fired with the substitution {(A,X)}, where A is substituted to

X. After the firing of the external transition, we will have a new net (the internal net, where X

is replaced by A):

({ })(Y { (), ()} (),A W Y Z W Z

{ (), ()}A Y Y B

)

In this new net, the transition can be fired using the substitution {(Y,W), (B,Z)}. Once fired,

we will have a new marking: Y(B). So after the firing of the two transitions, the new marking

of the net will be {B(B), Y(B)}.

3.4 Verification of Dynamic Nets

The use of Petri nets in specification of systems finds its advantages in the sets of

verification and analysis techniques. The poorness of classical Petri nets in modelling levels

offers an important gain in the analysis levels. When one uses classical Petri nets, we can find

many analysis techniques: the reachability graph, algebraic techniques, and reductions

techniques. The use of high order Petri nets makes the analysis level more complex, and

sometimes impossible for some properties. One idea is to unfold (transform from high level

to low level) models of high order Petri nets into classical ones then to do analysis on these

last ones. The case of Coloured Petri nets is an example, where models can be unfolded into

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 41

classical Petri nets. In this sense, the authors of Mobile and Dynamic nets have proposed in

[20] an encoding of Mobile nets into classical nets, and then an encoding of Dynamic nets

into mobile nets. Using these encoding, the designer can specify its system into dynamic nets

then use the encoding process to unfold its models into low level ones that can be analysed

using known techniques for classical Petri nets. This encoding will be presented in the

appendix A in this thesis.

4 Conclusion

In this chapter, we have presented some formal methods proposed to specify mobile

systems. We have considered that works on formal methods for mobility can be divided into

two axes: Process algebra, and Petri nets. In the process algebra, most works are based on the

classical -calculus. In this chapter, we have not presented all calculi, but we have presented

only the Join-calculus and its distributed version. The join calculus is an extension of the -

calculus, where the concept of localities is explicit and where migration of processes (or

agent) is realized using a go instruction. The join calculus has been used to model some

mobile systems and represents the formal background of the programming language Jo-Caml

[16].

In this thesis, we are interested to the use of Petri nets in the modelling of mobility. In this

chapter, we have presented the definition of classical Petri nets. This model is a well known

model in concurrency domain. It can be used to specify distributed systems, and to verify

many of their properties. The use of Petri nets (with their basic definition) to model mobility

is not easy. The designer is obliged to code mobility in a rigid model that does not support

this property. One good idea was to extend Petri nets with the possibility to change their

structure during their execution. Once this is possible, the modelling of mobile system (where

structure changes over time) will be direct and easier in a high level Petri net (with a dynamic

structure over time). During our study, we have found many extension of Petri net that were

proposed to deal with mobility. We have seen that the richest extensions were Mobile Petri

nets and Dynamic Petri nets. Mobile Petri nets can be seen as Petri net translation of the -

calculus. In mobile nets, the input of a transition defines its output. The output connections of

a transition are not fixe, but they can be defined at runtime. This can be used to specify

systems, where connections between their components change over time, during the execution

of this system. In Dynamic nets, the structure can change in a more free way. In this last

formalism, new nets can be created during the firing of some transitions. These nets can

model new components that are downloaded by the local system. So using Dynamic nets, one

can specify in a direct and an implicit way, downloading of new components, which is one of

the application fields in mobile code systems.

These two extensions of Petri nets offer, probably, to the designer two new tools based on

Petri nets that can be used to model, in an easy way, systems where structure changes at

runtime. However the powerful of analysis techniques defined for Petri nets is lost. The

authors of Mobile and Dynamic nets have proposed an encoding of these two formalisms into

low level Petri nets. This encoding can be used to unfold high level model into low level

formalism then to analyze this last one.

Even the powerful of these two formalisms, that we consider the most advanced

formalisms in the field of Petri nets for mobility, we have concluded that these two

 Chapter II: Formal Methods for Mobile Computing

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 42

formalisms have many limits. It is clear that the idea in Dynamic Petri nets is to offer the

possibility to add new transitions to a net, when some other transitions are fired. The idea is

always to add new component to a net. This does not reflect the reality, where the systems

change in a reduction way (Components, which disappear). The idea of elimination of places,

connections, or transitions in a free way is not possible in mobile nets neither in dynamic nets.

In mobile nets, connection can disappear but only from output of transitions. The input

connection must not be eliminated. The process of adding places in mobile nets or transitions

in dynamic nets is also constrained and must respect some conditions. In mobile nets, it is

clear that it is not possible to add input places to transitions, so it is not possible to change the

input connections. In dynamic nets, the transitions which can be added must not change the

existing ones. In this sense, it is always impossible to change an existing transition.

Our principal idea in this thesis is to offer more flexibility to Petri nets. We propose a more

adaptable formalism. We want to extend Petri nets towards Flexible Petri nets. In the Flexible

Petri nets, basic components which are: places, transitions, and connections can be added or

deleted in a free way and at run time. This idea must offer the most flexible formalism to

model mobile systems and in a large way all reconfigurable systems. As the dynamic Petri

nets are the richest extension of Petri nets that we have found, we consider that the first

encoding of Flexible nets can be done into the dynamic Petri nets. The next chapter will

present in more details the Flexible nets formalism, will present the idea to encode this

formalism into dynamic Petri nets, then it will give a proof for this encoding.

Chapter III:

Extended Petri Nets

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 44

1 Introduction

Formal methods proposed to deal with mobility are numerous. We have distinguished

between those which extend processes calculi, and those which extend Petri nets. In many

extensions of Petri nets, the idea was always to offer the ability to change the structure of the

graph during the execution of the net. In these models, the designer will have a modeling tool

where mobility can be modeled explicitly and more easily. However, once the formalism

offers a more expressivity its analysis will become more and more complex. For this reason,

many authors and so many formalisms make numerous constraints on the dynamicity in the

net. During our study, we were interested to propose a new formalism that must offer more

expressive power than those proposed currently. Our propositions have been published in

some conferences and journals.

The first idea that has motivated our works was mobile code systems. In these systems,

type of resources and their bindings play a central role in the migration process. Resources

decide also the success or failure of the process. Proposed formal methods founded in the

literature do not deal with these aspects and their problems. In our first work, we have

proposed “Labelled Reconfigurable Nets” [42] extended to “Colored Reconfigurable Nets” in

[45]. Our objective was to propose a graphical tool to model mobile code systems in an easy

and intuitive way. In these works, we were interested to provide formalisms that model

mobility explicitly. The mobility is modeled through the reconfiguration of the net‟s structure

when some transitions are fired. When trying to offer this quality in a model, we have to

deal with the problem of interpreting this reconfiguration formally. In [42] and [45], we have

introduced specific transitions “reconfigure transitions”, which reconfigure the net when

they are fired. The first drawback of this solution is that we must provide a specific treatment

of these transitions when the model is analyzed. The second drawback is the use of rigid

labels associated to the transitions which make the model proposed in [42] not a

parameterized model. To cover these limits, we have adopted specific techniques to analyze

these models. In [46], we have proposed an interpretation of reconfigurable labeled nets into a

high order Maude (reconfigurable Maude). The idea was to extend Maude [37] with some

reconfigure rewriting rules. These rules can represent the reconfigure transitions.

Reconfigurable Maude can be used to simulate reconfigurable labeled nets. In another work

[48], we have adopted a theoretical method. We have proposed some rules to translate

reconfigurable transitions into classical transitions, so reconfigurable nets will be translated

into Colored Petri nets.

In our latest works, we have proposed Flexible nets [47, 49] which will be presented in

this chapter as our principal contribution in this thesis. In Flexible nets, we propose to deal

with the reconfiguration of the net with another point of view. We introduce specific sorts in

the model. These sorts will contain signed objects (places, transitions, and arcs). An internal

operation will be defined in these sorts. This operation will add or delete objects based on the

sign of these last ones. Types in the model can be constructed based on these sorts and other

predefined types. Reconfiguration of the structure of the net is interpreted as an operation that

manipulates this structure by manipulating their components which are signed objects. The

presence of a positive object (resp. negative object) in some place can be a cause to add (resp.

delete) this object to (resp. from) the structure of this net. The formalism proposed is called

Flexible Nets and reflects the idea that the model has a dynamic structure. This structure can

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 45

be expanded, shrunken, or destroyed. Our most contribution in this thesis is the definition of

the formal model: Flexible nets and the definition of its semantics, then the proposition of

the encoding of this model into Dynamic nets. This encoding will be used to offer an idea to

do the analysis. This encoding will be also proved.

To present our contribution, this chapter is organized as follows: The section two starts by

presenting the Labeled Reconfigurable Nets (LRN) (as the first naïve idea). We present the

motivation of this formalism, its formal definition and dynamic, than we show an example of

use and we discuss its shortcomings. Section three presents a first extension of the LRN

formalism to Colored Reconfigurable Nets (CRN) formalism. We will present the formal

definition of RCN, its semantics, and an example of modeling; this section will be concluded

by a discussion of shortcomings of this last formalism. Section four presents a more mature

idea:”Flexible Nets”, we present the formal definition, dynamics of this formalism and we

show some examples. Section four discusses the proposed issues to analyze these models.

2 Labeled Reconfigurable Nets: A naïve idea

Labeled Reconfigurable Nets [42] attempts to provide a formal and graphical model for

code mobility. We have extended Petri nets with reconfigure labeled transitions that when

they are fired reconfigure the net. Mobility is modeled explicitly by the possibility of adding

or deleting at runtime arcs, transitions and places. Modification in reconfigure transition‟s

label allows modeling different kinds of code mobility. Bindings to resources can be modeled

by adding arcs between environments. It is clear that in this model created nets are in the

same level of nets that create them. Creator and created nets can communicate. This model is

more adequate for modeling mobile code systems.

Labeled reconfigurable nets are an extension of Petri nets. Informally, a labeled

reconfigurable net is a set of environments (blocs of units). Connections between these

environments and their contents can be modified during runtime. A unit is a specific Petri net.

A unit can contain three kinds of transitions (a unique start transition: , a set of ordinary

transitions: , and a set of reconfigure transitions:).

Preconditions and post-conditions to fire a start or an ordinary transition are the same that

in Petri nets. Reconfigure transitions are labeled with labels that influence their firing. When a

reconfigure transition is fired, a net N will be (re)moved from an environment E towards

another environment E‟. The net N, the environment E and E‟ are defined in the label

associated to the transition. After firing a reconfigure transition, the structure of the labeled

reconfigurable net will be updated (i.e some places, arcs, and transitions will be deleted or

added). Here after we give our formal definitions of the concepts: unit, environment and

labeled reconfigurable net. After the definition, we present the dynamic aspect of this model.

2.1 Formal Definition

Let N1, N2, … Nk be a set of nets.

for each i: 1, …, n : Ni = (Pi, Ti, Ai), such that :

1. Pi = {p
i
1, p

i
2, …, p

i
n) a finite set of places,

2. Ti = STiRTi

 STi={st
i
1, st

i
2, …, st

i
m} a finite set of standard (ordinary) transitions,

 RTi = {rt
i
1, rt

i
2, …, rt

i
r} a finite set (eventually empty) of “reconfigure transitions”,

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 46

3. Ai  Pi x Ti  Ti x Pi.

Definition 2.1 (Unit): a unit UN is a net Ni that has a specific transition st
i
j denoted start

i
. So

Ti={start
i
}STiRTi.

Définition 2.2 (Environment): an environment E is a quadruplet E=(GP, RP, U, A)

 GP = {gp1, gp2, …, gps} a finite set of specific places : “guest places ”;

 RP = {rp1, rp2, …, rps} a finite set of specific places : “resource places”;

 U = { N1, N2, … Nk} a set of nets.

 A GP x StrTRPxT. Such that : StrT={start
1
, start

2
, …, start

k
} and T=ST1RT1 

ST2RT2 …  STkRTk

Definition 2.3 (Labeled reconfigurable net):

A labeled reconfigurable net LRN is a set of environments. LRN={E1, E2, …, Ep} such that

 There exist at least one net Ni in LRN such that RTi  ; (there is a reconfigurable

transition)

 For each rt
i
j  RTi, rt

i
j has a label <N,Ee,Eg,,>, such that N is a unit, Ee and Eg are

environments,  a set of places,  a set of arcs.

2.2 Dynamic of labeled reconfigurable nets

Let LRN = {E1, E2, …, Ep} be a labeled reconfigurable net,

Let Ei = (GP
i
, RP

i
, U

i
, A

i
) be an environment in LRN,

 GP
i
= {gp1

i
, gp2

i
, …, gps

i
}; “guest places ” in the environment Ei;

 RP
i
 = {rp1

i
, rp2

i
, …, rpp

i
} ; “resource places” in the environment Ei;

 U
i
= { N1

i
, N2

i
, … Nk

i
}; the set of units in the environment Ei;

 A
i
  GP

i
 x starts

i
  RP

i
 x T

i
  T

i
 x RP

i
, where:

 Sarts
i
 = {start

1
, start

2
, ..., start

k
} and T

i
={ST

i
1, ST

i
2, ..., ST

i
k}{RT

i
1, RT

i
2, ..., RT

i
k}

Let RTj
i

be the non empty set of reconfigure transitions associated with the net Nj
i
:

RTj
i
={rt

j
1, rt

j
2, …, rt

j
r}.

Let rt
j
m < N, Ee, Eg, , > be a reconfigure transition in RTj

i
, such that :

 Ee=(GP
e
, RP

e
, U

e
, A

e
); the emitter (sender) environment;

 N=(P, T, A) and NU
e
; The unit to be send;

 Eg=(GP
g
, RP

g
, U

g
, A

g
); The guest (destination) environment;

   RP
e
; =r c. (r denotes removed places and c denotes cloned places).

  is a set of arcs.  RP
e
 x TRP

g
 x T.

Let strt be the start transition of N.

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 47

 Conditions to fire rt
j
m<N, Ee, Eg, , >:

In addition to the known conditions (conditions to fire a transition in classical Petri nets), we

impose that there exists a free place pg in GP
g
; witch means: for each t starts

g
, (pg,t)A

g
.

 After firing rt
j
m:

In addition to the known post-condition of a transition firing in classical Petri nets, we add the

following post-condition:

LRN will be structurally changed such that:

If Ee and Eg denote the same environment then LRN will be not changed;

Else:

1) Ug
  U

g
{N}; U

e
 U

e
/{N}; the unit N is added to the set of units in the environment

E
g
;

2) Ag
 A

g
(pg, strt); the start transition in N will have as input place the place pg; this

must model that the environment E
g
 receives the unit N and, this last one can start ist

execution now.

3) Let DA ={(a, b) A
e
/ (a and b) and ((aN and bN) or (aN and bN))},

A
e
=A

e
-DA. DA –deleted arcs- to be deleted after moving N. These deleted arcs can

model the disappear and the disconnection of the unit N from its context in the sender

environment;

4) RP
g
  RP

g
; RP

e
RP

e
/r. The places r can model the migration of a transferable

resource between the two environments;

5) if ALRN is the set of arcs in LRN, ALRNALRN. These new arcs can model the

rebinding between the two environments. These rebinding are necessary for resources

access.

2.3 Examples of Modeling

A mobile code system is composed of execution units (EUs), resources, and computational

environments (CEs). EUs will be modeled as units and computational environments as

environments. Modeling resources requires using a set of places.

Reconfigure transitions model mobility actions. The key in modeling mobility is to identify

the label associated with the reconfigure transition. We must identify the unit to be moved,

the target computational environment and the types of binding to resources and their

locations. This label depends on the kind of mobility.

In general, a reconfigure transition rt is always labeled <EU, CE, CE‟, , >, such that:

 EU: the execution unit to be moved.

 CE, CE‟: respectively, resource and target computational environments.

 : will be used to model transferable resources. So  is empty if the system has no

transferable resource.

 : models bindings after moving.

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 48

The execution unit that contains rt and the EU that represents the first argument in the label

will be defined according to the three design paradigms: remote REV) evaluation, code on

demand (COD), and mobile agent (MA).

2.3.1 Remote Evaluation

In remote evaluation paradigm, an execution unit EU1 sends another execution unit EU2

from a computational environment CE1 to another one CE2. The reconfigure transition rt is

contained in the unit modeling EU1, and EU2 will be the first argument in rt‟s label.

Let us consider two computational environments E1 and E2. Firstly, E1 contains two

execution units EU1 and EU2; E2 contains an execution unit EU3. The three execution units

execute infinite loops. EU1 executes actions {a11, a12}, EU2 executes actions {a21, a22, a23},

and EU3 executes actions {a31, a32}. a21 requires a transferable resource TR1 and a non-

transferable resource bound by type PNR1 which is shared with a11. a22 and a12 share a

transferable resource bound by value VTR1, and a23 requires a non-transferable resource NR1.

In E2, EU1 requires a non-transferable resource bound by type PNR2 to execute a31. PNR2 has

the same type of PNR1.

The system will be modeled as a labeled reconfigurable net LRN. LRN contains two

environments E1, E2 that model the two computational environments (CE1 and CE2). Units

EU1 and EU2 will model execution units EU1 and EU2, respectively. In this case, the unit EU1

will contain a reconfigure transition rt<EU2,E1,E2,,  >; such that:

1. E1 =(RP1, GP1, U1, A1); RP1= {TR1, PNR1, VTR1, NR1}. U1 = {EU1, EU2};

2. E2 = (RP2, GP2, U2, A2); RP2={ PNR2}. GP2 ={PEU1}.

3. r={TR1}, c={VTR1};

4. ={(PEU1,str2), (PNR2,a21), (NR1, a23)}.

Figure 1 shows the model this system before the migration and after the migration.

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 49

Figure III. 1. REV-Model before and after firing rt

2.3.2 Code On Demand

In code-on-demand paradigm, an execution unit EU1 fetches another execution unit EU2.

The reconfigure transition rt is contained in the unit modeling EU1, and EU2 will be the first

argument in rt‟s label. If we reconsider the above example, the unit EU1 will contain a

reconfigure transition rt<EU2, E2, E1, , >.

The transition rt<EU2, E2, E1, , > means that EU1 will demand EU2 to be moved from E2 to

E1. In this case, ={TR1, VTR1}, ={(PEU2, str2), (PNR2, a21), (NR1, a23)}.

Figure 2 shows the model proposed to model this system.

 P21

 P22

 P23

 a22

a31

E2

PNR2

 P31

PEU2

str3

 P32

 a32

PEU1

VTR1

P23

a23

a22

PEU2

TR1

rt<EU2, E1, E2, , >

 NR1

PNR1

str1

P11

a11

P13

a12

str2

 a21
 P12

 P11

 P13

PEU1 E1

VTR1

E1

rt<EU2, E1, E2, , >

str1

P11

a11

P13

a12

 P12

 P11

 P13

PEU1

 NR1

PNR1

PEU2

a31

E2

PNR2

 P31

PEU2

str3

 P32

 a32

TR1

a23

a22

PEU1

str2

 a21

VTR1 a22

P21

P22

P23

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 50

Figure III. 2. COD-Model before and after firing rt

2.3.3 Mobile Agent

In mobile agent paradigm, execution units are autonomous agents. The agent itself triggers

mobility. In this case, rt –the reconfigure transition- is contained in the unit modeling the

agent and EU (the first argument) is also this agent.

Let E1 and E2 two computational environments. E1 contains two agents, a mobile agent

MA and a static agent SA1; E2 contains a unique static agent SA2. The three agents execute

infinite loops. MA executes actions {a11, a12, a13 }, SA1 executes actions {a21, a22, a23}, and

SA2 executes actions {a33, a32}. To be executed, a11 require a transferable resource TR1 and a

non-transferable resource bound by type PNR1 which is shared with a21. a12 and a22 share a

transferable resource bound by value, and a13 and a23 share a non-transferable resource NR1.

In E1, SA2 requires a non-transferable resource bound by type PNR2 to execute a32. PNR2 has

the same type of PNR1.

The system will be modeled as a labeled reconfigurable net LRN. LRN contains two

environments E1, E2 that model the two computational environments. In this case the unit A

that models the mobile agent A will contain a reconfigure transition rt < A, E1, E2, ,  >;

such that:

1. E1 =(RP1, GP1, U1, A1); RP1 contains at least four places that model the four

resources. Let TR1, NR1, PNR1 and VTR1 be these places. GP1 contains at least a free

place PA1 modeling that A can be received, and U1={A}.

2. E2=(RP2,GP2, U2, A2); RP2={PNR2}, GP2={PA2}.

3. r={TR1}, c={VTR1};

4. ={(PA2, str1), (PNR2, a11), (NR1, a13)}.

Figure 3 shows the model proposed to model this system.

E1

PEU2

PNR2

PEU1

str2

P12

P11

a12

a11

rt<EU2, E2, E1, , >

a31

E2

str1

P22

 P23

a23

 P21

a22

a21

PEU1

TR1

VTR1

 NR1

PNR1

 P21

PEU2

str3

P23

P22

a33

a32

E1

str2

P23

P24

a23

P22

 a22

a21

PEU2

TR1

PNR2

PEU1

str1

P12

 P11

a12

 a11
rt<EU2, E2, E1, , >

VTR1

a31

VTR1

 NR1

PNR1

 P31

PEU2

str3

 P33

P32

a33

 a32

 PEU1 E2

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 51

Figure III. 3. MA-Model before and after firing rt

2.4 Shortcomings and Extensions

This first formalism is a simple formalism dedicated to mobile code systems. It offers an

intuitive and very explicit way to model migration with all its forms. The bending between

environments is modeled through connections (arcs) that can be updated after the migration of

some unit. The most shortcoming of this model is due to the idea of the labels associated to

the reconfigure transition. The data given as a label are necessary to realize the mobility,

however these labels make the model unnatural and far from the intuition of Petri nets. This

makes the formalism to lose the background formal which is necessary to do analysis.

One solution is to push the data given in labels to input places of the reconfigure transition.

So the environments, the unit to move, the necessary bindings can be seen as tokens to be

stored firstly in some input places. This idea imposes to extend the first formalism to another

one, where it is possible to define data in places, so to define variables and types. The

extension proposed is the Colored Labeled Reconfigurable Nets [45].

3 Colored Reconfigurable Nets

Colored reconfigurable nets [45] are an extension of labeled reconfigurable nets.

Informally, a colored reconfigurable net is a set of environments (blocs of units). Connections

between these environments and their contents can be modified during runtime. A unit is a

specific Petri net. A unit can contain three kinds of transitions (a unique start transition: , a

set of ordinary transitions: , a set of calculi transition: and a set of reconfigure

transitions:).

When a reconfigure transition is fired, a net N will be (re)moved from an environment E

PA2
E2

PNR2

PA1

str2

P32

 P31

a32

a31

a21

rt<A, E1, E2, ,  >

E1

str1

 P11

P13

P14

a13

P12

 a12

a11

PA1

TR1

VTR1

 NR1

PNR

1

 P21

PA2

str3

P23

P22

a23

a22

rt<A, E1, E2, ,  >

E2

str1

P11

P13

P4

a13

P12

a12

a11

PA2

TR1

VTR1

PNR2

PA1

str3

P32

 P31

a32

a31

NR1

E1

VTR1

P23

P22

a23

a22

PNR1

PA1
PA2

str2

 P21

a21

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 52

towards another environment E‟. The net N, the environment E and E‟ are defined by a

calculi transition witch must always precedes the reconfigure transition. Here after we

redefine the concepts of: unit, environment then we give the definition of a colored

reconfigurable net.

3.1 Formal Definition

To define colored reconfigurable nets, we redefine firstly the unit and the environment.

Definition 3.1 (Unit) :

A unit is a net U=(Σ, P, T, A, C, E)

Σ : a finite set of types (colors); we denote by expr the set of expression that can be written

using variables in sets of Σ.

P: a finite set of places;

T: a finite set of transitions. We have T=TCR. Where

T: a set of ordinary transitions, T={t1, …, tn}. This set must contain a unique

transition that we call a start transition. We denote this transition as strt,

C: a set of calculi transitions, C={c1, …, cm},

R: a set of reconfigure transitions, R ={r1, …, rp}.

A: a set of arcs

C: a color mapping from P to Σ. C joins to each place p a color c that we note C(p).

E: an expression mapping from A to expr.

Definition 3.2 (Environment): an environment E is a quadruplet E=(GP, RP, U, A)

 GP = {gp1, gp2, …, gps} a finite set of specific places : “guest places ”;

 RP = {rp1, rp2, …, rps} a finite set of specific places : “resource places”;

 U = { N1, N2, … Nk} a set of nets, where T1, T2, …, Tk are the sets of their transitions

and StrT={strt
1
, strt

2
, …, strt

k
} is the set of their start transitions.

 A : a set of arcs, A GP x StrTRPxT. Such that: T=T1T2 …Tk

Remark : we say that a unit U is in an environment E iff the net U is a subnet of the net E.

Definition 3 (Colored reconfigurable nets):

A colored reconfigurable nets (CRN) is couple N=(E, A), such that:

E: a finite set of environments;

A: a finite set (probably empty) of arcs; these arcs connect places (resp. transitions) from

one environment to other transitions (resp. places) in another environment.

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 53

3.2 Dynamic of colored reconfigurable nets

To introduce the dynamic of CRN we consider three types (colors): P(set of places), N(set

of nets), and B(set of arcs). We denote respectively by P*
, N*

, B*
 the three multi-sets of types

P, N, B. We focus on the semantic of the calculi and the reconfigure transition.

Semantics of calculi transition:

A calculi transition must take as input three tokens of type N(two environments and one

unit, the unit must be in one and only one of the two environments). Firing the calculi

transition provides a token in the multi-sets < N*
, P*

, B*
>. We can say that a calculi transition

uses a set of nets to computes some arcs and places. At the output, it provides a composite

token of the input nets and the computed arcs and places. In general, this token is used by a

reconfigure transition.

If t is a calculi transition, and E1, E2 (represent two environments), U (represents a unit, U

is in E1) are the input nets, once t is fired it produces a token <U+E1+E2, P, A> such that P

and A are two multi-sets that can be defined like this:

 P={pPE1/ pPU and  t  TU such that (p,t)AE1 or (t,p)AE1 },

and

 A={aAE1/ aAE1 and  (t,p) TE1xPU  TUxPE1}.

Where PN, AN and TN denote respectively places, arcs and transitions of a net N.

Informally, P can model places that contain resources in the sender environment E1. These

resources are used by the unit U before its migration. The mutli-set A models connections

between the unit U and the environment E1.

Semantics of reconfigure transition:

The objective of a reconfigure transition is to reconfigure the structure of the net. To be

fired, a reconfigure transition takes as input a token in the multi-sets : < N*
, N, P*

, B*
>. Firing

a reconfigure transition will update the structure of the colored reconfigurable nets that

contains this transition in the following semantics:

If rt is a reconfigure transition and <U+E1, E2, P, A> is an input token, to fire rt we impose

that there exists a free place pg in GPE2; witch means:

For each t strTE2 (pg,t)AE2.

 Where strTE2 denotes the set of the start transitions of all units defined in the environment

E2.

Once this condition is satisfied, firing rt changes N structurally such that:

 If E1 and E2 denote the same environment then N will not be changed;

Else:

1) The net U is removed from the net E1: UE2UE2{U};

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 54

2) The net U is added to the environment E2: UE1UE1/{U};

3) AE2

 AE2(pg,strt); such that strt is the start transition for U.

4) Some elements of P are transformed from E1 towards E2, some others are

cloned and some others will not be changed (resp for elements in A). These

elements depend on the modeling case.

3.3 Examples of Modeling

As an example, we will redo the modeling of the example of Mobile agent system,

presented above with LRN. The modeling of the two other examples can be done in the same

manner.

We use the same description given above for a mobile agent system. The system will be

modeled as a colored reconfigurable net N. N contains two environments E1, E2 that model

the two computational environments (CE1 and CE2). Units A1 A2 and A3 will model MA, SA1

and SA2, respectively. In this case, the unit A1 will contain a reconfigure transition rt and a

calculi transition cu.

1. E1=(RP1, GP1, U1, A1); RP1={TR1, PNR1, VTR1, NR1}. U1 ={EU1, EU2};

2. E2 =(RP2, GP2, U2, A2); RP2={ PNR2}. GP2 ={PEU1}.

3. ct will take as input tokens : E1, A1 and E2. ct will provide the token : <A1+E1, E2, P,

A>. such that

P=TR1+VTR1

A=(NR1,a23)+(PNR2,a21)

4. rt takes as input <A1+E1, E2, P, A> and will remove A1 and places in P from E1

towards E2. Arcs in A will be added to the N.

In the figure III.4, the types of places P
1
, P

2
, P

3
 is N(set of nets). P

1
 contains A1, P

2
 contains

E2 and P
3
 contains E2. The type of place P11 is <N*, N, P*, B*>. Figure III.4 shows the model

of this system before and after the migration of a mobile agent.

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 55

Figure III. 4. MA-Model (modeled with CRN) before and after firing rt

3.4 Shortcomings and Extensions

The extra data used as labels in the LRN model is resolved by the use of types in the CRN

models. The types offer the possibility of interpreting mobility as the migration of some parts

of a net from one environment (which is also a net) toward another. The net to be moved, the

send and the destination are all expressed as complex data defined as tokens in some places.

The migration requires firstly defining the nets to be moved, and the changes that will be

applied to the two environments. This step is realized firstly by one transition (the calculus

transition), then the reconfiguration is insured by a second transition (the reconfigure one).

The problem now is the interpretation of the effect of the two transitions. The transition

which does a calculus then provides a set of data, and the transition that achieve the

reconfiguration of the net. A formal interpretation of the two effects into the Petri nets known

operation is required to insure the formal verification of these models using the formal

methods applied early in Petri nets. In the absence of this formal interpretation, all that one

can do is to realize a simulation of the model or to compute a reachablity tree and does the

possible verification. The computation of the reachability tree must consider the specific

transitions. Each time, when we have a calculus transition or a reconfigure transition, one

must call to specific procedures that have a different effect than ordinary transitions. These

procedures will calculate data using the semantics associated to the calculus transitions or will

change the structure of the net using the semantics of the reconfigure transition.

It is clear that a reachability tree is this case will not be like ordinary reachability tree. each

node in our reachability tree must be composed by to component :a marking vector that

denotes the marking of each place, and a structure state that represents the structure of the net

PA2
E2

PNR2

PA1

str2

 P32

 P31

a32

a31

a21

rt

E1

P11

P13

 P14

a13

P12

 a12

a11

TR1

VTR1

 NR1

PNR1

 P21

PA2

str3

P23

P22

a23

a22

PA1

str1

P1

P2

P3

ct

rt

E2

P11

P13

P4

a13

P12

a12

a11

TR1

VTR1

PNR2

PA2

str3

P32

 P31

a32

a31

NR1

E1

VTR1

P23

P22

a23

a22

PNR1

PA1
PA2

str2

 P21

a21

PA1

str1

P1

P2

P3

ct

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 56

at the current state. The state of a reconfigurable system (like a mobile code system) is no

more modeled by the marking of the net, but also by the structure of the net. The marking and

the structure are the two dynamic and the two change over time.

The simulation of the models and the computation of a reachabililty tree seem to be two

techniques that can be applied to do analysis for models in LRN or CRN. But really a formal

interpretation needs to be defined. A formal interpretation of the extra-natural transitions

seems to be required to insure that the proposed model is always a Petri net or can be

translated to a Petri net. To insure this, we will proceed as follows:

 Firstly, we think that the above proposed models are focused on mobility

which represents a specific case of a large class of systems, which are reconfigurable systems.

A reconfigurable system can be as a logic system (code mobility) or a physic system (mobile

robots, mobile wireless networks, …). The mobility is seen as a specific reconfigurablity. It

seems to be more adequate to propose formalism for reconfigurable systems. The

reconfigurability of a system will not, necessary, require the migration of a whole unit form

one environment to another one. The reconfigurability can be so simple that it consists of a

small modification of the structure of some unit in a system (logic or physic). These kinds of

modifications motivate us to think of some formalism where the reconfiguration is defined

into a low level. Considering a net as a graph, a low level reconfiguration lets the net to

modify its structure by adding or deleting one component (a place, a transition, or an arc).

This small modification can be used after to realize more significant reconfiguration, which is

the case in mobile code systems. So, the proposition can be seen as a reconfigurable net with a

high granularity. We will present this proposition in the next section (section four), as

Flexible nets.

 Considering the formal interpretation of the reconfiguration, we will propose to

prove that all reconfiguration behaviors (implying the modification of the structure of the net

during its execution) can be encoded into classical Petri nets behaviors. This result will be

more explained in the chapter four.

4 Flexible Nets: The mature idea

Flexible Nets (FN) is an extension of colored Petri Nets [47, 49]. In FN, the places, the

transitions and the arcs are objects that can figure as marking of places. These objects can be

signed: positive or negative. We introduce three sorts: P (for place), T (for transition), and A

(for arc). These three sorts can contain negative as positive objects. We abandon the use of

reconfigure transitions. All transitions can change the structure of the net depending on the

expressions labeling input arcs of these transitions. By using signed objects, we offer the

possibility for adding (or deleting) nodes to (from) the net, when a transition is fired. The

reconfiguration of the net by adding or deleting nodes will be interpreted as an internal

operation defined in the sorts P, T and A. In the next paragraphs, we will present this internal

operation and how it reconfigures a net. The initial marking of an added place, the guard

associated to an added transition, and the expression labeling an added arc must be present

when the transition that will add these nodes is fired. These three pieces of information can be

modeled as data presented in the input places of a transition. Finally, we consider that

transitions can be temporized.

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 57

4.1 Formal Definition

A Flexible Net N is a 9-tuple (, P, T, A, C, G, E, I), where:

 : a set of types (Colors). We denote by * the set of all muti-sets of the set ;

 P: a set of places;

 T: a set of transitions;

 A: a set of arcs. A(TxP) (PxT);

 C: a color function associated to each place. C: P. For each place p, C associates a
unique color C(p);

 G: a guard function associated to each transition. G: TExp. Where Exp is the set of all
Boolean expressions that can be constructed using constants and variables defined in types

;

 E: an expression function that associates to each arc a in A an expression E(a);

 I: is an initial state of the net. I=<M0, S0>, where M0 is the initial marking of places P. M0:

P*. S0 is the initial structure of the net. We take S0=PTA.

In section 4.2 and in section 4.3 of this first part of the chapter, variables are always written

as italic letters and constants as regular letters. Expressions are always written between angle

brackets. The expression <> denotes the empty expression. The sets P, T and A are considered

as types in . We use the symbols P, T and A, to denote the names of these types and also to

denote the sets that contain the elements (places, transitions and arcs) in the net N. This means

that these sets can change over the execution of the net, but in some occurrences P, T, and A

refer to the types which are abstract notions. These types contain names of places, transitions

and arcs. These names can be signed. For example, we note p as an unsigned place, and +p,

and -p as a signed one. We define the internal operation  in sets P, T, and A. We denote by

 the neutral element for the operation: . We adopt the following proprieties for this

operation:

Let e, e‟, e‟‟ be three signed elements defined strictly in one of the three above sets: P, T,

or A, we have:

 ee‟= e‟e;

 (ee‟)e‟‟= e‟(ee‟‟);

 e-e=-ee=;

 e=e;

If E={e1, e2, e3} is a subset of one of the three sets P, T, or A. We allow that E can also be

written as an expression Eterm=e1e2e3. In this semantics, the expression ee‟ denotes the

set {e, e‟}, and the expression e-e denotes the set {e}/{e‟} which is briefly the set {e}. The

neutral element  denotes the empty set {}.

In the set of types ={C1, C2, …}, we can have complex types. If C is a complex type in ,

then every element e in C can be written as a tuple <e1, e2, e3, …, en>, such as n is the arity of

e. In this case, we denote by ei the sub-element of order i in the element e, and we denote by

Type(ei) the type of this sub-element. In a tuple <e1, e2, e3, …, en> which appears in a marking

of a place p, we suppose that:

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 58

 if Type(ei)=P (which means that ei is a place) and ei is positive , then ei+1 and ei+2 must be

the two expressions that represent respectively, the initial marking of ei and the type of ei.

If ei is negative ei+1 and ei+2 will be empty expressions;

 if Type(ei)=T (which means that xi is a transition) and ei is positive, then ei+1 must be the

expression that represents the guard of ei. If ei is negative ei+1 can be an empty expression;

 if Type(ei)=A (which means that ei is an arc) and ei is positive, then ei+1 must be the
expression labeling the arc ei. If ei is negative ei+1 will be an empty expression;

4.2 Firing Rules

Let N be a Flexible Net, and t a transition in T. As in CPN [31], we denote by °t the set of

input places of the transition t, and by t° the set of output places of the transition t. Let

I0=<M0, S0> be the current state of N. Firing t changes I0 towards I1=<M1, S1>. We denote

this as : <M0, S0>
t
<M1, S1>.

Preconditions to fire t. t can be fired iff there is a unification  such that M0(p)E(p, t)[],

for each p in °t, and G(t) is true.

Post-conditions of firing t. after the firing of t, N will transit from its current state I0 to

another state I1=<M1, S1>. For each p in °t, we will have: M1(p)=M0(p)-E(p,t)[]. For each p

in t°, we will have: M1(p)=M0(p)+E(t,p)[]. S0 (which is P0T0A0) will be updated to

S1=P1T1A1, with their terms P1term
, T1term

, A1term
.

For each p in °t, if E(p, t) is the tuple <e1, e2, …, en>, then for each ei in e1, e2, …, en:

 if Type(ei)=P then P1term= P0termei[], C(ei[])=ei+1[], and M1(ei[])=ei+2[];

 if Type(ei)=T then T1term
= T0term

 ei[] and G(ei[])=ei+1[];

 if Type(ei)=A then A1term
= A0term

 ei[] and E(ei[])=ei+1[].

The following three examples are presented to clarify the semantics of this formalism. We

start by the example of Figure III.5.

Figure III. 5. Flexible Nets first example

In Figure III.5, firing the transition t1 will change the structure of the net. In the new

structure, a new place p2 and a new arc (t1, p2) are added to the original structure. To ensure

this behavior, we must have at the initial state of the net:

 M0(p1)=<+p2, <>, “integer”, +(t1,p2), <1>>. This marking will allow the creation of a new
place p2 which type is integer with an empty initial marking and a new arc (t1,p2) which is
labeled <1>.

 (p1,t1) is labeled <p1, mark_p1, Type, a1, exp_a1>. Where: p2, is a variable of type P, a1, is
a variable of type A, mark_p2, Type, exp_a1 are variables of type expression.

t1

p1
firing t1

p1

t1

p2

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 59

From this initial state, it is clear that t1 can be fired with respect to the substitution:

=[p1+p2, mark_p1<>, Type”integer”, a1+(t1,p2), exp_a1<1>]

System in Figure III.6 has a more complex behavior.

Figure III. 6. Flexible Nets second example.

In this case, the system starts by firing t0 which will delete the arc (p0, t0) and will add: the

place p2, the transition t0, and the two arcs {(t0, p2), (p2, t1)}; then, from this state, t1 can be

fired which restitutes the first structure (by deleting the new added nodes and restituting the

arc (p0, t0)), and finally the t0 destroys the net. To facilitate this presentation, types of places

will not appear in the following expressions. Initially, we must have:

 M0(p0)=<-(p0,t0), p2, <-t1, -p2, (p0,t0),

 <a1, p1, mark_p1, t1, grd_t1, p2, mark_p2, a2, exp_a2, a3, exp_a3,

 a4, exp_a4>

 >,

 t1, <>, , <>, (t0, p2), <, , , <>>, (p2,t1), <t1, p1, a1, exp_a1>, (t1, p0),

 <, -p0, <>, -t0, <>, -p1, <>, , <>, , <>, , <>>

 >;

 E(p0, t0)=<a1, p1, mark_p1, t1, grd_t1, p2, mark_p2, a2, exp_a2, a3, exp_a3>;

 E(t0, p1)=<1> and M0(p1)=0.

From this initial state, the transition t0 is enabled with the substitution:

 =[a1-(p0,t0), p1 p2, mark_p1<-t1, -p2, (p0,t0), <a1, p1, mark_p1, t1, grd_t1, p2,

 mark_p2, a2, exp_a2, a3, exp_a3, a4, exp_a4>>,

 t1 t1, grd_t1<>, p2, mark_p2<>, a2(t0, p2), exp_a2<, , , , <>>,

 a3(p2,t1), exp_a3< t1, grd_t1, p1, mark_p1, a1, exp_a1>].

Once t0 is fired:

 (p0, t0) will be deleted,

 p2 will be added with M1(p2)=

 <-t1, <>, -p2, <>, (p0,t0),

t0

P1

P0

t0

P1

P0

firing t0
t1

P2

t0

P1

P0

firing t1

firing t0

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 60

 <a1, p1, mark_p1, t1, grd_t1, p2, mark_p2, a2, exp_a2, a3, exp_a3, a4, exp_a4>

 >,

 t1 will be added,

 (t0, p2) labeled <, , , , <>> will be added,

 (p2, t1) labeled <t1, grd_t1, p1, mark_p1, a1, exp_a1> will be added,

 (t1, p0) labeled <, -p0, <>, -t0, <>, -p1, <>, , <>, , <>> will be added,

 M1(p1)=<1>.

From this second state, t1 is enabled with the substitution:

 ‟=[

 t1-t1, grd_t1<>, p1-p2, mark_p1<>, a1(p0, t0),

 exp_a1<a1, p1, mark_p1, t1, grd_t1, p2, mark_p2, a2, exp_a2, a3, exp_a3, a4,

 exp_a4>

].

When t1 is fired, t1 and p2 will be deleted, (p0, t0) is restituted, and M2(p0)=< , -p0, <>, -t0,

<>, -p1, <>, , <>, , <>>

From this third state, t0 is enabled with the substitution:

 ‟‟= [

 a1, p1-p0, mark_p1<>, t1-t0, grd_t1<>, p2-p1, mark_p2<>,

 a2, exp_a2<>, a3, exp_a3<>

].

When t0 is fired, the net will be destroyed.

Figure III. 7. Flexible Nets third example.

The example of Figure III.7 treats a particular case. In the current version of FN, we adopt

that when a transition t tries to delete a node n from the structure S, and if n does not exist in

S, the transition will be fired and the structure will not be changed. But when t tries to add a

node n to the structure S which also contains a node with the same name n, we can adopt

some conversion (an -conversion) of the occurrences of n to avoid confusion in the

generated structure S‟.

In the example of Figure III.7, we show the application of an -conversion when the node

to be added existed in the current net. Suppose that the initial marking of p0 is <p0, <>, (t0, p0),

<1>, -p0, <>>. And suppose that E(p0, t0)=<p1, mark_p1, a1, exp_a1, p2, mark_p2>. In this

Case3

P0

t0

P1

t0

P1 Case1

Case2

P0

t0

P1

t0

p1 p

0

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 61

initial state, t0 is enabled with the substitution =[p1p0, exp1<>, a1(t0, p0), exp2<1>,

p2-p0, mark_p2<>]. We have three cases: (i) without -conversion, the system will add a

an arc (t0, p0) to the net, then it will delete the place p0, (ii) with an -conversion that convert

all occurrences of p0, we will have =[p1p0, mark_p1<>, a1(t0, p0), exp_a1<1>,

p2-p0, mark_p2<>] and the system will add a place then delete this place; so the

structure will not change, (iii) with an -conversion on positive occurrences, we will have

+=[p1p0, mark_p1<>, a1(t0, p0), exp_a1<1>, p2-p0, mark_p2<>]. In this

case, the system will add the place p0 and delete p0.

Now, what kinds of conversion we will adopt? This can be considered as a specialization of

the Flexible Nets formalism. We consider that the formalism is generic and such

specialization can be chosen by the user depending on the application. This problem can also

be avoided if the names chosen are completely different from the current names in the model.

4.3 Examples of Modeling

4.3.1 Example of a Dynamic Join Calculus model

Let review the specification written in the DJC [13] and presented in the chapter two:

ready(printer)|job(file)  printer (file)

ready(laser)| job(1), job(2)

In this specification, once we have a job to be printed and a ready printer we send this job

the ready printer. To specify this simple system in the FN formalism, we define two places

job, and ready. These two places represented the two terms job and ready in the DJC

specification. These two places will be initially marked <1>+<2>, and <laser>, respectively.

In the FN formalism (Figure III.8) we will have a new place created to represent every

detected ready printer. In the example specified here, we have one ready printer which is

laser. So the firing of the transition will create a new place with the name laser, and which

will be marked ever <1> or <2>. The name of this created place is a parameter given in the

predefined place ready. To specify this behavior, we start by add a transition that create the

data which represents the node to be added to the graph at runtime. The transition t‟ in the

Figure III.8, create the token <+printer, <file>>, this one is stored in the place p1, and will be

used by the transition t to create a new place with the name stored in the variable printer and

with the initial marking<file>.

The idea is that each rule in the DJC which produces new terms (processes) in the system is

modeled as two transitions, a first one which will define the nodes to be added, and a second

transition which will change effectively the structure of the net, to model the reconfiguration

in the DJC specification.

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 62

Figure III. 8. The initial configuration.

Figure III. 9. The configuration after firing the sequence t‟,t.

4.3.2 Example of a Mobile Petri Nets model

We take the example presented in the chapter two when we have presented Mobile Petri

Nets [20].

Let consider the Mobile net ()(,)N Y m T where:

1 2 3 4 5
{ , , , , },Y p p p p p

 1 2
{ , },T t t

1 1 2
{ (, ,), (,)} { (,)}t p x a p p y z p x y 

, 2 2 3
{ (, ')} { (1, 2), '(,), (6)}t p p p p p a b p 

Suppose that the initial marking is
1 5 2 4 5

{ (1, ,), (,)}m p a p p p p .

In this example, the firing of the transition t1 will create the place p which is given as a

token in the place p1. The initial marking of p is <x,y>, where x is given in the place p1 and y

in the place p2 respectively. In the FN formalism, we have proposed that initial marking of an

added place p is defined with this place in the same input place for the transition which will

add p.

To model this example using Flexible nets, we will have the initial configuration as showed

on Figure III.10. In the specification of Figure III.10, the behavior of the transition t1 of the

Mobile net is reproduced by the sequence “t0, t1”, and the behavior of the transition t2 of the

Mobile net is reproduced by the sequence “t3, t2”.

<1>

<2>

job
<laser>

ready

<printer>
<file>

p1

<+printer, <file>>

<printer, expr>

t‟

t

<1>

job

ready

<printer>
<file>

p1

<+printer, <file>>

<printer, expr>

t‟

t

<1>

laser

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 63

Figure III. 10. Flexible Nets: example of Mobile nets

The behavior of the two transitions t1 and t2 in the mobile net is reproduced by the two

transition t1 and t2 respectively in the Flexible net. The firing of t1 requires the firing of t0, and

the firing of t2 requires the firing of t3.

The firing of the sequence “t1, t2” leads to the configuration showed on Figure III.11, and

the firing of the sequence “t3, t2” leads to the configuration showed on the Figure III.12.

Figure III. 11. Configuration after firing the sequence t0,t1

<x, a, p>

<y, z>

<p,p‟>

<+p,<x, y>>

<p, exp>

P1

P2

P6

<+p,<1, 2>, +p‟, <a, b>>

<p, exp, p‟, exp‟, p‟, exp‟‟ >

P7

t0

t1

t2

t3

<6>

P3

 <1, p5>
P5

<1, a, p5> <p4, p5>

<x, a, p>

<y, z>

<p,p‟>

<+p,<x, y>>

<p, exp>

P1

P2

P6

<+p,<1, 2>, +p‟, <a, b>>

<p, exp, p‟, exp‟, p‟, exp‟‟ >

P7

t0

t1

t2

t3

<6>

P3

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 64

Figure III. 12. Configuration after firing the sequence t3,t2

4.3.3 Example of a Dynamic Petri Nets model

Let review the example presented in the chapter two, when we have presented the dynamic

net (DN) [20].

Consider the following dynamic net:

 ({ , })(A B

{ ()

({ })(

{ (), ()} (),

{ (), ()}

),

{ (), ()}

)

A X

Y

X W Y Z W Z

A Y Y B

A A B B







The initial marking is {A(A), B(B)}.

Like we have explained in the chapter two, when the external transition is fired, it adds a

new transition and a new place.

The FN of this example is presented in Figure III.13. In Figure III.13, the behavior of the

external transition defined in the DN is reproduced by the sequence “t0,t1”. The behavior of

the internal transition is reproduced by the sequence “ t‟‟, t‟ ”. This last sequence (and so its

behavior) is defined also in the marking created when the transition t0 is fired.

<1, a, p5>

<x, a, p>

<y, z>

<p,p‟>

<+p,<x, y>>

<p, exp>

P1

P2

P6

<+p,<1, 2>, +p‟, <a, b>>

<p, exp, p‟, exp‟, p‟, exp‟‟ >

P7

t0

t1

t2

t3

<6>

<6>

P3

<1,2>
<a, b>

P4

 P5

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 65

Figure III. 13. The initial configuration

In Figure III.14 and Figure III.15, exp1=<+x, +Y, , t‟‟, +(x, t‟‟), <W>, +(Y, t‟‟), <Z>, +p2, +(t‟‟, p2),

<+W, <Z>>, +t‟, +(p2,t‟), <W,<Z>> > , and exp2= <x, Y, exp, t‟‟, a, exp‟, a‟, exp‟‟ , p2, a‟, exp‟‟‟,

t‟,a‟‟‟,exp‟‟‟‟>

Figure III. 14. The configuration after the firing of the sequence t0, t

<A>

A

t0

<x>

 p1

<+x, +Y, , t‟‟, +(x, t‟‟), <W>, +(Y, t‟‟), <Z>,

+p2, +(t‟‟, p2), <+W, <Z>>, +t‟, +(p2,t‟), <W,<Z>> >

<x, Y, exp, t‟‟, a, exp‟, a‟, exp‟‟ , p2, a‟, exp‟‟‟, t‟,a‟‟‟,exp‟‟‟‟>

t

B

<Y>

<Y>

A

t0

<x>

p1

<exp1 >

<exp2 >

t

B

<Y>

Y

t‟‟

<W>
<Z>

 p2

<+W, <Z> >

t‟

<W, <Z> >

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 66

Figure III. 15. The configuration after the firing of the sequence t‟‟, t‟

5 Analysis Issues

The use of formal methods finds its motivation in the analysis and verification techniques

that can be used with these methods. The proprieties that can be verified depend on the kind

of the method used and the modeled system. In case of Petri Nets, some known proprieties are

defined: boundedness, safety, reachability …etc. The most of proposed extensions of Petri

Nets have some automatic tools to achieve the verification of some proprieties. In the current

work, we consider that the same proprieties defined for classical Petri Nets can be studied and

extended for Flexible Nets. To analyze these proprieties, we proposed two ways in the current

time:

 The first way is based on an extended reachability tree that can be generated

automatically. In classical Petri Nets, the reachability tree has as root the initial marking,

and as nodes all the reachable marking. Arcs between nodes (marking) are labeled with the

transition that transforms some marking (first node) to another marking (second node). In

the FN, nodes of this reachability tree are not simple marking but they are states. Each state

is a couple <S, M>, where S is the current structure of the net, and M is the marking

associated to this structure. The root is the initial state <S0, M0>. The nodes are the set of

reachable states. Each two states are linked by an arc labeled with the transition that

transforms one state (the first node) to the other state (second node). As in classical Petri

Nets, if this tree is finite then many proprieties can decided. In the case of an infinite

reachability tree, the analysis will not be complete. In this work, we have realized a small

prototype, that can be used to compute reachability tree for some given net, and for some

number of level in case of infinite tree. The Figure III.16 shows the first interface of the

tool that presents the proposed services in a textual mode. The user must enter the net as a

specification in a text to the program.

A

t0

<x>

 p1

<exp1 >

<exp2 >

t

B

<Y>

Y

t‟‟

<W>
<Z>

 p2

<+W, <Z> >

t‟

<W, <Z> >

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 67

Figure III. 16. Interface of the prototype.

The program can simulate the firing of some transition or it can compute the reachability

tree for some given number of levels. As an example, Figure III.18 presents the reachability

tree obtained for the net shown on Figure III.17.

Figure III. 17. Example used as input for the realized prototype

In the example of Figure III.17, the initial marking of the place p1 is <+p3, +p4, +t0, +t1, +t2,

+(t0,p3), +(p3,t1), +(t1,p4), +(p4,t2), +(t2,p2)>. When rt1 is fired it will add two places: p3, p4,

three transitions: t0, t1, t2, and the arcs: (t0,p3), (p3,t1), (t1,p4), (p4,t2), (t2,p2). The new added

transitions will not reconfigure the net. After the firing of the transition rt1, the marking of the

place p2 will be: <-p3, -p4, -t0, -t1, -t2, -(t0,p3), -(p3,t1), -(t1,p4), -(p4,t2), -(t2,p2)>. So when the rt2

is fired, it will delete the element that rt1 has added to the net.

Figure III.18 presents the reachability the reachability tree for 36 nodes. The result will be

then depicted using the tool graphviz [102]. At the current time, the objective of this tool was

to simulate the firing of some transition, to follow the dynamic of the net, and to depict some

levels of the reachability tree. The more important work requires the implementation of the

algorithms that will manipulate this tree to prove and verify the required proprieties. This

implementation and more results can be presented in future works.

<p3, p4, t0, t1, t2, a0, a1, a2, a3, a4>

p1

p2

rt1

rt2

<-p3, -p4, -t0, -t1, -t2, -a0,

-a1, -a2, -a3, -a4>
<p3, p4, t0, t1, t2, a0, a1, a2, a3, a4>

<>

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 68

Figure III. 18. Reachability tree

 The second analysis way is to unfold the flexible nets to another low level net

for which some analysis tools existed. In our case, we have chosen the unfolding of

Flexible Nets toward Dynamic Nets (DN) [5]. The dynamic Nets, as presented in chapter

2, are high level nets, where new transitions can be added to the original nets when some

existing transitions are fired in this net. Although the power expressiveness of Dynamic

Nets, they impose some constraints on the structure of the net. The high dynamicity of

Flexible Nets makes the unfolding complex but possible. We have proposed a

transformation technique that transforms the FN into the DN. The objective of this

transformation is to profit from the idea that DN can also be unfolded into CPN (Colored

Petri Nets). These last one, can be analyzed through the existing tools. The transformation

from FN into DN is a formal transformation; this makes it possible to automate the

unfolding. This transformation is proved but it is not yet automated. The translation of the

Flexible nets into Dynamic nets and the proof of this translation are presented in chapter

four.

 Chapter III: Extended Petri Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 69

6 Conclusion

In this chapter, we have presented our contribution at the modeling level in a design

process, as a set of extended Petri nets versions. We have presented Labeled Reconfigurable

Nets (LRN) [42] as a first and naïve model, and then we have presented its extension to

Colored Reconfigurable Nets (CRN) [45]. We have presented for each version some examples

of modeling. Studying the shortcomings of these two versions, we have then proposed our last

contribution that we consider more mature: “Flexible Nets” (FN) [31], a formalism to specify

in a general way all reconfigurable systems. The FN formalism allows the structure of the net

to be dynamic during runtime. The net structure can be updated at any time and in high

granularity. The nodes of the net‟s graph can be added or deleted. A marking of a place by

negative objects (nodes) will delete these nodes. The marking of places with positive nodes

will add these nodes to the structure of the net. We have showed the use of FN to specify

some examples specified with other formalisms in the state of the art.

The power of the proposed formalism is that it is more general and gives an intuitive and

easy method to specify formally reconfigurable systems. The dynamic structure of a system

will be modeled explicitly and naturally in the dynamic structure of the net. We consider that

the designer can use this formalism to specify all kinds of reconfigurable systems.

To analyze models, we have proposed tow possible ways: (i) through a simulator tool that

simulates the firing of transitions and that depict the reachability tree, (ii) through the

unfolding of Flexible Nets specifications into Dynamic Nets models. In the next chapter, we

will present the unfolding (or encoding) of Flexible Nets into Dynamic Nets. This encoding

will be proved.

Chapter IV:

Encoding of Flexible

Nets into Dynamic

Nets

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 71

1 Introduction

Our aim is to offer a way to analyze FN models. As presented in chapter 3, we have

proposed that the analysis of FN can be done through the analysis of some equivalent models

in CPN (Colored Petri Nets [31]) or PN (Petri Nets [27]). Petri Nets and Colored Petri Nets

have been studied for many years and have many automatic verification-tools [33]. To profit

from these tools, we must show that there is some correct transformation from the FN

formalism (as high level nets) towards CPN (and PN). In this chapter we will present this

transformation, and we will present a proof of its correction.

The transformation of FN directly into CPN or PN is a hard task; we propose to prove that

the Flexible Nets (FN) models can be encoded into Dynamic Nets (DN) [20]. Dynamic Nets

offer the possibility of adding new nets to the original one, when a transition is fired. The

problem in this encoding is that our formalism offers more behaviors which are not allowed in

DN. In DN, we have some constraints:

Transitions without input places are not allowed (This condition is formulated as the

obligation that the set of all mutli-sets pre

CX
M

,
 is composed of only non empty multi-sets m. m

represent the preset of a transition, see page 4 in [20]);

When adding some nets to the original net, we have not the possibility to modify the input

of an existing transition in the original net;

We cannot add a connection between two disconnected existing nodes;

We cannot delete nodes (place, transition or connection).

Authors of [20] gave one example in their paper that presents the adding of a transition. In

this context, to encode our model in the DN model, we must prove that all new behaviors of

our formalism (adding or deleting some nodes) can be seen as adding of transitions, and then

we can encode FN into DN and so into Petri Nets. DN has been encoded into Colored Petri

Nets and the encoding is proven in [20].

To allow the reader to follow this encoding, we treat the problems that we meet in such

encoding one by one. Every time, when we meet some problem, we explain it and we give

how we have resolved it. Firstly, we try to encode the FN into an indexed DN. In this indexed

DN, we associate to each transition in the DN an explicit name (only to make the model

understandable. In Dynamic Net [20], transitions have not explicit names). Names of

transitions are bounded like names of places. Names of places and names of transitions are

declared together. Indices of transitions and places tell the current reconfiguration (the current

firing of a reconfigure transition). For example
i

t is the transition which name is t and which

is created in the
th

i reconfiguration of the net.
1i

t is the transition which name is t and which

is created in the
th

i)1( reconfiguration of the net. Even using this indexed DN as an

intermediary between FN and DN, important prior transformations are required obtain this

indexed DN. This indexed DN is then also transformed into the well known DN.

In this chapter, we present the encoding into Dynamic nets of the principal restructuring

behaviors that can be modeled with our formalism: adding a place, adding a transition, adding

an arc, deleting a place, deleting a transition, and finally, deleting an arc.

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 72

We consider that the adding of a place during runtime is the most complex behavior. To

reach the Dynamic Net
D

N

equivalent to a Flexible Net NFN, we pass through three steps: (i)

Transformation of the net to reach a new equivalent net
'

N where the firing of a reconfigure

transition will add only new transitions (even if the real behavior does other thing than this)

(ii) encoding
'

N into an indexed Dynamic Nets and the result is _
D

index N , and finally, (iii)

eliminate the indices and obtain the Dynamic Net D
N . The other behaviors are easier to be

encoded into Dynamic nets.

2 Adding a Place in the Flexible Net

In a FN model, a transition can add a place (and so reconfigures the net) when it is fired.

To insure this behavior, the transition must have an input place marked <ap, m0(ap), °ap, ap°,

ξ>, where :

ap: is the name of the place to be added;

m0(ap): is the initial marking of this place;

°ap: is the set of input transitions of this place;

ap°: is the set of output transitions of this place;

ξ: is a function that defines the expressions labeling input and output arcs of ap.

Figure 1 shows the FN.

Figure IV.1. Adding a place in the FN model

A transition that can add a place when it is fired, can be seen as a transition with a label

<ap, m0(ap), °ap, ap°, ξ>. So, the adding of a place can be realized through the firing of a

labeled reconfigure transition (as in our work LRN [42]). Figure IV.2 shows the labeled

model that does the same behavior. We will work on the model of Figure IV.2.

Figure IV.2. Adding a place in the labeled version

 0
 (, , , ,)rt ap m ap ap ap  

…

…

in_rt1 in_rtn

out_rt1 out_rtm

 0
, , , ,ap m ap ap ap    

…

…

in_rt1 in_rtn

out_rt1 out_rtm

rt

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 73

2.1 The encoding

In Figure IV.2, we have a transition rt, with °rt (resp. rt°) represents the set of input places

(resp. the set of output places) of rt. When rt is fired, a new place ap is added to the net. The

new place added will have some input transitions °ap and their input expressions: (°ap, ap),

some output transitions ap°, and their output expressions: (ap, °ap), and an initial marking

m0(ap). Transitions in °ap, ap° are not new transitions but they existed in the original net.

Suppose that:

 1
_ , , _

n
rt in rt in rt   is the set of input places of rt and  1

, ,
n

x x are respectively

their associated output expressions so for each i1..n, (in_rti,rt)=xi,

 1
_ , , _

m
rt out rt out rt   is the set of output places for rt and  1

, ,
m

y y are

respectively their associated input expressions so for each i1..n, (rt, out_rti)=yi.

The initial marking of the net is M0,

The set of transitions in the original net is    FN i i
T t rt   where only rt is a

reconfigure transition,

The set of places in the original net is PFN.

Let consider:

 1 k FN
int , , int T  is the set of transitions for which ap will be added as an input place

with respectively  1
, ,

k
z z as a set of expressions such that: for each i1..k, (ap, inti)=zi.

For each transition  i 1 k
int int , , int  , let °(inti) and (inti)° be respectively their input

and output places (before starting the transformations).

We denote by 0
in t

i
the transition in t

i
at the current time (before any transformation). When

rt is fired, it adds ap to 0

i
(int) . In order to make this behavior closer to a Dynamic nets

behavior, we propose to simulate this through:

Firstly disabling the 0

i
int transition, (like if this transition does not exist in the net. This

effect can be done easily like we will see)

Secondly adding a new transition inti
1
 such that:

 

1 0
 (int) (int)

i i
ap   

,

 and 1 0
 (int) (int)

i i
   . ………………………………………(formula I)

Informally, the transition 1
in t

i
 represents the transition 0

in t
i
with a new input place ap. So in

the new configuration, 0
in t

i
 will disappear, and we will have a new transition 1

in t
i
 that

simulates the transition 0
in t

i
 and which has a new input place ap.

Through this first transformation, the adding of a place in the FN model can be seen as the

adding of a transition, and this can be seen as a DN behavior. We transform the structure of

the FN (Figure 2) towards a new structure (Figure 3) that disables 0
int

i
, once rt is fired. In the

Figure IV.3, the place 0
_

i
innew (initially marked with a one black token (•)) will disable the

transition 0
int

i
, once the rt is fired. In this case, we will have  

0

0
(_) •

i
M new in  and firing rt

will add a new transition: 1
int

i
.

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 74

Figure IV.3. Transformation to deal with 0
int

i
.

Now, the first firing of rt is well treated (it disables 0
in t

i
 and it adds 1

in t
i
). But if rt will be

fired again, we will meet a new problem, because this second firing of rt will create a new
2

int
i
, where the 1

int
i
 is always enabled (perhaps); we must remember that the original

behavior consists to add places and not transitions like this. To cover this problem, we must

introduce some mechanism which will always disable the last in t
j

i
created once rt is fired for

the (j+1) times. This requires the creation of a synchronization place j

i
innew _ marked by a

black token (•), every time when rt is fired for some
th

j times. Names of these places can be

pulled from a place
i

inSYN _ of names. The place j

i
innew _ will disable j

i
int when rt is fired

next time. To insure this synchronization, we firstly add a new place psyn_ini, and then we

require that another transition tsyn _ in
j

i
(of course, these indices are used here to distinguish

between occurrences of these transitions, otherwise tsyn _ in
j

i
will appear in the internal net

and so no problem of confusion) must be added every time when a new transition j

i
int is

added. tsyn _ in
j

i
 has as input place the place j

i
innew _ (which is a new name at every firing)

and as output place _
i

psyn in (which is added only one time during the translation). Now,

adding a place ap that will be an input place for some transition 0
int

i
 (as shown in Figure

IV.2) will be considered as adding two transitions (1
int

i
, 1
tsyn _ in

i
) to the configuration in

Figure IV.4. Now, we can correct the above formula (Formula I) to:

 1 1 1 0 0

(int) { _ } (int) / { _ }
i i i i

new in ap new in    
,

 and 1 1 0 0
(int) { _ } (int) / { _ }

i i i i
new in new in    …………………………(Formula II)

Figure IV.4. Transformation to deal with 1
int

i
.

rt (inti
1)

…

new_ini

0

 …

…

inti
0

in_rt1
in_rtn

out_rt1 out_rtm

…

1 1
 (, _)

i i
rt int tsyn in

…

new_ini

0

 …

…

…

inti
0

<new_ini
1>

SYN_ini

new_ini
1

psyn_ini

tsyn_ini
0

in_rt1
in_rtn

out_rt1

out_rtm

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 75

In the above section, we have treated the input transition of the added place ap. The

treatment of the output transition will be similar.

Let consider:

1 FN
{out , , out } T

l
  is the set of transitions for which ap will be added as an output

place with respectively  1
, ,

l
w w as expressions, such that: for each i1..l, (outl, ap)=wi.

For each transition  1
, ,

i l
out out out  , let

i
out and outi° be respectively their input and

output places.

To encode this into DN, we can adopt the same method presented in the above paragraphs.

We transform the net to disable outi
0
 once rt is fired (by adding a synchronization place

0
_

i
new out (where,    

0

0
_ •

i
M new out ), then rt adds a new transition 1

out
i
, such that:

       1 0 0
out out / _

i i i
ap new out   

,

 and

     1 0 0
out out / _

i i i
new out  

. ……………………………(Formula III)

With the same manner, as in the above, we treat the possible other firings of rt. This

requires the creation of a synchronization place _
j

i
new out marked by a black token (•), every

th
j time when rt is fired. Names of these places can be pulled from a place _

i
SYN out . The

place _
j

i
new out will disable out

j

i
when rt is fired next time. To insure this synchronization,

we firstly add a new place _
i

psyn out , and then we require that another transition _ ‟
i

tsyn out

must be added every time when a new ou t
j

i
is added. _

j

i
tsyn out has as input the place

_
j

i
new out (which is a new name at every firing) and as output place _

i
psyn out which is a

constant.

It is now clear that if rt adds a place ap such that:  0

1..
int

i
i k

ap


  and  0

1..
out

i
i l

ap


  ,

this configuration is transformed into an equivalent model in which rt adds four transitions

 1 1 1 1
int , tsyn _ in , out , tsyn _ out

i i i i
.

We conclude that, each transition in t
j

i
added at the j

th
firing of rt, it will have the same

input places of the transition 1
int

j

i

 union some new {ap} union  _
j

i
new in minus

 1
_

j

i
new in

 . The output places of in t
j

i

will be the same output places of the 1

int
j

i

 transition

union  _
j

i
new in minus 1

_
j

i
new in

 .

Formally:

         1 1
int _ int / _

j j j j

i i i i
ap new in new in

 
    

.

 and

        1 1
int _ int / _

j j j j

i i i i
new in new in

 
    . ……………………….(Formula IV)

On the other side, for each transition out
j

i
 added at the j

th
firing of rt, it will have the same

input places of the 1
out

j

i

 transition union  _
j

i
new out minus  1

_
j

i
new out

 . The output

places of out
j

i
will be the same output places of the 1

out
j

i

 transition union {ap} union

{new_outi
j
} minus  1

_ .
j

i
new out



Formally,
     1 1
out out _ / _

j j j j

i i i i
new out new out

 
   

.

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 76

          1 1
out _ out / _

j j j j

i i i i
ap new out new out

 
    

. …….(Formula V)

In the following (Figure 5), we present a first encoding of a transformed FN (with one rt

that adds a place ap with k input transitions and l output transitions) into an indexed Dynamic

Nets.

   

   

   

   

i 1 .. i 1..

i 1.. i 1..

j j

FN i i

FN i i j 0

j j j

i i i

0

(P _ , _ , _ _ , _ , _ ,

T tsyn _ in tsyn _ out)

(For i 1 .. ,

int : , _ • , _ • .

_ : _ • _ • .

For i 1..

k l

k l

i i i i

j j

j

i i

SYN in new in psyn in SYN out new out psyn out

k

new in new in

tsyn in new in psyn in

l



 

 





 







 

 

   

   

   

   

j j j

i i i

j

i

i FN

i

1 1

1

j 1 j 1

1 1

,

out : , _ • , _ • .

t _ : _ • _ • .

For each t T / (),

t :

: _ (), , _ (),

_ • , , _ • ,

 _ _ , , _ _ ,

j

i i

n n

k

k k

new out new out

syn out new out psyn out

ap ap

rt in rt x in rt x

psyn int psyn int

SYN in new in SYN in new in

p

 

 

   

 













   

   

     

     

i 1.. i 1..

1

j 1 j 1

1

j j

i i 1 1 j j 1

j j 1 j 1 j j 1

i i i i

_ • , , _ • ,

_ _ , , _ _

{ (, int , tsyn _ in out , tsyn _ out)

(For i 1.. ,

int : int / _ , z , _ • int / _

k l

l

l l l

j j

i i

syn out psyn out

SYN out new out SYN out new out

ap

k

new in ap new in new in



 

 

 

  







 





 

   

   

         

   

 

j 1 j

j

i

j j 1 j 1 j j 1 j 1 j

i i i i

j

i

0

, _ • .

 tsyn _ in : _ • _ • .

For i 1.. ,

out : out / _ , _ • out / _ , w , _ • .

tsyn _ out : _ • _ • .

),

}

 _

i i

j

i i

i i i i

j

i i

new in

new in psyn in

l

new out new out new out ap new out

new out psyn out

m ap

out rt



   



 







   

   

   

   

 

1 1

j j

1

j j

1

0

1

1

1

, , _ ,

 _ • , , _ • ,

_ • , , _ • .

 } ,

,

 _ • , , _ • ,

_ (), , _ (),

 _ • ,

m m

k

l

j j

k

k

j

y out rt y

new in new in

new out new out

M

new in new in

SYN in SYN in

new out









  

 

1

, _ • ,

_ (), , _ ().

)

j

l

l

new out

SYN out SYN out



  

Figure IV.5. The indexed Dynamic Net

Now, to obtain the Dynamic net, we must eliminate these indices. We see that each

transition in t
j

i
(j1..n) will have as preset :   1

(int) , ..., () { _ (·)}
j j

i
ap b ap b new in   , and

as postset : (int) { _ (·)}
j

i
new in  . So the most problem that we must resolve is the increasing

in the set   1
, ..., ()

j
ap b ap b in each firing. These places must be saved from some firing j to

the next firing j+1 (of rt). To encode this into DN, we must consider that these places and

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 77

their associated presets or postsets are always saved in some places (names of these places are

always prefixed by p_ap). These places are input-output places for the rt transitions. These

places have a particular type: Arrays. Tokens of these places are arrays iX . Each token is an

array of couple   j
{ , }

j

i
ap z , where

j
ap will be the name of a place and zi an expression. We

add also an input-output place index_ap (with integer as its type) which will index ap

occurrences. The initial marking of index_ap is 1.

The last necessary transformation, to reach the Dynamic net, is now:

- We add index_ap(ind) to the preset of rt and index_ap(ind+1) to its postset

- We add an input-output place p_ap_ini to rt with the initial marking  1

1...
 { , }

i i k
ap z



- We add an input place p_ap_outi to rt with the initial marking   1

1..

,
i

i l

ap w


- We add to the preset of rt: p_ap_ini(Xi). The Xi is evaluated to the token stored in

p_ap_ini of the form :    1
, , , , , 1..

j

i i
ap z ap z i k   

- We add to the preset of rt: p_ap_outi(Yi). The Yi is evaluated to the token stored in

p_ap_ini of the form :    0
, , , , , 1..

j

i i
ap w ap w i l   

- We add to the postset of : _ _ (, (,)), 1..
ind

i i i
rt p ap in X ap z i k

- We add to the postset of : _ _ (, (,)), 1..
ind

i i i
rt p ap out Y ap w i l

For each transition in t
i
 (for which ap will be added as an input place, with zi as input

expression), we do the following:

- In the preset of
i

in t we add:     1..
{ / , }

j j

j j i j
ap z ap z X




For each transition
i

out

(for which ap will be added as an output place, with wi as output

expression), we do the following:

- In the preset of
i

out we put:     1..
{ / , }

j j

j j i j
ap w ap w Y




Finally, it is clear that the encoding now depends on the marking of the Net. We allow the

rt to create n_ap new places ap. To insure this, we can add a new input place max to rt

initially marked n_ap ( 0
_M max n ap). We add max(•) in the preset of rt. The created

places  
j

j
ap must be initialized now, and to insure this we add a transition in the internal net

called init_mark, such that:  init _ mark : ()
ind

ap x ap x .

The correct encoding will be as follows (Figure 6):

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 78

   

 

     

 

i 1 .. i 1..

i 1.. i 1..

FN i i

1 1

FN i i

i i

(P _ , , _ , _ _ , , _ , _

{ _ _ , , _ _ , _ _ , , _ _ }

_ , T tsyn _ in tsyn _ out)

(For i 1 .. ,

int : , _ •

k l

k l

i i i i

k l

SYN in new in psyn in SYN out new out psyn out

m ax p ap in p ap in p ap out p ap out

index ap

k

new in





 





  





 

 

 

 

   

   

   

   

   

i

i i

i i i

i i

i FN

i

1 1

1

, _ • .

tsyn _ in : _ • _ • .

For i 1.. ,

out : , _ • , _ • .

tsyn _ out : _ • _ • .

For each t T / (),

t :

: _ , , _ ,

_ • , , _ • ,

i

i

n n

k

new in

new in psyn in

l

new out new out

new out psyn out

ap ap

rt in rt x in rt x

psyn int psyn int

S





 

   

 













   

   

   

   

   

 

     
i 1.. i 1.

1 1

1

1 1

1 1

1 1

i i

_ _ , , _ _ ,

 _ • , , _ • ,

_ _ , , _ _ ,

_ _ , , _ _ ,

_ _ , , _ _ ,

m ax • , index _ ap(ind)

{ (, tsyn _ in tsyn _ out

k

k k

l

l l

k k

l l

YN in new in SYN in new in

psyn out psyn out

SYN out new out SYN out new out

p ap in X p ap in X

p ap out Y p ap out Y

ap















  

       

   

     

.

i i 1 .. _ i

i

i

i i 1 .. _

init _ m ark)

(For i 1.. ,

int : int , { / , } , _ • int , _ • .

tsyn _ in : _ • _ • .

For i 1.. , out :

out , _ • out ,{ / , } , (),

l

j j

j j i j n ap i i

i i

j j

i i i i j n ap i

k

ap z ap z X new in new in

new in psyn in

l

new out ap w ap w Y ap w n









  



  









 

   

 

 

   

   

   

   

j

i

0

1 1

1

1

1 1 1

_ • .

tsyn _ out : _ • _ • .

init _ m ark : ().

}

)}

_ , , _ ,

_ • , , _ • ,

_ • , , _ •),

_ _ , (,) , , _ _ , (,) ,

_

i

i i

ind

m m

k

l

ind ind

k k k

ew out

new out psyn out

ap x ap x

m ap

out rt y ou rt y

new in new in

new out new out

p ap in X ap z p ap in X ap z

p













   

 

     

1 1 1

0

1 1

1 1

_ , (,) , , _ _ , (,) ,

index _ ap(ind 1)

} ,

, _ ,

_ _ , , , _ _ , ,

_

ind ind

l l l

k k

ap out Y ap w p ap out Y ap w

M m ax n ap

p ap in ap x p ap in ap x

p







     

   

   

   

 

1 1

1 1

1

1 1

1 1 _ 1 _

1

1 1

1 1 _ 1

_ , , , _ _ , ,

_ • , , _ • ,

_ _ _ , , _ _ _ ,

_ • , , _ • ,

_ _ _ , , _ _ _

l l

k

k k

n ap k n ap

l

l

n ap l

ap out ap w p ap out ap w

new in new in

SYN in new in new in SYN in new in new in

new out new out

SYN out new out new out SYN out new out new





    



     

 

_
,

_ 1 ,

)

l

n ap
out

index ap

Figure IV.6. The final Dynamic net

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 79

2.2 Example of an encoding

Let consider the example of Figure IV.7. In this example, we consider that all places have

the same type T. x is a variable in T. b is a constant in T. The initial marking of the net is

M0=p3(b+b). In this FN, the firing of rt will add a new place ap with an initial markin <a>.

this place has an input transition int with an expression <x> and an output transition out with

an expression .

Figure IV.7. Example of a Flexible Net.

Applying the transformation rules presented above, we will obtain the net presented in the

Figure IV.8.

Figure IV.8. Transformation of the example.

In Figure IV.8,
1

int is the transition:          
1 1

3 1
, , _ • p , _ •p x ap x new int b new int , so

we can write it

       
1 0 0 1 0 0 1

Int : (int) / { _ }, b , _ • int / { _ }, _ •new in ap new in new in new in 
.

1
tsyn _ in is the transition:

1
_ (•) _ (•)new in psyn in .

1

out is the transition:        
1 1

3 4
, _ • (), , _ •p x new out p b ap b new out .

So we can write it :

       
1 0 0 1 0 0 1

 out : (out) / { _ }, _ • out / { _ }, , _ •new out new out new out ap b new out 
.

1
tsyn_out is the transition:

1
_ (•) _ (•)new out psyn out .

The encoding of this net is the following (Figure 9):

      , , , , { , }rt ap a int x out b     

p1

p2

int

p3

out

p4

<x>

 <x>

<x>

 1 1 1 1
 , _ , , _rt int tsyn in out tsyn out

p1(b)

p2

int0

p3

out0

p4

<x>

 <x>

<x>

new_in0

new_out0 psyn_out

tsyn_out0

psyn_in

tsyn_in0

SYN_in <new_inj>

SYN_out
<new_outj>

new_int1

 new_out1

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 80

 

 

    

1 2 3 4

j j

0

j

3 1

(, , , , _ , _ , _ , _ , , _ , _ , ,

, int , out , tsyn _ in , tsyn _ out) / / 0

{int : , _ • () ,

j j

j

j

p p p p SYN in new in psyn in SYN out new out psyn out

rt external net initially firing of rt

p x new in p b new





  

   

   

   

       

  

j

3 4

1 1

1

j j

_ • .

tsyn _ in : _ • _ • .

out : (), _ • (), _ • .

tsyn _ out : _ • _ • .

: , _ • , _ _ , _ • , _ (_)

{ , {int , out , tsyn _ in‟, tsyn _ out‟}

j

j

j j

j

j j

in

new in psyn in

p x new out p b new out

new out psyn out

rt p x psyn in SYN in new in psyn out SYN out new out

ap

 









         

   

   

1

j j 1 1 j 1 1

j j 1 1 j 1

 / /

({int : (int) / _ , , _ • (int) / _ , _ • ,

tsyn _ in‟ : _ • _ • .

 out : (out) / _ , _ • (out) / _

th

j j

j j j j

j

j j

internal net j firing of rt

new in ap x new in new in new in

new in psyn in

new out new out new ou

 

   

  

 

 





      

   

 

     

1

2

, , _ • ,

tsyn _ out‟ : _ • _ • .

},

 / /

)

}, _ • , _ • , .

j j

j

t ap b new out

new out psyn out

ap a initial m arking of internal net

new in new out p b





0 0

1

 / /

} ,

(), _ (•), _ (), _ (•), _ (). / /

)

other elem ents in the postset of rt

P b b new in SYN in new out SYN out initial m arking o f external net  

Figure IV.9. Indexed DN for the example.

We eliminate indices and we take for example n_ap=3. We will have the DN (Figure 10) :

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 81

 

      

   

1 2 3 4

3 1

({ , , , , _ , _ , _ , _ , _ , _ ,

, _ _ , _ _ , _ },

 , in t , out , tsyn _ in , tsyn _ out)

{int : , _ • (, _ • .

 tsyn _ in : _ • _ • .

 o

p p p p SYN in new in psyn in SYN out new out psyn out

m ax p ap in p ap out index ap

rt

p x new in p b new in

new in psyn in







   

   

       

   

 

3 4

1

ut : (), _ • (), _ • .

 tsyn _ out : _ • _ • .

: , _ • , _ _ , _ • , _ (_),

_ _ , _ _ , (•), index _ ap(ind)

{n , {int , out , tsyn _ in , tsy

p x new out p b new out

new out psyn out

rt p x psyn in SYN in new in psyn out SYN out new out

ap

p ap in X p ap out Y m ax







 

       

   

     

   

 

3 1..3 1

3 4 1..3

n _ out}

({int : ,{ / (,) } , _ • (), _ • .

tsyn _ in : _ • _ • .

out : (), _ • (),{ / (,) } , _ • .

tsyn _ out : _ • _ •

init _ m ark : ()

j j

j

j j

j

ind

p x ap x ap x X new in p b new in

new in psyn in

p x new out p b ap w ap w Y new out

new out psyn out

ap x ap x



















 

 / /

} ,

)

ind
to initialise the m arking of ap

ap a

     

     

2

1 1

1

 / /

} ,

, _ • , _ • , index _ ap(ind 1),

_ _ , , , _ _ , , . / /

} ,

(),

ind ind

to initial m arking of ap

p b new in new out

p ap in X ap z p ap out Y ap w also postset of rt

P b b m

 





     

 

 

 

1 1

1 2 3

1 2 3

(• • •),

_ _ , , _ _ , ,

_ (•), _ _ _ _ ,

_ (•), _ _ _ _ .

_ 1

ax

p ap in ap x p ap out ap w

new in SYN in new in new in new in

new out SYN out new out new out new out

index ap

 

 

 

 / /

)

m arking of the external net

Figure IV.10. DN for the example.

2.3 Simulation on the example

In the FN of Figure IV.7 (or Figure IV.11): The initial marking is:  0 3
s p b b   .

 Let fire int twice:

int int

0 1 3 2 1
s s () s ()p b p b b      .

Now let fire rt twice (see Figure IV.12):

 
rt 1 rt 1 2

2 3 2 4 2
s s (), () s (), , ()p b ap a p b b ap a ap a      .

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 82

Figure IV.11. The model before firing rt.

Figure IV.12. The model after firing rt twice.

In the Dynamic Net :

       

 

1 1

0 3

0 1 2 3 0

1 2 3

‟ , { (), 3 , _ _ , , _ _ , ,

_ (•), _ (_ _ _), _ (•),

_ (_ _ _), _ 1 }

s D N p b b m ax p ap in ap x p ap out ap w

new in SYN in new in new in new in new out

SYN out new out new out new out index ap

 

 

  

Firing int twice:

       1 1

0 3

0 1 2 3

0 1 2 3

‟ , { (), 3 , _ _ , , _ _ , ,

_ (•), _ (_ _ _),

_ (•), _ (_ _ _), (1)}

s D N p b b m ax p ap in ap x p ap out ap w

new in SYN in new in new in new in

new out SYN out new out new out new out index

 

 

  

       int 1 1

1 3 1

0 1 2 3

0 1 2 3

s ‟ , { (), (), 3 , _ _ , , _ _ , ,

_ (•), _ (_ _ _),

_ (•), _ (_ _ _), (1)}

D N p b p b m ax p ap in ap x p ap out ap w

new in SYN in new in new in new in

new out SYN out new out new out new out index

 

 

  

       int 1 1

2 1

0 1 2 3

0 1 2 3

s ‟ , { (), 3 , _ _ , , _ _ , ,

_ (•), _ (_ _ _),

_ (•), _ (_ _ _), (1)}

D N p b b m ax p ap in ap x p ap out ap w

new in SYN in new in new in new in

new out SYN out new out new out new out index

  

 

  

Firing rt: before firing rt, we must fire tsyn_in,

 

     

tsyn _ in , tsyn _ out

3 1

1 1

1 2 3

1 2 3

s ‟ , { (), 3 ,

_ _ , , _ _ , ,

_ (•), _ (_ _ _),

_ (•), _ (_ _ _), (1)}

D N p b b m ax

p ap in ap x p ap out ap w

psyn in SYN in new in new in new in

psyn out SYN out new out new out new out index

  

 

  

      , , , , { , }rt ap a int x out b     

p1

p2

int

p3

out

p4

<x>

 <x>

<x>

      , , , , { , }rt ap a int x out b     

p1

p2

int
p3

out

p4

<x>

 <x>

<x>

<x>

ap1

ap2

<x>

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 83

 

          

    

       

1 1 1 1 1

4

1 2

1 2

1 2 2 3

2 3 1 1

s int , tsyn_in , out , _ , init _ m ark ,

{ , , 2 , _ _ , , , ,

_ _ , , , , _ (_ _),

_ (_ _), _ • , _ • , 2 , }

rt

T
D N tsyn out

p b p b m ax p ap in ap x ap x

p ap out ap w ap w SYN in new in new in

SYN out new out new out new in new in index ap a

  



 

 

               

       

1
_ 1 1 1 1 1

4

1 2 1 2

1 2

2 3 2 3

1 1 1

s ‟ int , tsyn_in , out , tsyn_out , init _ m ark ,

{ , , 2 , _ _ , , , , _ _ , , , ,

_ (_ _), _ (_ _),

_ • , _ • , , 2 }

init m ark

T
D N

p b p b m ax p ap in ap x ap x p ap out ap w ap w

SYN in new in new in SYN out new out new out

new in new in ap a index

  

 



 

          

      

   

1 1 1 1 2 1 2 2

5

1 2 3

2

1 2 3 3

3 1

s ‟ int , tsyn_in , out , tsyn_out , int , init _ m ark , out , init _ m ark ,

{ , 1 , _ _ , , , , , ,

_ _ , , , , , , _ (•), _ (_),

_ (_), , ,

rt
D N

p b b m ax p ap in ap x ap x ap x

p ap out ap w ap w ap w psyn in SYN in new in

SYN out new out ap a ap a ne

  



     
2 2

_ • , _ • , 3 }w in new in index 

     

             

     

2
_ 1 1 2 1 2 2

6 2

1 2 3 1 2 3

3 3

1 2 2

s ‟ int , out , int , init _ m ark , out , init _ m a rk , { , 1 ,

_ _ , , , , , , _ _ , , , , , ,

_ (•), _ (_), _ (_),

, , _ • ,

init m ark
D N p b b m ax

p ap in ap x ap x ap x p ap out ap w ap w ap w

psyn in SYN in new in SYN out new out

ap a ap a new in new

   

   
2

_ • , 3 }in index 

We see in this simulation that:

In the FN model: int int

0 1 2 3 4
s s s s s

rt rt
   

In the DN model:
1 2int int tsyn _ in , tsyn _ out _ _

0 1 2 3 4 5 6 7
s ‟ s ‟ s ‟ s ‟ s ‟ s ‟ s ‟ s ‟

rt init mark rt init mark
      

The set           0 , 0 1, 1 2 , 2 3, 5 4 , 7
s s ‟ , s s ‟ , s s ‟ , s s ‟ , s s ‟ contains pairs of states that represent

equivalent markings. This set can be a subset of a bisimulation between the two models.

2.4 Correction of the encoding

Let N be a Flexible Net and ND its encoding as a Dynamic Net. Let rt be the reconfigure

transition in N, let  0
, , , ,ap m ap ap ap     be the label of rt.

1..
{int }

i i n
ap


  and

1..
{ }

i i n
ap out


  . Let rt be the transition that creates internal net in ND (and so it encodes the rt

in N), let
1.. ; 0.., _

{int }
j

i i n j n ap 
be the set of transitions that encode the set °ap, and let

1.. , 0 ,.., _
{ }

j

i i m j n ap
out

 
be the set of transitions that encode the set ap°. We will denote by SN(p)

the marking of a place pN. We will denote by  D N
S p the marking of a place

D
p N .

We consider that the encoding of N into ND can be seen as a transformation  that

associates to each name in N an image (some name) in ND. This transformation is defined as

following:

  
s

, init _ markrt rt   .
s

init _ m ark is the only firable transition in the set

 j
j 1,..,n _ ap

int _ mark


,

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 84

 For all  /p N ap ,  p p  ,

 For each ap
j
 created at the j

th
 firing of rt,  j j

ap ap  ,

 For each       t / ()N rt ap ap     ,  t t  .

 For i=1..k, for each  i i
int , int int

s

i
ap    . in t

s

i
is the only firable transition in the set

 
1.. ; 0 ,.., _

int
j

i
i n j n ap 

,

 For i=1..l, for each  
s

i i i
out , out intap    . s

i
out is the only firable transition in the set

 ji
i 1..n ; j 0 ,..,n _ ap

out
 

.

Semantics of the two formalisms

We propose two LTS (Labeled Transition Systems) SN, SND that represent the operational

semantics of the two formalisms.

(, ,)
N N N N

S St Lbl 
where:

 StN: is the set of reachable markings {sN} for N,

 LblN is a labeling function, LblN : NTNames. For each t , (t) t
T N

N Lbl  .

 N N
:

a

N
St St 

; aLblN(NT).

ND ND ND ND
S (St , Lbl ,) 

where :

 StND is the set of reachable markings {sND} for ND.

 LblND: NDTNames. For each tNDT, such that there is t‟NT and  t‟ t  , LblND(t)=t

otherwise (t)
ND

Lbl  (denoting non observable action),

: ()

a

ND ND ND N D D T
St St a Lbl N  

.

Equivalency between states:

A state sNStN is equivalent to a state sNStDN, and we write it sNsND iff :

For each pN, we have : sN(p)=sND( (p))

Proposition (Bisimilarity between a FN and its encoding as a DN):

Let N be an FN that contain a reconfigure transition that adds a place and ND its

encoding. Let (, ,)
N N N N

S St Lbl 

and
ND ND ND ND

S (St , Lbl ,) 

their two LTSs

respectively. We denote by * a sequence of labels (eventually empty), denoting a sequence

of non-observable actions.

 For each two states sN and sND, such that sNsND, we have

 tt *

N N
‟ iff ‟ such that ‟ ‟

N ND ND ND
s s s s s s


  

 For each two states sN and sND, such that sNsND, we have

 t* t

N
‟ iff ‟ such that

ND ND N N ND
s s s s s s


  

Proof:

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 85

We present the proof of the second equivalency. We will adopt an induction method to

prove the bisimilarity between the two models.

Proof 1:

Firstly, we prove the equivalence between the two initial states sN
0
 and sND

0
.

We have sN
0
sND

0
 because:

 ap is not yet created

    
0 0

()
N ND

s p s p . For all pN, because the encoding as presented doesn‟t modify

the marking of places of the FN.

    0

i i
int int , i 1..k   ;

    0

i i
out out , i 1..l   ;

Now, we prove:  T t0 * 1 0 t 1
 iff

t

ND ND N N
s s s s  such that 1 1

N N D
s s

Firing rt:

In the dynamic net:

In ND, to fire rt, the silent transitions {tsyn_ini}i=1..k{tsyn_outi}i=1..l must be fired first.

This will make    0 0

i 1.. ; i 1.. ;
out int

i i
k l 

never firable after. Now firing rt will do the following:

 For each      
1 0

N N
, ,

D D
p rt s p s p p rt    .

 For each      
1 0

N N
, ,

D D
p rt s p s p rt p    .

 A place ap marked m0(ap) is added.

 New transitions  1

i
i 1..

int
k
are added with ap

1
as an input places.

 New transitions  1

i
i 1..

out
l
are added with ap

1
 as an output places.

 New firable transition
1

init _ mark is added with the preset ap(x) and the postset

ap
1
(x.)

Firing
1

init _ m ark will make  1 1

N 0
()

D
s ap m ap

In the Flexible net:

In N, firing rt adds ap
1
.      1 1 1 1 1

N 0 N
m

D
s ap ap s ap  .

 For each          
1 0 1 1

N N N N
, , ()

D D
p rt s p s p p rt s p s p       .

 For each          
1 0 1 1

N N N N
, , ()

D D
p rt s p s p rt p s p s p       .

Also, the firability of  1

i
i 1..

int
k
in NDN depends only on the firability of  i i 1..

int
k

in N,

because the input-output places  1

i 1..
_

i
k

new in


 are marked one and never disturb the firing of

 1

i
i 1..

int
k
. Idem for  1

i
i 1..

out
k
.

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 86

Firing transitions inti
0
 or outi

0
:

In ND, firing inti
0
 will update the marking of  0

i
int and  0

i
int  in the same manner

that firing inti will update the marking of °(inti) and (inti)° in N. The marking of

 
i 1..k

_
i

new in


stills always 1. Idem for 0

i
ou t .

Conclusion: 1 1

N N D
s s

Proof 2: Now, we prove the general case: for all sN, sND.

Let consider that N is the net at the s
th

 reconfiguration. In this net, we have s places

 
j 1..s

j
ap


which were added as input places for i i 1..

int
k
, and as output places for i i 1..

out
l
.

Let consider that ND is the net at the s
th

 reconfiguration. The ND that satisfies sNsND must

insure:

 It contains  ji
i 1.. ; j 0..s

int
k 

transitions in which  ji
i 1.. ; j 0..s 1

int
k  

 will be never firable,

because s

i
i 1.. ; j 0..s

new _ in
k 

will still marked () (0 black token) forever. Only

 s

i
i 1..

int
k
are firable.    s

i ii 1.. i 1..
int int

k k


 
 .    s

j 1..s i
i 1..

 { } int
j

k
ap




  .

 It contains  ji
i 1.. ; j 0 ..s

out
k 

transitions in which  ji
i 1.. ; j 0..s 1

out
k  

will be never firable,

because s

i
i 1.. ; j 0..s

new _ out
k 

will still marked () forever. Only  s

i
i 1..

out
l
are firable.

   s

i ii 1.. i 1..
out out

l l


 
 .    s

j 1..s i
i 1..

{ } (out)
j

l
ap




  .

 For all    , ()
N ND

p N s p s p  .

We want to prove that
N N D

s s implies that:  t * t

N
‟ iff ‟

ND ND N
s s s s


  such that

N
‟ ‟

ND
s s

Firing rt:

In the dynamic net:

In ND, to fire rt, the silent transitions    i ii 1..k i 1..
tsyn _ in tsyn _ out

l 
 must be fired

first. This will make    
1.. 1..

out int
s s

i i
i k i l 

 never firable after. Now firing rt will do the

following:

 For each      
s 1 s

N N
, ,

D D
p rt s p s p p rt


    .

 For each      
s 1 s

N N
, ,

D D
p rt s p s p rt p


    .

 A place ap marked m0(ap) is added.

 New transitions  s 1

i
i 1..

int
k




are added, with ap

s+1
as an input places.

 New transitions  s 1

i
i 1..

out
l




are added, with ap

s+1
as an output places.

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 87

 New firable transition
s 1

init _ m ark


 is added with the preset ap(x) and in the postset

 
1s

ap x


Firing
s 1

init _ m ark


 will make  s 1 1

N 0
()

D
s ap m ap




In the Flexible net:

In N, firing rt adds ap
s+1

.        s 1 1 s 1 1 s 1 1

N 0 N N
m ()

s s s

D D
s ap ap s ap s ap

     
   .

 For each        
s 1 s s 1

N N N
 , , ()

D
p rt s p s p p rt s p 

 
     .

 For each          
s 1 s s 1 s 1

N N N N
, , ()

D D
p rt s p s p rt p s p s p 

  
      .

Also, the firability of  1

1..
int

s

i
i k




in NDN depends only on the fire-ability of  

1..
int

i i k
 in

N, because the input-output places  1

1..
new _ in

s

i
i k




are marked one and never disturb (while

rt is not fired) the firing of  1

1..
int .

s

i
i k




Idem for 1

1..
out

s

i
i k




.

Firing transitions inti
s
 or outi

s
:

In ND, firing in t
s

i
will update the marking of  s

i
int and  s

i
int  in the same manner that

firing in t
i
will update the marking of (in t)

i
 and (in t)

i
 in N at the s reconfiguration of the net.

The marking of  s

i 1..k
_

i
new in


stills always 1 (while  s

i
1..

tsyn _ in
i k

are not fired). Idem for
s

i
out .

Conclusion: s 1 s 1

N N D
s s

 


Until now, we have presented the encoding of one behavior (adding a place) into the

Dynamic nets, and we have proposed a proof of the equivalence between the Flexible net

model and its encoding into Dynamic nets. The rest of this chapter will present the encoding

of the other behaviors into Dynamic nets, or into Colored Petri nets (if it is possible).

3 Adding a Transition in the Flexible Net

To add a transition at, we must have in the FN some reconfigure transition that when fired

it adds this transition (Figure 13).

Figure IV.13. Adding a transition

 (, , ,)rt at at at  

…

…

in_rt1 in_rtn

out_rt1 out_rtm

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 88

3.1 The encoding

In Figure IV.13, we have a transition rt, with °rt (resp. rt°) represents the input places

(resp. the output places) of rt. When rt is fired, a new transition at is added to the net. The

new transition added will have some input places °at and their input expressions: (°at, at),

and some output transitions at°, and their output expressions: (at, °at). Places in °at, and in

at° are not new places but they existed in the original net. Suppose that:

 1
_ , , _

n
rt in rt in rt   is the set of input places of rt and  1

, ,
n

x x are respectively their

associated output expressions, for each i1..n, (in_rti,rt)=xi. Suppose that:

 1
_ , , _

m
rt out rt out rt   is the set of output places for rt and  1

, ,
m

y y are

respectively their associated input expressions; for each i1..n, (rt, out_rti)=yi. The initial

marking of the net is M0, the set of transition is    FN i i
T t rt   where only rt is a

reconfigure transition, the set of places in the original FN is PFN.

Let  1 k FN
inp , , inp P  be the places for which at will be added as an input transition

with respectively  1
, ,

k
z z as expressions such that: for each i1..k, (at, inpi)=zi. For each

place  i 1 k
inp inp , , inp  , let °(inpi) and (inpi)° be respectively their input and output

transitions (before starting the transformations).

Let  1 l FN
outp , , outp P  be the places for which at will be added as an output

transition with respectively  1
, ,

l
w w as expressions such that: for each i1..l, (outpi,

at)=wi. For each place  i 1 l
outp outp , , outp  , let °(outpi) and (outpi)° be respectively

their input and output transitions (before starting the transformations).

Dynamic Nets allow the creation of new transition during runtime. When rt is fired it

adds at to 0
(inp)

i
 , and to 0

(inp)
i

 . This effect can be encoded directly into Dynamic nets. The

following specification (Figure 14) does the necessary:

   

   

i FN i

1 1

1 1 1 1

1 1

0

(P , T)
FN FN

(

For each t T : t :

: _ , , _

{

{ : (), ..., () (), ..., ()} ,

_ , , _ ,

}

)

n n

k k l l

m m

rt in rt x in rt x

at inp z inp z outp z outp z

out rt y ou rt y

M



  











Figure IV.14. Adding a transition (The encoding)

In this specification, once rt is fired it will create the internal transition at.

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 89

4 Adding an Arc in the Flexible Net

To add an arc, we must have in the FN some reconfigure transition that when fired it adds

this arc (Figure 15).

Figure IV.15. Adding an arc

4.1 The encoding

In Figure IV.15, we have a transition rt, with °rt (resp. rt°) represents the input places

(resp. the output places) of rt. When rt is fired, a new arc a is added to the net. The new arc

added will have an input node (transition or place) °a and its input expression: (°a, a), and

one output node (place or transition) a°, and its output expression: (a, °a). °a and a° are not

new nodes but they existed in the original net. Suppose that:  1
_ , , _

n
rt in rt in rt   is the

set of input places of rt and  1
, ,

n
x x are respectively their associated output expressions so

for each i1..n, (in_rti,rt)=xi,  1
_ , , _

m
rt out rt out rt   is the set of output places for rt

and  1
, ,

m
y y are respectively their associated input expressions so for each i1..n, (rt,

out_rti)=yi. The initial marking of the net is M0, the set of transition is    FN i i
T t rt  

where only rt is a reconfigure transition, the set of places in the original FN is PFN.

Suppose that a=(p,t) is the arc to be added. To encode this behavior in Petri Nets, we

propose to decompose this behavior in two behaviors which must be executed in an atomic

sequence:

Firstly we will delete the place p from the net,

Secondly we add a new place ap such that: °ap=°p and ap°=p°{t}.

The place ap which has replaced the place p in the net has a connection (ap,t), so the arc a

is added to the net. The encoding of the removing of a place will be presented bellow, and it

must never use the present behavior in its encoding, (either else, we will have an infinite loop

when encoding a net).

We propose two reconfigure transitions (Figure 16). The first one rt1 will delete the place

p, and the second one rt2 will add the place ap.

 (, , ,)rt a a a  

…

…

in_rt1 in_rtn

out_rt1 out_rtm

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 90

Figure IV.16. Transformation to add an arc a=(p,t)

To ensure that the two behaviors will be executed in an atomic sequence, we must oblige

that no event can occurs once the sequence starts until the sequence finishes. The first

transition must block all transition in the net once it starts its execution. The second transition

will liberate all the blocked transitions. We can realize this by adding a set of places (with the

number of transitions in the net) which will be initially marked 1 black token, and that must

block all transition, once rt1 is fired. When the transition rt2 will be fired, it will allow the

firing of the blocked transitions. This is an easy synchronization mechanism that can be

applied here.

On the Figure IV.16, the behavior of rt2 can be encoded as done in section 2. The behavior

of rt1 will be presented in the next section.

5 Deleting a Place from the Flexible Net

To delete a place, we must have in the FN some reconfigure transition that when fired it

deletes this place (Figure 17).

Figure IV.17. deleting a place

5.1 The encoding

Let p be a place to be deleted when rt is fired. Let °p be the set of input transitions for p

and p° the set of output transitions for p. The important effect of deleting p is on p°. Once rt is

fired, p will be deleted and the transitions in p° will no never have the input place p, and so

they will never have a condition depending on the marking of p, to be fired. The solution is to

 ()rt p

…

…

in_rt1 in_rtn

out_rt1 out_rtm

1
 ()rt p

…

…

in_rt1 in_rtn

out_rt1
out_rtm

2
 (, (), , { },)rt ap m p p p t   

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 91

insure that the marking of p never forbid firing of p°. One can propose to replace all

transitions in p°={ti}i=1..n by the set of transitions { '

i
t }i=1..n, such that:

for each i=1..n, °('

i
t)=°ti/{p}.

So the deleting of the place p is done in two steps:

Deleting all transition p°={ti}i=1..n

Adding the set of transitions : { '

i
t }i=1..n, such that:

 for each i=1..n, ° '

i
t =°ti/{p}

 and '

i
t °=ti°

The adding of transition is presented above, and the deleting of a transition is presented in

the next section.

6 Deleting a Transition from the Flexible Net

To delete a transition, we must have in the FN some reconfigure transition that when fired,

it deletes this transition (Figure 18).

Figure IV.18. Deleting a transition

6.1 The encoding

In Figure IV.18, the transition rt deletes the transition t when it is fired. When the

transition t is deleted, this means that the marking of places °t and the marking of places t°

will no more be affected by t. This can be seen, like if t will never been fired. To forbid the

firing of t once the transition rt is fired, one can propose that the firing of rt will block t by

adding an input place inp to the transition t, such that inp is not marked. The Figure IV.18 can

be transformed to the Figure IV.19 which will give the same behavior.

Figure IV.19. Transformation for deleting a transition

 ()rt t

…

…

in_rt1 in_rtn

out_rt1 out_rtm

 (, , , , (,))rt inp t inp t bt  

…

…

in_rt1 in_rtn

out_rt1 out_rtm

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 92

In Figure IV.19, rt adds the place inp not marked as an input place to t and the expression

of the arc (inp,t) is one black token. Once added, the place inp forbids the firing of t, forever.

7 Deleting an Arc from the Flexible Net

To delete an arc, we must have in the FN some reconfigure transition that when fired it

deletes this arc (Figure 20).

Figure IV.20. Deleting an arc

7.1 The encoding

To delete an arc a=(p,t), such that p is a place and t is a transition, we can proceed either :

deleting the place p from the net, and adding a place p‟ with the same marking of p, and

where : °p‟=°p, and p‟°=p°/{t};

or by deleting the transition t from the net, and adding a transition t‟ where : °t‟=°t/{p}, and

p‟°=p°;

To delete an arc a=(t,p), we can proceed with the same manner.

8 Conclusion

When we propose an extended version for a formalism, the most important question is: is

the new formalism able to be analyzed? As expressiveness power of the formalism becomes

important, as its analyzing becomes difficult. One of the proposed techniques to analyze

extended Petri nets was to transform the extended version to a classical one. Low level Petri

nets are characterized by their ability to be analyzed, and automatic tools exist for assist the

designer to do this analysis. As example, CPN (colored Petri nets) have been proved to be

equivalent to some complex representation of Petri nets. Algorithms to unfold CPN to PN are

proposed.

In this chapter, we have presented our contribution in the level of analyzing of the

proposed extended Petri nets. In this chapter, we have proposed an encoding (translation)

from the extended Petri nets (Flexible nets) defined in chapter three to another extended Petri

nets (Dynamic nets) proposed in the literature. The choice of Dynamic nets is due to the

expressive power of this last one, which makes it the more high level nets that can encode

Flexible nets. The choice of Dynamic nets is due also to the possibility of the transformation

of these last ones into Colored Petri Nets.

However, even the expressiveness of Dynamic nets as formalism for dynamic systems; we

were obliged to apply many transformations on the Flexible nets models before their encoding

 ()rt a

…

…

in_rt1 in_rtn

out_rt1 out_rtm

 Chapter VI: Encoding of Flexible Nets into Dynamic Nets

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 93

into Dynamic nets. In this encoding, we have consider the complex behavior offered in

Flexible nets (Adding nodes, deleting nodes), and we have proved that each one of this

behavior can be encoded into Dynamic nets, and so into Petri nets. This proves that the

Flexible nets save the semantics of Petri nets, and so it is a formal tool that can be analyzed

with the same techniques proposed to Petri nets. This result gives to the formalism another

advantage, other than making the design and the specification of reconfigurable systems

easier and softer.

Conclusion

 Conclusion

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 95

Conclusion

Reconfigurable systems are systems with a dynamic structure. Their structure changes as

they are executed. This class of systems can be found in many domains of our life. Mobile

robots used to explore hostile environment, mobile agents used in the internet or in distributed

systems, mobile nodes in a mobile wireless networks ... All this systems can be considered as

reconfigurable systems. The use of this system is in expansion for many reasons: their

efficiency, their abstractions for the designer, their flexibility ...These characteristics make

these systems in the kernel of many critical systems: aeronautics, military, medicine,

commerce... The design of these systems becomes a critical activity. Their reliability and their

correction are crucial. To insure the correction of these systems, formal methods seem to be

an adequate solution. Using formal methods, the designer specifies the system in a formal

language. A formal language has a well defined syntax, and formal semantics which allows

the verification of properties of the designed system. We found in the literature, many formal

methods.

Classical formal methods (proposed for classical systems) are well defined and are mature.

However, these classical formal methods have not the expressiveness to specify

reconfigurable systems. The use of the classical methods makes the designer‟s task a hard

task. Extended versions are proposed to deal with the idea of reconfigurable systems. In the

literature, we can find two principal classes: Processes algebra based methods, and state-

transition based methods. Processes algebra methods are based on the CSS (Calculus of

Communicating Systems) [1] calculus. Extensions for CSS are focused on mobility. The

most important extensions that we can find are: -calculus [2, 3], in which we can specify

processes that communicate using channels which can be sent from one process to another,

HO--calculus [52] is a more reach extension, where processes (here called agents) are

mobile. In HO--calculus, agents can be sent via channels. The Join calculus [5] is another

extension of processes algebra calculi. The characteristic of the Join calculus is that it defines

the concept of location. Locations (locality) are important to specify mobility. The

introduction of locations in the join calculus makes the calculus more expressive and realistic.

The second class of methods can be found in extensions of Petri nets model. Petri nets are

an elegant model for concurrency. With its graphical representation and its formal

background, it was used to specify and verify concurrent multi-processes systems. The

classical model has not the power of expressiveness to deal with current aspects such as

mobility. To take benefits from the power of the model in mobility domains, several works

have been proposed. These works try to extend Petri nets with the same ability to specify

mobility (and more generally: reconfigurability). We can distinguish between extensions that

model mobility in an implicit way (no modification in the structure of the net), or in an

explicit way (the net reconfiguration models components mobility).

1 Comparison with Similar works

Research on the use of Petri nets to model systems with dynamic structure has provided

some remarkable results. The most important propositions are dedicated to mobile systems

and mobile agents. In PrN (Predicate/Transition nets) [25], mobile agents are modeled

 Conclusion

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 96

through tokens. These agents are transferred by transition firing from an environment to

another. In this work, the structure of the net does not change. The agents are represented as

token, so this abstraction does not allow representing some complex behavior of this kind of

agents. In [24], authors proposed MSPN (Mobile synchronous Petri net) as formalism to

model mobile systems and security aspects. They have introduced the notions of nets (an

entity) and disjoint locations to explicit mobility. A system is composed of set of localities

that can contain nets. To explicit mobility, specific transitions are introduced. Two kinds of

specific transitions were proposed: new and go. Firing a go transition moves the net from its

locality towards another locality. The destination locality is given through a token in an input

place of the go transition. In this work, mobility is not also explicit. Mobility is implicitly

modeled by the activation of some nets and the deactivation of other nets, using tokens.

Migration of an agent is modeled by the deactivation of the net modeling this agent in a

locality and the activation of the net that represents this same agent in the destination locality.

So, this is a kind of simulation of mobility. In nested nets [22], tokens can be Petri nets

themselves. This model allows some transition when they are fired to create new nets in the

output places. Nested nets are hierarchic nets where we have different levels of details. Places

can contain nets, and these nets can contain also nets as tokens in their places et cetera. So all

nets created when a transition is fired are contained in places. So the created nets are not in

the same level with the first net. This formalism is proposed to adaptive workflow systems.

In “reconfigurable net” [19], the structure of the net is not explicitly changed. No places or

transitions are added in runtime. The key difference with colored Petri nets is that firing

transition can change names of output places. Names of places can figure as weight of output

arcs. This formalism is proposed to model nets with fixed components but where connectivity

can be changed over time. In [26], PEPA nets are proposed, where mobile code is modeled by

expressions of the stochastic process algebra PEPA which play the role of tokens in

(stochastic) Petri nets. The Petri net of a PEPA net models the architecture of the net, which is

a static one. Mobile Petri nets (MPN) [20] extend colored Petri nets to model mobility. MPN

is inspired from join-calculus [5]. The output places of transition are dynamic. The input

expression of a transition defines the set of its output places.

In all these formalisms, the structure of the net is not changed and mobility is modeled

implicitly through the net‟s dynamic. In this model, an important work is required from the

modeler to model mobility implicitly. MPN are extended to Dynamic Petri Net (DPN) [20].

Mobility in DPN is modeled explicitly, by adding subnets when transitions are fired.

However, the Dynamic Petri nets formalism implies some constraints:

No transition without input places,

Added nets, to the original net, must not modify the input of an existing transition in the

original net,

We can‟t add a connection between two disconnected existing nodes,

and we cannot delete nodes (place, transition or connection).

Through this thesis, we have proposed some extensions to Petri nets that can be used to

model mobility (and in general reconfigurable systems). The most important one was the

Flexible nets. Flexible Nets is more flexible and more expressive and doesn‟t imply

constraints on the dynamic of the structure. We consider that Flexible Nets can be used by

reconfigurable systems developers with more flexibility than other formalisms. This is due to

 Conclusion

Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 97

the feature that it models mobility explicitly through mobility of nodes in the Flexible Net.

Developers can encode mobile aspects of their system directly and explicitly in the FN

formalism.

The power of Petri nets resides in its verification methods. When extending Petri nets, we

reach some formalism with a high expressivity, but the analysis becomes more complex or

even impossible. Developers of new formalisms must propose analysis techniques. Mostly,

they are proposing some translation (or encoding) of their formalisms into some well-known

formalism or approach in modeling domain. Such translation allows the analysis of the new

formalism‟s models using techniques of well-known formalisms. The most famous encoding

can be found in the unfolding of Petri nets into automaton to apply model-checking, and then

the unfolding of CPN [31] (Colored Petri Nets) into PN [27] (Petri Nets) to analyze some

properties that are not analyzed on the CPN directly. We can find other works, in literature. In

[33], author authors studied equivalence between the join calculus [5] and different kinds of

high level nets. They proved the equivalence between Reconfigurable nets (RN) (an extension

version of PN) and the join calculus. This equivalence allows to interpret RN into join

calculus and to verify those using join-calculus tools. In [34], Petri nets nets are translated into

linear logic programming. This translation can be used to analyze Petri nets using prolog

model-checker. Author of [36] encoded Synchronous mobile nets (SMN) [24] into rewriting

logic [39]. This encoding allows the use of Maude [37] to verify SMN‟s specifications.

In this Thesis, we have proposed some methods to analyze models designed into our

proposed formalisms. We have presented firstly an automatic verification method that can be

used to analyze models. We have realized a tool that can depict the reachability tree of a

flexible net, and then some properties can be verified through this reachability tree. A most

important work was in the encoding (or unfolding) of flexible nets into Petri nets. In this

thesis, we have proposed an encoding of Flexible nets behaviors into Dynamic nets [20]. This

encoding was proved to be correct. The advantage of such encoding resides on the possibility

to encode Dyanmic nets into CPN (colored Petri Nets). So, Flexible nets can be translated into

CPN. Once translated into CPN, Flexible nets can be analyzed using CPN verification tools.

2 Perspectives

As perspectives of the current work, we consider that some important work can be done

through two axes. We propose three axes as open domains:

The experimentation of Flexible nets in the modeling of mobile systems: Mobile agents

systems, mobile networks, …This modeling work can proof the power of our formalism and

shows its shortcomings and so allow us to introduce necessary adaptations;

The work on automatic verification: The realized tool presented in chapter three is not yet

completed. The encoding presented in chapter four is formal and proved to be correct; so it is

possible to think for an automatic encoding. A third way is to think to encode Flexible nets

into rewriting logic. We have proposed an idea [46] to encode an extended Petri nets into a

specific Maude (that we have called R-Maude: reconfigurable Maude). We have presented a

specification of the R-Maude, but we have not done a complete realization of R-Maude (Only

a simulator through a network was realized).

References
.

 References

 Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 99

References

Process algebra references:

1. R. Milner. “A Calculus of Communicating Systems”. Number 92 in Lecture Notes in
Computer Science. Springer Verlag, 1980.

2. R. Milner, J. Parrow, and D. Walker. “A calculus of mobile processes”. Information and
Computation, 100:1–77, 1992.

3. D. Sangiorgi and D. Walker. “The -Calculus: A Theory of Mobile Processes”. Cambridge
University Press, 2001.

4. L. Cardelli and A. D. Gordon. “Mobile Ambient ”, In Proceedings FoSSaCS‟98, LNCS
1378, pages 140-155. Springer, 1998. Accepted for publication in Theoretical Computer
Science.

5. Cédric Fournet and Georges Gonthier. “The Join Calculus: a Language for Distributed
Mobile Programming”. In Applied Semantics. International Summer School, APPSEM
2000, Caminha, Portugal, September 2000, LNCS 2395, pages 268-332, Springer-Verlag.
August 2002.

6. Marta Kwiatkowska, Gethin Norman, David Parker, Maria Grazia Vigliotti, “Probabilistic
Mobile Ambients”, Theoretical Computer Science 410, pages : 1272-1303. Elsevier.

7. Abadi, M. and A.D. Gordon. “A calculus for cryptographic protocols: the spi-calculus”.
Proc. of the Fourth ACM Conference on Computer and Communications Security, pages:
36-47, 1997.

8. J. Hillston. “A Compositional Approach to Performance Modelling”. Cambridge.
University Press, 1996.

9. Baeten, J.C.M. “Over 30 years of process algebra: Past, present and future”. In L. Aceto,
Z. Ésik, W.J. Fokkink, and A. Ingólfsdóttir, editors, Process Algebra: Open Problems and
Future Directions, volume NS-03-3 of BRICS Notes Series, pages 7–12, 2003.

10. M. Abadi , C. Fournet , G. Gonthier, (1998) “Secure Implementation of Channel

Abstractions”, Proceedings of the 13th Annual IEEE Symposium on Logic in Computer

Science, p.105, June 21-24, 1998.

11. R. Milner. “Polyadic -Calculus : A Tutorial”. in F. L. Hamer, W. Brauer and H.
Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag, 1993.

12. The UPAAL can be find in the web site: http://www.uppaal.com/

13. Fournet, C., G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy, “A calculus of mobile agents”.
Proc. 7th International Conference on Concurrency Theory (CONCUR'96), 406-421. 1996.

14. C. Fournet and G. Gonthier. “The reflexive chemical abstract machine and the join-
calculus”. In 23rd ACM Symposium on Principles of Programming Languages (POPL‟96),
1996.

15. Robin Milner, Mads Tofte, Robert Harper, “The Definition of Standard ML”, MIT Press
1990; (Revised edition adds author David MacQueen), MIT Press 1997.

16. http://jocaml.inria.fr/doc/index.html

17. Martin Odersky, “Functional Nets”, Proc. European Symposium on Programming, Berlin,
Germany, March 2000, pp. 1-25. Springer Lecture Notes in Computer Science 1782.
Copyright © Springer Verlag.

18. G. Berry, and G. Boudol. “The Chemical Abstract Machine”. Theoritical Computer
Science, 96, 217-248, 1992.

http://dl.acm.org/citation.cfm?id=788926&CFID=47780519&CFTOKEN=70972551
http://dl.acm.org/citation.cfm?id=788926&CFID=47780519&CFTOKEN=70972551
http://dl.acm.org/citation.cfm?id=788926&CFID=47780519&CFTOKEN=70972551
http://www.uppaal.com/
http://en.wikipedia.org/wiki/Mads_Tofte
http://jocaml.inria.fr/doc/index.html
http://www.springer.de/comp/lncs/index.html

 References

 Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 100

Petri nets references:

19. Badouel, E., and Javier, O. “Reconfigurable Nets, a Class of High Level Petri Nets
Supporting Dynamic Changes within Workflow Systems”. Rapports de recherche - INRIA
 ISSN 0249-6399. 1998.

20. Andrea Asperti and Nadia Busi. “Mobile Petri Nets”. Technical Report UBLCS-96-10,
Department of Computer Science University of Bologna, May 1996. In the Mathematical
Structures in Computer Science journal 19 (6): 1265-1278 (2009).

21. Valk, R. “Petri Nets as Token Objects: An Introduction to Elementary Object Nets”. In
Applications and Theory of Petri Nets 1998, LNCS vol.1420, pp.1-25, Springer-Verlag,
1998.

22. Lomazova, I.A. “Nested Petri Nets; Multi-level and Recursive Systems”. Fundamenta
Informaticae, vol.47, issue 3, pp. 283-293. IOS Press.

23. Bednarczyk, M.A., Bernardinello, L., Pawlowski, W., and Pomello, L. “Modelling Mobility
with Petri Hypernets”. In the 17th Int. Conf. on Recent Trends in Algebraic Development
Techniques, WADT‟04. LNCS vol. 3423, Springer-Verlag, 2004.

24. Rosa-Velardo, F. Marroqn Alonso, O. and Frutos Escrig, D. “Mobile Synchronizing Petri
Nets: a choreographic approach for coordination in Ubiquitous Systems”. In 1st Int.
Workshop on Methods and Tools for Coordinating Concurrent, Distributed and Mobile
Systems, MTCoord‟05. ENTCS, No 150.

25. Dianxiang Xu and Yi Deng. “Modeling Mobile Agent Systems with High Level Petri Nets”.
In IEEE International Conference on Systems, Man, and Cybernetics, 2000. Volume:
5, page(s): 3177-3182.

26. Gilmore, S., Hillston, J., Kloul, L., and Ribaudo, M. “PEPA nets: a structured performance
modelling formalism”. In Performance Evaluation. Volume 54, Issue 2, October 2003,
Pages 79-104. Elsevier.

27. Petri, C.A. “KommuniKation mit Automaten“, Schriften des IIM Nr.2, Institut fȕr
Instrumentelle Mathematik, Bonn (1962). English translation: Technical Report RADC-
TR-65-377, Griffiths Air Force Base, New York, vol. 1, suppl. 1 (1966).

28. Valk, R. “Self Modifying Nets, A Natural Extension of Petri Nets”. Proceeding of
ICALP‟78, Lecture Notes in Computer Science, vol. 62, pages 464-476. (1978).

29. Köhler, M. Moldt, D. and Rölke, H. “Modelling mobility and mobile agents using nets
within nets”. In W. van der Aalst and E. Best, editors, Applications and Theory of Petri
Nets 2003, Proceedings, volume 2679 of LNCS, pages 121–139. Springer-Verlag, 2003.

30. Valk, R. “Object Petri nets: Using the nets-within-nets paradigm”. Jörg Desel, Wolfgang

Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets: Lectures on Concurrency

and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 819-848.

Springer-Verlag, Berlin, Heidelberg, New York, 2004.

31. Jensen, K. “An Introduction to the Theoretical Aspects of Coloured Petri Nets”. In J.W. de
Bakker, W.-P. de Roever, G. Rozenberg (eds.), A Decade of Concurrency, Lecture Notes
in Computer Science vol. 803, pp. 230-272. Springer-Verlag, Berlin/Heidelberg, 1994.

32. ZENIE (1985), “Coloured stochastic Petri nets”, in: Proceedings of the International
Workshop on Timed Petri Nets, Torino, IEEE Computer Society Press (262±271).

33. http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html. Many tools can be
downloaded from this web site.

34. M. Buscemi and V. Sassone. “High-Level Petri Nets as Type Theories in the Join
Calculus”. In Proc. of Foundations of Software Science and Computation Structure
(FoSSaCS '01), LNCS 2030, Springer-Verlag.

http://indexation.inria.fr/search/public?_q=corporate%2Ftree%3ATop%2FAttributes%2FAuthors%2F%22Badouel%2CEric%22&_vn=RRRT&xslt=liste
http://indexation.inria.fr/search/public?_q=corporate%2Ftree%3ATop%2FAttributes%2FAuthors%2F%22Oliver%2CJavier%22&_vn=RRRT&xslt=liste
http://www.informatik.uni-trier.de/~ley/db/journals/mscs/mscs19.html#AspertiB09
http://www.informatik.uni-trier.de/~ley/db/journals/mscs/mscs19.html#AspertiB09
http://www.informatik.uni-trier.de/~ley/db/journals/mscs/mscs19.html#AspertiB09
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

 References

 Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 101

35. Cervesato, I.: “Petri Nets and Linear Logic: a case study for logic programming”. In the
Joint Conference on Declarative Programming, pp. 313–318, Italy, 11–14 September 1995.

36. Rosa-Velardo, F.: “Coding Mobile Synchronizing Petri Nets into Rewriting Logic”. In
Electronic Notes in Theoretical Computer science. Vol 174 , Issue 1, Pages 83-98.
Elsevier, 2007.

Rewriting logics references:

37. Clavel, M. Durn, F. Eker, S. Lincoln, P. Mart-Oliet, N. Meseguer, J. and Quesada, J.
“Maude: specification and programming in rewriting logic”. SRI International, Januray
1999, http://maude.csl.sri.com.

38. Durán, F. Eker, S. Lincoln, P. and Meseguer, J. “Principles of mobile maude”. In D.Kotz
and F.Mattern, editors, Agent systems, mobile agents and applications, second
international symposium on agent systems and applications and fourth international
symposium on mobile agents, ASA/MA 2000 LNCS 1882, Springer Verlag. Sept 2000.

39. Meseguer, J. “Conditional rewriting logic as a unified model of concurrency”. Theoretical
Computer Science, 96 (1):73-155, 1992.

40. Yasuyuki Tahara, Akihiko Ohsuga, Shinichi Honiden, “Pigeon: a Specification Language
for Mobile Agent Applications”, AAMAS'04, July 19-23, 2004, New York, USA.

41. Manuel Clavel, José Meseguer, Menlo Park, “Reflection in conditional rewriting logic“.
Journal of Theoretical Computer Science - Rewriting logic and its applications archive
Volume 285 Issue 2, 28 August 2002. Elsevier Science Publishers Ltd. Essex, UK.

Our own References:

42. Kahloul, L. and Chaoui, A. „Labeled Reconfigurable Nets for Modeling Code Mobility‟. In
the International Arab Conference on Information Technology (ACIT'2007), November
26-28, Syria. 2007.

43. Kahloul, L. and Chaoui, A. „Temporal Labeled Reconfigurable Nets for Code Mobility
Modeling‟. Accepted for the International Workshop on Trustworthy Ubiquitous
Computing (TwUC 2007) associated to the iiWAS2007 conference, Jakarta Indonesia on
3-5 December 2007.

44. Kahloul, L. and Chaoui, A. „Code mobility modeling: a temporal labelled reconfigurable
nets‟. In the Proceedings of the 1st International Conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications, MOBILWARE 2008, Innsbruck,
Austria, February 13 - 15, 2008. ACM International Conference Proceeding Series 278
2008, ISBN 978-1-59593-984-5.

45. Kahloul, L. and Chaoui, A. „Coloured Reconfigurable Nets for Code Mobility Modeling‟.
In the International Journal of Computers, Communications & Control, ISSN 1841-9836,
E-ISSN 1841-9844. Vol. III (2008), Suppl. issue: Proceedings of ICCCC 2008. pp 358-
363.

46. Kahloul, L. and Chaoui, A. „LRN/R-maude based approach for modeling and simulation of
mobile code systems‟. In Ubiquitous Computing and Communication Journal (UbiCC
journal), Volume 3 Number 6, Volume 3 No. 6, 12/20/2008.
http://www.ubicc.org/search_advanced.aspx.

47. Kahloul, L., Chaoui, A. and Djouani, K. „Modeling and Analysis of Reconfigurable
Systems Using Flexible Nets‟. In the Second International Conference on Networked
Digital Technologies, NDT 2010, Prague, Czech Republic, July 7-9, 2010. Proceedings,
Part II. Volume 87. Published in the “Communications in Computer and Information
Science” (CCIS) Series of Springer LNCS. Springer Berlin Heidelberg.

http://maude.csl.sri.com/
http://dl.acm.org/author_page.cfm?id=81371593342&coll=DL&dl=ACM&trk=0&cfid=60805278&cftoken=21848684
http://dl.acm.org/citation.cfm?id=J761&picked=prox&cfid=60805278&cftoken=21848684
http://www.ubicc.org/search_advanced.aspx
http://www.springer.com/series/7899
http://www.springer.com/series/7899
http://www.springer.com/series/7899

 References

 Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 102

48. Kahloul, L, Chaoui, A and Djouani, K. “Code Mobility Modelling: A Formal Study”. In

International Review on Computer and Software, may 2009.

http://www.praiseworthyprize.com/IRECOS.htm.

49. Kahloul Laid, Chaoui Allaoua and Djouani Karim, “Modeling Reconfirgurable Systems
Using Flexible Petri Nets”, In 4th IEEE International Symposium on Theoretical Aspects
of Software Engineering, August 24 - 27, 2010, Taipei, Taiwan.

Mobile computing references:

50. Agrawal, D. P. and Zeng, Q.A. „Introduction to Wireless and Mobile Systems‟, CL-
Engineering Edition, August 2, 2002.

51. Fuggetta, A., Picco, G.P., and Vigna, G. „Understanding Code Mobility‟. IEEE
transactions on software engineering, vol. 24, no. 5, may 1998.

52. K.Arnold and J. Gosling. “The java specification language”. Sun Micro System, 1996.

53. Andrea Barbu, “Developing mobile agents through a formal”, Thesis prepared in french-
german co-tutelle, Verteidigt am 12 September 2005 vor der Pr ufungskommission.

54. Carzaniga, G.P. Picco, and G. Vigna, “Designing Distributed Applications with Mobile
Code Paradigms”, Proc. 19th Conf. Software Eng. (ICSE‟97), R. Taylor, ed., pp. 22–32,
ACM Press, 1997.

55. Fred Douglis. « Process migration in the Sprite operating system ». Technical Report
UCB/CSD 87/343, Computer Science Division, University of California, Berkeley,
February 1987.

56. George H.Forman, John Zahorjan, “The Challenges of Mobile Computing”. UW CSE Tech
Report #93-11-03 from ftp.cs.washington.edu. An edited version accepted in IEEE
Computer.

57. Franklin, M. and S. Zdonik, “Data In Your Face: Push Technology in Perspective”, ACM
SIGMOD International Conference on Management of Data, pp. 516-519. 1998

58. George H.Forman and John Zahorjan, “The Challenges of Mobile Computing”. This paper
appears in: Computer. Issue Date: Apr 1994. Volume: 27. Issue: 4. On page(s): 38 - 47.
IEEE computer society.

59. C. Ghezzi and G. Vigna, “Mobile Code Paradigms and Technologies: A Case Study”,
Rothermel and Popescu-Zeletin [72], pp. 39–49.

60. Robert Gray, David Kotz, Saurab Nog, Daniela Rus, George Cybenko, “Mobile agents for
mobile computing”, Technical Report PCS-TR96-285, 1996,
ftp://ftp.cs.dartmouth.edu/TR/TR96-285.pdf

61. Carl Hewitt. “The Apiary network architecture for Knowledgeable systems”. In Conference
Record of the 1980 Lisp Conference, page 107-118, Palo Alto, California, August 1980.
Stanford University.

62. Li Jingyue , “Code Mobility Overview ”, (Essay for DIF 8914). Department of computer
and information science, Norwegian University of Science and Technology, 2004.

63. Dag johansen, “Mobile Agents: Right Concept, Wrong Approach”, Proceedings of the
2004 IEEE International Conference on Mobile Data Management (MDM‟04)

64. E. Jul, H. Levy, N. Hutchinson, and A. Black, “Fine-Grained Mobility in the Emerald
System,” ACM Trans. Computer Systems, vol. 6, no. 2, pp. 109–133, Feb. 1988.

65. David Kotz and Robert S. Gray, “Mobile Agents and the Future of the Internet”.
Department of Computer Science/ Thayer School of Engineering Dartmouth College. In
ACM Operating Systems Review, August 1999, pp. 7-13.

http://www.praiseworthyprize.com/IRECOS.htm
ftp://ftp.cs.washington.edu/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6813
ftp://ftp.cs.dartmouth.edu/TR/TR96-285.pdf

 References

 Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 103

66. Danny B. Lange. “Mobile Objects and Mobile Agents: The Future of Distributed
Computing”. E. Jul (Ed.): ECOOP‟98, LNCS 1445, pp.1 -12, 1998. Springer-Verlag
Berlin Heidelberg 1998. This paper is based on a chapter of a book by Lange and Oshima
entitled Programming and Deploying Java™ Mobile Agents with Aglets™, Addison-
Wesley, 1998. (ISBN: 0-201-32582-9).

67. Danny B. Lange and Yariv Aridor. “Agent Transfer Protocol – ATP/0.1”. IBM
Corporation, 19 mars 1997.

68. Danny B. Lange and Mitsuru Oshima. “Programming Mobile Agent in Java, With the Java
Aglet API”. IBM Research, 1997. (Alpha5) Draft. IBM Corporation, 10 septembre 1997.

69. R. Lea, C. Jacquemont, and E. Pillevesse, “COOL: System Support for Distributed Object-
Oriented Programming”, Comm. ACM, vol. 36, no. 9, pp. 37–46, Nov. 1993.

70. X. Leroy. Objective Caml. http://pauillac.inria.fr/caml/, 1997

71. Edward D.Lazowska, Henry M.levy, Guy T. Almes, Michael J.Fisher, Robert J.Flower,
and Stepher C.Vestal. “The architecture of Eden Syetm”, In Proceeding of the 8th
Symposium on Operating Systems Principles, pages 148-159, December 1981.

72. D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka, D.
Lange, K. Ono, M. Os-hima, C. Tham, S. Virdhagriswaran, and J. White. “MASIF: The
OMG Mobile Agent System Interoperability Facility”. In Proceedings of the Second
International Workshop on Mobile Agents, volume 1477 of Lecture Notes in Computer
Science, pages 50-67, Stuttgart, Germany, September 1998. Springer-Verlag.

73. Nils P.Sudmann & Dag Johansen, « software deployment using mobile agents », In
Proceeding CD '02 Proceedings of the IFIP/ACM Working Conference on Component
Deployment Springer-Verlag London, UK 2002.

74. Saurab Nog, Sumit Chawla, and David Kotz.”An RPC mechanism for transportable
agent”. Technical Report PCS-TR96-280, Dept. of Computer Science, Dartmouth College,
March 1996.

75. Michael L.Powell and Barion P.Miller. « Process migration in DEMOS/MP ». In
Proceeding of the Ninth ACM Symposium on Operating Systems Principles, pages 110-
119, ACM/SIGOPS, October 1983.

76. Richard F.Rashid and George G.Roberison. « Accent: A communication oriented network
operating system kernel ». In Proceeding of th 8 Symposium on Operating System
Principles, pages 64-75, December 1981.

77. M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C.
Kaiser, P. Leonard, S. Langlois, and W. Neuhauser, “Chorus Distributed Operating
Systems”, Computing Systems, vol. 1, pp. 305–379, Oct. 1988.

78. Marvin M.Theimer, Keith A.Lantz and David R.Cheriton. « Preemptable remote execution
facilities for V-system ». In proceedings of the 10th ACM Symposium on Operating
Systems Principles, pages 2-12.ACM/SIGOPS, December 1985.

79. G. Thiel, “Locus Operating System, A Transparent System”, Elsevier Computer Comm.,
vol. 14, no. 6, pp. 336–346, 1991.

80. Tommy Thorn, “Programming languages for mobile code”, in the ACM Computing
Surveys, 29(3): 213-239, Sept., 1997.

81. Bent Thomsen, Lone Leth, Frederick Knabe, and Pierre-Yves Chevalier. (1995) “Mobile
Agents”. ECRC external report, European Computer-Industry Research Center, 1995.

82. G. Vigna. (2004) “Mobile agents: Ten reasons for failure”. In Proceedings of MDM
Berkeley, CA, pages 298–299, January 2004.

83. J.E.White, (1994) “Telescript technology: the foundation for the electronic market-place”,
General magic Inc, Mountain View, CA, 1994.

http://pauillac.inria.fr/caml/

 References

 Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 104

84. J.E.White. (1994) “Mobile Agent Make a Network an Open Platform for Third-Party
Devlopers”. In Computer, 27(11): 89-90, November 1994. IEEE computer society.

85. Robert S. Gray. “Agent Tcl: A flexible an secure mobile agent system”; Thesis, Darmouth
College, New Hamshir, USA, 30 juin 1997.

86. J.K. Boggs, “IBM Remote Job Entry Facility: Generalize Subsystem Remote Job Entry
Facility,” IBM Technical Disclosure Bulletin 752, IBM, Aug. 1973.

87. B. Gray. “Soldiers, agents and wireless networks: A report on the actcomm scenarios and
testbed”. In Proceedings of the 2000 Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, 2000.

88. R. Pascotto. “AMASE: A Complete Agent Platform for the Wireless Mobile Communication
Environment”. T-Nova Deutsche Telekom Innovationsgesellschaft mbH
Berkom,http://www.cordis.lu/infowin/acts/analysys/products/thematic/agents/ch3/amase.ht
m, 1998.

89. D. E. Brake, G. Emami, and GLOBAL INFOTEK VIENNA VA. “Control of agent based

systems (coabs) grid”. Technical Report A522524, Storming Media,

http://www.stormingmedia.us/52/5225/A522524.html, June 2004.

90. H. Christensen. “Cognitive (vision) systems”. In ERCIM News, Special: Cognitive

Systems, 2003.

91. Shafi, U. Farooq, S. L. Kiani, M. Riaz, A. Shehzad, A. Ali, I. Legrand, and H. B. Newman.

“Diamonds - distributed agents for mobile & dynamic services”. CoRR, cs.DC/0305062,

2003.

92. M. Dam. “Digital design and life-cycle management for distributed information supply

services in innovation exploitation and technology transfer”. Technical Report IST-1999-

10092, Hellenic TeleCommunications and Telematics Applications Company, 2001.

93. W. Thielmann and K. Rothermel. “Hawk: Harvesting the widely distributed knowledge”.

The web site of this project is: http://www.ipvs.uni-

stuttgart.de/abteilungen/vs/forschung/projekte/HArvesting_the_Widely_Distributed_Know

ledge/en.

94. B. Bauer, D. Bonnefoy, F. Bergenti, and R. Evans. “The lightweight extensible agent

platform”. In Proceedings of the Autonomous Agent Conference, February 2001.

95. O. Gutknecht and J. Ferber. “Madkit: a generic multi-agent platform”. In Agents, pages

78–79, 2000.

96. T. Mota, S. Gouveris, G. Pavlou, A. Michalas, and J. Psoroulas. “Quality of service

management in ip networks using mobile agent technology”. In Proceedings of the

IEEE/ACM International Workshop on Mobile Agents for Telecommunication

Applications (MATA‟2002), October 2002.

97. M. Weiss, C. Busch, and W. Schrter. “Multimedia Arbeitsplatz der Zukunft - Assistenz und

Delegation mit mobilen Softwareagenten”. Talheimer Verlag, 2003.

98. V. Vasudevan and S. Landis. “Malleable services”. In Proceedings of the 34th Hawaii

international Conference on System Sciences, October 2001. SysteMATech.

http://www.systematech.org/index.php?Project.

99. SysteMATech. http://www.systematech.org/index.php?Project.

100. L. M. Camarihna-Matos and H. Afsarmanesh. “telecare: Collaborative virtual elderly

support communities”. In Proceedings of the 1st Workshop on Tele-Care and Collaborative

Virtual Communities in Elderly Care, TELECARE, ISBN: 972-8865-10-4. ICEIS 2004,

2004.

http://www.ipvs.uni-stuttgart.de/abteilungen/vs/forschung/projekte/HArvesting_the_Widely_Distributed_Knowledge/en
http://www.ipvs.uni-stuttgart.de/abteilungen/vs/forschung/projekte/HArvesting_the_Widely_Distributed_Knowledge/en
http://www.ipvs.uni-stuttgart.de/abteilungen/vs/forschung/projekte/HArvesting_the_Widely_Distributed_Knowledge/en
http://www.systematech.org/index.php?Project

 References

 Extending Petri Nets for Modeling and Analysis of Reconfigurable Systems 105

101. “PostScript language reference”, third edition,. Addison-Wesley Publishing
Company. First printing February 1999. Can be downloaded from:
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf.

102. http://www.graphviz.org/Download.php. The graphViz tool can be downloaded freely
from this site.

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.graphviz.org/Download.php

	interface.pdf
	thèse .pdf

