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Preface

In recent years the �eld of extreme value theory has been a very active research

area. It is of relevance in many practical problems such as the �ood frequency

analysis, insurance premium, �nancial area, .... For the literature concerning extreme

value theory we refer to Reiss and Thomas (2001, [128]), Coles (2001, [21]) and

Beirlant et al. (2005, [8]). The �rst aim of this thesis to present the investigation

in multivariate extreme values distributions (EVDs), and modeling the dependence

structure between the extreme data by using copula.

Copula models are becoming increasingly popular for modeling dependencies be-

tween random variables (rv). Use of copulas for multidimensional distributions is a

powerful method of analyzing this dependence structure. The range of their recent

applications include such �elds as analysis of extremes in �nancial assets and re-

turns, failure of paired organs in health science, and human mortality in insurance.

The term «copula» was �rst introduced by Sklar, (1959, [142]) although some of the

ideas go back to Ho¤ding, (1940, [71]). They are useful because they permit us to

focus on the dependency structure of the distribution independently of the marginal

distributions of the rv�s.

The relative mathematical simplicity of copula models and the possibility to con-

struct a diversity of dependence structures based on parametric or non-parametric

models of the marginal distributions are one advantages of using this tool in statis-

tical modeling.

The outline of this thesis is as follows: We start as preliminary Chapter 1, and 2,

such precise de�nitions and proprieties of copulas are given, we explores the most

important examples of copulas, we describe ranks and dependence measures and we

give the most important result about copula parameter estimations.

In the last chapter in preliminary part we discuses Risk measurement wich is a

great part of an organization�s overall risk management strategy. Risk measurment

is a tool to used to assess the probability of a bad event happening. It can be

xiii
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done by businesses as part of disaster recovery planning and as part of the software

development lifecycle. The analysis usually involves assessing the expected impact of

a bad event such as a hurricane or tornado. Furthermore, risk analysis also involves

an assessment of the likelihood of that bad event occurring.

In Chapter 4, we establish a link with the bivariate L-moments (BLM) and the un-

derlying copula functions. This connection provides a new estimate of dependence

parameter of bivariate statistical data. We show by simulations that the BLM es-

timation method is more accurate than the pseudo maximum likelihood for small

samples. Consistency and asymptotic normality of this new estimator are also ob-

tained.

We discuss in Chapter 5 two distinct approaches, for distorting risk measures of sums

of dependent random variables, that preserve the property of coherence. The �rst,

based on distorted expectations, operates on the survival function of the sum. The

second, simultaneously applies the distortion on the survival function of the sum and

the dependence structure of risks, represented by copulas. Our goal is to propose

an alternative risk measure which takes into account the �uctuations of losses and

possible correlations between random variables.



Part I

Preliminary Theory

1
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Chapter 1

Copula Theory

The only real valuab le th ing is intu ition .

A lb ert E instein .

The notion of copula was introduced in the seminal paper of Sklar in (1959,[142]),

when answering a question proposed by Fréchet about the ties between a multidimen-

sional joint probability function and its margins. At the �rst, copulas were chie�y

used in the development of probabilistic metric spaces theory. Later, it used to de�ne

nonparametric measures of dependence between rv�s, and since then, they becomes

an important tools in probability and mathematical statistics. In this Chapter, a

general overview of the theory of copulas will be presented.

1.1 Copulas: Properties and de�nitions

The standard de�nition of a copula is a multivariate distribution function de�ned

on the unit cube [0; 1]d; with uniformly distributed marginals. This de�nition is

very natural if one considers how a copula is derived from a continuous multivariate

distribution function. This de�nition hides some of the problems of constructing

copulas by using other techniques, i.e. it does not say what is meant by a multi-

variate distribution function. For that reason, we start with a slightly more abstract

de�nition, returning to the standard one later.

First, we focus on general multivariate distributions and then studying the special

properties of the copula subset, we refer to Nelsen (2006, [123]) for more details.

Throughout this thesis, we denote by DomH and RanH the domain and range

3



4 1. Copula Theory

respectively of a function H: Furthermore, a function f will be called increasing1

whenever x � y implies that f(x) � f(y):

In this section, we give a general idea about the concept of a multivariate distribution

function at �rst, and then we give an exact de�nitions and necessary fundamental

relationships.

Let X1; :::; Xd be a random variables, with marginal distribution functions F1; :::; Fd;

respectively, and joint distribution function (df.) H. The dependence structure of

the variables is represented by the function H as follow

H(x1; :::; xd) := P[X1 � x1; :::; Xd � xd]:

Any of the marginal distribution functions Fj can be obtained from H; by letting

xi ! 1 for all i 6= j. The necessary and su¢ cient properties of a multivariate

distribution function are given in Joe (1997, [85]).

De�nition 1.1.1 (Multivariate or Joint Distribution Function). A function
H : Rd ! [0; 1] is a multivariate distribution function if the following conditions are

satis�ed:

1. H is right continuous,

2. lim
xi!�1

H(x1; :::; xd) = 0; for i = 1; :::; d;

3. lim
xi!+1

H(x1; :::; xd) = 1;

4. For all (a1; :::; ad) and (b1; :::; bd) with ai � bi for i = 1; :::; d the following

inequality holds:

2X
i1=1

:::
2X

id=1

(�1)i1+:::+idH(x1i1 ; :::; xdid ) � 0;

where xj1 = aj and xj2 = bj for all j and xjk 2 [0; 1] for all j and k.

If H has d-th order derivatives, then this condition is equivalent to

@dH

@x1:::@xd
� 0:

We can also said that f is nondecreasing.
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By the use of a probability integral transformation. Separate the joint distribution

function H into its marginal distribution functions, and a part that describes the

dependence structure. This can be established by

H(x1; :::; xd) = P [X1 � x1; :::; Xd � xd]

= P [F1(X1) � F1(x1); :::; Fd(Xd) � Fd(xd)]

= C (F1(x1); :::; Fd(xd)) ;

if the random variable X has a continuous distribution function F; then F (X) has

a Uniform (0; 1) distribution. Therefore, we de�ne the properties of the function C;

called the copula function.

De�nition 1.1.2 (Copula Function). An d-dimensional copula C is a function

from [0; 1]d to [0; 1] having the following properties:

1. C(u1; :::; ud) = 0 if ui = 0 for some i = 1; :::; d:

2. C(1; :::; 1; ui; 1; :::; 1) = ui for all ui 2 [0; 1] :

3. C is d-increasing, for all (a1 ; :::; ad) and (b1; :::; bd) with ai � bi for i = 1; :::; d;

the following inequality holds:

2X
i1=1

:::
2X

id=1

(�1)i1+:::+idC(u1i1 ; :::; udid ) � 0;

where uj1 = aj and uj2 = bj for all j and ujk 2 [0; 1] for all j and k:

Let denote x := (x1; :::; xd) :

De�nition 1.1.3 Let S1; :::; Sd be nonempty subsets of R; where R denotes the ex-
tended real line [�1;1]: Let H be a real function of d variables such that DomH =

S1�� � ��Sd and for a � b (ak � bk for all k) let B = [a;b] (= [a1; b1]� � � � � [ad; bd])
be an d-box whose vertices are in DomH: Then the H-volume of B is given by

VH(B) =
X

sgn(c)H(c);

where the sum is taken over all vertices c of B; and sgn(c) is given by

sgn(c) =

(
1; if ck = ak for an even number of k�s;

�1; if ck = ak for an odd number of k�s:
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Equivalently, the H-volume of an d-box B = [a;b] is the d-th order di¤erence of H

on B

VH(B) = �
b
aH(t) = �

bd
ad
:::�b1

a1
H(t);

where the k �rst order di¤erences are given by

�bk
ak
H(t) = H(t1; :::; tk�1; bk; tk+1; :::; td)�H(t1; :::; tk�1; ak; tk+1; :::; td):

De�nition 1.1.4 A real function H of d variables is d-increasing if VH(B) � 0 for
all d-boxes B whose vertices lie in DomH:

Let Sk has a smallest element ak; and suppose that the domain of a real function

H of d variables is given by DomH = S1 � ::: � Sd: We say that H is grounded2 if

H(t) = 0 for all t in DomH such that tk = ak: If Sk is non empty for each k and

has a greatest element bk; then H has margins Hk; with DomHk = Sk and we have

Hk(x) = H(b1; :::; bk�1; x; bk+1; :::; bd)

for all x in Sk: Hk is called one-dimensional margins.

Lemma 1.1.1 Let S1; :::; Sd be non empty subsets of R; and let H be a grounded d-

increasing function with domain S1�:::�Sd: Then H is increasing in each argument,

i.e., if (t1; :::; tk�1; x; tk+1; :::; td) and (t1; :::; tk�1; y; tk+1; :::; td) are in DomH and x �
y; then

H(t1; :::; tk�1; x; tk+1; :::; td) � H(t1; :::; tk�1; y; tk+1; :::; td):

Lemma 1.1.2 Let S1; :::; Sd be non empty subsets of R; and let H be a grounded

d-increasing function with margins and domain S1 � ::: � Sd: Then, if x and y are

any points in S1 � :::� Sd;

H(x)�H(y) �
dX

k=1

jHk(xk)�Hk(yk)j :

For the proof, see Schweizer and Sklar (1983, [136]).

De�nition 1.1.5 An d-dimensional distribution function is a function H with do-

main Rd such that H is grounded, d-increasing and H(1; :::;1) = 1:

We say that a function H from S1 � S2 into R is grounded if H(x; a2) = 0 = H(a1; y) for all
(x; y) in S1 � S2:
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From Lemma 1.1.1 it follows that the margins of an d-dimensional distribution func-

tion are distribution functions, which we denote F1; :::; Fd:

De�nition 1.1.6 An d-dimensional copula is a function C with domain [0; 1]d such
that

1. C is grounded and d-increasing.

2. C has margins Ck; k = 1; 2; :::; d; which satisfy Ck(u) = u for all u in [0; 1]:

Note that for any d-copula C; d � 3; each k-dimensional margin of C is a k-copula.

Equivalently, an d-copula is a function C from [0; 1]d to [0; 1] with the following

properties:

1. For every u in [0; 1]d; C(u) = 0 if at least one coordinate of u is 0; and

C(u) = uk if all coordinates of u equal 1 except uk:

2. For every a and b in [0; 1]d such that ai � bi for all i; VC([a;b]) � 0:

Copulas are joint distribution functions (on [0; 1]d), induces that copulas are a prob-

ability measures on [0; 1]d via a standard extension to arbitrary Borel subsets of

[0; 1]d:

VC([0; u1]� :::� [0; ud]) = C (u1; :::; ud) :

A standard result from measure theory says that there is a unique probability mea-

sure on the Borel subsets of [0; 1]d which coincides with VC on the set of d-boxes of

[0; 1]d: This probability measure will also be denoted VC :

It follows from De�nition 1.1.6 that copula C is a distribution function on [0; 1]d

with [0; 1]-uniformly distributed margins. The following theorem follows directly

from Lemma 1.1.2.

Theorem 1.1.1 Let C be an d-copula. Then for every u and v in [0; 1]d;

C(v)� C(u) �
dX

k=1

vk � uk:

Hence C is uniformly continuous on [0; 1]d:
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1.1.1 Sklar�s Theorem

The Sklar�s theorem is the basic tool of copulas theory and is the foundation of most,

of the applications of that theory to statistics. Is show the role that copulas play

in the relationship between multivariate distribution functions and their univariate

margins.

Figure 1.1: Clayton Copula on top (distribution function), and the associated density
below.

Let X be a real random variable on the probability space (
;U ;P) with distribution
function F and let V � U(0; 1) be uniformly distributed on (0; 1) such that V

independent of X: We de�ne the modi�ed distribution function F (x; �) by

F (x; �) := P(X < x) + �P(X = x);

and the (generalized) distributional transform of X by

U := F (X;V ): (1.1)
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The representation of the distributional transform is

U = F (X�) + V (F (X)� F (X�)):

A good reference for this transform is the statistics book of Ferguson (1967, [44]).

U = F (X)
d
= U(0; 1) is holds true for continuous df�s F; F (x; �); in general for the

distributional transform and the quantile transform. Here the inverse or the quantile

of a df F is de�ned as usual by

F�1(u) = inffx 2 R : F (x) � ug; u 2 (0; 1):

We give a proof of this interesting results.

Proposition 1.1.1 (Distributional transform) Let U be the distributional trans-
form of X as de�ned in (1.1). Then

U
d
= U(0; 1) and X = F�1(U) almost surely (a.s.).

Proof. For 0 < � < 1 let q�� (X) denote the lower �-quantile, that is q
�
� (X) =

supfx : P(X � x) < �g: Then F (X;V ) � � if and only if

(X;V ) 2 f(x; �) : P(X < x) + �P(X = x) � �g:

If � := P(X = q�� (X)) > 0 and with q := P(X < q�� (X)) this is equivalent to

fX < q�� (X)g [ fX = q�� (X); q + V � � �g: Thus we obtain

P(U � �) = P(F (X;V ) � �) = q + �P(V � �� q

�
) = q + �

�� q

�
= �:

If � = 0; then

P(F (X;V ) � �) = P(X < q�� (X)) = P(X � q�� (X)) = �:

By de�nition of U;

F (X�) � U � F (X): (1.2)

For any u 2 (F (x�); F (x)] it holds that F�1(u) = x: Thus by (1.2) we obtain that

F�1(U) = X a.s.

The distributional quantile transform is a useful tool, in general case it allows to give

a simple proof of Sklar�s Theorem. The idea of Sklar�s Theorem is to represent an n-
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dimensional distribution functionH in two parts, the marginal distribution functions

Fi and the copula C; witch describe the dependence concepts of the distribution.

Theorem 1.1.2 Let H be an d-dimensional df with margins F1; :::; Fd: Then there

exists an d-copula C such that for all x in Rd;

H(x1; :::; xd) = C (F1 (x1) ; :::; Fd (xd)) : (1.3)

If F1; :::; Fd are all continuous, then C is unique; otherwise C is uniquely determined

on RanF1 � ::: � RanFd: Conversely, if C is an d-copula and F1; :::; Fd are df�s,

then the function H de�ned above is an d-dimensional df with margins F1; :::; Fd:

Proof. On a probability space (
;U ;P); let X = (X1; :::; Xd) be a random vector

with df F and let V be independent of X and uniformly distributed on (0; 1); V �
U(0; 1): Suppose that distributional transforms Ui := Fi(Xi; V ); 1 � i � d; by Propo-

sition 1.1.1 we have Ui � U(0; 1); and Xi = F�1i (Ui) a.s., 1 � i � d: Thus we de�ne

C to be the distribution function of U = (U1; :::; Ud) as follow

F (x) = P(X � x) = P(F�11 (U1) � x1; :::; F
�1
d (Ud) � xd)

= P(U1 � F1(x1); :::; Ud � Fd(xd))

= C(F1(x1); :::; Fd(xd));

i.e. C is a copula of F:

We show from Sklar�s Theorem that we can separete univariate margins and the

multivariate dependence structure of continuous multivariate distribution functions,

and the dependence structure can be represented by a copula function.

Let F be a univariate distribution function and F�1 the quantile function of F; using

the convention inf ? = �1:

Corollary 1.1.1 Let H be an d-dimensional df with continuous margins F1; :::; Fd
and copula C (where C satis�es (1.3)). Then for any u in [0; 1]d;

C(u) = H(F�11 (u1); :::; F
�1
d (ud)):

For the Proof we can see Nelsen (2006, [123]) or Marshall (1996, [113]).

Example 1.1.1 Let � denote the standard univariate normal df and let �dR denote
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Figure 1.2: Surface FGM (0.3), Clayton (5.2), Gumbel (4) and Frank (8) copulas
density.

the standard multivariate normal df with linear correlation matrix R: Then

C(u1; :::; ud) = �
n
R(�

�1(u1); :::;�
�1(ud))

is the Gaussian or normal d-copula.

The concept of copula density functions play an important role in the parameter

estimation methods for copulas that are based on the Maximum Likelihood Principle,

and later we give a new principle of L-comoment based estimation.

Corollary 1.1.2 (Copula Density). The relationship between the multivariate

density function h(x1; :::; xd) and the copula density c; is given by:

h(x1; :::; xd) = c(F1(x1); :::; Fd(xd))

dY
i=1

fi(xi): (1.4)
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Proof. Let h be the d-dimensional density function that belongs to the distrib-
ution function H: De�ne h by:

h(x1; :::; xd) =
@d

@x1; :::; @xd
H(x1; :::; xd):

Now substitute (1.3), to obtain:

h(x1; :::; xd) =
@d

@x1; :::; @xd
C(F1(x1); :::; Fd(xd)):

Using the substitution ui = Fi(xi) for i = 1; :::; d we obtain:

h(x1; :::; xd) =
@d

@u1; :::; @ud
C(u1; :::; ud)

dY
i=1

fi(xi)

= c(u1; :::; ud)
dY
i=1

fi(xi):

Inserting again ui = Fi(xi) yields the relationship given by (1.4).

1.1.2 The Fréchet-Hoe¤ding bounds for joint df�s

Hoe¤ding (1940, [71], 1942, [73]) give an explicit formulation of the statement «there

is a functional dependence between random variables X and Y » .

Let�s the functions Md; �d and W d de�ned on [0; 1]d as follows:

Md(u) = min (u1; :::; ud) ;

�d(u) = u1:::ud;

W d(u) = max(u1 + :::+ ud � d+ 1; 0):

It easy to check that Md and �d are d-copulas for all d � 2 but the function W d is

not a copula for any d � 3 as shown in the following example.
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Example 1.1.2 Consider the d-cube [1=2; 1]d � [0; 1]d:

VW d([1=2; 1]d) = max(1 + :::+ 1� d+ 1; 0)

�dmax(1=2 + 1 + :::+ 1� d+ 1; 0)

+

�
d

2

�
max(1=2 + 1=2 + 1 + :::+ 1� d+ 1; 0)

:::

+max(1=2 + :::+ 1=2� d+ 1; 0)

= 1� d=2 + 0 + :::+ 0:

Hence W d is not a copula for d � 3:

The following theorem given in Fréchet (1957, [50]) is called the Fréchet�Hoe¤ding

bounds inequality.

Theorem 1.1.3 If C is any d-copula, then for every u in [0; 1]d;

W d(u) � C(u) �Md(u):

Although the Fréchet�Hoe¤ding lower bound W d is never a copula for d � 3; it is

the best possible lower bound in the following sense.

Theorem 1.1.4 For any d � 3 and any u in [0; 1]d; there is an d-copula C (which

depends on u) such that

C(u) =W d(u):

For the proof, see Nelsen (2006, [123, p. 48]).

Let (U1; :::; Ud) d-random variables with joint distribution function C:We denote by

C the joint survival function of C; then

C (u1; :::; ud) = PfU1 > u1; :::; Ud > udg:

The following de�nition give the notion of partial ordering, since not every pair of

copulas is comparable in this order. However many important parametric families

of copulas are totally ordered.

De�nition 1.1.7 If C1 and C2 are copulas, C1 is smaller than C2 (written C1 � C2)

if

C1(u) � C2(u) and C1(u) � C2(u);

for all u in [0; 1]d:
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In bivariate case,

C1(u1; u2) � C2(u1; u2) () 1� u1 � u2 + C1(u1; u2)

� 1� u1 � u2 + C2(u1; u2)

() C1(u1; u2) � C2(u1; u2):

The Fréchet�Hoe¤ding lower bound W 2 is smaller than every 2-copula, and every d-

copula is smaller than the Fréchet�Hoe¤ding upper boundMd: This partial ordering

of the set of copulas is called a concordance ordering.

We denote by C� for one-parameter family of copula, we called positively ordered if

C�1 � C�2 whenever �1 � �2: Examples of such one-parameter families will be given

later.

Figure 1.3: The 2-copulasW2; M2 and �2; respectively from the left to the right.

1.1.3 Copulas and random variables

Let X1; :::; Xd be random variables with continuous distribution functions F1; :::; Fd;

respectively, and joint distribution functionH. Then (X1; :::; Xd) has a unique copula

C; where C is given by (1.3). The standard copula representation of the distribution

of the random vector (X1; :::; Xd) then becomes:

H(x1; :::; xd) = PfX1 � x1; :::; Xd � xdg = C (F1 (x1) ; :::; Fd (xd)) :

The transformations Xi ! Fi(Xi) used in the above representation are usually re-

ferred to as the probability-integral transformations (to uniformity) and form a stan-



1. Copula Theory 15

dard tool in simulation methodology.

Since X1; :::; Xd are independent if and only if

H(x1; :::; xd) =
dY
i=1

Fi (xi) ;

for all x1; :::; xd in R; the following result follows from Theorem 1.1.2.

Theorem 1.1.5 Let (X1; :::; Xd) be a vector of continuous random variables with

copula C; then X1; :::; Xd are independent if and only if C = �d:

One of the nice property of copulas is that for strictly monotone transformations of

the random variables, copulas are either invariant, or change in certain simple ways.

Note that if the distribution function of a random variable X is continuous, and if �

is a strictly monotone function whose domain contains RanX; then the distribution

function of the random variable �(X) is also continuous.

Theorem 1.1.6 Let (X1; :::; Xd) be a vector of continuous random variables with

copula C: If �1; :::; �d are strictly increasing on RanX1; :::,RanXd; respectively, then

also (�1(X1); :::; �d(Xd)) has copula C:

Proof. Let F1; :::; Fd denote the distribution functions of X1; :::; Xd and let

G1; :::; Gd denote the distribution functions of �1(X1); :::; �d(Xd); respectively. Let

(X1; :::; Xd) have copula C; and let (�1(X1); :::; �d(Xd)) have copula C�. Since �k is

strictly increasing for each k;

Gk(x) = Pf�k(Xk) � xg = PfXk � ��1k (x)g = Fk(�
�1
k (x))

for any x in R; hence

C�(G1(x1); :::; Gd(xd)) = Pf�1(X1) � x1; :::; �d(Xd) � xdg
= PfX1 � ��11 (x1); :::; Xd � ��1d (xd)g
= C(F1(�

�1
1 (x1)); :::; Fd(�

�1
d (xd)))

= C(G1(x1); :::; Gd(xd)):

Since X1; :::; Xd are continuous, RanG1 = ::: = RanGd = [0; 1]: Hence it follows that

C� = C on [0; 1]d.

FromTheorem 1.1.2 we know that the copula functionC «separates» an d-dimensional

distribution function from its univariate margins. The next theorem will show that
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there is also a function, C; that separates an d-dimensional survival function from

its univariate survival margins. Furthermore this function can be shown to be a

copula, and this survival copula can rather easily be expressed in terms of C and its

k-dimensional margins.

Theorem 1.1.7 Let (X1; :::; Xd) be a vector of continuous random variables with

copula CX1;:::;Xd : Let �1; :::; �d be strictly monotone on RanX1; :::, RanXd; respec-

tively, and let (�1(X1); :::; �d(Xd)) have copula C�1(X1);:::;�d(Xd): Furthermore let �k
be strictly decreasing for some k: Without loss of generality let k = 1:Then

C�1(X1);:::;�d(Xd)(u1; u2; :::; ud) = C�2(X2);:::;�d(Xd)(u2; :::; ud)

�CX1;�2(X2);:::;�d(Xd)(1� u1; u2; :::; ud):

Proof. Let X1; :::; Xd have distribution functions F1; :::; Fd and let �1(X1); :::,

�d(Xd) have distribution functions G1; :::; Gd: Then

C�1(X1);�2(X2);:::;�d(Xd)(G1(x1); :::; Gd(xd)) = Pf�1(X1) � x1; :::; �d(Xd) � xdg
= PfX1 > ��11 (x1); �2(X2) � x2; :::; �d(Xd) � xdg
= Pf�2(X2) � x2; :::; �d(Xd) � xdg

�PfX1 � ��11 (x1); �2(X2) � x2; :::; �d(Xd) � xdg
= C�2(X2);:::;�d(Xd)(G2(x2); :::; Gd(xd))

�CX1;�2(X2);:::;�d(Xd)(F1(��11 (x1)); G2(x2); :::; Gd(xd))

= C�2(X2);:::;�d(Xd)(G2(x2); :::; Gd(xd))

�CX1;�2(X2);:::;�d(Xd)(1�G1(x1); G2(x2); :::; Gd(xd));

from which the conclusion follows directly.

By using the two theorems above recursively it is clear that the copula C�1(X1);:::;�d(Xd)
can be expressed in terms of the copula CX1;:::;Xd and its lower-dimensional margins.

This is exempli�ed below.

Example 1.1.3 Consider the bivariate case. Let �1 be strictly decreasing and let �2
be strictly increasing. Then

C�1(X1);�2(X2) (u1; u2) = u2 � CX1;�2(X2)(1� u1; u2)

= u2 � CX1;X2(1� u1; u2):
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Let �1 and �2 be strictly decreasing. Then

C�1(X1);�2(X2) (u1; u2) = u2 � CX1;�2(X2)(1� u1; u2)

= u2 � (1� u1 � CX1;X2(1� u1; 1� u2))

= u1 + u2 � 1 + CX1;X2(1� u1; 1� u2):

Here C�1(X1);�2(X2) is the survival copula C; of (X1; X2); i.e.,

H(x1; x2) = PfX1 > x1; X2 > x2g = C(F1(x1); F2(x2)):

Note also that the joint survival function of d U(0; 1) random variables whose joint

distribution function is the copula C is C (u1; :::; ud) = C(1 � u1; :::; 1 � ud): The

mixed kth order partial derivatives of a copula C; @kC(u)=@u1:::@uk; exist for almost

all u in [0; 1]d: For such u; 0 � @kC(u)=@u1:::@uk � 1: For details, see Nelsen (2006,
[123, p. 26]).

With this in mind, let

C (u1; :::; ud) = AC (u1; :::; ud) + SC (u1; :::; ud) ;

where

AC (u1; :::; ud) =

Z u1

0

:::

Z ud

0

@d

@s1:::@sd
C(s1; :::; sd)ds1:::dsd;

SC (u1; :::; ud) = C (u1; :::; ud)� AC (u1; :::; ud) :

Unlike multivariate distributions in general, the margins of a copula are continuous,

hence a copula has no individual points u in [0; 1]d for which VC(u) > 0: If C = AC

on [0; 1]d, then C is said to be absolutely continuous. In this case C has density

@d

@u1:::@ud
C (u1; :::; ud) :

If C = SC on [0; 1]d; then C is said to be singular, and

@d

@u1:::@ud
C (u1; :::; ud) = 0

almost everywhere in [0; 1]d. The support of a copula is the complement of the union

of all open subsets A of [0; 1]d with VC(A) = 0: When C is singular its support
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has Lebesgue measure zero and conversely. However a copula can have full sup-

port without being absolutely continuous. Examples of such copulas are so-called

Marshall-Olkin copulas which are presented later.

Example 1.1.4 Consider the bivariate Fréchet-Hoe¤ding upper bound M given by

M(u; v) = min(u; v)

on [0; 1]2: It follows that
@2

@u@v
M(u; v) = 0;

everywhere on [0; 1]2 except on the main diagonal (which has Lebesgue measure zero),

and VM(B) = 0 for every rectangle B in [0; 1]2 entirely above or below the main

diagonal. Hence M is singular.

Now we present a general algorithm for random variate generation from copulas.

Note however that in most cases it is not an e¢ cient one to use.

Consider the general situation of random variate generation from the d-copula C.

Let

Ck(u1; :::; uk) = C(u1; :::; uk; 1; :::; 1); k = 2; :::; d� 1;

denote k-dimensional margins of C; withC1(u1) = u1 andCd (u1; :::; ud) = C (u1; :::; ud) :

Let U1; :::; Ud have joint distribution function C: Then the conditional distribution

of Uk given the values of U1; :::; Uk�1; is given by

Ck(ukju1; :::; uk�1) = PfUk � ukjU1 = u1; :::; Uk�1 = uk�1g

=
@k�1

@u1:::@uk�1
Ck(u1; :::; uk)=

@k�1

@u1:::@uk�1
Ck�1(u1; :::; uk�1);

given that the numerator and denominator exist and that the denominator is not

zero. The following algorithm generates a random variate (u1; :::; ud)
T from C: As

usual, let U(0; 1) denote the uniform distribution on [0; 1]:

Algorithm 1.1.1

1. Simulate a random variate u1 from U(0; 1):

2. Simulate a random variate u2 from C2(�ju1):
...

3. Simulate a random variate un from Cd(�ju1; :::; ud�1):
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This algorithm is in fact a particular case of what is called «the standard con-

struction» . The correctness of the algorithm can be seen from the fact that for

independent U(0; 1) random variables Q1; :::; Qd;

(Q1; C
�1
2 (Q2jQ1); :::; C�1d (QdjQ1; C�12 (Q2jQ1); :::))

has distribution function C: To simulate a value uk from Ck(� ju1; :::; uk�1) in gen-
eral means simulating q from U(0; 1) from which uk = C�1k (qju1; :::; uk�1) can be
obtained through the equation q = Ck(ukju1; :::; uk�1) by numerical root�nding.
When C�1k (qju1; :::; uk�1) has a closed form (and hence there is no need for numerical
root�nding) this algorithm can be recommended.

Example 1.1.5 Let the copula C be given by

C(u; v) = (u�� + v�� � 1)�1=�;

for � > 0: Then

C2j1(vju) =
@C

@u
(u; v) = �1

�
(u�� + v�� � 1)�1=��1(��u���1)

= (u�)
�1��
� (u�� + v�� � 1)�1=��1

= (1 + u�(v�� � 1))�1��� :

Solving the equation q = C2j1(vju) for v yields

C�12j1(qju) = v =
��
q
��
1+� � 1

�
u�� + 1

��1=�
:

The following algorithm generates a random variate (u; v)T from the above copula C:

1. Simulate two independent random variates u and q from U(0; 1):

2. Set v =
��
q
��
1+� � 1

�
u�� + 1

��1=�
:

1.2 Measures of association

Generally speaking, random variables X and Y are said to be associated when they

are not independent, i.e. when F (x; y) = F (x)F (y): With regards to measuring

association, the terms used in the literature are concordance and dependence. For-

mally, there is a clear distinction between the two, as dependence measure obtains
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its minimum value when the measured random variables are independent, while the

minimum value of concordance indicates that the random variables in question are

countermonotonic.

This terminology is not standard however, we tend to use the words interchangeably,

meaning association along the de�nition of concordance. Furthermore, while we

examine the two dimensional cases in this section for simplicity, the extensions to

higher dimensions are straightforward.

Copulas provide a helpful way of studying and measuring the association between

rv�s. In the following, we give a formal de�nition of concordance and some of its

properties and present the most crucial measures of concordance that are relevant

to this thesis. For completeness, we also shortly reiterate the de�nition of linear

correlation.

1.2.1 Concordance

Loosely speaking, concordance seeks to capture the probability of rv�s X and Y both

having a «large» or a «small» values versus the probability of one them having a

«large» and the other one a «small» value. Formally speaking, a measure �X;Y with

copula C is a measure of concordance if it satis�es the following properties (Scarsini

1984, [134]).

De�nition 1.2.1 (Measure of Dependence). A numeric measure � of associ-

ation between two continuous rv�s X and Y whose copula is C is a measure of

dependence if it satis�es the following properties:

1. � is de�ned for every pair X; Y of continuous rv�s.

2. �X;Y = �Y;X :

3. 0 � �X;Y � 1:

4. �X;Y = 0 if and only if X and Y are independent.

5. �X;Y = 1 if and only if each of X and Y is almost surely a strictly monotone

function of the other.

6. If � and � are almost surely strictly monotone functions on RangX and

Rang Y; respectively, then ��(X);�(Y ) = �X;Y :
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7. If f(Xn; Yn)g is a sequence of continuous random variables with copulas Cn;

and if fCng converges pointwise to C; then limn!1 �Cn = �C :

The above de�nition implies invariance with respect to increasing transformations

and the existence of bounds for �: These bounds are referred to as comonotonicity

and countermonotonicity and imply �X;Y = 1 and �X;Y = �1 respectively. It is also
worth noting that independence is a su¢ cient but not necessary condition for �X;Y
to be zero.

Below we recall the basic properties of linear correlation, and then continue with

some copula based measures of dependence.

1.2.2 Linear Correlation

Linear correlation (or Pearson�s correlation) is the measure of association that is by

far the most used, but possibly also the most misunderstood. The popularity of linear

correlation stems from the ease with which it can be calculated and understood as a

scalar representing dependence in elliptical distributions (with often used members

such as Gaussian distribution and Student�s t-distribution). Most random variables

however are not jointly elliptically distributed and using linear correlation for these

can be misleading.

The value of Pearson�s correlation (�) may not be a solid indicator of the strength of

dependence. For one thing, independence of two rv�s implies they are uncorrelated

(i.e., � = 0) but the converse does not hold in general, as shown in the next example.

Example 1.2.1 (Two dependent variables with zero correlation). Let Y be

an rv taking the values 0; �=2 and � with probability 1=3 each. Then, it is easy to see

that X1 = sinY and X2 = cosY are uncorrelated (i.e., corr (X1; X2) = 0): However,

they are not independent since X1 and X2 are functionally connected (by the relation

X2
1 +X2

2 = 1).

Linear correlation is de�ned in the following way.

Let (X; Y ) be a vector of rv�s with nonzero �nite variances. The linear correlation

coe¢ cient for (X; Y ) is

�L(X; Y ) =
Cov(X;Y )

V ar(X)V ar(Y )
; (1.5)
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where Cov(X;Y ) = E(XY ) � E(X)E(Y ) is the covariance of (X; Y ); and V ar(X)
and V ar(Y ) are the variances of X and Y; respectively.

Linear correlation satis�es properties 1-6 but not the last property of a concordance

measure. Linear correlation is invariant under only linear increasing transformations

but not under general increasing transformations.

1.2.3 Kendall�s � and Spearman�s �

Kendall�s � and Spearman�s � are probably the two most important measures of con-

cordance, as they provide arguably the best alternatives to linear correlation coe¢ -

cient as a measure of association for non-elliptical distributions1. They are, however,

not the only possible scalar valued measures of concordance (see e.g. Schweizer and

Wol¤ (1981, [137]) for a complete list). It can be proved that both Kendall�s � and

Spearman�s � satisfy the properties of the de�nition of concordance (1.8).

De�nition 1.2.2 Kendal l�s � for random vectors (X1; Y1) and (X2; Y2) independent

and identically distributed (i.i.d.) is de�ned as

� = P[(X1 �X2)(Y1 � Y2) > 0]� P[(X1 �X2)(Y1 � Y2) < 0];

Kendall�s � is simply the di¤erence between the probability of concordance and the

probability of discordance.

Theorem 1.2.1 Let (X; Y ) be a vector of continuous random variables with copula

C: Then Kendal l�s � can be written as

� = 4

Z 1

0

Z 1

0

C(u; v)dC(u; v)� 1; (1.6)

The double integral in the above is the de�nition of the expected value for the

function C(U1; U2) where both U1 and U2 are standard uniform and have a joint

distribution C: So � = 4E[C(U1; U2)] � 1 and, �1 � 4E[C(U1; U2)] � 1 � 1 i.e.,

Kendall�s � is a normalized expected value.

De�nition 1.2.3 Spearman�s � for i.i.d. random vectors (X1; Y1); (X2; Y2) and

(X3; Y3) is de�ned as

� = 3P [(X1 �X2)(Y1 � Y3) > 0]� P [(X1 �X2)(Y1 � Y3) < 0] :

Recall that linear correlation is a problem for non-elliptical distributions for which it often gives
misleading results
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Spearman�s � then measures the di¤erence of the probability of concordance and

discordance for vectors (X1; Y1) and (X2; Y2) the latter being made up of independent

rv�s. Therefore in the � case the probabilities of concordance and discordance are

measured with regards to the independent case.

Theorem 1.2.2 Let (X;Y ) be a vector of continuous rv�s with copula C: Then

Spearman�s � can be written as

� = 12

Z 1

0

Z 1

0

fC(u; v)� uvgdudv; (1.7)

Hence, if X � F and Y � G; and we let U1 = F (X) and U2 = G(Y ); then

� = 12

Z 1

0

Z 1

0

uvdC(u; v)� 3

= 12E[U1U2]� 3

=
E[U1U2]� 1=4

1=12

Since 1=2 and 1=12 are resp. the mean and variance of standard uniforms, we have

� =
E[U1U2]� (1=2)2

1=12

=
Cov(U1; U2)p

V ar(U1)
p
V ar(U2)

= �(F (X); G(Y )):

Thus Spearman�s � is the linear correlation coe¢ cient between the integral trans-

forms of X and Y; (F (X) and G(Y )). For this reason it is often denoted as being a

rank correlation measure. Because Kendall�s � and Spearman�s � satisfy the proper-

ties of concordance (De�nition 1.2.1) and if we recall the Fréchet-Hoe¤ding bounds

(Theorem 1.1.3) it follows that e.g. the maximum concordance is achieved, when

using the maximum copula, i.e. C = C? =) � = � = 1: The converse is also true,

so that
� = � = �1 if and only if C =W;

� = � = 1 if and only if C =M:

Although the rank correlation measures have the property of invariance under monotonic

transformations and can capture perfect dependence, they are not simple functions

of moments and hence computation is more involved; see some examples in Table

1.1.
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Table 1.1: Some standard copula functions.

Copulas type � domain Kendall�s � Spearman�s �

Product N. A 0 0
FGM �1 � � � 1 2

9
� 1

3
�

Gaussian �1 < � < 1 2
�
arcsin (�) 6

�
arcsin (�=2)

Clayton 0 < � <1 �
�+2

no closed form

Frank �1 < � <1 1�4(1�D1(�))
�

1�12(D1(�)�D2(�))
�

AMH �1 � � � 1 3��2
�
� 2(1� 1

� )
2
ln(1��)
3

no closed form
Plackett 0 < � <1 no closed form �+1

��1 �
2� ln �
(��1)2 ; � 6= 1

Fréchet �; � � 0; � + � � 1 (���)(�+�+2)
3

�� �:

In some cases one can use (1.6) or (1.7). The relationship between � and � is shown

by a pair of inequalities due to Durbin and Stuart (1951) who showed that

3

2
� � 1

2
� � � 1

2
+ � � 1

2
� 2; for � � 0;

1

2
� 2 + � � 1

2
� � � 3

2
� +

1

2
; for � � 0:

These inequalities form the basis of a widely presented 4-quadrant diagram that

displays the (�; �)-region; see Figure 1.4. Nelsen (1991, [122]) presents expressions

for � and � and their relationship for a number of copula families.

1.2.4 Perfect dependence

For every d-copula C we know from the Fréchet�Hoe¤ding inequality (Theorem 1.1.3)

that

Wd (u1; :::; ud) � C (u1; :::; ud) �Md (u1; :::; ud) :

Furthermore, for d = 2 the upper and lower bounds are themselves copulas and we

have seen that W and M are the bivariate distributions functions of the random

vectors (U; 1 � U) and (U;U); respectively, where U � U(0; 1) (i.e. U is uniformly

distributed on [0; 1]). In this case we say thatW describes perfect negative depen-

dence andM describes perfect positive dependence.

Theorem 1.2.3 Let (X; Y ) have one of the copulasW or M: Then there exist two
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Figure 1.4: Bounding region for � and � :

monotone functions �; � : R �! R and a random variable Z so that

(X;Y )
d
= (�(Z); �(Z));

with � increasing and � decreasing in the former case (W) and both � and � in-

creasing in the latter case (M): The converse of this result is also true.

For a proof, see Embrechts et al. (2002, [40]). In a di¤erent form this result was

already in Fréchet (1951, [49]).

De�nition 1.2.4 If (X; Y ) has the copulaM thenX and Y are said to be comonotonic.

If it has the copulaW they are said to be countermonotonic.

Note that if any of F and G (the df�s of X and Y; respectively) have discontinuities,

so that the copula is not unique, then W and M are possible copulas. In the case

of F and G being continuous, a stronger version of the result can be stated:

C = W, Y = T (X) a.s., T = G�1 � (1� F ) decreasing,

C = M, Y = T (X) a.s., T = G�1 � F increasing.

Other characterizations of comonotonicity can be found in Denneberg (1994, [30]).
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1.2.5 Measures of dependence

Intuitively it is clear that measures of dependence are based on a «distance» between

the copula of (X; Y ) and the product copula �:

De�nition 1.2.5 (Schweizer and Wol¤ �s Sigma). Schweizer and Wol¤ �s Sigma
for a vector of continuous rv�s (X; Y ) with copula C is given by:

�X;Y = 12

ZZ
[0;1]2

jC(u; v)� uvj dudv:

Notice from this de�nition the similarity with Spearman�s rho. The di¤erence be-

tween the two is that this measure reports the absolute distance between the copula

under consideration and the product copula whereas Spearman�s rho reports the

«signed» distance.

De�nition 1.2.6 (Hoe¤ding�s Dependence Index). Hoe¤ding�s Dependence

Index for a vector of continuous rv�s (X; Y ) with copula C is given by:

�2X;Y = 90

ZZ
[0;1]2

jC(u; v)� uvj2 dudv:

1.2.6 Tail Dependence

The concept of tail dependence relates to the amount of dependence in the upper-

right quadrant tail or lower-left-quadrant tail of a bivariate distribution. It is a

concept that is relevant for the study of dependence between extreme values. It

turns out that tail dependence between two continuous random variables X and Y

is a copula property and hence the amount of tail dependence is invariant under

strictly increasing transformations of X and Y:

De�nition 1.2.7 Let (X; Y ) be a vector of continuous rv�s with marginal df�s F
and G. The coe¢ cient of upper tail dependence of (X; Y ) is

lim
u%1

PfY > G�1(u)jX > F�1(u)g = �U ;

provided that the limit �U 2 [0; 1] exists. If �U 2 (0; 1]; X and Y are said to

be asymptotically dependent in the upper tail; if �U = 0; X and Y are said to be

asymptotically independent in the upper tail.
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Since PfY > G�1(u)jX > F�1(u)g can be written as

1� PfX � F�1(u)g � PfY � G�1(u)g+ PfX � F�1(u); Y � G�1(u)g
1� PfX � F�1(u)g ;

an alternative and equivalent de�nition (for continuous rv�s), from which it is seen

that the concept of tail dependence is indeed a copula property, is the following

which can be found in Joe (1997, [85, P. 33]).

De�nition 1.2.8 If a bivariate copula C is such that

�U = lim
u%1

1� 2u+ C(u; u)

1� u

exists, then C has upper tail dependence if �U 2 (0; 1]; and upper tail independence
if �U = 0:

Example 1.2.2 Consider the bivariate Gumbel family of copulas given by

C�(u; v) = exp(�[(� lnu)� + (� ln v)�]1=�);

for � � 1: Then

1� 2u+ C(u; u)

1� u
=

1� 2u+ exp(21=� lnu)
1� u

=
1� 2u+ u2

1=�

1� u
;

and hence

lim
u%1

(1� 2u+ C(u; u))

(1� u)
= 2� lim

u%1
21=�u2

1=� � 1

= 2� 21=�:

Thus for � > 1; C� has upper tail dependence.

For copulas without a simple closed form an alternative formula for �U is more useful.

An example is given in the case of the Gaussian copula

CR(u; v) =

Z ��1(u)

�1

Z ��1(v)

�1

1

2�
p
1�R2

12

exp

�
�s

2 � 2R12st+ t2

2(1�R2
12)

�
dsdt;

where �1 < R12 < 1 and � is the univariate standard normal distribution function.

Consider a pair of U(0; 1) rv�s (U; V ) with copula C: First note that PfV � vjU =
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ug = @C(u; v)=@u and PfV > vjU = ug = 1 � @C(u; v)=@u; and similarly when

conditioning on V: Then

�U = lim
u%1

C(u; u)

(1� u)

= � lim
u%1

dC(u; u)

du

= � lim
u%1

�
�2 + @

@s
C(s; t)

����
s=t=u

+
@

@t
C(s; t)

����
s=t=u

�
= lim

u%1
(PfV > ujU = ug+ PfU > ujV = ug):

Furthermore, if C is an exchangeable copula, i.e. C(u; v) = C(v; u); then the expres-

sion for �U simpli�es to �U = 2 limu%1 PfV > ujU = ug:

Example 1.2.3 Let (X; Y ) have the bivariate standard normal distribution function
with linear correlation coe¢ cient �: That is (X; Y ) � C(�(x);�(y)); where C is a

member of the Gaussian family given above with R12 = �: Since copulas in this family

are exchangeable,

�U = 2 lim
u%1

PfV > ujU = ug;

and because � is a distribution function with in�nite right endpoint,

lim
u%1

P fV > ujU = ug = lim
x!1

Pf��1(V ) > xj��1(U) = xg

= lim
x!1

PfX > xjY = xg:

Using the well known fact that Y jX = x � N (�x; 1� �2) we obtain

�U = 2 lim
x!1

�

 
x� �xp
1� �2

!
= 2 lim

x!1
�

�
x
p
1� �p
1 + �

�
;

from which it follows that �U = 0 for R12 < 1: Hence the Gaussian copula C with

� < 1 does not have upper tail dependence.

The concept of lower tail dependence can be de�ned in a similar way. If the limit

lim
u&0

C(u; u)

u
= �L (1.8)

exists, then C has lower tail dependence if �L 2 (0; 1]; and lower tail independence
if �L = 0: For copulas without a simple closed form an alternative formula for �L is
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more useful. Consider a random vector (U; V ) with copula C: Then

�L = lim
u&0

C(u; u)

u

= lim
u&0

dC(u; u)

du

= lim
u&0

�
@

@s
C(s; t)

����
s=t=u

+
@

@t
C(s; t)

����
s=t=u

�
= lim

u&0
(PfV < ujU = ug+ PfU < ujV = ug):

Furthermore if C is an exchangeable copula, i.e. C(u; v) = C(v; u); then the expres-

sion for �L simpli�es to

�L = 2 lim
u&0

PfV < ujU = ug:

Recall that the survival copula of two random variables with copula C is given by

C(u; v) = u+ v � 1 + C(1� u; 1� v);

and the joint survival function for two U(0; 1)-rv�s whose joint df is C given by

bC(u; v) = 1� u� v + C(u; v) = C(1� u; 1� v):

Hence it follows that

lim
u%1

bC(u; u)
1� u

= lim
u%1

C(1� u; 1� u)

1� u

= lim
u&0

C(u; u)

u
;

so the coe¢ cient of upper tail dependence of C is the coe¢ cient of lower tail depen-

dence of C: Similarly the coe¢ cient of lower tail dependence of C is the coe¢ cient

of upper tail dependence of C:

1.3 Copula estimation

There is a growing literature on the estimation of multivariate densities using copulas.

Both parametric and nonparametric estimators have been proposed in the literature.

Each method may be further divided into two-step and one-step approaches. In the
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two-step approach, each margin is estimated �rst and the estimated marginal df�s

are used to estimate copulas in the second step. The estimated parameters (in the

parametric case) are typically ine¤cient when estimated in two steps. In principle we

can also estimate the joint density in one-step. The margins and the copula are es-

timated jointly in this approach. Although the estimated parameters (in parametric

case) are e¤cient in this case, the one-step approach is more computationally burden-

some than the two-step approach. In empirical work, we may have prior knowledge

on the margins but not on the structure of the joint dependence. Therefore, the

two-step approach may have an advantage over the one-step approach in terms of

the computational consideration, although the estimates may be less e¤cient.

In practice there is usually little guidance on how to choose the best combination of

the margins and the copula in parametric estimation. Therefore, semiparametric and

non-parametric estimations have become popular in the literature recently. The main

advantage of these estimation methods is to let the data determine the copula without

imposing restrictive functional assumptions. In semiparametric estimations, often a

parametric copula is speci�ed but not the margins. The parameters in the copula

function are estimated by maximum likelihood estimation. See earlier application

in Oakes (1986, [125]), Genest and Rivest (1993, [59]), Genest, Ghoudi and Rivest

(1995, [60]) and more recently in Liebscher (2005) and Chen et al. (2006, [18]).

Alternatively, nonparametric estimation does not assume any parametric distribu-

tion on both the margins and the copula. In this way, nonparametric estimation

provides a higher degree of �exibility, since the dependence structure of the copula

is not directly observable. It also illustrates a rough picture helpful to researchers

for subsequent parametric estimation of the copula. In addition, the problem of

misspeci�cation in the copula can be avoided in the context of nonparametric esti-

mation. The earliest nonparametric estimation in copulas is due to Deheuvels (1979,

[26]) who estimated the copula density based on the empirical distribution.

Further work using kernel methods have been proposed by Gijbels and Mielnicnuk

(1990, [65]), Fermanian and Scaillet (2005, [46]) in a time series framework and

Chen and Huang (2007, [19]) with boundary corrections. Recently, Sancetta and

Satchell (2004, [133]) use the Bernstein polynomials to approximate the Kimeldorf

and Sampson copula. Hall and Neumeyer (2006, [70]) use wavelet estimators to

approximate the copula density. Alternatively, Cai et al. (2008, [12]) use a mixture

of parametric copulas to estimate unknown copula functions.

The kernel density estimator is one of the mostly popular methods in nonparamet-
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ric estimations. Li and Racine (2007, [107]) provide a comprehensive review of this

method. In spite of its popularity, there are several drawbacks in kernel estimation.

If one uses a higher order kernel estimator in order to achieve a faster rate of conver-

gence, it can result in negative density estimates. In addition, the support of data is

often bounded with high concentration at or close to the boundaries in application.

This boundary bias problem is well known in the univariate case, and can be more

severe in the case of multivariate bounded support variables; see Muller (1991, [118])

and Jones (1993, [89]). The log-spline estimators have also drawn considerable at-

tention in the literature1 and have been studied extensively by Stone (1990, [143]).

This estimator has been shown to perform well for density estimations. However,

it su¤ers from a saturation problem. If we denote s the order of the spline and

the logarithm of the density de�ned on a bounded support has r square integrable

derivatives, the fastest convergence rate is achieved only if s > r: Like the kernel

estimator, the log-spline estimator also faces boundary bias problem. It is known

that boundary bias exists if the tail has a non-vanishing kth order derivative, while

the order the (local) polynomial at the tail is less than k:

1.3.1 Exact Maximum Likelihood (EML)

Let�s assume that we have a sample fxt1; :::; xtdgt=1;:::;d containing the values of d dif-
ferent variables over T periods. The joint distribution of these variables is described

by the copula C(F1(xt1); :::; Fd(x
t
d)); with F1; :::; Fd all the marginal distributions.

The expression for the log-likelihood function then becomes:

` (�) =
TX
t=1

ln c(F1(x
t
1); :::; Fd(x

t
d)) +

TX
t=1

dX
i=1

ln fi
�
xti
�
;

with � a k � 1 vector of parameters, including both the margin and the copula
parameters. By maximizing the log-likelihood with respect to �; we �nd the EML

estimator, by �̂
EML

. For this estimator it holds that:

p
T
�
�̂
EML � �

�
! N

�
0;J �1(�)

�
with J (�0) the Fisher information matrix.

A closely related literature is the bivariate log-spline estimator studied by Stone (1994), Koo
(1996) and Kooperberg (1998).
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1.3.2 Inference Functions for Margins (IFM)

As stated previously, the ML method does not use the copula idea of a separation

of margins from the dependence structure. The IFM method on the other hand

is based on that principle. As a consequence of Sklar�s theorem we can write the

log-likelihood as:

` (�) =
TX
t=1

ln c(F1(x
t
1; �1); :::; Fn(x

t
d; �d);�) +

TX
t=1

dX
i=1

ln fi
�
xti; �i

�
;

with � = (�1; :::; �d;�). Now we split the estimation of � in two steps:

� Estimation of the parameters in the univariate margins:

�̂i = argmax
�i

`i (�i) := argmax
�i

TX
t=1

ln fi
�
xti; �i

�
;

for i = 1; :::; d:

� Estimation of the copula parameter, using the estimates obtained for the mar-
gins:

�̂ = argmax
�

`C (�) := argmax
�

TX
t=1

ln c(F1(x
t
1; �̂1); :::; Fd(x

t
d; �̂d);�)

Now the IFM estimator is de�ned as:

�̂
IFM

= (�̂1; :::; �̂d; �̂)

It can be shown that the IFM estimator veri�es the property of asymptotic normality

p
T
�
�̂
IFM � �

�
! N

�
0;V�1(�)

�
;

with V(�) the information matrix of Godambe. De�ne the score function as

g(�) =

�
@

@�1
`1; :::;

@

@�d
`d;

@

@�
`C
�
;
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then the Godambe information matrix can be written as (see Joe 1997, [85]):

V(�) =
�
E
�
@

@�
g (�)T

���1
E
�
g (�)T g (�)

� �
E
�
@

@�
g (�)T

���1!T

;

where AT denote the transpose of A:

1.3.3 Canonical Maximum Likelihood (CML)

When we use the IFM method we will end up with an estimate for � that depends

on the distributional assumptions that we made about the margins. How can we

change our approach and get an estimate for � that is margin independent?

First transform the data (xt1; :::; x
t
d) into uniform variates (ût1; :::; û

t
d) using the em-

pirical distribution functions of the univariate margins. After that we estimate the

copula parameters � in the following way:

�̂ = argmax
TX
t=1

ln c(ût1; :::; û
t
d;�):

In practice transforming the data into uniform variates is performed using a trans-

formation of the empirical distribution function. De�ne F T
1 ; :::; F

T
d ; the empirical

distribution functions, in the following way:

F T
j (x) =

1

T

TX
t=1

1fXt
j�xjg;

where 1(�) is the indicator function. In the estimation procedure we will use

T

T + 1
F T
j (x) ;

to avoid possible problems with unboundedness of the copula density if some of the

ui�s are equal to 1: This means that the transformation of the data into standard

uniform random variates is performed by:

ûtj =
T

T + 1
F T
j

�
xtj
�
; for j = 1; :::; d: (1.9)

The resulting estimator for � is also called a Pseudo-Likelihood Estimator or Om-

nibus Estimator. More information about this procedure and the properties of the



34 1. Copula Theory

estimator can be found in Genest et al. (1995, [60]).

Note that the di¤erence between IFM and CML is that IFM �rst estimates the

marginal distributions under distributional assumptions and then transforms the

data into uniform variates while the CML method directly transforms the data into

uniform variates using the empirical distribution of the data. Another point worth

noticing is that the empirical distribution function can also be described in terms of

rank numbers. For the de�nition of the rank

Rank(Xi) := 1 + # fjjXj < Xig+
1

2
# fjj j 6= i and Xj = Xig ;

Write Rt
j to denote the rank of observation t for variable j: Now the data transfor-

mation can also be written in the following way:

ûtj =
Rt
j

T + 1
;

In Genest et al. (1995, [60]) it is proven that (under certain regularity conditions):

p
T
�
�̂CML ��

�
! N (0;V) ;

where � denotes the true copula parameter (under the assumption that the data

generating process is driven by this speci�c copula) and V is not dependent upon T:
In Genest and Werker (2002, [64]) conditions are given under which CML estimators

are semiparametrically e¢ cient in large samples, and it is argued that for most

copulas these requirements are not satis�ed.

1.3.4 The Empirical Copula Function

Here we give a non parametric method for getting a bivariate copula. Consider a

sample (X1; Y1); (X2; Y2); :::; (Xn; Yn); i.i.d n copies of a random vector (X; Y ): The

bivariate empirical distribution function (see Embrechts et al. 1997, [42, p182])

associated with (X; Y ) is

Hn(x; y) =
1

n

nX
i=1

1fXi�x;Yi�yg;

with marginals

Fn(x) = Hn(x;�1) =
1

n

nX
i=1

1fXi�xg;
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and

Gn(y) = Hn(�1; y) =
1

n

nX
i=1

1fYi�yg:

Then (see Veraverbeke 2005, [148]) the empirical copula function is given by

Cn(u; v) = Hn(F�1n (u);G�1n (v))

=
1

n

nX
i=1

1fXi�F�1n (u);Yi�G�1n (v)g:

(see Nelsen 2006, [123, p 219]) de�ned this copula as

Cn(
i

n
;
j

n
) =

number of pairs (x; y) in the sample with x � Xi:n; y � Yj:n
n

where Xi:n and Yj:n; 1 � i; j � n; denote the order statistics of the sample. Note that

the empirical copula function based on (X1; Y1); (X2; Y2); :::; (Xn; Yn); is the same as

that based on uniform [0; 1] rv�s (U1; V1); (U2; V2); :::; (Un; Vn); where Ui = F (Xi) and

Vi = G(Yi); i 2 f1; 2; :::; ng (see Veraverbeke 2005, [148]).

Figure 1.5: Comparison of empirical copula, CML Frank copula and ML Frank
copula
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Chapter 2

Copula families

« The essence of mathematics is not to make simple th ings complicated ,

but to make complicated th ings simple.»

S . Gudder

In This Chapter will deal mainly with parametric copulas. The word «paramet-

ric» suggests that there is also something like non-parametric copulas, and indeed

this is the case. Three di¤erent forms of non-parametric copulas are distinguished

in the current literature. The so-called Deheuvels or empirical copula (1979, [26]).

Is de�ned similar to an empirical distribution function, by counting the number of

outcomes below certain values and dividing that number by the total number of

outcomes. Empirical copulas are used in practice, but have the disadvantage that

they are discontinuous functions. Kernel approximations to copula functions were

introduced very recently in Fermanian and Scaillet (2003, [45]). The kernel approx-

imations to copulas, were introduced in Li et al. (1997, [106]) . In this approach an

approximating functional form for the copula is speci�ed. Two important approx-

imating forms are called the Bernstein polynomial, and the checkerboard copula,

these approximations converge to the true copula when the number of observations

increases, the tail dependence will always equal zero for the approximations, as

proven in Durrleman et al. (2000, [37]).

Note that we will only look at copula families that are parametric. That is the most

commonly used approach in the literature. Because of the speci�c nature of this

research, multivariate distributions of order higher than two, only two speci�c classes

of parametric copulas will be treated. The extension of twodimensional copulas to

37
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copulas of higher dimension is certainly not a trivial one, but for the three classes

treated here it is feasible. Other classes of copulas can be found in the literature,

such as the Fréchet Family (See Hürlimann 2004, [83]) and Extreme Value copulas

(See Joe 1997, [85]).

The �rst class of copulas that will be treated is the Marshall-Olkin copulas. The ellip-

tical copulas, speci�cally the Gaussian and t-copulas. (for de�nitions see, Embrechts

et al. 2000, [39]) and in the end the Archimedean copulas.

2.1 Marshall-Olkin Copulas

In this section we discuss a class of copulas called Marshall-Olkin copulas. To be

able to derive these copulas and present explicit expressions for rank correlation

and tail dependence coe¢ cients without tedious calculations, we gives with bivariate

Marshall-Olkin copulas and we then suggest applications of Marshall-Olkin copulas

to the modelling of dependent risks. For further details about Marshall-Olkin distri-

butions we refer to Marshall and Olkin (1967, [114]). Similar ideas are contained in

Muliere and Scarsini (1987, [119]).

Consider a two-component system where the components are subject to shocks,

which are fatal to one or both components. Let X and Y denote the lifetimes of

the two components. Furthermore assume that the shocks follow three independent

Poisson processes with parameters �1; �2; �12 � 0; where the index indicates whether
the shocks e¤ect only component 1; only component 2 or both. Then the times Z1;

Z2 and Z12 of occurrence of these shocks are independent exponential rv�s with

parameters �1; �2 and �12 respectively. Hence

H(x; y) = PfX > x; Y > yg
= PfZ1 > xgPfZ2 > ygPfZ12 > max(x; y)g:

The univariate survival functions for X and Y are F (x) = exp(�(�1 + �12)x) and

G(y) = exp(�(�2 + �12)y): Furthermore, since max(x; y) = x+ y �min(x; y);

H(x; y) = exp(�(�1 + �12)x� (�2 + �12)y + �12min(x; y))

= F (x)G(y)min(exp(�12x); exp(�12y)):

Let � = �12=(�1 + �12) and � = �12=(�2 + �12): Then exp(�12x) = F 1(x)
�� and
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exp(�12y) = F 2(y)
��; and hence the survival copula of (X;Y ) is given by

C (u; v) = uvmin(u��; v��) = min(u1��v; uv1��):

This construction leads to a copula family given by

C�;� (u; v) = min(u1��v; uv1��)

=

(
u1��v; u� � v�;

uv1��; u� � v�:

This family is known as the Marshall-Olkin family. Marshall-Olkin copulas have

both an absolutely continuous and a singular component. Since

@2

@u@v
C�;� (u; v) =

(
u��; u� > v�;

v��; u� < v�;

the mass of the singular component is concentrated on the curve u� = v� in [0; 1]2:

Kendall�s tau and Spearman�s rho are easily evaluated for this copula family. For

Spearman�s rho, applying Theorem 1.2.2 yields:

�(C�;�) = 12

ZZ
[0;1]2

C�;�(u; v)dudv � 3

= 12

Z 1

0

 Z u�=�

0

u1��vdv +

Z 1

u�=�
uv1��dv

!
du� 3

=
3��

2�+ 2� � ��
:

To evaluate Kendall�s tau we use the following theorem, a proof of which is found in

Nelsen (2006, [123, p.168]).

Theorem 2.1.1 Let C be a copula such that the product (@C=@u) (@C=@v) is inte-

grable on [0; 1]2: ThenZZ
[0;1]2

C(u; v)dC(u; v) =
1

2
�
ZZ

[0;1]2

@

@u
C(u; v)

@

@v
C(u; v)dudv:
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Using Theorems 1.2.1 and 2.1.1 we obtain

�(C�;�) = 4

ZZ
[0;1]2

C�;�(u; v)dC�;�(u; v)� 1

= 4

�
1

2
�
ZZ

[0;1]2

@

@u
C�;�(u; v)

@

@v
C�;�(u; v)dudv

�
� 1

=
��

�+ � � ��
:

Thus, all values in the interval [0; 1] can be obtained for �(C�;�) and �(C�;�): The

Marshall-Olkin copulas have upper tail dependence. Without loss of generality as-

sume that � > �; then

lim
u%1

C(u; u)

1� u
= lim

u%1

1� 2u+ u2min(u��; u��)

1� u

= lim
u%1

1� 2u+ u2u��

1� u

= lim
u%1
(2� 2u1�� + �u1��)

= �;

and hence �U = min(�; �) is the coe¢ cient of upper tail dependence.

2.2 Elliptical Copulas

The class of elliptical copulas has an unfavorable property when talking about ap-

plication in the �eld of �nance. The dependence structure in �nancial data can-

not be represented correctly. For instance, the asymmetry of the lower and upper

tail of a distribution cannot be described properly by an elliptical copula. This is

because elliptical copulas exhibit «radial symmetry» which has the property that

C(u; v) = C(v; u) and C(u; v) = C(u; v) = u+ v � 1 +C(1� u; 1� v): Another fact
that elliptical copulas do not have closed form expressions.

The class of elliptical distributions provides a rich source of multivariate distributions

which share many of the tractable properties of the multivariate normal distribution

and enables modelling of multivariate extremes and other forms of nonnormal de-

pendences.

Elliptical copulas are simply the copulas of elliptical distributions. Simulation from

elliptical distributions is easy, and as a consequence of Sklar�s Theorem so is simu-

lation from elliptical copulas. Furthermore, we will show that rank correlation and
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tail dependence coe¢ cients can be easily calculated. For further details on elliptical

distributions we refer to Fang, Kotz, and Ng (1990, [43]) and Cambanis, Huang, and

Simons (1981, [13]).

2.2.1 Elliptical distributions

De�nition 2.2.1 Let X is a d-dimensional random vector and, for some � 2 Rn

and some d�d nonnegative de�nite, symmetric matrix �; the characteristic function
'X��(t) of X� � is a function of the quadratic form tT�t; ie.

'X��(t) = �(tT�t);

we say that X has an elliptical distribution with parameters �; � and �; and we write

X � En(�;�; �):

When d = 1; the class of elliptical distributions coincides with the class of onedi-

mensional symmetric distributions. A function � as in De�nition 2.2.1 is called a

characteristic generator.

Theorem 2.2.1 X � Ed(�;�; �) with Rank(�) = k if and only if there exist a rv

R � 0 independent of U; a k-dimensional random vector uniformly distributed on

the unit hypersphere fz 2 RkjzTz = 1g; and an d� k matrix A with AAT = �; such
that

X
d
= �+RAU:

For the proof of Theorem 2.2.1 and the relation between R and � see Fang et al.

(1990, [43]) or Cambanis, Huang and Simons (1981, [13]).

Example 2.2.1 Let X � Nd(0; Id): Since the components Xi � N (0; 1); i = 1; :::; d;
are independent and the characteristic function of Xi is 'Xi (ti) = exp(�t2i =2); the
characteristic function of X is

�X (t) = exp

�
�1
2
(t21 + :::+ t2n)

�
= exp

�
�1
2
tT t

�
:

From Theorem 2.2.1 it then follows that X � Ed(0; Id; �); where �(u) = exp(�u=2):
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If X � Ed(�;�; �); where � is a diagonal matrix, then X has uncorrelated compo-

nents (if 0 < V ar(Xi) <1). IfX has independent components, thenX � Nd(�;�):

Note that the multivariate normal distribution is the only one among the elliptical

distributions where uncorrelated components imply independent components.

Figure 2.1: A density function of an elliptical copula with correlation 0.8.

A random vector X � Ed(�;�; �) does not necessarily have a density. If X has a

density it must be of the form

j�j�1=2g((X� �)T��1(X� �));

for some nonnegative function g of one scalar variable.

Hence the contours of equal density form ellipsoids in Rd: Given the distribution of
X; the representation Ed(�;�; �) is not unique. It uniquely determines � but � and

� are only determined up to a positive constant. More precisely, if X � Ed(�;�; �)

and X � Ed(�
�;��; ��); then

�� = �; �� = c�; ��(�) = �(�=c);

for some constant c > 0: In order to �nd a representation such that Cov(X) = �;

we use Theorem 2.2.1 to obtain

Cov(X) = Cov(�+RAU) = AE(R2)Cov(U)AT ;

provided that(1) E(R2) < 1: Let Y � Nd(0; Id): Then Y
d
= kYkU; where kYk is



2. Copula families 43

independent of U: Furthermore kYk2 � �2d; so E(kYk
2) = d: Since Cov(Y) = Id we

see that if U is uniformly distributed on the unit hypersphere in Rd; then Cov(U) =
Id=d:

Thus Cov(X) = AATE(R2)=d: By choosing the characteristic generator ��(s) =

�(s=c); where c = E(R2)=d; we get Cov(X) = �:

Hence an elliptical distribution is fully described by �; � and �; where � can be

chosen so that(2) Cov(X) = �: If Cov(X) is obtained as above, then the distribution

ofX is uniquely determined by E(X); Cov(X) and the type of its univariate margins.

As usual, let X � Ed(�;�; �): Whenever 0 < V ar(Xi); V ar(Xj) <1;

�(Xi; Xj) := Cov(Xi; Xj)=
q
V ar(Xi)V ar(Xj) = �ij=

p
�ii�jj:

This explains why linear correlation is a natural measure of dependence between rv�s

with a joint nondegenerate (�ii > 0 for all i) elliptical distribution. Throughout this

section we call the matrix R; with

Rij =
�ij
�ii�jj

;

the linear correlation matrix of X:

Note that this de�nition is more general than the usual one and in this situation

(elliptical distributions) makes more sense. Since an elliptical distribution is uniquely

determined by �; � and �; the copula of a nondegenerate elliptically distributed

random vector is uniquely determined by R and �.

One practical problem with elliptical distributions in multivariate risk modelling is

that all margins are of the same type. To construct a realistic multivariate distrib-

ution for some given risks, it may be reasonable to choose a copula of an elliptical

distribution but di¤erent types of margins (not necessarily elliptical), such a model

seems to be that the copula parameter R can not be estimated directly from data3.

In such cases, R can be estimated using (robust) linear correlation estimators. The

Kendall�s tau rank correlation matrix for a random vector is invariant under strictly

increasing transformations of the vector components, and the next theorem provides

E(X) denote the expectation of X:

If Cov(X) is de�ned

Recall that for nondegenerate elliptical distributions with �nite variances, R is just the usual
linear correlation matrix.
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a relation between the Kendall�s tau rank correlation matrix andR for nondegenerate
elliptical distributions, then R can in fact easily be estimated from data.

Theorem 2.2.2 Let X � Ed(�;�; �) with PfXi = �ig < 1 and PfXj = �jg < 1:

Then

�(Xi; Xj) = (1�
X
x2R

(PfXi = xg)2) 2
�
arcsin(Rij); (2.1)

where the sum extends over all atoms of the distribution of Xi: If Rank(�) � 2; then
(2.1) simpli�es to

�(Xi; Xj) = (1� (PfXi = �ig)2)
2

�
arcsin(Rij):

For a proof, see Lindskog, McNeil, and Schmock (2003, [110]). Note that if PfXi =

�ig = 0 for all i; which is true for e.g. multivariate t or normal distributions with
strictly positive de�nite dispersion matrices �; then

�(Xi; Xj) =
2

�
arcsin(Rij);

for all i and j:

The nonparametric estimator ofR; sin(��̂=2) (dropping the subscript for simplicity),
provided by the above theorem, inherits the robustness properties of the Kendall�s

tau estimator and is an e¢ cient (low variance) estimator of R for both elliptical

distributions and nonelliptical distributions with elliptical copulas.

2.2.2 Gaussian or Normal Copulas

The copula of the d-variate normal distribution with linear correlation matrix R is

CGa
R (u) = �

d
R(�

�1(u1); :::;�
�1(ud));

where �dR denotes the joint distribution function of the d-variate standard normal

distribution function with linear correlation matrix R; and ��1 denotes the inverse
of the distribution function of the univariate standard normal distribution. Copulas

of the above form are called Gaussian copulas. In the bivariate case the copula

expression can be written as

CGa
R (u; v) =

Z ��1(u)

�1

Z ��1(v)

�1

1

2�(1�R2
12)

1=2
exp

�
�s

2 � 2R12st+ t2

2(1�R2
12)

�
dsdt:
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Note that R12 is simply the usual linear correlation coe¢ cient of the corresponding

bivariate normal distribution. Example 1.2.3 shows that Gaussian copulas do not

have upper tail dependence. Since elliptical distributions are radially symmetric, the

coe¢ cient of upper and lower tail dependence are equal. Hence Gaussian copulas do

not have lower tail dependence.
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Figure 2.2: The Normal 2-copula density and the corresponding density contour and
level curves. Here R12 = 0:5:

We now address the question of random variate generation from the Gaussian cop-

ula CGa
R : For our purpose, it is su¢ cient to consider only strictly positive de�nite

matrices R:Write R = AAT for some d�d matrix A; and if Z1; :::; Zd � N (0; 1) are
independent, then

�+ AZ � Nd(�;R):

One natural choice of A is the Cholesky decomposition of R: The Cholesky decom-
position of R is the unique lower-triangular matrix L with LLT = R: Furthermore
Cholesky decomposition routines are implemented in most mathematical software.

This provides an easy algorithm for random variate generation from the Gaussian

d-copula CGa
R :

Algorithm 2.2.1

1. Find the Cholesky decomposition A of R:

2. Simulate d independent random variates z1; :::; zd from N (0; 1):

3. Set x = Az:
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4. Set ui = �(xi); i = 1; :::; d:

5. (u1; :::; ud) � CGa
R :

As usual � denotes the univariate standard normal distribution function.

2.2.3 t-copulas

The d-dimensional random vector X = (X1; :::; Xd) is said to have a (non-singular)

multivariate t-distribution with � degrees of freedom, mean vector � and positive-

de�nite dispersion or scatter matrix �; if its density is given by

f (x) =
�
�
�+d
2

�
�
�
�
2

�q
(��)d j�j

 
1 +

(x� �)T ��1 (x� �)
�

!� �+d
2

:

It is well-known that the multivariate t belongs to the class of multivariate normal

variance mixtures and has the stochastic representation

X
d
= �+

p
�p
S
Z; (2.2)

where � 2 Rd; S � �2� and Z � Nd(0;�) are independent, then X has an d-variate

t�-distribution with mean � (for � > 1) and covariance matrix �
��2� (for � > 2).

If � � 2 then Cov(X) is not de�ned. In this case we just interpret � as being the
shape parameter of the distribution of X:

The t-copula is obtained after �ltering out all univariate t�-distributions from the

multivariate t�;�-distribution. Again, this follows directly from Sklar�s theorem.

De�nition 2.2.2 Let t� denote the univariate t-distribution function with � degrees
of freedom, and let t�;� denote the standard multivariate d-dimensional t-distribution

function with linear correlation matrix � and degrees of freedom �: The d-dimensional

t-copula is then de�ned as:

Ct
�;�(u1; :::; ud) = t�;�

�
t�1� (u1) ; :::; t

�1
� (ud)

�
:

Equivalently, the following de�nition is often used:

De�nition 2.2.3 (Multivariate t-Copula). The d-dimensional t-copula with lin-
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Figure 2.3: The Student�s t-copula density and the corresponding density contour
and level curves. Here � = 0:71; � = 3:

ear correlation matrix � and degrees of freedom �; is de�ned as:

Ct
�;�(u1; :::; ud) =

Z t�1� (u1)

�1
:::

Z t�1� (ud)

�1

�((�+d)=2)(1+wT��1w=�)
�(�+d)=2

j�j1=2�(�=2)(��)d=2
dw1:::dwd;

where j�j stands for the determinant of �; w = (w1; :::; wd) and � (�) is the Gamma
function.

For more details, see Hult and Lindskog (2002, [81]), and for details about regular

variation in general see Resnick (1987, [129]) or Embrechts et al. (1997, [42]).

Equation (2.2) provides an easy algorithm for random variate generation from the

t-copula, Ct
�;� :

Algorithm 2.2.2

1. Find the Cholesky decomposition A of �:

2. Simulate d independent random variates z1; :::; zd from N (0; 1):

3. Simulate a random variate s from �2� independent of z1; :::; zd:

4. Set y = Az:

5. Set x =
p
�p
s
y:

6. Set ui = t�(xi); i = 1; :::; d:

7. (u1; :::; ud) � Ct
�;� :
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Figure 2.4: The copula densities of a Gaussian copula (left) and a Student t-copula
(right). Both copulas have correlation coe¢ cient � = 0:3 and the t-copula has 2
degrees of freedom.

2.3 Archimedean Copulas

In this Section we focus on a very important class of copulas called Archimedean

copulas. The adventages of this class are

� Ease in construction.

� Rich of great variety of families of copulas belonging to this class.

� Nice properties of copula belonging to this class.

� Reduce the study of a multivariate copula to a single univariate function.

The word Archimedean was employed the �rst time by Ling in 1965 for Archimedean

t-norms (every Archimedean copula is also an Archimedean t-norm). And the term

«Archimedean copula» was �rst appeared in the statistical literature in two papers

by Genest and Mackay (1986a, [57], 1986b, [58]). Archimedean copulas also appear

in Schweizer and Sklar (1983, [136]) but without the name.

For some background on bivariate Archimedean copulas and a discussion on other

statistical questions we refer to Genest and MacKay (1986a, [57]), Genest and Rivest

(1993, [59]), Joe (1997, [85]), and Nelsen (2006, [123]).



2. Copula families 49

2.3.1 De�nitions and properties

We begin with a general de�nition of Archimedean copulas, which can be found in

Nelsen (2006, [123, p. 109]). As our aim is the construction of multivariate extensions

of Archimedean 2-copulas, this general de�nition will later prove to be a bit more

general than needed.

De�nition 2.3.1 Let ' be a continuous, strictly decreasing function from [0; 1] to

[0;1] such that '(1) = 0: The pseudo-inverse of ' is the function '[�1] : [0;1] !
[0; 1] given by

'[�1](t) =

(
'�1(t); 0 � t � '(0);

0; '(0) � t � 1:

Note that '[�1] is continuous and decreasing on [0;1]; and strictly decreasing on
[0; '(0)]: Furthermore, '[�1]('(u)) = u on [0; 1]; and

'('[�1](t)) =

(
t; 0 � t � '(0);

'(0); '(0) � t � 1:

Finally, if '(0) =1; then '[�1] = '�1:

Theorem 2.3.1 Let ' be a continuous, strictly decreasing function from [0; 1] to

[0;1] such that '(1) = 0; and let '[�1] be the pseudo-inverse of ': Let C be the

function from [0; 1]2 to [0; 1] given by

C(u; v) = '[�1]('(u) + '(v)): (2.3)

Then C is a copula if and only if ' is convex.

For a proof, see Nelsen (2006, [123, p. 111]).

Copulas of the form (2.3) are called Archimedean copulas. The function ' is called

a generator of the copula. If '(0) = 1; we say that ' is a strict generator. In this

case, '[�1] = '�1 and

C(u; v) = '�1('(u) + '(v))

is said to be a strict Archimedean copula.

The results in the following theorem will enable us to formulate multivariate exten-

sions of Archimedean copulas.

Theorem 2.3.2 Let C be an Archimedean copula with generator ': Then
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1. C is symmetric, i.e. C(u; v) = C(v; u) for all u; v in [0; 1]:

2. C is associative, i.e. C(C(u; v); w) = C(u;C(v; w)) for all u; v; w in [0; 1]:

Proof. The �rst part follows directly from (2.3). For 2.,

C(C(u; v); w) = '[�1]('('[�1]('(u) + '(v))) + '(w))

= '[�1]('(u) + '(v) + '(w))

= '[�1]('(u) + '('[�1]('(v) + '(w))))

= C(u;C(v; w)):

The associativity property of Archimedean copulas is not shared by copulas in general

as shown by the following example.

Example 2.3.1 Let C� be a member of the bivariate Farlie-Gumbel-Morgenstern
family of copulas, i.e. C�(u; v) = uv + �uv(1� u)(1� v); for � 2 [�1; 1]: Then

C�

�
1

4
; C�

�
1

2
;
1

3

��
6= C�

��
C�
1

4
;
1

2

�
;
1

3

�
for all � 2 [�1; 1]nf0g: Hence the only member of the bivariate Farlie-Gumbel-
Morgenstern family of copulas that is Archimedean is �:

Theorem 2.3.3 Let C be an Archimedean copula generated by ' and let

KC(t) = VC(f(u; v) 2 [0; 1]2jC(u; v) � tg):

Then for any t in [0; 1];

KC(t) = t� '(t)

'0(t+)
: (2.4)

For a proof, see Nelsen (2006, [123, p. 127]).

Corollary 2.3.1 If (U; V ) has joint distribution function C; where C is an Archimedean
copula generated by '; then the function KC given by (2.4) is the distribution function

of the random variable C(U; V ):

The next theorem will provide the basis for a general algorithm for random variate

generation from Archimedean copulas. Before the theorem can be stated we need an
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expression for the density of an absolutely continuous Archimedean copula. From

(2.3) it follows that

'0(C(u; v))
@

@u
C(u; v) = '0(u);

'0(C(u; v))
@

@v
C(u; v) = '0(v);

and

'00(C(u; v))
@

@u
C(u; v)

@

@v
C(u; v) + '0(C(u; v))

@2

@u@v
C(u; v) = 0;

when C is absolutely continuous, its density is given by

@2

@u@v
C(u; v) = �

'00(C(u; v)) @
@u
C(u; v) @

@v
C(u; v)

'0(C(u; v))

= �'
00(C(u; v))'0(u)'0(v)

['(C(u; v))]3
: (2.5)

Theorem 2.3.4 Under the hypotheses of Corollary 2.3.1, the joint distribution func-
tion H(s; t) of the random variables S = '(U)=['(U) + '(V )] and T = C(U; V ) is

given by H(s; t) = sKC(t) for all (s; t) in [0; 1]2: Hence S and T are independent,

and S is uniformly distributed on [0; 1]:

Proof. (This proof, for the case when C is absolutely continuous, can be found

in Nelsen (2006, [123, p. 104]). For the general case, see Genest and Rivest (1993,

[59])). The joint density h(s; t) of S and T is given by

h(s; t) =
@2

@u@v
C(u; v)

����@(u; v)@(s; t)

���� ;
where @2C(u; v)=@u@v is given by (2.5) and j@(u; v)=@(s; t)j denotes the Jacobian of
the transformation '(u) = s'(t); '(v) = (1� s)'(t): But

@(u; v)

@(s; t)
=

'(t)'0(t)

'0(u)'0(v)
;

and hence

h(s; t) = �'
00(t)'0(u)'0(v)

['(t)]3
� '(t)'0(t)

'0(u)'0(v)
=
'00(t)'(t)

['0(t)]2
:

Therefore

H(s; t) =

Z s

0

Z t

0

'00(y)'(y)

['0(y)]2
dydx = s

�
y � '(y)

'0(y)

�t
0

= sKC(t);
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from which the conclusion follows.

An application of Theorem 2.3.4 is the following algorithm for generating random

variates (u; v) whose joint distribution is an Archimedean copula C with generator

'.

Algorithm 2.3.1

1. Simulate two independent U(0; 1) random variates s and q:

2. Set t = K�1
C (q); where KC is the distribution function of C(U; V ):

3. Set u = '[�1](s'(t)) and v = '[�1]((1� s)'(t)):

Note that the variates s and t correspond to the random variables S and T in

Theorem 2.3.4 and from the proof it follows that this algorithm yields the desired

result.

2.3.2 Kendall�s tau of Archimedean Copula

Recall that Kendall�s tau for a copula C can be expressed as a double integral of

C: This double integral is in most cases not straightforward to evaluate. However

for an Archimedean copula, Kendall�s tau can be expressed as an (one-dimensional)

integral of the generator and its derivative, as shown in the following theorem from

Genest and MacKay (1986a, [57]).

Theorem 2.3.5 Let X and Y be rv�s with an Archimedean copula C generated by

': Kendall�s tau of X and Y is given by

�C = 1 + 4

Z 1

0

'(t)

'0(t)
dt: (2.6)

Proof. Let U and V be U(0; 1) rv�s with joint df C; and let KC denote the

distribution function of C(U; V ): Then from Theorem 1.2.1 we have

�C = 4E(C(U; V ))� 1

= 4

Z 1

0

tdKC(t)� 1

= 4

�
[tKC(t)]

1
0 �

Z 1

0

KC(t)dt

�
� 1

= 3� 4
Z 1

0

KC(t)dt:
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From Theorem 2.3.3 and Corollary 2.3.1 it follows that KC(t) = t� '(t)
'0(t+) . Since ' is

convex, '(t+) and '(t�) exist for all t in (0; 1) and the set ft 2 (0; 1)j'(t+) = '(t�)g
is at most countable (i.e. it has Lebesgue measure zero). Hence

�C = 3� 4
Z 1

0

�
t� '(t)

'0(t+)

�
dt

= 1 + 4

Z 1

0

'(t)

'0(t)
dt:

2.3.3 Tail dependence of Archimedean Copula

The following Theorem give an expression of the tail dependence for Archimedean

copulas, in terms of the generators.

Theorem 2.3.6 Let ' be a strict generator such that '�1 belongs to the class of
Laplace transforms of strictly positive random variables. If '�10(0) is �nite, then

C(u; v) = '�1('(u) + '(v))

does not have upper tail dependence. If C has upper tail dependence, then '�10(0) =

�1 and the coe¢ cient of upper tail dependence is given by

�U = 2� 2 lim
s&0

�
'�10(2s)

'�10(s)

�
:

Proof. See Joe (1997, [85, p. 103]).

The additional condition on the generator ' might seem somewhat strange. It

will however prove quite natural when we turn to the construction of multivari-

ate Archimedean copulas. Furthermore, the condition is satis�ed by the majority of

the commonly encountered Archimedean copulas.

Theorem 2.3.7 Let ' be as in Theorem 2.3.6. The coe¢ cient of lower tail depen-

dence for the copula C is equal to

�L = 2 lim
s!1

�
'�10(2s)

'�10(s)

�
:

The proof is similar to that of Theorem 2.3.6.
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2.3.4 Examples of Archimedean Copulas

Clayton copula

The Clayton (1978) copula, also referred to as the Cook and Johnson (1981) copula,

originally studied by Kimeldorf and Sampson (1975), takes the form:

C(u; v) = (u�� + v�� � 1)�1=�; � 2 [�1;1)nf0g;

with the dependence parameter � restricted on the region (0;1). The limiting case
� = 0 corresponds to the independent case, i.e. C = �2. In particular, this family is

positively ordered, and its members are absolutely continuous for � > 0:
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Figure 2.5: The Clayton 2-copula density and the corresponding density contour and
level curves. Here the parameter is � = 2:

This strict copula family has generator

'(t) = (t�� � 1)=�:

It follows that

'�1(s) = (1 + �s)�1=�:

Using Theorem 2.3.6 and 2.3.7 shows that �U = 0 and that the coe¢ cient of lower
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tail dependence given by

�L = 2 lim
s!1

['�10(2s)='�10(s)]

= 2 lim
s!1

�
(1 + 2�s)�1=��1

(1 + �s)�1=��1

�
= 2� 2�1=��1

= 2�1=�:

As approaches zero, the marginals become independent. As approaches in�nity, the

copula attains the Fréchet upper bound, but for no value does it attain the Fréchet

lower bound. The Clayton copula cannot account for negative dependence. It has

been used to study correlated risks because it exhibits strong left tail dependence

and relatively weak right tail dependence.

Using Theorem 2.3.5 we can calculate Kendall�s tau for the Clayton family

� � = 1 + 4

Z 1

0

t�+1 � t

�
dt

= 1 +
4

�

�
1

� + 2
� 1
2

�
=

�

� + 2
:

which may provide a way to �t a Clayton 2-copula to the available data.

Gumbel family

The Gumbel copula (1960) takes the form:

C(u; v) = exp

�
�
h
(� lnu)� + (� ln v)�

i1=��
:

The dependence parameter is restricted to the interval [1;1): Values of 1 and 1
correspond to independence and the Fréchet upper bound, but this copula does not

attain the Fréchet lower bound for any value of �. The Gumbel copulas are strict

Archimedean with generator

'(t) = (� ln t)�:

Hence '�1(s) = exp(�s1=�) and

'�10(s) = �s1=��1 exp(�s1=�)=�:
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Figure 2.6: The Gumbel 2-copula density and the corresponding density contour and
level curves. Here the parameter is � = 2:

Using Theorem 2.3.6 we get

�U = 2� 2 lim
s&0
['�10(2s)='�10(s)]

= 2� 21=� lim
s&0

�
exp(�(2s)1=�)
exp(�s1=�)

�
= 2� 21=�:

Similar to the Clayton copula, Gumbel does not allow negative dependence, but it

contrast to Clayton, Gumbel exhibits strong right tail dependence and relatively

weak left tail dependence. If outcomes are known to be strongly correlated at high

values but less correlated at low values, then the Gumbel copula is an appropriate

choice.

Using Theorem 2.3.5 we can calculate Kendall�s tau for the Gumbel family

� � = 1 + 4

Z 1

0

t ln t

�
dt

= 1 +
4

�

 �
t2

2
ln t

�1
0

�
Z 1

0

t

2
dt

!
= 1 +

4

�
(0� 1=4)

= 1� 1=�:

As a consequence, in order to have Kendall�s tau equal to 0:5; we put � = 2:
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Frank family

Consider the Frank family given by

C�(u; v) = �
1

�
ln

�
1 +

(e�� (u� 1))(e�� (v � 1))
e�� � 1

�
;

for � 2 Rnf0g: This strict copula family has generator

'(t) = � ln e
��t � 1
e�� � 1 :

It follows that

'�1(s) = �1
�
ln
�
1� (1� e��)e�s

�
;

and

'�10(s) = �1
�

(1� e��)e�s

1� (1� e��)e�s
:

Since

'�10(0) = �e
� � 1
�

is �nite, the Frank family does not have upper tail dependence according to Theorem

2.3.6. Furthermore, members of the Frank family are radially symmetric, i.e. C = C;

and hence the Frank family does not have lower tail dependence.
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Figure 2.7: The Frank 2-copula density and the corresponding density contour and
level curves. Here the parameter is � = 12:825:
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It can be shown that (see, e.g. Genest, 1987, [56]) Kendall�s tau is

� � = 1�
4(1�D1(�))

�
;

where Dk(x) is the Debye function, given by

Dk(x) =
k

xk

Z x

0

tk

et � 1dt;

for any positive integer k:

2.3.5 Simulation

In this section we present two algorithms to generate an observation (u; v) from an

Archimedean copula C with generator ':

Algorithm 2.3.1

1. Generate two independent uniform (0; 1) variates s and t:

2. Set w = K(�1)(t); where

K(t) = t� '(t)

'0(t+)

and K(�1)(t) = supfxjK(t) � xg:

3. Set w = '[�1] (s'(w)) and v = '[�1] ((1� s)'(w)) :

Algorithm 2.3.1 is a consequence of the fact that if U and V are uniform random

variables with an Archimedean copula C; thenW = C(U; V ) and S = '(U)=('(U)+

'(V )) are independent, S is uniform (0; 1); and the distribution function of W is K

(Genest and Rivest, 1993, [59]).

Algorithm 2.3.2

1. Generate two independent uniform (0; 1) variates u and t:

2. Set w = '0(�1)
�
'0(u)
t

�
:

3. Set v = '[�1] ('(w)� '(u)) :

Algorithm 2.3.2 is the «conditional distribution function» method, where v = c
(�1)
u (t)

for

cu(t) =
@C(u; v)

@u
= P[V � vjU = u]:
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2.4 Copulas with two dependence parameters

In many instances, a single parameter does not provide su¢ cient �exibility for mod-

eling purposes. In this section we discuss methods to add a parameter.

Although they are rarely used in empirical applications, it is possible to construct

Archimedean copulas with two dependence parameters, each of which measures a

di¤erent dependence feature. For example, one parameter might measure left tail

dependence while the other might measure right tail dependence. The bivariate

Student�s t-distribution was mentioned earlier as an example of a two-parameter

copula. Transformation copulas in Section 2.3 are a second example. Two parameter

Archimedean copulas take the form:

C(u; v) = '
�
� lnK

�
e�'(u); e�'(v)

��
; (2.7)

whereK is max-stable and ' is a Laplace transformation. IfK assumes an Archimedean
form, and if K has dependence parameter �1, and ' is parameterized by �2, then

C(u; v; �1; �2) assumes an Archimedean form with two dependence parameters. Joe

(1997, [85]) discusses this calculation in more detail. As an example, we present one

Archimedean copula with two parameters, and we direct the interested reader to Joe

(1997, [85]) for more examples. If K assumes the Gumbel form, then (2.7) takes the
form:

C(u; v; �1; �2) = '
�
'�1(u) + '�1(v)

�
;

where '(t) = (1 + t1=�1)�1=�2 ; �2 > 0 and �1 � 1: For this copula, 2�1=(�1�2) measures
lower tail dependence and 2� 21=�1 captures upper tail dependence.

2.4.1 Interior and exterior power

In this section we discuss methods to add a parameter at Archimedean copula withe

single parameter. Let '� be a generator of an Archimedean copula, and de�ne

'�;�(t) = '�(t
�) and '�;�(t) = ['(t)]

�. Then:

1. '�;� is a generator for all � � 1;

2. '�;� is a generator for all � in (0; 1];

3. If '� is twice di¤erentiable and '�(t) is nondecreasing on (0; 1); then '�;� is a

generator for all � > 0:
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The set f'�;�g is the interior power family of generators associated with '� and

f'�;�g is the exterior power family of generators associated with '� (see, Oakes,

1994, [126]). We note that we can create a three-parameter family of generators

from a single generator '� by '�;�;�(t) = ['�(t
�)]� for appropriate values of � and �:

Example 2.4.1 The single Gumbel-Hougaard Copula is given by

C�1(u; v) = exp
n
�
�
(� lnu)�1 + (� ln v)�1

�1=�1o ;
withe generator '�1 = (� ln t)

�1 : This copula has more probability concentrated in the

tails. It is also asymmetric, with more weight in the right tail (Nelsen 2006, [123]).

The dependence parameter �1 is restricted to the interval [1;1). Let  �1;�2 (t) =�
� ln t�2

��1 ; the interior power family of Gumbel-Hougaard Copula generators, then
for �1 in [1;1) and �2 in (0; 1]

C�1;�2 (u; v) =

�
exp

�
�
��
� lnu�2

��1 + �� ln v�2��1�1=�1��1=�2 :
Note that the exterior power family of generators '�1 is the single Gumbel-Hougaard

Copula withe parameter �1�2:

Example 2.4.2 The single Clayton Copula is given by:

C1 (u; v) =
�
max

��
u�1 + v�1 � 1

�
; 0
	��1=1 ;

withe generator '1 (t) = (t
�1 � 1) =1; and 1 in [�1;1) n f0g : The Clayton copula

is an asymmetric Archimedean. copula, exhibiting greater dependence in the left tail

than in the right (Salvadori et al. 2007). The exterior power family of generators

associated with '1 is given by  1;2(t) =
�
'1 (t)

�2 : Then a two parameter Clayton
copula is given for 2 � 1 by

C1;2 (u; v) =
�
max

n���
u�1 � 1

�2 + �v�1 � 1�2�1=2 + 1� ; 0o��1=1 :
Note that the interior power family of Clayton copula is a single Clyton copula with

parameter 12:

Example 2.4.3 (Fang et al., 2000) '�(t) = ln([1 � �(1 � t)]=t) generates the Ali-

Mikhail-Haq family (see Table 4.1 of Nelsen 2006, [123]), and since t'0�(t) is nonde-

creasing for � in [0; 1]; the interior power family of copulas associated with '� is, for
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u; v; � in [0; 1]; � > 0

C�;�;1(u; v) =
uv

[1� �(1� u1=�)(1� v1=�)]�
:

2.4.2 Method of nesting

Archimedean copulas can be extended to include additional marginal distributions.

We Focus on the trivariate case, it easy to include a third marginal by

C(u; v; w) = '
�
'�1(u) + '�1(v) + '�1(w)

�
: (2.8)

This construction can be readily used in empirical applications, but it is necessary to

assume that '�1 is completely monotonic (Cherubini et al., 2004, [20, p. 149]). The

forme (2.8) implies symmetric dependence between the three pairs (u; v); (v; w); and

(u;w); due to having a single dependence parameter. This restriction becomes more

onerous as the number of marginals increases. It is not possible to model separately

the dependence between all pairs.

The functional form of an Archimedean copula will be recognized by those familiar

with the theory of separable and additively separable functions. Note that many

Archimedean copulas are additively separable1.

Remark 2.4.1 A function may be separable but not additively separable.

Under separability variables can be nested. For example if d = 3; then the following

groupings are possible: (u; v; w; �); (u; [v; w; �2]; �1); (v; [u;w; �2]; �1) and (w; [u; v; �2]; �1):

When �tting copulas to data, the alternative groupings have di¤erent implications

and interpretations. Presumably each grouping is justi�ed by some set of assump-

tions about dependence. The �rst grouping restricts the dependence parameter � to

be the same for all pairs. The remaining three groupings allow for two dependence

parameters, �rst one, �1; for a pair and a second one, �2; for dependence between

the singleton and the pair.

The existence of generators �t that lead to �exible forms of Archimedean copulas

seems to be an open question. Certain types of extensions to multivariate copulas

A function f(u) is (weakly) separable if it can be written as f(u) = �f�1(u1); :::; �k(uk)g;and
additively separable if f(u) = �

nPk
t=1 �

t (ut)
o
;where (u1; :::;ut) is a separation of the set of

variables (u1; u2; :::; ud) into t nonoverlapping groups.
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are not possible. For example, Genest et al. (1995, [60]) considered a copula C such

that

H(x1; :::; xi; y1; :::; yj) = C(F (x1; :::; xi); G(y1; :::; yj))

de�nes a (i+j)-dimensional distribution function with marginals F and G; i+j � 3:
They found that the only copula consistent with these marginals is the independence

copula. Multivariate Archimedean copulas with a single dependence parameter can

be obtained if restrictions are placed on the generator. For multivariate generaliza-

tions of Gumbel, Frank and Clayton (see Cherubini et al., 2004, [20, p. 150-151]).

Copula densities for dimensions higher than 2 are tedious to derive; however, Cheru-

bini et al. 2004, [20, Section 7.5] gives a general expression for the Clayton copula

density, and for the Frank copula density for the special case of four variables.

We exploit the mixtures of powers method to extend Archimedean copulas to include

a third marginal. For a more detailed exposition of this method, see Joe (1997,

[85, CH. 5]) and Zimmer and Trivedi (2006). The trivariate mixtures of powers

representation is

C(u; v; w) =

Z 1

0

Z 1

0

G�(u)G�(v)dM2(�;�)G
�(w)dM1(�); (2.9)

where G(u) = exp(���1(u)); G(v) = exp(���1(v)); G(w) = exp(�'�1(w)); and '
is a Laplace transformation. In this formulation, the power term � a¤ects u; v; and

w; and a second power term � a¤ects u and v: The distribution M1 has Laplace

transformation '(�); and M2 has Laplace transformation ('�1 � �)�1(���1log(�))�1:
When � = '; expression (2.9) simpli�es to expression (2.8). (The mathematical

notation f � g denotes the functional operation f(g(x))).
When � = '; the trivariate extension of Archimedean copula corresponding to (2.9)

is

C(u; v; w) = '
�
'�1 � �[��1(u) + ��1(v)] + '�1(w)

�
: (2.10)

Therefore, di¤erent Laplace transformations produce di¤erent families of trivariate

copulas. Expression (2.8) has symmetric dependence in the sense that it produces

one dependence parameter � = �uv = �uw = �vw:

But the dependence properties of three di¤erent marginals are rarely symmetric in

empirical applications. The trivariate representation of expression (2.10) is symmet-

ric with respect to (u; v) but not with respect to w. Therefore, (2.10) is less restrictive

than (2.8). The partially symmetric formulation of expression (2.10) yields two de-

pendence parameters, �1 and �2; such that �1 � �2: The parameter �2 = �uv measures
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dependence between u and v. The parameter �1 = �uw = �vw measures dependence

between u and w as well as between v and w; and the two must be equal. Distribu-

tions greater than three dimensions also have a mixtures of powers representations,

but this technique yields only d � 1 dependence parameters for an d-variate distri-
bution function. Therefore, the mixtures of powers approach is more restrictive for

higher dimensions. While this restriction constitutes a potential weakness of the

approach, it is less restrictive than formulation (2.8) which yields only one depen-

dence parameter. Moreover, the multivariate representation in Eq. (2.10) allows a

researcher to explore several dependence patterns by changing the ordering of the

marginals. For example, instead of (u; v; w); one could order the marginals (w; v; u);

which provides a di¤erent interpretation for the two dependence parameters.

As an example, we demonstrate how the Frank copula is extended to include a third

marginal. If �(s) = exp(�s1=�) and ('�1 � �)(s) = s�1=�2 ; then expression (2.10)

becomes

C(u; v; w; �1; �2) (2.11)

= ��1 ln
(
1� (1� e��1w)

1� e��1

 
1�

�
1� (1� e��2u)(1� e��2v)

1� e��2

��1=�2!)
;

where �1 � �2: (The proof is complicated; see Joe (1993, [84])). Despite the ability of

some bivariate Archimedean copulas to accommodate negative dependence, trivariate

Archimedean copulas derived from mixtures of powers restrict �1 and �2 to be greater

than zero, which implies positive dependence. This re�ects an important property

of mixtures of powers. In order for the integrals in Eq. (2.9) to have closed form

solutions, then power terms � and �; which are imbedded within �1 and �2; must be

positive.

2.4.3 Distortion of copula

In this section, we limit ourselves to the case of 2-dimensional copula. Let C be a

copula. Given a bijection � : [0; 1] ! [0; 1] ; we can now de�ne C� : [0; 1]2 ! [0; 1]

by

C�(u; v) = ��1(C(�(u);�(v))): (2.12)

We can �nd necessary and su¢ cient conditions for C� being a copula by introducing

strong conditions for �:
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Theorem 2.4.1 Assume that � is a concave, C1-di¤eomorphism from ]0; 1[ to ]0; 1[ ;
twice di¤erentiable and continuous from [0; 1] to [0; 1] ; such that � (0) = 0 and

� (1) = 1; then C� is a copula.

Theorem 2.4.2 Under the assumptions of Theorem 2.4.1, the function C� is a

copula if and only if

@2C

@u@v
(u; v) � �00 (��1 (C (u; v)))

[�0 (��1 (C (u; v)))]2
@C

@u
(u; v)

@C

@v
(u; v) ;

for every (u; v) where the derivatives of C exist.

Proof. It is su¢ cient to prove the second result because in the case where � is
concave, we trivially have

�00 (��1 (C (u; v)))

[�0 (��1 (C (u; v)))]2
@C

@u
(u; v)

@C

@v
(u; v) � 0

and therefore the condition is match as soon as C is a copula. In order to prove the

second Theorem, assume that C� is a copula. By de�nition, we have

�
�
C�(u; v)

�
= (C(�(u);�(v)));

and by doing (u; v) = (0; 0) and (u; v) = (1; 1) ; we obtain the necessary condition

that � (0) = 0 and � (1) = 1: The continuity of � and the assuption that � be a

C1-di¤eomorphism imply that �0 > 0: At every (u; v)

@2C�

@u@v
(u; v) =

�0 (u) �0 (v)

�0 (��1 (C (� (u) ;� (v))))
�
�
@2C

@u@v
(� (u) ;� (v))

� �00 (��1 (C (� (u) ;� (v))))

[�0 (��1 (C (� (u) ;� (v))))]2
@C

@u
(� (u) ;� (v))

@C

@v
(� (u) ;� (v))

�
:

The condition is then necessary. On the other hand, by integrating the cross-

derivative between 0 < u1 � u2 < 1 and 0 < v1 � v2 < 1; we get

C� (u2; v2)� C� (u1; v2)� C� (u2; v1) + C� (u1; v1) � 0: (2.13)
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Since � (0) = 0 and � (1) = 1; we obtain

C� (u; 0) = 0;

C� (u; 1) = u;

C� (0; v) = 0;

C� (1; v) = v;

this shows us that inequality (2.13) holds for evry 0 < u1 � u2 < 1 and 0 < v1 �
v2 < 1; and this completes the proof

Example 2.4.4 (Frank copula). The Frank copula has the following form

C(u; v) = �1
�
ln

�
(1� e��)� (1� e��u)(1� e��v)

1� e��

�
:

Assume that � (x) = x1=� with � � 1: veri�es the Theorem 2.4.1 and it comes that

C� is a copula. The corresponding density function is then

c� (u; v) =
�u�vC� (u; v) e��(�u+�v)

�uv
�
�C� (u; v)

�2
 

1

(1� e��) exp
�
�� �C� (u; v)

�!2 ��
�(1� e��) �C� (u; v)� (1� �) (1� e���u)(1� e���v)

�
;

with

C�(u; v) =

�
�1
�
ln

�
(1� e��)� (1� e���u)(1� e���v)

1� e��

���
:

where �u = u1=�; �v = v1=� and �C� (u; v) =
�
C� (u; v)

�1=�
: In Figure 2.8, we repre-

sented the density contours of di¤erent multivariate distributions generated by Frank

Copula. We have set � = 5:736 (the corresponding Kendall�s tau is then equal to

0:5). When the margins are uniform (left and top quadrant), we obtain directly the

density of the copula. In the oyher quadrant, the margins are Gaussian, Student or

�-stable distributions.

In Figure 2.9 and 2.10 we give the contour plots of transformed copula in the cases

� = 3 and � = 7: We remark clearly that this transform function has an important

impact on the dependence structure. Note moreover that the transformed copula

belongs to two-parameter family.
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Figure 2.8: Countours of density for Frank copula with � = 5:736:

2.5 Choosing the right copula

To assess the �t of copula in the dependency structure of a sample, we can use

graphical tools include:

1. Empirical comparison of densities (estimated nonparametrically from the sam-

ple by kernel method) with theoretical 3-dimensional or as contour lines.

2. The dependogramme.

3. Kendall-plot or K-plot (see Genest and Boies, 2003, [55]).

These graphs can be specially observed if the tail dependence is present in the data

and if it is well modeled by the copula chosen.

2.5.1 Empirical comparison of densities

In the �rst stage, we estimate marginals by

F̂n(x) =
1

n

nX
i=1

K

�
x�Xi

bn1

�
; Ĝn(Yi) =

1

n

nX
i=1

K

�
y � Yi
bn2

�
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Figure 2.9: Contours of density for the transformed Frank copula withe � = 5:736
and � = 3:

with a bandwidth bn1 and bn2; see Bowman, Hall and Prvan (1998) for more details

on this kernel distribution function estimator. and K the integral of a symmetric

bounded kernel function k supported on [�1; 1]: In the second stage, the pseudo-
observations Ûi = F̂n(Xi) and V̂i = Ĝn(Yi) are used to estimate the joint distribution

function of the unobserved F (Xi) andG(Yi); which gives the estimate of the unknown

copula C: To prevent boundary bias, Chen and Huang (2007, [19]) suggested using

a local linear version of the kernel k given by

ku;h (x) =
k (x) (a1 � a2x)

a0a2 � a21
1fu�1h <x<u

hg;

a local linear version of K;to smooth at a u 2 [0; 1] with a bandwidth h > 0; where

ai =

Z u=h

(u�1)=h
tik (t) dt; for i = 0; 1; 2:

Finally, the local linear type estimator of the copula density is given by

ĉh (u; v) =
1

Th2

TX
i=1

Ku;hn

 
u� Ûi
h

!
Kv;hn

 
v � V̂i
h

!
;
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Figure 2.10: Contours of density for the transformed Frank copula withe � = 5:736
and � = 7:

where Ku;h(x) =
R x
�1 ku;h(s)ds; and we compare the empirical estimator with the

theoretical 3-dimensional densities see Figure 2.11.

2.5.2 Dependogramme

The dependogramme represents the dependence structure in the form of scatter uni-

form margins (u; v) extracted from the sample or simulation of a copula theory. Note

that the pairs (u; v) from the sample built the empirical copula. It is simply de�ned

by the rank statistics from the sample. We compare the empirical dependogramme

copula with the other theoretical copula estimated on the sample.

The dependogramme can also observe the more or less simultaneous creations of the

sample. More accurately, in the tails, it is useful to analyze whether simultaneity

is high and therefore it is necessary to calibrate our sample to a copula with tail

dependence see Figure 2.12.

2.5.3 Kendall plot

The Kendall-plot allow more direct comparison between the empirical copula and

copula theory. The algorithm of constructing a Kendall-plot is as follows:
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Figure 2.11: (Left) The density of the Frank copula with a � = 0:5: (Rihgt) Esti-
mation of the copula density using a Gaussian kernel and Gaussian transformations
with 1,000 observations drawn from the Frank copula.

1. Compute the function Hi for each pair of a ranks observations of the sample

(ui; vi)

Hi =
1

n� 1cardfj 6= i : uj � ui; vj � vig;

for 1 � i � n; where n is the length of the sample. They must then be ordered

for H(1) � ::: � H(n): We thus obtain the empirical part of K-plot from the

sample.

2. It should be compared with the theoretical copula, For this, we determine

H th
i:n = E

�
H th
(i)

�
; where

H th
(i) =

1

n� 1card
�
j 6= i : uthj � uthi ; v

th
j � vthi

	
:

for each pair (uthi ; v
th
i ) from the copula theory. We determine these couples

using Monte Carlo simulations of the copula theory. Thus, we simulate n

realizations of the theoretical copula m times, determining H th
(i) for each m-th

simulation, which is then ordered, and �nally we calculate the expectation of

m H th
(i) for each i: And we obtain H

th
i:n:

3. It remains to graphing pairs
�
H(i); H

th
i:n

�
to obtain the K-plot

More Kendall-plot approximates a straight line, plus the adjustment between the

dependency structure of the sample and the estimated copula on the same sample is

good see Figure 2.13.
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Figure 2.12: Dependogrammes for simulated data from three di¤erent copulas
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Figure 2.13: Kendall plots comparing a sample of simulated data from a Student
copula (correlation 0.5, 3 degree of freedom) several copulas estimated on the same
sample.
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Chapter 3

Measuring Risk

Lord Kelv in once said « Anyth ing that ex ists,

ex ists in som e quantity and can therefore b e m easured»

(quoted in Beer 1967).

Quantifying and placing risks in some order of priority is an important activity to

the farmer and his enterprise. There are two elements of each risk which need to be

quanti�ed for controlling it reliably:

� the frequency of the risk occurring,

� the cost and economic consequences of it occurring.

This quanti�cation of risk is fundamental to all the commercial decisions which may

be taken about an enterprise, then the initial investment capital must be su¢ cient

to start and operate the business and to cover the risks it faces or to divert the costs

of the risks elsewhere.

The principal decisions facing the farmer or the investor, can be sub-divided into

three categories, namely:

1. Commercial decisions. These are the basic decisions about business, and are

made through �nancial comparison of the anticipated return on investment

with the cost of any risk if it occurs.

2. Reduction and control decisions. The decisions speci�c for each risk which

must be made if its impact is to be reduced or eliminated altogether. If the

73
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risk is only to be reduced, then it is important to decide to what acceptable

level, and at what cost.

3. Financing decisions. These are the decisions which deal with ways of �nancing

the risk and their acceptability.

A good reference resources it is still very necessary to make the quanti�cation speci�c

to the farm in question. As the risks to the farm operations are site related, it is

necessary that the quanti�cation of those risks is also site related. It is therefore

important that as much information as possible is assembled for each particular

farming enterprise, and its local environment.

3.1 Risk Measures

3.1.1 De�nition

Since risks are modelled as non-negative rv�s, measuring risk is equivalent to estab-

lishing a correspondence between the space of rv�s and non-negative real numbers

R+: The real number denoting a general risk measure associated with the risk X will

henceforth be denoted as X: Thus, a risk measure is nothing but a functional that

assigns a non-negative real number to a risk. See Szegö (2004) for an overview. It is

essential to understand which aspect of the riskiness associated with the uncertain

outcome the risk measure attempts to quantify.

In this chapter, we will focus on risk measures that can be used for determining

provisions and capital requirements in order to avoid insolvency. In that respect, we

will concentrate on risk measures that measure upper tails of distribution functions.

We are now ready to state the de�nition of a risk measure.

De�nition 3.1.1 A risk measure is a functional % mapping a risk X to a non-

negative real number % [X] ; possibly in�nite, representing the extra cash which has

to be added to X to make it acceptable.

The idea is that % quanti�es the riskiness of X: large values of % [X] tell us that X

is �dangerous�. Speci�cally, if X is a possible loss of some �nancial portfolio over a

time horizon, we interpret % [X] as the amount of capital that should be added as a

bu¤er to this portfolio so that it becomes acceptable to an internal or external risk

controller. In such a case, % [X] is the risk capital of the portfolio.
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Such risk measures are used for determining provisions and capital requirements in

order to avoid insolvency; see Panjer (1998, [127]).

Another function that is useful in analysing the thickness of tails is the mean-excess

loss, whose de�nition by.

De�nition 3.1.2 Given a non-negative rv X; the associated mean-excess function
(mef) eX is de�ned as

eX (x) = E [X � xjX > x] ; x > 0:

The mef corresponds to the well-known expected remaining lifetime in life insurance.

In reliability theory, whenX is a non-negative rv, X can be thought of as the lifetime

of a device and eX (x) then expresses the conditional expected residual life of the

device at time x given that the device is still alive at time x:

3.2 Premium Principles

A premium principle is a rule for assigning a premium to an insurance risk. In

this Section, we focus on the premium that accounts for the monetary payout by

the insurer in connection with insurable losses plus the risk loading that the insurer

imposes to re�ect the fact that experienced losses rarely.

We list and discuss desirable properties of premium principles. First, we present some

notation that we use throughout afterwards. Let � denote the set of nonnegative

random variables on the probability space (
; F;P); this is our collection of insurance-
loss rv�s, also called insurance risks. Let X; Y; Z; etc. denote typical members of

�. Finally, let % denote the premium principle, or function, from � to the set of

(extended) non-negative real numbers. Thus, it is possible that %[X] takes the value

1: It is possible to extend the domain of a premium principle % to include possibly

negative rv�s. That might be necessary if we were considering a general loss rv of

an insurer, namely, the payout minus the premium (Bowers et al., [9]). However, in

this thesis, we consider only the insurance payout and refer to that as the insurance

loss rv.
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3.2.1 Properties of premium calculation principles

1) Independence

%[X] depends only on the df of X; namely SX ; inwhich

SX(t) = Pf! 2: X(!) > tg:

That is, the premium of X depends only on the tail probabilities of X: This property

states that the premium depends only on the monetary loss of the insurable event

and the probability that a given monetary loss occurs, not the cause of the monetary

loss.

2) Risk loading

%[X] � E [X] for all X 2 �: Loading for risk is desirable because one generally

requires a premium rule to charge at least the expected payout of the risk X; namely

E [X] ; in exchange for insuring the risk. Otherwise, the insurer will lose money on
average.

3) No unjusti�ed risk loading

If a risk X 2 � is identically equal to a constant c � 0 (almost everywhere), then

%[X] = c: In contrast to Property 2 (Risk loading), if we know for certain (with

probability 1) that the insurance payout is c; then we have no reason to charge a

risk loading because there is no uncertainty as to the payout.

4) Maximal loss (or no rip-o¤)

%[X] � max[X]; for all X 2 �:

5) Translation equivariance (or translation invariance)

That means that adding (resp. subtracting) the sure initial amount a to the initial

position and investing it in the reference instrument, simply decreases (resp. in-

creases) the risk measure by a: Translation invariance: for all X 2 � and all real

numbers a � 0, we have
%[X � a] = %[X]� a:

If we increase a risk X by a �xed amount a, then Property 5 states that the premium

for X + a should be the premium for X increased by that �xed amount a:
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6) Subadditivity

One can argue that subadditivity is a reasonable property because the no-arbitrage

argument works well to ensure that the premium for the sum of two risks is not

greater than the sum of the individual premiums

%[X + Y ] � %[X] + %[Y ] for all X; Y 2 �:

Otherwise, the buyer of insurance would simply insure the two risks separately.

However, the no-arbitrage argument that asserts that %[X + Y ] cannot be less than

%[X]+%[Y ] fails because it is generally not possible for the buyer of insurance to sell

insurance for the two risks separately.

7) Positive homogeneity

Axiom 6 implies that %(nX) � n%(X) for n = 1; 2; :::: In Axiom 7 we have imposed

the reverse inequality (and require equality for all positive �)

%[�X] = �%[X] for all X 2 � and all � � 0;

to model what a government or an exchange might impose in a situation where

no netting or diversi�cation occurs, in particular because the government does no

prevent many �rms to all take the same position.

Remark 3.2.1 If position size directly in�uences risk (for example, if positions are
large enough that the time required to liquidate them depend on their sizes) then we

should consider the consequences of lack of liquidity when computing the future net

worth of a position. With this in mind, Axioms 6 and 7 about mappings from random

variables into the reals, remain reasonable.

8) Additivity

This Property is a stronger form of Property 7 (Positive homogeneity). One can use

a similar no-arbitrage argument to justify the additivity property

%[X + Y ] = %[X] + %[Y ] for all X; Y 2 �;

(see, Albrecht 1992, [2]).
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9) Superadditivity

Might be a reasonable property of a premium principle if there are surplus constraints

that require that an insurer charge a greater risk load for insuring larger risks

%[X + Y ] � %[X] + %[Y ] for all X; Y 2 �:

For example, we might observe in the market that %[2X] > 2%[X] because of such

surplus constraints. Note that both Properties 8 and 9 can be weakened by requiring

only %[�X] � �%[X] or %[�X] � �%[X] for � > 0; respectively. Next, we weaken the

additivity property by requiring additivity only for certain insurance risks.

10) Additivity for independent risks

Some actuaries might feel that Property 7 (Additivity) is too strong and that the

no-arbitrage argument only applies to risks that are independent

%[X + Y ] = %[X] + %[Y ] for all X; Y 2 �;

such that X and Y are independent. They, there by, avoid the problem of surplus

constraints for dependent risks.

11) Additivity for comonotonic risks

Is desirable because if one adopts subadditivity as a general rule

%[X + Y ] = %[X] + %[Y ] for all X; Y 2 �;

such that X and Y are comonotonic (see Comonotonicity). Then it is unreasonable

to have

%[X + Y ] < %[X] + %[Y ]

because neither risk is a hedge1 against the other, that is, they move together (Yaari

1987, [154]). If a premium principle is additive for comonotonic risks, then is it

layer additive (Wang 1996, [150]). Note that Property 11 implies Property 6, (Scale

equivariance), if % additionally satis�es a continuity condition. Next, we consider

properties of premium rules that require that they preserve common orderings of

See the book of Jon Gregory and Angelo Arvanitis, 2004, Credit: The Complete Guide to
Pricing, Hedging and Risk Management
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risks.

12) Monotonicity

If

X(!) � Y (!) for all ! 2 
;

then %[X] � %[Y ]:

13) Preserves �rst stochastic dominance (FSD) ordering

If

SX(t) � SY (t) for all t � 0;

then %[X] � %[Y ]:

14) Preserves stop-loss ordering (SL) ordering

Property 1, (Independence), together with Property 12, (Monotonicity), imply Prop-

erty 13, (Preserves FSD ordering, Wang et al. 1997, [152]). Also, if % preserves SL

ordering, then % preserves FSD ordering because stop-loss ordering is weaker (see,

Rothschild et al. 1970, [131]), if

E[X � d]+ � E[Y � d]+ for all d � 0;

then %[X] � %[Y ]: These orderings are commonly used in actuarial science to order

risks (partially) because they represent the common orderings of groups of decision

makers (see, Kaas et al. 1994, [93], Van Heerwaarden, 1991, [145]), for example. Fi-

nally, we present a technical property that is useful in characterizing certain premium

principles.

15) Continuity

Let X 2 �; then,
lim
a!0+

%[max(X � a; 0)] = %[X];

and

lim
a!1

%[min(X; a)] = %[X]:
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3.2.2 Coherent risk measures

Several authors have selected some of these conditions to form a set of requirements

that any risk measure should satisfy. The following de�nition is taken from the

seminal paper of Artzner et al. (1999, [5]).

De�nition 3.2.1 A risk measure that is translative, positive homogeneous, subad-

ditive and monotone is called coherent.

It is worth mentioning that coherence is de�ned with respect to a set of axioms, and

no set is universally accepted. Modifying the set of axioms regarded as desirable

leads to other �coherent�risk measures.

3.3 Value-at-Risk

Moste part of practitioners interest in quantiles of probability distributions. Since

quantiles have a simple interpretation in terms of over or undershoot probabilities

they have found their way into current risk management practice in the form of the

concept of value-at-risk (VaR). This concept was introduced to answer the following

question: how much can we expect to lose in one day, week, year, with a given

probability?

Recently, VaR has become the benchmark risk measure: its importance is unquestion

since regulators accept this model as the basis for setting capital requirements for

market risk exposure. A textbook treatment of VaR is given in Jorion (2000, [91]).

Non-subadditivity. VaR has been fundamentally criticized as a riskmeasure on the

grounds that is has poor aggregation properties. This critique has its origins in the

work of Artzner et al. (1997 [4], 1999 [5]), who showed that VaR is not a coherent risk

measure, since it violates the property of subadditivity that they believe reasonable

risk measures should have.

VaR is de�ned as follows.

De�nition 3.3.1 Given a risk X and a probability level p 2 [0; 1] ; the corresponding
VaR; denoted by V aR (X; p) ; is de�ned as

V aR (X; p) = F�1X (p) :
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Note that the VaR risk measure reduces to the percentile principle of Goovaerts et

al., (1984, [67]).

It is worth mentioning that VaR�s always exist and are expressed in the proper unit

of measure, namely in lost money. Since VaR is de�ned with the help of the quantile

function F�1X : We have the following equivalence relation, which holds for all x 2 R
and p 2 [0; 1] ;

V aR (X; p) � x() p � FX (x) :

VaR fails to be subadditive (except in some very special cases, such as when the Xi

are multivariate normal). Thus, in general, VaR has the surprising property that the

VaR of a summay be higher than the sum of the VaR�s. In such a case, diversi�cation

will lead to more risk being reported. Consider two independent Pareto risks of

parametre 1; X and Y: Show that the inequality

V aR (X; p) + V aR (Y; p) < V aR (X + Y; p)

holds for any p; so that VaR cannot be subadditive in this simple case.

A possible harmful aspect of the lack of subadditivity is that a decentralized risk

management system may fail because VaR�s calculated for individual portfolios may

not be summed to produce an upper bound for the VaR of the combined portfolio.

3.4 Tail Value-at-Risk

A single VaR at a predetermined level p does not give any information about the

thickness of the upper tail of the distribution function. This is a considerable short-

coming since in practice a regulator is not only concerned with the frequency of

default, but also with the severity of default. Also shareholders and management

should be concerned with the question «how bad is bad?» when they want to eval-

uate the risks at hand in a consistent way.

Therefore, one often uses another risk measure, which is called the tail value-at-risk

(TVaR) and de�ned by

De�nition 3.4.1 Given a risk X and a probability level p; the corresponding TVaR,

denoted by TV aR (X; p) ; is de�ned as

TV aR (X; p) =
1

1� p

Z p

1

V aR [X; �] d�; 0 < p < 1:
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We thus see that TV aR (X; p) can be viewed as the arithmetic average of the VaR�s

of X; from p on [0; 1] :

3.5 Some related risk measures

3.5.1 Conditional tail expectation

The conditional tail expectation (CTE) represents the conditional expected loss given

that the loss exceeds its VaR:

CTE (X; p) = E (XjX > V aR (X; p)) :

Thus the CTE is nothing but the mathematical transcription of the concept of �av-

erage loss in the worst 100 (1� p)% cases�. De�ning by c =VaR(X; p) a critical loss

threshold corresponding to some con�dence level p; CTE (X; p) provides a cushion
against the mean value of losses exceeding the critical treshold c:

3.5.2 Conditional VaR

An alternative to CTE is the conditional VaR (or CVaR). The CVaR is the expected

value of the losses exceeding VaR

CV aR (X; p) = E (X � V aR (X; p)jX > V aR (X; p))

= CTE (X; p)� V aR (X; p) :

It is easy to see fromDe�nition 3.1.2 that CVaR is related to the mean-excess function

through

CV aR (X; p) = eX (V aR (X; p)) :

Therefore, evaluating the mef at quantiles yields CVaR:

3.5.3 Expected shortfall

As the VaR at a �xed level only gives local information about the underlying distri-

bution, a promising way to escape from this shortcoming is to consider the so-called

expected shortfall over some quantile. Expected shortfall at probability level p is the
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stop-loss premium with retention VaR(X; p) : Speci�cally,

ES (X; p) = E
�
(X � V aR (X; p))+

�
= �X (V aR (X; p)) :

3.5.4 Relationships between risk measures

The following relation holds between the three risk measures de�ned above.

Proposition 3.5.1 For any p 2 [0; 1] ; the following identities are valid:

TV aR (X; p) = V aR (X; p) +
1

1� p
ES (X; p) ; (3.1)

CTE (X; p) = V aR (X; p) +
1

FX (V aR (X; p))
ES (X; p) ; (3.2)

CV aR (X; p) =
ES (X; p)

FX (V aR (X; p))
: (3.3)

Proof. See Denuit et al. (2005, [31]).

Corollary 3.5.1 Note that if FX is continuous then by combining (3.1) and (3.2)

we �nd

CTE (X; p) = TV aR (X; p) ; p 2 [0; 1] : (3.4)

so that CTE and TVaR coincide for all p in this special case. In general, however,
we only have

TV aR (X; p) = CTE (X; p) +
�

1

1� p
� 1

FX (V aR (X; p))

�
ES (X; p) :

Since the quantity between the brackets can be di¤erent from 0 for some values of p;

TVaR and CTE are not always equal. Looking back at Figure 3.1, we see that the
values of p for which the quantity between the brackets does not vanish correspond

to jumps in the df (e.g., for p3; FX (F�1x (p3)) > p3). See also Acerbi and Tasche

(2002, [1]).

Remark 3.5.1 From (3.1) in Proposition 3.5.1 it follows that the minimal value of

the cost function in (3.6) can be expressed as

CV aR [X;V aR (X; 1� �)] = E
�
(X � V aR (X; 1� �))+

�
+ �V aR (X; 1� �)

= �TV aR (X; 1� �) : (3.5)
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Figure 3.1: An example of a loss distribution with the 95%VaR marked as a vertical
line; the mean loss is shown with a dotted line and an alternative risk measure known
as the 95% expected shortfall is marked with a dashed line.

A more general version of the minimization problem

min
%[X]

�
E
�
(X � % [X])+

�
+ % [X] �

	
; 0 < � < 1; (3.6)

involving a distortion risk measure, is considered in Dhaene, Goovaerts and Kaas

(2003, [68]), Laeven and Goovaerts (2004, [104]) and Goovaerts, Van den Borre and

Laeven (2004, [69]).

3.6 Risk measures based on Distorted Expecta-

tion Theory

Consider a decision-maker with a future random fortune equal to X: Using integra-

tion by parts, the expectation of X can be written as

E [X] = �
Z 0

�1

�
1� FX (x)

�
dx+

Z +1

0

FX (x) dx:



3. Measuring Risk 85

Under the �distorted expectations hypotheses�it is assumed that each decision-maker

has a non-decreasing function g [0; 1] ! [0; 1] with g (0) = 0 and g (1) = 1 (called

a distortion function) and that he values a fortune X at its �distorted expectation�

�g (X) de�ned as

�g [X] := �
Z 0

�1

�
1� g

�
FX (x)

��
dx+

Z +1

0

g
�
FX (x)

�
dx: (3.7)

The function g is called a distortion because it distorts the probabilities FX (x)

before calculating a generalized expected value. As g
�
FX (x)

�
is a non-decreasing

function of FX (x) ; where FX (x) is a non-increasing function of x; g
�
FX (x)

�
is

also a non-increasing function of x; and can be thought of as the risk-adjusted tail

function. Note that g
�
FX (x)

�
is not necessarily a tail function (indeed the right-

continuity condition involved in properties satis�ed by all dfs is not always ful�lled).

Hence �g [X] is not necessarily the expectation of some transformed rv.

We will see that under additional assumptions on g; this will be the case. If X is

non-negative, then we �nd from (3.7) that

�g [X] =

Z +1

0

g
�
FX (x)

�
dx:

Note that g (0) = 0 implies �g [0] = 0 and that g (1) = 1 implies �g [1] = 1:

A decision-maker is said to base his preferences on the «distorted expectations hy-

potheses» if he acts in order to maximize the distorted expectation of his wealth.

This means that there exists a distortion function g such that the decision-maker

prefers Y to a fortune X if, and only if, �g [X] � �g [Y ] :
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Chapter 4

Copula parameter estimation by
bivariate L-moments

« Mathematics is the art of g iv ing the sam e name to d i¤erent th ings.»

Henri PO INCARE, 1854-1912

Recently, Ser�ing and Xiao (2007, [138]) extended the L-moment theory (Hosk-

ing, 1990, [75]) to the multivariate setting. In the present paper, we focus on the

two-dimension random vectors to establish a link between the bivariate L-moments

(BLM) and the underlying bivariate copula functions. This connection provides a

new estimate of dependence parameters of bivariate statistical data. Extensive sim-

ulation study is carried out to compare estimators based on the BLM, the maximum

likelihood, the minimum distance and the rank approximate Z -estimation. The ob-

tained results show that, when the sample size increases, BLM�s based estimation

performs better as far as the bias and computation time are concerned. Moreover,

the root means squared error (RMSE) is quite reasonable and less sensitive in general

to outliers than those of the above cited methods. Further, we expect that BLM�s

method will be an easy-to-use tool for the estimation of multiparameter copula mod-

els.

4.1 Introduction and motivation

The copula method is a tool to construct multivariate distributions and describe the

dependence structure in multivariate data sets (e.g., Joe, 1997, [85] or Nelsen, 2006,

89
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[123]). Modelling dependence structures by copulas is a topic of current research and

of recent use in several areas, such as �nancial assessments (e.g., Malevergne and

Sornette, 2003, [112]), insurance (e.g., Drees and Müller, 2008, [34]) and hydrology

(e.g., Dupuis, 2007, [35]). For the sake of simplicity, throughout the paper, we restrict

ourself to the two-dimensional case. Let
�
X(1); X(2)

�
be a bivariate random variable

with joint distribution function

F (x1; x2) = P
�
X(1) � x1; X

(2) � x2
�
; (x1; x2) 2 R2;

and marginal df Fj (xj) = P
�
X(j) � xj

�
for xj 2 R and j = 1; 2: If not stated

otherwise, we assume that the Fj are continuous functions. According to Sklar�s

theorem (Sklar, 1959, [142]) there exists a unique copula C : I2 ! I; with I = [0; 1] ;
such that

F (x1; x2) = C (F1 (x1) ; F2 (x2)) ; for (x1; x2) 2 R2:

The copula C is the joint df of the uniform random variables (r.v.�s) Uj = Fj
�
X(j)

�
;

j = 1; 2; de�ned for (u1; u2) 2 I2; by

C (u1; u2) = F
�
F�11 (u1) ; F

�1
2 (u2)

�
;

where G�1 is the generalized inverse function (or the quantile function) of a df G:

A parametric copula model arises for
�
X(1); X(2)

�
when C is unknown but assumed to

belong to a class C := fC�; � 2 Og ; whereO is an open subset of Rr for some integer
r � 1: Statistical inference on the dependence parameter � is one of the main topics
in multivariate statistical analysis. Several methods of copula parameter estimation

have been developed, included the pseudo maximum likelihood (PML), inference of

margins, minimum distance and others, see for instance Genest et al. (2009, [62]).

All these methods use in general some optimization technics under constraints, this

in general require enough computational time to run calculations. In this paper, we

present a new estimation method of � based on the bivariate L-moments that may

be serve as alternative in front of computation�s time issue and produces estimation

results reasonable enough. The multivariate L-moments have been introduced by

Ser�ing and Xiao (2007, [138]) as an extension of the univariate L-moments intro-

duced by Hosking (1990, [75]). The L-comoments have interpretations similar to the

classical central moment covariance, coskewness, and cokurtosis that also possess the

features of the L-moments. This extension is useful to solve some problems in connec-

tion with multivariate heavy-tailed distributions and small samples. As mentioned,
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for instance, in Hosking (1990, [75]) and recently in Delicado and Goria (2008, [29]),

the main advantage of L-moments vis-a-vis of classical estimation methods (e.g. least

squares, moments and maximum likelihood) is their relative slight sensitivity to out-

lying data and their performance in statistical inference with small samples. In this

paper we establish a functional representation of bivariate L-moments (BLM) by the

underlying copula function and propose a new estimation method of the parame-

ters of copula models. By considering multiparameter Farlie-Gumbel-Morgenstern

(FGM) and Archimedean copulas, simulation studies are carried out to compare the

performance of this method with those of the PML, minimum distance (MD) and

rank approximate Z -estimation. The rest of the paper is organized as follows. In

Section 4.2, we brie�y introduce the univariate and bivariate L-moment approaches.

We present, in Section 4.3, functional representations of the bivariate L-moments by

copula functions and give some examples. A new estimator of copula parameter and

its asymptotic behavior are given in Sections 4.4. In Section 4.5, a simulation study

evaluates the BLM performance is given.

4.2 Bivariate L-moments

First we begin with a brief introduction on the univariate L-moments. Hosking (1990,

[75]) introduced L-moments �k as an alternative to the classical central moments

�k = E
h
(Y � �)k

i
determined by the df FY of the underlying r.v. Y: An L-moment

�k is de�ned as a speci�c linear combination of the expectations of the order statistics

Y1:k � ::: � Yk:k: More precisely, the kth L-moment is de�ned by

�k =
1

k

k�1X
`=0

(�1)` (k � 1)!
`! (k � 1� `)!

E [Yk�`:k] ; k = 1; 2; :::

By analogy with the classical moments, the �rst four L-moments �1; �2; �3 and �4
measure location, scale, skewness and kurtosis features respectively. The L-functional

representation of �k is terms of the quantile function F�1Y is given by (see Hosking,

1998, [77]):

�k =

Z
I
F�1Y (u)Pk�1 (u) du; (4.1)
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where Pk (u) :=
kP̀
=0

pk;`u
`; with pk;` = (�1)k+` (k + `)!= [(`2)! (k � `)!] is the shifted

Legendre polynomials (SLP). In the sequel, we will make use of the three �rst SLP

P0 (u) = 1; P1 (u) = 2u� 1; P2 (u) = 6u2 � 6u+ 1:

A straightforward transformation in (4:1) using P0 � 1 and the orthogonality of Pk�1
leads to a representation in terms of covariance, that is

�k =

8<: E [Y ] k = 1;

Cov (Y; Pk�1 (FY (Y ))) k � 2:
(4.2)

L-moments may be used as summary statistics for data samples, to identify probabil-

ity distributions and �t them to data. A brief description of these methods is given in

Hosking (1998, [77]). L-moments are now widely used in water sciences especially in

�ood frequency analysis. Recent studies include Kjeldsen et al. (2002, [100]), Kroll

and Vogel (2002, [102]), Lim and Lye (2003, [109]), Chebana and Ouarda (2007,

[16]) and Chebana et al. (2009, [17]). In other recent work, Karvanen et al. (2002,

[95]) used L-moments for �tting distributions in independent component analysis in

signal processing, and Jones and Balakrishnan (2002, [90]) pointed out some rela-

tionships between integrals occurring in the de�nition of moments and L-moments.

Hosking (2006, [78]) showed that, for a wide range of distributions, the characteriza-

tion of a distribution by its L-moments is non-redundant. That is, if one L-moment

is dropped, the remaining L-moments no longer su¢ ce to determine the entire dis-

tribution. Recently, Ser�ing and Xiao (2007, [138]) extended this approach to the

multivariate case, this has already begun to be developed and applied in statistical

hydrology by Chebana and Ouarda (2007, [16]) and Chebana et al. (2009, [17]).

Next we present basic notations and de�nitions of the bivariate L-moments. Let

X(1) and X(2) be two r.v.�s with �nite means, margins F1 and F2 and L-moments

sequences �(1)k and �(2)k ; respectively. By analogy with the covariance representation

(4:2) for L-moments, and the central comoments, Ser�ing and Xiao (2007, [138])

de�ned the kth L-comoment of X(1) with respect to X(2) by the covariance of the

couple of r.v.�s X(1) and Pk(F2(X(2))); for every k � 1; as

�k[12] = Cov
�
X(1); Pk

�
F2
�
X(2)

���
: (4.3)
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So, the kth L-comoment of X(2) with respect to X(1) is de�ned by

�k[21] = Cov
�
X(2); Pk

�
F1
�
X(1)

���
:

If we suppose that F belongs to a parametric family of df�s, then the set of parameters

de�ne the models of margins and the dependence structure between r.v.�s X(1) and

X(2): Since we focus only on the estimation of copula parameters, then it is convenient

to use the kth L-comoment of F1
�
X(1)

�
with respect to X(2) instead of �k[12]; that is

�k[12] := Cov
�
F1
�
X(1)

�
; Pk

�
F2
�
X(2)

���
: (4.4)

So that the kth L-comoment of F2
�
X(2)

�
with respect to X(1) is given by

�k[21] = Cov
�
F2
�
X(2)

�
; Pk

�
F1
�
X(1)

���
:

If the copula C is symmetric in the sense that C (u; v) = C (v; u) ; then �k[12] =

�k[21] := �k; for each k = 1; 2; ::: The quantity �k[12] will be called "the kth bivariate

copula L-moment" of X(1) with respect to X(2); so �k[21] is the kth copula L-moment

of X(2) with respect to X(1):

In application, we will often make use of the three �rst bivariate copula L-moments,

that is:

�1 = 2Cov
�
F1
�
X(1)

�
; F2

�
X(2)

��
�2 = �6Cov

�
F1
�
X(1)

�
; F2

�
X(2)

� �
1� F2

�
X(2)

���
�3 = Cov

�
F1
�
X(1)

�
; 20F 32

�
X(2)

�
� 30F 22

�
X(2)

�
+ 12F2

�
X(2)

�
� 1
�
:

4.3 Bivariate copula representation of kth copula

L-moment

Theorem 4.3.1 below gives a representation of the kth bivariate L-moment in terms

of the underlying copula function. This result provides a new estimate of bivariate

copula parameters.
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Theorem 4.3.1 The kth bivariate copula L-moment of X(1) with respect to X(2)

may be rewritten, for each k � 1; as

�k[12] =

Z
I2
(C (u1; u2)� u1u2) du1dPk (u2) ; (4.5)

or

�k[12] =

Z
I2
u1Pk (u2) dC (u1; u2) :

Observe that �1[12] = �1[21] = �=6 where � is the Spearman rho �; de�ned in term of

copula C by

� = 12

Z
I2
u1u2dC (u1; u2)� 3; (4.6)

(see Nelsen, 2006, [123, page 167]).

In view of Theorem 4.3.1, according to our needs, we may construct a system of

equations that will serve to the estimation of multiparameter copula models. For

this reason, the proposed estimator is more likely to be used for the multiparameter

copulas. In the case of the one-parameter copulas, it is equivalent to the rho-inversion

method (see (4:17)). Indeed, suppose that we are dealing with the estimation of one

dimension parameter of a copula model, then it su¢ ces to use one of the kth bivariate

copula L-moment, says �1[12]: In the case of d�dimension parameters we have to take
the d �rst bivariate copula L-moment, so we obtain a system of d equations with d

unknown parameters. Then, by replacing the coe¢ cients �k[12]; k = 1; :::; d by their

empirical counterparts, we obtain estimators of the d parameters. Indeed, suppose

that d = 3 and C = C�; � = (�1; �2; �3) ; then from Theorem 4.3.1, the �rst three

bivariate copula L-moments of X(1) with respect to X(2) are

�1[12] = 2

Z
I2
C� (u1; u2) du1du2 �

1

2

�2[12] = 6

Z
I2
(2u2 � 1)C� (u1; u2) du1du2 �

1

2

�3[12] =

Z
I2

�
60u22 � 60u2 + 12

�
C� (u1; u2) du1du2 �

1

2
:

Next we present applications of Theorem 4.3.1 to parameter estimation of two pop-

ular families of copula, namely the FGM and Archimedean copulas.
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4.3.1 FGM families

One of the most popular parametric family of copulas is the FGM family de�ned for

j�j � 1 by
C� (u1; u2) = u1u2 + �u1u2u1u2; 0 � u1; u2 � 1; (4.7)

with uj := 1 � uj; j = 1; 2: The model is useful for the moderate correlation which

occurs in engineering and medical applications (see, e.g., Blischke and Prabhaker

Murthy, 2000 and Chalabian and Dunnington, 1998). The Pearson correlation coef-

�cient � corresponds to the model (4:7) can never exceed 1=3; (see, e.g., Huang and

Kotz, 1984, [80]). In order to increase the dependence between two random variables

obeying the type of FGM distribution, Johnson and Kotz (1977, [87]) introduced the

(r � 1)-iterated FGM family with r-dimensional parameter � =(�1; :::; �r) :

C� (u1; u2) = u1u2 +
rX
j=1

�j (u1u2)
[j=2]+1 (u1u2)

[j=2+1=2] ;

where [z] denotes the greatest integer less than or equal to z: For example, the

one-iterated FGM family (Huang and Kotz, 1984) is a two-parameter copula model:

C�1;�2 (u1; u2) = u1u2 f1 + �1u1u2 + �2u1u2u1u2g : (4.8)

The range of parameters (�1; �2) is given by the region

R :=

�
(�1; �2) ; j�1j � 1; �1 + �2 � �1; �2 �

1

2

h
3� �1 +

�
9� 6�1 � 3�21

�1=2i�
:

(4.9)

The maximal reached correlation for this family is

�maxFGM = 0:42721; for (�1; �2) =
�
�1 + 7=

p
13; 2� 2=

p
13
�
: (4.10)

and the minimal correlation is �minFGM = �1=3 for (�1; �2) = (�1; 0) : The two-iterated
FGM family is given by

C�1;�2;�3 (u1; u2) = u1u2
�
1 + �1u1u2 + �2u1u2u1u2 + �3u1u2 (u1u2)

2	 ;
and it has been discussed by Lin (1987, [111]).

According to the Theorem 4.3.1, we may give explicit formulas of bivariate copula

L-moments for the FGM, the one-iterated FGM and the two-iterated FGM. Since
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the number of parameters equals k 2 f1; :::; rg ; then we are dealing with �rst k
bivariate copula L-moments that will provide a system of k equations and therefore

a tool for the estimation of the parameters of the copulas. Next we give the �rst

bivariate copula L-moments for the FGM family C�; the one-iterated FGM copula

C�1;�2 and the two-iterated FGM copula C�1;�2;�3 :

� The �rst bivariate copula L-moment of FGM family C� is

�1[12] = �1=18

� The two �rst bivariate copula L-moments of one-iterated FGM copula C�1;�2
are: 8<: �1[12] = �1=18 + �2=72

�2[12] = �2=120
(4.11)

� The three �rst bivariate copula L-moments of two-iterated FGM copulaC�1;�2;�3
are: 8>>><>>>:

�1[12] = �1=18 + �2=72 + �3=450

�2[12] = �2=120

�3[12] = ��3=1050

4.3.2 Archimedean copula families

The Archimedean copula family is one of important class of copula models that

contains the Gumbel, Clayton, Frank, ... (see, Table 4.1 in Nelsen, 2006, [123, page

116]). In the bivariate case, an Archimedean copula is de�ned by

C(u; v) = '�1 ('(u) + '(v)) ;

where ' : I ! R is a twice di¤erentiable function called the generator, satisfy-

ing: ' (1) = 0; '0 (x) < 0; '00 (x) � 0 for any x 2 I= f0; 1g : The notation '�1

stands for the inverse function of ': For examples, the three generators '� (t) =

(� ln ((1� � (1� t)) =t)) ; '� (t) = (t
�� � 1) =� and '� (t) = (� ln t)

� de�ne, respec-

tively, the one parameter Frank, Clayton and Gumbel copula families. For more

�exibility in �tting data, it is better to use the multi-parameters copula models than

those of one parameter. To have a copula with more one parameter, we use, for

instance, the distorted copula de�ned by C� (u; v) = ��1 (C (� (u) ;� (v))) ; where
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� : I ! I is a continuous, concave and strictly increasing function with � (0) = 0

and � (1) = 1: Note that if C is an Archimedean copula with generator '; then C� is

also Archimedean copula with generator generator '��: For more details see Nelsen
(2006, [123, 96]). As example, suppose that � = ��2 ; with ��2 (t) = exp

�
t��2 � 1

�
;

�2 > 0 and consider a Gumbel copula C�1 with generator '�1 (t) = (� ln t)
�1 ; �1 � 1:

Then the copula C�1;�2 (u; v) = �
�1
�2

�
C�1

�
��2 (u) ;��2 (v)

��
given by

C�1;�2 (u; v) :=

���
u��2 � 1

��1 + �v��2 � 1��1�1=�1 + 1�1=�2 ; (4.12)

is a two-parameter Archimedean copula with generator '�1;�2 (t) :=
�
t��2 � 1

��1 :
To have the two �rst bivariate copula L-moments correspond to C�1;�2 ; we apply the

Theorem 4.3.1 to get the following system of equations:8<: �1[12] = 2
R 1
0

R 1
0

�
C�1;�2 (u; v)� uv

�
dudv;

�2[12] = 6
R 1
0

R 1
0
(2v � 1)

�
C�1;�2 (u; v)� uv

�
dudv:

(4.13)

In this case we cannot give explicit formulas, in terms of
�
�1[12]; �2[12]

	
; for the para-

meters f�1; �2g ; however for a given values of the bivariate copula L-moments, we
can solving the previous system by numerical methods and obtain the corresponding

values of f�1; �2g :

Remark 4.3.1 The previous system provides estimators for copula parameters by

replacing the bivariate copula L-moments by their sample counterparts. This is sim-

ilar to the method of moments (see Section 4.4).

4.4 Semi-parametric BLM-based estimation

The aim of the present section is to provide a semi-parametric estimation for bivariate

copula parameters on the basis of results of Section 4.3. Suppose that the underlying

copula C belongs to a parametric family C� with � = (�1; � � � ; �r); r � 1; and consider
a random sample

�
X
(1)
i ; X

(2)
i

�
i=1;n

; from the bivariate r.v.
�
X(1); X(2)

�
: For each

j = 1; 2; let F�j:n := nFj:n= (n+ 1) denotes the rescaled empirical df corresponds to
the empirical df

Fn:j (xj) = n�1
nX
i=1

1
n
X
(j)
i � xj

o
:
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For the sake of simplicity we suppose that the underlying copula C is symmetric and

therefore �k[12] = �k[21] = �k: The asymmetric case for the object of the future work.

We are now in position to present, in three steps, the semi-parametric BLM-based

estimation:

� Step 1: For each k = 1; :::; r; compute

b�k = n�1
nX
i=1

F�1:n
�
X
(1)
i

�
Pk

�
F�2:n

�
X
(2)
i

��
: (4.14)

given in equation (4.4).

� Step 2 : Using Theorem 4.3.1 to generate a system of r equations given by

equation (4.5), for k = 1; :::; r:

� Step 3: Solve the system 8>>>><>>>>:
�1 (�1; :::; �r) = b�1
�2 (�1; :::; �r) = b�2
...

�r (�1; :::; �r) = b�r:
(4.15)

The obtained solution �̂
BLM

:=
�
�̂1; :::; �̂r

�
is called a BLM estimator for

� = (�1; :::; �r) :

The existence and the convergence of a solution of the previous system are established

in Theorem 4.4.1, (see Section 4.4.2).

As an application of the BLM based estimation, we choose the one-iterated FGM

copula C�1;�2 given in (4.8) and propose estimators for the parameters (�1; �2) noted

(b�1; b�2) : For this family, recall (4.11), the system (4.15) becomes8><>:
�1=18 + �2=72 = b�1[12];
�2=120 = b�2[12];

where b�k; k = 1; 2 are given in (4.14). Therefore8<: b�1 = 18b�1[12] � 30b�2[12];b�2 = 120b�2[12]:
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4.4.1 BLM as a rank approximate Z -estimation

Tsukahara (2005, [144]) introduced a new estimation method for copula models

called the rank approximate Z-estimation (RAZ) that generalizes the PML one. The

BLM method may be interpreted as a RAZ estimation. Indeed, let 	(�;�) be an
Rr-valued function on I2; called "score function", whose components 	j (�;�) satisfy
the condition Z

I2
	j (u1; u2;�) dC (u1; u2) = 0; j = 1; :::; r:

Any solution b�RAZ of the following equation
nX
i=1

	
�
F�1:n

�
X
(1)
i

�
;F�2:n

�
X
(2)
i

�
; b�RAZ� = 0; (4.16)

is called a RAZ estimator. There may not be an exact solution to equation (4:16) in

general, so in practice, we should choose b�RAZ to be any value of � which minimizes
the absolute value of the left-hand side of equation (4:16): It is worth mentioning

that if the copula C� is absolutely continuous with density c�; then the function

	 =
�
c�=c�; with

�
c� = (@c�=@�j)j=1;:::;r ; leads the PML based estimation, see for

instance Genest et al. (1995, [60]). Note in passing that the existence of a sequence

of consistent roots of Z-estimation in this context is discussed in Theorem 1 in

Tsukahara (2005, [144]). In our case 	(u1; u2;�) corresponding to Lk (see (4.19)).

On the other hand, the population measures of concordance produce also a Z-

estimation for copulas models. Indeed, the most popular population measures of

concordance (see, Nelsen, 2006, [123, page 182]) are Kendall�s tau (�); Spearman�s

rho (�) ; Gini�s gamma () and Spearman�s foot-rule phi (') ; given respectively by

� (�) = 4

Z
I2
C� (u1; u2) dC� (u1; u2)� 1;

� (�) = 12

Z
I2
u1u2dC� (u1; u2)� 3;

 (�) = 4

Z
I
C� (u1; 1� u1) du1 �

Z
I
(u1 � C� (u1; u1)) du1;

' (�) = 1� 3
Z
I2
ju1 � u2j dC� (u1; u2) :

It follows that the concordance score (CS) functions associated to � ; �;  and '

respectively are
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	1 (u1; u2;�) := 4C� (u1; u2)� � (�) ;

	2 (u1; u2;�) := 12u1u2 � 3� � (�) ;

	3 (u1; u2;�) := 4C� (u1; 1� u1)� u1 + C� (u1; u1)�  (�) ;

	4 (u1; u2;�) := 1� 3 ju1 � u2j � ' (�) :

It is now clear that
R
I2 	j (u1; u2;�) dC� (u1; u2) = 0; j = 1; :::; 4; then whenever the

dimension of parameters r = 4; the function 	 = (	1; :::;	4) provides Z-estimators

for copula models. If the dimension of parameters r < 4; then we may choose any

r functions from 	1; :::;	4 to have a system of r equations that provides estimators

of the r parameters.

Tsukahara (2005, [144]) also discussed the RAZ-estimators based on Kendall�s tau

(�) and Spearman�s rho (�) ; called � -score and �-score RAZ-estimators. Suppose that

r = 1 and let b�n and b�n be the sample versions of Kendall�s tau (�) and Spearman�s
rho (�) : By using the same idea as the method of moments, the � -inversion b��
estimator and the �-inversion b�� estimator of � are de�ned by

b�� = ��1 (b�n) and b�� = ��1 (b�n) : (4.17)

In the case when r = 2; we may also estimate � =(�1; �2) by solving the system8<: � (�1; �2) = b�n
� (�1; �2) = b�n:

Suppose that we are dealing with the estimation of parameters (�1; �2) of the one-

iterated FGM copula C�1;�2 in (4:8): Then, the associated Kendall�s tau (�) and

Spearman�s rho (�) are8<: � (�1; �2) = 2�1=9 + �2=18 + �1�2=450

� (�1; �2) = �1=3 + �2=12:
(4.18)

We call (� ; �)-inversion estimator of parameters (�1; �2) a solution of the system8<: � (b�1; b�2) = b�n
� (b�1; b�2) = b�n:
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Similarly, if we consider the FGM family C�1;�2;�3 we have to add �score and
'�score to have a system of four equations, we omit details.

The kth bivariate copula L-moments �k (�) ; k = 1; :::; r; may also generate score

functions. Indeed, recall that from Theorem 4.3.1 we have

�k (�) =

Z
I2
u1Pk (u2) dC� (u1; u2) ; k = 1; 2:::;

and de�ne the copula L-moment score (CLS) functions by

Lk (u1; u2;�) := u1Pk (u2)� �k (�) ; k = 1; :::; r; (4.19)

satisfying
R
I2 Lk (u1; u2;�) dC� (u1; u2) = 0; k = 1; :::; r: Then the RAZ estimator

corresponding to the CLS function L =(L1; :::; Lr) is a solution in � of the system

nX
i=1

L
�
F �1:n

�
X
(1)
i

�
; F �2:n

�
X
(2)
i

�
;�
�
= 0; (4.20)

that is
nX
i=1

F �1:n

�
X
(1)
i

�
Pk

�
F �2:n

�
X
(2)
i

��
� n�k (�) = 0; k = 1; :::; r; (4.21)

therefore �k (�) = b�k; k = 1; :::; r; which in fact the system of bivariate copula L-

moments given in system (4.15).

One of the main question of RAZ-estimation is the choice of the score function 	

producing, in a certain sense, the best estimator. In Section (4.5), we show that the

CLS functions improve the concordance score functions in terms of bias and root

mean scare error (RMSE).

4.4.2 Asymptotic behavior of the BLM estimator

By considering BLM�s estimator as a RAZ-estimator, a straight application of Theo-

rem 1 in Tsukahara (2005, [144]) leads to the consistency and asymptotic normality

of the considered estimator. Then we will state the following Theorem 4.4.1 without

giving proofs. Indeed, let �0 be the true value of � and assume that the assumptions

[H:1]� [H:3] listed below are required.

� [H:1] �0 is the unique zero of the mapping � !
R
I2 L (u1; u2;�) dC� (u; v) :
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� [H:2] L (�;�) is di¤erentiable with respect to � with the Jacobian matrix de-
noted by

�
L (u1; u2;�) :=

�
@Lk (u1; u2;�)

@�k

�
r�r

;

�
L (u1; u2;�) is continuous in �; and the Euclidian norm

 �L (u1; u2;�) is dom-
inated by a dC�0-integrable function h (u1; u2) :

� [H:3] The r � r matrix A0 :=
R
I2
�
L (u1; u2;�0) dC�0 (u1; u2) is nonsingular.

Theorem 4.4.1 Assume that the assumptions [H:1]� [H:3] hold. Then with proba-
bility tending to one as n!1; there exists a solution b�BLM to the equation (4:21)

which converges to �0: Moreover

p
n
�b�BLM � �0� D! N

�
0; A0

P
0

A�10

�
; as n!1;

with

P
0 := var

(
L (�1; �2;�0) +

2X
j=1

Z
I2
Mj (u1; u2)

�
1
�
�j � uj

	
� uj

�
dC�0 (u1; u2)

)
;

where (�1; �2) is a bivariate r.v. with joint distribution function C�0 ;

M1 (u1; u2) := fPk (u2)gk=1;r and M2 (u1; u2) := fu1P 0k (u2)gk=1;r ;

where P 0k denotes the derivative of the polynomials Pk:

4.4.3 A discussion on Theorem 4.1

Notice that assumption [H:1] is veri�ed for any parametric copula C� satisfying the

concordance ordering condition of copulas (??) : Indeed, suppose that there exists
�1 6= �0; such thatZ

I2
Lk (u1; u2;�1) dC�0 (u1; u2) = 0; for every k 2 f1; :::; rg : (4.22)

Recall that �k[12] (�0) =
R
I2 u1Pk (u2) dC�0 (u1; u2) and �k[12] (�1) =

R
I2 u1Pk (u2) dC�1 (u1; u2)

and, from assumption (??) ; C�0 (> or <)C�1 : It follows, by monotonicity of the in-

tegral, that �k[12] (�1) (> or <) �k[12] (�0) ; this implies that �k[12] (�1) � �k[12] (�0) 6=
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0; for every k 2 f1; :::; rg : Observe that
R
I2 dC�0 (u1; u2) = 1 then �k[12] (�1) =R

I2 �k[12] (�1) dC�0 (u1; u2) ; consequently, since Lk (u1; u2;�1) = u1Pk (u2)��k[12] (�1) ;
that

Z
I2
Lk (u1; u2;�1) dC�0 (u1; u2) =

Z
I2
u1Pk (u2) dC�0 (u1; u2)�

Z
I2
�k[12] (�1) dC�0 (u1; u2)

= �k[12] (�0)� �k[12] (�1) 6= 0; for every k 2 f1; :::; rg ;

which is a contradiction with equation (4:22) ; as sought. Let�s now discuss the rest

of assumptions. In [H:2] ; the continuity and the di¤erentiability with respect to �

and (u1; u2) of L (�;�) and
�
L (�;�) are lie with that of copula C�; which are natural

assumptions in parametric copula models. Some examples on this issue are illustrated

in Fredricks et al. (2007). The second part of [H:2] and [H:3] may be checked for

a given copula model. For example, if we consider the FGM family (see (4:7)) we

get L1 (u1; u2;�) = u1 (2u2 � 1) � �=18 and Lk (u1; u2;�) = 0; for k = 2; 3; :::Then

dL1 (u1; u2;�) =d� = �1=18 and dLk (u1; u2;�) =d� = 0; for k = 2; 3; ::: Let �0 denote
the true value of parameter �: It is clear that each compound of

�
L is continuous with

respect to � and (u1; u2) ;

���� �L (u1; u2;�)���� = 1=18; which is C��integrable function

and, A0 =
R
I2
�
L (u1; u2;�0) dC�0 = �1=18 which is nonsingular matrix, then the

assumptions [H:2] and [H:3] are well veri�ed. By a little algebra we get to the

corresponding value of
P

0 that is de�ned in (??) ; and by Theorem 4.4.1 we get

p
n
�b�BLM � �0

� D! N
�
0; �20=270 + 1=5

�
; as n!1:

For the one-iterated FGM family (see (4:8)), by letting �1 = � and �2 = �; it is

readily to verify that

L1 (u1; u2;�; �) = u1 (2u2 � 1)� �=18� �=72;

L2 (u1; u2;�; �) = u1
�
6u22 � 6u2 + 1

�
� �=120;

which, obviously, are continuous with respect to (�; �) and (u1; u2) andC�;��integrable
function, and

�
L (u1; u2;�; �) =

"
�1=18 �1=72
0 �1=120

#
:
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Let (�0; �0) denote the true value of parameter (�; �) and by calculating the elements

of the matrix

A0 :=

Z
I2

�
L (u1; u2;�0; �0) dC�0;�0 ;

we get

A0 =

"
�1=18 1=72

0 �1=120

#
;

which is nonsingular because its determinant equals 1=2160 6= 0; therefore [H:2] and
[H:3] are also veri�ed. Then, in view of Theorem 4.4.1, we have

p
n

( b�BLMb�BLM
!
�
 
�0

�0

!)
D! N

  
0

0

!
;
P2

!
; as n!1;

where
P2 := A�10

P
0

�
A�10

�T
: After a tedious computation we get

P
0 =

26664
�20
270

+
�0�0
540

+
�20
3780

+
1

5

�20
8640

+
�0�0
2160

�20
8640

+
�0�0
2160

�20
105

+
�0�0
252

+
17�20
21000

+
1

15

37775 ;
it follows that

P2 =

26664
342�20
35

+
327�0�0
70

+
263�20
280

+
624

5

240�20
7

+
107�0�0

7
+
443�20
140

+ 240

240�20
7

+
107�0�0

7
+
443�20
140

+ 240
960�20
7

+
400�0�0

7
+
408�20
35

+ 960

37775 :

Finally, we note that assumptions [H:1]� [H:3] may be also veri�ed for one and two
parameters copula families given in (??) and (4.12), respectively, but that requires
tedious calculations which would get us out of the context of the paper.

4.5 Simulation study

To check and compare the performance of BLM�s estimator with PML, (� ; �)�inversion
(RAZ) and the minimum distance (MD) methods (see the Appendix for MDmethod),
a simulation study is carried out with r = 2 by considering C�1;�2 (the one iterated
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FGM family) and C�1;�2 (the two parameters Gumbel family) given in (4:11) and
(4:12) respectively. The evaluation of the performance is based on the bias and the
RMSE de�ned as follows:

Bias =
1

N

NX
i=1

�
�̂i � �

�
; RMSE =

 
1

N

NX
i=1

�
�̂i � �

�2!1=2
; (4.23)

where �̂i is an estimator (from the considered method) of � from the ith samples forN

generated samples from the underlying copula. In both parts, we selected N = 1000:

We compare the BLM estimator with the PML, RAZ and MD estimators. The

procedure outlined in Section (4.4) is repeated for di¤erent sample sizes n with n =

30; 50; 100; 500 to assess the improvement in the bias and RMSE of the estimators

with increasing sample size. Furthermore, the simulation procedure is repeated for

a large set of parameters of the true copulas C�1;�2 and C�1;�2 : For each sample, we

solve systems (4:11) and (4:13) to obtain, respectively, the BLM-estimators (b�1;i; b�2;i)
and

�b�1;i; b�2;i� of (�1; �2) and (�1; �2) for i = 1; :::; N; and the estimators b�k; b�k for
k = 1; 2 are given by b�k = 1

N

PN
i=1 b�k;i and b�k = 1

N

PN
i=1
b�k;i:

4.5.1 Performance of the BLM-based estimation

We �rst select parameters, as the true values of the parameters, of Gumbel and FGM

copula models. The choice of the parameters have to be meaningful, in the sense that

each couple of parameters assigns a value of one of the dependence measure, that is

weak, moderate and strong dependence. In other words, if we consider Spearman�s

rho � as a dependence measure, then we should select values for copula parameters

that correspond to speci�ed values of � by using equation (4.6). Recall that for

the FGM family C�1;�2 ; the dependence reaches the maximum �maxFGM = 0:42721 in

�1 = �1+7=
p
13 � 0:941 and �2 = 2�2=

p
13 � 1:445 (see (4.10)). So, we may chose

(�1; �2) = (0:941; 1:445) as the true parameters of FGM family that correspond to

the strong dependence. For the true values of (�1; �2) corresponding to the weak and

the moderate dependence, we proceed as follows. We assign a value to the couple

(�; �1) such that j�1j � 1; then we solve by numerical methods the equation (4.6) in
the region (4.9) and get the corresponding value to �2: We summarize the results in

the following table:

By the same procedure, we select the true parameters (�1; �2) of the Gumbel copula

C�1;�2 and get:

To evaluate the performance of the BLM estimators, we proceed as follows:
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� �1 �2

0:001 0:100 0
0:208 0:400 0:900
0:427 0:941 1:445

Table 4.1: The true parameters of FGM copula used for the simulation study .

� �1 �2
0:001 1 0:001
0:500 1:400 0:200
0:900 2:500 1

Table 4.2: The true parameters of Gumbel copula used for the simulation study.

1. By using the Algorithm in Nelsen 2006, [123, page 41] and the Theorem 4.3.7

in Nelsen 2006, [123, page 129], respectively, we generate twice N samples of

size n from each one the considered copulas C�1;�2 and C�1;�2 :

2. Obtain the BML estimators (b�1; b�2) of (�1; �2) and �b�1; b�2� of (�1; �2) :
3. By computing, for each estimator, the appropriate Bias and RMSE, we com-

pare (b�1; b�2) and �b�1; b�2� ; respectively, with the true parameters (�1; �2) and
(�1; �2) :

All computations were performed in R Software version 2.10.1. The results of the

simulation study are summarized in Tables 4.3 and 4.4. We observed that BLM�s

method product, in terms of bias and RMSE, reasonable results, notably when the

sample size increases. However, in the case of strong dependence for FGM�s family

when the sample size is small and less than 30, the estimation of the �rst parameter

�1 is better that of the second one �2: However, for the sample sizes greater than

100 the results become reasonable and more better for sample sizes greater than

n = 500: For Gumbel family the performance of BLM�s method looks good even for

small samples.

4.5.2 Comparative study: BLM, RAZ, MD and PML

As the previous Subsection, we consider the bivariate two-parameter FGM and Gum-

bel copula families with the trues parameters those given in Tables 4.1 and 4.2 re-

spectively. The simulation study proceeds as follows:

1. Generate N samples of size n = 30; 50; 100; 500 from the copula C�:
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2. Assess the performances of the BLM, RAZ, MD and PML estimators.

3. Compare the BLM, RAZ, MD and PML estimators with the true parameter �

by computing, for each estimator, the appropriate criteria given by (4:23) :

It is clear, from Tables 4.5 to 4.10, that the BLM estimate preforms better than the

RAZ, MD and PML ones as far as the Bias is concerned. On the other hand, in

the case of small samples the RAZ, MD and PLM methods give better RMSE than

the BLM one. However, when the sample size increases, the RMSE of the BLM

estimator becomes reasonable. Moreover, for the computation time point of view,

we observed that the RAZ, MD and PLM estimates require hours to be obtained,

notably when the sample size becomes large, whereas the BLM estimate execution

time is in terms of minutes. This is a natural conclusion, because the RAZ, MD

and PLM methods use the optimization problem under constraints, while the BLM

method uses systems of equations.

4.5.3 Comparative robustness study: BLM, RAZ, MD and

PML

In this subsection we study the sensitivity to outliers of BLM�s estimator and compare

with those of the RAZ, MD and PML ones. We consider an ��contaminated model
for two-parameters FGM familly by means of a copula from the same family. In

other terms, we are dealing with the following mixture copula model:

C�1;�2 (�) := (1� �)C�1;�2 + �C��1;��2 ; (4.24)

where 0 < � < 1 is the amount of contamination. For the implementation of

mixtures models to the study outliers one refers, for instance, to Barnett and Lewis

(1994[? ]), page 43. In this context, we proceed our study as follows. First, we

select (�1; �2) = (0:4; 0:9) corresponds to Spearman�s Rho � = 0:208 (see Table

4.1) and chose (��1; �
�
2) = (0; 0) to have the contamination model as the product

copula that is C��1;��2(u; v) = uv: Then we consider four contamination scenarios

according to � = 5%; 10%; 20%; 30%: For each value �; we generate 1000 samples

of size n = 40 from the copula C�1;�2 (�) : Finally, we compare the BLM, RAZ,

MD and PML estimators with the true parameter (�1; �2) by computing, for each

estimator, the appropriate Bias and RMSE and summarize the results in Table 4.11.

We observed that, for example, in 0% contamination the (Bias, RMSE) of b�1 equals
(0:044; 0:832) ; while for 30% contamination is (�0:165; 0:835) : We may conclude
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that the RMSE of BLM�s estimation in less sensitive (or robust) to outliers, however

the Bias is not. The same conclusion is for the RAZ method but the BLM�s one

is better. For PLM�s estimation both the Bias and the RMSE are sensitive, indeed

for 0% contamination the (Bias, RMSE) of b�1 equals (�0:238; 0:440) ; while for 30%
contamination is (�0:328; 0:589) : Both the bias and the RMSE of MD�s estimation
are note sensitive to outliers, then we may conclude that is the better among the

four estimation methods. However, the computation time cost in MD�s method is

important which is considered as an handicap from practitioners.
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�1 = 0:1 �2 = 0
Bias RMSE Bias RMSE Time (h)

n = 30
BLM 0:227 0:952 �0:194 2:882 0:640
RAZ 0:458 1:005 0:782 2:157 0:978
MD 0:575 0:571 0:494 0:851 1:566
PML 0:550 0:552 0:424 0:872 1:033

n = 50
BLM �0:140 0:702 �0:112 2:193 1:215
RAZ 0:358 0:958 0:558 1:428 1:856
MD 0:468 0:559 0:238 0:846 3:455
PML 0:444 0:546 �0:237 0:840 2:421

n = 100
BLM �0:039 0:565 0:082 1:364 1:847
RAZ 0:229 0:664 0:195 0:985 2:548
MD 0:125 0:521 0:145 0:684 6:888
PML 0:121 0:520 0:131 0:673 4:107

n = 500
BLM 0:021 0:417 0:071 0:634 8:963
RAZ 0:084 0:588 0:118 0:748 11:548
MD 0:077 0:504 0:086 0:640 19:598
PML 0:076 0:502 0:081 0:639 17:073

Table 4.5: Bias and RMSE of the BLM, RAZ, MD and PML estimators for two-
parameters of FGM copula for weak dependence (� = 0:001).

4.6 Conclusions

In this paper, a formula of the bivariate L-moments in terms of copulas is given. This

formula leads to introduce a new estimation method for bivariate copula parameters,

that we called the BLM based estimation. The limiting distribution of the estimators

given by the BLM method are established. Moreover, we compared by simulations

the BLM method with the well-known (� ; �)-inversion (RAZ), the minimum distance

(MD) and the pseudo maximum likelihood (PML) estimators by focusing on the Bias

and the RMSE. We conclude that the BLM based estimation performs well the Bias

and reasonably the RMSE. However, BLM�s method may be an alternative robust

method as far as the RMSE is concerned. As �nale conclusion, it is worth noting

that computation�s time of the proposed method is quite small compared to MD and

PML ones.
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�1 = 0:4 �2 = 0:9
Bias RMSE Bias RMSE Time (h)

n = 30
BLM 0:127 0:855 �0:297 2:668 0:011
RAZ 0:102 1:322 �0:290 1:383 0:016
MD �0:174 0:777 �0:322 1:058 3:583
PML �0:191 0:906 �0:372 1:261 0:954

n = 50
BLM �0:059 0:755 0:123 2:001 1:035
RAZ 0:091 0:892 �0:141 1:272 1:101
MD �0:173 0:730 �0:223 1:010 6:428
PML 0:122 0:775 �0:200 0:853 1:823

n = 100
BLM 0:031 0:715 0:060 1:404 1:920
RAZ 0:082 0:791 �0:130 0:942 1:037
MD �0:130 0:652 �0:121 0:919 11:217
PML 0:090 0:599 0:100 0:794 2:652

n = 500
BLM �0:025 0:300 0:049 0:629 9:205
RAZ 0:054 0:393 �0:087 0:701 8:285
MD �0:071 0:602 �0:061 0:742 19:210
PML 0:047 0:573 0:056 0:632 16:458

Table 4.6: Bias and RMSE of the BLM, RAZ, MD and PML estimators for two-
parameters of FGM copula for moderate dependence (� = 0:208).
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�1 = 0:941 �2 = 1:445
Bias RMSE Bias RMSE Time (h)

n = 30
BLM 0:091 0:832 0:402 2:715 0:017
RAZ 0:171 1:142 �0:471 1:229 0:057
MD �0:142 0:871 �0:420 1:025 2:083
PML �0:121 0:927 �0:415 1:061 0:781

n = 50
BLM 0:054 0:641 0:300 1:982 1:020
RAZ 0:157 0:997 �0:321 1:120 1:021
MD �0:135 0:753 0:351 0:940 6:633
PML 0:092 0:892 �0:307 1:150 1:754

n = 100
BLM 0:030 0:449 0:090 1:391 1:620
RAZ 0:081 0:463 �0:153 0:931 1:037
MD 0:070 0:743 �0:114 0:904 9:217
PML 0:050 0:712 0:102 0:800 2:652

n = 500
BLM 0:021 0:315 0:046 0:602 9:205
RAZ 0:071 0:357 �0:098 0:765 8:285
MD �0:064 0:541 �0:054 0:782 19:210
PML 0:052 0:472 0:076 0:699 17:458

Table 4.7: Bias and RMSE of the BLM, RAZ, MD and PML estimators for two-
parameters of FGM copula for strong dependence (� = 0:427).
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�1 = 1 �2 = 0:001
Bias RMSE Bias RMSE Time (h)

n = 30
BLM 0:174 0:941 0:453 1:854 1:121
RAZ 0:181 0:782 0:532 1:186 1:021
MD �0:274 0:546 �0:698 1:243 4:691
PML 0:310 0:335 �0:593 0:910 1:065

n = 50
BLM �0:157 0:897 0:289 0:977 1:026
RAZ 0:184 0:539 0:476 0:629 1:265
MD 0:262 0:448 �0:310 0:759 3:633
PML 0:250 0:303 �0:302 0:815 2:754

n = 100
BLM �0:126 0:530 0:193 0:824 1:920
RAZ �0:177 0:523 0:250 0:619 2:248
MD �0:161 0:420 �0:201 0:521 6:285
PML 0:151 0:272 �0:197 0:810 4:153

n = 500
BLM �0:098 0:411 0:114 0:324 9:010
RAZ �0:235 0:502 0:136 0:503 7:149
MD �0:181 0:409 0:116 0:376 14:984
PML 0:170 0:205 �0:115 0:619 13:147

Table 4.8: Bias and RMSE of the BLM, RAZ, MD and PML estimators for two-
parameters of Gumbel copula for weak dependence (� = 0:001).
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�1 = 1:4 �2 = 0:2
Bias RMSE Bias RMSE Time (h)

n = 30
BLM �0:182 0:989 0:593 1:317 1:024
RAZ 0:191 0:885 0:655 1:215 1:042
MD 0:214 0:985 �0:525 1:056 6:485
PML 0:195 0:524 �0:423 1:051 1:125

n = 50
BLM �0:134 0:594 0:526 0:994 1:058
RAZ 0:187 0:512 0:555 0:972 1:012
MD 0:181 0:423 �0:461 0:853 2:588
PML 0:177 0:318 �0:413 0:916 2:859

n = 100
BLM �0:122 0:482 0:272 0:492 2:247
RAZ �0:150 0:421 0:291 0:712 3:153
MD �0:170 0:439 �0:269 0:474 6:256
PML 0:152 0:293 �0:275 0:471 5:254

n = 500
BLM �0:101 0:223 0:135 0:312 11:587
RAZ �0:149 0:400 0:221 0:655 8:145
MD �0:106 0:306 �0:212 0:355 14:445
PML 0:102 0:221 �0:200 0:317 13:157

Table 4.9: Bias and RMSE of the BLM, RAZ, MD and PML estimators for two-
parameters of Gumbel copula for moderate dependence (� = 0:5).
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�1 = 2:5 �2 = 1
Bias RMSE Bias RMSE Time (h)

n = 30

BLM 0:422 0:954 �0:740 1:119 0:955
RAZ 0:786 1:125 0:782 1:175 1:054
MD 0:546 0:546 0:592 0:563 1:245
PML 0:553 0:551 0:723 0:522 1:165

n = 50
BLM 0:329 0:817 �0:635 0:852 1:021
RAZ 0:586 0:983 0:745 0:972 1:245
MD 0:321 0:522 0:582 0:552 2:265
PML 0:292 0:512 0:551 0:514 2:255

n = 100
BLM 0:107 0:584 �0:592 0:713 1:920
RAZ 0:425 0:812 0:611 0:902 2:153
MD �0:181 0:501 �0:578 0:488 5:544
PML 0:172 0:482 �0:545 0:472 5:458

n = 500
BLM �0:066 0:456 �0:367 0:478 9:205
RAZ 0:123 0:757 0:501 0:694 8:789
MD 0:094 0:469 0:408 0:495 14:565
PML 0:084 0:465 0:375 0:482 13:425

Table 4.10: Bias and RMSE of the BLM, RAZ, MD and PML estimators for two
parameters of Gumbel copula for strong dependence (� = 0:9).
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�1= 0:4 �2= 0:9
0% contamination
Bias RMSE Bias RMSE

BLM 0:044 0:832 �0:141 2:650
RAZ 0:053 0:432 �0:440 0:711
MD 0:267 0:270 �0:456 0:461
PML �0:238 0:440 �0:472 0:627

5% contamination
BLM 0:046 0:833 �0:137 2:662
RAZ �0:069 0:431 �0:479 0:738
MD 0:254 0:257 �0:472 0:475
PML �0:274 0:407 0:432 0:613

10% contamination
BLM �0:082 0:811 �0:155 2:641
RAZ �0:090 0:393 �0:461 0:695
MD 0:279 0:281 �0:464 0:468
PML �0:267 0:506 �0:429 0:637

20% contamination
BLM �0:100 0:802 �0:188 2:585
RAZ �0:130 0:423 �0:537 0:786
MD 0:280 0:282 �0:472 0:477
PML �0:268 0:524 �0:500 0:639

30% contamination
BLM �0:165 0:835 �0:280 2:627
RAZ �0:179 0:480 �0:619 0:909
MD 0:293 0:266 �0:458 0:465
PML �0:328 0:589 �0:515 0:641

Table 4.11: Bias and RMSE of the BLM, RAZ, MD and PML estimators for �-
contaminated two-parameters of FGM copula by product copula.



Chapter 5

Distortion risk measures for sums
of dependent losses

« A mathematician is a machine for turn ing co¤ee into theorem s.»

Paul Erdös, (1913-1996)

We discuss two distinct approaches, for distorting risk measures of sums of dependent

random variables, which preserve the property of coherence. The �rst, based on

distorted expectations, operates on the survival function of the sum. The second,

simultaneously applies the distortion on the survival function of the sum and the

dependence structure of risks, represented by copulas. Our goal is to propose risk

measures that take into account the �uctuations of losses and possible correlations

between random variables. For more detail see Brahimi et al. (2010, [10]).

Keywords: Coherence, Distortion parameter, Dependence structure, Heavy-tailed
risks, Insurance premium, Wang transform.

5.1 Introduction

Risk measures are used to quantify insurance losses and measuring �nancial risk as-

sessments. Several risk measures have been proposed in actuarial science literature,

namely: the Value-at-Risk (VaR), the expected shortfall or the conditional tail ex-

pectation (CTE), and the distorted risk measures (DRM). Before introducing and

interpreting the DRM, it is necessary to �x a convention of pro�t and loss appro-

priate to the application to market �nance, credit risk and insurance. Let X be a

117
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random variable (rv), representing losses (or gains) of a company, with a continuous

distribution function (df) F: The DRM of rv X; due to Wang (1995,[149]), is de�ned

as follows:

� [X] :=

Z 1

0

 (1� F (x)) dx; (5.1)

where  is a non-decreasing function, called distortion function, satisfying  (0) = 0

and  (1) = 1: In the actuarial literature the following functions are frequently used:

 � (s) = s�; for 0 < � � 1;

 � (s) = �
�
��1 (s) + �

�
; for 0 � � <1;

 � (s) = min (s= (1� �) ; 1) for 0 � � < 1;

 � (s) = s� (1� � ln s) ; for 0 < � � 1;

where ��1 (u) := inf fx : � (x) � ug is the quantile function of the standard normal
distribution �: Constants �; �; � and � are called distortion parameters. The func-

tions  �;  �;  � and  � respectively give rise to the so-called proportional hazard

transform (PHT) (Wang, 1995), the normal transform (Wang, 2000, [151]), the CTE

and the look-back distortion (Hürlimann, 1998, [82]). When � = 1 and � = � = 0;

there is no distortion and the corresponding DRM is equal to the expectation of X:

For recent literature on risk measures one refers to Denuit et al. (2005, [31]) and

Furman and Zitikis (2008a[52] , 2008b[53]).

The problem of the axiomatic foundation of risk measures has received much at-

tention starting with the seminal paper of Artzner et al. (1999, [5]), where the

de�nition of coherent risk measure was �rst provided. A coherent risk measure is a

real functional �; de�ned on a space of rv�s, satisfying the following axioms:

H1. bounded from above by the maximum loss: �(X) � max (X) :
H2. bounded from below by the mean loss: � (X) � E (X) :
H3. scalar additive and multiplicative: � (aX + b) = a� (X) + b; for a; b � 0:
H4. subadditivity: �(X + Y ) � � (X) + � (Y ) :

The only axiom that a DRM may lack in order to be a coherent risk measure in

the sense of Artzner et al. (1999, [5]) is H4. However, the subadditivity theorem of

Choquet integrals (Denneberg, 1994, [30]) guarantees that �(X+Y ) � � (X)+� (Y )

if and only if the distortion function  is concave. Hence, the DRM � [X] de�ned

in (5:1) with a concave distortion  is coherent. It is well known that the CTE and

the PHT are examples of concave distortion risk measures, whereas the VaR is not.
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In traditional risk theory, individual risks have been usually assumed to be indepen-

dent. Traceability for this assumption is very convenient, but not realistic. Recently

in the actuarial science, the study of the impact of dependence among risks has be-

come a major and �ourishing topic. Several notions of dependence were introduced

to model the fact that larger values of one component of a multivariate risk tend to

be associated with larger values of the others. In this paper, we deal with a vector of

risk losses X = (X(1); :::; X(d)); d � 2 and we discuss the computation of the DRM
of the sum Z of its components. When X(1); :::; X(d) are independent and identically

distributed, their sum is considered as a rv whose df G is the convolution of the

marginal distributions of X: In this case, the DRM value of Z; for a given distortion

function  may be obtained via formula (5:1) ; that is

� [Z] :=

Z 1

0

 (1�G (z)) dz: (5.2)

Now, assume that X(1); :::; X(d) are dependent with joint df H and continuous mar-

gins Fi; i = 1; :::; d: In this case, the problem becomes di¤erent and its resolution

requires more than the usual background. Several authors discussed the DRM, when

applied to sums of rv�s, against some classical dependency measures such as Person�s

r; Spearman�s � and Kendall�s � ; see for instance, Darkiewicz et al. (2004, [23]) and

Burgert and Rüschendorf (2006, [11]). Our contribution is to introduce the copula

notion to provide more �exibility to the DRM of sums of rv�s in terms of loss and

dependence structure. For comprehensive details on copulas one may consult the

textbook of Nelsen (2006, [123]). According to Sklar�s Theorem (Sklar, 1959[142]),

there exists a unique copula C : [0; 1]d ! [0; 1] such that

H (x1; :::; xd) = C (F1 (x1) ; :::; Fd (xd)) : (5.3)

Copula C is the joint df of rv�s Ui = Fi
�
X(i)

�
; i = 1; :::; d: It is de�ned on [0; 1]d by

C (u1; :::; ud) = H
�
F�11 (u1) ; :::; F

�1
d (ud)

�
; where F�1i denotes the quantile function

of Fi: This means that the DRM of the sum is a functional of both copula C and

margins Fi: Therefore, one must take into account the dependence structure and

the behavior of margin tails. These two aspects have an important in�uence when

quantifying risks. If the correlation factor is neglected, the calculation of the DRM

follows formula (5:2) ; which only focuses on distorting the tail. In order to highlight

the dependence structure, we add a distortion on the copula as well. The notion

of distorted copula has recently been considered by several authors, see for instance
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Frees and Valdez (1998), Genest and Rivest (2001, [63]), Morillas (2005, [117]) and

Valdez and Xiao (2010, [147]). Given a copula C and a non-decreasing bijection

� : [0; 1]! [0; 1] ; the distorted copula C� is de�ned by

C�(u1; :::; ud) := �
�1(C(�(u1); :::;�(ud))):

This transformation will a¤ect the joint df H and consequently the df G of the sum

Z: Their new forms will be denoted by H� and G� respectively. Morillas (2005,

[117]) describes some of the existing families of distortion functions, among which

the following are frequently used:

�r (s) = sr; for 0 < r � 1;

�� (s) =
ln (�s+ 1)

ln (� + 1)
; for � > 0;

��;# (s) =
(� + #) s

�s+ #
; for �; # > 0;

�� (s) =
s�

2� s�
; for 0 < � � 1=3:

We call the corresponding distorted risk measures by copula distorted risk measure

(CDRM) de�ned as

�� [Z] =

Z 1

0

 
�
1�G� (z)

�
dz:

It is worth mentioning that ifX(1); :::; X(d) are independent, the corresponding copula

function C (u1; :::; ud) =
dQ
i=1

ui is called the product copula and denoted by C?: In

this case, we have C� = C and therefore �� [Z] = � [Z] :

The remainder of this paper is organized as follows. In Section 5.2, we give a copula

representation of the DRM�s. In Section 5.3, we present a more �exible class of

copula given by the notion of distorted Archimedean copulas. By the nice properties

of this class and the copula representation of the DRM, we introduce in Section 5.4

of the CDRM�s. Finally, an illustrative example explaining the CDRM computation

is given in Section 5.5.
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5.2 Copula representation of the DRM

Given a vector of risk losses X = (X(1); :::; X(d)); d � 2; with joint df H and contin-

uous margins Fi; i = 1; :::; d: The df of the rv Z =
Pd

i=1Xi; is given by

G(t) =

Z
A(t)

dH (x1; ::; xd) ; for any t � 0;

where A (t) :=
n
(x1; ::; xd) : 0 �

Pd
i=1 xi � t

o
: Using the representation (5:3) ; we

get

G(t) =

Z
A(t)

dC(F1(x2); :::; Fd(xd)):

If we suppose that the copula C and margins Fi are di¤erentiable with densities c

and fi; respectively, then

G(t) =

Z
A(t)

c (F1 (x1) ; :::; Fd (xd))
dY
i=1

fi (xi) dx1; :::dxd:

The change of variables Fi (xi) = ui; i = 1; :::; d; yields

G(t) =

Z Fd(t)

0

Z Fd�1(t�F�1d (ud))

0

:::Z F1(t�
Pd�2
i=0 F

�1
d�i(ud�i))

0

c(u1; :::; ud)du1:::dud: (5.4)

According to (5:4) ; the computation of the DRM corresponding to Z; given in (5:2) ;

requires the knowledge of the copula density and the margins of vector X: In partic-

ular, for the bivariate case (d = 2) ; we have

G(t) =

Z F2(t)

0

Z F1(t�F�12 (u2))

0

c(u1; u2)du1du2:

Whenever X1 and X2 are independent, we have c(u1; u2) = 1; and therefore

G(t) =

Z F2(t)

0

F1
�
t� F�12 (u2)

�
du2 =

Z t

0

F1 (t� x) dF2 (x) ;

which is the usual convolution of the Fi�s.
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5.3 Distorted Archimedean copulas

In this paper, we focus on one important class of copulas called: Archimedean copu-

las. This class contains several copula families useful in dependence modelling. Their

nice properties are captured by an additive generator function ' : [0; 1] ! [0;1];
which is continuous, strictly decreasing and convex with '(1) = 0: The main advan-

tage of the Archimedean copulas is the achievement of the reduction in dimension-

ality of a d-variate distribution in a single argument. In econometrics, this property

has the potential to be of use in models of limited dependent variables, especially

those requiring some probabilistic enumeration on high-dimensional subspaces. In

the bivariate case, an Archimedean copula is de�ned by

C(u; v) = '[�1] ('(u) + '(v)) ;

where

'[�1] (t) =

(
'�1 (t) ; 0 � t � ' (0) ;

0; ' (0) � t � 1:

Note that '[�1] is continuous and non-increasing on [0;1] and ' is the unique

generator up to a scaling constant. If the terminal '(0) = 1; the generator is

termed strict and '[�1] = '�1: Numerous single-parameter families of Archimedean

copulas are listed in Table 4.1 in Nelsen (2006, [123]). Particular examples are

'�(t) =
�
t�� � 1

�
=�; '�(t) = (� ln t)� and '� (t) = � ln(

�
e��t � 1

�
=
�
e�� � 1

�
)

which are, respectively, the generators of the Clayton family

C�(u; v) =
�
u�� + v�� � 1

��1=�
; � � 0;

the Gumbel family

C�(u; v) = exp
�
�[(� lnu)� + (� ln v)�]1=�

	
; � � 1;

and the Frank family

C�(u; v) = �
1

�
ln

"
1 +

�
e�u � 1

� �
e�v � 1

�
e� � 1

#
; � 2 Rn f0g :

The generators '�; '� and '� are strict and therefore their corresponding copulas

C�; C� and C� verify

C(u; v) = '�1('(u) + '(v)):
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Next, we discuss some properties of distortion functions acting on bivariate Archimedean

copulas. Given an Archimedean copula C and a strictly increasing bijection � :

[0; 1]! [0; 1] ; we consider the function C� : [0; 1]2 ! [0; 1] de�ned by

C�(u; v) = ��1(C(�(u);�(v))):

Under what conditions on �; the function C� is an Archimedean copula?

First, from Theorem 3.3.3. in Nelsen (2006, [123]), C� is a copula if � is concave and

continuous on [0; 1] with � (0) = 0 and � (1) = 1: The following Theorem gives an

additional condition so that the copula C� remains Archimedean. For convenience,

let K represents the set of the functions � verifying the assumptions above.

Theorem 5.3.1 Let C be an Archimedean copula with generator ' and suppose that
� 2 K; then the copula C� is Archimedean if and only if ' � � is convex.

Proof. Indeed, let ' be the generator of the copula C and let � 2 K; then

C�(u1; :::; ud) = �
�1(C(�(u1); :::;�(ud))):

We have �[�1] = ��1; then

C�(u1; :::; ud) = �
[�1]'[�1] (' (� (u1)) + :::+ ' (� (ud))) :

It is easy to show that �[�1]'[�1] = (' � �)[�1] ; it follows that

C�(u1; :::; ud) = T [�1] (T (u1) + :::+ T (ud)) ; (5.5)

with T := ' ��: From Theorem 4.1.4. Nelsen 2006, [123], C� is Archimedean if and
only if T is convex. Notice that ' � � is the generator of the copula C�:

Corollary 5.3.1 The crucial distortion function t ! �? (t) := exp (�' (t)) trans-
forms any Archimedean copula C in the product copula C?:

Proof. Straightforward.

Next, we see the in�uence of the distortion of copulas on the association measures.

Kendall�s tau and Spearman�s rho are the most popular measures of association,

their representations in terms of the copula C are given by

� = 4

Z 1

0

Z 1

0

C(u; v)dC(u; v)� 1 and � = 12
Z 1

0

Z 1

0

(C(u; v)� uv) dudv;
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respectively. Let �� and �� ; respectively, denote Kendall�s tau and Spearman�s rho

of copula C�: According to Theorem 10 in Durrleman et al. (2000, [37]), we have

under suitable assumptions

1 +
� � 1
a2

� �� � 1 + � � 1
b2

;

and
�+ 3

a3
� 3 � �� � �+ 3

b3
� 3;

where 0 < a � b <1 are bounds for the derivative of �:

5.4 Risk measures for sums of losses

It may happen that the model (represented by the copula C) chosen, to �t the data,

does not provide enough information. This leads us to transform C to a more �exible

copula C� of the same class. Consequently, the joint df of X may be represented,

via Sklar�s Theorem, as

H (x1; :::; xd) = C� (F1(x1); :::; Fd(xd)) :

Suppose the copula C is Archimedean with generator '; then from Theorem 5.3.1,

the copula C� de�ned in (5.5) is also Archimedean. Assume that C� has a density

function c�; then in view of the representation (5.4) the df G� of the sum Z may be

written as

G� (t) :=

Z Fd(t)

0

Z Fd�1(t�F�1d (ud))

0

:::

Z F1(t�
Pd�2
i=0 F

�1
d�i(ud�i))

0

c�(u1; :::; ud)du1:::dud:

Applying Wang�s principle (5:1) to the loss distribution G�; we have

�� [Z] :=

Z +1

0

 
�
1�G� (t)

�
dt;

which we call the CDRM. This may be considered as manner of measuring the risk

Z by distorting both the dependence structure and the distribution tail, without

losing the coherence feature. The CDRM adjusts the true probability measure to

give more weight to higher risk events and less weight to dependence structure. In
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other words, the simultaneous transformations yield a new risk measure bounded by

the expectation and Wang�s measure, that is

E [Z] � �� [Z] � � [Z] : (5.6)

In the following example, we verify the previous inequalities on a selected model.

5.5 Illustrative example

Let X1 and X2 be two risks with joint df represented by the Clayton copula C�; � > 0

and Pareto-distributed margins F1 and F2 with parameters 0 < �1; �2 < 1; that is

Fi (xi) = 1 � x
�1=�i
i ; xi > 1; i = 1; 2; : The corresponding Kendall tau of Clayton

copula is � = �= (� + 2) : Let  (x) = x1=�; � � 1; and � (t) = t1=�; � � 1: The

distorted copula C�� ; denoted by C
�
� ; is of Clayton type with generator (' � �) (t) =�

t��=� � 1
�
=� and the corresponding Kendall�s tau is �� = (�=�) = (�=� + 2) : The df

of the sum Z = X1 +X2 is

G� (t; �; �1; �2) =

Z 1�t�1=�2

1

 Z 1�(t�(1�v)��2 )�1=�1

1

c��(u; v)du

!
dv;

where

c��(u; v) = (�=� + 1)u
��=��1v��=��1

�
u��=� + v��=� � 1

���=��2
;

is the density of C�
� : Figures 5.1 and 5.2 gives a preview of the e¤ect of the copula

distortion.

The DRM and the CDRM of Z are repetitively denoted by

�� [Z] =

Z 1

2

(1�G (t))1=� dt;

and

��� [Z] =

Z +1

2

�
1�G� (t)

�1=�
dt:

We select Pareto model with � = 3=2; �1 = 1=3; �2 = 1=5:We obtain E (Z) = 0:750;
� = 0:428: For two di¤erent tail distortion parameters � = 1:2 and � = 1:4 the

respective DRM�s are 1:225 and 2:091: The CDRM�s for distinct values of the copula

distortion parameter � are summarized Tables 5.1 and 5.2, where we see that the

inequalities (5:6) are satis�ed for any value of the copula distortion parameter. This

is well shown graphically in Figure 5.3 in which the three risk measures of (5:6) are
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Figure 5.1: Clayton copula density with � = 2:

plotted as functions of �:

� 1 1:5 2 2:5 3 3:5 4 5 6

� � 0:428 0:333 0:272 0:230 0:200 0:176 0:157 0:130 0:111
��� [Z] 1:225 1:030 0:988 0:969 0:964 0:961 0:958 0:953 0:950

Table 5.1: CDRM�s and transformed Kendall tau of the sum of two Pareto-
distributed risks with tail distortion parameter � = 1:2:

� 1 1:5 2 2:5 3 3:5 4 5 6

� � 0:428 0:333 0:272 0:230 0:200 0:176 0:157 0:130 0:111
��� [Z] 2:091 1:801 1:736 1:712 1:703 1:699 1:694 1:685 1:680

Table 5.2: CDRM�s and transformed Kendall tau of the sum of two Pareto-
distributed risks with tail distortion parameter � = 1:4:

Taking � = 1 means that we make no distortion on the dependence structure, that

is C1 = C; and �1� [Z] = �� [Z] : In other words, the CDRM with � = 1 reduces to

Wang�s DRM, which can be seen in the second columns of Tables 5.1 and 5.2. This

fact is also clear in Figure 5.3. On the other hand, as � increases, the transformed

Kendall�s tau decreases meaning that the dependence gets weaker (see the second

lines of Tables 5.1 and 5.2). Moreover, starting from some � the CDRM values (see

the third lines of Tables 5.1 and 5.2) become roughly constant while being always

greater than the expectation.
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Distorted Clayton copula density

Figure 5.2: Distorted Clayton copula density with � = 2; � = 4.

5.6 Concluding remarks

In portfolio analysis, the dependence structure has a major role to play in quantifying

risks. This led us to think of risk measure taking into account this fact in addition

to the tail behavior. In this paper, we proposed a risk measure for the sum of two

losses by simultaneously transforming the distribution tail and the copula, which

represents the dependence between the margins, by means of two distortion functions.

We obtained a coherent measure that we called the Copula Distorted Risk Measure.

This new measure has the characteristic to be greater than the expectation and

less than the popular Wang�s distorted risk measure. In the insurance business, the

main advantage of this property is to reduce Wang�s premium while respecting the

standard axioms of the premium principle.
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Figure 5.3: Risk measures of the sum of two Pareto-distributed risks with tail dis-
tortion parameter � = 1:2:



General conclusion

One of the most widely used tools to study multivariate outcomes is the copula

function. In the case of dependent multivariate data, multivariate copulas provide a

useful tool to assist in the process of model building. In this essay we have shown

how to analyse some real-world scenarios using copulas.

We started with a discussion of the signi�cance of the copula function in the �rst

chapter. A copula is a function that relates a multivariate distribution function

to its one-dimensional marginal distribution functions. We reviewed its properties,

such as the invariance under strictly monotone transformations. We also looked at

some methods of constructing bivariate copulas and how copulas could be used to

simulate multivariate outcomes, an important tool for applied work, where many

variables need to be considered. We also provided an example where we showed how

one can estimate a copula where bivariate data is at hand, for purposes of simplicity.

Since copulas are parametric families, standard techniques such as the maximum like-

lihood and inference functions for margins (IFM) methods, are useful for estimating

their parameters. All these methods are described in Chapter one.

There are many families of copulas which di¤er in the detail of the dependence

they represent. A family will typically have several parameters which relate to the

strength and form of the dependence. Some families of copulas are outlined in

Chapter two. A typical use for copulas is to choose one such family and use it to

de�ne the multivariate distribution to be used, typically in �tting a distribution to

a sample of data. However, it is possible to derive the copula corresponding to any

given multivariate distribution.

In Chapter three, we focused on risk measures that can be used to understand

which aspect of the riskiness associated with the uncertain outcome the risk measure

attempts to quantify. In that respect, we concentrate on risk measures that measure

upper tails of distribution functions.

Finally in Chapter four and �ve, we give the main results in this thesis. The �rst

129
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one is giving a new procedure estimate of copula parameters using the bivariate

L-moments, we have already proved performances of this approach, we compared,

by simulations, the new method with the well-known (� ; �)-inversion, the minimum

distance and the pseudo maximum likelihood estimators, which is recommended by

some authors. We have show that BLM estimator is good candidate to construct

goodness-of-�t tests of copula models. The second one is proposing of a risk measure

for the sum of two losses by simultaneously transforming the distribution tail and

the copula, which represents the dependence between the margins, by means of two

distortion functions. We obtained a coherent Copula Distorted Risk Measure. This

new measure has the characteristic to be greater than the expectation and less than

the popular Wang�s distorted risk measure, the main advantage of this property is

to reduce Wang�s premium while respecting the standard axioms of the premium

principle.



Appendix A

Proofs

A.1 Proof of Theorem 4.3.1

Since
�
F2(X

(2))
�
is (0; 1)�uniform r.v., then copula�s representation of the joint df

of the pair of r.v.�s
�
X(1);

�
F2(X

(2))
�j�

is

D(u; v) := C
�
F1 (u) ; v

1=j
�
; j = 1; 2; :::; k � 1;

it follows that, the covariance of
�
X(1);

�
F2(X

(2))
�j�

is

Cov
�
X(1);

�
F2
�
X(2)

��j�
=

Z
R

Z
I

�
D(u; v)� v1=jF1(u)

�
dvdu

=

Z
R

Z
I

�
C
�
F1(u); v

1=j
�
� v1=jF1(u)

�
dvdu

=

Z
I2
(C (u; v)� uv) dvjdF�11 (u):

Therefore

�k[12] = Cov
�
X(1); Pk�1

�
F2
�
X(2)

���
=

k�1X
j=0

pj;k�1Cov
�
X(1);

�
F2
�
X(2)

��j�
:

Since Cov
�
X(1);

�
F2
�
X(2)

��j�
= 0 for j = 0; then
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�k[12] =
k�1X
j=1

pj;k�1Cov
�
X(1);

�
F2
�
X(2)

��j�
=

k�1X
j=1

pj;k�1

Z
I2
(C (u; v)� uv) dvjdF�11 (u)

=

Z
I2
(C (u; v)� uv) dPk�1 (v) dF

�1
1 (u);

as sought. �

A.2 Proof of Theorem 4.4.1

The existence of a sequence of consistent roots b�BLM to (4.15) or (4.21), may be

checked by using a similar argument as the proof of Theorem 1 in Tsukahara (2005).

Indeed, we have only to check the conditions in Theorem A.10.2 in Bickel et al.

(1993). Since we are dealing with an asymptotic result, we may consider that, for

all large n; without loss of generality, that the empirical df Fj:n and their rescaled

version F �j:n have a same e¤ect. Therefore throughout the proof, we will make use of

Fj:n instead of F �j:n: For convenience we set

�n (�) :=
1

n

nX
i=1

L
�
F1:n

�
X
(1)
i

�
; F2:n

�
X
(2)
i

�
;�
�
and � (�) :=

Z
I2
L (u1; u2;�) dC�0 (u1; u2) :

By assumption [H:2] ; it is clear that the following derivatives exist:

�
�n (�) =

@�n (�)

@�
=
1

n

nX
i=1

�
L
�
F1:n

�
X
(1)
i

�
; F2:n

�
X
(2)
i

�
;�
�
;

�
� (�) =

@� (�)

@�
=

Z
I2

�
L (u1; u2;�) dC�0 (u1; u2) :

Next, we verify that

sup

����� ��n (�)� �
� (�)

���� : j� � �0j < �n

�
P! 0; as n!1; (A.1)
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for any real sequence �n ! 0: By using the triangular inequality we get���� ��n (�)� �
�n (�0)

���� � 1

n

nX
i=1

���� �L�F1:n �X(1)
i

�
; F2:n

�
X
(2)
i

�
;�
�
�

�
L
�
F1:n

�
X
(1)
i

�
; F2:n

�
X
(2)
i

�
;�0

����� :
Since

�
L is continuous in �; then

sup

����� �L�F1:n �X(1)
i

�
; F2:n

�
X
(2)
i

�
;�
�
�

�
L
�
F1:n

�
X
(1)
i

�
; F2:n

�
X
(2)
i

�
;�0

�����
: j� � �0j < �n

�
= oP (1) ;

therefore
sup

����� ��n (�)� �
�n (�0)

���� : j� � �0j < �n

�
P! 0; as n!1: (A.2)

On the other hand, from the law of the large number, we infer that

1

n

nX
i=1

�
L
�
F1

�
X
(1)
i

�
; F2

�
X
(2)
i

�
;�0

�
P!

�
� (�0) ; as n!1:

Moreover, in view of the continuity of
�
L in u and since supx(j)

��Fi:n �x(j)�� Fi
�
x(j)
���!

0; j = 1; 2; almost surely, n!1 (Glivenko-Cantelli theorem), we have

1

n

nX
i=1

���� �L�F1:n �X(1)
i

�
; F2:n

�
X
(2)
i

�
;�0

�
�

�
L
�
F1

�
X
(1)
i

�
; F2

�
X
(2)
i

�
;�0

����� P! 0:

It follows that

���� ��n (�0)� �
� (�0)

���� P! 0; which together with (A.2), implies (A.1).

Conditions (MG0) and (MG3) in Theorem A.10.2 in Bickel et al. (1993) are trivially

satis�ed by our assumptions [H1] � [H3] : In view of the general theorem for Z-

estimators (see, van der Vaart and Wellner, 1996, Th. 3.3.1), it remains to prove

that
p
n

�
�
�n �

�
�

�
(�0) converges in law to the appropriate limit. But this follows

from Proposition 3 in Tsukahara (2005), which achieves the proof of Theorem 4.4.1.

�
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A.3 Minimum distance based estimation

We brie�y present the minimum distance (MD) base estimation for copula models

that posseses a qualitative robusteness (Genest and Rémillard, 2008), this will be

compared with the BLM method (see Subsection 5.2). Let C be the true copula

associated to the df of
�
X(1); X(2)

�
and suppose that we have a given parametric

family of copula C := fC�; � 2 Og to �t data. Let us de�ne the minimum distance

functional T on the space of the copula by

T (C) := argmin
�2O

� (C;C�) :

Here � is a distance between probabilities on I2: In the present paper, we consider
the Cramér-von Mises distance di�ned by

�CVM (C;C�) :=

Z
I2
fC (u1; u2)� C� (u1; u2)g2 dC (u1; u2) :

Consider now a random sample
�
X
(1)
i ; X

(2)
i

�
i=1;n

; from the bivariate random vari-

ables
�
X(1); X(2)

�
: The joint empirical distribution functions is given by

Fn (x1; x2) =
1

n

nX
i=1

1
n
X
(1)
i � x1; X

(2)
i � x2

o
:

Following Deheuvels (1979), we de�ne the empirical copula by

Cn (u1; u2) := Fn
�
F�1n:1 (u1) ;F�1n:2 (u2)

�
; 0 � u1; u2 � 1:

The corresponding Cramér-von Mises statistics is

�CVM (Cn; C�) =
Z
I2
fCn (u1; u2)� C� (u1; u2)g2 dCn (u1; u2) :

This may be rewritten into

�CVM (Cn; C�) = n�1
nX
i=1

�
Cn
�bU (1)i ; bU (2)i

�
� C�

�bU (1)i ; bU (2)i

��2
;
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where bU (j)i := F�j:n
�
X
(j)
i

�
; i = 1; :::; n; for each j = 1; 2 (see, Genest and Rémillard,

2008, eq. 31). The MD estimator of the parameter � is de�ned by

b� = T (Cn) := argmin
�2O

�CVM (Cn; C�) :

Note that we may also use the Kolmogorov-Smirnov distance but this is awkward

in practice due to the supremum norm uses. Also since the Hellinger distance is

de�ned by copula densities, other nonparametric estimators of the underling copula

are needed (see, Biau and Begkamp, 2005) and therefore non-standard computational

procedures are required.

Suppose now that we are dealing with the estimation of parameters of one iterated

FGM copula family C�1;�2 in (4:8) by means of the MD method. The MD esti-

mator for � =(�1; �2) noted b�MD results by minimizing the function (�1; �2) !
� (Cn; C�1;�2) over the region R given in (4:9) : Then to solve the previous optimiza-

tion problem, we will introduce the Lagrange multiplier principle, that is we have to

rewrite the region R into

R = f(�1; �2) ; `j (�1; �2) � 0; j = 1; 2; 3g ;

where `1 (�1; �2) := 1� �21; `2 (�1; �2) := �1 + �2 + 1 and

`3 (�1; �2) :=
1

2

h
3� �1 +

�
9� 6�1 � 3�21

�1=2i� �2;

and then minimize the function

Kn (�;�) := � (Cn; C�1;�2)�
3X
j=1

�j`j (�1; �2) ;

over the whole R5; with � =(�1; �2) 2 R2 and � =(�1; �2; �3) 2 R3: So, the new
formulation of the MD estimator of parameter � is

b�MD = arg min
(�;�)2R5

Kn (�;�) :

We note here that it is di¢ cult, in general, to have an explicit form for b�MD; then

only the numerical computation can solve this issue. This is observed for the one-

iterated FGM family, that the optimization problem requires tedious tools.
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Appendix B

Code R

B.1 Simulation datas from two parameters FGM

copula

Let C 2-parameters FGM copula de�ned by

C�1;�2 (u; v) = uv f1 + � (1� u) (1� v) + �uv (1� u) (1� v)g :

the «conditional distribution function» method, where v = c�1u (t) for

cu(t) =
@C(u; v)

@u
(B.1)

= v + (�v(1� v)(1� u)� �vu(1� v))�
(�(2(v(uv)))(1� v)(1� u)� �((uv)2)(1� v))

Algorithm (Nelsen 2006, [123, p. 41]).

1. Generate two independent uniform (0; 1) variates u and t:

2. Set v = c
[�1]
u (t) where c[�1]u denotes a quasi-inverse of cu:

3. The desired pair is (u,v).

The code R for this Algorithm for 2-parameters FGM copula is:

library(copula, mvtnorm, scatterplot3d)

library(sn)
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library(mnormt)

# load required packages

P <- function(u,v){

v+(a*v*(1-v)*(1-u)-a*v*u*(1-v))

+(b*(2*(v*(u*v)))*(1-v)*(1-u)-b*((u*v)^2)*(1-v))

} # the formula (B.1).

a <- 0.941 # �rst copula parameter �

b <- 1.445 # second copula parameter �

n <- 10 # sample size.

F <- function(x) rank(x)/n

# First step we generate 2 independent uniform (0,1) variates u and t.

teta <- 0 # teta=0 gives 2 independent rv�s.

fgm.cop <- fgmCopula(teta)

s <- mvdc(fgm.cop, c("unif", "unif"), list(list( 0, 1), list(0,1)))

x <- rmvdc(s, n)

u <- x[,1]

t <- x[,2]

# Second step we calculate v = c
[�1]
u (t)

r <- numeric(n)

Kinv <- function(x,r) optimize(function(y) (r-P(x,y))^2,c(0, 1))$minimum

for (i in 1:n){

r[i] <- Kinv(u[i],t[i])

}

v <- (n/(n+1))*F(r) # v is (0,1) uniform.

# The fact (n/(n+1)) to avoid possible problems with unboundedness of the copula

density, see (1.9).

# Third step we have The desired pair is (u,v) by

D <- data.frame(u,v)

D
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n u v

1 0.7685587 0.2727273

2 0.6812183 0.7272727

3 0.8452455 0.9090909

4 0.5175548 0.1818182

5 0.6071752 0.0909091

6 0.2067431 0.5454545

7 0.4336877 0.3636364

8 0.4732063 0.8181818

9 0.8707530 0.6363636

10 0.3043744 0.4545455

B.2 Simulation datas from two parameters of Archi-

medean copula

B.2.1 Two parameter Clayton Copula

The two parameter Clayton copula is given for � > 0; � > 1 by

C�;� (u; v) =

���
u�� � 1

��
+
�
v�� � 1

���1=�
+ 1

��1=�
; (B.2)

with generator

'�;� (t) =
(t�� � 1)�

��
; (B.3)

and

'�1�;� (t) =
�
�t1=� + 1

��1=�
: (B.4)

Recall Algorithm 2.3.1 page 62.

Code R of 2-parameter Clayton Copula

rclayton2 <- function (n, alpha, beta, dim = 2)

{

if (alpha < 0)

stop("invalid argument : alphann")
if (beta < 1)

stop("invalid argument : betann")
{
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v2 <- runif(n)

T <- runif(n)

#Generator of 2-parameters Clayton copula '�;� see (B.3)

phicla <- function(t, alpha, beta){

(((t^(-alpha)-1)^(beta))/(alpha^(beta)))}

# Inverse of generator '�1�;� see (B.4)

invphicla <- function(t, alpha, beta){

(alpha*(t^(1/beta))+1)^(-1/alpha)}

# K(t) = t� '�;�(t)='
0
�;�(t)

K <- function(t) {(t/(alpha*beta))*(alpha*beta-t^(alpha)+1)}

Kinv <- function(x)

optimize(function(y)(x - K(y))^2, c(0, 1))$minimum

# v1 = K(�1)(t)

v1 <- sapply(T, Kinv)

unifrand <- matrix(0, n, 2)

# u = '�1�;�
�
v2'�;�(v1)

�
:

unifrand[, 1] <- (invphicla(phicla(v1, alpha, beta)*v2, alpha, beta))

# v = '�1�;�
�
(1� v2)'�;�(v1)

�
:

unifrand[, 2] <- (invphicla(phicla(v1, alpha, beta)*(1-v2), alpha, beta))

}

# the desired pair (u; v) :

return(unifrand)

}

#n = 10; � = 0:9; � = 2:

x <- rclayton2(10, 0.9, 2, dim = 2)

x
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[ ,1] [ ,2]

[1, ] 0.26274964 0.30944445

[2, ] 0.64953271 0.54324545

[3, ] 0.99727901 0.99468328

[4, ] 0.02599535 0.04773039

[5, ] 0.06511849 0.05682143

[6, ] 0.22730428 0.24055199

[7, ] 0.42627442 0.41271378

[8, ] 0.56402174 0.69592321

[9, ] 0.15663856 0.33747976

[10, ] 0.43824152 0.36357056

B.2.2 Two parameter Gumbel-Hougaard Copula

The two parameter Gumbel-Hougaard Copula is given for � in (0; 1]; � in [1;1) by

C�;� (u; v) =

�
exp

�
�
�
(� lnu�)� + (� ln v�)�

�1=���1=�
;

with generator

'�;� (t) = (� ln t�)
� ;

and

'�1�;� (t) =
�
exp

�
�t1=�

��1=�
:

Code R of 2-parameter Clayton Copula

rgumbel2 <- function (n, alpha, beta, dim = 2)

{

if (alpha > 1)

stop("invalid argument : alphann")
if (beta < 1)

stop("invalid argument : betann")
{

v2 <- runif(n)

T <- runif(n)

phi <- function(t, alpha, beta){

(-log(t^(alpha)))^(beta)}

invphi <- function(t, alpha, beta){

(exp(-(t^(1/beta))))^(1/alpha)}
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K <- function(t) {

t-((t*log(t^(alpha)))/(alpha*beta))}

Kinv <- function(x)

optimize(function(y)(x-K(y))^2, c(0, 1))$minimum

v1 <- sapply(T, Kinv)

unifrand <- matrix(0, n, 2)

unifrand[, 1] <- (invphi(phi(v1, alpha, beta)*v2, alpha, beta))

unifrand[, 2] <- (invphi(phi(v1, alpha, beta)*(1-v2), alpha,

beta))

}

return(unifrand)

}

#n = 10; � = 0:8; � = 2:

x <- rgumbel2(10, 0.8, 2, dim = 2)

x
[ ,1] [ ,2]

[1, ] 0.59997968 0.75029541

[2, ] 0.37215098 0.20827958

[3, ] 0.81012388 0.63842415

[4, ] 0.68762034 0.16793805

[5, ] 0.06777043 0.34035730

[6, ] 0.21531555 0.02491624

[7, ] 0.08653391 0.64281437

[8, ] 0.58736176 0.30007750

[9, ] 0.77637822 0.95797613

[10, ] 0.82762130 0.40694409
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