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Abstract

We propose a novel multi label (ML) classification approach based on the Conditional Random

fields (CRF) for the high resolution UAV images. The inderlying idea of the proposed model in-

tegrate 1) spatial information within the same class; jointly with 2) cross-correlation information

between different class labels after . The experiments were done on two different UAV image

datasets and the experimental results show that the new model outperforms conventional ap-

proaches.

Keywords: Conditional random fields (CRF), Markovian random fields(MRF), Image multilabel-

ing classification, Spatial contextual information, UAV images.

Résumé

Nous avons proposé une nouvelle approche de classification multilabel (ML), basée sur les

champs conditionnels pour les images connues par UAV avec une haute résolution. L’idée prin-

cipale du modèle proposé est d’intègrer les deux types d’informations suivantes: 1) l’information

spatiale au sein de la même classe, (conjointement avec) 2) Les informations d’intercorrélation en-

tre différents labels de classes. Les implémentations sont réalisées sur deux ensembles d’images

UAV différentes et les résultats expérimentaux montrent que le modèle proposé surpasse les ap-

proches conventionnelles.

Mots clés: Champs aleatoires conditionels, Champ markovien, Classification de l’image multil-

abeling, Information contextuelle spatiale, Les images UAV (Drone).
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Introduction

The multilabel and the multi class classification are the most popular techniques to

classify a query image, where multi-label outputs can hold more than one labels simul-

taneously unlike multi-class cases in which the samples belong to only one class. As a re-

sult, the space of multi-labeling problems exponentially grows as the number of classes.

Besides, such datasets normally contain complicated structure and often the result of

these kinds of complexity is the failure of typical ad-hoc approaches to make reasonable

classification. Consequently, more synthetic approaches have been proposed in the past

decade on the basis of machine learning tools such as:(Lu & Weng, 2007) in which the

authors reviewed the pipelines of remote sensing imagery classification. After a tiles-

representation of considered image, a deep learning tools(MacKay, 2003) are applied

and a mutilabel solutions are resulting in (Zeggada, Melgani, & Bazi, 2017) (Zeggada &

Melgani, 2016) (Zeggada & Melgani, 2017) that, most of the approaches addressed the

problem of the high spatial resolution imagery regarding the high level of detail.

Among the machine learning tools, the structured random fields are known to be one

of the most promising tools for encapsulating spatially neighbouring information in the

classification model. It gained highly attention as application in the remotely sensed field

such as (Tarabalka, Fauvel, Chanussot, & Benediktsson, 2010),(Schindler, 2012) (M. Li,

Zang, Zhang, Li, & Wu, 2014) and(Zhang, Yan, Li, & Chen, 2016)˙

The Markov Random Fileds is graphical model that provides a flexible, powerful and

theoretically well-established way to model relationships between random variables,

and they have been applied with great success for different image types. For instance,
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(Melgani & Serpico, 2003) considered a MRF approach for multitemporel image that the

proposed model has been aimed at improving both the accuracy and the reliability of the

classification process by means of a better exploitation of the temporal information be-

side the traditional spatial information. Dynamic MRFs were solved in order to perform

real-time segmentation in video sequences (Kohli & Torr, 2005), that when we perform

real-time segmentation, the MRF changes with every image frame. The authors in pre-

vious paper have proposed the solution through the minimization of energy function

associate to the MRF using the graph cuts algorithm. Indeed, the graph cuts is well

known as one of promising methods that the solution is a global one as described in

(Kolmogorov & Zabin, 2004). (Lafferty, McCallum, & Pereira, 2001) has presented other

class of random fields which modeling the posterior distribution as an MRF, this class of

RFs is well known by Conditional Random Fields CRFs that the authors have considered

a CRFs for segmenting and labeling problems of sequence data. Based on the concept of

CRFs, (S. Kumar et al., 2003) have proposed a Disciminative random fields that permits

interactions in both the observed data( inputs) and the labels for detection the man-made

structure in natural scences. Moreover, the CRFs frameworks have been extended sub-

stantially according to the increasing complexity of remote sensing data as well (Volpi

& Ferrari, 2015) address the problem of semantic segmentation in urban remote sens-

ing into land cover maps. They proposed to embed geographic context potentials into

a pairwise CRF coupled with unary potentials from a random forest (RF) classifier. On

the otherhand, (Paisitkriangkrai, Sherrah, Janney, & van den Hengel, 2016) introduce a

semantic pixel labeling framework of aerial and satellite imagery. They exploit different

types of features in order to generate per-pixel class probabilities followed with a CRF

as a post-processing step. Furthermore (Zhao, Zhong, Wu, Zhang, & Shu, 2015) present

a sub-pixel mapping algorithm based on CRF for hyperspectral remote sensing imagery.

The methodologies that are presented in this thesis address the problem of the multi-

labeling classification image within a conditional random field (CRF) framework with

taking into consideration the spatial contextual information and cross-correlation be-

2
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tween labels simultaneously. We formulate the multilabeling problem applied at a tile

level under a CRF perspective, with the aim to assign to each tile a vector of labels in-

stead of just one class label. The main novelty is that integrate the above two properties

in optimization process. To achieve the objectif of this thesis, a CRF model is applied for

multilabeling data. The purpose of this step is to test the effectiveness of the informa-

tion importing from adjecent classes side to side with traditional contextual information

within the same class.

In this sense, the thesis is divided as follows:

• Chapters 1 and 2: First of all, we introduce preliminary concepts and the back-

gound of structured random fields ,in particular MRFs and CRFs, and theirs prop-

erties. Then we describe briefly the relationship between Gibbs distribution and

MRFs. The second chapter reviews the classification literature using the structured

random fields. Starting by briefly explaining the classification problem and how

modelized the problem through probabilistic model. Then we review some meth-

ods for related problem : Parameters estimation and the related optimization pro-

cedure.

• Chapters 3 and 4: in the 3rd chapter, we start with an explication of the problem

which is dealt with in this thesis through two proposed models on basic of CRFs

concept. The two models are detailing in two separately sections. The pipeline of

the framework consists of two main phases. First, the considered input image is

subdivided into a grid of tiles, which are processed thanks to an opportune repre-

sentation and a multilayer perceptron classifier are providing tile-wise multilabel

prediction probabilities. In the second phase, a multilabel CRF model is applied

to integrate spatial correlation between adjacent tiles and the correlation between

labels within the same tile, with the objective to improve iteratively the multilabel

classification map associated with the considered input image. Chapter number 4

is devoted for experimental results which are achieved on two different UAV image

datasets are reported and discussed.

3
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CHAPTER 1. PRELIMINARY ON STRUCTURED RANDOM FIELDS MRFS AND CRFS

1.1 Preliminary

1.1.1 graph

The graph is one of basic and vaste concepts in graph theory framework. for that, we

introduce the notations and concepts juste that they are related in our study.

Neighborhood system

Let consider S a set of sites in regular square lattice. A neighborhood system for S is

defined as:

N = {Ni|i ∈ S} (1.1)

where Ni is the set of sites adjacent i. this neighboring relationship is given as:

Ni = {j ∈ S | [dist(site(i), site(j))]2 ≤ r, i 6= j} (1.2)

with dist(a, b) refer to Euclidean distance between to elements a and b, and r takes inte-

ger value. Notice that, the sites at or near the boundaries have fewer neighbors. Besides,

for each i, Ni is verified the two following properties:

• A site is not neighboring to itself i.e. i /∈ Ni.

• The neighboring relationship is mutual i.e. i ∈ N ′
i ⇔ i′ ∈ Ni with i 6= i′.

Figure 1.1: Neighborhood on a lattice of regular sites.
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Indeed the value of r lead to many orders for a system. The first-order neighborhood

system is defined for r = 1, also called the 4-neighborhood system, in which every in-

terior site has four neighbors Fig.1.1(a) while the boundry sites have three and the sites

at corners have two neighbors. We obtain the second-order neighborhood system, also

called the 8-neighborhood system for r = 2. As shown in Fig.1.1 (b), the interior sites

have eights neighbors, the boundries have five adjecents sites and the corners nodes

have three. A widely neighboring relationships can defined for the square lattice in

Fig.1.1(c) where we have the possibility to define 5 orders for the neighboring system

(i.e. r ∈ {1, ..., 8}).

The couple (S,N ) is called a Graph in the usual way. The Graph G = (S,N ) is consti-

tuted by the set of nodes S while neighborhood systemN determines the edges between

the nodes in which all the edges have no orientation.

Clique

One of the most concepts related to the considering graph G = (S,N ) is the clique. All

subset c of sites in S is defind as clique (S. Z. Li, 2009). It consists from a union of a

single-sites C1 = {i|i ∈ S}, a pair of neighboring sites C2 = {(i, i′)|i ∈ S, i′ ∈ Ni}, triple

of neighboring sites C3 = {(i, i′, i′′)|i, i′, i′′ ∈ Sareneighbors} and so on. C denotes the set

of all possibles cliques of the graph (S,N ) is given by:

C = C1 ∪ C2 ∪ C3... (1.3)

Cliques for (S,N ) of a regular square lattice have a size, shape, and orientation, accord-

ing the neighborhood system. The single-site, horizontal and vertical pair-site clique

Fig.1.2(a) are all the possible cliques for the first-order neighborhood system. for the

second-order neighboring system, the cliques types includes those one defining in (a)

and the diagonal pari-site clique (b) and triple-site (c) and the quadruple-sites cliques(d)

see Fig.1.2 Ṅoting that the number of cliques grows rapidly compared the order of neigh-

borhood system.

7
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Figure 1.2: Cliques on a set of regular sites

1.1.2 Gibbs distribution and properties

Gibbs distribution

Lets consider a set of random variables Y = {Y1, ..., yn} defined on the graph (S,N ) in

which each variable Yi and i ∈ {1, 2, ..., n} takes a value yi. All random variables obey

the Gibbs distribution is namely Gibbs Random Field (GRF). The random variables obeys

the a Gibbs distribution if and only if verified :

P (Y = y) =
1

Z
exp(−E(y)). (1.4)

where

Z =
∑

allpossibilityofy

exp(−E(y)) (1.5)

Z is a normalizing constant called also the partition function, and the E(y) is namely the

energy function and it takes the following form :

8
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E(y) =
∑
c∈C

Vc(y) (1.6)

the energy function is defined as a sum of cliques function Vc over all possible cliques

C. According to the set of all possibles cliques of the graph (S,N ) Eq.1.3, thus the most

general energy function (S. Geman & Geman, 1987) expressed as following:

E(y) =
∑
i∈C1

V1(yi) +
∑
i,i′∈C2

V2(yi, y
′
i) +

∑
i,i′,i′′∈C3

V3(yi, y
′
i, y

′′
i ) + ... (1.7)

An important special case is the model of Ising (Ising, 1925), in which its has been defined

when asuming only up to pairwise cliques, that is :

E(y) = α
∑
i∈C1

V1(yi) + β
∑
i,i′∈C2

V2(yi, y
′
i) (1.8)

α and β are the parameters of unary and parwise interaction respectivly. Notice that

Ising model has been highly paid attention as an application in many different fields

especially with the homogeneous and isotropic properties see (MacKay, 2003).

Properties of a GRF

We discuss here the two following properties: the homogeneity and isotropic of a GRF.

Lets consider the GRF Y on S with regarding to the neighborhood system N .

A GRF Y is homogeneous if the clique function Vc is independent of the ralative position

of clique c in the set of sites S.

A GRF Y is isotropic if the clique function Vc is independent of the orientation of clique

c in the set of sites S. It is considerably simpler to specify a GRF distribution if it is ho-

mogeneous or isotropic than one without such properties. The homogeneity is assumed

in most Markov Random Field vision models for mathematical and computational con-

venience.

The evaluation of the normalizition constant( partition function) Z is necessary to calcu-

late a Gibbs distribution. Recall that Z is defined as sum over all possible configuration

of Y . even the size of random field and neighboring system are moderates, the evaluata-

9
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tion is prohibitive. thus several approximation methods are considering for solving the

problem see (S. Z. Li, 2009) (chapter number 8).

1.2 Structured random fields

The Structured random fields constitute a part of probability theory, in particular Markov

Random Fields MRFs and Conditional Random Fields CRFs in which they provides a

foundation for the characterization of contextual constraints.

In point of fact, the concept of MRF is extending of Markov process, commonly kown

Markov chain, which is a sequence of random variables defind on the time indices (one-

dimensional) as we can show in (Rozanov, 1982)ṫhe next sections reviews the MRF the-

ory and properties.

1.2.1 Markov Random Fields

Lets consider the family of random variables Y = {Y1, ...,Yn} defined over the graph

G = (S,N ), and its realization is y = {y1, ..., yn} in which each value yi is defined in the

set L = {0, 1} where Yi = yi for every i = 1, n. with view of simplification, we abbrevi-

ate Y = y where the y = {y1, ..., yn} is a configuration of the random field Y . Aslo, the

probability P (Y = y) is abbreviated P (y).

Y is said to be a Markov random field(MRF), with respect to (S,N ), if and only if the

following two conditions are satisfied:

• P (y) > 0 ∀y (positivity).

• P (yi|y{S\i}) = P (yi|yNi
) ( Markov Property).

where, S\i refer to all sites of S except the site i. and y{S\i} signified to the configuration

of the set of sites S\iwhile yNi
are the labels of adjecent sites for i i.e. yNi

= {yi′ |i′ ∈ Ni}.

The essence of the markov property is that depicts the local characteristics. Since (Besag,

10
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1974) assuming that if the positivity condition is satisfied, the probability (joint probabil-

ity)of any random field is uniquely determined by its local probabilities.

The homogeneity and isotropy are additional properties. An MRF is said to be homoge-

neous if the local probability ( for the Y is an MRF, the local probability is P (yi|yNi
)), is

independent of the relative location of the site i in S. we will discuss the isotropy prop-

erty of an MRF following subsection because it related with clique clique function.

Besides the above properties of a MRF, we refer to two other variants of markov proper-

ties which are:

• Pairwise Markovianity: is the independent of two labels non-adjecent ,yi and yj ,

given the labels of the other sites i.e. for any non-adjecent sites i and j we have :

P (yi|yj) = P (yi|yS\i\j).

• Global Markovianity: for any disjoint subsets A,B and C where C separating A

from B. we said that a Markovianity is global if P (yA|yB) = P (yA|yC). This meas

that, given a set of sites, the labels of any two sparated subsets are independent.

Markov-Gibbs equivalence

An MRF is specify through two terms which are : the joint probability P (y) and the local

conditiona probability P (yi|yNi
). under the disadvantages of the conditional probability

approach, (Besag, 1974) debated for the joint probability P (y). That no obvious method

is available to deduce the joint probability from the conditional probabilities while the

conditional probabilities themselves are subject to some highly restrictive consistency

conditions. The Hammersley-Clifford theorem (Hammersley and Clifford 1971)estab-

lishes the equivalence between an MRF and GRF.

The theorem is assuming that: Y is an MRF on S w.r.t N if only if it have a Gibbs distri-

bution, and the proof of the equivlance is showed with details in this work (Besag, 1974).

for now, we ll proof that if Y is a GRF so it is an MRF.

Lets consider that Y have Gibbs distribution w.r.t the graph G. According to Bayes the-

orem we have:

11
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P (yi|y{S\i}) =
P (y{S\i}|yi)P (yi)

P (y{S\i})

=
P (y{S\i}, yi)

P (y{S\i})

=
P (f)

P (y{S\i})

(1.9)

Recall that y is a GRF that means it can expressed in terms of energy function. Noting

that y′ = y{S\i} is the configuration of y without the variable yi and y′i ∈ y′. the equation

1.9 rewritting as :

P (yi|y{S\i}) =
exp{−

∑
c∈C Vc(y)}∑

y′i
P (y′)

=
exp{−

∑
c∈C Vc(y)}∑

y′i
exp{−

∑
c∈C Vc(y

′)}

(1.10)

Divide C into two setsA andB withA consisting of cliques containing i andB cliques

not containing i, Then 1.10 can be written as:

P (yi|y{S\i}) =
[exp{−

∑
c∈A Vc(y)}][exp{−

∑
c∈B Vc(y)}]∑

y′i
{[exp{−

∑
c∈A Vc(y

′)}][exp{−
∑
c∈B Vc(y

′)}]}
(1.11)

Because Vc(y) = Vc(y
′) for any clique c that does not contain i, so exp{−

∑
c∈B Vc(y)}

cancels from the both the numerator and denominator giving the following equation :

P (yi|y{S\i}) =
exp{−

∑
c∈A Vc(y)}∑

y′i
exp{−

∑
c∈A Vc(y

′)}
(1.12)

Consequently, the equation 1.12 depends on labels at i’s neighbors, in other words y

is an MRF.

The essence of the theorem results is that, the joint probability can be writting in terms

of energy function by specifying the cliquespotentials functions :

P (y) =
1

Z
exp{−

∑
c∈C

Vc(y)}. (1.13)

12



CHAPTER 1. PRELIMINARY ON STRUCTURED RANDOM FIELDS MRFS AND CRFS

Taking into account the definition proposed in 1.8 it is defined for pair-site clique func-

tions. The joint probability of an MRF take the form :

P (y) =
1

Z
exp{

∑
i∈C1

V1(yi) +
∑
i,i′∈C2

V2(yi, y
′
i)}. (1.14)

Such models are called Auto-models (Besag, 1974) for some definitions for V1 and V2 as

well the auto-logisitc model, auto-binomial model, and auto-normal model, also called caussian

MRF. those auto model are the popular auato model generally used, (S. Z. Li, 2009) is

discussed and detailed those models and others. below,we introduce briefly the auto-

logistic model and Gaussian-MRF.

Auto model

Under the assumption that yi have only two possible value, those value defining by the

discrete label set L = {0, 1} ( for other references L = L = {−1, 1}). Assuming only

up the paiwise cliques functions to be nonzero, (Besag, 1986) was proposed the joint

probability P (y) as a pairwise interaction MRF and expressed by :

P (y) ∝ exp{
∑
i∈S

Gi(yi) +
∑
i∈S

∑
j∈Ni

Gij(yi, yj)} (1.15)

where the G-functions are arbitrary [(Ganan & McClure, 1985), (Besag, 1986)].

• Auto-logistic model: An auto-model is said to be an auto-logistic model if the cor-

responding energy function is of the form:

E(y) =
∑
i∈S

αiyi +
∑
i∈S

∑
j∈Ni

βijyiyj (1.16)

with βij is the interaction coefficients. The conditional probability for this model is

13
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:

P (yi|yNi
) =

exp{αiyi +
∑
j∈Ni

βijyiyj}∑
yi∈L exp{αiyi +

∑
j∈Ni

βijyiyj}

=
exp{αiyi +

∑
j∈Ni

βijyiyj}
1 + exp{αiyi +

∑
j∈Ni

βijyiyj}

(1.17)

• Gaussian-MRF model: An auto-model is said to be an Gaussian-MRF model if

the set label L is a real line (compact of R) and The joint probability is a Gibbs

distribution:

P (y) =

√
det(M)√
(2πσ2)m

exp{(y − µ)
tM(y − µ)
2σ2

} (1.18)

where: y reconstruct as a vector, µ is them×1 vector of the conditional means, M is

the interaction matrix ofm×m dimension, whose diagonal elemeants are unity and

the off-elements are −βij. since, we expressed the MRF by his energy function, so

needed to define the single-site an pair-site clique functions V1 and V2 respectively.

the energy function of an auto-normal model is:

E(y) =
∑
i∈S

(yi − µi)2

2σ2
+
∑
i∈S

∑
j∈Ni

βij
(yi − µi)(yj − µj)

2σ2
(1.19)

Its conditional probability density function is :

P (yi|yNi) =
1√
2πσ2

exp{− 1

2σ2
[yi − µi −

∑
j∈Ni

βij(yj − µj)]2} (1.20)

given the conditional mean and conditional variance :

E(yi|yNi) = µi −
∑
j∈Ni

βij(yj − µj) (1.21)

var(yi|yNi
) = σ2 (1.22)

14
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1.2.2 Conditional Random Fields

CRFs are a probabilistic framework for labeling and segmenting data. the first proposed

of the CRFs addressed the segmenting and labeling a text sequences data (Lafferty et al.,

2001).

The underlying main of CRFs is modeling the Posterior probability directly as an MRF. If

we consider an observed data x = {x1, ..., xn}, Y = y the random field that is already de-

fined previously w.r.t the graph G. the couple (y, x) is said to be condional random field

if, when every random variable yi conditioned on x obey the markov property. That is :

P (yi|x, y{S\i}) = P (yi|x, yNi
) (1.23)

According the Gibbs-Markov equivalance, the Posterior is given by:

P (y|x) = 1

Z
exp{−E(y, x)}. (1.24)

Assuming the only up to pairwise clique functionsare nonzero, the posterior distribution

has the form :

P (y|x) = 1

Z
exp{−

∑
i∈S

V1(yi, x)−
∑
i∈S

∑
j∈Ni

V2(yi, yj , x)} (1.25)

in the CRF literature (Lafferty et al., 2001), −V1 and −V2 are called the association and

interaction Potentials respectively. Generally, these potentials are computed as a linear

combination of some feature attributes extracted from the observation.
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MRF Vs CRF

• MRF model is a generative model that the best configuration is passing by two steps

– Infer likelihood P (x|y) and the prior P (y)

– The posterior distribution P (y|x) is determined using the Bayes theorem.

• In accordance with the proposed model in (Lafferty et al., 2001) and (S. Kumar et

al., 2003), CRF model is a discriminatice model :

– Directly infer the Posterior P (y|x).

• The likelihood is due to the observation model P (x|y). Usually, for tractability

reasons (Besag, 1974) is assumed to have the factorized form:

P (x|y) =
∏
i∈S

P (xi|yi). (1.26)

• CRF may be suitable for dealing with situations where the likelihood of an MRF is

not of a factorized form such that all the xi(∀i ∈ S) can explicitly exist in both

unary and pairwise potentials.Where, in CRF, both Association and Interaction

Potentials are functions of all the observation data as well as that of the labels :

16
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– For a CRF

P (y|x) = 1

Z
exp(

∑
i∈S

V1(yi, x) +
∑
i∈S

∑
j∈Ni

V2(yi, yj , x))

info(yi, xNi
) info(yi, yNi

)

info(yi, xNi
)

– For a MRF

P (y) =
1

Z
exp(

∑
i∈S

V1(yi) +
∑
i∈S

∑
j∈Ni

V2(yi , yj))

info(yi)
info(yi, yNi

)

The main difference between the CRF and MRF is that, in the CRF the unary potential is

expressed in term of the observed data x i.e.info(yi, xNi
) as well as of the label yi, in an

MRF i.e. info(yi). Also, the pairwise potential for an CRF is expressed in the function of

the observed data Thus we have two different information embeded in the pairwise term

V2 that one of them is the standard information for an MRF info(yi, xNi
), while the second

one is an information which changes with the change of the observed data info(yi, xNi
).

Consequently, unlike in an MRF, where xi′ can influence yi (i 6= i′) indirectly through

the neighborhood system, in a CRF, this is done directly by the link between xi′ and i

(S. Z. Li, 2009).
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CHAPTER 2. CLASSIFICATION AND PREDICTION USING MRFS

2.1 Introduction

As we reviewed in the first chapter, the both MRFs and CRFs represent an effective and

theoretically well-established mathematical tool. The practical use of the MRFs and CRFs

models is largely ascribed to the Hammersley–Clifford theorem which states the Gibbs

and Markov random fields equivalence and further developed by (Besag, 1974). that

model a given set of sites by expressing contextual information through an adequate

energy functions. They allow passing from a global model to a model of local proper-

ties, defined in terms of both the potential function of single sites and the interactions

potentials functions. For the above reasons and many others, the interest in MRF mod-

eling in image and vision analysis and synthesis is increasing, as reflected by books as

well as journal and conference papers where its have been widely employed to solve

different problems on image processing such as image restoration (S. Geman & Geman,

1987) (Greig, Porteous, & Seheult, 1989) (Berthod, Kato, Yu, & Zerubia, 1996), also The

segmentation was treated in this research papers (Derin, Elliott, Cristi, & Geman, 1984),

(S. Geman & Graffigne, 1986) and (Kohli & Torr, 2005). while some researchs a represent

different applications of MRF in computer vision(D. Geman & Gidas, 1991) and (S. Z. Li,

1994).

So, as our topic is the classification of imagery, we need to introduce the classification

framework. the classification problem is a set of labels assigned to image pixels or fea-

tures. In the rest of section, some definitions and notations will be used throughout the

thesis.

2.1.1 Labeling Problem

Let S index a discrete set of n sites and their elements are indices: S = {1, ..., n}. Usually,

a set reptresent a region or a points in euclidean space such as an image pixel or image

feature ( corner point, a line segment, object detection). the definition of the set S is
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changing by the space dimension that the set in 1-dimension space different totally with

a set in 2-dimension space :

• For a set defined in 1-dimensional space :

S = {1, ..., n}. (2.1)

• For a set defined in 2-dimensional space :

S = {(i, j)|1 ≤ i, j ≤ n} (2.2)

For anN×N image, the pixel in the site (i, j) is conveniently reindexed by a single index

m (double indicator ) where m take a values in {1, ..., n} with n = N ×N . In this work,

We will adopt this notation for indexing an image.

Let’s define the set of labels that denoted by L where avery label (element) from L rep-

resent an event that may happen to a site. The set of labels consists from a continuous

or discrete labels. In the continuous case, the label set is defining as real line R or a

part of it (compact interval) Eq.2.3 . In the discrete case, a label takes a discrete value

L = {l1, ..., lk}with all og the labels are element of N Eq.2.5 :

Lc = [a, b] ⊂ R (2.3)

Ld = {l1, ..., lk} (2.4)

Or

Ld = {1, ...,K} ⊂ N (2.5)

Now, we called a labeling of S the following set y = {y1, ..., yn} in terms of the labels

in L. The terminology ’labeling’ is equivalance to configuration especially for random

fields. We sammurize the problem of image labeling as follow :

• Given

– An observed data from input image x = {x1, ..., xn}
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– Set of label Lwhich is already defined.

• The best corresponding configuration or labeling to input image y = {y1, ..., yn} is

finding by maximise the conditional probability, namely also the posterior distribu-

tion :

ŷ = argmax
y

P (y|x) (2.6)

The problem of maximizating the posterior is known as the MAP estimate. The MAP

framework (MAP-MRF) is supported through many researchs papers (Ganan & Mc-

Clure, 1985), (S. Geman & Geman, 1987),(Greig et al., 1989),(S. Kumar et al., 2003) and

(M. P. Kumar, Kolmogorov, & Torr, 2009).

An equivalently solution to MAP solution is the minimizing the energy function of an

MRF i.e. Maximizing a posterior probability P (y|x) is equivalent to minimizing the pos-

terior energy function E(y|x) according to the relationship between them :

ŷ = argmax
y

E(y|x) (2.7)

2.1.2 Summary of MAP estimate

The piplines of MAP solution are sammurized as follow :

(1) Defin the neighborhood system N .

(2) Define the Clique function Vc

(3) Define the prior probability ( Prior energy E(y) if we are dealling with energy func-

tion).

(4) Derive the likelihood ( or the likelihood energy E(x|y))

(5) Maximize the posterior probability ( or the mininizing the posterior energyE(y|x)).

The derive form posterior distribution and detemine the parameters of the model are two

essential steps To define completely the posterior distribution. And finally we need to

adopt an optimization algorithms for finding the maximum of the posterior distribution .
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2.2 Parameters estimation

In this section, we will show how statistical criteria are intertwined with our topic ex-

actly in the parameters estimation. The parameters estimation have an important per-

formance because any probabilistic distribution are recognised through two elements

which are : the form of the function and the parametrs involved. Historically, the exist-

ing techniques usually used are : Maximum Likelihood (ML), Pseudo-Likelihood (PL),

Expectation- maximization that the estimating parameters has a much shorter history.

The next subsections review the techniques ML and PL to estimate the parameters.

2.2.1 Maximum Likelihood

Denote the parameters set by θ, and a realization y of an MRF ( true labeling or ground

truth ). The underlying idea of maximum likelihood is estimating the maximum of the

conditional probability P (y|θ) which is the likelihood function of θ, i.e.

θ̂ = argmax
θ

P (y|θ). (2.8)

According to the bayes rule, the posterior density over the parameters is given by :

P (θ|y) ∝ P (y|θ)p(θ). (2.9)

In this step, we distinguish two cases :

• If the prior probability function of the parameters p(θ) is known, the MAP estima-

tion that maximizes the posterior Eq.2.9 can be sought.

• If the prior information is totally unavailable, the prior is assumed to be flat, thus

the MAP estimation is equivalent to the maximum likelihood.

In the general way, the parameters are deducing through a necessary condition which

is
∂P (y|θ)
∂θ

= 0 where maximizing the likelihood and its log-likelihood are equivalents.

For a gibbs distribution, the likelihood is :

P (y|θ) = 1

Zθ
exp{−E(y, θ)} (2.10)
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Since, the partition functio, Zθ is calculated by summing over all the possible configura-

tions of y Eq.1.5 that, maximizing P (y|θ) , generally, becomes intractable even for small

problems because there are a combinatorial number of elements in the configuration

space and this is the main difficult in the estimation of parameters.

2.2.2 Pseudo-Likelihood

The most advantage of this technique is that the partition functionZ (Zθ) does not appear

within maximization of posterior density P (y|θ). The pseudo-likelihood is expressed as

a product of the conditional likelihood functions :

PL(y|θ) =
∏
i∈S

P (yi|yNi , θ)

=
∏
i∈S

exp{−Ei(yi, yNi)}∑
yi
exp{−Ei(yi, yNi)}

(2.11)

That Ei(yi, yNi
) is defined by

Ei(yi, yNi
) = αV1(yi) +

∑
j∈Ni

βV2(yi, yj) (2.12)

Consequently, we can obtain θ = {α, β} by solving the

∂P (y|θ)
∂α

= 0
∂P (y|θ)
∂β

= 0 (2.13)

2.3 The Maximum A posteriori-MAP- Framework

As aforemebtioned in previous chapter, the optimization problem related on MRF can

expressed as minimization of an energy function associeted with the MRF (Szeliski et

al., 2008). That many works proposed differents methods or algorithms, where some al-

gorithms resulting a global solution as Graph cut (Greig et al., 1989),(Roy & Cox, 1998),

and (Boykov & Kolmogorov, 2001), while others obtaining the local solution as Iterated

Conditional Mode (ICM) (Besag, 1986), noting that the ICM is maximazing the local con-

ditional probability.

In the next, we introduce briefly those two above methods.
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2.3.1 Iterated Conditional Mode ( ICM )

Given an initial solution, the ICM maximizes the local conditional probabilities itera-

tively :

ŷi ← argmax
yki

P (yki|yNi
, x) (2.14)

This algorithms is adopted from several works thanks to the reasonably results obtained

in (S. Geman & Geman, 1987) , (S. Kumar et al., 2003) , (Lempitsky, Rother, Roth, & Blake,

2010) and (Zeggada, Benbraika, Melgani, & Mokhtari, 2018)

Algorithm

1.Input : NodePot, EgdePot, done=0;

2. y ←max(NodePot) % Initialization of solution

3. while ∼ done do

4. done← 1 ;

5. for each node i do

6. pot← ψi;

7. for each edge related to i do

8. pot← pot× ψij ;

9. end for

10. (new − y)i ← max(pot);

11. if (new − y)i ∼= yi do

12. yi ← (new − y)i ; done← 0;

13. end if

14. end for

15. end
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2.3.2 Graph cuts

Graph cuts is algorithms which obtain the global minimum of a binary MRF model ex-

pressed as a discrete energy minimization problems. this algorithm is based totally on

the theorem of equivalence between the value of maximum flow and the capacity of

the minimum cut in which this theorem was proven by Ford and Fulkerson in 1954 for

undirected graphs and 1955 for directed graphs. The first proposed of this algorithm is

obtained by (Greig et al., 1989) for a global minimum solution of a two-label MRF model

(Ising model). In order to solve convex multilabel problems, the algorithm proposed

have been extended by (Roy & Cox, 1998) and an approximate global solution have been

proposed for general multilabel MRF problems by (Boykov, Veksler, & Zabih, 2001).For

an binary image, the main idea of The min cut( maxflow) algorithms is divide the set

pixels of the considered image into two subsets. that all the nodes or pixels belongs to

one of those two subsets having the same label.
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3.1 The Problematic

The multilabel classification is a challenging task in machine learning. that the multil-

abel image is represented as a series of binary images namely classes, in which each class

reflect the state of an predefined object in considered image. In order to classify the input

image we need to re-indexed the image taking into consideration the successive classes

maps Fig. 3.1.

Let’ condider that the number of classes is c indexing by k that means, if we denote the

considered image by x we have :

X = {X1, ...., Xk, ..., Xc} (3.1)

where Xk refer to kth class map. Every class of them indexed by the set of site S .

By other words, every node (pixel) is expressed by a multilabel description vector i.e.

Xi = {X1i, ..., Xki, ..., Xci}

Figure 3.1: Multilabel representation ok an image

Under the multilabeling representaion lead us to test the hypothesis of the correlation

between classes maps considering a CRF model .
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3.2 CRF model for multilabeling inputs

Unlike MRFs that are generative frameworks which regularize the classification output

of an image by enforcing priors assumption between neighboring sites, discriminative

CRFs are globally conditioned on the observations X , where they directly model the

posterior distribution as a Gibbs model. This means that the potential functions in CRFs

are more flexible in capturing complex spatial dependencies between labels (Lafferty et

al., 2001). The posterior distribution of Yk conditioned on Xk with k ∈ C = {1, ..., C} is

defined as:

P (Yk|Xk) =
1

Z
exp{−E(Y,X)}. (3.2)

According to 2.1.1 and 2.1.2 , maximizing the a posteriori probability (MAP) of the whole

image is equivalent to minimizing its corresponding energy functionE(Y,X). This latter

is expressed as sum of unary and pairwise terms:

E(Yk, Xk) = Edata(Yk, Xk) + Espatial(Yk, Xk) (3.3)

where

• Edata represents the local decision term. It computes the cost of associating a given

tile to a certain class without including its neighbors.

• The second term Espatial is a smoothness term. It imposes spatial smoothness by

penalizing dissimilarities between adjecent labels.

In dealing with multilabeling imagery 3.1 , the spatial information integrate two types of

information 1) the traditional spatial information over each classification map Xk jointly

with 2) Latent spatial information between neighboring classes within same site i. Tat by

changing the interaction potential term from a pairwise term into a ternary one. Accord-

ing to the Hammersley-Clifford theorem (Besag, 1974) , for each map k, we define a CRF

over the outputsYkgiven the inputsXk, through the following posterior distribution:

29



CHAPTER 3. MULTILABEL CRFS MODEL FOR CLASSIFICATION

P (Yk|Xk) =
1

Z
exp{

n∑
i=1

V1(yki, Xk) +
n∑
i=1

∑
(l,j)∈Nk,i

V2(yki, ykj , yliXk)} (3.4)

where V1 is the unary potential and V2 is the interaction term expressed as a trinary-wise

potential that depends on 2 types of information. The first one is the traditional spatial

information of neighboring tiles within the same class map k . The second one is the

information obtained from the neighborhood classes of kth class. We are integrating the

aboves spatial information using an neighborhood system defining by:

Nk,i = {(l, j) ∈ C × S||i− j| = 1, |l − k| = 1} (3.5)

Its neighboring system dependence on two indicators, the first one k refers to adjecents

classes within same sites iwhile the second one i refers the neighboring sites within same

class. thus, we can rewrite it as union of two system : Nk,i = N i
k ∪N k

i . consequently, the

Eq.3.4 becomes :

P (Yk|Xk) =
1

Z
exp{

n∑
i=1

V1(yki, Xk) +

n∑
i=1

∑
j∈Nk

i

∑
l∈N i

k

V2(yki, ykj , yliXk)} (3.6)

where

• V1 is the unary potential andV2 is trinary-wise potential (interaction potential) that

depends on 2 types of informations mentioned earlier. The first one is the tradi-

tional spatial information of neighboring sites within the same class map k using

the neighboring system N k
i . The second one is the information obtained from the

neighborhood classes within site i as shown on the multilabeling image represen-

tation Fig.3.1.

• As we explained previously, we consider the first order neighborhood system :Nk
i =

{j, |i − j| = 1} is the neighboring system defining over each class map, and N i
k =

{l, |k − l| = 1} is the neighborhood system defining for capturing the adjecent

classes. That, the neighborhood system Nk
i have no directly relationship with the

system (N i
k).
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Therefore, we tackle each of these information sources separately becauce the separabil-

ity of neighborhood systems over classes(N i
k) and on level of each class Nk

i . We thus

quantify V2 as a sum of two interaction terms, the first one over each map (spatial in-

formation) and the second one across the maps to encode the interaction between the

neighboring classes maps within the same site. Under these simplifying assumptions,

the interaction potentialV2 in the posterior P (Yk|Xk) can be written as:

P (Yk|Xk) =
1

Z
exp{

n∑
i=1

V1(yki, Xk) +
n∑
i=1

∑
j∈Nk

i

V2(yki, ykj , Xk) +
n∑
i=1

∑
l∈N i

k

V2(yki, yliXk)}

(3.7)

Now, for simplify the proposed model, we adopt the CRF representation in (Schmidt,

Murphy, Fung, & Rosales, 2008) and after adding the cross-correlation term the Eq.3.7

becomes :

P (Yk|Xk) =
1

Z

∏
i

ψi(yki, Xk)
∏
(i,j)

ψij(yki, ykj , Xk)
∏
(i,l)

ψil(yki, yli, Xk) (3.8)

where, ψi, ψij , ψil are the functions of node potential, edge potential and the cross-correlation

potential respectively. Given yki ∈ L = {0, 1} that ’0’ refer to absence of object and ’1’

refer to the presence of object, the potential functions are defining as :

• The node potenital :

ψi(:, Xk) = (exp(vki,1xki, exp(vki,2xki) (3.9)

where xki is the node feature in the kth class and the ith site. vki = {vki,1, vki,2} are

the associated weights in the different label state {0 or 1}.

• The edge potential :

ψij(:, :, Xk) =

 exp(wkij,11hkij) exp(wkij,12hkij)

exp(wkij,21hkij) exp(wkij,22hkij)


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where where hkij being an arbitrary decreasing function that takes values in [0, 1], in

this purpose, tis takes the form h(xki, xkj) =
1

1 + |xki + xkj |
. wkij = {wki,11, wki,12, wki,21, wki,22}

are the associated edge weights.

• The cross-correlation potential:

ψil(:, :, Xk) =

 exp(β1hkil) exp(β0hkil)

exp(β0hkil) exp(β1hkil)


where {β0, β1} are the interaction coefficient between classes that β1 is defining for

the sites which have same lebel while β0 is nulle . h function is the same one using

for edge features.

In order to complete the posterior propability definition we need to estimate th node and

adge weights. The Loopy Belief Propagation (LBP) method (Pearl, 1982) which discrebed

later.

for the optimization related problem, we adopt the iterated conditional modes (ICM) al-

gorithm. Given an initial solution, this algorithm maximizes the local conditional prob-

abilities iteratively. The label that maximizes the local conditional probability is chosen

as an optimal local solution (Besag, 1986). In this model, the local probability of each

site is conditioned by the labels of adjecent classes over the same site, in addition to the

corresponding neighboring sites over the same label map level. Starting from an initial

multilabel combination generated, at each iteration, the ICM maximizes the conditional

MAP estimation:

widehatyki ← argmax
yki

P (yki|ykNk
i
, ykN i

k
, Xk) (3.10)

3.3 Multilabel CRF Description

as aforementioned, our purpose is integrate the cross-correlation In wich this potential

between labels can serve as an additional important source of information to build a ro-

32



CHAPTER 3. MULTILABEL CRFS MODEL FOR CLASSIFICATION

bust classification framework with a strong capability of penalizing the co-occurrence of

uncorrelated labels. According to the Hammersley-Clifford theorem (Besag, 1974) , for

each map k, we define a CRF over the outputs Ykgiven the inputs Xk, through the fol-

lowing posterior distribution:

P (Yk|Xk) =
1

Z
exp{

n∑
i=1

V1(yki, Xk) +
n∑
i=1

∑
j∈Ni

∑
l∈cki

V2(yki, ykj , yliXk)} (3.11)

where

• V1 is the unary potential, which is the probabilistic output of our discriminative

classifier when considering each tile in isolation

• and V2 is the interaction term expressed as a trinary-wise potential that depends on

2 types of information. The first one is the traditional spatial information of neigh-

boring sites within the same class map kusing theNi neighborhood system for site i.

The second one is the information obtained from the neighborhood cki of i, namely,

the multilabel components of the binary vector of site i). That we are defining the

both of Ni and cki as follow :

– Ni is the neighboring system which encapsulate the adjecent nodes of the site

i without takinf in consideration the class under process.

– cki = {(l, i), l ∈ C − k, i = 1, n}

In this work, for simplicity, we consider the first order neighborhood system for the

traditional spatial information and the labels belonging to the same site (i.e., multilabel

vector descriptor of one site) for the cross-correlation information. Moreover, we tackle

each of these information sources separately. We thus quantify V2 as a sum of two inter-

action terms, the first one over each class map (spatial information) and the second one
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across the classes maps to encode the cross-correlation between the multiple labels lying

within the same site. Under these simplifying assumptions, the interaction potential V2

in the posterior P (Yk|Xk) can be written as:

P (Yk|Xk) =
1

Z
exp{

n∑
i=1

V1(yki, Xk) +
n∑
i=1

∑
j∈Ni

I1(yki, ykj , Xk) +
n∑
i=1

∑
l∈Cki

I2(yki, yliXk)}

(3.12)

where I1 is the interaction function at the level of each class map (spatial term), and

I2 is the cross-correlation function, cki. According to the CRF representation in (Schmidt

et al., 2008) , and after adding the cross-correlation term, 3.12 becomes:

P (Yk|Xk) =
1

Z

∏
i

ψi(yki, Xk)
∏
(i,j)

ψij(yki, ykj , Xk)
∏
(i,l)

ψil(yki, yli, Xk) (3.13)

The terms ψiand ψij are respectively the node and the edge potential functions over

the class map k, whileψil is the cross-correlation function (i.e., edge potential through

different labels). In the following, we define each of the potential functions, given thatyki

takes a binary state, yki ∈ L = {0, 1}. The node potential takes the following form:

ψi(:, Xk) = (exp(vtki,1fki), exp(v
t
ki,2fki) (3.14)

where fki = [1, xki] and vki = vki,1, v(ki, 2) are respectively, the node features and

their associated weights. The traditional edge potentials are defined as:

ψij(:, :, Xk) =

 exp(wtkij,11fkij) exp(wtkij,12fkij)

exp(wtkij,21fkij) exp(wtkij,22fkij)


where fkij are the edge features, defined as: fkij = [1, h(xki, xkj)], andwkij = {wkij,11, wkij,12, wkij,21, wkij,22}

being the weights associated with edges. while with h being an arbitrary decreasing

function that takes values in [0, 1], that in our model it is taking the following form :
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h(xki, xkj) =
1

1 + |xki − xkj |
(3.15)

Regarding the correlation potentials ψil , we define first an auxiliary function gkl : Ln ×

L → [0, 1] that measures the co-occurrence probability of two labels yli and yki as:

gkl(yl., yki) =
1

|{yk. = yki}|

n∑
i=1

1yki
(yli) (3.16)

the notation |{yk. = yki}|means the cardinal of the set of all nodes in the class map k that

having the same label yki with :

l ∈ {1, ..., C|l 6= k} = cki (3.17)

Note that gkl is defined when yli and yki holds the same label value (i.e., 0 or 1), for

the case where yli and yki have different labels, we set gkl as:

gkl = gkl(yl., yki)

= 1− gkl(yl., yki)
(3.18)

The values of gkl and gkl are estimated from the training data to assess the correlation

degree between label classes.

Once gkl and gkl are computed, the cross-correlation weights for a given test data at

locationi, are defined as:

µki(y.i, yki) =
∑
l∈cki

1yki
(yli)gkl + [1− 1yki

(yli)] gkl s.t yki = 1. (3.19)

τki(y.i, yki) =
∑
l∈cki

1yki
(yli)gkl + [1− 1yki

(yli)] gkl s.t yki = 0. (3.20)
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The functionsµki andτkidefine the cross-correlation weights for the two possible states

of labelyki, namely, presence and absence respectively by using the sum of the label pairs

scores to evaluate the degree of the relationship of a given test site. Subsequently, the

correlation potential is given as:

ψil(:, ycki) = (exp(λ1µki(1, y.i)), exp(λ1τki(0, y.i))) (3.21)

where λ1and λ2 are coefficients used to ponder the importance between the two states

that a given label may take i.e., presence and absence, respectively.

In order to obtain an optimum multilabeling over a given test image, the use of an infer-

ence algorithm is necessary in order to get an estimation of the MAP solution. For such

purpose, we make use of the loopy belief propagation (LBP) method (Pearl, 1982), which

is a widely used learning a graphical model in approximation algorithms (Lempitsky et

al., 2010). As mentioned earlier, we adopt the iterated conditional modes (ICM) algo-

rithm. This algorithm maximizes the local conditional probabilities iteratively, given an

initial labeling. The label that maximizes the local conditional probability is chosen as an

optimal local solution.

In this work, the local probabilities of each tile are conditioned by its multilabel vector

descriptor in addition to the corresponding neighboring tiles over the same label map

level. Starting from an initial multilabel combination generated, at each iteration, the

ICM maximizes the conditional MAP estimation:

ŷki ← argmax
yki

P (yki|ykNi
, ycki, Xk) (3.22)

passing through all label maps of the test image repeatedly up to a convergence is reached,

producing thus a final multilabel classification map of the considered image.
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CHAPTER 4. EXPERIMENTAL RESULTS

4.1 Introduction

The Unamend Aerial Vehicles abbreviate UAVs are commonly known as Drones. Mainly,

they were created for military usage, but the increasing interest on it in the last decade

has paved the way to be a very promising and effective technology through their ex-

ploitation in numerous civilian applications, such as emergecy and surveillance and ur-

ban monitoring. Besides that their advantages exhibited through the acquired images

that are characterized by the Extremely High Resolution (EHR). So, the wide range of

uses out in light many studies have been proposed in the past few years on the basis of

machine learning tools such as deep neural networks and pattern matching. It is well

known that EHR imagery contains complex structure. Since typical ad-hoc approaches

often fail to make reasonable classification because of these kinds of complexity, for that

we propose to evalute the effectiveness of the proposed models were described earlier.

As the multilabeling image is consisting of finite number of classes that every classses re-

flect the state of one object see the Fig.4.1 . Since, in the dealing with multilabel images,

one may observe that: some objects are more likely to coincide with others in many im-

age, and some objects are rarely to appear with one another. For instance, “solar panel”

labels are frequently correlated with “roof” labels compared by “tree” labels, because

obviously solar panels require flat places to absorb much sunshine or, the label ‘car’ is

strongly correlated with the label ‘asphalt’, on the contrary, it is seldom that the label

‘car’ appears together with label ‘railway’ in the same image tile. Consequently, the

cross-correlation between labels (objects) can serve as an additional important source of

information that makes the result smuch more reasonable and fruitful. for this purpose,

the numerical experiments performed on two differents UAV data sets are represented

and descibed in the nexet section.
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Figure 4.1: An example of inpouts/outputs of the proposed modes

4.2 Datasets Description

In order to evaluate the performance of the proposed classification method, we exploited

two real datasets of UAV images acquired over two different locations. The first set of

images was taken over the Faculty of Science of the University of Trento (Italy) Nadir

acquisition on the 3rd October 2011. The second set of images was acquired near the

city of Civezzano (Italy) at different off-nadir angles, on the 17th October 2012. Both

acquisitions were performed with a picture camera Canon EOS 550D characterized by a

CMOS APS-C sensor with 18 megapixels. The UAV images are characterized by three

channels (RGB) with a spatial resolution of around 2 cm. The image size is 5184 × 3456

pixels and the radiometric resolution is 8 bits for both datasets.

The both of datasets are composed of 10 images, subdivided into two groups:

• Training set: Three images are selected as training 4.2 which chosen from overall

set in such a way they contain all predefined classes of objects. The training data is

used to learn the parameters of the proposed models.

• Test set: we have seven images in this set for testing the validation of proposed

model 4.3˙

For the images of first data, they contain 13 classes of objects, namely, ‘Asphalt’,
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(a) (b)

(c)

Figure 4.2: Training images

‘Grass’, ‘Tree’, ‘Vineyard’, ‘Pedestrian Crossing’, ‘Person’, ‘Car’, ‘Roof 1’, ‘Roof 2’, ‘So-

lar Panel’, ‘Building Facade’, ‘Soil’ and ‘Shadow’.

While the second dataset includes 14 classes, which are ‘Asphalt’, ‘Grass’, ‘Tree’, ‘Vine-

yard’, ‘Low Vegetation’, ‘Car’, ‘Roof 1’, ‘Roof 2’, ‘Roof 3, ‘Solar Panel’, ‘Building Facade’,

’ Soil’, ‘Gravel’, and ‘Rocks’.

4.2.1 Inputs Construction

The pipeline of the framework consists of two main phases. First, the considered input

UAV image is subdivided into a grid of tiles, which are processed thanks to an opportune

representation thus tile-wise multilabel prediction probabilities. In the second phase, a

multilabel CRF model is applied to integrate spatial correlation between adjacent tiles
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Figure 4.3: test

and the correlation between labels within the same tile.

In the first phase, starting by subdivide the query image (RGB) EHR image (I) acquired

by means of a UAV into a grid of tiles whose size depends on the image resolution and

the expected sizes of objects to recognize. For the both datasets, all the tiles have size

50 × 50 pixels. Then, the multilabel tile-based approach has started with the extraction

of features, that the multilabel tile-based classification described in (?, ?) has been highly

paid attention especially with interesting result obtained by (Zeggada & Melgani, 2016).

Due to the EHR imagery, each tile is characterized by a high level of detail and thus rich

information content. In order to extract a compact signature that describes efficiently

each tile, the well-known strategy, namely, the Bag of Visual Words (BOW) representa-

tion is adopted. Then, an Auto Encoder neural network (AE) is applied to enhance the

features discrimination capability(Zeggada & Melgani, 2017). We feed the extracted fea-

tures to an AE network which constructs new learned features. The next step consists in

adding a multilayer perceptron (MLP) network(MacKay, 2003), as a classifier at the end

of the encoding part in order to classify the resulting features. This classifier fits the mul-

41



CHAPTER 4. EXPERIMENTAL RESULTS

tilabeling requirements, and thereafter can be used on the test tiles to infer their object

lists. Indeed, the MLP can handle simultaneously multiple outputs which may charac-

terize each tile of the query image. The number of the MLP outputs C corresponds to the

number of predefined object classes. The resulting MLP outputs generate what is called

the classification maps Xk for k ∈ 1, . . . , C, such that Xk = xki|i = 1, . . . , n. These maps

are inferred from the posterior probability distribution provided by the MLP outputs. In

each classification mapXk, the presence/absence of object k is indicated for each tile xki.

In other words, each tile xi is associated with a multilabel descriptor vector of size C,

defined as xi = (x1i, x2i, . . . xCi).

The following sections reports the numerical results of the two proposed methods, de-

scibed in previous chapter, with consideration our intputs the classification maps Xk.

4.2.2 Accuracy Measures

The effectiveness of the proposed framework is evaluated by the two well kwon accuracy

measures, namely, the sensitivity, the specificity and their average defined as follows:

• the sensitivity: SEN =
TP

TP + FN

• the specificity: SPE =
TN

TN + FP

• the average: AV G =
SEN + SPE

2

Clarifying the annotations mentioned in the two first equations are given in the Ta-

ble.4.1

Estimated Label

0 1

True

label

0 TN FP

1 FN TP

Table 4.1: Confusion Matrix for the computation of the SEN, SPE and AVG accuraries
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4.3 Numerical Results

In order to complete our experimental assessment, we compered our method with oth-

ers. The first one is that thresholding of resulting maps obtained by bag-of-words strat-

egy coupled with autoencoder network and MLP classifier as described earlier (termed

as ML-Unary). The second one is the traditional monolabel CRF reference method (Eq.1.25

) which was run on each binary map independently from the others, without taking into

account the multilabel context and we refer to this method by CRF. we added an bias as

feature beside toG-functions(Schmidt et al., 2008) on the standard CRF and its refered by

CRF-bias. The CRF-ML refers to the proposed method which exploit the importing in-

formation from neighbouring classes as described previously. The Full-ML-CRF stands

for the proposed method which exploits cross-correlation between all defined classes for

multilabeling image proposed by (Zeggada et al., 2018). The next paragraphs discuss the

results, which are summarized in Table.4.2 and Table.4.3, for each data set separately.

Accuracies (%)

Methods SPE SEN AVR

ML-Unary 97.1 47.9 72.5

CRF 79.9 64.5 72.22

CRF-bias 86.8 53.4 70.1

CRF-ML 75.04 75.03 75.03

Full-ML-CRF 82.2 70.3 76.2

Table 4.2: SEN, SPE and AVG accuracies in percent obtained by the different classification meth-

ods on first datasets.
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Accuracies (%)

Methods SPE SEN AVR

ML-Unary 98.2 62.6 80.4

CRF 84.42 81.27 82.8

CRF-bias 92.5 70.6 81.5

CRF-ML 82.32 82.35 82.34

Full-ML-CRF 90.8 75.9 83.4

Table 4.3: SEN, SPE and AVG accuracies obtained by the different classification methods on sec-

ond datasets.

In the following subsections, the results of our approachs are reported and discussed.

4.3.1 the results of CRF approach for Multilabel classification

Recall the underlying idea of this approach. According to the multilabeling represen-

tation, we develop the monolabel CRF reference method to express the neighboring la-

bels information beside with tradition contextual information. In other words the pro-

posed model integrates: 1) the spatially neighbouring information between adjacent tiles

within the same class, jointly with, 2) cross-correlation information between neighbour-

ing class labels within the same tile as shown in the Fig.4.4. Subsequently, applying the

Iterated Conditional Modes (ICM) (Besag, 1986) algorithm to solve the related optimiza-

tion problem.

In the following paragraphs, the results of our approach are reported and discussed.

In particular, we will first look at the different accuracy values for β ∈ [0, 4] in which they

are reporting in Fig.4.5 and Fig.4.6 for dataset 1 and 2 respectively that the both graphs

reported using the MATLAB platform.

Since a certain point β̂, the SEN and the SPE will be balanced and stabilized with outper-
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Figure 4.4: Flowchart of the proposed CRF clasification method for ML inputs

form of SEN i.e. we have the advantage of correct labeling after this point β̂, in which

β̂ = 1.6 for the first data set Fig.4.5 and β̂ = 2.2 for the second data set Fig.4.6U̇nlikethe

average accuracy concerned second data, which recorded a smal rate of decreasing while

β is increasing, the average accuracy of first data is increasing simultaneously with β.

but for the both data we note that this divergence turn into stability over all the accuracy

measures after specifying the β̂ value.

Figure 4.5: AVR, SEN, SPE graphs data 1

Now, we discuss the results of dataset 1 and 2 reporting in the Tab.4.2 and Tab.4.3

respectively.
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Figure 4.6: AVR, SEN, SPE graphs data 2

First dataset: the results of our model (CRF-ML) outperforms both the ML-Unary,

CRF and CRF-bias methods respectively. As can be seen, there is a clear average accu-

racy improvement scoring 75.04% where the approach records an increment of around

2.5% , 2.7% and 5% over ML-Unary, CRF and ML-CRF-bias methods, successively. An

interesting fact to point out is that the significant increase in sensitivity value of roughly

27% from 47.9% to 75.03% when compare the ML-Unary and CRF-ML whereas the rate

of increase is 22% compared by CRF-bias. the score of increase is 10% when we compare

the CRF and CRF-ML methods (from 64.5% to 75.03% ). Simultaneously with this higher

gain in the sensitivity, there is a decreasing in specificity value, from 97.1% to 75.06%

compared with ML-Unary, from 86.8% to 75.06 % compared with CRF-bias while it de-

crease from 79.9% to 75.06% compared with CRF. This dissimilarity between SEN and

SPE can interpreted by the fact that our model has allowed to recover many lost objects

(true positives i.e. SEN) but at the expense of a higher number of errors on absent objects

(true negatives i.e. SPE).

Second dataset: Unlike the results for the first data set, the CRF-ML outperform

the ML-Unary and the CRF-bias methods, in terms of average accuracy, scoring 82.9%

with rate of increase around 2.5% for ML-Unary, and around 1.4% for CRF-bias, while a

negligible improvement is recording compared with CRF (around 0.1%). Regarding the
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numerical results, one also can notice the similarity between CRF-ML and CRF methods

in terms of SEN, SPE and average accuracy (AVG). Indeed, a lowest rate of increasing

is observed scoring 0.5% for the SEN and a lowest rate of decrease 0.4% for the SPE.

However, our strategy (CRF-ML) records significant results compared with ML-Unary

and CRF-bias regarding the SEN and SPE values. For the SEN is increased from 62.6 to

81.7 (around 19% rate of increase) compared with ML-Unary and from 70.6% to 81.7%

compared with CRF-bias, while the SPE is decreased from 98.2% to 84% with rate of

decline 14% comparing with ML-Unary and from 92.8% to 84.01% comparing with CRF-

bias. According to this data set results, we can confirmed that the exploitation of spatial

contextual information has led to a further substantial boost in the correct detection of

true positives.

4.3.2 The results of Multilabel CRF

Firstly, we remind the main idea of the proposed model. We formulate the multilabel-

ing problem applied at a tile level under a CRF perspective, with the aim to assign to

each tile a vector of labels instead of just one class label. The main novelty is that the

proposed CRF integrates the cross-correlation information between different class labels

jointly with spatial information within the same class as shown in the Fig.4.7Ṫhe param-

eters of the proposed multilabel CRF model i.e.,vki, wkij are learned from the training

data using LBP inference. We set vki2 = 0 and wkij12 = wkij21 = 0 in order to avoid over-

parametrization of the model(Schmidt et al., 2008). The correlation parameters λ1, λ2 are

fixed to λ1 = λ2 = 1. The effect of varying the correlation parameters on the obtained

results is analyzed.

Our proposed strategy (Full-ML-CRF) outperforms both the ML-Unary and ML-CRF

methods in terms of average accuracy scoring, 76.2% and 83.4% for datasets 1 and 2, re-

spectively. It records an increment of around 4% and 6% in dataset 1, and 3% and 2%

in dataset 2 over ML-Unary CRF-bias methods respectively. Moreover, our strategy of-
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Figure 4.7: Flowchart of the proposed multilabel clasification method

fers the advantage of yielding higher sensitivity in both datasets while maintaining an

appropriate rate of specificity. An interesting fact to point out is that a lowest average

accuracy in dataset 1 is observed for the ML-CRF method scoring 70.1%. It has failed

to outperform the ML-unary classification of independent tiles, which has scored 72.5%.

This can be interpreted by the fact that spatial information has allowed to recover some

lost objects (true positives) but at the expense of a higher number of errors on absent

objects (true negatives). The exploitation of the cross-correlation information by Full-

ML-CRF has led to a further substantial boost in the correct detection of true positives

(and thus a higher SEN). In general, the exploitation of spatial information incurs in a

loss of true negatives (confirmed for both datasets) which are typically dominant in mul-

tilabel maps. This is however accompanied by an increase of the true positives, which

can be not always sufficient to compensate the above loss (case of ML-CRF on dataset 1)

or very substantial (case of Full-ML-CRF on both datasets).

Another element to discuss is the influence of varying the correlation parameter values

i.e.λ1, λ2 on the classification outcomes. Fig.4.8 describes the behavior of the average

accuracy against λ1 and λ2. By analyzing Fig.4.9, one can notice that the best results
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are obtained when λ1 and λ2 take similar values. Indeed, balancing between λ1 and λ2

which represent respectively the presence and the absence state of a given label leads to

a better balance between sensitivity and specificity. By contrast, magnifying one param-

eter at the expense of the other, leads to a very high sensitivity (i.e., 100%) and very low

specificity (i.e., 0%) or vice-versa, which results in 50% of average accuracy.

(a) (b)

Figure 4.8: Average accuracy versus spatial parameters achieved by the Full-ML-CRF method on

(a) dataset 1 and (b) dataset 2

Figure 4.9: Average accuracy versus spatial parameters taking same value for Fll-ML-CRF model
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4.4 Comments and Comparaison

Already we discussed and analyzed the numerical reslts in terms of accuracies SEN, SPE

and AVG. Now, compared the results over the resulting classification maps.

(a) Full-ML-CRF (b) CRF-ML (c) ML-unary

(d) Ful-lML-CRF (e) CRF-ML (f) ML-unary

(g) Ground Truth (h) Original Image

Figure 4.10: Example of multilabel classification maps obtained by the three reference methods

(ML-Unary, CRF-ML, Full-ML-CRF) on a test image, along with their related ground truth and

original image.
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That Fig.4.10 illustrates examples of multilabel classification maps obtained with the

proposed Full-ML-CRF along with the reported methods ML-Unary, CRF-ML and CRF-

bias, on one example test image from dataset 2. Where (a),(b)and (c) represent the class

of Roof 3(bright), while (d),(e) and (f) represent the low vegetation class. In a comparison

between the three methods of Full-ML-CRF, CRF-ML and ML-Unary, we have noticed

the following results : it has been confirmed that the ML-Unary is not accurate to classify

an image because, on the basis of ground thruth Fig.4.10 (g), (c) and (f) show many losses

in terms of the main conponents, whereas Full-ML-CRF and CRF-ML have showed more

accuracy. However, between the Full-ML-CRF and CRF-ML, the Full-ML-CRF appears

to be more reliable as a method of classification. For that, (b) and (e) show false classifi-

cation while (a) and (d) show true prediction. Hence, we can say that CRF-ML needs to

be enhanced to get more accurate resuls and more credible prediction.

• We need to explain the difference between this proposed model and the previous

one. the first one (refered as CRF-ML) based in the principe of CRF ( encapsulate

the neighboring information 4.4 ) while this model (refered Full-ML-CRF) express

the cross-correlation in terms of all labels beside the traditional spatial information

see 4.7. In the theoretical side, the CRF-ML expressed by use the observed data, but

the Full-ML-CRF expressed in terms of true labeling which lead us to extract the

specific term ( cross-correlation term) in the training phase as descibed in (Zeggada

et al., 2018).

• It is worth to mention that it is possible to recover an MRF model (i.e., the joint

probability P (Yk, Xk) ' P (Xk)) by setting the edge features fkij=1, so that wkij will

represent the unconditional potential edge between nodes i and j

• once we set λ1 = λ2 = 0, we recover the traditional monolabel CRF (CRF-bias) that

works at the level of each class map separately. For the CRF-ML approach, if we set

β = 0, we recover also the standard CRF reference model (CRF).

• As future development, expanding the action field of the cross-correlation term by
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considering wider neighborhood systems could be worth investigating, though this

would lead to an increase of the method complexity.

• Moreover, an automatic way for estimating the optimal value of λ1 = λ2 (here fixed

to 1) could be interesting to improve further the results

In the last of this chapter, we atteched a tables that they report the results over all the

classes for both datasets considering Full-ML-CRF and CRF-ML methods.
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Accuracies (%)

classes SPE SEN AVR

1 89.2374 83.8630 86.5502

2 87.5804 86.1087 86.8446

3 81.9942 87.0307 84.5125

4 84.8292 72.9642 78.8967

5 92.5366 47.2209 69.8788

6 83.3323 85.939 84.6360

7 91.5183 81.134 86.3263

8 88.8875 82.3764 85.6320

9 91.0585 62.3367 76.6976

10 93.2424 91.8860 92.5642

11 82.3575 83.7418 83.0497

12 83.3173 85.028 84.1727

13 83.3173 85.028 84.1727

14 80.548 84.268 82.4080

Table 4.4: CRF-ML results of all classes- Data 2
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Accuracies (%)

classes SPE SEN AVR

1 93.7 75.96 84.83

2 72.02 75.33 73.68

3 66.47 82.35 74.41

4 52.68 26.26 39.47

5 71.45 88.02 79.74

6 63.36 61.79 62.58

7 91.41 67.08 79.25

8 87.49 65.32 76.41

9 63.13 77.15 70.14

10 81.64 72.26 76.95

11 66.90 100 83.45

12 85.04 76.96 81.00

13 84.40 81.44 82.92

Table 4.5: CRF-ML results of all classes- Data 1
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Accuracies (%)

classes SPE SEN AVR

1 95.76 59.97 77.87

2 68.10 80.06 74.08

3 66.52 76.32 71.41

4 55.42 71.04 63.23

5 87.15 43.26 65.21

6 100 00 50

7 91.22 66.71 78.96

8 92.51 57.52 75.02

9 68.22 65.95 67.08

10 78.34 74.81 76.59

11 75.17 100 87.59

12 94.88 55.01 74.94

13 92.38 67.15 79.77

Table 4.6: Full-ML-CRF results of all classes- Data 1
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Accuracies (%)

classes SPE SEN AVR

1 91.0993 81.3780 86.2387

2 83.7681 88.8535 86.3108

3 89.7629 78.8965 84.3297

4 98.8397 5.2932 52.0664

5 92.5366 47.2209 69.8788

6 92.5366 47.2209 69.8788

7 96.4953 74.6528 85.5740

8 95.3088 70.0159 82.6624

9 90.7345 65.7960 78.2652

10 98.9309 82.8947 90.9128

11 95.2746 50.4902 72.8824

12 92.9612 69.4430 81.2021

13 52.1844 43.3809 47.7826

14 94.6856 57.0451 75.8654

Table 4.7: Full-ML-CRF results of all classes- Data 2
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Conclusion

With the objectives of improving the performance of multilabel classification task, this

thesis has treated the condotional random fields (CRFs) framework for binary classifica-

tion of images and thier persepectives in this tendency of image treatments in the first

two chapters. That, the CRFs have been related substantially with graph theory where

the graph in our context is made up of nodes ( pixels), and edges in which each edge

operates to connect a pair of nodes. In addition to preliminary and other basics concepts

such as cliques, neighborhood system and so on, are introduced in the first chapter that

we represente the theoretical part for this type of random fields. In the second chapter,

we have started with explaining the problem of classification and the underlying idea

of CRF model as a classifier. Then, we described the essentiel elements of a CRF model

which are Parameters estimation and the related optimization problem. The subject of

the third chapter is the corp of the research paper (Zeggada et al., 2018) starting with

a simple approach for multilabeling data then we have proposed the model of this pa-

per. Where the main idea of first proposed approach is applying a Conditional Random

Field over a multilabeling image with subjecting differents classes to the neighboring

system adopted while second approach integrate the cross-correlation between all the

compenants of multilabel description vector of on site jointly with the traditional spatial

information under the CRF perpective. The efficiency of this approaches were illustrated

by numerical results reported in the fourth chapter advocated by some graphs and visual

results.

As a perspectives, we can re-struct the space of labels( multilabeling inputs) then we will
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apply one of the above approaches. Also we will try to innovate the ML CRF by finding

another approximate for cross correlation term with subjecting their parameters to esti-

mation procedure.
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