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a b s t r a c t

This paper deals with the semi-inverse variational method to extract the structures of
bound states of the Schrödinger equation in a quantum environment. From realistic exam-
ples, some state configurations are presented to illustrate the effectiveness and the exacti-
tude of the proposed method.
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1. Introduction

In recent years the analysis of structures of the Schrödinger equation has gained considerable momentum and a particular
attention. Several important physical problems in quantum system require solving the Schrödinger equation to determine
the eigenenergies and the eigenfunctions. There are relatively few quantum mechanical problems for which the Schrödinger
equation is exactly solvable.

Over the past years, a great deal of approximate schemas and numerical approaches have appeared to calculate the quan-
tum quantities of the Schrödinger equation for numerous potential functions [1–13]. The scope of this area remains until
now a more active field of diverse problems.

The main part of this work serves to the construction of a specific functional in the framework of spherically symmetric
potentials by using the semi-inverse variational method [14,15]. In the application, a special attention is focused on the Cou-
lomb potential. This last is chosen among other forms because it has been the subject of intense study and plays a central role
in quantum physics.

The content of this paper is organized as follows. In Section 2, we present the necessary arguments which underlie the
variational formulation in connection with the problems of quantum nature. In Section 3, some applications are proposed
to concretize the method and conclusion and trends for future work are made in Section 4.
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2. Variational formulation: semi-inverse method

Hereby we begin with the radial Schrödinger equation for any spherically symmetric potential VðrÞ, i.e., a
particle moving under the influence of a central potential, but this argument remains applicable also for arbitrary
interactions.

� �h2

2mr2

d
dr

r2 dR
dr

� �
þ ðwðrÞ � EÞR ¼ 0 ð1Þ

where wðrÞ ¼ VðrÞ þ �h2 lðlþ1Þ
2mr2 is the effective potential, l denotes the angular momentum quantum number, �h is called the re-

duced Planck constant (also known as Dirac’s constant), mðEÞ is the mass (energy) of the particle. In next section, for the
examples, VðrÞ is taken to be of Coulomb potential-type as VðrÞ ¼ � Ze2

4per, where Z is the atomic number, and e is the charge
of the particle.

However, we can rewrite Eq. (1) in the form

Uðr; R; R0; R00Þ � � �h2

2m
d2R

dr2 �
�h2

mr
dR
dr
þ ðwðrÞ � EÞR ¼ 0 ð2Þ

where the superscripts 0 and 00 denote the derivatives with respect to r. The consistency conditions for the existence of a func-
tional integral are described in [16,17]. For the one-dimensional (1D) case, we have

oU
oR0
¼ d

dr
oU
oR00

� �
ð3Þ

We apply the consistency condition (3) to Eq. (2), it is easy to verify that this condition is not satisfied. Consequently, we
use an auxiliary factor gðrÞ and rewrite Eq. (2) as:

Yðr; R; R0; R00Þ � gðrÞUðr; R; R0; R00Þ ¼ 0 ð4Þ

and in Eq. (3), U is replaced by Y. Now the consistency condition is satisfied provided that gðrÞ ¼ r2.
Now, the differential equation (4) can be derived from a specific functional as stationary conditions.To find this functional,

we apply the semi-inverse method which provides until now the best technique to establish variational principles for
numerous physical problems. The basic idea of the semi-inverse method is illustrated as follows [18].

We construct in an alternative form a general trial functional for Eq. (4) as:

JðRÞ ¼
Z þ1

0
Ldr ð5Þ

in which L is a trial-Lagrange function, which reads

L ¼ a
�h2

2m
r

dR
dr

� �2

þ bðwðrÞ � EÞðrRÞ2 þ F ð6Þ

where F is an unknown function of R and/or its derivatives, a and b are arbitrary constants to be determined. Requiring to the
trial functional (6), the stationary condition, yields the following trial-Euler equation

�a
�h2

m
r2 d2R

dr2 � 2a
�h2

m
r

dR
dr
þ 2bðwðrÞ � EÞr2Rþ dF

dR
¼ 0 ð7Þ

we refer to dF=dR as the variational derivative of F with respect to R, expressed by

dF
dR
¼ oF

oR
� d

dr
oF
oR0

� �
þ d2

dr2

oF
oR00

� �
� � � � ð8Þ

We search for such an F; a and b so that Eq. (7) turns out to be the original equation. Now the unknown F; a and b, can be
identified as follows:

a ¼ b ¼ 1
2
; F ¼ 0 ð9Þ

Finally we obtain the needed variational principle of Eq. (6), which reads

JðRÞ ¼
Z þ1

0

1
2

�h2

2m
dR
dr

� �2

þ ðwðrÞ � EÞR2

( )
r2dr ð10Þ

It can often be quite instructive to consider some alternative examples which can be considered from pedagogical point of
view as a testbed. This point is shown in the next section.

3196 A. Zerarka, K. Libarir / Commun Nonlinear Sci Numer Simulat 14 (2009) 3195–3199



Author's personal copy

3. Illustrative examples

To illustrate how this method works, and see whether it is robust, a good test may be made by examining two concrete
physical examples. To be more precise, we use therefore the case of the angular momentum l ¼ 0 (s-wave setting) and l ¼ 1
(p-wave setting) and we denote by p the energy E and by z the atomic number Z.

From the asymptotic behaviors of solutions in regard to the large distances and near the origin, we can guess the solutions
by making the following ansatz to the radial wavefunctions for both examples:

RðrÞ ¼ e�krrl
Xm

j¼0

AjrJ ð11Þ

where k and Aj are constant quantities to be determined, and are used as free variational parameters of the problem under
consideration. These variational parameters are inferred from the variational functional JðRÞ (Eq. (9)) subject to the minimi-
zation condition

dJðRÞ ¼ 0 ð12Þ

with respect to specific variational parameters.
The optimization condition (12) yields sets of algebraic equations in terms of the variational parameters. In order to iden-

tify the different configurations we need to add some subscripts to the solutions RðrÞ as: Rn;lðrÞ. Throughout the examples we
adopt a system of atomic units in which �h ¼ m ¼ e2

4pe ¼ 1.

3.1. First test example: case l ¼ 0 and m ¼ 2

The solution we are looking for is expressed in the form:

RðrÞ ¼ e�krðaþ br þ cr2Þ ð13Þ

substituting ansatz (13) into (10), then using the minimization condition (12) with respect to a; b; c and k and
with the help of symbolic software packages in Mathematica, we can get a system of algebraic equations for
a; b; c; k and p

� 6cð2pþ kzÞ þ 2ak2ðk2 � 2p� 2kzÞ þ bkðk2 � 6p� 4kzÞ ¼ 0

3cðk2 � 10p� 4kzÞ þ ak2ðk2 � 6p� 4kzÞ þ 2bkðk2 � 6p� 3kzÞ ¼ 0

cð3k2 � 30p� 10kzÞ � 2ak2ð2pþ kzÞ þ bkðk2 � 10p� 4kzÞ ¼ 0

2k2ð2abkðk2 � 12p� 6kzÞ þ 3b2ðk2 � 10p� 4kzÞ þ a2k2ðk2 � 6p� 4kzÞÞ þ 45c2ðk2 � 14p� 4kzÞ
þ 24ckðbðk2 � 15p� 5kzÞ � akð5pþ 2kzÞÞ ¼ 0

ð14Þ

for which, we obtain with the aid of Mathematica, a variety of solutions

b ¼ 0
c ¼ 0
k ¼ z

p ¼ � z2

2

8>>><
>>>:

ð15Þ

b ¼ � az
2

c ¼ 0
k ¼ z

2

p ¼ � z2

8

8>>>><
>>>>:

ð16Þ

and

b ¼ � 2az
3

c ¼ 2az2

27

k ¼ z
3

p ¼ � z2

18

8>>>><
>>>>:

ð17Þ

where the parameter a is easily evaluated from the following normalization condition for the wavefunctionR1
0 j RðrÞj

2r2dr ¼ 1.
From these results, we identify the following configuration states: the first, the second and the third variant give, respec-

tively, the states 1s;2s and 3s, i.e., R1;0;R2;0 and R3;0, respectively.
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3.2. Second test example: case l ¼ 1 and m ¼ 1

We seek the solutions in the form

RðrÞ ¼ e�krrðaþ brÞ ð18Þ

Similarly, substituting ansatz (18) into (10), we can deduce the following system of algebraic equations with respect to a; b; k
and p

bð3k2 � 10p� 4kzÞ þ 2akðk2 � 2p� kzÞ ¼ 0

5b2ð7k2 � 42p� 12kzÞ þ 8abkð3k2 � 15p� 5kzÞ þ 2a2k2ð3k2 � 10p� 4kzÞ ¼ 0

bð7k2 � 30p� 10kzÞ þ akð3k2 � 10p� 4kzÞ ¼ 0

ð19Þ

Solving the set of Eq. (19) with the help of Mathematica, we distinguish two sets of parameters given by

b ¼ 0
k ¼ z

2

p ¼ � z2

8

8><
>: ð20Þ

and

b ¼ � az
6

k ¼ z
3

p ¼ � z2

18

8><
>: ð21Þ

Similarly, from these results, we identify the following configuration states: the first and the second variant give, respec-
tively, the states 2p and 3p, i.e., R2;1 and R3;1, respectively.

Indeed, it may be noted that the eigenenergies and the wavefunctions obtained for this potential are exact compared with
those obtained by the power series method reported in the literature. As illustration, we sketch the variation of the s-wave
states versus r to represent the three unnormalized wavefunctions R1;0ðrÞ; R2;0ðrÞ and R3;0ðrÞ in Fig. 1. Similarly, the plot of the
two wave functions R2;1ðrÞ and R3;1ðrÞ versus r for the p-wave states is displayed in Fig. 2. We can finally underline that, the
behavior of wavefunctions is very well outlined and preserved for all the states considered.

Remark. Phrased in its more general form, the specific functional may be used to deduce the Rayleigh quotient EðwÞ ¼ ðw;HwÞ
ðw;wÞ

which is a key quantity of the variational principle in a quantum environment. E is the energy, H is the Hamiltonian of the
system and w is the full wave function.

4. Conclusion

In this work, the semi-inverse variational method is applied to the Schrödinger wave equation. The aim to obtain exact
wave solutions of the Schrödinger equation by using some specific examples has been achieved. Using some illustrative
examples, it was shown that the semi-inverse variational method is a powerful and straightforward solution method to find
closed-form for Schrödinger-type equations.
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Fig. 1. Representation of the unnormalized wavefunction RðrÞ obtained with the present method, where r is in a.u. for the Coulomb potential. Solid curve
(configuration: 1s), dash curve (configuration: 2s), dot curve (configuration: 3s).
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In this paper, we have shown a possible connection between the semi-inverse variational method and the evaluation of
solutions of a given quantum system. Specially, we have introduced the Coulomb potential as testbed to obtain simulta-
neously some bound energies and the associated quantum states. Furthermore, we have proposed some ansatz for the solu-
tions for several configurations and we have demonstrated that the trial Lagrangian build by this approach has provided an
exact aspect of solutions that are the same as those obtained by the power series method. However this technique may be
applied successfully to other operators such as Dirac Hamiltonian. This matter will be discussed in a future work and will
constitute a sequel to this paper.
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Fig. 2. Representation of the unnormalized wavefunction RðrÞ obtained with the present method, where r is in a.u. for the Coulomb potential. Solid curve
(configuration: 2p), dash curve (configuration: 3p).
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