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Abstract 

Behavioral simulation consists to simulate and animate virtual environments populated 

by virtual humans, and focuses both on local and global realism. 

For this reason, the simulation of pedestrians crowd is widely used by several domains 

such as the film industry, video games, security, civil engineering, urban planning ... etc. 

To simulate realistic crowds of virtual humans in real time, three main requirements need 

satisfaction. First of all, 

efficiency is essential, the simulation model must make it possible to simulate crowds in 

an efficient way in terms of computational cost. Secondly, quantity, that is to say, the 

ability to simulate thousands of characters, finally realism, which means the need to 

identify the interactions between each individual and his neighborhood and then 

influence the individual behaviors, and to reproduce some macroscopic phenomena.  

Proposing a solution able to manage all these three aspects is a challenging problem that 

we have addressed in this thesis. 

In this thesis, we develop a hybrid architecture to perform crowd behavior simulation in 

order to simultaneously satisfy the criterion of macroscopic and microscopic realism, 

while ensuring path planning and dynamic avoidance of collisions for large numbers of 

pedestrians. 

This architecture consists to divide the simulation environment into exhaustive regions, 

where motion modeling is managed by two approaches of different levels of detail. 

Concretely, the high-density regions are governed by a macroscopic approach based on a 

flow potential to generate macroscopic phenomena, while the other zones use a 

microscopic method to perform individual behaviors. 

Our architecture also allows to ensure the continuity of movements during a change 

between two algorithms. 

Keywords. 

Virtual crowds, real-time, motion simulation, behavior, macroscopic simulation, 

microscopic approach. 
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Résumé 

La simulation comportementale cherche à simuler et animer des environnements virtuels 

qui sont généralement peuplés d‘humains virtuels, et s‘intéresse surtout au réalisme local 

et au réalisme global.  

Pour cette raison, la simulation de la foule des piétons est largement employée par de 

nombreuses domaines d‘applications tels que l'industrie du cinéma, du jeu vidéo, la 

sécurité, le génie civil, l‘urbanisme...etc. 

Afin de simuler des foules d‘humains virtuels en temps réel et de manière réaliste, trois 

éléments principaux doivent être réunis. Premièrement l'efficacité est primordiale, le 

modèle de simulation doit permettre de simuler des foules de manière efficace en terme 

de coût calculatoire. Deuxièmement la quantité, c‘est-à-dire la capacité de simuler des 

milliers de personnages, finalement le réalisme, ce que signifie la nécessité d'identifier 

les interactions entre chaque individu et son voisinage pour ensuite influencer le 

comportement de l‘individu, et de reproduire certains phénomènes macroscopiques. La 

proposition d'une solution capable de gérer ces trois aspects est un problème intéressant 

et stimulant que nous avons adressé dans cette thèse.  

Dans le cadre de cette thèse, nous développons une architecture hybride pour effectuer 

des simulations comportementales de foules, pour pouvoir satisfaire simultanément les 

deux types de réalisme macroscopique et microscopique et rendre compte la planification 

de chemins et l'évitement dynamique de collisions pour de grand nombre de piétons.  

Cette architecture consiste à diviser l'environnement de simulation en des zones 

exhaustives, où la modélisation de mouvement est gérée par deux approches de différents 

niveaux de détail.  

Concrètement, les régions de haute densité sont gouvernées par une approche 

macroscopique basée sur un flux de potentiel pour générer des phénomènes 

macroscopiques, tandis que les autres zones exploitent une méthode microscopique pour 

réaliser des comportements individuels.  Notre architecture permet aussi d‘assurer la 

continuité de mouvements lors d‘un changement entre deux algorithmes. 

Mots clés.  

Foules virtuelles, temps-réel, simulation de mouvements, comportement, macroscopique 

simulation, microscopique approche. 
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 الولخض

 خاص تشكل ّذِرن الرٖ ذكْى عادج هأُْلح تالٌاط، الافرشاض٘ح الْعائظ إى هحكاٍ دٌٗاه٘ح الوشاج ذغعٖ إلٖ ذٌش٘ظ

 .الشاهلح ّ الذل٘مح تالرشك٘ض فٖ ًفظ الْلد علٔ الْالع٘ح

 ّالألعاب، الأفلام، طٌاعح هثل هدالاخ هي العذٗذ فٖ ّاعع ًطاق علٔ الغثة،فاى هحاكاج الوشاج ذغرخذم لِزا

 الخ ... الحضشٕ ّالرخط٘ظ الوذً٘ح، ّالٌِذعح ّالأهي،

 .ٗدة هشاعاذِا سئ٘غ٘ح عٌاطش ٌُان ثلاثح, لظ٘ش الْلد صهٌٖ  تطشٗمح أكثش ّالع٘ح ّ فٖ لكٖ ٗرن ذٌف٘ز هحاكاج

 ثاً٘ا. الحغات٘ح الركلفح ح٘ث هي الوشاج تكفاءج لادسا علٖ ذحم٘ك هحاكاج الوحاكاج ًوْرج أى ٗكْى ٗدة الكفاءج، أّلا

 الحاخح ٗعٌٖ ها ُّْ ّ أخ٘شا الْالع٘ح، .الشخظ٘اخ الافرشاض٘ح هي اٙلاف هحاكاج علٔ المذسج ٗعٌٖ ُّزا الفاعل٘ح،

 .الدواع٘ح إضافح إلٖ إظِاس الظْاُش الفشدٗح، علْك٘اخ علٔ الرأث٘ش ثن ّهح٘طَ الفشد ت٘ي الرفاعلاخ ذحذٗذ إلٔ

 .الثحث ع٘رن الرطشق لَ فٖ ُزا الثلاثح الدْاًة ُزٍ الرشاذ ّ ذمذٗن حل لادس علٖ إداسج

 الٌْع٘ي ذحم٘ك كلا أخل هي الوحاكاج علْك٘اخ الحشْد، لأداء هشكثح تٌ٘ح ع٘رن الرشاذ الأطشّحح، فٖ هضوْى ُزٍ

 .إضافح إلٖ ذْخَ٘ الوشاج تٌاءا علٖ ذحذٗذ الاذداُاخ ّ الوغاساخ. ّالودِشٗح فٖ ًفظ الْلد الع٘اً٘ح الْالع٘ح هي

دهح  طشٗك ٗرن هحاكاج دٌٗاه٘ح الوشاج عي ح٘ث هرثاٌٗح، هٌاطك الٌوْرج الومرشذ ٗشكض علٖ ذمغ٘ن الْعظ إلٖ

 .الذلح هخرلفح هغرْٗاخ هي طشٗمر٘ي

لطشٗمح هحاكاج هٌخفضح الذلح لاضِاس عٌ٘اخ هي الغلْك٘اخ  الكثافح عال٘ح الوٌاطك ذخضع الرحذٗذ، ّخَ علٔ

 .الفشدٕ الغلْن لرحم٘ك هحاكاج عال٘ح الذلح طشٗمح علٔ ذعول أخشٓ هٌاطك أى ح٘ي فٖ الدواع٘ح،

 .طشق الوحاكاج هي اثٌ٘ي ت٘ي ذغ٘٘ش عٌذ الحشكح اعروشاسٗح الٌوْرج الومرشذ ٗضوي كوا

 .الرئيسية الكلمات

 .طشٗمح هدِشٗح, طشٗمح هحاكاج هٌخفضح الذلح, علْك٘اخ, هحاكاج الحشكح, ّلد ذٌف٘ز حم٘مٖ افرشاض٘ح، حشْد
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Introduction  

 

A crowd can be defined as a situation where humans flock together like other 

aggregations of animals (e.g. herds of cattle and schools of fish) or material (e.g. fluid 

and particle flow). A crowd can also be defined as a large group of individuals in the 

same physical environment and sharing a common goal. Crowds can occur in many 

places including for example train stations, shopping malls and stadia. 

Crowds have become an important research area for many scientists since the 

nineteenth century. In particular, from the perspective of computer graphics research, 

Crowd simulation is the process of simulating large numbers of humans, or agents, in one 

environment. The task is challenging because human crowds exhibit highly complex 

behavior driven by individual decisions of agents with respect to their goals, obstacles, 

and other nearby agents.  

Crowd simulation is an active area of research that finds several applications in the 

design of urban environments and the development of emergency evacuation strategies 

[1]. Crowd simulation also finds itself broad application in entertainment industry. In 

movie production and computer games, large numbers of characters need to be animated. 

The effect of simulation greatly influences the realism of scene and the experience of 

interaction. 

Several models for crowd simulation have been proposed and many efforts have 

been made to modulate intuitive navigation control and real time crowd behavior 

simulation, these models were classified into two categories: microscopic and 

macroscopic. Macroscopic models look at the simulated crowd as a whole, focus on the 

flow characteristics instead of the individual behaviors of the pedestrians. Microscopic 

models are the opposite. They study the behavior of the individual pedestrians and their 

interactions with other peers in the crowd. These allow to animate virtual crowds of 

agents with realistic autonomous behaviors. Perception and placement are defined for 

every agent resulting in a richer and more complex simulation. There are two conflicting 

requirements in crowd simulation. 
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The first major problem is that the most applications require a human crowd 

simulated in real time, with higher level of detail and an accurate realism of behaviors. 

Then, there is still a clear relationship between the accuracy realism of crowd behaviors 

and the computational costs of simulation. Satisfying these both constraints at the same 

time is particularly a challenge of great importance. The majority of the previous models 

have a limited ability to response to the latter problem, they tend to focus on a single 

factor; there is no existing method that is able to reduce the computational cost while 

maintaining the high level detail of simulation [2, 3]. Almost all the existing models were 

agent-based (microscopic models). This approach describes the most natural way to 

simulate crowds as independent autonomous pedestrians interacting with each other; it 

usually handles local collision avoidance and global navigation for each person. 

However, these kinds of models have the drawback that when animating a large crowd, 

they are computationally intensive. Microscopic models give more accurate results only 

for smaller crowds to achieve real time simulation. On the contrary, the macroscopic 

models are usually created to realize a real time simulation for very large crowds; they 

follow the features of the flow as long as the overall crowd behavior seems realistic. 

These models offer a coarse-grained simulation result with higher execution efficiency 

which is due to the lack of concerns on individual issues [4]. 

Finally, modeling the movement and behavior of the virtual crowd remains a major 

challenge as highly dynamic complex systems, the crowd is a large group of pedestrians 

with non-uniform spatial distribution and heterogeneous behavior characteristics, and it 

exhibits often distinct characteristics, such as independent behaviors, self-organization, 

and pattern formation, due to interactions among the individuals. Previous works have 

suggested that human crowd dynamic can be modeled on many different scales, from 

coherent aggregate behaviors of the crowd on the largest scales to the individual 

behaviors, interactions among individuals on the small-scale detail.  Such multi-scale 

systems are computationally expensive for traditional simulation techniques to capture 

over the full range of scales.  

To overcome these two conflicting goals, we assume a scalable simulation is 

required to handle at least several hundreds or even thousands of pedestrians, running in 

real-time, particularly with respect to the complexity of the environment and the realism 

of behaviors required by the crowd, we investigate to find a good balance between visual 

credibility of complex crowd behaviors and computational requirements, where the 
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behaviors of human crowd can be viewed on a two different level of detail: from the 

chaotic, fluctuating interactions between individual objects on the finest scales, to the 

coherent aggregate flow of the pedestrian crowd on the largest scales. 

Our solution consists to introduce a hybrid simulation architecture that combines the 

strengths of two classes of crowd modeling to achieve flexible, interactive, high-fidelity 

simulation on large environment. This architecture couples a microscopic model of 

individual navigation with a novel continuum approach for the collective motion of 

pedestrians; it can apply to simulate the behaviors and movement patterns of extremely 

large crowds at near real-time rates on commodity hardware.  

Our approach is able to determine by itself the most suitable model of modeling for 

each region in the environment, regarding the simulation context, in real time and within 

a continuous environment. To do so, we first introduce the generic notions of dynamic 

change of representation, and we describe our method for handling the transfer of 

pedestrian between continuum and discrete simulation areas and discuss how the 

constituent simulation components are adapted to handle this transition.  

Then, we evaluate this approach experimentally along two criteria: the impact of our 

methodology on the computational resources, and an estimation of the dissimilarity 

between a full microscopic simulation and a simulation with our methodology. Finally 

we discuss the results obtained and propose enhancements for future works. 

This thesis consists of seven chapters, each of which is broken down into a number 

of sections and subsections that present the research in detail. The content of each chapter 

is summarized as follows: 

 Chapter 1. This chapter starts with the literature survey about general issues in 

crowd simulation. This is followed by the detailed summary of navigation process 

and group behaviors. 

 Chapter 2 includes a comprehensive review of crowd modeling and simulation 

within the scope of this research study. It introduces different aspects of crowd 

simulation and its relationship to crowd modeling, followed by detailed reviews 

on crowd modeling approaches, and typical crowd models and their represented 

crowd behaviors.  
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 Chapter 3. To fully understand our contributions in this research, we detail and 

explain the background that represents the proposed techniques to path planning, 

decision making and collision avoidances and their supporting foundations. 

 Chapter 4. describes a hierarchical navigation model to describe the movements 

of a pedestrian. During the simulation process, each virtual pedestrian needs to 

select a goal as its destination the macro-level navigation model is used to 

compute a path (not necessary shortest) to a destination based on various 

influences that may affect route choice. 

 Chapter 5. presents the construction of the macroscopic model and its application 

to simulate pedestrian dynamics. This model includes three major components: (i) 

a proposed speed-density relationship; (ii) determination of the directions of 

motion of the pedestrians by using an eikonal equation; and (iii) the mass 

conservations equation to describe the time evolution of crowd density. 

 Chapter 6. In this Chapter, we describe our hybrid framework for simulating the 

movement of crowds. The macroscopic and behavioral models are introduced and 

implemented. We describe a strategy that allows dealing with the interaction and 

the online-switching of simulation models for crowd behaviors studying. 

 Chapter 7. To complete our crowd simulation model, we have implemented 

several techniques allowing to avoid inter-pedestrian collisions in the short-term. 

This Chapter presents these methods, their functioning, and their implementation. 

 Finally, the conclusion section outlines the directions for future work. 
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Chapter 1 Behavioral Simulation for Virtual 

Crowd 

1. Introduction 

Crowd simulation has a wide range of application areas from computer games to 

evacuation planning for building security. The topic has drawn the attention of computer 

graphics and visualization community as well as cognitive science and artificial 

intelligence researchers. Since a human being is a complex structure, masses of human 

beings should be even more complicated to study. When humans form groups, 

interaction becomes an essential part of the overall group behavior. In some cases, 

individuality gets lost and collective behavior comes on the scene.  The semantics 

underlying the motion of real crowds should be studied extensively in order to achieve 

realistic behavior in virtual ones. Therefore, crowd simulation research also benefits from 

social psychology literature.  

This chapter focuses on definition of a crowd, and its types, it provides an overview 

of previous work that has been achieved in the domain of real-time crowd simulations. 

Some empirical data of pedestrian dynamics and examples of self-organized patterns 

forming in pedestrian crowds are described in section 4. Subsequently, we present in 

detail the related work in the domain of crowd behaviors (section 5), navigation (section 

6) and group behaviors (section 7). Finally, conclusion of this chapter is given in section 

8. 

2. How is Crowd Defined?  

In the field of crowd research, the definitions of  'crowd' evolve around all the 

situations where a number of people gathers in a rather small area and interacts with each 

other [5]. Several authors in the literature use the word crowd as a description for a 

multitude of individuals walking through the same space at a certain moment in time.  

According to Le Bon [6], crowds are much more than the physical presence of the 

individuals who comprise them; a crowd is best defined as a psychological occurrence 

rather than a physical one. Le Bon referred to a psychologically defined crowd as an 

organized crowd in which the individuals comprising the crowd in essence lose their 
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individuality and become one organized being with the characteristics of the individuals 

lost to the characteristics of the crowd. This loss of individuality is key to the formation 

of a psychologically defined crowd; a psychologically defined crowd is neither a matter 

of quantity nor the coincidental simultaneous gathering of multitudes. "A thousand 

individuals accidentally gathered in a public place without any determined object in no 

way constitutes a crowd from the psychological point of view" [6].  

In [5], "A crowd is a large group of individuals (N ≥ 100 Persons) within the same 

space at the same time whose movements are for a prolonged period of time (t >=

 60 𝑠) dependent on predominantly local interactions (k ≥ 1 P m2 )". The numbers N 

(number of individuals), k (density) and t (time) are chosen in a way as to exclude 

movements during which interaction is non-existent or only present for very short 

periods of time. Even when using the definition above the sort of crowds within the 

spectrum might differ greatly.  

According to empirical data gathered by scientists, crowds are more of a process (see 

Fig. 1.1)- they have a beginning, middle and end [7].  

 

Figure 1. 1 Crowd is a process of assembling, gathering and dispersing [7]. 

 

 The Assembling Process refers to the movement of people from different 

locations to a common location, within a given period of time. It largely 

determines who participates in a gathering. 

 The Temporary Gathering: refers to the collection of individuals and small groups 

in a common location. It is the result of the assembling process. The temporary 

gathering consists of the individual and collective actions. 
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 The Dispersing Process. This is the last phase in the life of a temporary gathering. 

It involves the movement of people from a common location to one or more 

alternate locations. Dispersal brings the temporary gathering to an end, or at least 

begins its decline. Dispersal can occur on a routine, emergency and coerced basis. 

3. Types of Crowd 

There is a scarcity of research literature in this context of crowd characterization. 

Starting with more generic crowd types:  

In his prominent article, R. W. Brown [8] uses the term collectivity for two or more 

people who can be discussed as a category. He defines crowds as collectivities that 

congregate on a temporary basis. Since the reasons that bring crowd members together 

are various, Brown classifies them in terms of the dominant crowd behavior. He gives a 

detailed taxonomy of crowds, but basically, he classifies them into two: mobs and 

audiences. Audiences are passive crowds, who congregate in order to be affected or 

directed, not to act. Mobs, on the other hand, are active crowds. In fact, the word mob is 

derived from the word ―mobile‖. There are different tendencies among mobs and 

audiences. Fig. 1.2 shows Brown‘s taxonomy of crowds. 

 

Figure 1. 2 Mass phenomena from Brown [8]. 

According to the classification, mobs are further divided into four groups. They can 

be aggressive, escape, acquisitive or expressive crowds. It is not always clear into which 

category a disturbance falls. Aggressive mobs are defined by anger. Lynchings are 

directed against individuals, whereas terrorizations are directed against groups. Riots are 
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directed against a collectivity and they are urban as opposed to Lynchings and 

terrorizations, which are rural disturbances. 

Escape crowds are defined by fear. They are panicking crowds, which can be 

unorganized or organized as in armies. Acquisitive mobs are centripetal and they 

converge upon a desired object. For example, hunger riots, looting shops and houses are 

all performed by acquisitive mobs. Finally, expressive mobs congregate for expressing a 

purpose, such as strikes, rallies, festivals or parades. Similar to mobs, audiences are also 

classified further. Casual audiences are groups of people who temporarily become 

polarized through their interest in an event. 

People gathering around an interest point out of curiosity is an example of casual 

audiences. Intentional audiences can be either recreational or information seeking. People 

in a movie theater are examples of recreational audiences whereas people attending 

classes are examples of information seeking audiences. 

Momboisse (1967) [9] distinguishes four types of crowd: 

 Casual crowds – i.e., ones which are not organized or unified, but comprise 

individuals who are simply in the same place at the same time. 

 Conventional crowds – i.e., ones which are gathered for a specific purpose or to 

observe a specific event, with crowd members who share common interests. 

 Expressive crowds – i.e., ones with members who are involved in some form of 

non-destructive and organized expressive activity such as singing and dancing. 

 Aggressive Crowd, in which members of the crowd are engaged in an 

unorganized destructive activity such as a looting mob. 

4. Empirical observations 

Empirical data of pedestrian dynamics provides significant insights into the 

characteristics and the walking behavior of individuals and human crowds. It used to 

understand the several collective phenomena of the pedestrian dynamics. 

Some previous findings, however, has been done specifically in the field of 

pedestrian crowds dynamics, but a real extensive summary was done the first time by 

Helbing [10]. They studied many self-organization phenomena on the base of 

observations, photographs and time-lapse movies. The idea is to understand deeply the 
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dynamics of the pedestrian in order to recreate a mathematical model able to reproduce 

these features in a realistic way. This gives the possibility to study different other cases in 

an easier and more economic way, indeed computer simulations are a really powerful 

tool for designing and planning pedestrians facilities.  

In this section the empirical results will be described. The empirical study is not only 

important for the creation of the model but also for applications like safety study and 

legal regulations.  

4.1.  Behavior in normal situations 

Though the dynamics of the pedestrians can be sometimes chaotic and irregular, it is 

possible to find some regularities and rules, some of which become more visible in time-

lapse films. The following list is a summary result of some other pedestrians studies and 

observations [11, 10]: 

 Pedestrians prefer to walk with an individual pedestrian speed, that normally is 

the least energy consuming and comfortable one. Normally this speed is the 

minimum one in order to arrive to the destination in time. Considering that the 

speed of walking within pedestrian crowds depends on the situation, age, sex, 

purpose of the trip, time of the day, etc. 

 Pedestrians always try to find the shortest and easiest way to reach their 

destination. If possible they avoid detours, even if the shortest way is crowded. 

The basic principle is the "least effort principle", which means everyone tries to 

reach his goal as fast as possible though spending the least amount of energy and 

in this example time. 

 Normally humans prefer not to get to close to the people around them. Everyone 

has is personal comfort zone, which he tries to protect if possible. This distance is 

smaller if the pedestrian is in hurry and with the increase of the pedestrians 

density.  

Another interesting observation is that individuals knowing each other can form a 

group that behaves like a single pedestrian. Some studies modeled the size of 

groups as a Poisson distribution. 
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 Pedestrian always act more or less automatically, even if the situation is new. An 

example of this behavior are pedestrians that cause delays or obstructions, by 

entering a train or an elevator before other pedestrians went out of them. 

4.2.  Behavior in panic situations 

Typically "panic situations" are those, where people compete for scarce or dwindling 

resources (e.g. safe space and access to an exit), which leads to selfish, a social or even 

irrational behaviors and contagion that affects large groups. This phenomena is 

understandable in life threatening situations, like a fire in a crowded building, but 

sometimes it occurs even in unreasonable situations like in cases of a rush for good seats 

at concerts. 

As mentioned before it is difficult to understand this behavior, but some features 

appear to be typical [10]: 

 Obviously people try to leave the building as fast as possible, therefore they move 

considerably faster than in normal situation. 

 The more nervous people get, the less they care about their comfort zone and 

about finding the most convenient and shortest way. It is observable, that for 

example, if people have to leave a building in an emergency situation and they 

don't know the structure of the building well enough, they would run for the exit 

they used as an entrance, even if other exits might be easier to reach or even safer. 

They also might lose the ability to orient themselves in their surrounding and thus 

show herding or flocking behavior.  

 Individuals start to exhibit new characteristics like pushing or other physical 

interactions. Those are often responsible for major injuries or great amounts of 

injured or even dead due to the forces generated by people crowds. 

 Furthermore people who stumble or fall down create new obstacles for following 

people, which can again slow down the evacuation. 

4.3.  Crowd movement base cases  

At the beginning the different motion base cases the models should be able to model 

will be described. Some of these are common from everyday experience. This will be an 

initial benchmark test for the models used. The movement base cases combined cover the 
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whole range of pedestrian movement behavior. Within this discussion eight distinct 

motion base cases where determined [5].  

Fig. 1.3. presents a nested structure describing the crowd movement base cases. Fig. 

1.4. subsequently shows the eight resulting crowd movement base cases which together 

represent a large range of crowd movement situations. 

 

 

Figure 1. 3 Taxonomy crowd movement base cases [5]. 

First of all, a distinction can be made between uni-directional and multidirectional 

flows. Uni-directional flows can either be straight flows (see Fig.1.4. A – no changes in 

available space or changes in direction), flows rounding corners (Fig.1.4. B – change in 

direction), flows entering a bottleneck (Fig.1.4. C – decrease of available walkway 

width) or flows exiting a bottleneck (Fig. 1.4. D – increase of available walking space).  

Multi-directional flows (≥ two directions) can either be parallel or intersection under 

an angle. In parallel flows bi-directional flows will occur (Fig.1.4. E). In the latter case 

(intersecting flows) the exact occurring movement pattern depends on the available space 

and the number of flows present at the intersection. The interaction of the streams might 

cause a random crossing situation (Fig.1.4. H), where a lot of consecutive 2-person 

crossings will happen shortly after each other, or the situation where the pedestrians 

intersect at a focal  point. Depending on the number of flows intersecting at the focal 

point, distinct types of behavior emerge. Two (Fig.1.4. F) or more-directional flows 

(Fig.1.4. G) are therefore separately assessed in the comparison of the models. 
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Figure 1. 4 Visualization of crowd movement base cases [5]. 

4.4.  Crowd Self-Organization Phenomena 

Self-organization is defined as the spontaneous emergence of a global structure that 

is triggered by local interactions between members of a system. Self-organization 

phenomena are macroscopic effects reflecting the pedestrians‘ microscopic interactions.  

A crowd is ―organized‖ when a leader (can be a unique member or a small group of 

individuals) collects the information provided by all the members of the group, analyzes 

it, makes its decision,  and transmits its instructions back to the members (Fig.1.5 (a)). 

Instead, a crowd is ―self-organized‖ when a coordinated spatial distribution arises by 

simply applying some local behavioral rules or one-to-one interactions among 

pedestrians. In this case, each individual is independent, all are interconnected by a vast 

network of interactions as illustrated in Fig.1.5. (b),  It has its own unique information 

depending on its position within the group. Then by interacting with its surrounding, the 

information is locally exchanged [4]. 
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Figure 1. 5 Two systems using (a) a centralized and (b) a decentralized mechanism 

[4]. 

Several studies describing the behavior of pedestrian and its collective motion in a 

crowd include both qualitative (e.g., the determination of pedestrians‘ preferences) and 

quantitative (e.g., the walking speed of pedestrians) observations. These observations 

allow us to list certain behavioral characteristics of pedestrians as well as highlight and 

describe several phenomena of a crowd‘s self-organization that occur in certain specific 

situations. 

 Jamming and clogging [11]: typically occur for high densities at locations where 

the inflow exceeds the capacity. Locations with reduced capacity are called 

bottlenecks. This kind of jamming phenomenon does not depend strongly on the 

microscopic dynamics of the particles. Rather it is a consequence of an exclusion 

principle: space occupied by one particle is not available for others. Other types 

of jamming occur in the case of counter-flow where two groups of pedestrians 

mutually block each other. This happens typically at high densities and when it is 

not possible to turn around and move back, e.g. when the flow of people is large. 

 Lane formation (Fig. 1.6 (b)): In bidirectional flows, pedestrians automatically 

start forming a number of lanes of varying width, with people in each lane 

moving in the same direction [12]. 

 Freezing-by-heating effect [11]. In counter-flows, at sufficiently high densities, 

lanes are destroyed by the increasing fluctuation strength (which is similar to the 

temperature). However, instead of the expected transition from the "fluid" lane 

state to a disordered, "gaseous" state, a solid state is formed. This is characterized 

by a blocked situation. 

(a) (b) 
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 Oscillations at bottlenecks [11] (Fig. 1.6 (a)). Most existing pedestrian models 

show exhibit oscillations at bottlenecks when two crowds moving in opposite 

directions meet at an exit. Once a pedestrian manages to make his way through 

the opposing group, he is immediately followed by others of his side. While 

individuals are waiting on the other side, pressure starts building up until they 

manage to cut the opposing flow and force their passage.  

 

 

 

 

 

 

 

 

 

 

Figure 1. 6 Self-organization behaviors. 

5. Virtual Character Behavior Modeling 

Modeling of realistic human behavior in general is considered as challenging task 

matter since each human has different characteristics and there are many factors affecting 

human behavior. There are also difficulties in developing human behaviors that are 

believable and reflect on the real world behavior of humans. There have been different 

approaches and studies developing to model and simulate this pedestrian behavior in 

virtual worlds, but no method has been proven to be the best. The choice mostly depends 

on the goals and priorities of the study. Several approaches are presented in this section.  

In [13], a virtual agent simulation platform is proposed to develop and visualize in 

real– time the behavior for thousands of agents. It is based on the concept of a 2D grid 

(Fig. 1.7). The 2D grid is composed of cells on which the agents navigate. The 

pedestrians behaviors are defined with a four-layered structure, each layer reflects a 

different aspect of an agent‘s behavior. The two first layers are used to compute the 

collision detection against the environment and other agents and the last two are used for 

more complex behaviors. The layers are described as follows: 

(a) Oscillations of the passing direction 

at a bottleneck [11] 

(b) Lane formation observed during an 

experiment on bidirectional pedestrian flow 

[4] 
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 Inter-collision detection layer: responsible for agent-agent collision detection. 

When an agent wishes to move to a particular cell, it verifies that the target cell is 

free. 

 Collision detection layer: This layer defines which areas on the grid are 

accessible to the agents. This is achieved by providing an input image, used as a 

height or collision map, to determine accessible areas on the grid.  

 Behaviors layer: This layer represents more complex behavior. By using a color 

map as an input file, and associating each color with a particular behavior, an 

agent can decide which action to perform based on the encoded color. Examples 

of behavior represented at this layer would be waiting or turning left. 

 Callback layer: This final layer represents actions that an agent may perform to 

interact directly with the environment. Examples of this type of behavior might be 

an agent pushing a button at a particular location. 

The combination of these four layers permits the creation of complex behaviors that 

can appear extremely realistic but can be still executed at interactive rates [13]. 

 

Figure 1. 7 Collision map (black and white), Behavior maps (color) [13]. 

Hoogendoorn and Bovy [14] have introduced a hierarchical approach for modeling 

pedestrian behavior by providing three modeling levels, namely the strategic (top) level, 

the tactical (medium) level and the operational (low) level. An overview of these levels 

of behavior is given in Fig.1.8. In a pedestrian simulation engine implementing this 

approach, the adjacent levels interoperate by data transfer: the higher levels pass input 

parameters to lower levels and lower levels return processing information to higher 

levels. 
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Figure 1. 8 Different levels of pedestrian behavior [14] 

 Strategic level. This layer is responsible to prioritize a set of activities over 

another set. Pedestrians decide on the activities they intend to do.  

 Tactical level. Short-term decisions are made at this level, taking into account the 

goals set at strategic level and based on the information about the network and 

existing routes and conditions. These decisions include the performance order of 

activities selected at strategic level and activity scheduling, activity area choice, 

and route choice between the origin and the intermediate or final destination of 

pedestrian. 

 The operational level. This level describes the actual walking behavior of the 

pedestrians in order to avoid collision with the environment and other pedestrians. 

In this hierarchy of decision making, these levels are not completely segregated from 

each other. Decisions made at higher levels influence choices at lower levels. Besides, 

expected choices at lower levels affect the decisions to be taken at higher levels.  

[15] focus on pedestrian walking behavior, naturally identified by the operational 

level of the hierarchy just described, and are interested in modeling the short range 

behavior in normal conditions, as a reaction to the surrounding environment and to the 

presence of other individuals. It is assumed that two different categories of behaviors 

govern pedestrian‘s walking (Fig.1.9). First category is the unconstrained behavioral 

pattern that refers to those pedestrian‘s behaviors that are not influenced by the presence 

of other individuals in the environment nearby. Second one is the constrained behavioral 

pattern which conversely reflects the interactions between the decision-maker and other 

individuals in the scene.  
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 Unconstrained behaviors are: Toward destination, Keep direction, and Free-flow 

acceleration.  

 Constrained behaviors include: attractive behavior of leader-follower and 

repulsive behavior of collision avoidance. These five behaviors are assumed to 

control how a pedestrian performs her walking task. Therefore, the systematic 

part of the utility function for each alternative is composed of the terms associated 

with these five behaviors and with the assumption of rational behavior, the 

pedestrian selects the alternative with the maximum utility. 

 

Figure 1. 9 Conceptual framework for pedestrian walking behavior [15] 

Previous work has suggested that there are three levels of crowd behavior [16]: the 

individual, interactions among individuals and the group. 

 The Individual. The behavior of crowds is derived by the individual's decision-

making process which follows three basic conventions: following instinct, 

following experience, and bounded rationality.  

 Following instinct is the most primitive way that an individual relies on in 

making instantaneous and quick decisions 

 Following experience: An individual relies heavily on his/her personal 

experiences in making decisions. In this case, individual usually develops a 

set of relatively standard routines over time or from past experience and then 

applies them to similar situations in the future. 

 Rational decision-making assumes decisions are based on evaluation of 

alternatives in terms of their consequences for preferences.  
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 Interactions Between Individuals. At this level, the social behaviors of person 

occur if (1) the people follow, according to their social identities, appropriate 

behavioral rules or procedures that they see as appropriate to the situation and 

with which they identify themselves, (2) individuals respect their personal spaces, 

and/or (3) due to a highly uncertain situation, individuals tend to follow others. 

 The Group. The movement of the group (or crowd) as a singular entity is affected 

by both internal and external factors. Three significant factors contribute to 

generate group behaviors: (1) crowd density, as the density increases, individuals 

can be swept along with the flow of people, (2) environmental constraints which 

restrict the movement of the group as a whole, and perceived emotion and 

tension, An increase in the perceived tension in enough individuals will lead to 

uncoordinated movement which slows down the crowd further. 

An alternative approach to describing the structure of pedestrian behavior was 

introduced by Wijermans [17]. The approach is called the multilevel concept and is based 

on crowd psychology research. It describes a link between observable group patterns, 

visible individual behavior, and internal cognition processes with a strong focus on the 

individual level, see Fig. 1.10. Three different levels are defined: the group level (inter-

individual), behavior level (individual) and cognitive level (intra-individual) level. On 

the group level, the visible patterns of a crowd of people emerge, resulting from the 

subsumed individual behavior of nearby pedestrians. While this view opposes the 

concept of a group-mind it does not omit social concepts like leadership. On the 

individual level, the behavior of an individual pedestrian can be observed. The group 

level influences the individual behavior, e.g. by physical restrictions or social interaction. 

On the cognitive level, decision making is performed.  

 

 

 

 

 

 

 

Figure 1. 10 The levels at which crowd behavior can be modeled [17]. 

(a) The group level (b) The individual level (c) The cognitive level 
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6. Virtual crowd navigation 

Navigation process determines how virtual characters find and traverse paths 

through the environment. Once a path is defined for navigating to a specific goal, the 

agent must follow this path while avoiding collisions with objects in the environment and 

other agents. Agents should act in a realistic manner: their trajectories must be short and 

smooth, there should not be any collisions between agents, and the agents are typically 

expected to mimic human behavior. The literature covers many studies regarding the 

navigation of virtual characters in synthetic environments. Some of the outstanding 

works are summarized as follows. 

6.1. Graph-Based navigation 

Graph-based techniques proposed to steer characters through virtual environments, 

they represent the environment using a set of one-dimensional edges. Dijkstra and A* 

graph search algorithms can then be applied to compute the shortest path in the visibility 

graph. 

Pettré et al. [18] proposed a method to plan and simulate the navigation of a large 

number of moving entities evolving on the terrain of a given virtual environment. From 

the environment geometry analysis, they captured its topology in a Navigation Graph 

structure which decomposes an environment of any kind in sets of interconnected 

navigable areas. Navigable areas (graph vertices) are modeled as cylinders with a 

variable radius. It is possible to go from an area to another one when the corresponding 

cylinders overlap: a vertical gate (graph edge), at the cylinders intersection, models this 

connection.  

Geraerts et al. [19] propose a novel approach under the name corridor map method 

(CMM) for path planning in interactive virtual environments. The CMM consists of an 

off-line construction phase and an on-line query phase. In a preprocessing phase a 

roadmap of paths is computed for the static part of the environment. Often the medial 

axis is used for this. With the roadmap, clearance information is stored, defining 

collision-free corridors around the roadmap edges. In the query phase, when a character 

has to plan a path to a specific goal location, a backbone path is extracted from the 

roadmap together with a collision-free corridor around it. In particular, an attraction point 

moves along the backbone path and attracts the character in such a way that no collisions 

occur with the environment.  
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Later, I. Karamouzas et al. [20] improved the CMM algorithm and proposed an 

indicative routes method (IRM) to plan in real time natural paths for a large number of 

characters in homogeneous environments. In IRM, an indicative route determines a rough 

estimation of the preferred path from a character‘s start position to a goal position. Such 

a route can be manually designed or automatically computed by using, for example, an 

A* algorithm on a coarse grid. Then, a force-field approach guides the character through 

an obstacle-free area (corridor) around this route, leading to a smooth path. The IRM has 

been successfully used to steer in real-time thousands of characters through complex 

virtual worlds. However, this algorithm is only investigated analytic properties of 

distance propagating.  

The successor of IRM, called Modified Indicative Routes and Navigation (MIRAN) 

[21], adopts the concept of computing an attraction point on a given an indicative route 

making an agent approach its attraction point based on steering forces. In each simulation 

step, a character chooses its best attraction point from a set of candidate points according 

to a weight-function that takes region preferences into account. 

Jur van den Berg [22] proposed a technique that handles the navigation of multiple 

agents in the presence of dynamic obstacles by using a randomly sampled roadmap in 

order to provide path planning for the agents. For collision avoidance, He uses an 

extended velocity obstacles concept to locally control the agents with few oscillation. 

In [23], the authors proposed an efficient method for real time path planning and 

navigation of multiple virtual agent based on a new date structure called ―multi-agent 

navigation graph‖ or MaNG. MaNG efficiently computes dynamic navigation graphs 

using the first and second-order Voronoi diagrams of all the obstacles and agents present 

in the environment, and provides a path of maximal clearance for each agent. In order to 

follow the path generated using MaNG, the local dynamics of pedestrians are modeled 

using the generalized force model of pedestrian dynamics proposed by Helbing et al.[24]. 

This approach is limited to a few hundred of agents and cannot guarantee smooth 

motions.  

Guy et al. [25] presented PLEdestrians, an optimization-based method to generate 

energy-efficient trajectories for each individual in a multi-agent simulation. Their model 

is based on a biomechanical formulation of the well-known Principle of Least Effort to 

guide agents along the shortest available route to the destination while simultaneously 

avoiding congestion, reducing the amount of movement and maintaining the underlying 
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preferred speed for each agent. The resulting algorithm takes this function into account 

and computes an appropriate collision-free motion for each agent that computes a path 

towards the goal. 

6.2.  Potential Fields 

The approach of potential fields  generates a global field for the entire landscape 

where the potential gradient is contingent upon the presence of obstacles and distance to 

goal. These methods suffer from local minima where the agents can get stuck and never 

reach the goal. Since a change in target or environment requires significant re-

computation, these navigation methods are generally confined to systems with non-

changing goals and static environments. 

The work of Jin et al. [26] allows the user to sketch velocities on anchor points in the 

virtual world and then uses an RBF (radial basis function) interpolation scheme to 

compute a continuous vector field that that directs the movements of virtual crowds. 

Since the field is continuous, performance is dependent on the number of anchor points 

rather than the size of the environment and has been shown to degrade well with 

increasing pedestrian sizes. The author does not however, discuss how it well it would 

apply to more complex environments and goal based situations. 

Sachin Patil et al. [27] proposed an intuitive approach to steer and interactively 

direct simulation of virtual crowds using goal-directed navigation field which is free of 

local minima and is easily combined with most current local collision-avoidance 

methods. This approach can resolve congestion and generate a wide variety of 

macroscopic behaviors. However the generated behaviors are user-specified. 

Treuille et al. [28], introduced a real-time crowd model based on using a potential 

function to guide pedestrians towards their goal.  Dynamic potential fields have been 

used to integrate global navigation with moving obstacles and people, efficiently solving 

the motion of large crowds without the need for explicit collision avoidance. The method 

produces smooth behavior for thousands of pedestrians in real time, and is also able to 

show emergent behaviors. However, it produced less believable results, because it 

require assumptions that prevent treating each pedestrian with individual characteristics.  

In [1], The authors extended the continuum model proposed by Treuille et al.[28] to 

address the crowd navigation in complex environments. Large and complex 

environments with multi-constructions can be represented and organized before 
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simulation by using a semantic model, where the semantic information is described with 

three levels: a geometric level, a semantic level, and an application level. Each level 

contains different maps for different purposes, and the interactions between individuals 

facilitate the virtual environment. Then, the density and discomfort conversion methods 

are used to keep plausible distance between pedestrians and obstacles when simulating a 

congested crowd.  

R. Narain et al. [29] proposed a novel inter-agent avoidance model which decouples 

the computational cost of local planning from the number of agents, allowing very large-

scale crowds consisting of hundreds of thousands of agents to be simulated scalable at 

interactive rates. The approach can be used as a local planning module in conjunction 

with a global planner, such as a roadmap-based algorithm or the continuum-based 

optimization on a coarse grid, for the simulation of large dense crowds.  

[30] proposed a formally complete and low cost solution for generating realistic and 

natural steering behaviors for virtual humans using path-planning based on the numerical 

solution of boundary value problems. It used a potential field formalism that allows 

synthetic actors to move negotiating space, avoiding collisions, and attaining goals, while 

producing very individual paths. 

6.3. Multi-scale Approach 

In [31], Shao and Terzopoulos modeled the virtual environment as a hierarchical 

collection of maps. With each of these maps designed for different purpose, the 

combination can support accurate and efficient environmental information storage and 

retrieval. As far as we know, this is the only one explicit environment model used in 

crowd simulation but it didn‘t consider the special features of regions and objects in 

synthetic spaces. 

[32], this paper proposes a new hybrid multi-scale model, which consist of two 

layers: a small-scale layer modeling the navigation of pedestrians to a designated 

destination and a large-scale layer modeling strategic navigation, i.e. choosing different 

(intermediate) destinations. On the large-scale layer, a visibility graphs is constructed on 

top of the scenarios‘ geometry. The navigation graph is used to generate pedestrians‘ 

paths based on a specific navigation strategy. On the small scale layer, a cellular 

automaton for discretization of space and time serves as the underlying grid for 

constructing the navigation field. Fig. 1.11 illustrates the setup of the model.  
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Figure 1. 11 Schematic illustration of the different implementation layers [32]. 

In [33], the pedestrians' routing  behavior within an indoor environment is 

investigated with a top down approach in two levels of abstraction, i.e. both macroscopic 

(global) and microscopic (local) perspectives.  The first stage consists to formulate an 

appropriate utility function that allows an effective application of dynamic programming 

to predict a series of consecutive waypoints with in a built environment. In the second 

stage, a microscopic level is adopted to deal with the pedestrian walking behavior within 

each segment of the path.  

6.4.  Hierarchical Planning.  

Hierarchical planners reduce the problem complexity by pre-computing abstractions 

in the state space, which can be used to speed up plan efforts. Given a discrete 

environment representation, neighboring states are first clustered together to pre-compute 

abstractions for high-level graphs. Different algorithms are proposed which plan paths 

hierarchically by planning at the top level first, then recursively planning more detailed 

paths in the lower levels, using different methods to communicate information across 

hierarchies.  

Lamarche and Donikian [34] presented a hierarchical path-planning algorithm based 

on sophisticated topological pre-computations. The topologic abstraction algorithm aims 

to generate an abstraction tree by merging interconnected cells while trying to preserve 

topological properties. When merging several cells into a single one, the composition of 

cells is stored in a graph structure in order to generate the abstraction tree. The topologic 

abstraction proposed by [34] relies on the topological properties of the cells and reduces 

the size of the graph that represents the space subdivision. 
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Kapadia [35] presented a real time planning framework for multi-character 

navigation that can efficiently work across multiple heterogeneous domains of differing 

complexities, by using plans in one domain to accelerate and focus searches in more 

complex domains. It explores different domain relationships including the use of 

waypoints and tunnels. The different domains use only two representations in terms of 

spatial subdivision, a 2D grid, and a  triangular mesh. In order to showcase the ability of 

this framework to efficiently work across heterogeneous domains, 4 domains are 

described to provide a nice balance between global static navigation and fine-grained 

space-time control of agents in dynamic environments.  

[36] proposed a new hierarchical path-finding solution for large 3D environments 

represented with polygonal navigation meshes. The presented solution consists of a pre-

processing phase where the hierarchy is created, and an adapted version of the basic A* 

algorithm to perform searches online in this hierarchical representation. The off-line 

phase starts with a polygonal navigation mesh that represents an abstract partition of the 

3D world. This first navigation mesh is considered to be the lowest level in a hierarchical 

tree. The rest levels of the hierarchy are recursively built by partitioning a lower level 

graph into a specific number of nodes. The partition is performed until the graph of the 

highest level cannot be further subdivided.  

7. Group behaviors 

In real cities, many pedestrians are part of a group, whether they are sitting, standing, 

or walking toward their shared goal. They behave differently than if they were alone: 

they adapt their pace to the other members, wait for each other, may get separated in 

crowded places to avoid collisions, but regroup afterwards. Several approaches have been 

taken in order to simulate such behaviors.  

Several approaches have been taken in order to simulate such behaviors. The first 

approach to offer impressive results is the one of Reynolds [37], who devised intelligent 

rules to simulate flocks of birds and fishes. 

Bayazit, Lien and Amato [38] have combined the probabilistic roadmaps approach 

with flocking techniques to guide the flock members toward their goals. The units use the 

roadmap created by PRM to guide their motion toward the goal while they use flocking 

to act as a group and avoid local collisions. While this indeed leads to better goal finding 

abilities, groups still split up easily. 
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Kamphuis and Overmars [39] developed a method for planning the motion of a large 

coherent group of units such as military armies using a multiphase algorithm. First, a 

path is planned for a deformable rectangle, representing the group shape. Second, the 

internal motion of the units inside this deformable rectangle is calculated using social 

potential fields. Third, the global and local paths are combined to give the total motion of 

the units. Although the technique guarantees coherence, it lacks completeness. 

Musse and Thalmann [40] described a model to simulate group behavior based on 

inter-groups relationships. In their model, each group has a leader and a list of goals and 

goals of each member are selected from that list. Members can also change their groups 

in this model. This work can be seen as an early attempt to capture real-life crowd 

behavior with a focus on social relationships between groups and their members. 

Moussaïd et al. [41] investigated the spatial organization of walking pedestrian 

groups in public places. He observed that at low density, people in the same group walk 

in a horizontal formation (line-abreast formation). While at moderate crowd density, the 

linear group structure will bend in the middle and form a V‗-shaped formation and 

finally, at high density, the group members will walk behind each other and form a 

"river-like" formation. Based on these observations a social-force model is proposed to 

model the behavior of small groups. but this method was limited by the "jitter" 

phenomenon of the social force model. 

Based on Moussaid‘s work, Karamouzas [42] adopted the velocity space to simulate 

the walking behavior of small groups of virtual humans, and attempted to keep the spatial 

arrangement of individuals in the process of interaction. The model used a two-phase 

approach to ensure that the group members will stay as close as possible while avoiding 

collisions with other groups, individuals and static obstacles. The authors suggested that 

this model is not designed for simulating pedestrian groups in densely packed scenarios 

and some collisions may occur in complex environments. 

Peters and Ennis [43] proposed a model to simulate plausible behaviors of small 

groups in the virtual environment by analyzing the trajectory of people from the video 

data. Scenes were populated with different combinations of singles, pairs and groups of 

three and participants were asked to identify more realistic scenes. It is suggested that 

adding plausible groups to a pedestrian crowd scene is important for an increased sense 

of realism. 
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Qiu and Hu [44] introduced an agent-based crowd simulation framework for 

modeling the structural and social aspects of groups in pedestrian crowds based on social 

comparison theory and utility theory. In their proposed model, the dynamic grouping 

behavior are modeled using utility theory and social comparison theory. The dynamic 

grouping behavior is modeled through a two-step process. During the first step, utility 

theory is applied for an individual to decide which group to join (group formation). 

During the second step, social comparison theory is applied for an individual to decide 

which member of the chosen group to follow (individual selection).  

Park et al. [45] proposed a pedestrian model based on the Common Ground (CG) 

theory to consider higher-level social interactions between the group members. It assigns 

a leader to each group, and it handles the task of navigation as performing a joint activity 

among agents, which requires effective coordination among group members. As a 

measure of group coherence the authors compute the distance of a follower from the 

leader projected on the direction of motion of the leader. 

In [46], a CrowdDMX model was established, which can simulate the behavior of a 

subgroup among the crowd by means of psychological forces. At the same time, this 

model can also simulate small groups‘ tendency to avoid subgroup division in cases of 

contra-flow.  

Kimmel et al. [47] presented an extension to the Velocity Obstacle (VO) approach 

[48] to simulate social-group behavior. The authors define a geometrical Loss of 

Communication Obstacle (LOCO) that can be combined with a VO to generate collision-

free movement for small groups. Such groups try to stay close to each other during the 

simulation. Coherence is handled such that no agent is further away from the group than 

a particular threshold distance. There is no explicit formulation of socially-friendly 

formations, and the method works only locally as an extension of the VO method and its 

reciprocal variants, e.g. van den Berg et al. [22]. 

Huang et al. [49] presented a path planning method to simulate coherent and 

persistent groups. The method is based on the Local Clearance Triangulation by 

Kallmann [50], and it handles groups as deformable shapes. Deformations as well as 

splitting and merging actions of a group influence the overall costs of a path. 

Godoy et al. [51] proposed C-Nav (short for Coordinated Navigation), an elegant 

distributed approach to performing implicit coordination between the local motion of the 
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agents to improve global navigation in crowded environments. This coordination is 

achieved using observations of the nearby agents‘ motion patterns and a limited one-way 

communication, allowing C-Nav to scale to hundreds of agents. With this approach, C-

Nav, the agents take advantage of the motion patterns of its nearby neighbors to avoid 

introducing constraints in their motions, and temporarily follow other agents that have 

similar motion. By doing this, agents in dense environments are able to reach their goals 

faster than using a state-of-the-art collision-avoidance framework and an adaptive 

learning approach for multi-agent navigation. 

[52] have presented Social Groups and Navigation (SGN), a novel method that is 

used to simulate the walking behavior of small pedestrian groups throughout their 

navigation in a planar environment. SGN is based on the social force model by Moussaïd 

et al. [41], which we have modified and extended to generate more socially-friendly and 

more coherent group behavior.  The generated group behavior is more flexible and 

diverse than with existing methods. In addition, SGN incorporates social-group behavior 

on the global-planning level by letting a group follow a shared global path, and by letting 

agents wait for each other when coherence is lost during the simulation.  

8. Conclusion 

In this chapter, we first qualitatively evaluate the Crowd simulation along with its 

key points. Studying empirical data, and simulating the behaviors, actions and 

movements of virtual characters in a crowd can be defined as crowd simulation. This 

research area has always attracted quite a significant interest from researchers of different 

disciplines, due to existence of large application fields such as military training, 

emergency planning, computer games, and architectural design.  

This chapter summarizes challenging issues in crowd simulation and gives literature 

background regarding crowd simulation using various techniques. 
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Chapter 2: An Overview of Models for the 

Simulation of Pedestrian Dynamics 

1. Introduction 

From the perspective of computer graphics research, crowd simulation involves 

developing models and simulating the behavior of crowd and their movement to match 

real-world crowding scenarios. Simulations of crowd behaviors are studied in a variety of 

directions such as civil and safety engineering, urban and city planning, building design, 

and so on. In civil and safety engineering, people study the flow characteristics of 

pedestrian crowds in order to ensure safe evacuation under emergent situations. In urban 

planning and building design, pedestrian crowd simulation is used to test the reliability of 

public facilities and architectural designs. 

Pedestrian crowd simulation also finds the application in the entertainment industry 

such as computer games where people study pedestrian crowd simulations to create 

realistic look and movement of pedestrians. The essential component which is included 

in pedestrian crowd simulations is the pedestrian crowd model. Over many years, people 

have developed many pedestrian crowd models. 

In this chapter the aim will be to provide an outline of the most prominent of existing 

models and their classification is given. To achieve this goal, main classification  of 

crowd simulation applications are explored in Section 2. The classification criteria are 

presented in Section 3. Finally, we discuss techniques used in existing crowd systems in 

section 4. 

2. Fundamental Architectures and Classifications 

Several scientists have reviewed the available pedestrian simulation models before. 

All reviews focus either on classifying the models according to the characteristics present 

within the model, the phenomena that can be simulated or the mathematical 

characteristics of the models. Pelechano et al. [3], and Zheng et al. [53] presented a 

review of crowd simulation models and discussed the advantages and disadvantages of 

these approaches. 
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Gwynne, et al. [54] summarized 22 different evacuation models in their review. 

Based on the nature of model application, those models are categorized into three 

different categories: optimization, simulation and risk assessment. Santos and Aguirre 

also presented a critical review of emergency evacuation simulation models [55]. They 

pointed out that one common shortcoming of the reviewed models lay in the absence of 

inclusion of social psychological relevant group level characteristics. 

Zheng et al. [53] discussed the advantages and disadvantages of seven evacuation 

modeling techniques. Those methods include cellular automata models, lattice gas 

models, social force models, fluid dynamic models, agent-based models, game theory 

models, and approaches based on experiments with animals. The authors commented that 

there is a need to combine crowd modeling methods in order to improve crowd 

evacuation. Papadimitriou et al. [56] assess two different topics of research, namely route 

choice models and crossing behavior models, which study how pedestrians cross the 

street under different traffic conditions.  

Zhou et al. [57] sort crowd models primarily based on crowd size and relevant time 

scales. Small-and medium-sized crowds include from a few tens up to roughly a 

thousand people, while a large crowd model can include tens of thousands people or 

more. Time scales can also vary by several orders of magnitude. Short time scale 

phenomena often deal with the movement patterns changing considerably within seconds 

or minutes. Long time scale phenomena can include social or psychological changes 

taking years to develop. Fig. 2.1 shows how different modeling approaches and different 

application categories is distributed in the two-dimensional parameter space. 

Zhan et al. [58] reviewed approaches to infer crowd events by including 4 categories 

of crowd models from the non-vision approaches. This includes (i) physics inspired, (ii) 

agent-based, (iii) cellular automation and (iv) nature based. While their work 

acknowledged the advantages of integrating the non-vision models with computer vision 

methods for crowd analysis, the in-depth discussion on the different non-vision models 

from the physics and biology perspectives is lacking. 
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Figure 2. 1 Classification of crowd models based on crowd size and time scale [57] 

Duives et al. [5] compared a number of pedestrian flow modeling approaches, 

focusing on how well these models are able to simulate the key phenomena indicated in 

the previous paragraphs. The paper discusses different types of models, such as cellular 

automata, social force models, velocity-based models, continuum models, hybrid models, 

behavioral models and network models. The comparison shows that ‖the models can 

roughly be divided into slow but highly precise microscopic modeling attempts and very 

fast but behaviorally questionable macroscopic modeling attempts‖. 

3. Classification criteria 

There are several characteristics which can be used to classify the modeling 

approaches: 

3.1.  Granularity 

A basic characterization of simulation models is given by the concept of the modeled 

objects. In microscopic models each individual is represented separately. Such an 

approach allows to introduce different types of pedestrians with individual properties as 

well as issues like route choice. In contrast, in macroscopic models different individuals 

cannot be distinguished. Instead the state of the system is described by densities, usually 

a mass density derived from the positions of the persons and a corresponding locally 

averaged velocity. As a compromise in between both classes mesoscopic models have 

been proposed, that deal with groups of persons rather than single individuals [53]. 
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3.2.  Scale types  

The most important variables for the description of the system of pedestrian are 

space, time and state variable (e.g. velocities), their scale types are fundamentally 

characterizing a model. These variables can be either discrete or continuous. In a cellular 

automaton approach all variables are by definition discrete whereas in hydrodynamic 

models all are continuous. Other combinations are used as well [57]. 

3.3.  Determinateness 

The dynamics of pedestrians can either be deterministic or stochastic. In the first 

case the behavior at a certain time is completely determined by the present state. In 

stochastic models, the behavior is controlled by certain probabilities and random 

variables such that the agents can react differently in the same situation [59].  

3.4.  Behavioral concepts 

As [59] distinguishes between rule-based and force-based interaction 

implementations, [3] enumerates artificial-intelligence-based, functional, implicit and 

rule-based behavior generation and [60] states individual and collective rules to be 

classes of behavioral rules, in general a classification category addressing the behavioral 

concepts of model algorithms can be identified, with a wide range of different 

characteristics proposed. 

3.5.  Application scope 

A pedestrian model is either applicable to only a certain specific problem field 

(typically evacuation) or it is a general model designed for a wider application area [60]. 

3.6.  Operationalization 

The application of pedestrian models happens either analytically by finding solutions 

of sets of equations or by simulation runs. As previously noted, this work concentrates on 

simulation models [60]. 

3.7.  Fidelity level  

Fidelity here refers to the apparent realism of the modeling approach. High fidelity 

models try to capture the complexity of decision making, actions etc. that constitute 
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pedestrian motion in a realistic way. In contrast, in the simplest models pedestrians are 

represented by particles without any intelligence [60]. 

3.8.  Behavioral level 

[14] Introduce a hierarchy of three layers at which pedestrian behavior can be 

investigated, This criterion can be used to observe which levels are covered by a 

particular model: 

 The strategic level addresses activity scheduling, i.e. pertains to which, in 

which order and where pedestrians perform activities. 

 The tactical level is concerned with higher-level navigation of pedestrians in 

a spatial configuration, i.e. algorithms and data structures for choosing and 

describing paths, commonly referred to as route choice models. 

 The operational level is where walking and interaction behavior of 

pedestrians is actually modeled. 

4. Pedestrian Modeling approaches 

Pedestrian behavior modeling can be classified in different ways depending upon 

how the scheme treats the pedestrians and the level of detail of the simulation model. 

Three main strategies identified for modeling of pedestrian flow are (Fig. 2.2): 

macroscopic; mesoscopic, and microscopic [61]. Each strategy considers a different level 

of abstraction. The details are as follows. 

1. Microscopic models, which consider individual pedestrian behavior separately. 

The pedestrian behavior in these models is often described by their interactions with 

other pedestrians in the system. 

2. Mesoscopic models, which do not consider each pedestrian individually but the 

overriding characteristics, such as velocity distributions. The pedestrian behavior is 

described microscopically though not specifically but rather in terms of velocity 

distributions. 

3. Macroscopic models, which do not make distinctions between individual 

pedestrians nor describe their individual behavior but consider the flow in terms of 

density, average velocity and flow patterns. 



Chapter 2: An Overview of Models for the Simulation of Pedestrian Dynamics 

33 

 

 

Figure 2. 2 Basic Crowd Simulation Models [61] 

4.1.  Microscopic Models 

Microscopic models describe pedestrian flow at the level of individuals, in order to 

present individual behavior and interactions. The crowd are typically considered as a set 

of autonomous entities, which are able to follow a goal or a leader, have different 

attributes and intentions, and interact with each other. These models are categorized 

based on how they explain the relationships between the individuals.  

4.1.1. Force models 

Social forces models [62] assume that the movement made by each pedestrian is the 

result of several force terms that measure the internal motivation of the individual to 

perform certain actions (Fig. 2.3). Three force terms are used to describe the pedestrian 

motion [24]: (a) the pedestrian‘s acceleration to maintain his/her desired movement 

speed; (b) the attractiveness to activity location or to the final destination; and (c) the 

pedestrian‘s tendency to maintain a certain distance from other pedestrians and obstacles. 

[63] adapt the model to better reflect evacuation and panic situations by redefining 

the repulsion forces of pedestrians and obstacles, and establish consistency to Newton's 

2nd law of motion by considering the mass of pedestrians. The acceleration of a 

pedestrian i is given by 

mi

dv  i t 

dt
= f i

0 +  f ij
j ≠i 

+  f iw
w

             (2.1) 
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where mi is the mass of pedestrian i, and v  i  is the actual walking velocity. Terms on the 

right of Eq. (2.1) contain the desired force, f i
0, interaction forces between pedestrians i 

and j, f ij , interaction forces between pedestrians i and walls, f iw .  

 

Figure 2. 3 Diagram of the social force model [62] 

The interaction force between pedestrians i and j, f ij , mainly contains socio-

psychological force, f ij
s , and physical force, f ij

p
. The psychological tendency between 

pedestrians i and j to stay away from each other is expressed by the repulsive interaction 

force, f ij
s. The physical force exerts on people when the distance between two pedestrian 

centers, dij , is less than the sum of the radii of these two pedestrians, rij = ri + rj . 

f ij = f ij
s + f ij

p
                   (2.2) 

where 

f ij
s = Ai exp  rij − dij Bi  n  ij                 (2.3) 

f ij
p

= kg rij − dij n  ij + κg rij − dij ∆vji
t t ij            (2.4) 

Here, Ai, Bi, k, κ are constant parameters. n  ij =  nij
1 , nij

2 =  r i − r j dij  is the unit 

vector pointing from pedestrian j to pedestrian i, among which r i is the position of 

pedestrian i, t ij =  −nij
2 , nij

1  means the tangential direction, and ∆vji
t =  v  j − v  i ∙ t ij  

means the velocity difference along the tangential direction. g(x) is a piecewise function 

defined by 
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g x =  
0,              if x < 0
x,              if x ≥ 0

                 (2.5) 

The interaction force between pedestrian i and walls, f iw , is similar to Eq. (2.4) and 

can be given by 

f iw = Ai exp  ri − diw  Bi  n  iw + kg ri − diw  n  iw + κg ri − diw  ∆vwi
t t iw          (2.6) 

Here, diw  is the distance between the center of pedestrian i and the surface of walls. 

The social force model has attracted great attention from researches. Based on it, 

many modifications are presented to improve the performance. Daniel et al.[64] found 

that the social force models have some limitations when describing the experimental data 

of pedestrian flows in normal conditions in particular the specific flow rates for different 

door widths. So they proposed a modification consisting of a self-stopping mechanism. 

Pelechano et al. [65] simulate the agents in a continuous space with a forces model; 

the movement of the agents are driven by a set of attractors while the agents avoid the 

obstacles and the other agents in the scene. In their model, agents may have varying 

personalities and roles, and the communication between the agents provide information 

sharing about the hazards and exit routes in the building. Their work is mainly developed 

for indoor emergency evacuation scenarios.  

Chraibi et al. [66] introduced a spatially continuous generalized centrifugal force 

based model for pedestrian dynamics. This model includes elliptical volume exclusion of 

pedestrians and also discusses the oscillation and overlapping phenomena which occurs 

for certain choices of forces. 

[67] improved the SFM to generates collision avoidance behaviors of individuals in 

the crowd by summing up an intermediate range forces. These forces consist to change 

the motion of an individual in order to avoid an encounter with another.  The implicit 

assumption that will be made in the sequel is that only the local (nearest neighbors) 

situations influence these forces. The near-neighbor search problem is solved by an 

efficient incremental Delaunay triangulation that is updated at every time-step.  

Yuen and Lee [68] extend the social-force model to include overtaking behavior, 

where pedestrians with a higher desired velocity catch up with and move past pedestrians 

heading in the same direction with a lower desired velocity.  Lee et al. [69] presented a 

modified social force model by adding evasive effect and following effect to investigate 
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the lane formation phenomenon.  The following effect is adjusted to those who have the 

same destination, while the evasive effect is adjusted to the pedestrians who have 

opposite destination. 

4.1.2. Rule-based models 

Rule-based crowd models are flexible in simulating various crowd agents through a 

set of carefully-designed rules. They consist of (1) interpreting the agent‘s environment, 

and (2) rules or heuristics to react to the interpreted information. This models can provide 

reasonable behaviors in a dynamic environment and they are relatively easy to modify 

the rules to produce different behaviors. On the other hand, they result in less freedom, 

i.e., more predictability, they are specific to a particular environment and the number of 

rules can increase in complex environments. 

Reynolds [37] simulated flocks of bird-like entities, or boids, obtaining realistic 

animation by using only simple local rules as (Fig. 2.4): 

 Separation: steer to avoid crowding local flockmates 

 Alignment: steer toward the average heading of local flockmates 

 Cohesion: steer toward the average position of local flockmates 

The aggregate motion of the simulated flock is the result of the interaction of these 

relatively simple behaviors of the individual simulated birds. 

Reynolds [70] extends the technique for flocking to include autonomous reactive 

behavior. The modeling of autonomous agents is performed in a hierarchical manner and 

specific emphasis is put on the middle layer of steering. The layers are: 

• Action selection: Strategy, goals and planning, 

• Steering: path determination, and 

• Locomotion: Animation and articulation. 
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Figure 2. 4 Rynolds's Flocks of Boids model [37] 

Hierarchical schemes have been proposed to address scalability. In particular, Musse 

et. al. [71] endow crowds with different levels of autonomy for hierarchical crowd 

behaviors. Depending on the level of autonomy, they employ different behavior 

generation techniques ranging from script-based behaviors to innate or pure reactive 

behaviors. However, all behaviors that they can simulate were relatively simple such as 

splitting, wandering, repulsing and attracting behaviors. 

Similarly, Shao et. al. [12] proposed several reactive behaviors based on specific 

rules for controlling pedestrians. The reactive behaviors include the safety-turning, crowd 

direction control and collision avoidance behavior. These behaviors are processed 

sequentially with specific order. But, the rules for behaviors are hard to generalize to be 

used in other environments other than pedestrian. 

4.1.3. Cellular Automata based pedestrian simulation  

Cellular Automata (CA) (singular: Cellular Automaton) [3] are discrete dynamical 

systems that model complex behavior based on simple, local rules animating cells on a 

lattice. CA models have been studied in various complex systems including physics, 

biology and traffic modeling.  

Cellular automata models divide the space in a uniform grid (Fig. 2.5). Each agent 

occupies a particular grid position (cell) and moves between these positions depending 

on the modeling system. Cellular automata evolve in discrete time steps, with the value 

of the variable at one cell being affected by the values of variables at the neighboring 

cells. The variables at each cell are updated simultaneously based on the values of the 

(a) Separation. (b) Alignment. (c) Cohesion. 
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variables in their neighborhood at the previous time step and according to a set of local 

rules. 

 

 

 

 

 

 

 

Figure 2. 5 Example of Cellular Automata model [3] 

In general, CA provide a framework for discrete models with locally homogeneous 

interactions. They are characterized by the fundamental properties (L, S, N, f ) shown in 

Table 2.1. The assumption of a regular lattice and a uniform neighborhood is compatible 

with geometries like those in Table 2.1 since the set of states, S, also contains 

information about whether a cell is accessible or not (e.g., doors or walls between cells). 

Table 2.1: Definition of a cellular automaton [3] 

𝐋 Consists of a regular discrete lattice of cells 

t → t + 1 Evolution takes place in discrete time steps 

S Set of finite states 

𝐅: 𝐒𝐧 → 𝐒 Each cell evolves according to the same rule 

(transition function), which depends only on the state of 

the cell and a finite number of neighboring cells 

𝐍: ∀𝐜 ∈ 𝐍,∀𝐫 ∈ 𝐋: 𝐫 + 𝐜

∈ 𝐋 

The neighborhood relation is local and uniform 

 

CA were originally used for vehicular simulation. Blue and Adler [72] showed that it 

could be extended into the more complex domain of pedestrian simulation. They describe 

(a) 3D environment. (b) its corresponding grid of cells. 
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a CA micro-simulation model which uses lane selection and speed determination to 

reproduce observable pedestrian phenomena in both uni-directional and bi-directional 

flows. In this model, pedestrians try to choose a lane which allows them to reach their 

maximum desired speed more freely. Simulation experiments indicate that the basic 

model is applicable to walkways of various lengths and widths and across different 

directional shares of pedestrian movements.  

Daoliang et al.[73] developed a two-dimensional cellular automata model to simulate 

the egress dynamics during evacuation. The developed model is used to derive useful 

information on the required width of the exit gates and recommended gate separation.  

Abdelghany et al. [74] presented a cellular automata crowd simulation model for 

large-scale facilities. A behavioral module in the form of a logit-based model is used to 

replicate how evacuees select their exit gates. The model captures the trade-off between 

travel distance to the gate and the level of congestion at the gate. The model is applied to 

study the evacuation of a crowded pilgrimage facility in Mecca, Saudi Arabia.  

 [75] proposed a new modeling framework that integrates a dynamic simulation-

assignment logic with a hybrid (two-layer) representation of the facility. The top layer 

consists of a network representation of the facility, which enables modeling the 

pedestrians‘ route planning decisions while performing their activities. The bottom layer 

consists of a high resolution Cellular Automata (CA) system for all open spaces, which 

enables modeling the pedestrians‘ local maneuvers and movement decisions at a high 

level of detail.  

4.1.4. Lattice gas models 

The lattice gas model (LG model) is a special form of the CA model. There are two 

differences though. First, instead of a regular grid, LG models consider a triangular 

lattice with a hexagonal symmetry. Second, concept of a cell is replaced by a site which 

can be occupied by more than one individual. The sites on the lattice can take a certain 

number of different states [76]. The various states are pedestrians with certain velocities. 

Evolution of the simulation is done in discrete time steps. After each time step, the state 

at a given site can be determined by the state of the site itself and neighboring sites, 

before the time step.  

Song et al. [77] proposed a multi-grid model that uses a lattice gas (LG) with force 

essentials, i.e. repulsion, friction and attraction, to study the evacuation behaviors at exit. 
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In the model, one pedestrian occupies multiple grids instead of only one, and overlapping 

of pedestrians is allowed. The model can simulate crowd evacuation more realistically. 

They also developed a multi-grid model [78], which discretized a cellular space into a 

finer lattice, to simulate evacuation with pedestrians having different moving step size. 

By considering the spatial and temporal characteristics, Guo et al. [79] developed a 

heterogeneous LG model. All these models mentioned above are based on a two-

dimensional grid flow model, i.e., the evacuation space is limited to the same plane. 

The paper [13] develops a model consisting of two sub-models, while the 

Environmental Model manages the spatial real-time environment using CA and the 

Pedestrian Model bases on behavior agents to respond to the real-time environment. The 

model can simulate a set of individuals with heterogeneous behaviors.  

4.1.5. Floor field 

The floor field model, which is a type of CA model, is able to describe many of the 

remarkable collective behaviors of pedestrian dynamics. The floor field helps all 

pedestrians to move in a certain geometry to the destination [80]. 

In general, there are two types of floor fields: the static floor field S and the dynamic 

floor field D [81]. The static field depends only on the distance measure (from a cell to 

the destination), and thus S remains unchanged in the evolution. The dynamic field 

reflects the virtual tracks left by moving pedestrians. On the one hand, the cell (x, y) that 

a pedestrian leaves becomes empty and attractive, with Dxy →  Dxy +  1. On the other 

hand, Dxy  decays and diffuses with certain probabilities (δ and α) so that the cell will not 

become too attractive to induce too many conflicts or too high densities in the 

surroundings. 

Suma et al. [82] proposed anticipation floor field (AFF) to extend floor field models. 

The anticipation behavior is  ‗‗the ability of avoiding collisions with other pedestrians 

considering their future walking way‘‘ in this paper. Then, the anticipation is divided into 

two steps: 

a) recognizing the area that is expected to be occupied by the other pedestrians in the 

future,  

b) changing direction or speeding down/up the walking speed referring to the area 

obtained in the step (a) to avoid collisions. 
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The cost potential field is extended to simulate pedestrian flow in a walking facility 

with complex geometries, in which visibility is considered [83]. To reflect the influence 

of visibility on the path-choice strategy, a perceived cost potential field is constructed by 

taking a memory potential. The memory potential is measured by the distance from the 

cell to the destination, which is actually a degenerated cost potential, such that the 

surroundings are completely invisible and pedestrians are only able to conceive of the 

path to their destination according to their experience.  

An improved floor-field CA pedestrian model are proposed by Bandini et al. [84] to 

investigate the simulation of high density situations comprising negative interactions 

among pedestrians. In this model, path fields, the obstacles field, and the density field are 

adopted to describe the pedestrian behaviors. In addition to the basic model, two 

extensions were introduced: a model allowing transient pedestrians overlapping in high 

density situations and a model characterized by a finer discretisation of the environment. 

4.1.6. Agent-Based models 

Agent-Based Modeling (ABM) is a computational simulation methodology used to 

build an artificial society, and considered as one of the most realistic among existing 

egress simulation techniques [16]. In such model, pedestrians are represented by 

computer-driven entities (agents) that have heterogeneous characteristics and are 

adaptive. Agents are autonomous units, capable of interacting with surrounding entities, 

the environment and other agents and able to make independent decisions. The 

interactions of interdependent agents generate complex systems, potentially leading to 

emergent behavior at the system level. 

Shendarkar et al. [5] proposed to use an extended BDI (Belief-Desire-Intention) 

framework to realistically model the human behaviors in crowd simulation. To this end, 

the intention module in the traditional BDI is expanded to include detailed sub-modules 

such as 1) deliberator, 2) real-time planner, and 3) decision executor in the decision-

making. This extension was necessary to accommodate both the decision-making and 

decision- planning functions in the unified framework. This extension was necessary to 

accommodate both the decision-making and decision- planning functions in the unified 

framework. In addition, emotional module containing confidence index and instinct 

index has been also appended to represent more psychological human natures.  
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While this work [85] focused only on the conceptual extension of the BDI model, 

Lee and Son [86] attempted to build a comprehensive model for human decision behavior 

(which includes decision making and decision planning), integrating aspects of previous 

models which Lee and Son categorize as engineering, psychological, and economical. 

Their model used Bayesian belief networks, decision field theory, and probabilistic depth 

first search. Their extensions to the BDI framework showed promising results of 

simulated human behavior in dynamic and intricate situations. 

Pan et al. [16] developed a computational framework, Multi-Agent Simulation 

System for Egress analysis (MASSEgress), which is capable of modeling human and 

social behavior during emergency situations. In this model, human cognitive processes 

are simulated by a ‗‗perception-action‘‘ model, in which an agent continuously assesses 

or ‗‗senses‘‘ the surrounding environment and makes decisions based on its decision 

model in a proactive fashion. 

An upgraded version of MASSEgress, SAFEgress (Social Agent For Egress 

simulation), is developed by Chu et al. [87], in which occupants behaviors are modeled 

through a five-stage process (perception, interpretation, decision-making, execution, and 

memorization). The pedestrian behaviors are comprised of individual behavioral models, 

group behavioral models, and crowd behavioral models. Results from the SAFEgress 

prototype show the production of three group behaviors including leader-following, 

group-member-following, and group-member-seeking responses.  Similar to 

MASSEgress, environmental hazards are not accounted for. In addition, the group 

behavior models need to be refined to account for the type of gathering and social 

relations such as kinship, friendship, etc. 

Koh et al. [88] developed an agent-based model for crowd simulation. Their focus 

was to produce a two-tiered model capable of producing realistic agent navigation and 

path-planning within the environment whilst maintaining real time frame rates. The 

macro level governed the path coordination, while the micro level handled sub-goals 

such as avoiding other agents. Agents were endowed with the ability to remember a map, 

have limited range of vision, and have a limited memory of events such as encountering 

obstructions. Simulations demonstrated following, overtaking, and congestion avoidance 

behaviors. 

Luo et al. [89] adopt an agent-based approach and employ a layered architecture to 

reflects the natural human-like decision-making and behavior execution process which 
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generally involves a person's awareness of the external situations and consequent 

changes on the internal attributes. The person's awareness of the current situation is based 

on the existing expectations about people, social roles, and events, and is triggered by 

some external stimulus (the sensory inputs). The consequent changes on internal 

attributes delineate a person‘s internal feelings, social states, as well as physical 

conditions. The decision making will be directly affected by these internal attributes and 

people can make different decisions under the same situation due to the different levels 

of variations on their internal attributes. 

In [90], a novel pedestrian flow simulation model, namely, CityFlow is developed to 

naturally reproduce pedestrian behaviors for different environments. In CityFlow, 

pedestrian behaviors are implemented d by two modules at three levels: (1) the route 

choice and map navigation module identifies the temporary desired regional target of 

movement, reflecting strategic, tactical level behavior in macroscopic scope; (2) the 

agent-based individual movement module uses a utility maximization approach to 

calculate the movement direction of the agents based on detailed environmental 

information at every time step, reflecting operational level behavior in microscopic 

scope.  

CityFlow was proved to be a flexible platform for pedestrian flow simulation in 

metro stations, with natural consideration of various observed pedestrian behaviors inside 

metro stations such as queuing and waiting behaviors [91].  

In CityFlow-U [92], which is an expanded version of CityFlow, a new module 

named (3) the attention-based exploratory movement module has been added. This 

module enables the agent to explore the visual attractors and then decide whether it will 

be distracted from the pre-defined routes by examining attractor characteristics and 

agent‘s internal state of demand. 

4.2.  Macroscopic models 

The focus of the macroscopic models is on the crowd as a whole especially in high 

density situations, pedestrians are not represented individually. Macroscopic-based 

approaches aim to realistically simulate global crowd phenomena such as the formation 

of lanes when two groups cross ways, giving less emphasis to local phenomena such as 

collision-avoidance between two pedestrians [93].   
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Accordingly, the state of the crowd is described with aggregate observables, such as 

density and velocity, and the dynamics is governed by two partial differential equations 

(PDEs), expressing the conservation of mass, momentum and energy [94]. 

 
∂tρ + ∇x ρv = 0                                         

∂tv + v ∙ ∇x v = A ρ, v                            
 (2.7) 

Here, v =  v(x, t) is the dimensionless velocity, x =  (x, y) represents coordinates, 

A[ρ, v] models the component of the mean acceleration, acting on pedestrians. The 

square brackets indicate that it may be a functional of its arguments. 

According to the specific constitutive assumption, different models can be derived 

that involve only some of the three equations in (2.7). They can be classified as follows 

[95]: 

 Scalar or first order models: They are described by mass conservation equation only, 

and by a closure equation v = v[ρ] that links the local velocity to the crowd density 

[96] [93]. 

 Second order models: They are obtained by mass and linear momentum conservation 

equations with the addition of a phenomenological relation describing the psycho-

mechanic action A[ρ, v] on the pedestrians [97]. 

4.2.1. Hughes Model 

[98] developed a first-order model describing the motion of large, goal-directed 

crowds. The basic relationship of the two central variables of pedestrian flow, i.e., 

density and velocity, is given by the flow conservation  

∂ρ x, y, t 

∂t
+ ∇ ∙  ρ x, y, t v x, y, t  = 0               (2.8) 

where ρ is the pedestrian density and v =  v1, v2  is the pedestrian flow velocity, each at 

location (x, y) and time t. 

Hughes defined a potential function ϕ(x, y, t) and proposed that the motion of any 

pedestrian is in the direction to this potential, that is, in the direction for which 

ϕ 1 =
−ϕx

 ϕx
2 + ϕy

2

,   ϕ 2 =
−ϕy

 ϕx
2 + ϕy

2

        (2.9) 

Therefore,  
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v1 x, y, t = u x, y, t ϕ 1 x, y, t ,       v2 x, y, t = u x, y, t ϕ 2 x, y, t      (2.10) 

where u(x, y, t) is the pedestrian speed which is a function of density and is location 

dependent, i.e., 

u x, y, t = U ρ x, y, t            (2.11) 

To account for the discomfort effect, Hughes defines a function 

g x, y, t = G x, y, t          (2.12) 

that describes the behavior of a pedestrian to avoid high density crowds, which satisfies 

the following equation: 

1

 ϕ1
2 + ϕ2

2
= g x, y, t  v x, y, t  = g x, y, t u x, y, t       (2.13) 

Hughes [98] provided a systematic framework for the dynamic macroscopic 

modeling of pedestrian flow problems based on three hypotheses: (i) pedestrians‘ speed 

is determined by the local density at their location (Eq. (2.11)), (ii) pedestrians‘ 

movement is perpendicular to lines of constant potential (Eq. (2.10)), and (iii) pedestrians 

want to take the path with the shortest travel time, but only if the density on this path is 

not too high (Eq. (2.13)). However, the physical interpretation of the potential field and 

the route strategy of pedestrians in a crowd are not explicitly revealed in this model. 

4.2.2. Reactive dynamic user equilibrium model 

The reactive dynamic user equilibrium model describes the movement of pedestrians 

who do not have predictive information when they are making a path-choice decision 

[95, 99]. This means that pedestrians have to rely on the instantaneous information 

available to them and make their choices in a reactive manner to minimize the walking 

cost to their destination. 

In [99], a pedestrian flow model based on the reactive dynamic user equilibrium 

principle is developed, where pedestrian density is governed by the scalar two-

dimensional conservation law and the flow flux is implicitly dependent on the speed 

through an Eikonal equation.  

Along the direction of the flow vector (or movement), flow intensity, which is 

determined as the norm of the pedestrian flow, is equal to the product of speed and 

density, 
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 f x, y, t  = u x, y, t ρ x, y, t                    (2.14) 

A cost potential function ϕ x, y, t  is defined which satisfies the Eikonal equation: 

 ∇ϕ x, y, t  = c x, y, t          (2.15) 

where c x, y, t  is the local cost that is related on walking speed alone and can be 

specified as  

c x, y, t =
1

u x, y, t 
            (2.16) 

To ensure the reactive user equilibrium condition in which pedestrians choose a path 

that minimizes their total cost to a destination according to instantaneous pedestrian flow 

information, the following equation must be defined 

c x, y, t 
f x, y, t 

 f x, y, t  
+ ∇ϕ x, y, t = 0      (2.17) 

In [100], another efficient method, the discontinuous Galerkin (DG) method for the 

conservation law coupled with the fast sweeping method for the Eikonal equation, which 

works nicely on triangular meshes, has been developed for the model. 

Xia et al. [101] introduced a model with memory effect, in which pedestrians aim at 

following the shortest path to the destination based on the memory of its location, and 

temper their behavior locally to avoid high densities. 

Jiang et al. [102] extended the reactive dynamic continuum-user equilibrium model 

to simulate bidirectional pedestrian flows that can be used to simulate two groups of 

pedestrians traveling on crossing paths. The emergence of lanes and strips is reported. In 

addition, [103] proposed a high-order computational scheme for the Jiang et al. [102] 

model, which proved to be more efficient than the first-order method. 

4.2.3. Gas Dynamics Approach 

This approach is presented by Bellomo and Dogbe [104]. Consider the crowd in a 

bounded domain  Ω ∈ IR2 where ∂Ω is its boundary. The overall description of the 

system is delivered by the equation of conservation of mass and equilibrium of linear 

momentum defined by the following system of partial differential equations: 

 
𝜕𝑡𝜌 + ∇𝑥 ∙  𝜌𝑢 = 0

𝜕𝑡𝑢 +  𝑢 ∙ ∇𝑥 𝑢 = 𝐹 𝜌,𝑢 
           (2.18)   
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where 𝐹 models the average acceleration that acts over the elementary block of 

individuals in volume 𝑑𝑥𝑑𝑦. Bellomo et al presented three different classes for various 

𝐹. 

Class one refers to systems where the pedestrians move along straight lines towards 

the target objective. 

 

𝜕𝑡𝜌 + ∇𝑥 ∙  𝜌𝑢 = 0                                                    

𝜕𝑡𝑢 +  𝑢 ∙ ∇𝑥 𝑢 = 𝛼 𝑈 𝜌 𝑒0 − 𝑢 −
𝐾2 𝜌 

𝜌
∇𝑒0

𝜌
               (2.19)   

where  α >  0 is the inverse of the relaxation time, e0 is a unit vector pointing towards 

the target and U ρ  is an equilibrium speed of pedestrians. The second class of models 

refers to walkers that still move towards the target objective, but are also attracted by 

paths with small density gradients. 

 

𝜕𝑡𝜌 + ∇𝑥 ∙  𝜌𝑢 = 0                                                    

𝜕𝑡𝑢 +  𝑢 ∙ ∇𝑥 𝑢 = 𝛼 𝑈 𝜌 𝑒 − 𝑢 −
𝐾2 𝜌 

𝜌
∇𝑒𝜌

               (2.20)   

where direction of motion is given by 𝑒 =  𝑒0 + 𝑒1, with 𝑒1 being the correction term 

related to the attraction towards small density gradients. 

The third class of models contains a pressure term which enables the momentum 

equation to predict the expected response of crowd behavior as time and space changes. 

 
𝜕𝑡𝜌 + ∇𝑥 ∙  𝜌𝑢 = 0                                                    

𝜕𝑡 𝑢 + 𝑃 𝜌, 𝑢 𝑢0 +  𝑢 ∙ ∇𝑥  𝑢 + 𝑃 𝜌,𝑢 𝑢0 = 𝛼 𝑈 𝜌 𝑒0 − 𝑢 𝜌
               (2.21)   

where P =  P ρ, u  is some pressure that pedestrians feel along the preferred path, 

depending on pointwise crowding of the domain and on their current velocity. 

4.2.4. Second-order model 

Jiang et al. [97] described a higher-order macroscopic model for unidirectional 

pedestrian flow. The model derives from fluid dynamics and consists of mass and 

momentum balance equations with source term. The model reads 

 
 

 
∂ρ

∂t
+ ∇ ∙  ρv = 0                               

∂v

∂x
+  v ∙ ∇ v + c2 ρ 

∇ρ

ρ
=

Ue ρ μ  − v

τ
                                 

           (2.22)   
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where ρ(x, y, t) denotes the density of the unidirectional pedestrian flow; u(x, y, t), v(x, y, 

t) are the average speeds of pedestrian motion in the x- and y-direction, c2 ρ 
∇ρ

ρ
 

describes the anticipation term, which reflects pedestrian reaction to the surrounding 

pedestrians, 
Ue  ρ μ   −v

τ
 is a relaxation term towards a desired velocity. 

The unit vector μ   describes the desired direction of motion, it is tangential to the 

gradient of −ϕ, and is given by 

μ  = −
∇ϕ x, y, t 

 ∇ϕ x, y, t  
           (2.23) 

The potential ϕ corresponds to an instantaneous travel cost which pedestrians want 

to minimize and is determined by the eikonal equation 

 
 ∇ϕ = C x, y, t                at any point  x, y        
ϕ = 0                                        on the goal               

     (2.24) 

C x, y, t  is the local travel cost distribution, which is defined as 

C x, y, t =
1

Ue ρ 
+ g x, y, t         (2.25) 

where the dominant term 
1

Ue  ρ 
 is the time cost distribution and the trivial term g x, y, t  is 

related to a discomfort field.  

The equations (2.22)-(2.25) constitute a higher-order macroscopic model for 

unidirectional pedestrian flow. This model is extended to describe macroscopic features 

and path choice behaviors of bi-direction pedestrian flow [105]. 

The two equations (2.23) and (2.24) can guarantee pedestrians tend to walk along a 

path with the lowest instantaneous cost. However, the desired direction of motion in this 

model is fixed at any point of the facility and does not change with the time-varying 

traffic conditions. Therefore, it can‘t quite express the real path-choice behavior of 

pedestrians.  

For the issue mentioned above, in [106] a second-order predictive dynamic model 

for pedestrian flow is presented to describe that pedestrians are inclined to choose a path 

with the lowest actual cost based on predictive traffic information. 
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4.3.  Hybrid models 

Recently, researchers investigated the hybrid approaches by combining both 

macroscopic and microscopic techniques that complement each other. Existing work has 

attempted to use both types of models either partially or completely [107, 108]. These 

recent developments in hybrid models can be considered in following two categories [61, 

109]: 

4.3.1. Zone Based Models 

In this approach, simulation space is divided into multiple zones. Based on 

application needs, each zone is simulated either for macroscopic or microscopic model. 

Zone simulated under macroscopic technique provides overall flow of crowd whereas 

zone simulated with microscopic model offers individual level behaviors observation. 

Generally, the proposed techniques run both models simultaneously on pre-defined zones 

[108]. Usually, the macro model is used to simulate the homogenous crowd in large area 

where objective is to have smooth flow. In contrast, few parts are marked as decision 

points (road intersection, doors etc) to observe the behaviors of individuals. 

Anh et al. [110] proposed a hybrid approach that combines a macro and micro 

models to simulate the pedestrian movements in the study of evacuation problem on a 

road network. They use an agent based Leader-Follower approach to simulate the 

pedestrian behaviors in the cross-section (where a decision must be taken), and the 

movements in the straight parts of the streets are calculated by the LWR-model. 

Yersin et al. [108] present a hybrid approach for real time crowd motion planning. A 

navigation graph is used to divide the environment into zones of varying interest. The 

potential fields are used only for those parts of a navigation graph that lie in a high 

interest region. In the other regions, the pedestrian behaviors are ruled by the navigation 

graph and a short term avoidance algorithm. 

A hybrid modeling method is proposed to simulate the evacuation scenarios and the 

normal flow of crowd in [111]. Authors combined macroscopic and microscopic models 

in a single simulation and executed them simultaneously by applying them to multiple 

partitions of a corridor. Individuals in crowd need a smooth transition between the two 

different zones known as aggregation and disaggregation as shown in Fig. 2.6. However, 

this approach restricts the possible movement direction of crowd which makes it less 

suitable for simulating large social events and gatherings in open space [112]. Moreover, 
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global and individual features of simulation could not be observed simultaneously in 

same zone. 

 

Figure 2. 6. Deployment of Zones based Hybrid Model, [111]. 

On the contrary, dynamic coupling of macro and micro approach in desired zone to 

simulate large scale traffic flow has been proposed in [113]. This enabled automatic 

switching between two simulation models based on certain criteria (application 

requirement, volume and velocity of traffic, desired behaviors etc). It gives freedom to 

observe simulation as per user desire under macro model for overall flow of traffic or to 

simulate heterogeneous individual cars by a micro model. 

4.3.2. Sequential Models 

Similar to layer based hybrid models, another approach is sequential hybrid 

technique which also runs both macro and micro models for whole crowd [109]. 

However, it first runs macro model to guide the movement pattern of crowd and then 

applies micro model to same crowd for observing the individual behaviors. 

It executes both models in sequential manner where a synchronization method is 

required to transfer the crowd state between both modes. Initially, macro model runs 

based on speed-density relationship to simulate the crowd movement. Within same 

simulation time step, synchronization module helps to transfer macro results to 

microscopic model. Later, microscopic model is executed based on movement pattern 
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and density generated in first macro step. Hence, synchronization mechanism is critical 

to transfer results of both simulations models within one time step between each another. 

5. Conclusion 

This chapter has reviewed the theoretical backgrounds and existing methods for 

pedestrian behavior modeling. A critical discussion is provided to clarify the benefits and 

limitations of different approaches.  

According to the literature survey presented in this chapter, classic macroscopic, 

mesoscopic and microscopic models alone cannot provide user desired functionality in an 

efficient manner. In the last section, we provide an overview of existing hybrid 

techniques in crowd simulation and modeling. We classify and discuss these models as 

zone based, layered and sequential hybrid models based on their functionality related to 

physical space.  
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Chapter 3: Motion Planning and Navigational 

Behaviors in Virtual Environments 

1. Introduction 

The navigational behaviors of a pedestrian crowd refer to how the pedestrians move to 

reach their destinations in a complex and dynamic environment with static obstacles and 

moving objects. Solving this problem requires several advanced features such as visually 

convincing and smooth trajectories, clearance from obstacles, collision avoidance between 

characters. Viewed from this perspective, generating navigation behaviors is still a 

challenging task for computer programs to imitate such behaviors realistically. Depending on 

the scale of the environment, complex navigational behaviors are generally charger with two 

different activities: path planning and a collision avoidance algorithm. 

Path planning can be considered to be the higher-level cognitive activities that generate a 

global route directing the agent from its current position to the goal. It typically considers the 

static aspects of the environment, such as walls and doorways in the relatively long term in 

both spatial and temporal domains. If we had a map of the environment, this would be 

relatively easy. Collision avoidance is very important. Every pedestrian should avoid each 

other. It is not acceptable to have the pedestrian walk straight through the obstacles. These 

models enable users to investigate interactions of individuals in a crowd to the building 

details, emergencies, crowd density, and actions of other pedestrians. 

The purpose of this chapter is to provide a detailed discussion of navigation behaviors 

required in virtual crowd simulation system. In section 1, we will discuss the popular spatial 

partitioning data structures. We review path-planning techniques algorithms for efficiently 

computing paths in dynamically changing environments. An overview of general collision 

avoidance algorithms is given in section 3.  

2. Representing traversable space in virtual worlds 

The representation of the walkable area of a 3D environment in such a way as to facilitate 

successful navigation by intelligent agents is an important problem in the computer games and 

artificial intelligence fields, and it has been extensively studied. We provide a broad overview 
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below and refer the readers to [114] for additional details. There are a variety of common 

ways to represent such an environment, including: 

 Regular Grids. These consist of decomposing free spaces into regular cells. Once this 

decomposition is computed, a connectivity graph can be extracted, whose nodes are 

cells and edges traduce cells adjacency. 

 Waypoint Graphs. These connect large numbers of nodes (often manually placed) 

using edges that imply walkability in the game world. They were previously popular 

in games but are costly to build and tend to constrain agents to walking `on rails' 

between connected waypoints. 

 Navigation Meshes. These represent the walkable surface of a world explicitly using a 

polygonal mesh. Polygons within a navigation mesh are connected using links that 

imply the ability of the agent to walk/step/jump/etc. between them. 

2.1. Grid-based approach 

Grids constitute the most straightforward way to represent the traversable space of an 

environment for path planning [115]. The most common types are rectangular or square grids. 

However, other types have been widely used in simulations and games, too. The basic idea 

consists of the partition of the navigable geometry of the scene into cells of a particular shape 

and with a particular grid resolution. Each cell can have two states: free, partially obstructed, 

and totally obstructed or obstacle [116]. Hexagons, squares, and triangles are the only regular 

polygons that can be used to tessellate continuous 2D environments (Figures 3.1 (a)–3.1(c)) 

and 3D cubic grids [117]. 

 

 

 

 

 

 

 

 

Figure 3. 1 Regular Grid decomposition [117] 

(a) square grid (b) hexagonal grid (c) Triangulation grid 
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Hexagonal grids are common, as well as grids with isometric diamond-shaped tiles; see 

Fig. 3.1. From a topological point of view, isometric grids and rectilinear grids are equal. 

They are commonly used in 2D games to simulate an isometric view on pseudo-three-

dimensional game worlds in which correct clipping is easily achieved by rendering objects on 

the grid from top to bottom along the screen.  

Rectangular grids are also used in many traditional and modern board games, and have 

also been widely used in pen and paper role-playing games to simulate combat scenarios. 2D 

Hexagonal Grid (Fig. 3.1(b)) have many of the desirable properties of square grids. In 

addition, hexagonal grids have smaller search time and memory complexities than grid graphs 

constructed from squares. Hexagonal grids become triangular and vice versa, see Fig. 3.1. 

Thus, using the center points of hexagonal cells as possible character positions is technically 

the same as performing path-finding on a triangular graph [116]. 

3D Cubic Grid. is a regular graph based on a continuous 3D environment [117]. 

The accuracy of the obtained representation basically depends on the cell size: the larger 

cells are, the less precise is the representation (see Fig. 3.2 (a)). Of course, increased precision 

leads to an increase in memory use (see Fig.3.2 (b)). The memory footprint of this method is 

thus its first weak point. It directly affects the complexity of path search in the environment. 

In order to reduce this problem, an extension of this model has been proposed in the form of 

hierarchical grids [118]. 

Quadtrees [114] have been proposed as a way of doing hierarchical map decomposition. 

This method partitions a map into square blocks with different sizes so that a block contains 

either only walkable cells or only blocked cells (Fig. 3.2 (c)). The problem map is initially 

partitioned into 4 blocks. If a block contains both obstacle cells and walkable cells, then it is 

further decomposed into 4 smaller blocks, and so on. An action in this abstracted framework 

is to travel between the centers of two adjacent blocks. Since the agent always goes to the 

middle of a box, this method produces sub-optimal solutions. 

While grids are easy to implement, a major problem is that grids may not cover all of the 

traversable space that is visually displayed to the user. Some corners of the virtual world and 

important passages between obstacles might not be traversable due to a too coarse grid 

resolution; 
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Figure 3. 2 Approximative decomposition by grids [117] 

2.2. Roadmap approach 

The roadmap approach consists of computing a network of standardized paths (lines, 

curves) passing through free space. Once the roadmap has been constructed, a path can be 

calculated by connecting the initial and final positions in the network and finding a path in the 

roadmap (Fig.3.3). Probabilistic Roadmaps, Visibility Graphs and Generalized Voronoi 

Diagarams are examples of roadmap methods. 

The main limitation of this representation is that it only contains information about which 

locations of the scene are directly connected, but it does not describe the geometry of the 

scene, nor where the obstacles are. Consequently, avoidance of dynamic obstacles is usually a 

hard task and not always possible [114]. 

2.2.1. Probabilistic Roadmap Method (PRM) 

The probabilistic roadmap [119] is one of the frequently used techniques nowadays. This 

method consists of two phases. In the construction phase, a roadmap is created by generating 

a set of randomly distributed way points and linking them together with collision-free paths. 

In the query phase, the start and goal positions are connected to the graph, and the path is 

obtained by running Dijkstra's shortest path algorithm. 

2.2.2. Rapidly-exploring Random Trees (RRTs) 

RRTS [120] are similar to PRMs because they also randomly sample the (potentially 

high-dimensional) configuration space to build a graph of configurations, on which a graph 

(b) coarse grid resolution (a) fine grid resolution 
(c) Grid abstraction using a three 

levels quatree. 
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search can be performed. A tree of valid paths is grown in Cfree from the start configuration 

using random sampling, until the goal configuration can be connected to the tree. Due to their 

random nature, RRTs seem ideal for creating different paths given a specific path planning 

query [121]. Unfortunately, the running time is prohibitively high and the resulting paths can 

be of low quality, rendering this approach inappropriate for gaming applications. 

2.2.3. Visibility Graphs 

In a visibility graph, each node represents a vertex of a polygonal obstacle in the 

environment, and each edge represents a visible connection between points. Two nodes are 

connected if they are mutually visible, or, in other words, if the straight-line segment between 

them does not intersect any obstacles, see Fig.3.3 (b). The resulting graph minimizes distances 

and provides minimum length paths. The complexity of building visibility graphs increases 

when dealing with complex environments with a large number of obstacles. To avoid 

redundant edges, a reduced visibility graph can be constructed by categorizing edges into 

supporting and separating edges [122].  

However, some problems may arise from the fact that the edges of a visibility graph 

usually connect corners in the environment which can make the artificial entities in the 

environment to move too close to the walls or corners and maybe even collide with them 

[123]. 

 

 

 

 

 

 

 

 

 

Figure 3. 3 Two examples of Roadmap approach 

(a) Roadmap generation using a Delaunay 

Triangulation [124]. 
(b) Computation of visibility graph. [122] 
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2.2.4. Generalized Voronoi diagram (GVD) 

 A Voronoi diagram [125] is a type of decomposition for metric spaces, determined by 

distances to a set of entities in the space. The edges of a Voronoi diagram represents all points 

equidistant to a pair of entities and a node is a point equidistant to three or more entities. A 

Generalized Voronoi diagram is a Voronoi diagram in which entities are sets. Generalized 

Voronoi diagrams are typically used for robot path planning. 

2.2.5. Adaptive Elastic ROadmaps (AERO)  

It is a connectivity graph structure that is lazily computed using a generalized crowd 

dynamics model [126]. Specifically, it uses a Generalized Voronoi diagram to compute a 

roadmap that defines the free space with respect to static geometry. The roadmap is 

continuously updated in response to the motion of the agents and the other dynamic obstacles 

present in the environment. The links between two points of the free space can be deformed in 

presence of a dynamic obstacle. Those links have a maximum elasticity and are broken 

(removed) when this value is exceeded, disconnecting both points. In Fig.3.4. The obstacle 

O1 is moving towards link l2 (left) and it is deformed (center). When the elasticity of the link 

is exceeded, the link l2 is removed (right). 

 

Figure 3. 4 Adaptive Elastic ROadmaps with moving obstacle [126] 

2.3. Navigation Mesh  

A navigation mesh (NavMesh), is a decomposition method that consists to encodes the 

free space of the scene by splitting it into convex polygons, known as cells. A Cell-and-Portal 

Graph (CPG) is obtained where a node represents a cell  of the partition and a portal is an 

edge of the graph that connects two adjacent cells. By delimiting the free navigable regions, 
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the navigation mesh can support path planning and also provide important spatial information 

that agents can use during collision avoidance and behavior execution [124]. 

2.3.1. The Constrained Delaunay Triangulation 

Triangulations offer a natural approach for cell decomposition and they have been 

employed for path planning in varied ways. The majority of the methods using triangulations 

for path planning applications are however limited to simpler solutions based on the 

Constrained Delaunay Triangulation (CDT) as a cell decomposition for discrete search.  

CDTs can be defined as follows. Triangulation T will be a CDT of polygonal obstacles S 

if: 1) it enforces obstacle constraints, i.e., all segments of S are also edges in T, and 2) it 

respects the Delaunay criterion as much as possible, i.e., the circumcircle of every triangle t of 

T contains no vertex in its interior which is visible from all three vertices of t [114].  

A dynamic Constrained Delaunay Triangulation (CDT) is used to represent the walkable 

area of a scene. The method proposed also allows the incremental insertion, move and 

removal of obstacles, adapting the Navigation Mesh in consequence. 

The main drawback is that many unnecessary cells are created, increasing the time for 

calculating a path between two given cells, which can be specially problematic in applications 

such as videogames, where a real-time response is required.  

In [127] the CDT technique is compared against grid-based maps of real commercial 

videogames. The results show that the use of a CDT to represent the walkable space 

dramatically reduces the computation time to find a path between two points, compared to the 

grid representation of the same map. In [63], more uses of the CDT are explored, such as the 

automatic placement of agents in the free space and path planning with clearance. 

2.3.2. Local Clearance Triangulation 

Kallmann [50] introduced a navigation mesh called a Local Clearance Triangulation 

(LCT) that allows paths to be computed free of obstacles with arbitrary clearance. Such 

triangulation is obtained by a process that iteratively refines the Constrained Delaunay 

Triangulation (CDT) resulting from the starting set of obstacles. 

The refinements are designed to ensure that two local clearance values stored per edge 

are sufficient to precisely determine if a disc of arbitrary size can pass through any narrow 

passages of the mesh. This property is essential for the correct and efficient extraction of 
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paths with clearance directly from the triangulation, without the need to represent the medial 

axis. 

LCT can be used to answer path queries for characters of different size. Locally shortest 

paths can be computed in optimal time. If global optimality is required, an extended search is 

used to gradually improve the path. Kallmann's navigation mesh [50] yields an exact 

representation of the environment and can handle dynamic updates efficiently. However, it 

introduces more cells in the partition of the scene, thus dropping the performance of the path 

finding algorithm, and (multilayered) 3D environments are not discussed.  

2.3.3. Topoplan 

Topoplan [128] is an application that automatically generates a Cell-and-Portal Graph for 

a given virtual environment defined as a mesh of triangles. It consists to apply a simplification 

phase consisting in representing the mesh with 3D planar polygons instead of triangles. Those 

polygons are computed by partitioning the set of mesh triangles into sets of coplanar and 

connected triangles. Then, an exact 3D prismatic spatial subdivision of the 3D model is 

computed. The aim of this approach is to organize a set of 3D polygons in order to capture 

ground connectivity and identify floor and ceiling constraints. It represents the environment 

by a set of vertical 3D prisms dividing the 3D model into layers. A Constrained Delaunay 

Triangulation is computed over each of this surface to obtain the final CPG usable for path 

planning. Although the description of the walkable space is perfect, it is very costly in time. 

This work was then extended to identify outdoor, indoor and covered areas for spatial 

reasoning [129]. Jorgensen presented an automatic structuring method based on a hierarchy 

that separated buildings into floors linked by stairs and represents floors as rooms linked by 

doorsteps. This method has a strict hierarchy and does not scale to large outdoors 

environments such as the ones often presented in video games. 

The main advantage of using a partition based on triangles is that geometric operations 

with triangles are very efficient, the convexity of the partition is guaranteed and it contains the 

least possible number of ill- conditioned cells. However, the partition is far from optimal as it 

is restricted by triangles. 

2.3.4. Explicit Corridor Map (ECM) 

Geraerts [130] created a navigation mesh called the Explicit Corridor Map (ECM) which 

is used to compute paths with any desired amount of clearance to obstacles and permits each 
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character to have any desired size. Explicit Corridor Map (ECM) is an annotated data 

structure that describes the free space as related to the medial axis of the environment, which 

is the set of all points that are equidistant from at least two distinct closest obstacle points. 

The medial axis can be seen as a special type of waypoint graph in which all edges run 

through the center of the free space between pairs of obstacle polygons. 

For each vertex of the medial axis graph, there are either at least three obstacle polygons 

that have the same distance from that vertex, or the vertex is placed in a non-convex corner of 

an obstacle. An edge between two vertices of the medial axis consists of a sequences of 

straight-line segments and parabolic arcs, depending on the type of corresponding obstacles to 

its left and right (with respect to a given orientation of the edges).  

With each element in this sequence, its left and right closest obstacle points are stored. 

This partitions a 2D environment into a set of walkable areas in O(n log n) time and O(n) 

space, where n is the total number of obstacle vertices. Each area corresponds to one 

particular obstacle polygon, as all points in that area are closer to that obstacle than to all 

other obstacles [131]. 

Toll et al. [132] present a NavMesh generation method for a multi-layered environment, 

such as an airport or a multi-story car-park, where the different layers of the scene are 

connected by elements such as stairs or ramps. However, they do not provide an automatic 

method to extract such layers.. 

2.3.5. Clearance Disk Graph (CDG) 

From the environment geometry analysis, Pettré et al. [18] compute a structure called 

Navigation Graph as shown in Fig.3.5. A Navigation Graph is a simple structure that 

represents an environment topology by distinguishing navigable areas from impassable 

obstacles. The Navigation Graph is composed of vertices and edges: the vertices are vertical 

cylinders representing areas where a pedestrian can freely walk without colliding with its 

environment. Edges are gates allowing a pedestrian to cross from one cylinder to another one. 

They are introduced between vertices wherever two cylinders overlap. 
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Figure 3. 5 Navigation Graph [18] 

2.3.6. Navmeshes From 3d Geometry: Neogen 

Oliva and Pelechano [133] describe an efficient technique to calculate a convex 

decomposition with a number of cells close to the optimum. It starts with voxelization, but it 

groups walkable voxels into 2D layers. Next, the method obtains a more precise floor plan for 

each layer in a way that does not depend on the voxel size. Based on these floor plans, an 

exact 2D algorithm [134] is used to compute the final navigation mesh. This 2D algorithm 

subdivides the layer into convex polygons in O(nr) time, where r < n is the number of convex 

polygon vertices in the input. A contribution of NEOGEN is the convexity relaxation 

parameter that can be used to allow slightly non-convex regions. This decreases the total 

number of regions in exchange for having more complex region shapes. Clearance 

information can also be added to the navigation mesh if desired. 

2.4. Other approaches for environment modeling 

Shao and Terzopoulos [31] represent virtual environments by a hierarchical collection of 

maps: (a) a topological map, which represents the connections between different parts of the 

virtual world; (b) perception maps, which provide information regarding perceptual queries; 

and (c) path maps, which enable online path planning for navigation (Fig.3.6). The 

topological map contains nodes corresponding to the environmental regions and edges 

representing accessibility between regions. The path maps include a quad-tree map, which 

supports global, long-range path planning, and a grid map, which supports short-range path 

planning. 
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Figure 3. 6 Hierarchical representation of a building [31] 

A novel hierarchy environment model is presented in [135] to represent multilayered 

complex virtual environment and ease the simulation task in such environment. It is illustrated 

in Fig.3.7, which includes comprehensive and sufficient environment information for 

simulating crowd in complex environment. This model is subdivided into three layers and will 

introduce them respectively in following paragraphs. 

 

Figure 3. 7 A Semantic Environment Model for Multilayered Complex [135] 

 Geometric Level: The main part of this layer is 3D geometric model of the 

environment that is employed for display and the semantic information extraction for 

the next semantic representation layer.  

 Semantic Level: The semantic layer is composed of structure map, topologic map and 

height map which help to identify or query semantic information of the environment.  

 Application Level: For the purposes of providing efficient interaction between 

pedestrians and the environment, this layer is responsible to use the information of 
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semantic level to generate some high-level maps such as object perception map, 

individual perception map and individual path map in the application level. 

The topologic abstraction algorithm aims to generate an abstraction tree by merging 

interconnected cells while trying to preserve topological properties. The topologic abstraction 

proposed by Paris and Donikian reduces the size of the graph that represents the spatial 

subdivision [136]. The grouping process relies on the topological properties of the cells and 

the resulting graph contains fewer nodes and preserves the topologic and geometric 

characteristics of the geographic environment. However, the topological characteristics are 

not sufficient to abstract a virtual environment when dealing with a large-scale and complex 

environment involving areas with various qualifications (buildings, roads, parks, sidewalks, 

etc.). 

3. Pathfinding  

Path planning is a process of finding a the shortest or least effortful path between two 

distinct spots located in a virtual world. A path means an approximated way, composed by 

connected segments, that must have two properties [114].  

The first property is called validity which is the most common measure to indicate 

whether or not the path is collision free.  

The second property is called optimality which is measured normally by either a distance 

metric or the time required for travelling through the path. Using a distance metric, an optimal 

path is simply the shortest path. It means the distance between start and goal in such a path is 

no greater than any other routes. It is an intuitive requirement. Time is another widely used 

measure. It defines an optimal path as the fastest route. Simply it means the time required for 

an optimal path to be travelled through is always less than any other routes. In most cases, the 

shortest path is often the fastest one.  

There are several path-finding techniques developed  to plan path through complex 

environments. In the following section, we discuss the popular  algorithms. 

3.1. Dijkstra Algorithm  

Dijkstra's algorithm was conceived by Edsger Dijkstra in 1959 [137]. This algorithm 

works by visiting vertices in the graph starting with the object's starting point. It then 

repeatedly examines the closest not-yet-examined vertex, adding its vertices to the set of 

vertices to be examined. It expands outwards from the starting point until it reaches the goal. 
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Dijkstra's algorithm is guaranteed to find a shortest path from the starting point to the goal, as 

long as none of the edges have a negative cost.  

In Fig.3.8, we show an application of Dijkstra‘s algorithm in an 8-connected grid 

representation. The black segments depict the search tree that was explored until the 

highlighted solution path was found. The nodes marked as yellow disks represent the nodes in 

Q at termination time. In this environment brown cells represent obstacles and blue cells have 

a traversal cost higher than gray cells. 

 

Figure 3. 8 Example of Dijkstra’s algorithm in an 8-connected grid representation [114]. 

3.2.  A* 

A* is a generic search algorithm which is expanded from Dijkstra by applying a heuristic 

value [138]. This heuristic provides an estimate from a particular node to the final goal node. 

The algorithm focuses to combine actual traversal costs from a start node with heuristic 

values that estimate the distance to a target node. Using these two values, A* explores and 

exams the cell with the lowest estimated total cost: 

 𝐹 =  𝐺 + 𝐻  

where G is the distance from the start cell to the current cell and H is the estimated distance 

from the current cell to the goal cell. 

A* manages two lists of nodes, the open list and the closed list. While the open list stores 

all nodes that are currently under consideration, the closed list stores all nodes that have 

already been expanded and do not need to be visited again. 



Chapter 3: Motion Planning and Navigational Behaviors in Virtual Environments 

65 

 

A* paths are always optimal as long as the heuristic function is admissible. However its 

overall time depends on the problem size and complexity, resulting in highly variable times. 

The biggest drawback is that its response time is the same as its overall time as a complete 

solution is required before the agent moves. A*‘s memory use is variable and may be high 

depending on the size of its open and closed lists and the heuristic function used. 

3.3.  Anytime Dynamic Search 

A* search is an approach that uses a heuristic to restrict the number of states that must be 

explored before finding the optimal path and it guarantees to expand an equal number or 

fewer states than any other algorithm using  the same heuristic. However, for large scenarios 

A* still needs to expand many nodes and can very quickly run out of memory [114].  

Anytime planning algorithms start to find the best solution they can within the amount of 

time available to them. This first solution is an approximate, and possibly highly suboptimal 

plan which is improved over time by reusing previous plan efforts.  

A popular anytime version of A* is called Anytime Repairing A* (ARA*) [138]. This 

algorithm performs a series of repeated weighted A* searches while iteratively decreasing a 

loose bound (ε). It iteratively improves the solution by reducing ε and reusing previous plan 

efforts to accelerate subsequent searches. However ARA* solutions are no longer guaranteed 

to be optimal. 

Another anytime variant of A* is called Anytime Non-parametric A* (ANA*) [140]. It 

uses a novel criterion for deciding which node to expand next in each step. Instead of 

expanding the node with lowest weighted f-value, it expands the node that maximizes the 

term e = (G - g)=h, with G being the costs of the currently best solution (which is set to 

infinity in the first iteration). The term e can be intuitively understood as the ratio between the 

―budget‖ that is left to improve the current-best solution and the estimated costs between the 

node and the goal.  

D* Lite [141] performs A* to generate an initial solution and repairs its previous solution 

to accommodate world changes by reusing as much of its previous search efforts as possible. 

D* can correct ‖mistakes‖ without re-planning from scratch, but requires more memory.  

Anytime Dynamic A* (AD*) [142] combines the properties of D* and ARA* to provide 

a planning solution that meets strict time constraints. It efficiently updates its solutions to 

accommodate dynamic changes in the environment. 
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3.4.  Hierarchical Path Planning  

The computational effort required to find a path, using a search algorithm such as A* 

[138] or Dijkstra [137], increases with the size of the search space [143]. As a consequence, 

path planning on large-scale geographic environments can result in serious performance 

bottlenecks. However, representing the virtual environment using the hierarchical approach 

allows a reduction in the size of the search space as well as the problem complexity in path 

planning [144].  

Demyen and Buro [127] present two hierarchical triangulation-based path-finding 

algorithms TA* (Triangulation A*) and TRA* (Triangulation Reduction A*). TA* makes use 

of the Delaunay Triangulation (DT) technique to represent maps in which obstacles are 

defined by polygons, and finds optimal paths for circular objects by running an A* like 

algorithm on graphs induced by the triangulation. 

TRA* improves on TA* by applying a topological map abstraction that contracts each 

corridor in the triangulation graph to a single edge and tree components in which path-finding 

is trivial are removed and handled separately. What is left is a graph only containing degree-3 

nodes. Its size is proportional to the number of obstacles on the map, which can be 

considerably smaller than the triangulation graph. Because of this size reduction, TRA* runs 

faster than TA* and much faster than A* on common game maps while generating high-

quality paths.  

An earlier hierarchical path-finding algorithm is HPA* [143]. This method decomposes a 

map into disjoint square sectors. Entrance points between adjacent sectors are identified and 

added as nodes into an abstracted search space. Fig.3.9 shows a small map. Abstract edges 

connect pairs of entrance points placed on the border of the same sector. In effect, in the 

abstracted space, a move traverses one sector in one step. Additional abstracted edges connect 

the start node (and the target) to the entrance points of its sector. An abstract solution contains 

macro moves such as sector-traversing moves. In a refinement step, a search restricted to the 

area of one sector converts a macro step into a sequence of actual moves. The method can 

have more than 2 hierarchical levels.  
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Figure 3. 9. Abstracting tiles into a hierarchy [143]. 

HAA* [144] extends HPA* in two directions. First off, in classical path-finding, a map is 

partitioned into traversable terrain and blocked areas. HAA* makes a finer distinction, 

allowing to define several types of terrain, such as ground, water, and walls. Secondly, HAA* 

handles mobile units with variable sizes and variable terrain traversal capabilities. 

3.5.  Multi-Agent Path-finding 

Multi-agent path-finding addresses the problem of finding paths for a set of agents going 

to their goals. Each agent may have its own goal or all the agents may have a global goal. At 

each time step, all agents move according to their plans. The set of agents has to find the 

minimal cost for reaching the set of goals, or to maximize some quantity. The cost can be the 

elapsed time. Multi-agent path-finding can be cooperative, when all the agents help each other 

and try to optimize in the same direction. But it can be adversarial when an army tries to reach 

a point and another one prevents this from happening. 

Silver [118] introduced the cooperative A* (CA*) algorithm, which allows agents to take 

into account the planned routes of other agents. The routes computed by other agents are 

stored in a reservation table, which is accessible by all the agents. However, this algorithm 

may have poor performance in complex environments.  

Hierarchical cooperative A* (HCA*) uses the idea of Hierarchical A* [143] with the 

simplest possible hierarchy. It abstracts and reduces the research space: the domain with all 

agents removed. An issue of HCA* is how to terminate: sometimes an agent sitting on its 

destination must move to give the way to another agent. Another issue is the ordering of 

agents, and the most important one is computing complete routes in the 3-dimensional space.  

Windowed Hierarchical Cooperative A* (WHCA*) algorithm is introduced in [118]. 

When an agent reaches its goal, it may continue to block the paths of other agents. WHCA* 

simply limits this by windowing the space search, which allows agents to determine partial 

routes to their goal. If an agent has reached its goal, it will try to find a terminal node within 

its current window. 
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4. Local Avoidance  

Avoidance is a behavior that occurs when a human avoids another human (or obstacles) 

during the movement.  Collision should be avoided locally by adjusting movements when 

other agents become sufficiently close. To achieve realism in crowd simulation, the local 

behavior of individuals must be modeled. Furthermore, simulating group behavior in 

pedestrian crowds should effectively combine collision avoidance with group coherence 

techniques. Local collision avoidance is an important aspect of micro simulation, since 

individuals are expected to adjust their planned route so as to avoid collisions with dynamic 

obstacles and other individuals. In the rest of this section, we discuss various approaches for 

local collision avoidance between simulated characters. 

4.1. Reactive approaches 

The most common way to solve interactions between virtual characters is with reactive 

navigation techniques. In such approaches, the character adopts its previously computed 

motion to avoid colliding with the dynamic and static obstacles found along its path. 

In the animation community, the concept of reactive collision was introduced by the work 

of Reynolds who used simple local rules to describe interactions between autonomous agents 

[70, 37]. Closely to his work, Musse and Thalmann implemented a multi-resolution algorithm 

based on simple avoidance laws to handle inter-agent collisions [40], they focused on basic 

collision handling by proposing the following techniques. 

 Collision avoidance type 1. The technique uses a simple mathematical equation to detect a 

possible collision event, it involves intersection of two lines and distance between two 

points. If two virtual humans are potentially colliding, the solution consists to stop one 

virtual human and let the other one to pass. 

 Collision avoidance type 2. The method is straightforward and it depends on the change of 

directions. Instead of waiting for the other one, the autonomous virtual human can avoid 

the collision by changing its directions through angular changes. After a specific period of 

time, the virtual human returns to its last angular velocity. 

Another collision technique is proposed by Loscos et al. [145] for crowd system. This 

technique uses grid-based rules depending on parameters such as density, speed and direction 

to resolve collisions between virtual pedestrians and others object (such as building). The 

technique outlines three types of collisions strategies which are frontal, following and 



Chapter 3: Motion Planning and Navigational Behaviors in Virtual Environments 

69 

 

perpendicular. The technique compares the direction of each agent, the velocity factor and the 

distance between the agents. In order to deviate from an appropriate angle, there are a few 

ways to decide either to slow down or to completely stop. 

Rymill et al. [146] describe a system designed to simulate human behavior in crowds in 

real-time, concentrating particularly on collision avoidance. There are three possible types of 

collision, which here will be called Towards, Away and Glancing; these are shown in 

Fig.3.10: 

 A Towards collision occurs if the actors are walking towards each other. 

 An Away collision is, conceptually, when the subject is behind the collidee, but is gaining 

on them.  

 A Glancing collision is a side-on collision between two actors walking in roughly the 

same direction,  

Based on the psychological input, Rymill et al. [146] showed that when a human avoids 

oncoming people, there are three different ways of avoiding the collision: changing direction 

only, changing speed only, or changing both direction and speed. They also stated that when a 

human avoids another human moving in the same direction, there are two options available; 

overtake or slow down and walk behind the people in front. To resolve the glancing 

collisions, the pedestrian tries a variety of direction and speed changes, in an attempt to find a 

course that will avoid a collision occurring. If no such course can be found, the subject is 

forced to stop until the collidee has passed. 

 

Figure 3. 10  Three different types of collision [146] 
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Cherif et al. [147] applied the avoidance behavior based on forces of attraction and 

repulsion in the agent. The avoidance behaviors that consist of avoidance of collision and 

avoidance of obstacles were affected by the type of situation (normal and panic), the personal 

space (broad, average and narrow) and the level of patience that were influenced by a set of 

psychological and sociological rules in the model. 

4.2.  Velocity-based Local Collision Avoidance  

These methods use the current position and velocity of each mobile robot or virtual agent 

to estimate its future trajectory for some short window of time and compute a new velocity 

that will be free of collisions over some short time interval. Often, the new velocity for each 

mobile robot or virtual agent may be computed independently without explicit 

communication, allowing for distributed systems of mobile robots or the parallelization of 

simulations of virtual agents on modern multi-core architectures. 

Fiorini and Shiller [48] introduce the concept of the velocity obstacle (VO) to define the 

set of velocities that would lead a robot to collide in the future with its static and dynamic 

environment. This approach considers a single reactive agent (the robot) and the rest of the 

dynamic obstacles are assumed to be passive. Fig.3.11 shows how VOs are constructed. First, 

the size and velocity of agent A and obstacle E1 are known (Fig.3.11(a)). Then object A is 

reduced to a point, while E1 is enlarged by the radius of A. Next, two tangents are constructed 

that enclose the Collision Cone.  

Any relative velocity va − vE1
 that lies inside the cone will lead to a collision (Fig.3.11 

(b)). Shifting the Collision Cone by vE1
 results in the VO (Fig.3.11 (c)). To prevent a collision, 

A must choose a velocity that lies outside of the VO. Multiple obstacles can be included in the 

decision process by combining the VOs. 

The technique is commonly used in computer games and closely tied to robotics research. 

In systems where each robot works independent of a central planning authority, such 

algorithms are a means of preventing collisions between agents. Unfortunately it can suffer 

from oscillations, where agents repeatedly attempt to evade each other. 
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Figure 3. 11 Velocity Obstacle construction [48] 

Van den Berg et al. 2008 [148] extend the VO approach so as to achieve collision 

avoidance between multiple robots that navigate in a planar environment. For this reason they 

base their method on the concept of reciprocity, i.e. each agent assumes that the rest of the 

agents follow the same avoidance reasoning. By examining all possible pairs that an agent can 

form and then by intersecting the allowed new velocity spaces, each agent selects its new 

velocity as the allowed velocity that is closest to its desired velocity. 

Karamouzas and Overmars [149] present a different velocity-based approach for realistic 

collision avoidance among virtual characters. This approach is derived from the empirical 

observations of Pettré et al. [148] and is based on the simple hypothesis that is an individual 

tries to resolve collisions in advance by slightly adapting his preferred direction and speed.  

The authors subsequently perform an experimental analysis on the existing motion capture 

data to gain a better understanding into how humans solve interactions and avoid collisions 

with each-other in real life. This analysis, though, focuses on the predicted time-to-collision 

between interacting participants and the deviation from their desired velocities, whereas they 

studied the effect that the minimum predicted distance has on the participants' accelerations.  

Additionally,  this method employs the predicted time-to-collision thresholds to define 

the permitted velocities and orientations throughout the collision avoidance stages using 

piecewise functions that match the observations. These permitted velocities and orientations 

are then optimized based on a criterion that jointly minimizes energy consumption, collision 

risk, linear and angular acceleration. A limitation of this method is that it employs axis 

aligned boxes to model the static obstacles, can thus lead to a crude approximation of the non-

navigable space. 

(a) Colliding agents. (b) Collision cone. 
(c) Resultant velocity 

obstacle. 
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Karamouzas et al. [149] introduced the evasive force to improve the social force model. 

Their approach is based on the hypothesis that an individual adapts its route as early as 

possible, trying to minimize the amount of interactions with others and the energy required to 

solve these interactions. With this model, the agents do not repel each other, but rather 

anticipate future situations avoiding collisions long in advance and with minimal effort. 

However, the applications of social force model are limited by the calculation efficiency 

because of its complex rules. 

Paris et al. [150] proposed an anticipative collision avoidance method, they generated a 

series of time-dependent workspace obstacles by linearly extrapolating the obstacle‘s velocity. 

These workspace obstacles cast a shadow on the velocity space; the velocities in that shadow 

are those velocities which would collide with the workspace obstacle during that time 

interval. The feasible region in front of the shadow contains velocities which would cause the 

agent to pass behind the moving obstacle. The region beyond the shadow contains those 

velocities which would cause the agent to pass in front of the moving obstacle. Finally, the 

segments are reconciled across multiple moving obstacles, ranked according to a cost 

function, and the ―best‖ section is used to produce a final velocity. 

Koh and Zhou [151] introduced a collision avoidance framework called relative frame. 

According to the duality property of the relative frame and other constraints, they selected a 

collision-free velocity for an agent.  

4.3.  Vision-based approaches 

More recently, vision-based methods have been presented as an attempt to better simulate 

the perception model of pedestrians and their corresponding motion planning mechanisms. 

Ondřej et al. [152] propose a collision-avoidance technique that is based on a synthetic-vision 

perceptual model. Collision avoidance is based on the bearing angle between a moving 

pedestrian and an obstacle, and the remaining time-to-interaction. When the remaining time-

to-interaction is large, avoidance is achieved by maintaining the speed and altering the 

direction of motion. On the other hand, when the remaining time-to-interaction is small, then 

the agent decelerates until it stops to avoid an imminent collision. The method computes the 

desired angular velocity by attempting to both avoid the obstacles and deviate as little as 

possible from the goal direction. Only when the time-to-interaction of the most imminent 

collision is below a threshold value, then the speed of the agent decreases exponentially. 
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As an alternative, Moussaïd et al. 2011 [153] introduce a collision-avoidance method that 

is based on cognitive science approaches. They employ two vision-based behavioral heuristics 

to simulate the perception of pedestrians and their corresponding decision making processes 

throughout navigation. At each simulation step, an agent computes the time that corresponds 

to the most imminent collision for each candidate direction. Then, based on the first heuristic, 

the agent determines its desired direction of motion by trying to minimize the distance from 

its destination when a new directional change is expected due to the presence of an obstacle. 

The new speed of the agent is chosen based on the second heuristic, which dictates that the 

agent should maintain a distance from the first obstacle on the chosen direction that 

corresponds to a time-to-collision of greater than or equal to the relaxation time. Should 

unpredicted collisions occur with other agents or obstacles, physical forces are applied to 

simulate the interactions between the colliding entities. 

5. Conclusion 

The pathfinding problem that is persistent in many applications involving agents in 

virtual environments was discussed. It has been mentioned that agents require an abstract 

representation of the environment in order to navigate through the environment. These 

typically take the form of graphs. Graph search strategies or algorithms are then used to find 

routes through the environment. Having a graph with many nodes creates computational 

overhead as the size of the search space increases. Therefore, it is necessary that the 

environment be effectively decomposed by using a suitable division scheme. 
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Chapter 4: Agent-based model for modeling 

crowd behaviors 

1. Introduction 

Crowd simulation is a field that has recently been gaining significant attention because of 

its usefulness in various applications, such as emergency planning and evacuations, designing 

and planning pedestrian areas, subway or rail-road stations, besides in education, training and 

entertainment. There are a number of different computer simulation models which are 

typically developed to modeling of human crowds. 

The core problem of these models is to build an efficient and accurate simulation of the 

movement of the crowd and each pedestrian in crowd. In this sense, the realism of the 

pedestrian‘s navigation behavior will affect the accuracy and reliability of the simulation 

results (e.g., the total time required to evacuate a building). 

In this chapter we describe and explain how pedestrians navigate and move around virtual 

complex environment. In order to simulate such scenarios in detailed level, this work 

proposes an agent-based model for simulating the behavior and movement of pedestrians, the 

pedestrians are usually represented by autonomous agents whose movements are driven by a 

navigation model.   

We proposed a hierarchical navigation model to describe the movements of a pedestrian. 

First, during the simulation process, each virtual pedestrian needs to select a goal as its 

destination the macro-level navigation model is used to compute a path (not necessary 

shortest) to a destination based on various influences that may affect route choice. Second, the 

micro-level navigation model is used to compute new steering parameters for the agents. 

Important pedestrian navigation behaviors like collision avoidance and overtaking are 

generated by the micro-level navigation model. 

In Section 2 we describe our agent-based proposed model. Then, we describe the physical 

environment model (section 3) and the pedestrian navigation model for generating realistic 

navigation behaviors (section 4). We describe various behavioral characteristics, physical and 

psychological factors that affect the navigation behaviors of a pedestrian. Finally the chapter 

is concluded in Section 5. 
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2. Agent based model for crowd simulation 

In general, Crowds are regarded as complex dynamical systems composing of 

heterogeneous groups of people, in which each person has individual and social properties, 

and interacts with others through different means. This observation indicates that human 

behaviors are highly complex and exhibit large variation based on situations and settings. 

Such behaviors are more complicated to be described in formal mathematical equations 

because of the dissimilarity of individuals and the non-linear nature of social and physical 

interactions between them.  

According to this fundamental abstraction, we adopt an agent-based modeling 

methodology to develop an efficient model for generating realistic crowd dynamics with a 

wide variety of individual, and emerging behaviors during real time simulation.  This model 

of crowd simulation constitute of several components and sub-components. At the most basic 

level, two key components are modeled: an environment model and a model of virtual 

pedestrians involved (Fig. 4.1). This model along with the computational methodology allows 

us to build an artificial environment populated with autonomous agents, which are capable of 

interacting with each other. 

Environment model. The representation of the space of a model is tightly supported by 

setting up the following components:  

 Geometry sub-component is the basis of the space representation model, it is, as its 

names implies, 3 dimensional Euclidean environment that allows people to move and 

occupy space. Movement can be either in all three dimensions (for example birds, fish, 

etc.) or only in two dimensions (for example herds, humans, etc.) This two 

dimensional movement could be approximated with only two dimensional space. The 

main part of this layer is 3D geometric model of the environment that is employed for 

display and the semantic information extraction for the next semantic representation 

layer.  

 Topologic space subcomponent: is responsible to describe the connectivity and 

adjacency between separated regions in the interior space such as rooms and hallways.      

 Structure map: In a complex environment, there are numerous objects, like handrails, 

walls, windows, pillars and so on, distributed widely in different regions. In order to 

facilitate organization and implementation, we divided the whole space into several 

independent but adjacent regions according to common sense. We called these 
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naturally separated regions, like an entire floor, stairs, or a corridor, as Block, and all 

the objects placed in the same region are included into the same block. All blocks 

along with their objects are organized into structure map. 

 Points of interest. Points of interest are locations to specify the destinations of 

pedestrians in the virtual environment. Pedestrian needs to select one of them as its 

goal to achieve.  

 Situational context. We have defined a simulated situation using chosen classes of the 

situation like navigating in normal conditions, or escaping  evacuation context 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1.Conceptual of our simulation model including setup of environment and 

agents. 

Model of the individual: The model of the individual is the most important part of an agent 

based crowd simulation and there are a wide variety of ways in which this can be done. There 

are a variety of things to be considered when a human is being modeled. These include: 

 Physical Representation: This refers to the physical characteristics of the humans 

being like the shape and size of the model used. Some papers suggest that for accurate 

modeling an elliptical shape is best but to make this computationally efficient a 3 

circle model can also be used. The speed of movement of the humans and the time 

taken for pre-evacuation behavior can also be considered to be part of the physical 

representation.  

 Navigation:  Navigation refers to how the agents move within an environment. 

Depending on the scale of the environment, this generally consists of a higher level 

Environment model Pedestrian model 

Geometry Model 

Topologic space 

structural map 

Physical Representation 

Navigation process 

Knowledge 

Situational context (normal or panic situation) 

Points of interest 

Behavior and decision making capacity 
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path planning which is generally A-Star and a lower level collision avoidance 

algorithm. The choice of collision avoidance algorithms can have significant effects 

on the dynamics produced.  

 Knowledge: Knowledge represents the agent‘s familiarity with the surrounding 

environment which comes from a spatial analysis of the agent‘s awareness range, 

varying from the individual‘s vision to the entire scene. The agent makes his strategy, 

e.g., path selections, according to his knowledge. 

 Behavior and decision making capacity: This refers to the detail in which some of the 

basic behavior is modeled in a crowd simulation. This also refers to the social 

interactions that takes place between the pedestrians.  

3. Environment Model 

We use two basic ways to represent the geometry, i.e., the building, in our crowd 

simulation model. In this section, these two approaches are called coarse network 

(Connectivity graph), and fine network (Dual graph of quad-tree representation). Each 

approach is associated with its own distinct advantages and disadvantages, which will be 

explained more thoroughly below. 

3.1.  Connectivity graph for indoor navigation  

When designing an efficient algorithm of the navigation process, the first step is to obtain 

the environment structures, and then construct a navigation-based topological data model. The 

topological data model, called connectivity graph, is a dual graph representing the spatial 

relationships among geographical objects, including connectivity, and adjacency, it consists of 

objects (nodes) where some pairs of these are connected by links (edges). In this data 

structure, the navigation process becomes a problem of getting from one node of the graph to 

another through a sequence of nodes and links.  

Each node is typically a representation of contiguous physical region defined by their 

enclosing walls, e.g., a room of a building or a corridor, but can also represent connection 

between areas, e.g., a door opening. Each link (edge) represents the accessibility issue 

constrained by the existence of a route between two nodes (Fig. 4.2 ).    
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Figure 4. 2 Floor Plan 

3.1.1. Determining the Components of the  indoor environment 

We now describe the representation of the various elements in our data model, and we 

will explore the shortest path segments in different kinds of zones according to their 

geometric shapes and architectural constraints, which can support shortest path routing. 

a) Zones 

There are a number of different kinds of architectural zones in indoor space. Some of 

them have similar shapes but may serve different purposes, and some of them are totally 

different in shapes but may play the same role during the routing. Specifically, we explore 

two different categories of zone according to their geometric and architectural features from 

the routing perspective; rooms with multiple doors can be a part of a passage to a certain 

destination, while rooms with only one door cannot.  

 Simple zone. A simple zone is a zone that is closed by walls and can be accessed by 

only one door. A door is an architectural constraint controlling the accessibility of the 

zone. Since a simple zone has only one door, it cannot function as a passage. Thus, it 

can only play the role of a start object or a target object. Fig.4.3(a) shows an example 

of a simple zone. The solid boundary represents walls.  

 Complex zone. A complex zone is a zone that is closed by walls and can be accessed 

by multiple access points. A complex room can be considered as either a start object, a 

target object, or an object that contains paths as passages to destinations. Fig.4.3(b) 
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shows an example of a complex zone. Multiple doors represent multiple decision 

points. 

 

 

 

 

 

 

 

 

 

Figure 4. 3 Architectural zones in indoor space 

b) Doors  

Doors represent an object that connects between two different spaces that are physically 

separated by a barrier.  

3.1.2. Generating the topological graph  

In this section, we describe the procedure for populating the data model with adjacency 

information. This involves constructing in the graph, nodes to represent decision points, links 

to represent connections between different decision-points (implicit or explicit direct segment 

from one zone to the other). Fig.4.4 visualizes the general principle of the generation of a 

topological graph step-by-step.  
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Figure 4. 4 Steps of the generation of a topological graph 

a) Generating the nodes 

Before the zones or doors are extracted, a building model is preprocessed as follows:  

(1) The internal spatial units of the building are represented as 3D objects with flat top and 

bottom faces that are parallel to the horizontal plane, and their facades are parallel to the 

vertical axis.  

(2) This step converts the 3D objects of the environment into a 2D map containing all 

constraints delimiting obstacles under the assumption that the environment is flat. This 

extracts all geometry belonging to the navigation area. After projecting the 3D units‘ vertices 

onto their corresponding floor planes, we determine the boundary points from the projection 

of the unit by eliminating the overlapping vertices.   

(3) A zone has a set of contour points defining its polygonal boundary. Then for each zone, 

we extract their counter points, compute their dimensions and generate a decision point at its 

center.   

(4) The last step involves the detection of doors, we are defining a door whenever a pair of 

Spaces is found to be adjacent and no physical barrier prevents direct traversal from one 

Space to the other.  
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b) Generating the arcs 

After extracting the environmental units, we must compute the topological relationships 

among the units, topological features represent the relations among the discrete 3D objects. 

The most important topological relation is the inclusion relations between decision points. 

The following contents illustrate how to generate topological features by exploring the 

shortest paths between any pair of access points in different cells.  

The approach to determine implicit path segments is based on the shapes of zones and the 

locations of access points. If a zone has one or more access points, and all of them can be 

directly reached from the center of the zone, we obtain multiple implicit path segments in the 

cell. The shortest path segments in this zone are all straight lines connecting its center and the 

access points. However, in the case, when an access point may not be directly reachable from 

the zone center (straight line connecting them is blocked by the boundary of obstacle), our 

approach to obtain the shortest path in this kind of situation is to select one of the boundary 

vertices on the contour of obstacle as an intermediate point, and partition the straight line into 

two segments. The partitioning process continues until all the generated segments do not 

intersect the boundary of obstacle. 

c) Semantic feature  

Nodes and arcs in connectivity graph model can be given specific characteristics in order 

to get more realistic representation of the geometry.  

Nodes can be given a capacity, e.g., a maximum number of agents allowed in the node, in 

order to restrict the number of people occupying a certain area of the geometry. Specifying a 

node capacity can be essential in order to avoid unrealistic overcrowding. 

Every edge represents a link between any two connected nodes, any two locations 

between two connected nodes in the graph are visible from each other in the indoor space and 

can reach each other without encountering an obstacle like a wall.  The length of each edge in 

a graph is the value of the attribute length stored with each path segment. It is calculated by 

using the Euclidean distance   x1 − x2 2 +  y1 − y2 2 where  x1, y1  and  x2, y2  are the 

coordinates of the two decision points. The length of the edge is used to calculate the time 

needed to traverse this edge during an evacuation. 
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3.2.  Quad-tree  

For generating a fine network model, we use a quad-tree approach to represent the 

environment. Quadtrees are generated by repeatedly dividing each grid cell in a square grid 

into four equally sized grid cells. The division process terminates when a grid cell contains no 

obstacles, or when it reaches some smallest allowable size [117]. 

At the root level, the bounding box represents the entire scene. The scene is then 

recursively divided into four sections stopping only when the maximum number of levels is 

reached or when the content of leaf nodes is entirely homogenous; containing exclusively 

accessible or inaccessible regions. The number of levels determines the overhead needed to 

find a leaf node. 

At the leaf level, spatial proximity information is maintained by storing links to the 

spatial neighbors of the leaf. This allows the path-finder to locate the next node easily.  

The leaf nodes of the quad tree therefore forms a directed graph whose edge stores the 

cost of moving from one node to the next. The connection between different leaf node is 

established by joining the waypoints on the neighboring leaves.  

4. Virtual Pedestrian Model 

One of the fundamental objectives for the research in virtual humans is to demonstrate 

realistic navigation behaviors in a crowd scene, to correctly simulate this behavior in real 

time, it is important to propose an accurate representation of a pedestrian that can be used for 

several applications with believable and coherent behaviors.  

Agents with the most complex visualization have 3D graphics body representations and 

are able to perform certain low-level actions, such as the playing of pre-recorded body 

animation sequences (such as gestures or changes of postures), walking to a specified 

location, looking at specified places. Higher-level behaviors are then composed of particular 

combinations of these low-level actions.  

Agents contain a set of internal attributes that can correspond to various psychological or 

physiological states needed to model particular scenarios (such as memory, fear, mobility, or 

level of injuries), a set of higher-level complex behaviors (such as wander, flee or follow 

path) and a set of rules determining selection of these behaviors. 

Agents can interact with both static and dynamic parts of the environment. Interaction 

between the agents and the static environment is done by a shared path-finder module which 



Chapter 4: Agent-based model for modeling crowd behaviors 

83 

 

allows agents to move around the scene in the correct way. Interaction between the agents and 

the dynamic objects is done via perceptual interactions (e.g. agent perceiving danger at a 

specified distance from the threat).  

4.1.  Pedestrian behavioral characteristics 

In this section, we review the most important pedestrian behavioral rules which are 

usually taken into account in crowd modeling to facilitate the simulation process. Modeling 

crowd dynamics requires to identify at least the most important behavioral rules pedestrians 

are subject to. It is plain that a pedestrian, as a complex living being, is basically 

unpredictable. Nevertheless, some guidelines can be drawn. 

 Pedestrian is an intelligent character, it has the ability to decide its behaviors in 

different specific contexts, this refers to the process by which the person evaluates the 

perceived information about the world around it, produces and or/ selects movements 

according to its own status.       

 Virtual pedestrian is defined as an independent individual. Pedestrian must display 

various behaviors in its unique style, for this it is characterized by set of individual 

parameters to differentiate it from others. Such diversities will be efficiently enough to 

result in differences in decision making process and movements. 

 Pedestrian is an active entity. This indicates a pedestrian acts automatically and has a 

specific strategy to make its own behaviors. Under normal condition, it needs to 

follow naturally a route without detours and to move with its own individual, most 

comfortable walking speed for reaching its goals in precise time. However in the panic 

situations, the pedestrian exhibits an aversion to walking faster than usual, taking 

detours more often or moving opposite to the desired walking direction.         

 Target. In most of the cases, people move in a bounded space and have a desired 

destination to be reached. This destination, together with the geometry of the space, 

defines a desired velocity field which is exactly the velocity people would keep if they 

were alone in the domain. The desired velocity can be very different whether the 

pedestrian under observation knows the domain or moves in a unfamiliar environment. 

The final velocity field pedestrians actually follow will be given by a suitable 

combination of the desired velocity field and the interaction velocity field, defined 

taking into account the following features of pedestrians. 
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 Repulsion. People want to avoid collisions, so they stop when they are too close to 

other people. Moreover, they have a tendency to avoid crowded regions, as well as to 

stay clear of walls and obstacles. Often mathematical models take into account this 

behavior by assuming the existence of a fictitious repulsive force which drives people 

toward clear spaces. 

 Attraction. Sometimes people have the tendency to follow other people or simply stay 

in touch. This is the case of social groups like friends, families, tourist groups, and so 

on. For example, small groups of walking friends want to reach their destination all 

together, while keeping eye-contact and speaking with each other. Instead, tourist 

groups want primarily stay in touch with their guide (i.e. the sole person who knows 

the destination) and then keeping the group itself cohesive. 

 Walking Direction and velocity. People have the tendency to keep the same direction 

of motion, since changing direction is tiresome and usually inefficient. This is one the 

reason which makes walking through a crowd an annoying task. A pedestrian 

determines the walking direction and velocity according to two principles, respectively 

[153]. 

o The desire for a fast walking. Naturally, pedestrians desire to reach the destination 

in a shorter time, and the direction pointing to the destination is preferred. 

However, obstacles and other pedestrians might locate on the direct path, and a 

trade-off has to be found between avoiding obstacles and minimizing detours from 

the most direct route. The desire for a fast walking inspires the determination of 

direction. 

o The requirement for a safe walking. A time period s is required for the pedestrian 

to slow down in case of an unexpected obstacle, and pedestrians should 

compensate for this delay by keeping a safe distance. The requirement for a safe 

walking inspires the determination of velocity. 

 The human navigation process is described typically through hierarchical movements 

in multiple layers of decision making, path planning determination and local path 

following. In everyday situation, the navigation behavior of pedestrians is usually not 

executed at one time. On the contrary, they divide the whole journey into multiple 

small parts in order to set many local intentions, and then find out a comfortable way 

to achieve each of these intentions by running a sequences of basic actions. It refers to 
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achieve a specific goal as a large-scale or macro-navigation, which includes path 

planning and way-finding behaviors to identify a rough route from the source to the 

destination. To perform the macroscopic movements, microscopic local movements 

such as collision avoidance and shortest path selection take place. 

4.2.  Physical and sociological pedestrian characteristics 

 Geometric representation of pedestrian: In order to generate a most realistic 

simulation, the pedestrians‘ external appearance was described by a complex 3D 

model (such as mesh model), the physical size of a human body determines the plan 

view of an average adult male body by considering only his body depth and his 

shoulder breadth. We did not make distinctions between the agents on this point, 

setting the dimensions to 0.5 x 0.3 m.    

 Visual Field. People have a limited visual field. It is usually assumed to be an angle of 

170° or 180°, where the central area is sharper than the lateral ones. The line which 

divides in two equal parts the visual field can coincide with the actual direction of 

motion or, instead, with the desired direction of motion, and it is obviously related to 

the head orientation. If, on the one hand, the assumption that people can see only in 

front is reasonable, on the other hand it must be noted that people can turn their head, 

thus perceiving almost all the space around, and that other senses than sight can be 

involved, like, e.g., hearing and touch. Visual field is also limited by any obstruction 

people can perceive, like walls, columns, and other pedestrians themselves. 

 Sensory Regions. In normal conditions, people do not interact with the others by 

contact, as mechanical particles do. Rather, they observe the surrounding space and 

take decisions. 

Sensory regions, which are in general different from the visual field, represent the 

portion of the space effectively considered before taking a decision, and can be 

different from need to need. For example, pedestrians are mainly repulsed by other 

people walking both close and in front to them, or by people walking on a ―collision 

course‖, while they are little or no repulsed by far-away pedestrians, even if they are in 

the visual field. Then, repulsive sensory region is usually short-range and anisotropic. 

Attraction, instead, can be much more extended in space, even up to the whole visual 

field. 
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Sensory regions are one of the main ingredients of the mathematical models and 

sometimes make the difference among them. Indeed, changing the shape of the 

sensory regions defined for the various tasks leads to major differences in the 

simulated pedestrian behavior. 

 Pedestrian Personal Space: Originating from psychological studies, personal space 

indicates the invisible area surrounding individuals. The concept of personal space is 

considered as a social factor that strongly impacts communication or contact between 

people. This free zone, which has the shape of a parabolic curve, is influenced by 

several parameters such as the pedestrian body‘s size, his wanted walking speed, the 

density of the surrounding population and his acquaintances with his neighbors (social 

relations, familiarity, etc.), etc.  

 Position. These are the location coordinates of a specific point related to an origin. 

This is not as simple as it might seem, because bodies have a volume, so which exact 

position a body has, is a controversial discussion. Normally the centre of mass is used 

to determine the position, but other points can be used depending on the approach. In 

order to calculate the movement, we need to know the rate of change of the position, 

both the magnitude and the direction. 

 Velocity. This is the current velocity that an agent possesses and, contrary to the 

strength, this attribute has both magnitude and direction. This is the rate of change of 

the agent‘s location; thus, it is used to obtain the next position. It is calculated with the 

acceleration that the total force produces on the agent. 

 Maximum Speed. This is the higher punctual speed that an agent can move in the 

world with. Do not confuse this with how fast an agent can change of physical state, 

which is related with forces and mass (acceleration). Consider the next example: a 

cheetah can change from 0 to 100 km/h in a matter of seconds (high acceleration); on 

the other hand, a high-speed train, which needs a lot of force (strength with direction) 

to move such a big mass, has much smaller acceleration, but it can travel at 200 km/h 

(high maximum speed). 

 Vision Radius. This property determines which portion of the world the agent is 

aware of. This is mainly used to calculate the other agents that one agent can perceive, 

which will conform its neighborhood. Therefore, an explorer may have a large vision 
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radius, meanwhile a blind agent will have vision radius 0, and will need to receive 

information about the world. 

4.3.  Layered architecture for pedestrian navigation 

To model the navigation ability of pedestrians from the origin to the destination, and to 

achieve a specific goal subject to different constraints, it is useful to consider this task as a 

sequential decision problem following the decomposition principle, which consists to 

decompose the system to smaller subsystems with high cohesion is each subsystem and loose 

coupling between subsystems. High cohesion means that the constituted units in the 

subsystem perform similar tasks and are related to each other. Loose coupling means that 

changes to one subsystem will not have high impact on other subsystems.  

Layering techniques are often used to achieve loose coupling. A layer represents a level 

of abstraction which only provides services to subsystems of a higher layer. There are many 

advantages of layering: easy identification of relationships eases the maintenance and the 

update of systems. 

Applied with the layering techniques, our proposed framework consists of four-layer 

architecture with each layer focusing on some specific functionality, as shown in Fig. 2.1. 

Each layer focuses on some specific functionality and corresponds to solving a different 

problem [154]. Fig.4.5. illustrates a common architecture. 

The four levels shown correspond to four aspects of crowd simulation: 

 High-level planning: decides where each pedestrian wants to go – his objective. 

 Global planning: determines the plan for reaching the objective, producing a preferred 

velocity at each time step. 

 Local interaction: tactically adapts the plan to accommodate for unplanned, dynamic 

obstacles by modifying the preferred velocity, it computes a velocity that deals with 

local hazards, e.g. to prevent collisions with other agents. 

 Basic behavior: makes the simplest behaviors that a pedestrian can conduct. This layer 

refers to those pedestrian‘s behaviors that are not influenced by the presence of other 

individuals in the environment nearby [155]. 

The first layer, deciding where each pedestrian wants to go, his objective, belongs to the 

domain of high-level behavior. The selection of goals can be determined in a number of ways.  
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The second layer, finding a path to the objective (or goal). It uses the agent‘s current goal 

position to compute a geometric route through the environment. For any given start and goal 

positions, there is typically not a unique path. It is generally accepted that pedestrians seek to 

achieve the path with the lowest ―cost.‖ This cost can refer to distance, travel time, etc. As 

with the previous layer, this layer is also evaluated infrequently. A path only needs to be 

generated when the ultimate goal changes, or the environment changes in a way to change the 

cost of the planned path, rendering the planned path invalid. For a valid path, some point on 

the path can be used as an immediate goal for an agent – the point toward which the agent 

should strive at that time step. 

The third layer, adapting the plan based on local conditions, is typically the core of the 

pedestrian model. This level is also referred to as ―local interaction‖. It describes short and 

medium-range influence of nearby walkers on a generic representative individual. It take into 

account the visual field of pedestrians and their sensory region, namely, a subset of the visual 

field where the presence of other people actually affects the walking dynamics. 

Basically, the fourth layer consists to compute individual motion for a virtual pedestrian, 

it describes how agents turn and move when transforming the global and local movement 

decisions into actual motion. This incorporates agent traits like minimum and maximum 

values for speed, turn rate, acceleration and deceleration, whether the agent can move 

backwards or sideways, and how it is oriented in space. The motion should be physically 

accurate and consistent with the trajectory the pedestrian is traveling [155]. 

 

 

 

 

 

 

 

 

 

Figure 4. 5 Hierarchical model for pedestrian behaviors 

High Level Planning Physical attributes 
sociological 

attributes 

goals and needs 

personal  

Global Planning Macro-navigation Micro-navigation 

Local 

interactions 

collision 

avoidance 

Obstacle 

avoidance 

Physical interactions 

pedestrian-pedestrian  

pedestrian-Environment 
 

Basic behaviors 
Keeping 

direction 
keeping velocity 

Changing 

direction 
Changing 

velocity 



Chapter 4: Agent-based model for modeling crowd behaviors 

89 

 

These layers of abstraction communicate at their interfaces. The output of one layer 

serves as the input to the next layer down. Typically, the first layer produces a goal position to 

be used by the second layer. The second layer produces a shortest path as a sequence of 

intermediate goals. These intermediate goals serve as the basis for a time-dependent function 

of preferred velocity for each agent – it is a velocity vector pointing to a point on the path 

with a magnitude equal to the agent‘s preferred walking speed. This preferred velocity serves 

as an input to the local navigation algorithm. The third layer provides instantaneous velocity 

to the final layer, providing sufficient information for the motion generation to update the 

virtual human‘s skeleton. 

4.3.1. Basic behavior 

The basic behavior level consists of a set of pre-defined rules (behaviors), which 

determine how an agent will act under certain situations. The agent‘s status, personal 

parameters and its perception will decide which rule to apply and to what extent. By adopting 

the steering behaviors, some basic rules (e.g. seek to, stop, avoid and keep distance from) 

have been established in our model. More complex behavior (e.g. following, grouping and 

clogging) can be achieved by the combination of the basic rules. 

a) Speed calculation 

Pedestrians move with an individual speed, taking into account the situation, sex, age, 

surroundings, and so on. We assume that only conditions in front of the person influence on 

speed. In this case, the speed is computed as follow: 

𝑣 𝑖 𝑡 + 1 = 𝑣 𝑖 𝑡 + 𝑎 𝑡 ∗ ∆𝑡             4.1  

𝑎 𝑡 =  𝑓 𝑤
𝑤

+  𝑓 𝑗
𝑗

                     4.2  

𝑓 𝑤  means the interaction with the obstacle and 𝑓 𝑗  stands for the virtual force among 

individuals. 

In accordance with the concept of social force model, this behavior reflects the 

pedestrian‘s willingness to achieve the desired velocity. At a fixed time t, the pedestrian Pi is 

at the position xi(t), and moves with velocity v  i(t). This velocity is limited by a maximum 

speed ui
max , i.e.,  vi(t) ≤ ui

max . 
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If not disturbed, this pedestrian will walk into the desired direction e  i(t) with certainly 

desired velocity v    i
des (t). A deviation between the actual velocity v  i(t) and the desired speed 

v    i
des (t) due to fluctuation can be modified by relaxation time ∆t. 

𝑑𝑣 𝑖 𝑡 

𝑑𝑡
=
𝑣𝑖
𝑑𝑒𝑠  𝑡 𝑒 𝑖(𝑡) − 𝑣 𝑖(𝑡)

∆𝑡
           4.3  

𝑣 𝑖 𝑡 + 1 = 𝑣 𝑖 𝑡 +
𝑑𝑣 𝑖 𝑡 

𝑑𝑡
          4.4  

Desired velocity presents a desired speed 𝑣𝑖
𝑑𝑒𝑠  which manifest as free moving speed 

without external influence, and a desired direction 𝑒 𝑖 . ∆𝑡 is defined as a characteristic time, 

i.e., relaxation time, represents the capability of an individual to adjust his/her velocity. The 

smaller value of τ means the pedestrian is faster to adjust his velocity to desired velocity. 

b) Keeping the direction 

A given pedestrian has an intention to reach a location area to realize a specific activity. 

This covers people that had intended to move and do not change their activity. In the 

simulation of the agents‘ motion we also need to take their goal vectors into account. 

This covers people that had change continuously its current position by keeping its 

desired direction and its preferable velocity. Generally, a pedestrian dislikes deviating from 

the direct path and the direction is introduced for the pedestrian who chooses the most direct 

path. The destination direction is given as, 

𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =
 𝑃𝑑𝑒𝑠 − 𝑃𝑖 

 𝑃𝑑𝑒𝑠 − 𝑃𝑖 
      4.5  

where Pi and Pdes  are the location of the pedestrian i and the location of the destination of 

pedestrian i, respectively. 

Pi t + 1 = Pi t + vi t 𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑  t × ∆t         4.6  

c) Changing the direction 

The desired direction is defined by the current position and the goal position in the 

environment, toward which pedestrians desire to move. However, pedestrians change its 

desired direction vector dynamically due to the stimulus of surrounding environment.  

The desired direction is determined by choosing a gnew as the objective of detour, and it is 

given as 
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𝑒 𝑛𝑒𝑤 =
 𝑃𝑔𝑜𝑎𝑙 𝑛𝑒𝑤 − 𝑃𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛  

 𝑃𝑔𝑜𝑎𝑙 𝑛𝑒𝑤 − 𝑃𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛  
       4.7  

where Pi and 𝑃𝑔𝑜𝑎𝑙 𝑛𝑒𝑤  are the location of the pedestrian i and the location of the new 

destination gnew  of pedestrian i, respectively. 

4.3.2. Pedestrian Interactions  

Pedestrians interact with each other and with the environment around them while 

walking. These interactions play an important role in the study of their walking behavior. 

Pedestrians observe the environment when performing the task of walking.  

That is, each pedestrian is assumed to interact with those pedestrians in her scanning area 

and therefore will check on them and their movement. The scanning area is an ellipse which is 

larger in front of the pedestrian and smaller in the sides. However, the size of the scanning 

area changes depending on the traffic condition and density. Naturally, there is a strong 

cooperation between pedestrians that makes walking feasible. A single pedestrian faces 

several decision situations while walking. Even though these decisions are strongly related in 

reality, each of them can separately be associated to a behavioral mode.  

In pedestrian crowds, one may distinguish at least three different types of interactions: 

 Obstacle avoidance. This behavior gives an agent the ability to maneuver in the virtual 

environment without colliding with obstacles or other agents. Its implementation is 

achieved by monitoring an agent‘s sensory input and reacting to possible collisions. 

For example, if an agent detects obstacles both in front and on the right but not on the 

left, then it steers toward the left.  

 Collision avoidance is the basic and most common interaction among pedestrians. It 

describes the strategic adaptation of walking speed and direction to avoid an upcoming 

collision with another person. Collision avoidance is at the origin of the lane formation 

phenomenon in bidirectional flows, and also gives rise to stop-and-go waves in 

unidirectional flows at intermediate density. 

 Physical interaction takes place when people are in physical contact with one another, 

at high density levels. Unlike collision avoidance that is based on intentional 

navigation strategies driven by visual information, physical interaction results in 

unintentional movements based on pushing and physical pressures exerted among 



Chapter 4: Agent-based model for modeling crowd behaviors 

92 

 

densely packed people. Physical interaction is typically involved in the emergence of 

crowd turbulence. 

a) Obstacle avoidance behavior 

Velocity Obstacles (VO) [48] is a well defined and simple technique that has been widely 

used for safely navigating agents among static obstacles. VO represents a set of agent 

velocities that would result in a collision with an obstacle that moves at a certain velocity, at 

some future time.  

Each agent is represented by a radius and a velocity vector. During the planning phase of 

each step, the following steps are performed for each agent: 

1) The current agent's radius is reduced to a point 

2) Each of the other agents radii in the scene are increased by the value of the current 

agent's radius. 

3) A velocity obstacle shape is created for each of the other agents in the scene. This is 

done by taking the position of the current agent and finding a point on the circle 

created by the other agent's position and its increased radius that creates a line that is 

tangent to the circle created at the other agent's position. There are two tangent lines 

from this point to that circle. Both of these tangents make up the velocity obstacle 

shape.  

4) Transform the Velocity Obstacle from step 3 in space by the velocity of the other 

agent. 

5) Choose a velocity that is outside of the Velocity Obstacle created from step 4. 

b) Collision avoidance behavior 

One of the fundamental problems needed to be handled in crowd simulation is how 

agents solve collision with both dynamic obstacles. The underlying base simulation of our 

algorithm is the Reciprocal Velocity Obstacles, or RVO, algorithm presented in [22]. RVO is 

a traditional rule based algorithm that uses a series of rules to navigate an agent within a 

crowd. 

RVO [22] performs local collision avoidance by computing a space of collision-free 

velocities for an agent with respect to a number of neighboring agents. The ith agent, Ai, 
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computes a half plane for each of its neighboring agents, Aj , (and a symmetric half plane for 

agent Aj  with respect to agent Ai.)  

This algorithm is then applied to each of the other objects and agents in the scene. The 

union of all of the velocity obstacles is then computed. It is the set of final vectors that could 

result in a collision. Once that final set of velocities has been determined, collision free 

movement can be guaranteed by choosing a velocity outside of that velocity obstacle.  

4.3.3. Global planning level  

The navigation behavior is a cognitive process that is required to successfully guide the 

virtual pedestrians from a source to a destination where they want to go. Usually, it should be 

able to find the optimal paths to destinations, which are dependent upon distance, time, or 

some other criterion such as simplicity or avoid passing congested zones. These algorithms 

will depend on the context, situation type, etc. 

The navigation process consists of two stages: finding a sequence of nodes that efficiently 

connects the source and destination (Macro-navigation); finding the shortest path through 

each nodes (Micro-navigation). 

a) Macro-navigation 

The task of macro-level navigation model consists to given the answer to ―how to move 

from a region to another in the indoor environment‖. Navigation approaches base on network 

topology models describing connectivity and adjacency between interior spaces such as rooms 

and hallways. 

In this level, the connectivity graph is used to plan a rough path to reach a specific target 

in a complex environment. This generates an efficient sequence of intermediate nodes 

connecting the source and destination.  

 Firstly: Identify the nodes to which the starting location and the final destination 

belong are.  

 Secondly, a certain optimal routing algorithm (e.g. shortest, fastest or safest) is used to 

determine which nodes pedestrians will traverse in current circumstance. With each 

graph‘s edge weight set to the distance between adjacent decision points, the node 

sequence is determined by applying A-star as a shortest-path graph search algorithm. 
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b) Micro-navigation 

After specifying the zones which should be accessed, the routing in a zone can start. 

When a pedestrian arrives at the door attached to the next zones, the navigation route is 

computed and provided. There are several steps to acquire the route:  

 Step 1: determine the start cell and the target cell in this zone. After that, detect 

visibility between them.   

 Step 2: if the two cell are mutually visible, then go to the next cell; if it is not, go to 

step3;  

 Step 3: use a shortest path algorithm to find out the shortest path between the start and 

target cells. 

5. Conclusion 

We have adopted an agent-based approach to the modeling of pedestrians and proposed a 

hierarchical navigation model based on observations about real pedestrians.  

The building space of simulation environment was represented by using two spatial 

representations,  fine graph used to model detailed interaction between agents, and the coarse 

graph approach used to provide the connectivity between the components of the environment.   

The pedestrian behaviors in the model were implemented by layered framework, each 

layer is responsible for a different stage of the process, and has to communicate with the 

others. This framework is  generic and flexible to employ different implementations within 

each module for different simulation purposes and scenario requirements. The modular 

approach ensures that the changes in one module will have minimum effects on other 

modules. 

Moreover, various physical, psychological and behavioral factors have been introduced to 

agents to explicitly and naturally reproduce pedestrian behaviors for different environments. 
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Chapter 5: Continuum model for crowd 

dynamic modeling 

1. Introduction 

Crowds are ubiquitous in the real world, and simulating their motion is a crucial problem 

in computer graphics and animation since the crowds of people exhibit behavior of enormous 

complexity and subtlety. A crowd model must not only include individual human motion and 

environmental constraints such as boundaries, but also address a bewildering array of 

dynamic interactions between people. Further, the model must reflect intelligent path planning 

through this changing environment. Humans constantly adjust their paths to reflect congestion 

and other dynamic factors.  

Virtually all previous work in the graphics and crowds literature has been agent-based. In 

agent-based approaches, every single agent has its own computation of future behavior. Path 

planning and collision avoidance is performed for each agent in the scene. This approach is 

the most natural one since it is the way that real crowds work: each human makes his own 

motion decisions according to only the information he has, such as visibility, information 

about the destination, and proximity. However, this approach has the disadvantage that when 

simulating very dense crowds, it requires large computational time. 

Here, I focus specifically on the problem of simulating the dynamics of large, dense 

crowds in real time. Such crowds exhibit a low interpersonal distance and a corresponding 

loss of individual freedom of motion. This observation suggests that the behavior of such 

crowds may be modeled efficiently on a coarser level, treating its motion as the flow of a 

single aggregate system. 

This chapter presents a real-time motion synthesis model for simulating large and dense 

crowds. We view crowds as fluids, and adopt fluid dynamic on the system. This formulation 

yields a set of dynamic density and velocity fields that represent the crowd distribution and 

guide all individual motion simultaneously. Our approach unifies global navigation, 

congestion avoidance, environment interactions and other specific cases into optimal 

equations of fluid dynamic. Global path planning is pre-computed and constant before 



Chapter 5: Continuum model for crowd dynamic modeling 

96 

 

environment changes. The status of crowd flow is recorded in the coarse grid without 

computing or updating most of the individuals.  

Locally, the motion of each individual in sight is driven by a simple equation considering 

interactions with his neighbors. 

2. Continuum model principles 

In this section we develop a mathematical model of crowd dynamics. We begin with a set 

of observations about crowd flow. Crowd behaviors are consistent at the macro with many of 

the characteristics of fluid dynamics found, such as flowing from high density region to low 

density region, pressure being interrelated to the density of the fluid, convective acceleration 

caused by a (possibly steady) change in velocity over position, acceleration caused by 

external forces, etc. 

The foundation of our continuum model is three principles. The first one is common for 

all continuum pedestrian flow models. It consists of a conservation law and the continuum 

assumption. The second principle consists of defining the environment constraints that affect 

the common behavior of pedestrians and their interactions. The third principle relates to path 

choice strategy of pedestrians. 

They form the basis of our continuum modeling approach. The principles are as follows: 

 Principle 1: assumes that pedestrians can be aggregated and that the traffic state can 

be described by aggregate continuum variables such as density, flow and average 

velocity. Principle 1 is the single undisputed principle in pedestrian flow modeling. It 

states that pedestrians are conserved. This means that pedestrians can only enter the 

system through inflow at the boundaries and that they only leave the system through 

outflow at the boundaries. Pedestrians are not created in the system itself, nor do they 

disappear. To the best of our knowledge, this principle is included in all traffic flow 

models. 

 Principle 2. Pedestrian movement is determined by a field that affects their walking 

direction and speed. Every considered aspect (like the planned path to a target, 

obstacles like walls or other pedestrians, and so on) has an effect on the environment 

of the pedestrians generating an interaction field of distant forces. The data described 

by this field can be represented by partial differential equations (PDEs). 
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 Principle 3. The heuristics that apply in pedestrian traffic should be sufficiently simple 

in order to be accessible by the majority of pedestrians. If several simple strategies are 

considered, the one that proves most effective is likely to be preferred since 

pedestrians are supposed to seek efficiency, too. 

3. Macroscopic Modeling framework 

Our proposed macroscopic model is based on a set of pedestrian-specific coupled partial 

differential equations. The dynamics of crowd obey the mass conservation principle, the basis 

of our proposed model is the flow conservation equation which describes the dynamic 

evolution of pedestrian density.    

We adopt a path choice strategy, in which the walking direction of pedestrian is 

genuinely modeled by accounting two basic contributions: on the one hand, the desire to 

follow the shortest path to a specific destination; on the other hand, the necessity of avoiding 

overcrowded areas. 

Pedestrians moving from one direction to the other, adapt their velocity to the new local 

perceived density conditions, namely they decrease speed for increasing perceived density 

and increase it for decreasing perceived density. 

3.1.  Macroscopic Pedestrian Characteristics 

The macroscopic characteristics concern about a group or a crowd of pedestrians rather 

than individuals. Macroscopic characteristics can describe the overall motion features of a 

crowd from different aspects such as the flow rate, dominant direction, and the transitions of 

different motion patterns over time for the whole crowd.   

In this thesis, fundamental characteristics of pedestrian crowd are flow, speed and 

density. These characteristics can be observed and studied at the macroscopic levels. 

Macroscopic study may be selected for high density, large scale systems in which the 

behavior of groups of unit is sufficient.  

3.1.1. Average moving speed 

is an important parameter of pedestrian movement. Relevant studies may help calibrate 

the proposed model since individual pedestrian's speed will be influenced by the average 

moving speed of a crowd under certain situation (e.g., in a dense crowd). Several studies have 
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attempted to describe the average moving speed of pedestrians depending on various factors 

such as the physical ability, social position (in a crowd) and the crowd density.  

There are two common ways to compute the average or mean speed, which is called time 

mean speed and space mean speed. The time mean speed is the average speed of all pedestrian 

passing a line on the pedestrian trap over a specified period of time and it is calculated as an 

arithmetic average of the spot speed or instantaneous speed, that is 

𝑣  𝑡 =
 𝑣𝑖 𝑡 
𝑁
𝑖=1

𝑁
                                           (5.1) 

where N is the number of observed pedestrian and vi  is the instantaneous speed of the ith  

pedestrian. The time mean speed, v , is taken as an average value over specified duration of 

time corresponding to the observation of flow, density, space mean speed and other 

characteristics (e.g. every 5 minutes of observation). If the walking distance of all individual 

pedestrians, ωi, during fixed observation periods T can be gathered, the time mean speed can 

be also be calculated using 

𝑣 =
 𝜔𝑖
𝑁
𝑖=1

𝑁 ∙ 𝑇
                      (5.2) 

The space mean speed is the average speed of all pedestrian occupying the pedestrian trap 

over a specified time period and calculated based on the average travel time for the pedestrian 

to traverse a fixed length of a pedestrian trap, L . If ti
out  and ti

in  represent time of pedestrian ith 

to go out and go in the pedestrian trap, the space mean speed, u, is calculated as 

u =
L

t 
                     (5.3) 

Where the denominator is the average travel time 

t =
  ti

out − ti
in N

i=1

N
                    (5.4) 

3.1.2. Crowd density  

Crowd density is one of the other factors affecting human movement and behavior, 

particularly in a complex scenario where a large number of people is involved.  

Crowd density refers to the number of people per square meter for a stationary or moving 

crowd. Pedestrian density increases (i.e. interpersonal distances lessen) around particularly 

attractive places, and it decreases with growing velocity variance. 
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In order to determine the density, in general a rectangular area is defined and the number 

of pedestrians within this area is counted. The instantaneous density at time t is given by 

ρ t =
N

 A 
                                   (5.5) 

with N the number of pedestrian at the moment t that reside within the measurement area A. 

ρ(t) can be averaged over a time period ∆t as follows: 

 ρ ∆t =
1

∆t
 ρ t  dt

∆t

              (5.6) 

3.1.3. Pedestrian flow rate  

Pedestrian flow rate denoted by q is a result of a movement of many individuals. 

Pedestrian flow rate or volume is defined as the number of pedestrian that pass a 

perpendicular line of sight across a unit width of a walkway during a specified period of time 

and normally has a unit of ped/min/m (number of pedestrian per minutes per meter width). 

Pedestrian volume is useful for examining the trend and planning facilities, evaluating safety 

and level of service. If w and L denote the width and length of the pedestrian trap 

respectively, and N indicates the number of pedestrians observed during the observation time 

T , then the flow rate can be calculated as 

q =
N

T ∙ w
                          (5.7) 

Reciprocals of these variables have different physical interpretations and can also be used 

to represent traffic states. Reciprocal variables are summarized in Table 5.1. 

Table 5.1 Definition of physical variables 

Variable Reciprocal Measurement 

Spacing Reciprocal of density 
Average distance between 

two successive pedestrians 

Headway Reciprocal of flow 

Average time between two 

successive pedestrians 

passing a fixed point 

Pacing Reciprocal of speed 
Time spent per unit length of 

road 
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3.2.  Conservation Law 

The models for traffic, whether they are one-equation or system of equations, are based 

on the physical principle of conservation. When physical quantities remain the same during 

some process, these quantities are said to be conserved.  

Putting this principle into a mathematical representation will make it possible to predict 

the densities and velocities patterns at future time.  

In our case, the number of pedestrian in a specific section [x1, x2] is our physical 

quantities, and the process is to keep it fixed (i.e., the number of pedestrians coming in equals 

the number of pedestrians going out of the segment).  

Considering pedestrians are moving from left to right of the section as show in Fig.5.1. 

The number of pedestrians within [x1, x2] at a given time t is the integral of the crowd density 

given by 

N =  ρ x, t  dx
x2

x1

             (5.8) 

In the above equation, it is implied that the number of people within [x1 , x2] is at 

maximum when crowd density is equal to jam density ρm  which is associated with the 

maximum number of pedestrians that could possibly fit in a unit area. 

The number of pedestrians can still change (increase or decrease) in time due to 

pedestrian crossing both ends of the section. Assuming no pedestrians are created or 

destroyed, then the change of the number of pedestrians is due to the change at the boundaries 

only. Therefore, the rate of change of the number of pedestrians is given by 

dN

dt
= fin ρ, v − fout  ρ, v                (5.9) 

since the number of pedestrians per unit time is the flow f ρ, v .  

Combining (8), and (9), yields the integral conservation law  

d

dt
 ρ x, t dx

x2

x1

= fin ρ, v − fout  ρ, v             (5.10) 
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Figure 5. 1 One-dimension Flow 

This equation represents the fact that change in number of entities is due to the flows at 

the boundaries. Now let the end points be independent variables (not fixed with time), then 

the full derivative is replaced by partial derivative to get 

∂

∂t
 ρ x, t dx

x2

x1

= fin ρ, v − fout  ρ, v             (5.11) 

The change in the number of pedestrians with respect to distance is given by  

fin ρ, v − fout  ρ, v = − 
∂f

∂x
 ρ, v dx

x2

x1

                  (5.12) 

and by setting the last two equations equal to each other, we get 

  
∂ρ

∂t
 x, t +

∂f

∂x
 ρ, v   dx

x2

x1

= 0              (5.13) 

This equation states that the definite integral of some quantity is always zero for all 

values of the independent varying limits of the integral. The only function with this feature is 

the zero function. Therefore, assuming ρ x, t , and q x, t  are both smooth, the conservation 

law is found to be 

ρt + fx ρ, v = 0                        (5.14) 

We need to mention that this equation is valid for pedestrian flow and many more 

physical quantities. 

3.3.  Flow 

In this section, we will illustrate the close relationship between the three variables: 

density, velocity and traffic flow. Suppose there is a crossing section with pedestrians moving 

with constant velocity v0, and constant density ρ0 such that the distance between the 

pedestrians is also constant as shown in the Fig.5.2 (a).  
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Now let an observer measure the number of pedestrians per unit time τ that pass him (i.e. 

traffic flow f). In τ time, each car has moved v0τ distance, and hence the number of 

pedestrians that pass the observer in τ time is the number of pedestrians in v0τ distance, see 

Fig.5.2 (b). 

 

 

(a) 

 

(b) 

Figure 5. 2 (a) Constant flow of pedestrians, (b) Distance traveled in 𝝉 hours for a single 

pedestrian. 

Since the density ρ0is the number of pedestrians per unit area and there is v0τ distance, 

then the pedestrians flow is given by 

f = ρ0v0                   (5.15) 

This is the same equation as in the time varying case, i.e., 

f ρ, v = ρ x, t v x, t                   (5.16) 

To show this, consider the number of pedestrians that pass point x =  x0 in a very small 

time ∆t. In this period of time the cars have not moved far and hence v x, t , and ρ x, t  can 

be approximated by their constant values at x =  x0 and t =  t0. Then, the number of 

pedestrians passing the observer occupy a short distance, and they are approximately equal to 

ρ x, t v x, t ∆t, where the traffic flow is given by (5.16). 

F(ρ, x, y, t)  =  ( f1(ρ, x, y, t), f2(ρ, x, y, t)) (ped/(m · s−1)) is the flow vector and f1, f2 

represent the flow in x- and y directions, respectively;  denotes a 2D continuous walking 



Chapter 5: Continuum model for crowd dynamic modeling 

103 

 

facility; T (s) is the time horizon of analysis. Flow intensity or the flow-density relationship, 

 F(ρ, x, y, t) , is defined as 

 F(ρ, x, y, t) =  f1
2 ρ, x, y, t + f2

2 ρ, x, y, t  

3.4.  Desired direction of motion 

We now proceed to describe how the path choice strategy is specified. The paths chosen 

by pedestrians are considered to be the consequence of a series of potentially complicated 

decision making processes undertaken by pedestrians in determining how to travel from the 

origin (x, y) to their goal, based on the information available.  

In practice, people find and travel the actual minimum distance path to their destination. 

However, this preference is tempered by a desire to avoid congestion and other time-

consuming situations. This can be seen as the classic trade-off between energy and time 

minimization. Additionally, people prefer to minimize their exposure to areas of high 

―discomfort.‖  

At this step we describe a path choice strategy by defining C(x, y, t) (in s/m) as the local 

walking cost per unit distance of movement at location (x, y) and time t. Here C is computed 

in a similar manner as that proposed by Treuille et al. [28], based on an instantaneous 

equilibrium travel cost.  

The cost distribution C(x, y, t) is thus defined as to minimize a linear combination of the 

following three terms:  

 Distance. Distance is a common factor used by pedestrians when making a path choice 

strategy and is the primary heuristic in many search based strategies. Pedestrians will 

choose the route with the shortest distance.  

 Time. Time is another factor that affects the path choice strategy. A person must 

choose the shortest path that takes less time  

 The discomfort felt, per unit time, along the path. 

Mathematically, the three hypothesis mean that, given the set Π of all paths from a 

person‘s location x to some point in the fixed goal G, that person must choose the path P ∈ Π 

that minimizes 
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Cp = WL  1 ds

p

+ WT  1 dt

p

+ WD  Discomfort  dt  

p

                        

= WL  1 ds

p

+ WT  
1

𝑣(𝑡)
 ds

p

+ WD  
Discomfort

𝑣(𝑡)
  ds 

p

 

by dt =
ds

𝑣(𝑡)
, then 

Cp =  
𝑣(𝑡) ∙ WL  + WT  +  WD ∙ Discomfort

𝑣(𝑡)
 ds            (5.17) 

where the W L,T,D  are the length, time and discomfort weight respectively. 

These weights can be set by the user. P is the path, and Discomfort is the discomfort 

suffered on the path, while Speed is the speed greater than zero that the agent achieves along 

the path. An integral with ds means that it is taken with respect to the path length, and dt 

indicates the same for the time spent on the path. According to the requirements an agent will 

pick the path that minimizes this function. 

3.5.  Optimal Path Computation 

We now show how potential functions can be used to find optimal paths given the path 

cost described in equation (5.17).  

A generalized cost potential function ϕ(x, y, t) is introduced over the scene such that the 

potential function, at a specific location x, represents the cost of reaching the goal through the 

optimal path.  

Intuitively, at any location, a person should move in the negative direction of the gradient 

of this function, as this will decrease cost of the path most rapidly.  

The potential function e ϕ satisfies the eikonal equation: 

 ∇𝜙 𝑥, 𝑦, 𝑡  = 𝐶𝑝               (5.18) 

The potential field ϕ is assigned with the value of 0 inside a goal, and the other grid cell 

values are approximated by solving a finite difference approximation to the above equation 

outwards from the goal position. 



Chapter 5: Continuum model for crowd dynamic modeling 

105 

 

3.6.  Desired direction 

Finally, we compute the vector field which defines the movement direction. Following 

the works of Hughes [98], we assume that the pedestrians movement is opposite to the 

gradient of a scalar potential ϕ, that is 

𝜇 = −
∇𝜙

 ∇𝜙 
                       (5.19) 

where  the potential ϕ corresponds to an instantaneous travel cost which pedestrians want to 

minimize and is determined by the eikonal equation (5.18). 

3.7.  Speed 

The function V(t) characterizes how the speed of pedestrians changes with density. 

Maximum permissible speed is a density-dependent term. Various speed-density relations are 

available in the literature.  

At low densities, agents should move freely at the maximum speed possible. As indicated 

in Continuum Crowds, the maximum speed allowed could depend on the topography of the 

terrain. As an example, agents could slow down when moving up a slope. Whereas at high 

densities the agents should slow down, therefore density constraints are applied, the speed is 

dominated by the movement of the nearby people, preventing an agent from trying to move in 

the opposite direction of the movement in a very dense region. At medium densities, the speed 

is computed by interpolation. This definition of permissible speed supports lane formation 

between the agents moving in the same direction. 

We assume that the pedestrian speed v(x, t) depends on the pedestrian density  

𝑣(𝑥, 𝑡)  =  𝑉(𝑥, 𝜌(𝑥, 𝑡)) 

where 𝑉(𝑥,𝜌(𝑥, 𝑡)) is the function of the pedestrian speed with respect to the density and 

location dependence. 

The speed function V(x, ρ(x, t)) ∶  [0, ρmax ]  →  R+ is assumed to be decreasing. For our 

simulations we choose the exponential dependence 

𝑉 𝑥,𝜌 𝑥, 𝑡  = 𝑣𝑚𝑎𝑥 𝑒
−𝛼 

𝜌
𝜌𝑚𝑎𝑥

 
2

              (5.20) 

where 𝑣𝑚𝑎𝑥  is the free flow speed, 𝜌𝑚𝑎𝑥  is the congestion density and 𝛼 is a positive constant. 
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4. Numerical approach 

The development of numerical schemes for the solutions of the systems (5.14), (5.17) and 

(5.18) is dealt with in this present section by using some first order accurate methods.  

4.1.  Numerical procedure 

The solution space (x, y) is divided into I × J non-overlapping control volumes 

constructing an uniform grid.  

Here, Iij = Ii × Ij, Ii =  [x
i−

1

2

, x
i+

1

2

 ] and Ij =  [y
j−

1

2

, y
j+

1

2

 ]. The centers of Ii  and Ij  are 

denoted by xi =
1

2
 x

i−
1

2

+ x
i+

1

2

  and yj =
1

2
 y

j−
1

2

+ y
j+

1

2

 , respectively, and let ∆x and ∆y two 

constant steps for space 

∆𝑥 = 𝑥𝑖+1 − 𝑥𝑖 , ∆𝑦 = 𝑦𝑗+1 − 𝑦𝑗  

The approximations of the density ρ(x, y, t) and cost potential ϕ(x, y, t) are stored at the 

centers of the control volumes. 

 

 

 

 

 

 

 

 

 

Figure 5. 3 Two-dimensional grid. 
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4.2.  Numerical methods for hyperbolic conservation laws and traffic 

flow 

In this section we focus our attention on numerical methods to approximate hyperbolic 

conservation laws. Usually each mathematical model needs an individual numerical treatment 

in order to reflect all its physical features. 

When an equation cannot be solved, we can use a variety of numerical methods such as 

 Finite elements 

 Finite volumes 

 Finite differences 

For conservation laws, finite differences are often used. These aim to construct an 

approximate solution ρn+1 at time n + 1 from previous solutions ρn , ρn−1 etc depending on 

the level of the scheme. 

In this subsection, we assume that the total perceived instantaneous travel cost ϕ(x, y, t) 

is known for all (x, y) and time t. The semi-discrete version of the first-order cell-centered FV 

scheme for Eq. (5.14) can be defined as  

𝑑𝜌 𝑖𝑗

𝑑𝑡
+

 𝑓 1 𝑖+1
2

 𝑗
− 𝑓 1 𝑖−1

2
 𝑗


+

 𝑓 2 𝑖 𝑗+
1
2

− 𝑓 1 𝑖 𝑗−1
2


= 0            (5.21)      

Here, h is the mesh size in both dimensions for simplicity and f 1, f 2 are the numerical 

fluxes across each volume interface which are calculated by the following Lax-Friedrichs 

scheme.  

 𝑓 1 𝑖+1
2

 𝑗
=

1

2
  𝑓1 𝑖+1 𝑗 +  𝑓1 𝑖 𝑗 − 𝛼𝑥 𝜌𝑖+1𝑗 − 𝜌𝑖𝑗    

 𝑓 2 𝑖 𝑗+
1
2

=
1

2
  𝑓2 𝑖 𝑗+1 +  𝑓2 𝑖 𝑗 − 𝛼𝑦 𝜌𝑖  𝑗+1 − 𝜌𝑖𝑗    

where 𝛼𝑥 = max1≤𝑖≤𝐼  𝑈
 𝜙𝑥  

 ∇𝜙 
 
𝑖𝑗

, and 𝛼𝑦 = max1≤𝑗≤𝐽  𝑈
 𝜙𝑦  

 ∇𝜙 
 
𝑖𝑗

 

4.3.  Fast sweeping method for Eikonal equation 

The Eikonal equation is of significant interest in the field of numerical analysis. Many 

numerical methods have been proposed to solve the Eikonal equation. The most stable 

methods among those are the fast marching method and the fast sweeping method.  
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The fast sweeping method [97, 94] is an iterative algorithm with optimal complexity that 

finds the numerical solution by using the non linear upwind method and Gauss-seidel type 

iterations with alternating sweepings in predetermined directions.  

Therefore, we chose the fast sweeping method (FSM), which is based on the third-order 

WENO scheme for its lower complexity. 

The fast sweeping WENO method starts with the following initialization.  

Step 1: Initial guess: if  𝑥𝑖 ,𝑦𝑗   is a goal, then 𝜙𝑖𝑗 = 0 otherwise 𝜙𝑖𝑗 = ∞  

Step 2: The following Gauss–Seidel iterations with four alternating direction sweepings are 

then performed. 

(1) 𝑖 = 1:   𝐼,   𝑗 = 1:   𝐽;        (2) 𝑖 = 1:   𝐼,   𝑗 = 𝐽: 1;  

(3) 𝑖 = 𝐼 ∶ 1,  𝑗 = 1:   𝐽;         (4) 𝑖 = 𝐼:   1,   𝑗 = 𝐽: 1;  

where  𝑖, 𝑗  is the grid index pair in  𝑥,𝑦  and 𝐼 and 𝐽 are the number of grid points in x and 

y, respectively. When we loop to a point (𝑖, 𝑗), the solution is updated as follows: 

 

𝜙𝑖  𝑗
𝑛𝑒𝑤 =

 
 
 

 
 min 𝜙𝑖  𝑗

𝑥  𝑚𝑖𝑛 ,𝜙𝑖 𝑗
𝑦  𝑚𝑖𝑛

 + 𝑐𝑖𝑗,                           𝑖𝑓  𝜙𝑖 𝑗
𝑥  𝑚𝑖𝑛 − 𝜙𝑖  𝑗

𝑦  𝑚𝑖𝑛
 ≤ 𝑐𝑖𝑗

𝜙𝑖 𝑗
𝑥  𝑚𝑖𝑛 + 𝜙𝑖  𝑗

𝑦  𝑚𝑖𝑛
+  2𝑐𝑖𝑗

2 2 −  𝜙𝑖 𝑗
𝑥  𝑚𝑖𝑛 − 𝜙𝑖  𝑗

𝑦  𝑚𝑖𝑛
 

2
 

1
2

2
              𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

           

where 𝑐𝑖𝑗 = 𝐶 𝑥𝑖 , 𝑦𝑗 , 𝑡 , and 

 
𝜙𝑖  𝑗
𝑥  𝑚𝑖𝑛 = min 𝜙𝑖𝑗

𝑜𝑙𝑑 −  𝜙𝑥 𝑖𝑗
− ,𝜙𝑖𝑗

𝑜𝑙𝑑 −  𝜙𝑥 𝑖𝑗
+ 

𝜙𝑖 𝑗
𝑦  𝑚𝑖𝑛

= min  𝜙𝑖𝑗
𝑜𝑙𝑑 −  𝜙𝑦 𝑖𝑗

−
,𝜙𝑖𝑗

𝑜𝑙𝑑 −  𝜙𝑦 𝑖𝑗
+
 
                  

with 

 𝜙𝑥 𝑖𝑗
− =  1 − 𝑤−  

𝜙𝑖+1 𝑗 − 𝜙𝑖−1 𝑗

2
 + 𝑤−  

3𝜙𝑖 𝑗 − 4𝜙𝑖−1 𝑗 + 𝜙𝑖−2 𝑗

2
  

 𝜙𝑥 𝑖𝑗
+ =  1 −𝑤+  

𝜙𝑖+1 𝑗 − 𝜙𝑖−1 𝑗

2
 + 𝑤+  

3𝜙𝑖 𝑗 − 4𝜙𝑖−1 𝑗 + 𝜙𝑖−2 𝑗

2
  

𝑤− =
1

1 + 2𝑟−2
,    𝑟− =

𝜀 +  𝜙𝑖  𝑗 − 2𝜙𝑖−1 𝑗 + 𝜙𝑖−2 𝑗  
2

𝜀 +  𝜙𝑖+1 𝑗 − 2𝜙𝑖  𝑗 + 𝜙𝑖−1 𝑗  
2 
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𝑤+ =
1

1 + 2𝑟+
2 ,    𝑟+ =

𝜀 +  𝜙𝑖 𝑗 − 2𝜙𝑖+1 𝑗 + 𝜙𝑖+2 𝑗  
2

𝜀 +  𝜙𝑖+1 𝑗 − 2𝜙𝑖 𝑗 + 𝜙𝑖−1 𝑗  
2 

The definitions for  ϕy i j

−
 and  ϕy i j

+
 are of course analogous. 

Convergence is declared if 

 𝜙𝑛𝑒𝑤 − 𝜙𝑜𝑙𝑑  ≤ 𝛿 

where 𝛿 is a given convergence threshold value. We use 𝛿 = 10−9 in our computation. The 

algorithm converges very rapidly in our numerical simulation. 

4.4.  Time discretization 

Finally, the semi-discrete scheme (5.21) must also be discretized in time. We use the 

third-order total-variation-diminishing (TVD) Runge-Kutta method, which is the convex 

combination of three Euler forward time discretization steps and can maintain the stability of 

the spatial discretization [106]. 

 
 
 

 
 

ρ 1 = ρn + ∆tL ρn 

ρ 2 =
3

4
ρn +

1

4
 ρ 1 + ∆tL ρ 1   

ρn+1 =
1

3
ρn +

2

3
 ρ 2 + ∆tL ρ 2   

  

where  

L ρ =
 f 1 i+

1
2

 j
− f 1 i−

1
2

 j

h
+

 f 2 i  j+
1
2

− f 2 i  j−
1
2

h
. 

Here, the time step ∆t needs to satisfy the Courant-Friedrichs-Lewy (CFL) condition. We 

take the CFL coefficient to be 0.1 in our computation. 

4.5.  Solution procedure 

The main time evolution equation to be solved is Eq. (5.14). When the flux function f is 

known, this is a scalar two-dimensional hyperbolic conservation law. We use the fifth-order 

finite difference WENO scheme. 

In summary, starting from the density 𝜌𝑛  at time level n, we obtain the density qn+1 by 

the following steps in an Euler forward time discretization. 

1. Obtain the cost function 𝐶𝑝  by formula (5.17); 
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2. Solve the Eikonal equation (18) by a third-order WENO discretization using the fast 

sweeping method to obtain /; 

3. Obtain the magnitude  𝑓  of the flux 𝑓 by using formula (5.16); 

4. Obtain the flux f by using formula (5.21); and 

5. Use the fifth-order Lax–Friedrichs WENO scheme to obtain 𝜌𝑛  by solving the 

conservation law (5.14). 

5. Conclusion 

We propose a framework to simulate and visualize pedestrian crowds in very dense 

situations. The proposed crowd animation system simulates the agents with a continuum 

dynamics-based approach applied to the crowd model of Hughes [98]. During simulation, 

people are coarsely distributed and show homogeneous behaviors.  

The taken continuum-approach is able to simulate a number of agent groups up the 

resolution of the simulation grid, and the cost per agent is amortized for each group of agents. 

Thus, the continuum-based approach is more suitable for outdoors emergency simulations, as 

opposed to the computationally-demanding agent-based approaches. 

My approach unifies global path planning and local collision avoidance into a single 

optimization framework. People in my model do not experience a discrete regime change in 

the presence of other people. Instead, they perform global planning to avoid both obstacles 

and other people. This dynamic potential field formulation also guarantees that paths are 

optimal for the current environment state, so people never get stuck in local minima. 
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Chapter 6: Hybrid approach for crowd 

simulation 

1. Introduction 

Crowd simulation has become an efficient tool to study the behavior and movement 

pattern of crowd in real life.  

From the level of detail point of view, models used for crowd simulation can broadly be 

categorized in microscopic (high resolution) and macroscopic approaches (low resolution). 

The microscopic approach focuses on the realism of the behaviors of each individual, thus the 

perception, the memory, the planning, the psychology and the emotion of every agent are 

taken into account and each agent could react differently to the same event as a result. The 

macroscopic, which aims at achieving real time simulation for very large crowds, thus the 

behavior of each individual is not important as long as the overall crowd movement looks 

realistic. 

Therefore, none of the two approaches is separately able to capture real crowd dynamics. 

A natural strategy is therefore to combine the different models together, with the aim of 

obtaining both execution efficiency from macroscopic model and the fine-grain simulation 

result from microscopic model.  

This paper proposes a hybrid model for simulating crowd behaviors and its movements. 

The main thought of this model is to couple macroscopic and microscopic models within the 

same framework. Therefore, it is possible to use the advantages of the two models by adapting 

them to the treated phenomena and situations while minimizing their disadvantages. Issues 

like environmental and global crowd movement pattern are simulated by macroscopic model. 

Whereas, the microscopic model only simulates how agent makes decision and moves 

directed by the simulation result from the macroscopic model.  

The simulation environment is partitioned in terms of the crowd characteristic. Each 

partition is then modeled independently with either a macroscopic or microscopic model. 

During execution of the simulation, the two types of models work simultaneously on the 

corresponding partitions.  
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Our proposed model has the ability to dynamically select and switch to a suitable 

simulation model at runtime, based on the state of the simulated world. It also defines two 

types of interaction mechanisms, i.e., Micro-Macro transition and Micro-Macro transition that 

are required to transfer data at the boundaries between the partitions.  

The rest of the chapter is organized as follows: objective and motivation to use hybrid  is 

introduced in Section 2. An overview of the hybrid modeling of crowd simulation, which is 

composed of environment model and crowd model, is introduced in Section 3. Then the 

representation of virtual environment and crowd model are discussed in section 4, and 5. The 

interactions between the different models are defined in Section 6. The chapter is concluded 

in Section 7. 

2. Objective and Motivation 

As a collective and highly dynamic social group, a human crowd is a fascinating 

ubiquitous phenomenon has been observed with interesting biological, social, cultural, and 

spatial patterns in our everyday life. It forms a living complex system that contains, a great 

number of interacting individuals moving in the same physical environment, and has the 

ability to generate a new quality of macroscopic collective behavior the manifestations of 

which are the spontaneous formation of distinctive temporal, spatial or functional structures. 

Real-time simulation of human crowds is highly challenging because pedestrian 

dynamics exhibits a rich variety of both independent and collective effects, such as lane 

formations, oscillations at bottlenecks, chemotaxis and panic effects. The core problem of 

realistic crowd simulation is to build an efficient and accurate behavioral model, that accounts 

for what real pedestrians do, by simulating the movement of the whole crowd and each agent 

in crowd. 

We believe that, before designing a crowd simulation model for realistic and effective 

modeling of crowd dynamics and behaviors, there is a need to offer a better understanding of 

the mechanics behind these daily behaviors as well as reproduce the resulting, fascinating 

large-scale patterns. Motivated by this requirement, we make the following observations:   

 Observation 01: Human behavior is extremely complex and exhibit large variation 

based on situations and settings. It also depends on individual characteristics such as 

age, sex, height, and cultural background, to name the few. Human behavior can vary 

drastically based on the given situation. For instance, transition from walking to panic 

can be instantaneous given a dangerous situation (e.g. stampede). 
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 Observation 02: Crowd have the ability to express a strategy. Walkers are capable to 

develop specific strategies, which depend on their own state and on that of the entities 

in their surrounding environment. Different strategies can appear in the dynamics. The 

modeling of pedestrians‘ strategy should include several features, for instance trend 

toward the exit or a meeting point, following or avoiding streams and clusters, 

avoiding overcrowding in the proximity of walls, clustering of individuals with similar 

activity, avoiding individuals with different activity, and possibly others. 

 Observation 03: The pedestrian crowd is a large scale phenomena that can vary from 

individual people to groups to large crowds and displays many levels of complex 

behaviors. The dynamics of such systems can be viewed on a wide range of scales: 

from the chaotic, fluctuating interactions between individual objects on the finest 

scales, to the coherent aggregate flow of the system on the largest scales. This 

interplay between the bulk motion and the fine detail in these so-called multi-scale 

phenomena makes them extremely rich and fascinating from a theoretical as well as a 

visual perspective. 

 Observation 04: The phenomena that was observed in crowd by psychologists is its 

homogeneous nature. People in the crowd often acting in a coordinated fashion, as if 

governed by a single mind [4]. However, this coordination is achieved with little or no 

verbal communications. A phenomenon observed in crowds, and discovered early in 

crowd behavior research, is that people in crowds act similar to one another, often 

acting in a seemingly coordinated fashion, as if governed by a single mind. However, 

this coordination is achieved with little or no verbal communication. 

 Observation 05: In reality pedestrian crowds are naturally composed of 

heterogeneous individuals. Each pedestrian is walking, It has a goal that they want to 

reach, while avoiding bumping into other people, or tripping on an obstacle. In this 

cadre, human behavior choice is highly dependent on individual characteristics such as 

personality, gender, age, and so on. Among them, decision makers‘ personality traits 

are crucial sources of difference between individuals, and accounting for personality 

can make human decision model more natural. 

These observations suggest that the fundamental choice of suitable model for crowd 

simulation leads to several challenges which can be classified along two axes.  

The first major problem is that a successful crowd model has the ability to simulate the 

movements and the behavior patterns of large numbers of pedestrians as realistically as 

possible in real-time [113]. Most applications require a human crowd simulated in real time, 

with higher level of detail and an accurate realism of behaviors. Then, there is still a clear 

relationship between the accuracy realism of crowd behaviors and the computational costs of 

simulation.  
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Satisfying these both constraints at the same time is particularly a challenge of great 

importance. The majority of the previous models have a limited ability to response to the 

latter problem, it tend to focus on a single factor; there is no existing method that is able to 

reduce the computational cost while maintaining the high level detail of simulation. Almost 

all the existing models were agent-based (microscopic models). This approach describes the 

most natural way to simulate crowds as independent autonomous pedestrians interacting with 

each other. Such algorithms usually handle local collision avoidance and global navigation for 

each person. However, these kinds of models have the drawback that when animating a large 

crowd, they are computationally intensive. Microscopic models give more accurate result only 

for smaller crowds to achieve real time simulation. On the contrary, the macroscopic models 

are usually created to realize a real time simulation for very large crowds; they follow the 

features of the flow as long as the overall crowd behavior seems realistic. These models offer 

a coarse-grained simulation result with higher execution efficiency which is due to the lack of 

concerns of individual issues. 

Secondly, modeling the movement and behavior of the virtual crowd remains a major 

challenge as highly dynamic complex systems, the crowd is a large group of pedestrians with 

non-uniform spatial distribution and heterogeneous behavior characteristics, and it exhibits 

often distinct characteristics, such as independent behaviors, self-organization, and pattern 

formation, due to interactions among the individuals and groups of individuals. Previous work 

has suggested that human crowd dynamic can be modeled on many different scales [108, 

110], from coherent aggregate behaviors of the crowd on the largest scales to the individual 

behaviors, interactions among individuals on the small-scale detail.  Such multi-scale systems 

are computationally expensive for traditional simulation techniques to capture over the full 

range of scales [110]. Another large class of problems which are not easily handled by 

traditional approaches is the simulation of very large aggregates of discrete entities, such as 

dense pedestrian crowds and granular materials. 

To overcome these conflicting goals, we assume a scalable simulation is required to 

handle at least several hundreds or even thousands of pedestrians, running in real-time, 

particularly with respect to the complexity of the environment and the realism of behaviors 

required by the crowd, we investigate to find a good balance between visual credibility of 

complex crowd behaviors and computational requirements, where the behaviors of human 

crowd can be viewed on a two different level of detail: from the chaotic, fluctuating 
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interactions between individual objects on the finest scales, to the coherent aggregate flow of 

the system on the largest scales. 

Our solution consists to introduce a hybrid simulation architecture that combines the 

strengths of two classes of crowd modeling to achieve flexible, interactive, high-fidelity 

simulation on large environment. This architecture couples a microscopic model of individual 

navigation with a novel continuum approach for the collective motion of pedestrians; it can 

apply to simulate the behaviors and movement patterns of extremely large crowds at near 

real-time rates on commodity hardware.  

Our approach is able to determine by itself the most suitable model of modeling for each 

region in the environment, regarding the simulation context, in real time and within a 

continuous environment. To do so, we first introduce the generic notions of dynamic change 

of representation, and we describe my methods for handling the transfer of pedestrian 

between continuum and discrete simulation areas and discuss how the constituent simulation 

components are adapted to handle this transition.  

Then, we evaluate this approach experimentally along two criteria: the impact of our 

methodology on the computational resources, and an estimate of the dissimilarity between a 

full microscopic simulation and a simulation with our methodology. Finally we discuss the 

results obtained and propose enhancements for future works. 

3. The proposed model 

This research addresses the possibility to design and implement an integrated behavioral 

framework to build real time simulation of the dynamics of large scale crowd with a wide 

variety of individualistic human-like behaviors. The problem is that crowd simulations need a 

scalable architecture that simultaneously supports the realistic simulation of hundreds of 

thousands (or millions) of complex autonomous agents, while allowing such simulation to 

achieve with good frame rates. 

We develop a crowd simulation model which preserves the granularity of simulation at 

the individual level, and at the same time is scalable and can simulate combined behavior of 

huge crowds. To achieve realistic simulation we should ideally be able to model the activities 

of every individual, even when there are thousands of such individuals.  

Our proposed model is based on the two-layer modeling principles: (1) modeling the 

agent and (2) modeling the environment that agents interact with. The use of two conceptual 
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layers allows us to isolate modeling of the environment and agent. The interaction between 

the layers is analogous to the interaction between humans and their surroundings in the real 

world. The agent makes decisions based on the perceptions from the environment and 

executes decisions to achieve its goal in the environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 1  Hybrid Model for crowd simulation 

3.1.  Physical Environment representation  

This module is the basis of crowd simulation, because the virtual human chooses the path 

and action according to his/her location and surrounding information. For example, sensing 

obstacles and other people to make avoidance, keeping standing pose in escalator and walking 

on flat surface. To represent a physical environment in our proposed model, a set of geometric 

information of the physical environment is selected to construct a virtual environment. 

Selected geometric information includes obstacles, spaces, exits, and doors. The geometric 

information are extracted from the 3D structure of the simulated environment.  

 Obstacles. Obstacles refer to walls, furniture, and any objects that are inaccessible. 

Each obstacle has definitive boundaries. Agents detect the obstacle through their 

sensors.  

Physical Environment 

representation 
Obstacles Virtual pedestrians goal locations Door Objects Exit Objects Spaces 

Micro-level crowd modeling 

Attributes States goals 

representation 

Local Behaviors Navigation 

Modeling 

Macro-level crowd modeling 

Crowd 

density 

Average 

Speed  

Pedestrian 

flow 

representation 

Governing 

Equation  

Velocity-Density 

Relation 

Modeling 

Potential 

Micro-Macro transformation 

Macro-Micro transformation 



Chapter 6: Hybrid approach for crowd simulation 

117 

 

 Spaces. Spaces are the areas in which agents may maneuver freely. Examples are 

corridors, lobbies, and rooms. The shapes and dimensions of spaces are obtained based 

on the arrangement of obstacles.  

 Exit objects: each exit object represents an outlet of the building. If an agent decides to 

escape through a specific exit, it navigates toward the location recorded in the exit 

object. When the agent reaches the exit, it is removed from the building.  

 Door objects: a door object is similar to an exit object, it connects spaces and allows 

an agent to transit from one space to another. However, upon arrival to a door, an 

agent is not removed from the building. 

3.2.  Crowd model  

Crowd model is the second element of our proposed model which generates path, 

behavior and locomotion for each virtual human according to the information of a given 

environment. The representation of crowd model is described by two main classes: 

macroscopic and microscopic models. Each approach is associated with its own distinct 

advantages and disadvantages. 

3.2.1. Macro-scale crowd modeling 

Macro-scale crowd modeling is concerned with group behavior and deals with a crowd as 

a whole. It interprets a crowd as a several number of pedestrian group where all individuals 

share the same space and have a common goal and the same walking ability in a simulation. 

People in crowds act similar to one another, often acting in a coordinated fashion, as if 

governed by a single mind. individual who becomes a part of the crowd is loosed their 

individuality and transformed into becoming identical to the others in the crowd.  

In this sense, macro-scale model is mainly useful in estimating the flow of 

movement/evacuation process for huge and dense crowds. It animates the crowd flow by the 

help of a set of partial differential equations describing the time–space evolution of 

macroscopic traffic variables: flow f =  f(x, t), speed V =  V(x, t), and density φ =

 φ (x, t)[59].  

The flow (f) denotes the number of pedestrians passing a cross-section of a pedestrian 

facility in a unit of time. The customary unit for flow is P/ms (pedestrians per meter width 

per second).  
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Crowd density  φ : is defined as the number of pedestrians present on an area at a given 

moment, it is measured by counting the number of pedestrians and divided by the area in 

which the pedestrians were counted. The customary unit for density is P/m2 (pedestrians per 

meter square).  

The speed (V) stands for the so-called space mean speed which is the average speed of 

pedestrians present on an area at a given moment (m/s). 

In order to get a realistic representation of crowd movement, the perspective of 

macroscopic modeling approach consists to describe the dynamic of pedestrian and its density 

by using a scalar two dimensional conservation law. The direction of the flow is determined 

by the route choice strategy, and a linear speed–density relation is assumed to determine the 

magnitude of the pedestrian speed.     The continuous equations in the mathematical model are 

converted into discretizations in time and space. 

Although, the approach modeling in this level unifies global path planning and collision 

avoidance since the continuum equations takes the goals, obstacles and other pedestrians into 

account when predicting the motion of a pedestrian. We discretize the environment into a 

regular 2D grid and constructs the continuous values of density and velocity, at various 

locations within each grid cell, that guides the virtual humans toward their goals without 

colliding with each other or with other dynamic and static obstacles.  

3.2.2. Micro-scale crowd modeling 

In micro-scale crowd modeling, the crowd is modeled as a collection of heterogeneous, 

autonomous, decision-making entities called virtual pedestrians which inhabit a spatially 

explicit, partially observable environment; macro-level dynamics are said to emerge through 

the asynchronous interactions among these entities. 

Agent-based approach is more suitable for simulating situations involving heterogeneous 

pedestrians and dynamic environment. Each individual in these models is considered as an 

agent with varying attributes of gender, age, body size, mobility, walking speed and other 

capabilities. In the developed model, each person has its own: 

 Characteristics (average and maximum speed, maximum energy level, obedience, 

knowledge of the surroundings) 

 State (position, speed, energy) 

 The objectives to be achieved (to leave the building, to escape the room). 
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In the implemented simulator the person is represented by an agent who makes decisions 

and performs large variety of individualistic behaviors with consideration of a set of 

characteristics, states, the objectives to be achieved and the state of the environment. 

One key aspect of these behaviors is navigation. In the context of crowd simulation, 

navigation is generally considered to be the process of planning a route towards a destination 

and following this route. It is typically generated from activities of an agent at two levels: path 

planning and locomotion. Path planning can be considered as the higher-level behavior that 

generates a global path directing the agent to the goal. This typically considers static aspects 

of the environment, such as walls and doorways. Locomotion is considered as the lower-level 

behavior that actuates the agent‘s motion in order to avoid dynamic obstacles.  

4. Environment Model 

The environment in which the simulation takes place is the surrounding of the 

pedestrians, where they move along, interact and navigate to get from one location to another, 

typically, it includes walk-able areas, obstacles of different natures, and destination. Whereas, 

fixed obstacles can be defined as regions that no pedestrian can access, moving obstacles are 

other pedestrians occupying predefined space from the environment which is consequently 

not anymore available.  

The first step in designing a crowd navigation system is to construct an efficient abstract 

representation of the virtual environment where the pedestrian can rapidly perform way-

finding. We define a representation method which handles two types of structure data to 

clearly represent and to organize the topological relationship among the different geometrical 

areas of a large complex environment. This approach provides a well consistence resulting 

from the continuous interaction between two models of different level of detail. 

4.1.  Topological graph 

Usually, the virtual environment is defined by a 3D model to constitute a geometric 

representation of the real world. Such representation of the spatial data makes it difficult to 

handle by virtual pedestrian in order to find its own paths through the environment. The most 

way to facilitate this representation is to obtain the topological relation of the environment 

and its geographical areas captured in a graph based structure (Fig.6.2(a)).  

The topological graph uses nodes and edges to indicate the adjacency, connectivity, the 

inclusion and the intersection between the different parts of the environment, in which the 
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node defines spatial areas and the possible path can be defined as edge. The internal spatial 

areas can be defined as a bounded volume in 3D space (such as a room, a corridor, a flight of 

stairs or even an entire floor) with bottom flat that contains several objects inside it (e.g., 

ground, walls, benches). 

 

 

Figure 6. 2 Our model for representing the virtual environment 

4.2. Layered model for environment representation  

The second form of space representation is to use the layer structure (Fig.6.2 (b)). We 

identified three independent layers related to the model used for simulating the behavior of 

virtual crowd, each of which contains both static and dynamic data. Then we implemented the 

following layers for representing each spatial area in the environment: 

 Regional layer. In this level, the whole walking space of one spatial area is 

divided into a number of unique continuous sub-areas. For generating these sub-

areas, one main requirement must be valid which is: these subareas must be 

exhaustive; two different must not cross each other. This level is used to precise 

which model must be used for movement modeling, macroscopic model in the 

subarea with high density, and the microscopic in the other sub-regions.       
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 Coarser layer. The surface of sub-area, defined in the regional level, is assumed to 

be divided into cells; we do not limit ourselves to a maximum of one pedestrian 

per cell, in contrast, we consider each cell‘s size to be sufficiently large enough to 

contain at least 25 individuals of average size, where individuals placed on the 

same cell do not overlap. 

 Finer layer. Every cell from the coarser layer is further divided into a uniform 

lattice of cells, each representing a portion of the simulated environment and 

comprising information about its current state, both in terms of physical 

occupation by an obstacle or by a pedestrian. The size of the subareas could be 

reduced to the average space occupied by a single pedestrian. 

5. Crowd model 

We propose a hybrid framework (Fig. 6.3.) for real time simulation of pedestrian 

dynamics and movement patterns of huge crowd in a complex virtual environment. This 

solution preserves the granularity of simulation at the individual level to capture 

individualistic pedestrian behaviors, and at the same time is scalable and can richly exhibit 

emergent behaviors of dense crowds.  

 

 

Figure 6. 3 Proposed crowd model 
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Our proposed architecture consists to integrate a more detailed approach with a coarser 

model, describing the individual pedestrian behaviors and crowd dynamics, within an unified 

crowd modeling framework, and execute them simultaneously in different regions of the 

virtual environment.  

There are several reasons which have motivated our decision of a proper coupling of two 

philosophies of modeling focusing on different level of detail (discrete individuals and crowd 

as a whole) executing to produce most visually pleasant simulation. 

First, pedestrian crowd is a multi-scale phenomenon, which can be described at both 

macroscopic level (continuous medium) and microscopic level (granular medium), in many 

scenarios, it is need to have pedestrians behave individually, continuously interacting with 

other pedestrian while trying to reach their own objectives, thus the behaviors of each 

pedestrian must be treated more precisely. In other situation, pedestrians‘ flows demonstrate 

some striking similarities between pedestrians‘ behaviors and particle flow dynamics. Hence 

the flexibility of combining two models of different level of detail is examined to capture and 

characterize the almost aspects of the crowd dynamic.  

Macroscopic models allow a better overall understanding by regarding the crowd system 

as a whole rather than on the details, and are usually designed to achieve a coarse grained 

simulation executing in real-time for very large crowds as long as the overall crowd 

movement looks realistic.  

Microscopic models focus on individual behaviors including pedestrian‘s psychological 

and social characteristics, interaction among pedestrians, and complex cognitive behaviors. 

Although microscopic models are very accurate only for modeling smaller crowds to achieve 

real-time simulation, they can simulate pedestrian in a crowd with more realistic individual 

behaviors. 

Secondly, a multi-methods simulation can give a good equilibrium between computing 

resources and simulation properties, such as realism, coherence and complexity. The 

microscopic models can generate a fine-grain simulation in more detail than the macroscopic 

method. However, they have high computational and memory needs. The macroscopic 

models can save resources but tend to give less accurate results. Mixing both types of models 

can hopefully allow combining the strengths of both classes of crowd modeling to achieve 

flexible, interactive, high-fidelity simulation on large virtual environment. 
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However, this fundamental choice leads to several challenges which can be classified 

along two axes.  

 The first key important of our hybrid technique is related to the execution of the 

models themselves. We must precise how the two different types of simulation will be 

used (the two models executes interchangeably or simultaneously), and the way they 

will coupled together.  

 Finally, the second challenge focuses on the needs to manage the transfer of 

pedestrians between macroscopic and microscopic areas and we must discuss how the 

constituents of our hybrid framework are adapted to handle this transition.  

With the aim to achieve these two fundamental challenges, in our hybrid, multi-method 

technique, we divide the simulation environment into multiple disjoint (and not necessarily 

connected) areas each area is ruled by either microscopic simulation or continuum simulation. 

These mutually exclusive regions are dynamic, we can adaptively change the simulation 

method used in a specific region as needed cording to its density, meet performance 

requirements, or to observe certain phenomena (individual behaviors or crowd movements). 

In the zones of high density of crowd the individual behavior is less critical, we assume to 

govern the crowd behaviors by a continuum approach to exhibit the aggregate motion and to 

describe behaviors similar to granular flows. On the other regions of low density, a realistic 

behavioral model is used to microscopically model the pedestrians. Our architecture also 

ensures that no visible disturbance is generated when switching from one model to another.  

To achieve this, we must be able to convert discrete pedestrian from microscopic simulation 

regions into the aggregate format necessary for continuum simulation (or vice versa). 

5.1. Pedestrian agent model 

In this section, we adopt an agent-based modeling approach to design a behavioral 

framework for the simulation of human crowds whose main innovative element is the 

representation and the generation of natural and realistic navigational behaviors of highly 

heterogeneous pedestrians in different environments under various situations. These behaviors 

of the virtual entities should be consistent with observed behaviors in real life.  

In our proposed model, at the microscopic level, the crowds are modeled as collections of 

interacting individuals that move in a bounded environment. Each pedestrian wants to reach 

his individual goal in space, avoiding obstacles, and remaining close to his friends or family.  
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Virtual characters (or agents) need to autonomously find and traverse paths through the 

environment. Agents should act in a realistic manner: their trajectories must be short and 

smooth, there should not be any collisions between agents, and the agents are typically 

expected to mimic human behavior. Emergent behaviors can also be observed in crowds, e.g., 

in places where the space is small and very crowded, people form lanes to maximize their 

speed. Also, when dangerous events occur, pedestrians tend to react in very chaotic ways to 

escape. 

It is well known that the first step of the agent-based modeling of crowd dynamics 

involves the identification of the following elements:  

1. Each individual has its own parameters. The parameters of an agent consist of two 

parts: roles and attributes. Roles define the types of behaviors an agent is capable of 

during the simulation. It is simulation scenario dependant (See details in ―simulation 

and discussion‖ section). The agent‘s attributes are used to describe the agent‘s 

characters and abilities which could influence the calculations of behavior effects. 

Attributes include: position, body size, orientation, movement mode (walk or run), 

base movement speed, maximum movement speed, and base movement speed 

adjusters. 

2. A set of agent relationships and methods of interaction—an underlying topology of 

connectedness defines how and with whom agents interact. 

3. The agents‘ environment—agents interact with their environment in addition to other 

agents. 

4. Knowledge. Knowledge represents the agent's familiarity with the surrounding 

environment which comes from a spatial analysis of the agent's awareness range, 

varying from the individual's vision to the entire scene. The agent makes his strategy, 

e.g., path selections, according to his knowledge. 

From a computational modeling point of view, complex navigational behaviors have been 

typically modeled through two levels of activities of an agent: path planning and locomotion. 

Path planning can be considered to be the higher-level cognitive activities that generate a 

global path directing the agent from its current position to the goal. It typically considers the 

static aspects of the environment, such as walls and doorways in the relatively long term in 

both spatial and temporal domains. Locomotion is a lower-level cognitive activity to move the 

agent along the path while avoiding collisions. This bi-level methodology is effective in some 
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applications, but lacking when it comes to the reflection of the naturalistic cognitive process 

of pedestrians and the generation of realistic navigational behaviors. 

We distinguish three aspects of motion planning that need to be addressed if we want to 

obtain realistic results. It is commonly agreed that self-organization is the result of elementary 

actions that each subject performs to fulfill specific wills. Concerning pedestrians, the 

following basic guidelines can be identified: 

 The will to reach specific targets, e.g., an exit or a meeting point, which drives 

pedestrians along preferential paths, determined mainly by the geometry and the 

spatial arrangement of the walking area.  

 Path planning: how to get from point A to point B. Given a goal, we usually plan our 

path according to various criteria: avoid zones where the traffic is too dense, reduce 

the distance to cover, minimize travel time, etc. 

 Obstacle avoidance: to safely reach a goal, one also needs to avoid static and dynamic 

obstacles in the environment. Static obstacles usually are objects that do not move, 

such as trash cans, streetlights, signboards, etc. Dynamics obstacles typically are all 

other moving entities, including cars, animals, and especially, other pedestrians. 

We propose a generic multi-level hierarchy for solving agent navigation problems, and 

we present our algorithms and implementations of the each level. The structure of the 

framework, computational methods, and essential algorithmic procedures related to 

representation of physical environments, sensing, behavior modeling, and collision detection 

are described in chapter 4. The simulation process of the proposed agent-based model is 

depicted in Fig. 6.4., which is executed in each simulation step.  

Agent-based approach offers several advantages: (i) capture the variability of different 

individual characteristics and providing heterogeneity to the motion, (ii) captures emergent 

phenomena; (iii) provides a natural environment for the study of certain systems; and (iv) is 

flexible, particularly in relation to the development of geospatial models. 

However, agent-based methods are costly in that each agent must be handled separately, 

comparing its state with every other agent. Several simplifications on agent-based methods 

have been offered such as local methods, pre-computed static plans, global planning on coarse 

environments and leader-follower models. However, an alternative to agent-based approaches 

has emerged from the fluid dynamics studies by making an analogy between the crowds and 

natural phenomena such as the behavior of fluids and gases. 
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Figure 6. 4 Agent based model 

5.2.  Macroscopic scale modeling.  

To overcome the inadequacies of the proposed agent-based model, we develop a fluid-

like continuum model for macroscopically modeling the self-organized dynamics that are 

occurring in the pedestrian crowd, this model mainly consist to resolve the evolution of 

velocity and density over time. The intention is to show that this approach is well suited for 

the description and simulation of various aspects of pedestrian crowds, especially in the case 

of multiple intersecting streams. 

This approach is more suitable for an aggregate representation of pedestrian movement 

over a large population, in this context, virtual pedestrians are not identified individually in 

the model, but an analogy to fluid flow is instead used. 

The dynamic behavior of pedestrian is purely defined at the macroscopic level, for 

instance based on variations in time or space of the macro crowd variables and of a priori 

known equilibrium conditions: the value towards which the macroscopic variables would 

converge in the absence of variations in space and time. 

Similar to vehicular traffic, we recall that the main characteristic quantities for the 

description of pedestrian streams at the macroscopic level are density, flow and speed: 

Density. The concept of density describes a relationship between the number of 

individuals existing in a specific space and the size of this space. The density value of a 

selected measuring region ρA  at frame i could be calculated using the following formulas: 

Environment 

path finding using 

A* 

Perception 
Environmental 

constraints 

goal constraints 
sequence of nodes 

Local behaviors 

Animation module 
Position and 

velocity 



Chapter 6: Hybrid approach for crowd simulation 

127 

 

pi x, y, t =  
0,        x, y ∉ A

1,  x, y ∈ A
                    (6.1)   

NA =  pi x, y, t 

N

1

                                        (6.2) 

ρA =
NA

A
                                                            (6.3) 

A = b ∙△ l                                                         (6.4) 

where pi represents whether a pedestrian was in region A (b: corridor width, △ l: length of 

measuring region) at frame i; N signifies sum of trajectories and NA  denotes the number of 

pedestrians in region A at frame i; (x, y) is the position of an individual at frame i. 

The associated density  

ρ =
A

N
                     (6.5) 

is measured by counting the number of pedestrians N within the selected area A at the time t. 

The pedestrian area module, defined as the reciprocal of the density, has been introduced 

as another way of quantifying the pedestrian load of facilities. The density [59]  

ρ =
 Ajj

A
 

which is the ratio of the sum of the projection area Aj  of the bodies and the total area of the 

pedestrian stream A. Since the projection area Aj  depends strongly on the type of person, the 

densities for different pedestrian streams consisting of the same number of persons and the 

same stream area can be quite different. 

Another alternative density definition is based on averaging over a circular region of 

radius R, 

ρ r , t =  f r j t − r  

j

                    (6.6) 

where r j t  are the positions of the pedestrians j in the neighborhood of r  and f (. . . ) is a 

Gaussian, distance-dependent weight function exp(−|r j t − r |2/R2). 

Velocity: velocity refers to the average velocity of pedestrians in an area at a specific 

time, it measures the distance per unit time, and its units are m/s.   
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The average velocity of NA  over the measuring region could be calculated using the 

following equation:  

vi t =  x i t 2 + y i t 2                               (6.7) 

vi A =
 vi t ⋅ pi x, y, t N

1

NA
                 (6.8) 

where vi A  represents the space mean velocity of NA  over the measuring region at frame i. 

Flow: The flow of a given measuring region could be calculated through the following 

formula:  

JA x, y, t = ρA x, y, t ⋅ vA x, y, t                (6.9) 

where, JA x, y, t  represents the instantaneous flow over the measuring region.  

The flow f of a pedestrian stream is defined as the number of pedestrians crossing a fixed 

location of a facility per unit of time. The most natural approach determines the times ti at 

which pedestrians have passed a fixed measurement location. The flow is then calculated 

from the time gaps ∆ti = ti+1 − ti between two consecutive pedestrians i and i + 1: 

f =
1

 ∆ti 
,       where   ∆ti =

1

N
  ti+1 − ti 

N

i=1

             (6.10) 

Another method to measure the flow is suggested by the analogy with fluid dynamics. 

The flow through a facility of width b is related to the average density ρ and the average 

speed v of the pedestrian stream, 

f = ρvb = fsb                      (6.11) 

where the specific flow 

fs = ρv                      (6.12) 

gives the flow per unit width. This relation is the hydrodynamic relation that we have already 

encountered in vehicular traffic.  

The crowd‘s speed is subject to the density. The speed monotonically decreases from a 

‗‗preferred speed‘‘ down to zero with the density varying from zero to a present maximum 

value. 

The model always chooses the route via which requires the shortest time to reach the 

destination. We defined a cost function and a potential function for this purpose: The cost 
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function, written as c(x, y, t), represents the minimal time cost for the pedestrians at a given 

location to move a unit distance, which is determined by the density of pedestrians at this 

location; The potential function, written as ϕ(x, y, t), defines the time to reach the final 

destination. The potential function can be calculated given that the neighboring points with 

the minimal value of the cost function are always chosen from the current location to the 

destination. The cost function and the potential function can be quantified using an Eikonal 

Equation: 

|∇ ϕ(x, y, t)| = c(x, y, t). 

After the potential function is resolved from the above equation, the minimal time from 

any point to the destination can be obtained. The pedestrians in the crowd will choose the 

route with the direction opposite that of the gradient of the potential function, ϕ(x, y, t). 

Eventually, the crowd movement is governed by a conservative equation: 

∂ρ(x, y, t)/∂t + ∇  ・  (v(x, y, t) ρ(x, y, t)) = 0. 

6. Interaction between models 

Our approach proposed here for the design a hybrid crowd simulation model concentrates 

on the integration of two models that have different level of resolution in order to capture at 

the same time the micro and macro dynamics of human crowds. This type of simulation has 

the ability to divide the environment into multiple disjoint areas and to simultaneously 

execute these two models in different regions, by using a macroscopic modeling approach to 

simulate pedestrian flow in region of high density and a detailed microscopic model to 

simulate individual behaviors of pedestrian in the other regions. Investigating this integration 

makes clear two hard problems to be encountered: 

 First, assuring the consistency between the models is important for maintaining 

semantic continuity of results in terms of space (discrete/continuous), behaviors, and 

time, when concurrent interactions occur, if pedestrians pass from microscopic scale to 

macroscopic scale and vice-versa.  

 Final issue consists to provide an efficient strategy for changing adaptively the 

simulation method in a specific region. It needs to identify the conditions in which a 

suitable modeling approach can be selected. 
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6.1. Transition of pedestrians 

As mentioned above, inconsistencies can arise in our hybridization solution when persons 

can be transformed from one model to another of different scale. To achieve this, an interface 

translating boundary condition is needed to define for moving those pedestrians from a 

continuous to a discrete modeling approach. We adapt this case by defining a boundary area 

adjacent to the macroscopic region; this bound is divided to cells, only the pedestrians in this 

area transform to the microscopic scale, i.e. if there are when pedestrians enter this area 

forcibly changing their representation levels, their positions, orientation and velocity will 

updated by the microscopic model. 

There exist two basic communication operations between the two models: aggregation 

and disaggregation (Fig. 6.5.). The disaggregation refers to the process of generating the 

initial parameters for the microscopic model based on the result from the macroscopic model. 

Correspondingly, aggregation is the operation where the collects statistics from microscopic 

model and the parameters are generated in the format as required by the macroscopic model. 

 

 

Figure 6. 5 Interaction between micro and macroscopic model 

6.2. Trigger 

Our hybrid approach of modeling consists to combine two models of different level of 

detail of simulation in a single framework; it attempts to provide a scalable and accurate 

method for the autonomous navigation process. The whole continuous simulation 

environment is divided into multiple mutually regions, defined at initialization. Each region is 

governed by one of two different motion modeling approaches, either macroscopic model or 

microscopic model. 
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According to the density of crowd, the model used in a specific region is determined at 

initialization and modifiable at runtime. Then it is very important to present an efficient 

technique to define how the simulation changes dynamically from one model to another. 

Density is another fundamental component of pedestrian flow models. As the density of 

pedestrians‘ increases, pedestrians will have less space to overtake other slow pedestrians and 

eventually the average walking speed is slowed down. Usually when the pedestrian density is 

higher than 5~6persons/m
2
, the average walking speed is so low that the crowd can hardly 

move any more. 

 Switching Micro→Macro we calculate the density in each area. This operation 

occurs when the density in an area ruled by microscopic simulation is larger than a 

predefined threshold, then the system should trigger the execution of macroscopic 

model in this region.  

 Switching Macro→Micro we calculate the density in each area, It consists to switch 

the simulation in a specific zone from a macroscopic to microscopic model; this is 

occurred when the density of this region is smaller than a threshold. Then the 

microscopic should execute. 

6. Conclusion 

In this chapter, we detail a crowd behavior model that realistically handles crowd motion 

planning in real time, it is proposed to reflect the differences among the behaviors of the 

virtual agent in different density. Our approach provides a complete solution for all three 

aspects of crowd motion, i.e., path planning, following path, and individual level and crowd 

level behaviors. 

To obtain high performance, our approach is scalable: we divide the scene into multiple 

regions of varying interest, defined at initialization. According to its density, each region is 

ruled by a different behavior modeling algorithm. Zones with low density exploit accurate 

methods, while computation time is saved with less expensive algorithms in other regions.  

In the zone where the crowd density is low, each agent acts freely according to his intent 

so that he can do everything he wishes, we are concerned by applying an agent-based model 

to show a large variety of the individualistic behaviors.  
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When the density of the crowd is high, the surrounding agents will impose more mental 

stress on each other and people show a tendency towards mass behaviors. In that case, we use 

a macroscopic approach to simulate the crowd behavior.  

Our hybrid model also ensures that no visible disturbance is generated when switching 

from an algorithm to another. 
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Chapter 7: Results and evaluations 

1. Introduction 

One of key objectives for this work is to facilitate the cooperative use of disparate 

simulation strategies agent-based and continuum crowd simulation  to handle the simulation 

of at least several hundreds or even thousands of pedestrians, running in real-time, particularly 

with respect to the complexity of the environment and the realism of behaviors required by 

the crowd, we investigate to find a good balance between visual credibility of complex crowd 

behaviors and computational requirements 

There are numerous reasons that this is desirable: continuum crowds approach is useful 

and efficient when large homogeneous groups of people are moving in order to reach specific 

goals and has performance advantages over agent-based simulations in many situations | its 

computational cost is proportional to size of the virtual crowd. At a time step, motion 

planning is computed for each group people consisting of the agents that have the same 

destination. This characteristic meets our requirements since we can define the agents that are 

all trying to reach same specific goals in the same way as a group. The amortized cost per 

agent is substantially reduced if groups include lots of agents. We need a mathematical model, 

which is derived from the hypothesis about the virtual crowd, to simulate crowd dynamics. 

Furthermore, in the heterogeneous crowded situation, the agent-based approach is the 

most natural one since it is the way that real crowds work: each human makes his own motion 

decisions according to only the information he has, such as visibility, information about the 

destination, and proximity. However, this approach has the disadvantage that when animating 

a large group of people, it requires large computational time. Agent-based models have the 

flexibility to add any intended variation to the animated crowd, since each agent can be 

modeled differently but it needs expertise to model every agent consistently. 

This chapter summarizes the results of the proposed approach. In Section 1, the 

microscopic algorithm will be tested in different scenarios. The aim is to subjectively evaluate 

the experimental results to determine the performance of collision avoidance and motion 

update algorithms. Later, the macroscopic method is implemented for allowing large-scaled 

crowds to run in real-time.  
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2. Performance of Hybrid Model of Real Time Crowd Simulation  

In this section we present and describe the experiments for the evaluation of our hybrid 

model for interactive visual simulation of large scale crowd of virtual pedestrian. Our solution 

model is specifically designed to support robust real time simulation of scenarios with 

thousands or even hundreds of thousands of pedestrians. It involves the combination of two 

significantly different types of modeling methodologies for taking the advantage of their 

complimentary features, in which a macroscopic model is applied where needed and a 

microscopic model where plausible.  

In order to evaluate the effectiveness and the robustness of our multi-modeling approach 

presented in this paper, we have conducted to realize a number of simulations with different 

initial distributions and conditions (mainly changing the density of pedestrian crowd in the 

environment) in a situation in which experiments focused at analyzing the impact of the 

density of crowd on the pedestrian behavior that could be handled was being investigated. 

The objective of the experiments which we use is to show the proposed model performs 

well to produce results that closely simulate real human behaviors in these situations, and to 

study whether the proposed model can describe the qualitative dynamic properties of the 

pedestrian‘s movement under situations with three different level of density (low, medium 

and high density) in terms of number of pedestrians that could be handled with reasonable 

performance.  

We tested our system on virtual complex environment, in order to produce realistic crowd 

behaviors in this type of space; the simulation environment itself should have the features 

(properties) of real life environment. We also believe the representation of the environment 

has an important influence on pedestrian navigation. In this section we demonstrate the 

application of the hybrid approach using the arbitrarily complex geometry. The structure has a 

free floor space area comprising of 7 irregular shaped rooms with two external exits.  

The pedestrians are initially distributed randomly over the area of the environment. The 

particular distribution of the density pedestrian was selected to ensure that during the 

simulation all two possible modeling approaches: Macroscopic model; and microscopic 

model; would be used. We performed a series of experiments in order to test the behaviors 

under study focusing on showing the results of the interaction of the two sub-models. 
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2.1. Experimental Results: Path-planning and collision avoidance of 

microscopic crowd Simulation  

Fig.5.1 shows the simulation results of the pedestrian dynamic produced by the 

microscopic model which is selected to apply according to the pedestrian density calculated as 

the numbers of pedestrians existing in the restricted areas under consideration.  

2.1.1. Scenario 01: Shortest path of individual pedestrians 

The results when using path-planning algorithm for computing the shortest route are 

discussed in this sub-section. Fig. 7.1(a) shows the initial configuration of the simulation. In 

this scenario, 120 agents are dispersed onto the limited zone. Motion planning using 

microscopic approach and without continuum model are specified in this context.  

A normal collision avoidance method is implemented initially. In every simulation step, 

the new position of each pedestrian is calculated based on his velocity. Collision detection is 

executed and the pedestrian's position is updated to the newly elevated position, as long as the 

pedestrian does not collide with others in the newly estimated position. If any colliding 

happen, the pedestrian will not be moved and the current direction will be updated by adding 

an offset angle. This method is simple to implement, but has a major drawback: penetration 

and deadlock can happen in case of high density crowd, due to the limitation that in each time 

frame, the direction of agents can be updated once only. There are chances that two objects 

will collide when updating with the new direction.  

To address these issues, we introduced an RVO structure. Firstly, RVO can help avoid 

collision. Secondly, a new motion planning method is estimated by using three types of path-

finding algorithms to resolve deadlocked conditions. The results are explained and analyzed 

below. Note that flow fields are used to visualize the performance of the algorithms. 

Results show that the pedestrians in two groups can avoid collision and reach the goal 

perfectly by using our motion planning algorithm. The different stages of the simulation are 

shown in Fig. 7.1 showing two crowds meeting in the middle of the zone, at the middle of the 

simulation. Fig. 7.1 shows the final stage of simulation where the crowd has reached the 

destination.  

The flow field for this scenario is given in Fig. 7.1 and Fig. 7.2, which maps the motion 

of the two groups. The directions keep changing constantly to find a free path and subsequent 

target tracking can be clearly seen at several locations in the flow field. Our motion planning 
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algorithm can guide pedestrians to find free paths perfectly, and there are no congestions 

between the two groups when they meet in the middle of the scene. Another major advantage 

is that the deadlock situation is always avoided. In this experiment, pedestrian distribution is 

scattered. Note that to increase the density of the crowds in the next experiment. 

This model is considered to be qualitatively more accurate than the macroscopic model. 

This experiment shows that when the number of virtual pedestrian is small (Fig.7.1), the 

microscopic modeling approach has been employed to simulate each pedestrian as an 

individually entity with its own its own personality, and its behavior which is determined by 

both the global and local movement.  

 

 

 

 

 

 

 

 

 

Figure 7. 1  Agent-based approach to find the shortest path individually for each 

pedestrian 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 2 Following route behavior to achieve pedestrians’goals 
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2.1.2. Scenario 02: Medium-density Crowds 

To evaluate the motion planning algorithm further under extensive conditions, we 

increased the crowd size from 100 to 300 agents. The total travelling times for different crowd 

size are measured. Congestion starts occurring when the crowd size is 500. This could be due 

to the narrow width of the zone. The congestion increases many-fold, owing to the increasing 

crowd size.  

In this scenario, we demonstrated that a leader has a major influence on people especially 

in evacuation situation, in order to formulate the leader-follow behaviors. Fig.7.3 shows this 

case, when, we can observed the red flow follow a leader which has a global view of the 

simulated environment, then he find the shortest path into the exit, but the blue flow has no 

leader, then he choose the shortest door which leads it to follow the longest path (Fig.7.4). 

So far, the collision detection is only considered between agents. We increased the 

complexity of this environment by adding three obstacles in the middle of the scene, a 

situation where we could have collisions between agents and obstacles. This set up also 

allows for testing and evaluating the obstacle avoidance algorithm.  

 

 

 

 

 

 

 

 

 

Figure 7. 3 The leader find the shortest path, and the flow 1 follow it 
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Figure 7. 4 Flow 1 follow its shortest path 

2.2.  Experimental Results: Small group and pedestrian flow of 

macroscopic crowd Simulation 

During the second experiment, we noticed that pedestrian‘s density increases in the same 

subarea; the macroscopic is adopted to handle the pedestrian‘s behaviors within a crowd of 

high density. This model facilitates the construction of small groups of individuals that shows 

a slight cohesion and natural fragmentation into subgroups that might be simple and therefore 

much more compact. 

2.2.1. Scenario 01: Group phenomenon 

Group phenomenon is an interesting area of research for pedestrian simulation, because it 

is very common in the every-day life, people standing closer to its familiars and forming 

small groups. In panic situation, people relatively tend to gather together closer. In these 

situations, people are mostly linked by the (temporary) sharing of a common goal, and the 

overall group tends to maintain only week compactness, with a following behavior between 

members.  

In Fig. 7.5, the macroscopic used to cluster the pedestrians into a structured group by 

assuming a common goal, passing a direction and speed that applied to all of the members. As 

a member of a group, each pedestrian coordinates with others in the same group and show an 

aggregate motion as they move together. 
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Figure 7. 5  Creation of small pedestrian flow in normal situation. 

The last simulation results in Fig (7.6) show that in crowded situations, (pedestrian‘s 

density increases until it reaches a maximum value when situation becomes congested), one 

of the typical phenomena occurring in pedestrian flow is self-organization of lane phenomena. 

In the real life, pedestrians in a crowded area tend to self-organize into lanes in order to reach 

their destination faster and easier.  

As a result of the lane formation, pedestrians walking towards the same destination, they 

tend to automatically arrange in virtual lanes which reduced the potential conflicts with 

opposing pedestrians. 
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Figure 7. 6 The small groups follow themselves for forming a flow 

3. Pedestrian Counterflows 

In this section our model will be implemented and used to simulate pedestrian counter-

flows both with and without a bottleneck in the walkway. The purpose of modeling these 

situations is to assess the validity of the simulation in a qualitative sense. In chapter 1 certain 

emergent phenomena were discussed; in particular lane formation in a counter-flow and 

oscillatory flow at bottleneck. For these particular geometries a more detailed analysis of the 

pedestrian movements will not be considered, rather this section aims to confirm that the 

model simulates well experimentally observed phenomena ([1], [2]). 

In a counter-flow expected emergent behavior is lane formation as discussed in chapter 1. 

The simulation was run for 250 pedestrians on a 200 meter walkway which is 6 meters wide. 

Half the pedestrians were randomly placed at each end of the walkway (Fig. 7.7 (a)). The 

wave front of each the pedestrian bodies (in this case the group at either end) meet at the 

middle of the walkway.  

(a) 

(a) 

(b) 
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(a) The initial pedestrian positions created for a counterflow 

 

(b) The final pedestrian positions created for a counterflow 

Figure 7. 7 Counterflows behavior 

The results of the simulation are better than expected, reproducing the self organization 

phenomena perfectly. However these results underline the idealized nature of the 

implemented model (Fig.7.7(b)). In a real counter-flow the pedestrians would not be 

homogeneous, that is the desired speed of the walkers would not be uniform and the 

pedestrians radii would not be the same. These inhomogeneities would lead to behavior that 

isn‘t observed in this simulation, a particular example of this would be overtaking maneuvers 

performed by faster moving pedestrians. In walkways with large pedestrian densities these 
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maneuvers can lead to a breakdown in the lane formation; this suggests that these 

idealizations may not always be valid assumptions. 

The next geometry to consider is a counter-flow with a bottleneck. In this case the 

bottleneck refers to a doorway although in practice it could be a longer bottleneck (c.f. the test 

room geometry). The bottleneck, a 1 meter wide doorway, is positioned in the middle of the 

walkway which is 3 meters wide. 30 pedestrians were placed randomly, with half at each end 

of the corridor.  

 

(a) Initial Pedestrian Positions 

 

(b) Pedestrians meet at Bottleneck right moving (red) pedestrians flowing through 

Figure 7. 8 Initial phase to simulate counter-flow behavior with a bottleneck. 
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(a) Switch in flow-now the left moving (blue) pedestrians are flowing through 

 

(b) The flow has switched several times, now the right moving pedestrians are passing 

bottleneck 

Figure 7. 9 Counter-flow behavior with a bottleneck. 

The figure illustrates the oscillatory flow through a bottleneck is reproduced by the 

simulation. This oscillatory behavior is much clearer in the associated movie. Again the 

results of the simulation are consistent with the experimental data of Helbing [1]. 
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4.  Street flows 

A characteristic of local virtual environment is narrow passages between zones. We 

expect a crowd model representing behavior in such a context to exhibit behavior associated 

with these constraints, namely that flows form allowing for faster traversal of agents through a 

passage. We believe that the presence of flows can be quantitatively identified based on the 

following parameters: 

 Passage width: If street flows are forming then narrow passages encourage the 

formation of streams of individuals in opposite directions which convey both crowds 

efficiently though the gap. 

 Number of agents: If street flows are forming then the emergence property of flows 

requires that flows start forming only from a certain crowd density. 

 Randomness: If street flows are forming and an agent stops, the speed of the agents 

behind it on the same flow decreases rapidly and thus the overall speed rate of the 

crowd drops quickly with an increasing number of stops. 

Below, we conduct experiment with these parameters and provide evidences that support 

the existence of flow formation. 

4.1.  Passage width 

We examine the rate of two groups of agents passing through a narrow street in opposite 

directions. 

In the absence of flows, we expect plentiful collisions and the rate at which the groups 

pass through the alley should be proportional to the width of the passage i.e. the wider the 

passage, the faster the crowd passes through. Our expectation is that this will not be the case if 

flows form, specifically because flows provide for efficient traversal even through narrow 

passages. 

We conducted a simulation with two crowds, each containing 20 agents. Each crowd 

starts on opposite sides of the passage (where agents are spaced across the full width of the 

passage). 

The time taken for both crowds to cross the passage in their entirety is measured for 

passages of different widths. 
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Figure 7. 10. The measured time taken to cross passage with different width 

The rate t (the reciprocal of the time taken to traverse the passage) is plotted in Fig.7.10. 

We observe that the rate is zero or low for very narrow passages, which is expected as the 

passage is limited to only one person at a time. The rate increases rapidly as the passage opens 

up until it reaches a maximum at which point it decreases slowly with increasing passage 

width. We attribute this to the formation of flows: narrow passages encourage the formation 

of streams of individuals in opposite directions which convey both crowds efficiently though 

the gap. As the passage gets wider, individuals break away from the flow when gaps open up 

and eventually collide with flows in the opposite direction which reduces the overall rate 

slightly. This hypothesis is supported by visual observation of simulated agents. 

4.2.  Number of agents 

We conduct another simulation of two crowds, fixing the passage width to 3.0 units and 

increasing the number of agents for each simulation. The rate is plotted in Fig.7.11. We 

observe that the rate drops with the increase of the number of agents (as expected) but the rate 

does not drop as rapidly after the number of agents exceeded 3. We attribute this to the 

emergence of street flows which can only occur once a sufficient number of agents is present. 
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Figure 7. 11 The number of agents passing through a passage with fixed width 

5. Conclusion  

Multi-approach modeling is proposed in this work as an adaptive simulation strategy for 

exhibiting the pedestrian crowd movements and its emergent behaviors in high density 

situation. Our method makes it possible to exploit advantages from both macroscopic and 

microscopic models.  The two types of models work simultaneously in a single simulation 

system, and are executed over different mutually exclusive partitions.  

Our model also ensures that no visible disturbance is generated the crowd to move from 

one partition to another, and a suitable strategy is considered that is able to switch 

dynamically from one to another.  

It would be worthwhile to investigate the addition of social behaviors to our method to 

enhance the realism of the results, and we anticipate that our approach can be explored 

emergent resulting from various types of behavioral rules. Further work, the coupling of 

mesoscopic models with our model will develop to apply in the region with middle density.    
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Conclusion 

Realistic real-time motion planning for crowds has become a fundamental research field 

in the Computer Graphics community. The simulation of urban scenes, epic battles, or other 

environments that show thousands of people in real time require fast and realistic crowd 

motion. Domains of application are vast: video games, psychological studies, and 

Architecture to name a few.  

We present the motion planning architecture of crowd simulation, offering a hybrid and 

scalable solution for real-time motion planning of thousands of characters in complex 

environments. Multiple motion planning approaches for crowds have been introduced. As of 

today, several fast path planning solutions exist. Dynamic avoidance and high-level group 

behaviors however, remain expensive tasks. Agent-based methods offer realistic pedestrian 

motion planning, especially when coupled with global navigation. This approach gives the 

possibility to add individual and cognitive behaviors to each agent, but becomes too 

expensive for large crowds. Potential field approaches handle long and short-term avoidance. 

Long term avoidance predicts possible collisions and inhibits them. Short term avoidance 

intervenes when long-term avoidance cannot prevent a collision. These methods offer less 

believable results than agent-based approaches, because they do not provide the possibility to 

individualize each pedestrian behavior. However, they have much lower computational costs. 

Multi-approach modeling is proposed in this work as an adaptive simulation strategy for 

exhibiting the pedestrian crowd movements and its emergent behaviors in high density 

situation. Our method makes it possible to exploit advantages from both macroscopic and 

microscopic models.  The two types of models work simultaneously in a single simulation 

system, and are executed over different mutually exclusive partitions.  

It is important to notice that our resulting hybrid technique can automatically and 

dynamically select the suitable strategy; the dynamic switching between both models is ruled 

by the runtime simulation metric which is the crowd density in the partitions of the virtual 

environment. Our model also ensures that no visible disturbance is generated when adaptively 

change the simulation method in a region. The partitioning of the environment allows us to 

define transition zones where the two types of movement modeling approach must be 

interacted and crowd under one regime must be moved to the other. 
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We will continue to work on the proposed behavior model, which aims to be useful in 

different kinds of crowd simulation applications, our future work provides a development of a 

wide variety of social behaviors. These behaviors are managed for more accurate simulation 

results under various complex conditions by incorporating the more complex group structures 

and the interactions between the different types of pedestrians. Further work, the coupling of 

mesoscopic models with our model will develop to apply in the region with middle density. 
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