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a b s t r a c t

Using swarm robotics system, with one or more faulty robots, to accomplish specific tasks may lead
to degradation in performances complying with the target requirements. In such circumstances, robot
swarms require continuous monitoring to detect abnormal events and to sustain normal operations. In
this paper, an innovative exogenous fault detectionmethod formonitoring robots swarm is presented. The
method merges the flexibility of principal component analysis (PCA) models and the greater sensitivity
of the exponentially-weighted moving average (EWMA) and cumulative sum (CUSUM) control charts
to insidious changes. The method is tested and evaluated on a swarm of simulated foot-bot robots
performing a circle formation task, via the viscoelastic control model. We illustrate through simulated
data collected from the ARGoS simulator that a significant improvement in fault detection can be obtained
by using the proposed method where compared to the conventional PCA-based methods (i.e., T 2 and Q ).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The state of the art

Swarm intelligence techniques in multi-robotics systems are
among the fast growing areas in the field of robotics [1–3]. The
philosophy behind the swarm robotics field is inspired by the
societies of animals such as birds, ants and bees. Indeed, the lim-
ited capability of a single robot to perform complex tasks can be
enhanced by using a robotic swarm [4,5]. Furthermore, a group
of robots, which is able to cooperate to perform complex tasks is
important in process industries to enhance productivity, efficiency,
and safety, and to increase the flexibility of the whole swarm
system. Moreover, swarm robotics is very useful for several ap-
plications, such as the collective detection of bombs, cooperative
search and exploration,managingwarehouses, delivering products
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to customers, the seeding, harvesting, and storing of grains, and
rescuing human beings in emergency situations.

In practice, assigned tasks are not always expected to be prop-
erly executed at the desired performance level when using a
robotic swarm system. This is mainly due to external interferences
or failures resulting from component faults such as bugs in a
robot’s software controller, electromechanical faults in a robot’s
sensors and actuation devices, or from topological faults like bro-
ken communication links and intrusions between robots of the
swarm. Of course, one or more faulty robots can lead to degraded
performance of the swarm and failure to comply with the target
requirements. Therefore, it is crucial to detect and identify possible
faults or failures in the monitored robotic swarm system as early
as possible. Accurate and prompt fault detection efficiency and
operating capacity of the swarm system, and expensemaintenance
is avoided.

Generally, faults in robot swarms are difficult to avoid and may
result in serious system degradations [6]. Monitoring in swarm
robotics has lately received special attention from researchers and
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practitioners in the field of safety engineering. Increased atten-
tion to fault detection and safety has led to the development of
several fault detection techniques that can be grouped into two
main families [7,8]: endogenous and exogenous fault detection
techniques. Endogenous approaches are used to monitor each
robot individually to reveal any faults. Several works report using
such an approach; Skoundrianos et al. used a local model neural
network to diagnose faults in thewheels of amobile robot [9]. Yuan
et al. [10] proposed a hybrid fault diagnosis approach based on
Mittag-Leffler kernel (ML-kernel) support vector machine (SVM)
and Dempster–Shafer fusion for wheeled robot driving system.
Christensen et al. [11,12] proposed a time-delay neural networks
for automatic synthesis task-dependent fault detectionmodules in
s-bot robots. Canham et al. [13] implemented an immune-based
error detection method which takes inspiration from the negative
selection process of the immune system on both a Khepra robot
and a BAE system RascalTM robot. Mokhtar et al. [14] adapted a
fault detection algorithm (calledmodified Dendritic Cell Algorithm
mDCA) loosely inspired by the functioning of dendritic cells in the
immune system. However, such approaches ignore the interaction
between robots and thereforemay result in amisleading diagnosis.
For example, a robot might not detect anomalies in itself, such
as a dead battery or a software bug, and it cannot even signal
the rest of the swarm if an anomaly occurs in its communications
hardware. In addition, these methods use only the data collected
from, ignoring the data available in the whole swarm, which may
result in the loss of pertinent information [7].

On the other hand, exogenous fault detection techniques were
developed to inspect several robots simultaneously [15]. In other
words, a robot could detect errors that arise in another robot’s
components by taking into consideration the available information
of its neighborhood in the swarm [15]. Owens et al. [16], and Jaki-
movski et al. [17] proposed an AIS-based fault detection algorithm
inspired by the T-Cell Receptor and intracellular signaling network
mechanisms to detect anomalies within autonomous swarm sys-
tems. Christensen et al. [6] proposed a firefly-inspired exogenous
fault detection approach to detect inoperative robots in the swarm.
Tarapore et al. [18] presented an AIS-based exogenous approach to
detect faults in robotic swarm systems and tested its performance
on different case studies that included aggregating, dispersing,
flocking, and harming. Khadidos et al. [19] presented a model-
based exogenous fault detection method based on broadcasting
the sensor readings and motor speeds of robots to their neighbors.
Millard et al. [20] proposed a run-time fault detection approach
using an internal prediction model in each robot to compare with
the real behavior of other robots in the swarm.

Both endogenous and exogenous techniques can be developed
using either a mathematical model or an empirical implicit model
for fault detection. In mathematical model-based approaches,
faults are detected based on a comparison between the actual
behaviors of the monitored system with predicted behaviors de-
rived from a mathematical model of the system. Unfortunately,
deriving accurate models of monitored systems, especially com-
plex industrial process systems that include robot swarms, can
be difficult and time consuming. Data-driven implicit models are
a suitable alternative in the absence of an explicit model, and if
measurement signals are the only available resource for process
monitoring. Unlike the mathematical model-based approaches,
data-based techniques efficiently extract useful features for the
design of monitoring schemes, based on empirical models derived
from the available process data. Such methods require minimal
prior knowledge about process physics, but depends on the avail-
ability of quality input data. Indeed, data-driven methods are
mainly based on computational intelligence and machine learning
methods. Multivariate statistical process control (MSPC) charts are
one of the tools that have been used to reach these objectives.

1.2. Motivation and contributions

While several fault detection techniques have been proposed
for robotic swarm systems, MSPC charts have not been used for
monitoring in swarm robotics until recently. This paper focus on
monitoring robot swarms using PCA-based fault detection ap-
proaches. Principal component analysis (PCA) is a basic method
of multivariate analysis and is a powerful tool for monitoring
multivariate processes with highly correlated process data. PCA is
one the most commonly used techniques for dimension reduction.
Using the PCA method, the covariance structure in data can be
explained in a reduced dimensional space through an orthogonal
set of principal components (PCs), i.e, a set of linear combina-
tions of the original variables. Faults in the monitored swarm can
be detected by extracting useful data from the original dataset
through PCAmodeling, and then monitoring against those indices.
However, conventional PCA-based monitoring indices such as T 2

and Q charts lose the ability to detect small changes in the mean
of process data [21,22].

The overarching goal of this paper is to tacklemultivariate chal-
lenges in process monitoring by merging the advantages of tradi-
tional univariate andmultivariate techniques to enhance their per-
formance and widen their practical applicability. Exponentially-
weighted moving average (EWMA) and cumulative sum (CUSUM)
control charts are widely used univariate control charts. The key
idea is to apply PCA dimension reduction techniques to the fea-
tures of a process, and use control charts to monitor only the
more informative variables, or principal components. Specifically,
we extend the abilities of the univariate monitoring techniques
such as EWMA and CUSUM to deal with multivariate processes
by developing linear PCA-based EWMA and CUSUM monitoring
methods to monitor robotic swarm systems. Note that the main
advantage of the PCA-based EWMA and CUSUM fault detection
approaches is that the testing step is performed online, which is
not the case in a classifier (the classifier algorithms are performed
offline rather than online). A decision can be made for each new
sample by comparing the value of the EWMA or CUSUM decision
statistic with the value of the threshold. An anomaly is declared if
the EWMAor CUSUM statistic exceeds the threshold. The proposed
monitoring approach is applied to detect faults in a swarm of foot-
bot robots while they are forming a circle. We refer to the virtual
viscoelastic control (VVC) model proposed in [23] for robot swarm
circle formation; this model was previously implemented on sim-
ulated e-puck robots using the ARGoS simulator [24]. Here we
implement the model again on simulated foot-bot robots. During
the simulation, we collect various inputs and outputs of data for
each robot of the swarm; these data are later used in the PCAmodel
for monitoring.

The following section briefly reviews the VVC model used for
the robot swarm’s circle formation. Section 3 review the PCA-based
approach and how it can merged with the EWMA and CUSUM
charts for fault detection. In Section 5, the performances of the pro-
posed methods are illustrated in a simulation study, and Section 6
concludes with a discussion and suggestions for future research
directions.

2. Virtual viscoelastic control model

The virtual viscoelastic control (VVC) model is a physics-based
model that has been successfully applied as a proximal control to
keep and arrange robots together within a certain distance [23,25].
In this model, the movement of the swarm is governed by virtual
viscoelastic forces, which result from the interactions of the robots
with each other. This allows connectivity and coherency between
the robots of the swarm while they are in motion. Fig. 1 illustrates
a model setup of three foot-bot robots forming a circle with radius
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Fig. 1. A circle formation of three robots using the viscoelastic control (VVC)model.

r via the VVC model. The motion of each robot (its right speed vr i
and left speed vl i) depends on the virtual viscoelastic force Fivvc ,
which is given by the following equation:

F vvc
i =

nX

j=1

f vvc
ij , (1)

f vvc
ij = (ks(di,j � d0) + µvi,j), (2)

where d0 = 2r sin(⇡/(n+1)), n is the number of neighbors, ks is the
spring constant, di,j is the displacement vector that represents the
current length of the spring between two interacting robots, d0 is
the equilibrium length of the spring, µ is the damping coefficient,
and vi,j is the velocity of the focal robot relative to its nearby mate.

The speeds of the robot’s wheels are computed as follows:
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Here b is the distance between the robot’s wheels. The robot’s
angular velocity !i and the robot’s forward speed vi are given as
follows:

!i = k!
6 F vvc

i , vi = vmaxp| !i | +1
(4)

where k! is a gain constant, 6 F vvc
i refers to the angle formed by the

force F vvc
i , and vmax is the maximum allowed forward speed.

To achieve the VVC model in a foot-bot robot, we use its range
and bearing device (RAB). With this device, the foot-bot is able
to send and receive messages to and from nearby robots within
a maximum range Dr . Moreover, it can also perceive the range (dij)
and bearing (✓ij) measurements of the robot that sent a message.
Details about the values of constants and parameters we used in
the model can be found in the works of Khaldi and Cherif [23,25].

3. PCA-based monitoring approaches

The goal of PCA is to explain the variance/covariance structure
through an orthogonal set of linear combination of original vari-
ables in the reduced dimensional space. Due to dependency and
collinearity, much of the variation can be accounted for by only
small number of principal components (PCs).

3.1. Feature extraction using PCA

Consider a properly scaled data matrix or measurement matrix
X = ⇥

xT1, . . . , x
T
n

⇤T 2 Rn⇥m, with n measurements and m process
variables. In the following discussion, it is assumed that the scaled

data is zero-mean centered with unit variance. Usually, due to
redundancy and noise in the data, l, principal components (l ⌧ m)
can capture much of the variability in X. The data matrix X can
be expressed by PCA as two complementary orthogonal parts: a
modeled data bX which contains the most significant variations
present in the data and a residual data E which represents noises,
i.e.,

X = TPT =
lX

i=1

tipTi +
mX

i=l+1

tipTi = bX + E, (5)

where T = [t1 t2 · · · tm] 2 Rn⇥m represents a matrix of the
transformed uncorrelated variables, ti 2 Rn termed principal
components (PCs), which are defined as uncorrelated, linear com-
binations of the original variables that successively maximize the
total variance of data projection. l is the number of PCs retained in
the PCA model. The column vectors pi 2 Rm, termed the loading
vectors, arranged in the matrix P 2 Rm⇥m are obtained by the
eigenvectors related to the covariance matrix of X, i.e., ⌃ . The
loading vectors are the eigenvectors of the covariance matrix, ⌃ .
Through singular value decomposition, ⌃ can be decomposed as:

⌃ = 1
n � 1

XTX = P⇤PT with PPT = PT P = In. (6)

Here, ⇤ = diag(� 2
1 , . . . , � 2

m) is a diagonal matrix containing the
eigenvalues of ⌃ in decreasing magnitude, and In is the identity
matrix [26]. In PCA, it is very important to select the optimal
number of PCs to be retained in the model [27]. There are many
techniques for selecting the dimension l, such as cross-validation,
cumulative percent variance (CPV), and variance of reconstruction
error. In this paper, the CPV technique is employed to determine
the number of retained PCs, l: CPV (l) =

Pl
i=1�iPm
i=1�i

⇥ 100.

3.2. PCA-based fault detection

Once a PCA model based on past normal operation is obtained,
it can be used to monitor future deviation from normality. Two
monitoring statistics, the T 2 andQ statistics, are usually utilized for
fault detection purposes [28]. The T 2 statistic based on the number
of retained PCs, l, is defined as [28]:

T 2 =
lX

i=1

t2i
�i

, (7)

where�i is eigenvalue of the covariancematrix ofX . The T 2 statistic
measures the variation in the PCs only. A large change in the
PC subspace is observed if some points exceed the confidence
limit of the T 2 chart, indicating a big deviation in the monitored
system. Confidence limits for T 2 at level (1�↵) relate to the Fisher
distribution, F , as follows [28]:

T 2
l,n,↵ = l(n � 1)

n � l
Fl,n�l,↵, (8)

where Fl,n�l,↵ is the upper 100↵% critical point of F with l and n� l
degrees of freedom.

The squared prediction error (SPE) or Q statistic, which is de-
fined as [28]:

Q = eTe, (9)

captures the changes in the residual subspace. e = x�x̂ represents
the residuals vector, which is the difference between the new ob-
servation, x, and its prediction, x̂, via PCA model. Eq. (9) provides a
direct mean of theQ statistic in terms of the total sum ofmeasured
variation in the residual vector e. The SPE can be considered a
measure of the system-model mismatch. The confidence limits
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for SPE are given by [26]. This test suggests the existence of an
abnormal condition when Q > Q↵ , where Q↵ , is defined as:

Q↵ = '1


h0c↵

p
2'2

'1
+ 1 + '2h0(h0 � 1)

'2
1

�
, (10)

where c↵ is the confidence limits for the 1�↵ percentile in a normal
distribution, 'i = Pm

j=l+1�
i
j, for i = 1, 2, 3, and h0 = 1 � 2'1'3

3'2
2
.

However, the PCA-based T 2 and Q approaches fail to detect
small faults [29]. The CUSUM and EWMA charts, which are widely
used univariate control charts, are proposed as improved alterna-
tives for fault detection. The objective is to tackle PCA challenges
in process monitoring by merging the advantages of the CUSUM,
EWMA, and PCA approaches to enhance their performance and
widen their practical applicability.

4. Univariate statistical control charts

Univariate statisticalmethods, such as CUSUMandEWMA, have
been widely used to monitor industrial processes for many years.
These methods are briefly reviewed here.

4.1. EWMA monitoring charts

EWMA is a statistic which gives less weight to old data, and
more weight to new data. The EWMA charts are able to detect
small shifts in the process mean, since the EWMA statistic is a
time-weighted average of all previous observations. The EWMA
monitoring chart is an anomaly-detection technique widely used
by scientists and engineers in various disciplines [30–35]. Assume
that {x1, x2, . . . , xn} are individual observations collected from a
monitored process. The expression for the EWMA is [35]:

zt = �xt + �
1 � �

�
zt�1 if t > 0. (11)

The starting value z0 is usually set to the mean of the fault-
free data, µ0. zt is the output of EWMA and xt is the observation
from the monitored process at the current time. The forgetting
parameter � 2 (0, 1] determines how fast EWMA forgets historical
data. We can see that if � is small, then more weight is assigned
to past observations. Thus the chart is tuned to have efficiency for
detecting small changes in the process mean. On the other hand, if
� is large, thenmoreweight is assigned to the current observations,
and the chart ismore suitable for detecting large shifts [34,35]. As�
approaches zero, EWMA approximates the CUSUM criteria, which
gives equal weights to the current and historical observations.

The upper and lower control limits of the EWMA chart for
detecting a mean shift are: UCL/LCL = µ0 ± L�zt , where
L is a multiplier of the EWMA standard deviation �zt , �zt =
�0

q
�

(2��) [1 � (1 � �)2t ], and �0 is the standard deviation of the
fault-free or preliminary dataset. The parameters L and � need to
be set carefully [34,35]. In practice, L is usually set to 3, which
corresponds to a false alarm rate of 0.27%. If zt is within the interval
[LCL UCL], thenwe conclude that the process is under control up to
time point t . Otherwise, the process is considered out of control.

4.2. Cumulative sum (CUSUM) charts

Like the EWMA chart, CUSUM charts have also a good capacity
to detect small shifts in the process mean due to an extensive
memory of the process [36]. The CUSUM chart aggregates all the
information from past and current samples in the decision proce-
dure. The CUSUM statistic (Si) is defined as the following [35]:

St =
nX

j=1

(xj � µ0), (12)

Fig. 2. A flowchart of a PCA-based fault detection schemes.
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Fig. 3. Evolution in time of (a) AMDE, and (b) GS.

where t denotes the current time point, St is the cumulative sum
of all samples, including the most recent, and µ0 is the targeted
process mean. A one-sided CUSUM statistic is computed using the
following equation [35]:

St =
tX

j=1


xj � (µ0 + k)

�
, (13)

where k is a parameter used as a reference to detect changes in the
process mean. If St becomes negative, then the CUSUM statistic is
set to zero. An out-of-control process is defined by St exceeding
the decision interval, which is another parameter needed for the
CUSUM charts to function. The parameters k and h are defined
as k = �

2 , and h = d�
2 , respectively, where d = � 2

�2

�
ln

� 1��
↵

�
,

� = �
�x
, �x is the standard deviation of the average of the process

variable (x) beingmonitored,↵ and� are probabilities, and� is the
size of the shift in the mean that needs to be detected. In practice,
Montgomery recommends using a value of 4� or 5� for h [35]. This
choice would provide a reasonable detection for a shift of 1� in the
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Table 1
PCA-based EWMA and CUSUM fault detection procedures.

Step Action
1. Given:

• A training fault-free dataset that represents the normal process operations and a testing dataset
(possibly faulty data),
• The parameters of the EWMA control scheme: smoothing parameter � and the control limit width L,

2. Data preprocessing
• Scale the data to zero mean and unit variance,

3. Build the PCA model using the training fault-free data
• Express the data matrix as a sum of approximate and residual matrices as shown in Eq. (5),
• Compute the ignored principal components using PCA.
• Compute the control limits of the EWMA and CUSUM control schemes

4. Test the new data
• Scale the new data,
• Compute the ignored principal components using the builded PCA model,
• Compute the EWMA and CUSUM decision statistics,

5. Check for faults
• Declare a fault when the EWMA or CUSUM decision function exceeds the control limits previously
computed using the training data.

process mean. Numerous variations of the CUSUM exist; for more
details see [35].

4.3. Combining PCA with CUSUM and EWMA charts

Once a PCA model based on historical, normal data is obtained,
it can be utilized to monitor future deviation of the process. In
this paper, we combine the advantages of PCA modeling with
those of the univariate monitoring charts, CUSUM and EWMA,
which results in an improved fault detection system, especially
for detecting small faults in highly correlated, multivariate data.
Towards this end, we applied CUSUM and EWMA charts to the
‘‘minor’’ components obtained from PCA model. As we know, the
principal components (PCs) explain most of the variation in the
data;minor components refer to the unimportant or residual infor-
mation that is not retained in a PCAmodel. Theminor components,
which capture the variability that arises from noise, represent the
residuals of the process, and may contain redundancies that exist
between variables. Thus, the loading vectors related to the minor
components actually describe the correlations between variables.
Indeed, under normal operation with little noise and few errors,
the minor components are close to zero, while they significantly
deviate from zero in the presence of abnormal events. In this work,
the minor components are used as fault indicator. Few studies
have taken the minor components into account when doing PCA
analysis.

The implementation of the developed monitoring methods is
comprised of two stages: offline modeling and online monitoring.
In the offline modeling phase, PCA is performed on the normal
operating data (training data) enabling us to obtain a reference
model. Then, the fault detection procedure is executed by using
the reference PCA model with EWMA and CUSUM charts in the
online monitoring phase. The PCA-based CUSUM and EWMA fault
detection algorithms are schematically summarized as shown in
Table 1, which is schematically represented in Fig. 2.

Themethodology of using PCA for statistical processmonitoring
is illustrated through a simulated robot swarm in the next section.

5. Results and discussion

In this study, we perform ARGoS-based experimental simu-
lations on a swarm of foot-bots; the robots are programmed to
perform the VVC model to self-organize into a uniform circle from
a randomly dispersed distribution. ARGoS comes with a configu-
ration file in which we can set the arena, the robots, their sensors,
and their actuators devices. In our simulation setup, we activate
the RAB equipment within a range Dr = 3 m, the arena is set
to a closed room of 10 ⇤ 6 m2, the number of the foot-bots is set

Table 2
Data collected from the ARGoS simulation.

Parameter Description
AMDE Average mean distance error [25]
GS Group speed [25]
vri Right wheel forward speed
vli Left wheel forward speed
F vvc
i Virtual viscoelastic force length

6 F vvc
i Virtual viscoelastic angle

to n = 6, the foot-bots are randomly distributed in the arena,
and their orientations are set to be a Gaussian distribution of zero
means and a standard deviation of 360�. In ARGoS, the simulation
time step is set to 0.1 s, with five iterations each experiment, for a
total of 1500 time steps. During the experimental simulations, we
collect data that are further used as inputs and outputs for the PCA-
based monitoring approach; we summarize these data in Table 2.
Fig. 3 plots the average of the five running simulations for both the
group speed, GS, and the average mean distance error, AMDE, of
the entire swarm. The plots show that from time step t = 500, the
robotic swarm system becomes stable and converges to a constant
AMDE and a tiny variable GS. Fig. 4 shows ARGoS-based snapshots
in step times (t = 0, t = 250, and t = 500) during the VVC model
simulation with a swarm of six foot-bots.

5.1. PCA modeling

In this study, a swarm of six robots is considered. The data
matrix X used to build a PCA model contains 3000 observations
and12 variables (i.e., viscoelastic force length and viscoelastic force
angle collected from each robot). These twelve signals measured
when the swarm system is operating normally. Moreover, all the
measured observations are collected during the stabilization phase
of the swarm system (from starting point of a time window (t =
500) to the end of the simulation). First, these training data are
scaled to zero mean and variance one, then used to build the
PCA model. The number of PCs retained in the PCA model are
determinedusing the CPVmethodwith a threshold of 95%. The first
PC explains 56% of the total variance; the second PC explains 37% of
the total variance, and the third PC explains 3% of the total variance.
Together, three PCs can capture 96%of the useful information in the
monitored robotic swarm system (see Fig. 5). Thus, only three PCs
need to be retained in the PCA model.

Monitoring results of the PCA-based T 2,Q , and EWMAcharts for
the normal operating data are shown in Fig. 6(a–c). Since the Q plot
shown in Fig. 6(b) is based on normal operating data, one should
expect that almost all the data will lie within the 95% confidence
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ba c

Fig. 4. Snapshots during ARGoS simulation of 6 foot-bots performing the VVC model at: (a) t = 0, (b) t = 250 and (c) t = 500.

Fig. 5. Three PCs capture 96% of information in the system.

interval. Similarly, the data points in the PCA–EWMA and CUSUM
charts are also within the 95% confidence limits (see Fig. 6(c–d)).
However, the T 2 plot given in Fig. 6(a) shows a few false alarms.
We can conclude that the PCAmodel describes the data well when
no faults are presents.

5.2. Detection results

After a system model has been successfully identified, we can
proceed with fault detection. Five types of faults in robotic swarm
systems will be considered here: abrupt, intermittent, random
walk, complete stop, and gradual faults.

5.2.1. Case (A): Abrupt fault detection
In this case study, an abrupt change is simulated by adding a

small, constant deviation to the viscoelastic force length of the first
robot, x1, between sample times 150 and 200. Since the viscoelastic
force is largely related to the RAB device, this could represent a
misperception of the range of neighbors or noisy data (velocities)
received from neighbors. The two examples below show the per-
formance of the fault detection techniques in detecting an abrupt
fault.

Case (A1): In the first example, the magnitude of the deviation
is equal to 40% of the total variation in x1. Monitoring results are
shown in Fig. 7(a–d). The T 2 chart, as expected, has no ability to

whatsoever to detect this moderate fault (see Fig. 7(a)). This fact is
due to the PCs subspace sometimes being insensitive to moderate
and small faults, because each PC is a combination of all process
variables. The monitoring results of the PCA-Q , PCA–EWMA, and
PCA–CUSUM charts are demonstrated in Fig. 7(b–d). All the charts
show signs of a fault because the bias shift in this case is quite
large.

Case (A2): In the second example, a bias fault of 10% of the
total variation is introduced in x1 between sample times 150 and
200. This could represent a total sensor offset or noisy sensing in
the RAB device; this means a possible misperception of both the
range and the bearing measurements of neighbors, in addition to
possible miscommunications received from neighbors. The four
monitoring charts are shown in Fig. 8(a–d). The T 2 and Q charts
are demonstrated in Fig. 8(a–b), from which we can see that they
cannot give any sign of an anomaly. Themajor reason for this over-
sight of the conventional PCA-based monitoring methods (i.e., T 2

and Q ) is that they use current observation data alone to evaluate
system performance ignoring the historical data. We then apply
the CUSUM chart with k = 0.25 and h = 0.19 and the EWMA chart
with � = 0.3 to the testing dataset. Both statistics clearly exceed
the control limits, indicating the occurrence of some abnormal
condition. However, the CUSUM chart gave several false alarms,
an error rate of 26.4%. Indeed, after conditions return to normal,
the CUSUM chart continues to show abnormality for some time,
resulting in a large number of false alarms. This case study clearly
shows the superiority of the EWMA chart over all other charts.

5.2.2. Case (B): Intermittent fault
In this case study, we introduce into the testing data a bias of

amplitude 40% of the total variation in x1of between samples 50
and 100, and a bias of 10% between samples 150 to 200. This again
could be due to a repeated misperception of the range and the
bearing measurements for nearby robots or noisy received data
(a RAB sensor fault). Fig. 9(a–d) shows the monitoring results of
the PCA-based T 2, Q , EWMA, and CUSUM charts. Fig. 9(a) shows
that the PCA-based T 2 chart has no power to detect this fault.
From Fig. 9(b), it can be seen that the PCA-Q chart can detect the
intermittent faults but with several missed detections. It can be
seen from Fig. 9(d) that the PCA–CUSUM chart can indeed detect
this fault, but with somemissed detections. On the other hand, the
PCA–EWMA chart with � = 0.3 correctly detects this intermittent
fault (see Fig. 7(c)). In this case study, we can see that detection
performance is much enhanced when using the PCA–EWMA chart
compared to the others.

5.2.3. Case (C): Random walk fault
As the movement pattern of swarming robots is highly cross-

correlated, we investigate the ability of the proposed approaches
to detect a random walk fault in a robot swarm. In this case study,
the first robot is performing a random walk and not following the
other robots. Such an event could occur when there are noises in
the RAB device of the robot. To generate the data with a random
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Fig. 6. Monitoring results of PCA-T 2 (a), PCA-Q (b), and PCA–EWMA charts (c) for the normal operation data.
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Fig. 7. Monitoring results of the T 2 (a), Q (b), EWMA with � = 0.3 (d), and CUSUM (with k = 0.25 and h = 0.19) (c) charts in the presence of an abrupt fault in x1 from
sample 150 to 200 (Case (A1)).

walk fault, the viscoelastic force length of the first robot, x1, is
contaminated with random Gaussian noise with a variance of � =
0.5 from sample number 200 until the end of the test data. The
fourmonitoring charts are shown in Fig. 10(a–d). The PCA-T 2 chart
fails to detect this fault, as shown in Fig. 10(a). Fig. 10(a) shows
that the PCA-Q is able to detect the fault, but with several missed
detections. On the other hand, the PCA-based CUSUM and EWMA
charts perform reasonably well (see Fig. 10).

5.2.4. Case (D): Complete stop fault
In this case study, the detection of a complete stop fault in

a robot swarm is investigated. In this case study, we consider a
complete stop error, which iswhen a robot has completely stopped
working, becoming invisible to neighboring robots. For this pur-
pose, the value of the viscoelastic force of the first robot is zeroed

from sampling time 200 until the end of the test data. This means
that both the RAB device and themotor actuator of the faulty robot
have completely stopped working (the robot canmove nor send or
receive messages). Here the T 2 chart can detect the fault but with
severalmissed detections (see Fig. 11). The other three charts, PCA-
based Q , CUSUM, and EWMA, all perform reasonably well because
the anomaly in this case is relatively large.

To quantify the efficiency of the proposed strategies,we use two
metrics: the false detection rate (FAR) and the miss detection rate
(MDR) [37]. The FAR is the number of normal observations that are
wrongly judged as faulty (false alarms) over the total number of
fault-free data. The MDR is the number of faults that are wrongly
classified as normal (missed detections) over the total number of
faults. The FDR andMDR of the above examples are summarized in
Table 3. The smaller the FAR and MDR are, the better the detection
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Fig. 8. Monitoring results of the T 2 (a), Q (b), EWMA with � = 0.3 (d), and CUSUM (with k = 0.25 and h = 0.19) (c) charts in the presence of an abrupt fault in x1 from
sample 150 to 200 (Case (A2).

Fig. 9. Monitoring results of the T 2 (a), Q (b), EWMA with � = 0.3 (d), and CUSUM (with k = 0.25 and h = 0.19) (c) charts in the presence of intermittent faults in x1
between sample times [50 100] and [150 200] (Case (B)).

Table 3
False and miss detection rates for all monitoring charts.

Chart Case (A1) Case (A2) Case (B) Case (C) Case (D)
FAR MDR FAR MDR FAR MDR FAR MDR FAR MDR

T 2 2 92 2 98 2 93 2 94 2 66
Q 0 0 0 100 0 44 0 74 0 0
CUSUM 20 2 26.4 2 75 0 0 2 0 0
EWMA 7.6 0 4 0 5.5 0 3.5 5 0 0

rate is. From Table 3 it can be seen that the developed PCA–EWMA
chart provides better detection performances compared to the
other charts when detecting small and persistent faults.

5.2.5. Case (E): Drift failure detection
A ramp type, or slow drift, fault is simulated by adding a

ramp change to the normal measurements of x1 from sample
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Fig. 10. Monitoring results of the T 2 (a), Q (b), EWMA with � = 0.3 (d), and CUSUM (with k = 0.25 and H = 0.19) (c) charts when the first robot performs a random walk
from sample number 200 through the end of the testing data, Case (C).

Fig. 11. Monitoring results of the T 2 (a), Q (b), EWMA with � = 0.3 (d), and CUSUM (with k = 0.25 and h = 0.19) (c) charts when the first robot has completely stopped
working between sample times 200–300, Case (D).

150 through the end of the testing data. This means that either
a gradual decrease of the viscoelastic force has occurred due to
degradation of a battery, or a sudden increase of robot speed has
happened due to problems in the robot’s motor. Fig. 12(a) shows
that the PCA-T 2 is not sensitive to this drift fault. The PCA-Q
chart is shown in Fig. 12(b), which first flags the fault at sample
181. Fig. 12(c) shows that the PCA–EWMA chart first detects the
fault at the 157th observation. Therefore, fewer observations are
needed for the PCA–EWMA chart to detect a fault compared to
the other charts. This case study testifies again to the superiority
of the proposed approaches compared to conventional PCA-based

fault detection. Of course, this paper also demonstrates through
simulated data that significant improvement in fault detection can
be obtained by using the PCA model when combined with well
established statistical techniques such as the EWMA and CUSUM
charts.

6. Conclusion

This paper focuses on an improved data-based fault detection
strategy and its application to fault detection in a swarm of foot-
bot robots. Towards this end, the VVC model is used for the circle
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Fig. 12. Monitoring results of the T 2 (a), Q (b), EWMA with � = 0.3 (d), and CUSUM (with k = 0.25 and h = 0.19) (c) charts in the presence of a drift fault with slope 0.01
in x1 from sample 150, Case (E).

formation of the robot swarm. Different kind of faults have been
tested in this study including abrupt faults, drift faults, random
walks and complete stop faults. The swarm data, simulated via
the ARGoS simulator, show that significant improvement in fault
detection can be obtained by using the EWMA chart instead of
the Q or T 2 charts, which are conventionally used with PCA-
based techniques. Because the PCA-based T 2 andQ charts evaluate
monitored system performance based on the current data alone,
they are suitable for detecting relatively large faults. They are
less capable of detecting relatively small and persistent shifts,
compared to the CUSUM and EWMA charts.

Conventional PCA models are most suitable for dealing with
a steady state system. However, in practice systems are usually
dynamic and time-varied. Directly applying the PCA method to
monitor or model such a process often results in false alarms and
model-process mismatch. To adapt to a process drift or change
of operating point, we plan in future work to develop a recursive
model by updating an online PCA model.

In future works, experimental data will be used to test and
validate the performance of the proposed approach in detecting
faults in a robot swarm. Experimental data could be recorded using
external tracking systems, or via using on-board sensors. An ex-
ternal tracking system is generally an external infrastructure, with
the required sensors, that should be installed to record the needed
measurements. For example, the Vicon tracking system [38] built
at Bristol Robotics Lab (BRL) implements virtual sensors, to allow
online evolution of collective behaviors within a swarm of e-puck
robots. The OptiTrack system [20] installed at the York Robotics
Lab (YRL) provides high precision real-time position tracking, to
perform a comparison between the expected and the observed be-
havior in an e-puck robot augmentedwith a Linux Extension Board
(LEB). However due the height cost of such tracking infrastructures,
an alternative approach to be used in our future works is the use
of the robot on-board sensors such as the range and bearing (RAB)
equipment [39]. The RAB can be used to broadcast the observed
data (i,e F vvc

i and 6 F vvc
i ) computed by each foot-bot robot to one

or more robots that act as observers. The observer(s) will then
perform the PCA-based fault detection approach, to independently
monitor the behavior of the other robots that arewithin their range
of perception.
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[11] A. Christensen, R. OǴrady, M. Birattari, M. Dorigo, Fault detection in au-
tonomous robots based on fault injection and learning, Auton. Robots 24 (1)
(2008) 49–67.

[12] A. Christensen, R. O’Grady, M. Birattari, M.M. Dorigo, Automatic synthesis of
fault detection modules for mobile robots, in: AHS, 2007, pp. 693–700.



B. Khaldi et al. / Robotics and Autonomous Systems 97 (2017) 193–203 203

[13] R. Canham, A. Jackson, A. Tyrrell, Robot error detection using an artificial im-
mune system, in: NASA/DoD Conference on Evolvable Hardware, IEEE, 2003,
pp. 199–207.

[14] M. Mokhtar, R. Bi, J. Timmis, A. Tyrrell, A modified dendritic cell algorithm for
on-line error detection in robotic systems, in: IEEE Congress on Evolutionary
Computation, IEEE, 2009, pp. 2055–2062.

[15] H. Lau, I. Bate, P. Cairns, J. Timmis, Adaptive data-driven error detection in
swarm robotics with statistical classifiers, Robot. Auton. Syst. 59 (12) (2011)
1021–1035.

[16] N. Owens, A. Greensted, J. Timmis, A. Tyrrell, T cell receptor signalling inspired
kernel density estimation and anomaly detection, in: International Conference
on Artificial Immune Systems, Springer, 2009, pp. 122–135.

[17] B. Jakimovski, E. Maehle, Artificial immune system based robot anomaly
detection engine for fault tolerant robots, in: International Conference on
Autonomic and Trusted Computing, Springer, 2008, pp. 177–190.

[18] D. Tarapore, P. Lima, J. Carneiro, A. Christensen, To err is robotic, to toler-
ate immunological: fault detection in multirobot systems, Bioinspiration &
Biomimetics 10 (1) (2015) 016014.

[19] A. Khadidos, R. Crowder, P. Chappell, Exogenous fault detection and recovery
for swarm robotics, IFAC-PapersOnLine 48 (3) (2015) 2405–2410.

[20] A. Millard, J. Timmis, A. Winfield, Run-time detection of faults in autonomous
mobile robots based on the comparison of simulated and real robot behaviour,
in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2014, pp. 3720–3725.

[21] F. Harrou, M.Madakyaru, Y. Sun, S. Khadraoui, Improved detection of incipient
anomalies via multivariate memory monitoring charts: Application to an air
flow heating system, Appl. Therm. Eng. 109 (2016) 65–74.

[22] F. Harrou, F. Kadri, S. Khadraoui, Y. Sun, Ozone measurements monitoring
using data-based approach, Process Safety and Environmental Protection 100
(2016) 220–231.

[23] B. Khaldi, F. Cherif, Swarm robots circle formation via a virtual viscoelastic
control model, in: 8th International Conference on Modelling, Identification
and Control, ICMIC, IEEE, 2016, pp. 725–730.

[24] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N.
Mathews, E. Ferrante, G.D. Caro, F. Ducatelle, ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems, Swarm Intell. 6 (4) (2012)
271–295.

[25] B. Khaldi, F. Cherif, A virtual viscoelastic based aggregation model for self-
organization of swarm robots system, in: Conference Towards Autonomous
Robotic Systems, Springer, 2016, pp. 202–213.

[26] J. Jackson, G. Mudholkar, Control procedures for residuals associated with
principal component analysis, Technometrics 21 (1979) 341–349.

[27] M. Zhu, A. Ghodsi, Automatic dimensionality selection from the scree plot via
the use of profile likelihood, Comput. Statist. Data Anal. 51 (2006) 918–930.

[28] S. Qin, Statistical process monitoring: Basics and beyond, J. Chemom. 17 (8/9)
(2003) 480–502.

[29] F. Harrou, M. Nounou, H. Nounou, M. Madakyaru, PLS-based EWMA fault
detection strategy for process monitoring, J. Loss Prev. Process Ind. 36 (2015)
108–119.

[30] J. Lucas,M. Saccucci, Exponentiallyweightedmoving average control schemes:
properties and enhancements, Technometrics 32 (1) (1990) 1–12.

[31] F. Harrou,M.Nounou,Monitoring linear antenna arrays using an exponentially
weighted moving average-based fault detection scheme, Syst. Sci. Control
Eng.: An Open Access J. 2 (1) (2014) 433–443.

[32] P. Morton, M. Whitby, M.-L. McLaws, A. Dobson, S. McElwain, D. Looke, J.
Stackelroth, A. Sartor, The application of statistical process control charts to
the detection and monitoring of hospital-acquired infections, J. Quality Clin.
Pract. 21 (4) (2001) 112–117.

[33] F. Harrou, M. Nounou, H.N. Nounou, A statistical fault detection strategy using
PCA based EWMA control schemes, in: 9th Asian Control Conference, ASCC,
IEEE, 2013, pp. 1–4.

[34] F. Kadri, F. Harrou, S. Chaabane, Y. Sun, C. Tahon, Seasonal ARMA-based SPC
charts for anomaly detection: Application to emergency department systems,
Neurocomputing 173 (2016) 2102–2114.

[35] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley &
Sons, New York, 2005.

[36] E. Page, Continuous inspection schemes, Biometrika 41 (1/2) (1954) 100–115.
[37] F. Harrou, Y. Sun, M. Madakyaru, Kullback-Leibler distance-based enhanced

detection of incipient anomalies, J. Loss Prev. Process Ind. 44 (2016) 73–87.
[38] A.F. Winfield, C. Blum, W. Liu, Towards an ethical robot: internal models, con-

sequences and ethical action selection, in: Conference Towards Autonomous
Robotic Systems, Springer, 2014, pp. 85–96.

[39] A.Millard, Exogenous Fault Detection in SwarmRobotic Systems (Ph.D. disser-
tation), University of York, 2016.

Belkacem Khaldi holds in 2012 a M.Sc. in image syn-
thesis and Artificial life from the university of Biskra,
Algeria. From the same university, he possessed a de-
gree of engineer in Computer sciences in 2001. Actually
he is preparing his Ph.D. in computer science at Biskra
University under the supervision of Pr. Foudil Cherif. In
parallel he is working since 2006 as a software developer
at Sonatrach Company, Algeria. He is focusing his studies
mainly on selforganized patterns, self-organized flock-
ing and self-organized aggregation in swarm robotics; he
is also interested in monitoring approaches applied to

swarm robotics.

Fouzi Harrou received the Dipl.-Ing in Telecommunica-
tions from Abou Bekr Belkaid University, Algeria, in 2004
and the M.Sc. degree in Telecommunications and Net-
working in 2006 from the University of Paris VI, France.
In 2010, he received the Ph.D. degree in Systems Opti-
mization and Security from the University of Technology
of Troyes (UTT), France, and was an Assistant Professor at
the UTT, from 2009 to 2010. In 2010, he was an Assistant
Professor at the Institute of Automotive and Transport
Engineering at Nevers, France. From 2011 to 2012, he was
Postdoctoral Research Associate at the Systems Modelling

and Dependability Laboratory, UTT. From 2012 to 2014, he was an Assistant Re-
search Scientist, in Chemical Engineering Department at the Texas A&M Univer-
sity at Qatar, Doha, Qatar. Since 2015, he is Postdoctoral Fellow in the Division
of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) at
King Abdullah University of Science and Technology (KAUST). His current research
interests include statistical decision theory and its applications, fault detection and
signal processing, and Spatio-temporal statistics with environmental applications.
He is a Member of the IEEE Computational Intelligence Society.

Foudil Cherif is a professor of computer science at Com-
puter Science Department, Biskra University, Algeria. Pr.
Cherif holds Ph.D. degree in computer science. The topic of
his dissertation is behavioral animation: crowd simulation
of virtual humans. He also possesses B.Sc. (engineer) in
computer science from Constantine University 1985, and
an M.Sc. in computer science from Bristol University, UK
in 1989. He is currently the head of LESIA Laboratory.
His current research interest is in Artificial intelligence,
Artificial life, Crowd simulation, RFID security and web
services.

Ying Sun is an Assistant Professor of Statistics in the di-
vision of Computer, Electrical and Mathematical Sciences
and Engineering (CEMSE) at King Abdullah University of
Science and Technology (KAUST) in Saudi Arabia. She
joined KAUST in June 2014 after one-year service as an
assistant professor in the Department of Statistics at the
Ohio State University, USA. At KAUST, she leads a mul-
tidisciplinary research group on environmental statistics,
dedicated to developing statistical models and methods
for space–time data to solve important environmental
problems. Prof. Sun received her Ph.D. degree in Statistics

from Texas A&M University in 2011, and was a postdoctorate researcher in the
research network of Statistics in the Atmospheric and Oceanic Sciences (STATMOS),
affiliated with the University of Chicago and the Statistical and Applied Mathemat-
ical Sciences Institute (SAMSI). She demonstrated excellence in research and teach-
ing, published research papers in top statistical journals as well as subject matter
journals, wonmultiple best paper awards from the American Statistical Association
and the Transportation Research Board National Academies. Her research interests
include spatio-temporal statistics with environmental applications, computational
methods for large datasets, uncertainty quantification and visualization, functional
data analysis, robust statistics, statistics of extremes.


