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General Introduction 

 

TCOs are materials which combine optical transparency with electrical conductivity. In 

order for materials to be transparent they must display a band gap greater than the highest 

frequency of visible light (3.1 eV). Metals for instance are highly conductive but do not 

transmit visible light and transparent materials such as glasses are insulators. TCOs exhibit 

intrinsic conductivity due to defect states in the crystal structure [1]. 

It has been known for some time that ZnO can be prepared as a transparent conducting 

film. ZnO has been commonly used in its polycrystalline form for over a hundred years in a 

wide range of applications: facial powders, ointments, sunscreens, catalysts, lubricant 

additives, paint pigmentation, piezoelectric transducers, varistors, and as transparent 

conducting electrodes [2]. 

To prepare zinc oxide as a thin film many methods can be used; Such as spray 

pyrolysis, sputtering, sol-gel, pulsed laser deposition (PLD), chemical vapor deposition 

(CVD) [3]; Among this methods spray pyrolysis are considered that a cheap and efficient 

method [4]. 

The objective of this work was to deposit undoped and doped ZnO thin films by spray 

pyrolysis; in fact two types (two atomization modes) of this method were used, ultrasonic and 

pneumatic spray pyrolysis; at a wide range of preparation conditions. In order to understand 

the growth behavior of ZnO thin films, preparation conditions effects on ZnO thin films 

properties and to establish the optimum growth procedure to get a thin film has extremely 

well structural, electrical and optical properties. 

Various techniques were employed to characterize the films and thus determine the 

optimum growth conditions (i.e measurement of film thickness, resistivity, X-ray diffraction, 

Scanning electron microscopy and UV-Visible Spectrophotometry). 

This thesis consists of four chapters. The first Chapter presents a review of the 

properties of ZnO and growth techniques. Chapter two presents a general description of spray 

pyrolysis, description of the experimental spray pyrolysis kit and its method of use, presents 

the growth conditions of undoped and doped ZnO thin films and the characterization 

techniques employed on the films are also described.  
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The third chapter presents the characterization results of Zinc oxide thin films doped 

with different elements which are Indium and Aluminium; where the aim is for finding out 

the effect of doping rate on the ZnO characteristics; the films were synthesized by ultrasonic 

spray pyrolysis technique; in line with this the results have get enough interpretation and 

discussion. 

The fourth chapter is divided into two parts:  the  first presents the characterization 

results of undoped Zinc oxide thin films prepared using pneumatic spray pyrolysis technique 

and an interpretation of the impact of different substrate temperatures (from 300 to 450 °C) at 

two deposition spray pressures (1 and 1.5 bar). The second part presents the study of the 

Aluminium doping effect on the zinc oxide thin films properties using the same spray method.  

We conclude our thesis by a general conclusion, a discussion, some final comments and 

suggestions for further work. 
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I.1.Introduction: 

   The growth and characterization of II-VI semiconductor, such as ZnO, has been becoming a 

more and more active research field in recent years. The research works have been 

encouraged by both scientific significance and the potential of various practical applications 

such as light-emitting diode (LEDs) and ultraviolet photodetector, V-blue semiconductor 

laser, flat panel displays, solar cell, gas sensor, and surface acoustic wave devices, and so on 

[1]. 

I.2.Chapter Objectives: 

The objectives of this chapter are to: 

1. Review the properties of zinc oxide. 

2. Describe the applications of ZnO. 

3. Summarize the different growth techniques of ZnO thin films. 

 

I.3.Transparent conducting oxides: 

   TCOs are very useful materials to transparent optoelectronics because they have unique 

features of optical properties in the visible light region such as the transparency over ~85% 

and optical band gap greater than 3 eV and controllable electrical conductivity such as carrier 

concentrations of at least 1020 cm-3 and resistivity of about 10-4  Ω·cm. 

I.3.1.Definition: 

   Transparent conducting oxides (TCOs) are electrical conductive materials with comparably 

low absorption of electromagnetic waves within the visible region of the spectrum [2]. 

I.3.2.TCOs in General: 

   In transparent conducting oxides (TCOs), the nonmetal part, B, consists of oxygen. In 

combination with different metals or metal-combinations, A, they lead to compound 

semiconductors, AyBz, with different opto-electrical characteristics. These opto-electrical 

characteristics can be changed by doping, AyBz:D (D = dopant), with metals, metalloids or 

nonmetals. Hence, metals can be part of the compound semiconductor itself, A, or can be a 

dopant, D. 

   The first transparent conductive oxide (TCO) thin film was reported by Badeker [3] in 1907, 

about 100 years ago. This first TCO was a thin film of CdO (Cadmium Oxide) prepared by 
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thermally oxidizing a vacuum sputtered film of cadmium metal. While CdO is not widely 

used today because of toxicity concerns, it remains of theoretical interest because of its high 

electron mobility apparently due to a low effective electron mass. 

   The first 50 years following the discovery of CdO saw little practical development of TCO 

until the 1940s when a chemical deposition method (pyrolysis) for TO (Tin Oxide), SnO2, 

from SnCl4 was developed. Transparent conductive IO (indium oxide) also was made by 

chemical deposition (pyrolysis) from InCl4. 

   During the second 50 years after its discovery, TCO films have undergone very significant 

development and are “seen” by most of us virtually every day in applications ranging from 

digital watches to computer screens or other types of displays [3]. 

   TCOs have been used in several applications for three or four decades but, despite the huge 

volume of experience in the field, there remain many unanswered questions at both applied 

and fundamental levels [4]. 

 

I.4.History of Zinc oxide (ZnO) research: 

   ZnO is not “a new semiconductor”. It has a long history of studies of its growth techniques 

and characterization of its material properties, has been investigated already in 1912. With the 

beginning of semiconductors age after the invention of the transistor, lattice parameters of 

ZnO are known from 1935, whereas detailed values of optical parameters were available in 

mid 50s. Systematic investigations of ZnO as a compound semiconductor were performed in 

1960. 

 
FigI.1: increase of the number of publications about zinc oxide according to the literature data base 

SCOPUS [7]. 
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Currently, research on ZnO as a semiconducting material sees a renaissance after intensive 

research periods in the 1950s and 1970s. Even though good quality thin films (by chemical 

vapour deposition) were prepared in 1970, only recently ZnO attracts an increasing attention. 

Since about 1990 an increase of the number of publications on ZnO occurred (see FigI.1) and 

more recent reviews on ZnO have been published [5, 6, 7]. 

 

I.5.ZnO choice: 

   Most of the recent interests on ZnO material have been focused on the future potentials of 

UV-blue light emitting devices (LED) and UV-blue lasers [1]. 

The most desirable features of ZnO can be listed as follows [1, 7, 8, 9]: 

1. ZnO has the extremely large exciton binding energy of 60 meV which is much greater 

than the thermal energy (26 meV) at room temperature. This is one of the key 

parameters that enable the UV laser diode and other exciton related light emitting 

devices to be 2 operated at room temperature. 

2. High transparency in the visible and near infrared spectral region 

3. ZnO is one of the “hardest” materials in II-VI compound semiconductors due to the 

higher melting point and larger cohesive energy. It can be expected that a degradation 

of the material due to the generation of dislocations during the device operation will 

be reduced. 

4. Low material costs, nontoxicity, And abundance in the earth crust. 

5. Interfacial energy between ZnO and sapphire or other oxide substrates is such that 

two-dimensional growth is favored, which results in high quality films at lower 

temperature. 

6. Possibility to prepare highly doped films with free electron density n>1020 cm-1 and 

low resistivity (<10-3 Ω cm). 

7. Good contact to the active semiconductors (absorber layers) 

8. Possibility to prepare the TCO layer on large areas (>1 m2) by deposition methods like 

magnetron sputtering 

9. Possibility to prepare ZnO films with suitable properties at low substrate temperature. 
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I.6.Properties of Zinc Oxide: 

   ZnO is an oxide compound naturally occurring as rare mineral zincite, which crystallizes in 

the hexagonal wurtzite structure P63mc. Zincite is usually colored red or orange by 

manganese impurities. Photographs of zincite are shown in FigI.2 [7]. 

 

FigI.2: (a) An orange zincite crystal, (b) a synthetic zinc oxide crystal. The mineral in (a) exhibits a 

size of 30×25×6 mm3. 

I.6.1.Crystal Structure: 

   ZnO is a II-VI compound semiconductor and have crystal structures of wurtzite, zinc blend 

and rock salt. These structures are shown in FigI.3 [10]. 

 

 

FigI.3: Crystal structures of ZnO (a) rocksalt (b) zinc blend and (c) wurtzite hexagonal. Shaded gray 

and black spheres denote Zn and O atoms, respectively. 



Chapter I Review of the Zinc Oxide Thin Films Properties and Growth techniques. 
 

9 
 

   The wurtzite crystal structure is the most stable structure of ZnO and it has also been found 

theoretically that this crystal structure is energetically favorable compared to the rocksalt and 

zinc blend structures [9]. These structures from different angles are shown in FigI.4. 

 

FigI.4: Wurtzite ZnO crystal structures from different angles. 

 

   The wurtzite structure has a hexagonal unit cell with two lattice parameters a and c with (a 

= 0.3296 and c = 0.520 65 nm [11]) in the ratio of  ௖
௔

= ඥ8 3⁄ = 1.633 (in an ideal wurtzite 

structure) [12]. It is characterized by two interconnecting sublattices of Zn2+ and O2−, such 

that each Zn ion is surrounded by tetrahedra of O ions, and vice-versa. This tetrahedral 

coordination gives rise to polar symmetry along the hexagonal axis. This polarity is 

responsible for a number of the properties of ZnO, including its piezoelectricity and 

spontaneous polarization, and is also a key factor in crystal growth, etching and defect 

generation [13]. Various physical properties of the hexagonal structure of zinc oxide are 

summarized in Tab I.1. 
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Tab I.1: Physical properties of the zinc oxide in the wurtzite form [5, 14, 15, 16]. 

Property Value 

Lattice constants (T = 300 
K) 
a0 
c0 

c0/a0 

 
0.32495 nm 

0.52069 nm 
1,602 (1,633 in an ideal wurtzite structure) 

Density  5.606 g/cm3 

stable structure (T = 300 
K) 

wurtzite 

Melting point  2248 K 

Relative dielectric constant  8.66 

Refractive index 2,008-2,029 

Gap Energy  3.4 eV, direct 

Intrinsic carrier 
concentration  

< 106 cm-3 

Exciton binding Energy  60 meV 

Electron effective mass  0.24 

Electron mobility (T = 300 
K)  

200 cm2/V.s 

Hole effective mass  0.59 

Hole mobility (T = 300 K)  5-50 cm2/V.s 

 

I.6.2.Electronic band structure of ZnO: 

   As a direct band gap semiconductor with wurtzite symmetry, the valence band (VB) of ZnO 

is split into the three branches of A, B and C jointly by the hexagonal crystal field Δcr and 

spin orbit interaction Δso (see FigI.5). At low temperature, the gaps are: 

௚஺ܧ = ௚஻ܧ;3,437ܸ݁ = 3,442ܸ݁; ௚஼ܧ	 = 3,481ܸ݁, respectively [8]. 
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FigI.5: Band structure and symmetries of hexagonal ZnO. The splitting into the three valence bands 

(A, B, C) is jointly caused by the crystal field and spin-orbit splittings [13]. 

 

 

 

FigI.6: The Bulk band structure of the ZnO crystal. 
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   FigI.6 shows the band structure for the ZnO crystal. The points denoted by F, K, M, A, H, L 

are high symmetry points in the Brillouin zone. The wave vectors used to calculate the band 

structure shown in FigI.6 is k vectors along the line A→L→M→Γ→A→H→K→Γ in the 

Brillouin zone. The narrow lowest valence band near ~ 20eV corresponds to an atomic-like 

oxygen 2s state, the upper valence bands are mainly derived from the oxygen 2p state with a 

sizable mixture of Zn 4s and 4p states. The lowest conduction band is composed primarily of 

Zn 4s states [17]. 

 

I.7.Doping of ZnO: 

   To realize any type of device technology, it is important to have control over the 

concentration of intentionally introduced impurities, called dopants, which are responsible for 

the electrical properties of ZnO. 

   ZnO is a direct band gap semiconductor with Eg = 3.4 eV. The band gap of ZnO can be 

tuned via divalent substitution on the cation site to produce heterostructures [18]. This band 

gap can be tuned in a range between 3.0 to 4.0 eV by doping with metals such as Cd and Mg 

[19]. 

   The main problem for the application of ZnO as a material for electro-optic devices is 

ambipolar doping. This problem is found frequently for wide band gap materials, namely that 

doping of one type (n-type) is easily possible up to high densities, while the opposite type (p-

type) is hardly achievable. The semiconductors ZnO is generally n-type [16]. 

   Temperature-dependent Hall measurements have shown that zinc interstitials (Zni) are one 

of the three principal donor types in bulk ZnO crystals. Recent reports have shown that the 

Zni-NO complex (with a 0.9eV binding energy) could be the most abundant donor in ZnO. 

This complex forms because zinc interstitials are mobile at room temperature and likely have 

to form complexes in order to become stable. The oxygen vacancies are the most abundant 

donors in ZnO, though neither zinc interstitials nor oxygen vacancies exhibit characteristics 

consistent with the high electron concentrations observed in undoped ZnO [20]. 

   The attainment of intentional n-type doping of ZnO is relatively easy compared to p-type 

doping. As n-type dopants, group III elements B [21], Al [22], Ga [23] and In [24], rare earth 

metals (group IIIB), group IV elements Si [25], Ge [26], and Sn [27], and group VII elements 

can be used. 
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   Group III elements Al, Ga, and In as substitutional elements for Zn are probably more 

suitable for n-type doping of ZnO due to their lower vapor pressures compared to group VII 

elements such as Cl, Br, and I substituting for O [16]. 

 

I.8.ZnO thin films applications: 

   Zinc oxide can be called a multifunctional material thanks to its unique physical and 

chemical properties. It is already widely used in our society, and indeed it is a key element in 

many industrial manufacturing processes, we are now moving into an era where ZnO devices 

will become increasingly functional and exotic [13]. The FigI.7 represents a schematic of the 

ZnO application [28]. 

ZnO  
applications 

 
Rubber industry 

 

Fillers, activator of rubber 
compounds 

Pharmaceutical and 
cosmetic industries 

Component of creams, powders, 
dental pastes etc., absorber of UV 
radiation 

Textile industry Absorber of UV radiation 
Electronics and 
electrotechnology 
industries 

Used in: photoelectronics, field 
emitters, sensors, UV lasers, solar 
cells etc. 

Photocatalysis Photocatalyst 

Miscellaneous 
applications 

Used in: Production of zinc 
silicates, typographical and offset 
inks, criminology, biosensor, 
process of producing and paking 
meat and vegetables products eetc. 

 

FigI.7: Schematic representation the applications of ZnO. 

   Zinc oxide as cream used for preventing and treating diaper rash. It can also be used to treat 

minor skin irritations [29]. 

   Doped and undoped ZnO thin films have widely been used for liquid crystal displays, 

electronic and optoelectronic devices, transparent conducting materials and other applications 

[30]. 

   ZnO have attracted significant attention towards gas sensing due to their simple 

implementation, low cost, and good reliability for real-time control systems with respect to 

other gas sensors [19]. 
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   The variety of structures of nanometric zinc oxide means that ZnO can be classified among 

new materials with potential applications. Zinc oxide can occur in one (1D), two (2D), and 

three dimensional (3D) structures. One dimensional structure make up the largest group, 

including nanorods, needles, helixes, springs and rings, ribbons, tubes and combs. Zinc oxide 

can be obtained in 2D structures, such as nanoplate/nanosheet and nanopellets. Examples of 

3D structures of zinc oxide include flower, dandelion, snowflakes, coniferous urchin-like, etc 

[28]. 

   Thus ZnO Mentioned applications (are a tip of the ice-berg) have enormous opportunities 

for society and industry alike due to its unique properties which are now being explored and 

applied. The future in which ZnO devices become part of our everyday lives is already 

approaching reality. 

 

I.8.1. ZnO thin films for photovoltaics: 

    One of the highly attractive features of ZnO is that it can be deposited using a variety of 

different techniques, many of which are low cost, and it can grow in a large variety of 

nanostructured morphologies. Thus, ZnO has large variety of applications, including 

applications in optoelectronic devices such as solar cells. Where, several types of photovoltaic 

cells have been produced by combining ZnO with semiconductors. 

    Noting that, in the undoped state, ZnO is highly resistive because zinc oxide native point 

defects are not efficient donors. However, reasonable impurity doping efficiencies can be 

achieved through substitutional doping with Al, In, or Ga [31]. 

    The simplest application of ZnO-based materials in photovoltaic is antireflection and/or 

light-trapping coatings and contacts. For applications as transparent contacts in solar cells, 

doping with group III elements is usual. Whereas, doped ZnO electrodes are commonly used 

both as contacts and to enhance light trapping in thin film solar cells via textured electrode 

surface. The majority of the works of ZnO-based electrodes have been reported for inorganic 

solar cells [32]. 

    A CIGS (Copper Indium Gallium Selenide) cell is shown in FigI.8 [31]. The requirements 

for the top TCO contact in CIGS cells are both demanding and unique to this technology. 

Typically the TCO used in these applications has been Al doped ZnO. 
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(a) 

 

(b) 

 
   FigI.8: Actual photovoltaic structures: (a) CIGS seen in cross section using SEM. (b) Schematic 

illustrations of the structures. 

 

 

I.9.Different growth techniques of ZnO: 

   ZnO thin films have been prepared by a variety of thin films deposition techniques, which 

can be divided into two groups based on the nature of the deposition process viz., physical or 

chemical. 

   The physical methods include physical vapour deposition (PVD), laser ablation, molecular 

beam epitaxy, and sputtering. The chemical methods comprise gas-phase deposition methods 

and solution techniques (FigI.9) [33]. The aim of any deposition technique is the preparation 

of thin films in reproducible, controllable and predictive ways [34]. 

 

 

FigI.9: Chemical thin film deposition methods. 

 

 

ZnO – 2500 A° 

CIGS – 1-2,5 µm 

 

Mo – 0,5-1 µm 

 

Glass 

CsS – 700 A° 
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   A classification scheme is presented in Table I.2 where we have grouped thin-film 

deposition technologies according to evaporative glow discharge, gas-phase chemical, and 

liquid-phase chemical processes [35]. 

 

Table I.2: Survey and classification of thin-film deposition technologies. 

Evaporative Methods 

• Vacuum Evaporation 

Conventional vacuum evaporation  
Electron-beam evaporation 

Molecular-beam epitaxy (MBE) 
Reactive evaporation 

Glow-Discharge processes 

• Sputtering • Plasma Processes 

Diode sputtering  
Reactive sputtering  
Bias sputtering (ion plating) Magnetron 
sputtering  
Ion beam deposition Ion beam sputter deposition  
Reactive ion plating  
Cluster beam deposition (CBD)  

Plasma-enhanced CVD 
Plasma oxidation 
Plasma anodization 
Plasma polymerization  
Plasma nitridation 
Plasma reduction  
Microwave ECR plasma CVD 
Cathodic arc deposition 

GAS-PHASE CHEMICAL PROCESSES 

• Chemical Vapor Deposition (CVD) • Thermal Forming Processes 

CVD epitaxy 
Atmospheric-pressure CVD (APCVD)  
Low-pressure CVD (LPCVD)  
Metalorgainc CVD (MOCVD) 
Photo-enhanced CVD (PHCVD) 
Laser-induced CVD (PCVD) 
Electron-enhanced CVD  

Thermal oxidation  
Thermal nitridation 
Thermal polymerization  
 
 
Ion implantation 

LIQUID-PHASE CHEMICAL TECHNIQUES 

• Electro Processes • Mechanical Techniques 

Electroplating  
Electroless plating Electrolytic anodization 
Chemical reduction plating 
Chemical displacement plating 
Electrophoretic deposition  

Spray pyrolysis  
Spray-on techniques 
Spin-on techniques  
 
Liquid phase epitaxy 
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I.9.1.Chemical Vapour deposition: 

   The chemical vapour deposition (CVD) technique uses gas phase sources to form thin films 

by chemical reactions on the substrate surface. When the source gases are introduced into the 

reaction chamber, they diffuse to the substrate surface where the thin film is formed by a 

chemical reaction between the various gas atoms and the substrate [36]. 

   The key steps of CVD are shown in FigI.10, which include [37]: 

Evaporation and transport of reagents in the bulk gas flow region into the reactor; 

1. Mass transport of the reactants to the substrate surface; 

2. Adsorption of the reactants on the substrate surface; 

3. Surface diffusion to growth sites; 

4. Nucleation and surface chemical reactions leading to film growth; 

5. Desorption and mass transport of remaining fragments of the decomposition away 

from the reaction zone. 

 

 

FigI.10: Schematic of the CVD process. 

 

   There are a wide range of techniques that fall under the CVD category and ultimately differ 

in one parameter [38]: 

 Metal-organic chemical vapour deposition (MOCVD) is a specific type of CVD that 

utilizes metal-organic precursors. 

 Metal-organic vapour phase epitaxy (MOVPE) or organometallic vapour phase 

epitaxy (OMVPE) is an MOCVD process that produces single crystal films on single 

crystal substrates from metal-organic precursors. 
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 Plasma-assisted or plasma-enhanced CVD (PECVD) is a technique in which electrical 

energy rather than thermal energy is used to initiate homogeneous reactions for the 

production of chemically active ions and radicals that can participate in heterogeneous 

reactions, which, in turn, lead to layer formation on the substrate. 

 Atomic layer chemical vapour deposition (ALCVD), sometimes called atomic layer 

epitaxy (ALE), is a modification of the CVD process in which gaseous precursors are 

introduced sequentially to the substrate surface and the reactor is purged with an inert 

gas, or evacuated, between the precursor pulses. 

 Chemical beam epitaxy (CBE) is high vacuum CVD technique that uses volatile 

metal-organic precursors and gaseous co-precursors. 

 

I.9.2.Physical Vapour Deposition: 

   The term ‘physical vapour deposition (PVD)’ was first laid on paper by C.F. Powell, J.H. 

Oxley and J.M. Blocher Jr. in their 1966 book Vapour Deposition [39]. Physical vapor 

deposition (PVD) involves the generation of a vapor flux and its subsequent condensation in 

the form of a thin film on a substrate in a vacuum chamber [40]. 

 

 

Fig I.11: Schematic of a typical thermal or electron-beam evaporation system. The source material is 

heated by an electrical current in thermal evaporation or by bombardment by an electron beam in 

electron-beam evaporation. 
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PVD techniques used in production are basically two in nature: thermal evaporation by 

resistively heating or by using an electron- beam heating, and sputtering, a no thermal process 

[41]. 

 The term PVD encompasses several techniques, including, [42]: 

 Evaporative deposition-resistive heating is used to vaporize the material which is then 

allowed to deposit onto a substrate. 

 Electron beam vapour deposition- a high energy beam of electrons bombards the 

sample material causing vaporization; Fig I.11 presents a schematic representation of 

an evaporation system. 

 Sputter coating - involves the use a plasma discharge to vaporize the material. 

 Pulsed laser deposition- a high energy laser pulse causes evaporation of the material. 

 

I.9.3.Radio frequency magnetron sputtering: 

   Sputter deposition is a physical vapor deposition (PVD) method for depositing thin films, 

which is one of the most popular growth techniques due to its low cost, simplicity, large area, 

and low deposition temperature. Sputtering means to eject material from a target and then 

deposit it on the substrate [43]. 

 

 

FigI.12: Schematic (not to scale) of rf (radio-frequency) magnetron sputtering. 
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   In most forms of sputtering there is an electrical potential difference (can be of the order of 

1500 v) between the target and the substrate, that (via generation of plasma) is the source of 

the high-energy ions. Sputtering is a complex process where the material in a solid target is 

vaporized by bombardment with high-energy ions (FigI.12). Where we can show the target 

species projected towards the substrate. the atoms of, e.g., Ar low-pressure gas are ionized in 

the chamber due to the large electric field and are excited to create a stable plasma. Magnets 

are used to control volume and position of the plasma. Water cooling is necessary as thermal 

energy is released upon collision of Ar+ ions with the target material, which could fracture 

due to an uneven temperature if left uncooled [34]. 

 

I.9.4.Laser Ablation: 

   In laser ablation, also called pulsed laser deposition (PLD), an intense, pulsed laser beam 

irradiates the target. When the laser pulse is absorbed by the target, its energy is used first 

for electronic excitation and then converted into thermal, chemical, and mechanical forms 

of energy, resulting in evaporation, ablation, plasma formation, and even exfoliation. The 

ejected material expands into the surrounding vacuum in the form of a plume containing 

many energetic species, including atoms, molecules, electrons, ions, clusters, particles, and 

molten globules. These diverse species finally condense onto a substrate as a thin film [40].  

   In PLD, show schematically in FigI.13, a pulsed laser is focused onto a target of the 

material to be deposited. For sufficiently high laser energy density, each laser pulse vaporizes 

or ablates a small amount of the material creating a plasma plume. The ablated material is 

ejected from the target in a highly forward-directed plume. The ablation plume provides the 

material flux for film growth. 
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FigI.13: Schematic of the PLD process [44].  

 

I.9.5.Sol gel: 

   Sol–gel method is widely used to obtain various kinds of functional oxide films, including 

ZnO and doped ZnO [45]. There are many benefits in comparison to other processes due to its 

simplicity and the low equipment costs. Other benefits lie in the good adherence between film 

and substrate, the easy controlling of doping levels and in the possibility to deposit the layers 

on complex shaped substrates [46]. The type of materials processed by this method covers 

metallic, inorganic, organic and hybrid materials. The use of the materials covered by this 

method ranges from highly advanced materials to materials for general use. The areas of 

technology covered by this method ranges from photonics to biology. These indicate that the 

sol-gel method can be applied to processing of an extremely many kinds of materials [47].  
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   A SOLS is a stable suspersion of colloidal solid particles within a liquid. A GEL is a 

porous three dimensionally interconnected solid network that expands in a stable fashion 

throughout a liquid medium and is only limited by the size of the container [48, 49]. 

   A gel forms when the homogenous dispersion present in the initial sol rigidifies. This 

process, called gelation, prevents the development within the material. A sol can be 

transformed into a colloidal (or polymeric) gel by going through what is called a gel-point 

[48]. 

 

 

FigI.14: shows the steps of the sol-gel processing of materials and examples of the microstructures of 

final products. Bold-lined rectangles show possible final products of the sol-gel method. 
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   FigI.14 shows the steps of the sol-gel processing of materials and examples of the 

microstructures of final products. The final products are the dried gel, the heated gel and the 

glass and ceramics [47]. The most widely used techniques for sol-gel are "spin-coating" and 

"dip-coating" (FigI.15). 

   Dip coating, or immersion coating, technique is the most commonly used technique in both 

academia and industry for many chemical and nanomaterial engineering research projects. 

The process normally refers to the immersing of a substrate into a tank containing coating 

material, withdrawn the piece from the tank under controlled speed, temperature and 

atmospheric conditions and finally allowing it to drain. The coated piece can be dried either 

by force-drying or baking [50, 51]. 

   Spin coating is a simple process for rapidly depositing thin coatings onto relatively flat 

substrates. The substrate to be covered is held by some rotatable fixture (often using vacuum 

to c1amp the substrate in place) and the coating solution is dispensed onto the surface; the 

action of spinning causes the solution to spread out and leave behind a very uniform coating 

of the chosen material on the surface of the substrate [52]. 

 

 

 

FigI.15: Schematic diagram of sol-gel, (a) spin-coating (b) dip-coating. 
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II.1.Introduction: 

   This chapter contains the experimental details of the deposition of undoped and doped zinc 

oxide, includes a description of the apparatus used and the deposition procedures. 

   The choice and preparation of substrates and precursor solutions are then described. Finally 

the techniques used to characterize ZnO thin films and the underlying principles are outlined 

together with a brief description of the equipment used and the practical aspects of applying 

the technique to ZnO. 

II.2.Chapter Objectives: 

   The objectives of this chapter are to: 

1. General Description of Spray pyrolysis. 

2. Specify the experimental details to deposition process. 

3. Select the different characterization methods of ZnO thin films. 

 

II.3.Experimental technique: 

II.3.1.Spray pyrolysis technique: 

II.3.1.1.General Description of Spray pyrolysis: 

   Spray pyrolysis has been applied to deposit a wide variety of thin films. These films were 

used in various devices. It is observed that often the properties of deposited thin films depend 

on the preparation conditions. 

   Spray pyrolysis is a processing technique being considered in research to prepare thin and 

thick films, ceramic coatings, and powders. Unlike many other film deposition techniques, 

spray pyrolysis represents a very simple and relatively cost-effective processing method. 

   It offers an extremely easy technique for preparing films of any composition. Spray 

pyrolysis does not require high-quality substrates or chemicals. The method has been 

employed for the deposition of dense films, porous films, and for powder production. Even 

multilayered films can be easily prepared using this versatile technique. Spray pyrolysis has 

been used for several decades in the glass industry and in solar cell production [1, 2]. 

   Typical spray pyrolysis equipment consists of an atomizer, precursor solution, substrate 

heater, and temperature controller. The following atomizers are usually used in spray 

pyrolysis technique: air blast, ultrasonic and electrostatic [3].  
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   There are at least four types of spray guns available. They are the pneumatic, the airless, the 

pneumatic airless, and the ultrasonic. 

   In the pneumatic system atomization of the solution takes place by the action of compressed 

air on a fine jet of the spray solution. This jet is broken up by the flow of high pressure gas as 

shown in FigII.1, which forces the liquid out of the atomizer through a narrow orifice. 

 

 

FigII.1: Diagram showing the breakup of a liquid jet by high pressure gas. 

 

   The second type of spray atomizer is the airless or centrifugal type, where atomization is 

achieved by forcing the solution directly through a specially designed orifice under high 

pressure. Using this method the droplets on leaving the atomizer have sufficient velocity to be 

transported to the substrate without the need for a carrier gas. 

   The third type of spray atomizer is a combination of (1) and (2). This has the effect of 

producing a more uniform droplet size. 

   The fourth type of atomizer is the ultrasonic variety in which a solution is shaken violently 

as a result of which mists are produced which have a very narrow droplet size distribution [4]. 
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  In spray ultrasonic, a thin liquid film formed on a high-frequency vibrating surface will 

break-up in a fine uniform spray. The ultrasonic vibration induces surface waves in the liquid 

film. As frequency is tuned, very regular square cells can be observed on the free surface just 

before reaching the resonance frequency (FigII.2). When resonance is reached, the amplitude 

grows till droplets break-up (FigII.3). The very regular square cells generate uniform size 

droplets [5]. 

 

 

 

 

FigII.2: Standing surface waves patterns 

during the ultrasonic atomisation (water, 

f=50kHz). 

 FigII.3: Mechanism of droplet break-up for the 

ultrasonic atomisation. 

 

II.3.1.2.Decomposition of Precursor: 

   Many processes occur simultaneously when a droplet hits the surface of the substrate: 

evaporation of residual solvent, spreading of the droplet, and salt decomposition. Many 

models exist for the decomposition of a precursor. 

    

 
FigII.4: Description of the deposition processes initiated with increasing substrate temperature. 
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Viguie and Spitz proposed the following processes that occur with increasing substrate 

temperature [6]. In the lowest temperature regime (process A) the droplet splashes onto the 

substrate and decomposes (FigII.4). At higher temperatures (process B) the solvent evaporates 

completely during the flight of the droplet and dry precipitate hits the substrate, where 

decomposition occurs. At even higher temperatures (process C) the solvent also evaporates 

before the droplet reaches the substrate. Then the solid precipitate melts and vaporizes 

without decomposition and the vapor diffuses to the substrate to undergo a CVD process [3]. 

   Highest temperatures (process D) the precursor vaporizes before it reaches the substrate, 

and consequently the solid particles are formed after the chemical reaction in the vapour 

phase. It is believed that the processes.  

 

II.4.Spray Apparatus: 

   Our films were grown using an automated spray system, Holmarc’s spray pyrolysis system 

model HO_TH_04 Company (HOLMARC «OPTO-MECHAT RONICS PVT.LTD», special 

for Physics Laboratory of Thin Films and Applications LPCMA (University of Biskra, 

Algeria), this one has been designed for research laboratories in thin films. Parameters like 

dispensing rate of the solution and speed of spray head (atomizer) movement are controlled 

precisely which are difficult to be controlled in manual process. A positive displacement 

pump controlled by stepper motor and microprocessor is used to dispense solution as per 

requirement. The spray head movement is also controlled by stepper motor driven linear 

stages in X and Y direction. The temperature of the substrate heater plate is controlled 

independently through a dedicated controller. 

   A desk top computer with windows OS is used to control the operations through serial port. 

This software for spray pyrolysis system can as well be used for documenting the relevant 

parameters used for sample preparation like temperature, air pressure, duration, etc. 

 

II.4.1.Specifications: 

   The table below (Tab II.1) shows the deferent specifications of Holmarc’s Spray Pyrolysis 

Equipment used in the current work. 
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Tab II.1: Table presents Holmarc’s Spray Pyrolysis Equipment Specifications. 

Actuator 

Dispensing unit capacity 

Dispensing rate 

Stepper motor 

50ml and 250ml 

1 – 20ml.min-1 

Sprayer: 

Drive speed X axis (min-max) 

Drive speed Y axis (min-max) 

Sprayer traverse 

 

10 – 800mm.sec-1 

1 – 12mm.sec-1 

X - Y 200mm max 

Substrate base plate:  

Dimension 

Max. temperature 

Power input 

PC connectivity 

 

150 x 150mm 

500 °C 

230V, 50Hz 

Serial port (RS 232) 

 

II.4.2.Equipment components: 

   The schematic diagram of Holmarc’s spray pyrolysis system is given in FigII.5 and FigII.6. 

The equipment consists of an atomizer (spray nozzle), a substrate heater (hot plate), a 

resistance, a temperature controller (thermocouple), and a solution container (syringe). The 

nozzle is moved in the X and Y directions over the substrate surface by the use of two stepper 

motors. Under our spray system configuration, the nozzle to substrate distance, the gas 

pressure as well as the solution flow can be varied (controlled). The microcontrollers of the 

spray unit are connected to the PC through serial ports and all data can be stored in the PC. 

The spraying and pause periods are controlled automatically. They are obtained considering 

surface temperature variations of 5% with respect to its optimum value. The nozzle movement 

(scanning speed) in the X-Y plane is also controlled automatically. 
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FigII.5: Schematic diagram of Holmarc’s spray pyrolysis system (pneumatic system). 

 

 

FigII.6: Schematic diagram of Holmarc’s spray pyrolysis system (ultrasonic system). 
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II.4.2.1.Spray pneumatic components: 

II.4.2.1.1.Air compressor: 

   This makes it possible to compress the carrier gas (in our case the air) which can be 

controlled by a Gas flow meter as needed. The high pressure action is broken up the spray 

solution into a jet of very fine droplets. 

II.4.2.1.2.Syringe pump (Flow rate controller): 

   Is a small infusion pump, fixed in the scanning system, used to control the flow rate of our 

spray solution; this one can be managed by Holmarc’s software. 

II.4.2.2.Spray ultrasonic components: 

II.4.2.2.1.Ultrasonic generator:  

   With a frequency of 40 KHz, Ultrasonic generator employ high-frequency sound waves 

(outside human audible range) to produce atomization, that transforms the solution at the 

atomizer level (spray nozzle) into a jet of very fine droplets of 40 μm. 

II.4.2.2.2.Flow rate controller: 

   Help us to control the flow rate of our spray solution as needed. 

II.4.2.3.Common components: 

II.4.2.3.1.Scanning system (XY position controller): 

   The spray head, spray nozzle, can scan an area of 15cm x 15cm. The speed in X direction 

can be changed in the range of 10 – 800 mm/sec, while in Y direction in the range of 1 – 12 

mm/sec. The speed in the X direction is the most critical due to it determines the kinetics of 

the deposition, while movement in the Y direction is only used to move the nozzle in this 

direction. Computerized scanning system Allow obtaining homogeneous thickness. 

II.4.2.3.2.Hot plate: 

   Heated by joule effect (electrical resistance witch can be heated the plate so to 500°C), the 

temperature can be controlled using a K-type thermocouple. This plate is covered by 

Aluminum paper to avoid contamination. 

II.4.2.4.Holmac’s software: 

   The FigII.7 presents Holmac’s software using to control our experience conditions in the 

spray pyrolysis Holmac’s equipment and allows seeing the various experimental parameters. 
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FigII.7: Holmac’s software interface. 

 

II.5.Growth process details: 

II.5.1.Substrate Preparation: 

II.5.1.1.Substrate selection: 

   Thin film requires a substrate to support itself [7]. The substrate is very important for the 

growth of thin films in terms of the lattice and thermal mismatching between it and the film 

because it commonly leads to the development of stress in the deposited film. The choice of 

substrate affects crystalline quality as well as optical and electrical properties of ZnO film [8]. 

   In this work, our undoped and doped ZnO thin films were deposited in a microscopy slide 

glass substrates in a size of 1.5×1.5 cm2 × 0.1 cm. The choice of glass as substrate was due to 

three reasons, for economic reasons, to perform a good optical characterization of our films 

and to minimize the stresses because the two materials constituting the sample (glass + zinc 

oxide) have a very close expansion (dilatations) Coefficients (αglass=8,5 10-6 K-1, αZnO=7,2 10-

6 K-1) [9, 10, 11]. 

II.5.1.2.Substrate Cleaning: 

   Substrate cleaning in thin film technology is an important step prior to deposition. It is 

necessary to remove the contaminants that would otherwise affect the properties of the film. 

Cleaning involves the removal of contaminants without damage to the substrate. While 

cleaning, the bond between the substrates is broken and contaminants are set free from the 

substrates. The properties that can be affected by the presence of contaminants include 
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morphology, nucleation electronic properties and the substrate film interface. Expected 

contaminants include fingerprints, dust, oil, and lint particles [7]. 

   Initially, the substrates were wiped with cotton to remove the visible contamination such as 

air dust [12], then, were successively sonicated (placed in an ultrasonic bath) in Acetone and 

Di-ionized water for 05 minutes each. Substrates were rinsed with methanol before the 

sonication. Finally they were purged with dryer. Cycle presented in FigII.8. 

 

 
a. Sonicated for 05 minutes in 

ethanol and Di-ionized water 
b. rinsed with 

methanol 
c. drying 

 

FigII.8: Schematic illustration of the Cleaning Process of the substrates. 
 

When we finish cleaning, the substrate introduced in the used equipment and Start the heating 

process. 

 

II.5.2.Preparation of precursor solution: 

   To study the influence of the deposition parameters on the ZnO thin films properties we 

have performed a variety of sample series, this samples are numbered corresponding to the 

deposition parameters (see Table II.2 and Table II.3). We can divide our experimental work 

into two parts: 

   First, ultrasonic study, were we used spray pyrolysis ultrasonic system to deposit undoped 

and doped ZnO thin films. 

   Second, pneumatic study, were we used spray pyrolysis pneumatic system to deposit 

undoped and doped ZnO thin films. 

   The spraying solution used in this work was prepared using two types of precursors, zinc 

acetate [Zn(C2H3O2)2.2H2O] (from Sigma Aldrich) with molar mass 219.4986 g.mol-1and zinc 

chloride [ZnCl2] (from Sigma Aldrich) with molar mass 136 g.mol-1, diluted in a volume 

absolute methanol solution (99.995%) purity, the solvent, then we have added a few drops of 
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acetic acid (CH3COOH) as a stabilized, the mixture solution was stirred at room temperature 

for 1 h using a Magnetic Agitator Mixer to yield a clear and homogeneous solution. 

   In the first study part, ultrasonic study, we have prepared three series of ZnO thin films: 

a) Spraying solutions (without doping) with a different ZnO’s concentrations. 

b) Aluminum doped ZnO thin films were deposited using Al(NO3)3.9H2O (with a molar 

mass equal 375.1338 g.mol-1; from Sigma Aldrich)  as a dopant source. 

c) Indium doped ZnO thin films were deposited using In(NO3).XH2O (with a molar 

mass equal 390,91 g.mol-1; from Sigma Aldrich)  as a dopant source. 

 

In the second study part, pneumatic study, we have prepared three series of ZnO thin films: 

a) ZnO thin films none doped were performed at a different substrate temperatures using 

1 bar of atmospheric air pressure as a carrier gas. 

b) ZnO thin films none doped were performed at a different substrate temperatures using 

1,5 bar of atmospheric air pressure as a carrier gas. 

c) Aluminium doped ZnO thin films were deposited using Al(NO3)3.9H2O (with a molar 

mass equal 375,13 g.mol-1; from Sigma Aldrich)  as a dopant source. 

 

   Noting that, we have prepared our spraying solutions using Chemical lab glassware of the 

LPCMA laboratory: test tubes, pipettes, beakers, flasks, gauge, funnel ... and High Precision 

Balances with 0.0001 g precision. Also, to get the required doping ratio we have added the 

appropriate weight of dopant precursor in the start solution before mixing process. 

 

II.5.3.Films deposition: 

   This part of the research involved the growth of doped and undoped zinc oxide in thirty-four 

growth experiments (Successful, without taking into account the other) which were carried 

out realized in order to investigate the influence of deposition conditions on the film 

properties. The conditions of ZnO deposition are described below in the Tab II.2 and Tab II.3. 
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Tab II.2: the experimental conditions of the deposit ZnO thin films, for ultrasonic process. 

 
Solution 
molarity 
(Mol.L-1) 

Substrate 
temperature 

(°C) 

Solution 
flow rate 
(ml.min-1) 

Nozzle-
substrate 
distance 

(cm) 

Deposit 
time 
(min) 

Atomic 
ratio 

[dopant]/[Zn] 
(at %) 

Dopant 
source 

Se
rie

s n
°1

 

0,05 

350 0,5 9 10 / / 

0,075 
0,1 
0,15 
0,2 
0,3 
0,4 
0,5 

Se
rie

s n
°2

 

0,1 350 0,5 9 10 

0 

A
l (N

O
3 )3  

375.1338 
g.m

ol -1 

1 
2 
3 
4 
5 

Se
rie

s n
°3

 

0,1 420 0,5 9 10 

0 In(N
O

3 )3 .xH
2 O

 
390,91 g.m

ol -1 

1 
2 
3 
4 
5 

Tab II.3: the experimental conditions of the deposit ZnO thin films, for pneumatic process. 

 

Solution 
molarity 
(Mol.L-1) 

Substrate 
temperature 

(°C) 

Air 
pressure 

(bar) 

Solution 
flow rate 
(ml.min-1) 

Nozzle-
substrate 
distance 

(cm) 

Deposit 
time 
(min) 

Atomic 
ratio 

[dopant]/[Zn] 
(at %) 

Dopant 
source 

Se
rie

s n
°1

 

0,1 

300 

1 0,3 11,5 10 / / 
350 
400 
450 

Se
rie

s n
°2

 

0,1 

300 

1,5 0,3 11,5 10 / / 
350 
400 
450 

Se
rie

s n
°3

 

0,1 400 1 0,2 11,5 20 

0 A
l(N

O
3 )3 .9H

2 O
 

375,13 g.m
ol -1 

1 
2 
3 
4 
5 
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   ZnO thin films were synthesized by spray pyrolysis deposition system using Holmarc’s 

equipment at Physics Laboratory of Thin Films and Applications LPCMA, University of 

Biskra, Algeria. 

   Usually, to get our samples we take the following steps for each sample: 

1. Chemical lab glassware was very well cleaned. 

2. The composite targets (Zn precursors, dopants: Al and In precursors) were prepared. 

Its powders were first weighted and mixed with corresponding concentrations in 

solvent by magnetic mixer for 1 hour. 

3. Glass was cut by a Glass Cutter Diamond Cutting Wheel Pen to make substrates 

which are well cleaned according to the previous stages mentioned. 

4. Clean substrates were placed into equipment, on the hot plate, to be heated to the 

required temperature; temperature can be controlled by a thermocouple connected to a 

Temperature controller integrated in the equipment. 

5. Setup the program in the computer and adjust the experience conditions: flow rate, 

speed of scanning system according X and Y directions (SX=50 mm/s, SY=5 mm/s), 

deposition time and deposition technique type (ultrasonic or pneumatic)… 

6. After achieve the desired substrate temperature and adjust the equipment; in particular 

determination of pressure value, Nozzle-substrate distance (9 cm for ultrasonic 

(Optimized by our group search) and 11,5 cm for pneumatic (Not Adjustable 

Optimized by Manufacturer) and ultrasonic generator amplitude (40 KH); the 

deposition process can be started. 

   After the end of deposition process, the substrate temperature will decrease to room 

temperature by about 2 degrees per minute. 
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II.6.Characterization Methods of Thin Films: 

   Thin films are usually characterized by their structural, stoichiometric, optical, electrical and 

mechanical properties. In this section, the characterization methods used in this work are 

reviewed briefly. 

II.6.1.X-ray Diffraction Technique: 

   X-ray diffraction is one of the widely used experimental techniques for determining lattice 

parameters, preferred orientation of the crystal, phase composition (qualitatively and 

quantitatively), grain sizes, lattice strain and residual stress etc. [13]. 

The mechanism of XRD is simple. When a monochromatic x-ray beam incident onto a crystal 

sample, the constructive diffractions (or interference) from parallel planes of atoms with 

interplanar spacing d occur if Bragg’s law is satisfied [14] (see FigII.9), 

૛ࢊ	ࣂ࢔࢏࢙	 = .ࡵࡵ																												ࢗࡱࣅ࢔	 ૚ 

   Where n is integer that indicates the order of the reflection, θ is Bragg angle, and λ is the 

wave length of the x-ray beam. By measuring the Bragg angle θ, the interplanar distant d can 

be obtained if the wavelength of the x-ray beam is known. 

 

 

Fig II.9: Schematic diagram of Bragg diffraction from set parallel planes [13]. 

 

    The crystal structure of our ZnO doped and undoped thins films were characterized using 

an X-ray diffraction system, Bruker D8 ADVANCE diffractometer available at Mohamed 

Khaider Biskra university level, FigII.10; employing a Cu Kα tube (λ = 0.154183 nm) 

radiation. The data obtained were background subtracted using the program included in the 

DIFFRAC.SUITE provided by Bruker. The schematic diagram of X-ray diffractometer 

optical system is cited in FigII.11 [15]. 
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FigII.10: D8 ADVANCE diffractometer. 

 

 

FigII.11: The schematic diagram of X-ray diffractometer optical system. 

 

   The theoretical peak positions for zinc oxide along with their relative intensities were 

obtained by compared with the X-ray diffraction spectrum (XRD) with stoichiometric ZnO 

powder from ASTM files (ASTM 36-1451) shown in FigII.12 [9]. 
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FigII.12: X-ray diffraction spectrum (XRD) with stoichiometric ZnO powder (ASTM 36-1451). 

 

II.6.1.1.The texture coefficient: 

   The texture coefficient represents the texture of the particular plane, deviation of which 

from unity implies the preferred growth; it allows us to evaluate the preferred orientation of 

the ZnO films. 

   The texture coefficient TC(hkl) can be calculated from the X–ray data using the formula of 

the intensity peaks correspond to the (100), (002), (101) and (102) planes [16]: 

࡯ࢀ =
(࢒࢑ࢎ)૙ࡵ/(࢒࢑ࢎ)ࡵ

∑૚ିࡺ ࢔(࢒࢑ࢎ)૙ࡵ/(࢒࢑ࢎ)ࡵ
.ࡵࡵ	ࢗࡱ																															 ૛ 

   where I(hkl) is the measured relative intensity of a plane (hkl), I0(hkl) is the standard 

intensity of the plane (hkl) taken from the JCPDS data card 36–1451, N is the reflection 

number and is the number of diffraction peaks. The texture coefficient was related to the 

atomic densities corresponding to that plan as X-ray intensities, which was corresponds to 

planer densities. 
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II.6.1.2.Grain size determination: 

   The grain size G can be estimated using the Scherrer’s formula [17]: 

ࡳ =
૙.ૢ૝ࣅ

ࣂ࢙࢕ࢉ(ࣂ૛)ࢤ
 ૜.ࡵࡵ	ࢗࡱ																																				

   Where λ is the X-ray wavelength (1.54056 A°), θ and ∆(2θ ) are the Bragg diffraction angle 

of the XRD peak (in degree) and the full width at half maximum (in radian) of intensive 

diffraction peak respectively.  

II.6.1.3.Stress determination: 

   The stress σfilm values in our films were estimated from the observed shift, in the diffraction 

peak between their positions in the XRD spectra via the formula, which is valid for a 

hexagonal lattice [18]: 

࢓࢒࢏ࢌ࣌ =
૛ࢉ૚૜૛ − ૚૚ࢉ)૜૜ࢉ + (૚૛ࢉ

૛ࢉ૚૜
×
࢓࢒࢏ࢌࢉ − ૙ࢉ

૙ࢉ
.ࡵࡵ	ࢗࡱ																										 ૝ 

   Where cij (i,j = 1, 2, 3) stands for the elastic constants. c0 (0.5205 nm) is the lattice constant 

of bulk ZnO and cfilm is the lattice constant of fabricated ZnO films, which can be calculated 

using the following equation: 

࢓࢒࢏ࢌࢉ = ૛ࢊ૙૙૛ =
ࣅ

ࣂ࢔࢏࢙
 ૝.ࡵࡵ	ࢗࡱ																								

   Where θ is the Bragg diffraction angle. Substituting the values of cij (i,j = 1, 2, 3) with 

c11=208.8, c33 = 213.8, c12 = 119.7, c13 =104.2 GPa (ZnO elastic constants). We can obtain 

the residual stress σfilm in ZnO film by the following equation: 

࢓࢒࢏ࢌ࣌ = −૛૜૛.ૡ ×  ૞.ࡵࡵ	ࢗࡱ																											ࢿ

   Where ε is the strain in the films in the direction of the c-axis: 

ࢿ =
࢓࢒࢏ࢌࢉ − ૙ࢉ

૙ࢉ
 ૟.ࡵࡵ	ࢗࡱ																												

   The films with values of c greater than the bulk value (0.5205 nm) have a positive (or 

extensive) strain in them whereas those with lower values have a negative (or compressive 

strain) [19]. 

   Noting that, The XRD spectra were used to deduce the lattice constants a and c of the ZnO 

crystal lattice depending on the relation [20]: 
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૚
૛࢒࢑ࢎࢊ =

૝(ࢎ૛ + ࢑ࢎ + (૛࢑
૜ࢇ૛

+
૛࢒

૛ࢉ
 ૠ.ࡵࡵ	ࢗࡱ																																					

   Where dhkl is the distance of lattice planes, and h, k and l are Miller indices. This was done 

by calculating dhkl using Bragg's law ݀௛௞௟ sin ߠ =  where θ is Bragg's angle, 2θ is the , ߣ݊

scattering angle, λ is the X-ray wavelength which is 1.54 A° for the Cu(Ka) line, and n is an 

integer representing the order. A plot of 1/dhkl against l2 and a linear fit were performed. The 

lattice parameters a and c where calculated using Eq II.7 and the fit parameters. 

 

II.6.2.Scanning electron microscope (SEM): 

   When a surface is bombarded with accelerated electrons, as is the case in scanning electron 

microscopy, different signals are emitted from the bombarded surface from different depths, 

as shown in FigII.13. 

   The three main analytical techniques used in a modern scanning electron microscope are: 

secondary electron (SE) detection, back-scattered electron (BSE) detection and X-ray 

detection (energy dispersive spectroscopy–EDS). Secondary electrons are inelastically 

scattered, low energy (50 eV), abundant and surface specific which makes them ideal for 

imaging topographic features. 

 

FigII.13: A schematic representation of the sub-surface electron interaction volume. 

    FigII.14 shows a schematic diagram of the electron gun and the lens system of a SEM [19]. 

Electrons from a thermionic cathode (tungsten hairpin cathode or LaB6 cathode) or a field-
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emission cathode (cold-cathode type: tungsten single crystal emitters; thermally-assisted 

Schottky type: tungsten tip covered with ZrO2) are accelerated by a voltage of 1–50 kV 

between cathode and anode. The beam cross-section with a diameter of 10–50 µm for 

thermionic and 10–100 nm for field-emission guns is then demagnified by a two- or three-

stage electron lens system so that an electron probe of about 1–10 nm carrying an electron 

probe current between 1–100 pA is formed at the specimen surface. A deflection coil system 

in front of the last lens scans the electron beam in a raster fashion [21]. 

 

 

FigII.14: Schematic diagram of the electron gun column of a SEM. 

 

A JSM-6301F scanning electron microscope (SEM) FigII.15 was used in this study to 

investigate the surface morphology for some films; this last is a high performance general 

purpose Field Emission SEM with a high resolution of 1.5 nm (6.0nm at 1kV). The JSM-

6301F is also an analytical SEM with the addition of a backscatter detector and an Energy 

Dispersive Spectroscopy (EDS) Detector.  
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FigII.15: JSM-6301F scanning electron microscope. 

 

II.6.3.Film thickness calculation: 

   The thickness measurements of the deposited films were determined by three methods: 

Scanning electron microscopy, spectrophotometry and weight difference method. 

II.6.3.1.Scanning electron microscopy: 

   SEM allowed to get, after transversely cut (make cross sections) the samples, photographs 

in cross section making it possible to measure the films thickness [22] (see the example in 

FigII.16). Here, we can use software called “Visiometer” to calculate our film thickness that 

directly.  

   This technique makes it possible to obtain thickness measurements with an accuracy of 

approximately 5 nm, for films whose thickness is greater than 100 nm [9].  

 

FigII.16: SEM cross section photograph of ZnO:Al (1at %), Shows that the thickness is about 300 nm. 
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II.6.3.2.UV-Visible Spectrophotometry: 

   FigII.17 shows the optical transmittance spectrum of ZnO thin film in the wavelength range 

from 200 to 1100 nm. 

 

 

FigII.17: UV/VIS/NIR transmission curve of ZnO film. 

 

   The thickness of the film was calculated using the following relation [17]: 

ࢊ =
૛ࣅ૚ࣅ

૛ൣ࢔(ࣅ૚)ࣅ૛ − ૚൧ࣅ(૛ࣅ)࢔
.ࡵࡵ	ࢗࡱ																														 ૡ 

   Where n(λ1) and n(λ2) are the refractive indices at the two adjacent maxima (or minima) at λ1 

and λ2, which can be calculated using next mentioned equations. 

 

II.6.3.3.Weight difference method: 

   In this simpler method we have used the mass of the film according to the next details; w1 is 

the weight of cleaned substrate, w2 is the weight of substrate after deposition process (cleaned 

substrate plus film). 
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The weight of the film is: 

࢝ࢤ = ૛࢝	 −  ૢ.ࡵࡵ	ࢗࡱ																										૚࢝

The thickness d of our film can be calculated using the following equation: 

ࢊ =
ઢ࢝

	࣋.࢈.ࢇ
 ૚૙.ࡵࡵ	ࢗࡱ																											

Where a, b are the film length and width respectively (FigII.18) and ρ is the film density (the 

ZnO density is 5.67 g/cm3 [23]) [24]. 

 

 

FigII.18: the sample dimensions used to calculate film thickness. 

 

II.6.4. HebalOptics software: 

   This program is developed and verified by Professor mr.Djelloul abdelkadeur and realized 

by the student zine el abidinehebal as a part of his magister project titled “optical properties of 

thin layers type A2B6” in abbes laghrour university, khenchela, algéria. 

To use this program, we load the transmittance data into the program, which gives us after 

simulation: 

o Refractive coefficient. 

o Extinction coefficient. 

o Refractive coefficient of the substrate. 

o Wavelength of optical band gap. 

o Film thickness. 

o Band gap energy. 
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II.6.5.Optical characterization: 

II.6.5.1.UV-Vis spectroscopy: 

   The intensity of light after it passes through the cuvette, can be related it to transmittance 

(T). Transmittance is the fraction of light that passes through the sample. This can be 

calculated using the equation [25]: 

ࢀ =
ࡵ
૙ࡵ

.ࡵࡵ	ࢗࡱ																															 ૚૚ 

   Where I is the light intensity after the beam of light passes through the cuvette and Io is the 

light intensity before the beam of light passes through the cuvette. Transmittance is related to 

absorption (A) by the expression: 

࡭ = − (ࢀ)܏ܗܔ = − ܏ܗܔ ൬
ࡵ
૙ࡵ
൰ ૚૛.ࡵࡵ	ࢗࡱ																																 	 

   Noting that absorbance stands for the amount of photons that is absorbed. FigII.19 

illustrates transmittance of light through a sample. 

 

 

FigII.19: Transmittance of light through a sample. 

 

   An UV/Vis spectrophotometer measures the intensity of light passing through a sample (I), 

and compares it to the intensity of light before it passes through the sample (I0) expressed in 

absorbance (A) or transmittance (T) [25]. The spectrophotometer is a double beam double 

monochromator type with a tungsten source for producing visible and near infrared radiation. 
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   The beam is split into two beams; one is directed to the ZnO sample while the other passes 

through a blank control (substrate). The path lengths over which the split beams travel are 

equal. The detector then compares the intensity of the two beams and calculates a 

transmittance for the film with respect to the substrate. Since the comparison between the 

sample and reference beams is made simultaneously, the instrument compensates for beam 

fluctuations FigII.20 [4]. 

 

 

FigII.20: Simplified schematic diagram of the CARY model 14 spectrometer [26]. 

 

   UV-Vis spectroscopic data allowed getting an optical transmittance spectrum of ZnO thin 

film in the wavelength range from 200 to 1100 nm. Using this data we can calculate: 

absorption coefficient, Refractive index, extinction coefficient, band gap energy and Urbach 

energy. 
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II.6.5.2.The absorption coefficient: 

   The absorption coefficient α of ZnO films was determined from transmittance 

measurements. The films’ absorption coefficient was calculated using the following 

expression [27]: 

ࢀ =  ,૚૜.ࡵࡵ	ࢗࡱ																																	ࢊࢻିࢋ

ࢻ = −
૚
ࢊ
(ࢀ)࢔࢒ .ࡵࡵ	ࢗࡱ																	 ૚૝ 

Where T is the normalized transmittance, d is the film thickness 

II.6.5.3.Refractive index and extinction coefficient calculation: 

   The index of refraction n at different wavelengths was calculated using the envelope curve 

for Tmax and Tmin in the transmission spectra (Fig II.17). The expression for refractive index 

is given by [28], 

࢔ = ቂࡺ + ૛ࡺ) − (૛࢙࢔
૚
૛ൗ ቃ
૚
૛ൗ
.ࡵࡵ	ࢗࡱ																																 ૚૞, 

ࡺ =
૛࢙࢔) + ૚)

૛
+ ૛࢙࢔

࢞ࢇ࢓ࢀ) − (࢔࢏࢓ࢀ
࢔࢏࢓ࢀ࢞ࢇ࢓ࢀ

 ૚૟.ࡵࡵ	ࢗࡱ																																

   Where ns is the refractive index of the substrate. Tmax and Tmin are maximum and minimum 

transmittances at the same wavelength in the fitted envelope curves on the transmittance 

spectrum. 

   The extinction coefficient can be also calculated by the following equations [29]: 

ࡷ =
ࣅࢻ
૝࣊

 ૚ૠ.ࡵࡵ	ࢗࡱ																												ࢗࡱ

   Where α is the absorption coefficient and d is the film thickness. λ is the wavelengths. 

II.6.5.4.Band gap energy: 

   The optical energy band gaps Eg of the films were calculated using the Tauc’s relationship 

as follows [30]: 

ࣇࢎࢻ = ࣇࢎ)࡭ − .ࡵࡵ	ࢗࡱ																														࢔(ࢍࡱ ૚ૡ 
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   Where: α is absorption coefficient, A is constant, h is Planck’s constant υ is photon 

frequency and n is 1/2,2,3/2 and 3 for allowed direct, allowed indirect, forbidden direct and 

forbidden indirect band gap semiconductors, respectively. Since ZnO is a direct band gap 

semiconductor, value of n was selected to be 1/2. Noting that:  
ࢉࢎ
ࣅ

= ૚૛૝૙૙
(°࡭)	ࣅ  . 

An extrapolation of linear region of a plot (αhυ)2 on y axis versus photon energy (hυ) on x 

axis gives the value of the band gap energy. The direct band gap of ZnO films was estimated 

by from extrapolation of linear portion of graph (hυα)2=0 as shown in FigII.21. 

 

 

FigII.21: band gap energy determination using an linear region extrapolation of a plot (αhυ)2 as a 

function of photon energy for a ZnO thin film doped by Al at 3 at%. 

 

II.6.5.5. Urbach energy: 

   The degree of structural disorder present in the film is calculated by a quantity called 

Urbach energy (Eu). In semiconductors, there is an exponential increase of the fundamental 

absorption near the band gap energy. The width of the exponential absorption edge is called 

the Urbach energy [31], which can be obtained using [32, 33]: 

ࢻ = ࢖࢞ࢋ૙ࢻ ൬
ࣇࢎ
࢛ࡱ
൰  ૚ૢ.ࡵࡵ	ࢗࡱ																												
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   Where, and α0 are constants, ܧ௨ is the Urbach energy. The plot of logarithm of absorption 

coefficient against the photon energy allowed getting ܧ௨ value, which is the reciprocal of the 

slope of the linear portion of the graph. 

 

II.6.6.Electrical resistivity measurement: 

II.6.6.1.Four points method: [34, 35] 

   The electrical resistivity of a material is its capacity to resist the flow of an external electric 

current. By definition, it is the resistance R of a unit cube. The resistivity ρ of a prismatic 

sample of section A and length L is: 

࣋ = .ࡾ
࡭
ࡸ

.ࡵࡵ	ࢗࡱ																									[	࢓.ࢹ] ૛૙ 

   The configuration the most commonly used is the linear array four point probe in which 4 

electrodes are used for the measurement: the current is injected through two point sources 

(current electrodes, C1 and C2) and the potential difference is measured between the two 

remaining electrodes (P1 and P2) (FigII.22). 

 

 
FigII.22: Four-points probe. 

 

The electrical resistivity is determined by: 

࣋ =
૛࣊

ቀ ૚
૚࢘
− ૚

૛࢘
ቁ − ቀ ૚

૜࢘
− ૚

૝࢘
ቁ

.
ࢂ∆
ࡵ
.ࡵࡵ	ࢗࡱ																									 ૛૚ 
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   Where ΔV is the electric potential difference between P1 and P2, I is electric current 

intensity. This formula is validated for a homogenous and semi-infinite medium. 

   One of the most used types of four-point measurement is the Wenner configuration 

(developed by Wenner, 1915). In this configuration, all four probes are equally spaced along a 

straight line and separated from one another by an equal distance. 

   Our thin films electrical resistivity was measured via four point device, C4S4 –Point Probe 

Head model FigII.23, which applies the previously mentioned type of measurement. 

 

FigII.23: C4S4 –Point Probe Head model, four points device. 

 

II.6.6.2.Electrical resistivity calculation: 

   A current in a thin film gives rise to the logarithmic potential [36]: 

ࢂࢤ = −
࣋ࡵ
૛࣊

. ࢔࢒ .ࡵࡵ	ࢗࡱ																											࢘ ૛૛ 

   Where ∆V is the potential, I the current, ρ the sheet resistivity and r the distance from the 

current source. 

   In particular, the potential for a dipole (+ source and - source) become: 

ࢂࢤ =
࣋ࡵ
૛࣊

. 	࢔࢒
૚࢘
૛࢘

.ࡵࡵ	ࢗࡱ																																							 ૛૜ 

   In the case of a four point probe on a sheet, the two outside (current) represent the dipole. 

Therefore, the potential difference between the two inner points is, for infinite sheet: 
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ࢂࢤ =
࣋ࡵ
૛࣊

. ࢒ ࢗࡱ૛࢔ .ࡵࡵ																																										 ૛૝ 

(Only equal point spacing is considered). Thus, the sheet resistivity is obtained as: 

࣋ =
ࢂ
ࡵ

࣊
࢔࢒ ૛

=
ࢂ
ࡵ
૝.૞૜૛૝																																			ࢗࡱ	ࡵࡵ.૛૞ 

 

II.6.7.1.Hall Effect measurement: 

   Hall Effect measurement is one of the most powerful tools for an investigation of the 

transport properties such as carrier concentration and Hall mobility of the samples [37]. We 

have performed Hall Effect measurements on some ZnO doped films, as possible, at a room 

temperature using the composition shown in FigII.24. 

 

 

FigII.24: Hall Effect composition. 

 

 

FigII.25: The contacts on the sample to measure VH. 
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   If an electric current I flow through a conductor along the x-axis (current axis, C to D), in 

the presence of a perpendicular magnetic field ܤሬ⃗  (as shown in FigII.25). The electrons, under 

the force of Lorentz, deviate to the direction y. This electron drift causes an excess of charges 

on the side of the sample, leading to a potential between the two sides of the sample. This 

measurable transverse voltage is called the Hall Effect (VH) after E. H. Hall who discovered it 

in 1879 [38]. The Hall Effect apparatus is shown in FigII.27. 

 

The Hall Voltage can be calculated using the following equation [39]: 

ࡴࢂ =
࡮	ࡵ

ࢊ	ࡴࡺ	ࢋ
 ૛૟.ࡵࡵ	ࢗࡱ																																					

Were, e is the electron charge, d the film thickness and NH the carrier concentration. 

The plot of Hall voltage VH against the magnetic flux density B൫Δ ுܸ =  ൯ allows getting(ܤ)݂
the carrier concentration NH (FigII.26), were: 

ઢࡴࢂ =
ࡵ

ࢊ	ࢋ	ࡴࡺ
;࡮	 ࡴࡾ	 =

૚
	ࢋ	ࡴࡺ

 ૛ૠ.ࡵࡵ	ࢗࡱ																																							

࢚࢕࢒࢖	ࢋࢎ࢚ = ࡴࡾ
ࡵ
 ࢊ

RH called the Hall coefficient (or constant). The carrier concentration given by: 

ࡴࡺ =
૚

ࢋ	ࡴࡾ
 ૛ૡ.ࡵࡵ																																	ࢗࡱ

 

FigII.26: Δ ுܸ =  .graph (ܤ)݂
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It is also possible to specify the type of semiconductor (n or p) using the product B * RH sign, 

where, for semiconductor n type (B*RH) < 0 [40]. 

 

 

FigII.27: The Hall Effect apparatus. 
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III.1.Introduction: 

   In the present chapter, the structural, optical and electrical properties of zinc oxide thin films 

were studied as a function of solution molarity and doping concentration of two different 

dopants (aluminium and indium), in order to find out the influence of Al and In doping rate on 

zinc oxide thin film properties. 

 

III.2.Chapter Objectives: 

The objectives of this chapter are: 

1. Represent structural, optical and electrical properties discovered in the present study, 

as a patterns, picture and tables. 

2. Interpretation and discussion this results. 

 

III.3.Molarity effect: 

Undoped Zinc oxide (ZnO) thin films have been deposited with various start solution 

molarities 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5 mol.l-1, with 350°C and 10min as 

substrate temperature and deposition time respectively (optimized by our group search), using 

ultrasonic spray pyrolysis technique onto glass substrates. The effects of start solution 

molarity on the crystallization behavior, optical and electrical properties of the films have 

been studied. 

III.3.1. Structural Characterization: 

   To investigate the crystalline quality of ZnO thin films with various molarities, X-ray 

diffraction (XRD) analysis was carried out and the results are shown in FigIII.1. It shows the 

evolution of the solution molarity on structure quality of ZnO thin films. A matching of the 

observed of the (100); (002), (101) and (102) diffraction peaks confirms that the films exhibit 

polycrystalline structure that belongs to the hexagonal wurtzite type of ZnO [1, 2]. 
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FigIII.1: X-ray diffraction spectra of ZnO thin films deposited at different solution molarities. 
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   The obtained XRD spectra matched well with the space group P63mc (186) (No. 36-1451) 

of the wurtzite ZnO structure [1]. From analysis data, all deposited films have different 

orientations of ZnO films, which were strongly related to the higher intensity. The sharp 

diffraction peaks, frequently observed, indicate the good crystallinity of the prepared films. 

The diffraction peaks correspond to (100) and (002) planes indicate that the film have 

preferential a-axis and c-axis orientations, respectively. 

 

III.3.1.1. The texture coefficient: 

   The texture coefficient was related to the atomic densities corresponding to that plane as X-

ray intensities, which was corresponds to planer densities. The TC(hkl) values evolution of 

the four major peaks of the films shown in FigIII.2. The exact reason for this behavior of TC 

is decrease at (101) peak and increases at (100) and (002) peak at high solution molarity could 

be understood as follows; It is a well-known fact that the various factors such as crystallinity 

and morphology, the increases in the texture coefficient of (100) and (002) which results in 

reduced planer densities on (101), as discussed with [3], this is an increase of film thickness 

of ZnO thin films (see Fig III.5). 
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FigIII.2: The variation of the texture coefficient TC(hkl) of (100), (002), (101) and (102) peaks 

related to the solution molarity. 
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III.3.1.2.Grain size determination: 

   In order to attain the detailed structure information, the grains sizes G of (100) and (002) 

planes were calculated. FigIII.3 present the variation of crystallite size as a function of 

solution molarity, as can be seen, the crystallite size of (100) is inversely of the (002), which 

were varied in the range of 8 and 25 nm (see Tab III.1). 
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Fig III.3: The variation of grain size as a function of solution molarity related to (100) and (002) 

planes. 

 

Tab III.1: Properties of ZnO films deposited by spray pyrolysis technique at different solution 

molarities. 

Solution molarity 
(mol.1– 1) 

G(nm) 
(100) (002) Eg(eV) ΔEg(eV) Eu(meV) 

0.05 16,204 12,060 3,265 – 0,09453 

0.075 13,126 14,860 3,269 0.004 0,21616 

0.1 15,035 12,420 3,268 –0.001 0,08301 

0.15 8,7919 19,813 3,256 –0.012 0,06875 

0.2 8,9885 24,475 3,264 0.008 0,07138 

0.3 18,376 12,600 3,260 –0.004 0,06921 

0.4 15,602 19,365 3,270 0.010 0,07887 

0.5 18,782 14,347 3,224 –0.046 0,08424 
 



Chapter III Results and Discussion for ultrasonic study. 
 

65 
 

    Approximation the crystallite sizes of (002) plane is higher than the (100) plane, it can be 

see, the increase of the crystallite size of (002) plan has been indicated by the enhancement of 

the crystallinity and c-axis orientation of ZnO thin films [4]. So that the optimal values of the 

grain size of the ZnO films was obtained with (002) plane for solution molarities 0.15, 0.2 and 

0.4mol.l-1. 

III.3.1.3.Stress variation of ZnO thin films: 

   The shift in the (002) peak position, according films XRD patterns, compared with the one 

from a stress free ZnO (powder) demonstrate that our films were under residual planar 

compressive stress. The stress values for ZnO films deposited in various start solution 

molarities are given in Tab III.2. FigIII.4 shows the evolution of stress and (002) peak 

position shift against the solution molarity. 

0,14
0,14

0,14 0,14 0,14 0,14

0,46

0,14

0,0 0,1 0,2 0,3 0,4 0,5
1

2

3

4

5

6  stress
 Peak shift

Molarity (mol.l-1)

st
re

ss
 (G

Pa
)

0,15

0,30

0,45

0,60

0,75

0,90

 P
ea

k 
sh

ift
 (°

)

 
FigIII.4: The evolution of stress and (002) peak position shift against the solution molarity. 

 

   The stress is increased when solution molarity increases. The negative sign (positive for 

strain ezz) indicates that the films exhibit a tensile stress. This stress usually consists of two 

parts: intrinsic stress, introduced by impurities, defects and lattice distortions in the crystal; 

extrinsic stress introduced by the lattice mismatch and thermal expansion coefficient 

mismatch between the film (ZnO =4×10−6 K−1) and substrate (glass =9×10−6 K−1) [5]. 



Chapter III Results and Discussion for ultrasonic study. 
 

66 
 

Tab III.2: results of undoped ZnO thin films deposited at deferent solution molarities. 

Molarity (mol.l-1) (hkl) d (A°) C ezz C 33 film σ (GPa) 

0,05 

(002) 

2,5895 5,179 0,004995 213,0157 -2,299 

0,075 2,5895 5,179 0,004995 213,0157 -2,299 

0,1 2,5895 5,179 0,004995 213,0157 -2,299 

0,15 2,5895 5,179 0,004995 213,0157 -2,299 

0,2 2,5895 5,179 0,004995 213,0157 -2,299 

0,3 2,5722 5,144 0,011631 218,7942 -5,565 

0,4 2,5722 5,144 0,011631 218,7942 -5,565 

0,5 2,5895 5,179 0,004995 213,0157 -2,299 

 

III.3.1.4.Film thickness calculation of ZnO thin films: 

   The variation of film thickness with solution molarity is shown in FigIII.5, from which it is 

seen that film thickness of these films were found between 260 and 874 nm. However the film 

thickness shows mostly an increasing trend with molarity increases. Afterward the thickness 

decreases at high solution molarities. 
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FigIII.5: The variation of film thicknesses of ZnO thin films deposited at different solution molarities. 
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The expected reason for thickness increment is supply of more number of ingredient ions with 

increase in solution molarity. This is in good agreement with those reported in literatures [6, 

7]. At high molarity the film thickness heading towards decreasing which maybe due to the 

reorientation effect [7]. 

    

III.3.1.5.Surface Morphology (Scanning electron microscope): 

   Fig III.6 (a) and (b) shows the SEM morphologies of ZnO films deposited at 0,1 mol.l-1 

solution molarity. 

 

  

 

Fig III.6: (a and b) Scanning electron micrographs of ZnO thin films grown at 0,1 (mol.l-1) solution 

molarity. 

   The microstructure of the films contains of many spherical grains uniformly distributed 

throughout the film surface. Indeed, the surface morphology of the ZnO film deposited at 0.1 

mol.l-1 shows a high density of small grains [8]. 

 

III.3.2.Optical characterization (UV-Vis): 

   The optical transmission measured as a function of the wavelength is depicted in FigIII.7; it 

shows the optical transmission spectra of the ZnO thin films deposited at different solution 

molarities. It may be mentioned that the optical transmission spectra recorded in the visible 

region are related to the electronic transitions, which are useful in understanding the 

electronic band structure of the semiconducting films [9, 10].  
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FigIII.7: Transmission spectra of ZnO thin films for different solution molarity. 

 

   For the longer wavelengths (λ >400 nm) all the films become transparent, it is found that all 

the films show a high optical transmission, around 85%, in the visible region. The optical 

absorption at the absorption edge corresponds to the transition from valence band to the 

conduction band (around 375 nm), while the absorption in the visible region was related to 

some local energy levels caused by intrinsic defects. In this region found that the transmission 

decreased because of the onset fundamental absorption in the region between 370–395 nm, as 

it was shown in the FigIII.7, it shows that the ZnO films reveal strong absorption bands at 

370–390 nm assigned to Zn–O bonding in wurtzite ZnO. 

 

III.3.2.1.Band gap energy and urbach energy: 

   The optical band gap Eg was obtained by extrapolating the linear portion of the plot 

(Ahv)2 versus (hv) to A = 0 (see FigIII.8 ) [11]. FigIII.9 shows the variation of the band gap 

energy Eg and the Urbach energy Eu as a function of the solution molarity. It is observed that 

the band gap energy of ZnO thin films in order to 3.27 eV. 
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FigIII.8: The plot (ahv)2 versus (hv) for the calculate the optical band gap energy Eg. 

 

   In general, the ZnO thin films showed a wider band gap energy as compared with the 

standard band gap energy of Eg = 3.26 eV reported for single crystal ZnO [12] and is 

comparable to the value of Eg = 3.33 eV reported for Cobalt doped ZnO films [13]. However, 

it was found that the optical band gap energy of the ZnO thin film decreased with increasing 

film thickness (see FigIII.5), which was related to the change in barrier height owing to 

change in crystallite size in polycrystalline films. The decrease in the Urbach energy is 

attributed to the decrease of the defects [14]. 

0,0 0,1 0,2 0,3 0,4 0,5
3,20

3,21

3,22

3,23

3,24

3,25

3,26

3,27

3,28

3,29

 Eg
 Eu

Molarity mol.l-1

E
g 

(e
V

)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35
 E

u 
(e

V
)

 

FigIII.9: The variation of the optical band gap Eg and Urbach energy Eu with solution molarity. 
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III.3.3.Electrical characterization: 

III.3.3.1.Resistivity of Zinc Oxide Films: 

   FigIII.10 shows the variation of electrical conductivity of ZnO films at different solution 

molarities. Among all the ZnO thin films studied in the current work, the maximum value of 

electrical conductivity was 0.023×10-2 (Ω-cm)–1 for the 0.075 mol.l-1 with 278 nm film 

thicknesses. In this letter can be noted that the increase in electrical conductivity of the films 

has been explained by displacement of the electrons, which resulted in an increased carrier 

density [6]. 
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FigIII.10: The variation of electrical conductivity σ of ZnO thin films with solution molarity. 

 

III.3.4.In summary: From the obtained results, for ZnO thin films deposited at deferent 

start solution molarity, following conclusions can be drawn: 

1. The Whole undoped ZnO thin films exhibit polycrystalline structure that belongs to the 

hexagonal wurtzite type of ZnO, whereas the preferred growth orientation related 

strongly to the start solution molarity. The film thickness increases with molarity 

increment, then decreases at high molarities. 
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2. All the films show a high transparency, around 85%, in the visible region with 

absorption edge at hand 375 nm. The optical band gap decreases with solute molarity 

increment. 

3. The max value of electrical conductivity was 0.023×10-2 (Ω-cm)–1 for the 0.075 mol.l-1 

with 278 nm film thicknesses. 

 

III.4.Effect of dopants: 

Undoped and (Aluminium and Indium) doped Zinc oxide (ZnO) thin films have been 

deposited with various doping rates 1, 2, 3, 4 and 5 at%, at substrate temperature 350 °C, start 

solution molarity 0,1 mol.l-1 and 0.5 ml.min-1 solution flow rate, using ultrasonic spray 

pyrolysis technique onto glass substrates. In fact, these experimental conditions were selected 

based on the results obtained in the current work and the group search results. The effects of 

doping rate on the crystallization behavior, optical and electrical properties of the films have 

been studied. 

III.4.1. Effect of aluminium doping: 

In the present part we studied the effect of Aluminium doping concentration on doped 

ZnO thin films properties deposited using Al(NO3)3 (from sigma Aldrich with molar mass 

375.1338 g.mol-1) as dopant source. 

III.4.1.1. Structural Characterization: 

   The XRD studies were carried out for thin films of Al-doped ZnO and were illustrated in 

FigIII.11 in order to get an idea about the structural changes produced in Al-doped ZnO thin 

films because of the Al doping rate increasing. The presence of diffraction peaks of Al doped 

ZnO emphasize the polycrystalline nature of the prepared films. The diffraction peaks appears 

around the angles 32, 34 and 36° which corresponding with diffraction planes (100), (002) 

and (101) respectively, see Tab III.3. The XRD data are indexed to the hexagonal wurtzite 

structure in conformity with the ICDD file 36-1451 witch confirm formation of Al doped 

ZnO. This indicates that the replacement of Zn2+ with Al3+ ions does not change the 

hexagonal wurtzite structure [15]. An absence of Al and Al2O3 phases are observed due to the 

deposition of high purity Al doped ZnO thin films [16]. 
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FigIII.11: XRD patterns of undoped ZnO and Al-doped ZnO with various Al doping rates. 

   

   Whole Al-doped ZnO thin films displayed an intensive hexagonal ZnO (002) plane, 

preferential orientation, this indicates that the c-axis of the grains become uniformly 
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perpendicular to the substrate surface [17].  Nevertheless,  the  appearance  of  any  secondary  

phase  means  a  decrease  on  the diffraction peak intensity of Al-doped ZnO thin films [18]. 

However, as the Al doping rate increases the diffraction peaks intensity decrease caused by 

the formation of stresses by the difference in ion size between Zn2+ and the Al3+ dopant atoms 

and the segregation of dopants in grain boundaries at high doping rates [19]. 

   From Tab III.3 it was clear that the peak position corresponding to (002) plan was shifted to 

higher value of 2θ when aluminium incorporated, witch agrees very well with [20, 21, 19]. 

The increase of 2θ value of the (002) peak may be associated to the decrease of lattice 

parameters that comes from the oxygen defect or the strain caused by crystallization during 

the deposition process [20]. Noting that, the compressive stress causes the increase of lattice 

parameter d spacing, in this case the peak shifts to a lower angle compared with diffraction 

peak of bulk ZnO, while tensile stress causes decrease of the lattice parameter d spacing and 

thus peak shifts to a larger angle. Generally, the stress in the films is originated from thermal 

stress and intrinsic stress [22]. 

 

Tab III.3: peaks diffraction angles and FWHM of Al-doped ZnO films with different doping rates. 

Al doping rate (at %) 2θ (°) FWHM 

0 34,64 0,37526 

1 34,88 0,37526 

2 35,12 0,62699 

3 35,12 0,35454 

4 34,88 0,38 

5 35,12 0,38029 

 

III.4.1.1.1.The texture coefficient: 

   The detailed analysis of the relative intensities shows variations in the preferential 

orientation, which can be clearly understood from the intensities of the diffraction peaks, the 

textural coefficients from all the films as a function of Al doping rates were presented in 

FigIII.12. 

   The calculated texture coefficients for (002) plane are in the range 1.6–2 indicative of 

selective orientations of crystallites in Al doped ZnO thin films as shown in the previous 
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figure. Which mean that the deposited Al-doped ZnO thin films have higher degree of 

orientation along c-axis. 

   The value of texture coefficients for (002) decreases as the film thickness or average 

crystalline size goes up, similar results were reported by Y. Wang et al. [23]. The (002) 

orientation is considered characteristic in Al-doped ZnO thin films [24]. For the undoped ZnO 

the most intense plane is along (100) plane, that are vertical plane, with respect to the normal 

as well as the (002) plane (FigIII.13.g) that is parallel to the normal. 
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FigIII.12: The variation of the texture coefficient TC(hkl) of (100), (002) and (101) peaks with Al 

doping rate of ZnO thin films. 

 

   FigIII.13 presents simulated structures of ZnO, which explain the origin of the diverse 

morphology, namely plates (FigIII.13.a); pencils, either pointy or truncated (FigIII.13.b); 

hexagonal columns (FigIII.13.c) [25]. 
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Fig III.13: a–c Idealized crystal habits of different ZnO structures; d–j projections of the 

crystallographic planes within the wurtzite structure; k, l scheme of the possible substitutional and 

interstitial sites to incorporate Al3+ ions. 

 

 

III.4.1.1.2.Grain size variation of Al-doped ZnO thin films:  

   The FigIII.14 shows the grain size as a function of the aluminium doping rate; our thin films 

exhibit a strong relation between the growth process of the grain and the doping rate. Tab III.4 

displays Diffraction angle, FWHM and Grain size of ZnO films deposited at different 

Aluminium doping rates. 
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FigIII.14: The variation of grain size of Al doped ZnO thin films. 

 

Tab III.4: Diffraction angle, FWHM and Grain size of ZnO films deposited at different Aluminium 

doping rates. 

 

 

 

 

 

 

 

     As clear, the grain size increase slightly when Al concentration increases, whereas the 

majority of the researchers have reported a marginal decrease in grain size due to Al 

incorporation [27, 28, and 29]. Rakhshani [30] has reported that Al-doping does not modify 

the size of the grains. In all these researches Scherrer equation was applied to evaluate the 

grain size which only takes account of particle size broadening according S. Mondal and Al 

Al-doping rate (at %) (hkl) 2θ (°) FWHM Grain size (nm) 

0 

(002) 

34,64 0,70246 12,060 

1 34,88 0,37526 22,590 

2 35,12 0,62699 19,008 

3 35,12 0,35454 23,926 

4 34,88 0,38 22,308 

5 35,12 0,38029 22,306 
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[31]. Another equation can be used to evaluate grain size, the W–H equation, thus gives much 

more reliable results compared to Scherrer equation. Where, the grain size increasing was 

explained by Al-doped films thickness enhancement observed in this work. This behavior can 

be also attributed to the various relationships between the nucleation, growth and activation 

energy of the thin films (presence of slight strain and dislocations in the ZnO lattice due to the 

Al incorporation) [32]. K. Bahedi et al. [33] has reported that Al-doped ZnO films exhibits a 

strong grains size, what increases with Al doping rates increment. 

III.4.1.1.3. Stress variation of Al-doped ZnO thin films:  

The curve of the stress described in FigIII.15, as well from figure of  X-ray diffraction we 

observed that there is a variation of the position of (002) peak from 34.64o to 35.12o, higher 

angle side toward compared to value of bulk ZnO. This means that stresses induced in our Al 

doped ZnO thin films are tensile stress [24]. 
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FigIII.15: The variation of stress and peak position shift of ZnO doped with different Al 

concentrations. 

Results of the whole samples are given in the Table III.5. When Al was doped into a 

ZnO structure, the ZnO lattice was also distorted owing to the difference between the ionic 

radius of Al3+ (0.054 nm) and Zn2+ (0.074 nm) what explains the stress increase with increase 
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of Al concentration [33]. The small stress of the films doped with 1and 4 at% of aluminium 

indicates that the texture of the films is better which is in agreement with the XRD diffraction.  

The mismatch between the crystalline film (undoped and Al doped ZnO) and the amorphous 

substrate (glass in the present work) ascribed to the difference in the thermal expansion 

coefficients and/or from defects and lattice distortions in the crystal, can be also the stress 

origin [34, 35]. 

Table III.5: results of the whole Al doping ZnO thin films 

 

III.4.1.1.4.Film thickness calculation of Al doped ZnO thin films:  

Using the cross sectional SEM images, presented in FigIII.17 the thicknesses of Al 

doped ZnO thin films are observed between 250 nm and 390 nm. 
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FigIII.16: thickness variation of Al doped ZnO thin films. 

Al-doping rate (at %) (hkl) d(A°) C ezz C 33 film σ (GPa) 

0 

(002) 

2,570 5,1790 0,0050 213,0157 -2,299 

1 2,572 5,1445 0,0116 218,7942 -5,565 

2 2,555 5,1104 0,0182 224,6855 -9,033 

3 2,555 5,1104 0,0182 224,6855 -9,033 

4 2,572 5,1445 0,0116 218,7942 -5,565 

5 2,555 5,1104 0,0182 224,6855 -9,033 
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    It is clear that the aluminium incorporation has a strong effect on the thickness increment, 

whereas the increasing in Al ions due to the increment in the concentration of aluminium [36] 

that leads film thickness taking a highest value 390 nm at 2 at% of Al doping. 

   When Al rate is greater than 2 at% the film thickness decreases. Noting that, whereas the 

doping rate is equal to 3 at%, 4 at% and 5 at%, the (002) peak intensity decreases. The film 

thickness decreases also respectively by a factor of 60, 40 and 40 nm. So, this disparity 

between the decrease in the peak intensity and the decrease in the film thickness clearly 

indicates that the changes observed are indeed the results of structural changes caused by the 

aluminum doping [37]. 

   F.A. Garcés et al [38] were reported that the changes in the film thickness can be explained 

by the transformation of growth model. During the deposition of thinner films, the film 

growth approximately following a 2D model. While, as thickness increases the film tend to 

grow following a 3D model. 

 

III.4.1.1.5.Surface Morphology (Scanning electron microscope): 

   FigIII.17 shows the surface morphologies of pure ZnO and Al-doped ZnO deposited by 

ultrasonic spray pyrolysis. Scanning microscopy observations were used to analyze 

morphology of the studied samples and determining the films thickness using cross sections. 

The micrographs show a very good crystallization with a well-defined hexagonal character for 

the whole samples. 

   As we can see, the grains fully cover the substrate surface uniformly (FigIII.17 a and b). 

However, undoped ZO film shows particles with irregular, maybe spherical, shape. Thus, Al 

doping seems to have modified the shape of the grains, which turned into pyramids (FigIII.17 

e and FigIII.18 a). The microstructure is found to be uniform with compact connected grains. 

E. P. da Silva [39] found that surface roughness increases with increasing Al concentration in 

ZnO as found in the present work. Moreover, the film became denser with Al incorporation. 
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FigIII.17: SEM surface and cross section micrographs of Al-doped ZnO films prepared with various 

doping rates (a and b) undoped ZnO, (c, d, e, f and g) present Al concentration 1, 2, 3, 4 and 5 at % 

respectively.   

a b 

c d 

e f 

g 
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      FigIII.18 allows seeing the similar surface morphology of our Al-doped ZnO films with 3 

at% and two other Al-doped ZnO films prepared by spray pyrolysis at doping rates 0.5 and 

2.5 at% respectively. 

FigIII.18: SEM surface Micrograph of our films Al-doped ZnO at 3 at% (a), (b) Al-doped ZnO (0.5 

at%) deposited by spray pyrolysis [40], (c) Al-doped ZnO (2,5 at%) ultrasonic spray pyrolysis [25]. 

 

III.4.1.1.6.The Energy X-ray Dispersive Spectroscopy (EDS): 

   To assess the elemental composition of the synthesized undoped ZnO and Al-doped ZnO 

thin films, the Energy X-ray Dispersive Spectroscopy (EDS) was done and the result is shown 

in FigIII.19. It reveals that Zn and O elements were contained in the deposited films. Trace 

amounts of S, Na, Mg, K and Ca are also detected in the film as impurities, as well as O, Si, 

Ca, K from the glass substrate [25]. Others may be from water, substrate cleaning agents or 

from the based layer of the Spray process chamber [41]. The high intensity of the Zn and O 

peaks suggest that the sample mainly contains ZnO. 

   The main purpose of using this technique (EDS) is the existence confirmation of the 

Aluminium. All the spectra show the presence of this element, coming from the doping and 

we notice an increase in the percentage of Al with doping rate increment. 

 

 

 

a b c 
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FigIII.19: Energy X-ray Dispersive Spectroscopy spectra of four samples of Al doped ZnO at 2, 3 and 

5 at %. 

 

 

III.4.1.2. Optical characterization (UV-Vis): 

   We have investigated the transmittance of the ZnO thin films grown with different Al 

doping rates in the range of 300–1000 nm. The transmittance spectra are reported in FigIII.20. 

The transmittance of Al doped ZnO thin films decreased with a sharp fundamental absorption 

edge at around 375 nm of the wavelength. 

ZnO:Al  2at % 

ZnO:Al 3at % 

ZnO:Al 5at % 
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FigIII.20: Variation of the transmittance of the ZnO films doped with Al depending on the 

wavelength. 

 

    All the films, in the visible range, present a high average transmittance bigger than 60%, 

except the film of ZnO doped with 2 at %, where we observe transmittance greater than 50%, 

which is the thicker film (see FigIII.16). The spectrum shows a maximum transparency higher 

than 80% at wavelength around 600 nm for undoped ZnO and ZnO doped with Al rate of 1 

at%. However, the transparence reduced with Al doping rate increasing. This is due to free 

carriers coupling to the electric field hence increasing the reflection [42]. E. Bacaksiz et al. 

[43] reported significantly reduced transmission when ZnO was doped with higher 

percentages of Aluminum. Noting that, the reduction of optical transmittance is also related to 

the crystallinity of the film [44]. 

 

III.4.1.2.1.Band gap energy Urbach energy:  

   From the location of the absorption edge of about 350 to 400 nm, the optical energy gaps 

appeared in the range of 3.25 to 3.27 eV for ZnO and the Al-doped ZnO thin films. The 



Chapter III Results and Discussion for ultrasonic study. 
 

84 
 

variation of direct band gap for different Al doping concentration is shown in FigIII.21. The 

transmittance reduces also led to variation in band gap. This may be attributed to the Oxygen 

vacancies and the behavior of free carrier’s concentration with Al incorporation [42]. 

   While ZnO doped with 1 at% the energy gap decreases strongly from 3.267 eV to 3.253 eV 

(see Tab III.6), this decrease might be explained in terms of electron concentration 

dependence of band gap shift in the Al-doped ZnO thin films [43]. 

   An obvious increase in the band gap was observed, the energy gap Eg increased when the 

Al concentration was increased up to 4at% then decreased when the Al doping was greater 

than 4 at%, this behavior has been indicated by other authors [45, 46]. 
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FigIII.21: The variation of optical band gap and Urbach energy of ZnO films doped with different Al 

concentrations.  

 

Typically, the energy gap increases of the Al-doped ZnO thin films is associated with 

an increase of the carrier concentration blocking the lowest states in the conduction band, 

which is well known as the Burstein-Moss effect [47]. The required electronic conduction in 

Al doped ZnO films is due to itinerant electrons induced by substitution of Al for Zn in the 

lattice as well as carriers derived from oxygen vacancies. For carrier concentrations above the 
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critical Mott density, the free electrons are able to occupy the ZnO conduction band, and a 

subsequent widening of the band gap is typically observed [48]. 

As clearly seen too, the urbach energy increased slightly with Al doping rate increases, 

indicating  the  reduction  of  structural  disorder and defects in the Al doped ZnO thin films. 

 

Tab III.6: calculated optical band gap and Urbach energy of undoped ZnO thin films. 

Al-doping rate (at%) Eg (eV) Eu (eV) 

0 3,267 0,083 

1 3,253 0,093 

2 3,258 0,081 

3 3,26 0,134 

4 3,27 0,157 

5 3,259 0,189 

 

 

III.4.1.3.Electrical characterization: 

III.4.1.3.1.Resistivity of Al-doped ZnO thin Films: 

For the applicability of the produced Al-doped ZnO thin films to photovoltaic devices, 

the knowledge of electrical parameters like electrical conductivity and resistivity are highly 

important and necessary. FigIII.22 presents the electrical conductivity (as well as resistivity) 

of the Al-doped ZnO thin films as a function of the Al content, where we can observed that 

the highest electrical conductivity was achieved with the Al concentration of 3 at% 

corresponding to a conductivity of 6,17×102 (Ω.cm)-1, as tabulated in the Tab III.7. However, 

the conductivity increases up to 3 at% Al doping rate, after wards decrease slightly. 

This increase of electrical conductivity, thus decreasing resistivity, with increasing Al 

content into ZnO lattice can be ascribed to the abundance number of free electrons in the ZnO 

lattice arising from the Al ions. This implies that the Al ions in the ZnO lattice are acting as a 

charge carriers reservoir and acceptor impurities [49]. R. R. Kothawale and R. M. Mohite [50] 

have reported that the electrical resistivity depends on grain size; it increases with increase in 

grain size. 
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FigIII.22: The variation of electrical conductivity with atomic doping rate of aluminium. 

 

      With further increase in Al concentration the conductivity value started to decrease 

slightly. Beyond a certain doping concentration, a decrease in conductivity has been reported 

[51]. In this case, the doping atoms do not occupy the lattice sites but instead result in some 

kind of defects, precisely in grain boundaries. Thus, there is a segregation of dopant atoms at 

the non-crystalline regions which produces disorder in the lattice. These defects act as 

scattering centers giving rise to various scattering mechanisms resulting in a decrease in 

conductivity [31]. 

Tab III.7: measured electrical resistivity and conductivity of Al-doped ZnO thin films deposited with 

varied doping rates. 

Al-doping rate 

(at%) 
Thickness 

(nm) 
I (°A) U (Volt) 

Resistivity 

(Ω.cm) 

Conductivity 

(Ω.cm)-1 

0 170 0,03 20 0,1183 8,45 

1 270 0,03 2,48 0,0233 42,93 

2 390 0,03 0,15 0,0020 491,39 

3 330 0,03 0,141 0,0016 617,80 

4 290 0,03 0,18 0,0018 550,69 

5 250 0,03 0,22 0,0019 522,66 
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   In the Tab III.8 we show a comparison between the electrical conductivity, the carrier’s 

concentration and transmission values of our Al doped ZnO thin films deposited by ultrasonic 

spray and those obtained by different deposition methods. 

   Noting that, based on the Hall Effect measurements performed on Al-doped ZnO the type of 

carrier is found n-type with carrier concentration of the order of 1021 cm-3.  

 

Tab III.8: The electrical and optical properties of Al-doped ZnO thin films. 

 Deposition 
technique 

electrical 
conductivity 

(Ω.cm)-1 

carriers 
Concentration 

(cm-3) 

Transmission 
(in visible 

range) 
ref 

A
l d

op
in

g 
Zn

O
 

Ultrasonic Spray 3.4 1021 > 60 Our films 

Ultrasonic Spray 0.01-0.17 -- -- [52] 

Ablation laser 10-140 -- -- [53] 

Sputtering 102 4.7x1020 90  

[54] 
Sputtering 4x103 8.0x1020 -- 

Sputtering 4x103 1021 -- 
Sputtering 7x103 1021 -- 

 

III.4.1.4.In summary: From the obtained results, for Al-doped ZnO thin films, following 

conclusions can be drawn: 

1. Whole Al-doped ZnO thin films displayed an intensive hexagonal ZnO (002) plane, 

this later intensity decreases with Al incorporation. Doping ZnO films by Al improves 

the crystallites size with increased stress. The film thickness enhanced then decreased 

at higher Al rates under the effect of structural changes. The SEM analysis shows that 

the Al doping change the grain shape and make the film denser. 
2. All the films, in the visible range, present a high transparency mostly bigger than 60%, 

which reduced when the Al-doping rate increases with a sharp absorption edge at 

around 375 nm. The optical energy gaps appeared in the range of 3.25 to 3.27 eV. 
3. The electrical conductivity increased with Al incorporation. The highest value was 

achieved at 3 at% of Al doping rate (6,17×102 (Ω.cm)-1). 
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III.4.2.Effect of Indium doping: 

   In this part we studied the effect of Indium doping concentration on doped ZnO thin films 

properties deposited using ultrasonic spray pyrolysis and In(NO3)3.xH2O (from sigma 

Aldrich with molar mass 390,91 g.mol-1) as dopant source. 

 

III.4.2.1.Structural Characterization: 

   The analysis of our samples by X-ray diffraction was obtained for undoped and In- doped 

ZnO thin films at different concentrations of Indium (FigIII.23). The whole prepared films are 

polycrystalline with a hexagonal würtzite structure of ZnO, which is confirmed by the 

presence of set diffraction peaks. The diffraction peaks appears around the angles 32, 34, 36, 

47 and 62° which corresponding with diffraction planes (100), (002), (101), (102) and (103) 

respectively. There is no peak corresponding with In, suggesting that the replacement of 

Zn2+with In3+ions does not change the hexagonal wurtzite structure [15, 55]. 

   As we can see, while the In doping rate goes up the (002) peak intensity decrease strongly 

accompanied by an increase in the (100) peak intensity, although the (101) peak intensity 

almost unchanged. This mean that higher concentration of In is responsible for the preference 

of (100) crystal formation over (002) plane. We can further argue that In incorporation may 

induce more homogeneity in the crystal structure [56]. Noting that, the appearance of 

diffraction peaks corresponding with (102) and (103) planes was only in undoped ZnO. 

    For undoped ZnO, 1 at% and 2 at% concentration of In the dominant diffraction peak was 

(002) which mean that the films have a c-axis preferred growth orientation, normal to the 

substrate. For 3 at% and 4 at% concentration of In the crystal undergo reorientation, with the 

(100) orientation preferred and (002) peak intensity decrease. In the In 2 at% sample, the 

(100), (002) and (101) diffraction peaks are approximately equal, showing that the film is 

composed of grains with various orientations [57]. The disappearance of the diffraction 

peaks may return to the structural deterioration phenomenon which is observed for Indium 

concentrations 5 at%. So, at higher doping level insoluble In atoms segregate at the grain 

boundaries inhibit the growth of In-doped ZnO crystals [58]. It is clear from XRD patterns 

that as the In content increased the film adopts a preferred orientation, with the c-axis (002) 

which changes above 2 at% to become (100). 
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Fig III.23: X-ray diffraction analysis (XRD) of Indium doped ZnO. 
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   One can conclude that, the Films doped with lower indium concentration exhibited a 

preferential growth orientation along (002) plan, while higher doping concentration changed 

the preferential growth orientation to another plane, (100). A similar result has been observed 

by T.V. Vimalkumar and al [17] J.L. van Heerden and R. Swanepoel [59] G. Singh et al [60]. 

III.4.2.1.1.The texture coefficient: 

   As mention before, the change of preferred orientation is analyzed using the texture 

coefficient. FigIII.24 represents the different values of TC(002), TC(101) and TC(100) calculated 

for the thin films of ZnO undoped and doped Indium. 

0 1 2 3 4

0

1

2

3

4

T
C

 (h
kl

)

Indium doping rate (at %)

 (100)
 (002)
 (101)

 
FigIII.24: The variation of the texture coefficient TC(hkl) variation of (100), (002) and (101) peaks 

with In doping rate of in ZnO thin films. 

   We can note that the undoped ZnO thin films has a preferential orientation along the (002) 

orientation, while the orientation of the In-doped ZnO thin films is towards the peak (100). 

This might be explain by dramatic structural deterioration was observed for Indium 

concentrations (> 2%). 

   The value of TC(002) decrease strongly as the indium concentration increases accompanying 

with increase in  the TC(100) value,  while that TC(101) overall has not changed. These results 

indicate that the crystal quality of the In-doped ZnO thin films can be maintained by 

incorporation with suitable amounts of In. The migration velocity of Indium is faster than Zn 

and O atoms in the ZnO lattice due to the weaker In–O bond than Zn–O bond. The In atoms 

could have more chance to reach Zn site earlier than O atoms during the deposition process 
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and O sites would be reduced, therefore the crystallinity of our thin films was quickly altered 

[61]. 

 

III.4.2.1.2.Grain size of ZnO doped Indium thin films: 

   Improvement of structural quality of the Indium doped ZnO thin film reached on the lowest 

value of the full width at half maximum (FWHM) of the (002) peak, summarized numerically 

in Tab III.9 and graphically in FigIII.25 represents the variation of crystallite size of ZnO thin 

films as a function of indium doping rate.  
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Fig III.25: Variation of crystallite size of ZnO thin films as a function of indium doping rate. 

The grain size of the films is decreased with the increasing in doping atomic percentage of In 

up to 2 at% where it take a base value of 22.59 nm. Thus can be attributed to the random 

growth orientation whereas the lowest peak intensities values were found for In concentration 

of 2 at%. These results suggest an increase in the width of peak broadening which may be 

ascribed to the decrease in the size of the crystallites [55]. 

   As the Indium concentrations are higher than 2 at%, we observed that the grain size 

increased, this result is in good agreement with reported XRD patterns, where the films 

desired a new growth orientation. Similar results were reported by A. J. Regina Mary and S. 

Arumugam [58]. 
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Tab III.9: diffraction angles, FWHM and the grain size measurements. 

In-doping rate 

(at %) 
2θ (°) FWHM Height 

Grain size 

(nm) 

0 34,51 0,1775 213,1 47,72 

1 34,51 0,2737 82,76 30,94 
2 34,51 0,37496 32,23 22,586 
3 34,51 0,24775 30,48 34,18 
4 34,48 0,14062 16,5 60,219 
5 / / / / 

 

III.4.2.1.3.Stress variation of In-doped ZnO thin films:  

    The calculated values of stress for different indium contents are shown in FigIII.26. From 

the  X-ray diffraction patterns we observed the (002) peak position shifts toward the higher 

angle side compared to value of bulk ZnO, whereas there is a variation from 34.48° to 34.51°. 

This means that stresses induced in our Al doped ZnO thin films are tensile stress [24]. 
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FigIII.26: Variation of stresses and (002) peak shift of the In-doped ZnO thin films. 

 

    For pure ZnO thin films the stress is mainly caused by the different thermal expansion 

coefficient and lattice mismatch between the glass substrate and the ZnO thin films [34, 35]. 
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For In-doped ZnO films The inbuilt chemical pressure due to the difference in ionic radius of 

In3+ (0.80 Å) and Zn2+ (0.74 Å) has been anticipated to be the reason for releasing stress in 

In-doped ZnO films. Results of the whole samples are presented in the Tab III.10. 

     The stress eventually becomes the weakest at critical indium content which is 3 at%. For 

high indium content, indium atoms are pushed into interstitial sites leading to the expansion 

of the hexagonal lattice, thereby enhancing the stress in the In-doped ZnO films [62]. 

  

Tab III.10: Results of In-doped ZnO thin films deposited at varied doping rates. 

In-doping rate 
(at %) 

(hkl) d(A°) C ezz C 33 film 
Stress σ 

(GPa) 

0 

(002) 

2,600 5,199 0,001 209,685 -0,480 

1 2,599 5,197 0,002 210,055 -0,680 

2 2,600 5,200 0,001 209,633 -0,452 

3 2,601 5,201 0,001 209,360 -0,305 

4 2,599 5,198 0,001 209,932 -0,614 

5  / / / / / 

 

III.4.2.1.4.Film thickness calculation of In-doped ZnO thin films: 

   FigIII.27 shows the film thickness values for different doping rate of indium, where we 

observe that the thickness increasing as the indium concentration increases, where it took the 

highest value of 342.68 nm at 3 at% of indium. For indium doping rate of 4 at% the film 

thickness decreased up to 250 nm, noting that for this doping rate the grain size was the 

highest ( 60 nm ) and (100) plane found as preferred growth orientation. Whereas S. Edinger 

et all [57] found that the elongated, plate let-like grains appearing in the In-doped ZnO thin 

films that has the (100) plane as preferred orientation. 

  The film thickness increases with In percentage increment can be return into two possible 

reasons: the disturbance of grain growth due to the stress produced in the doped films or the 

increasing number of nucleation sites leading to the formation of thicker layers during dopant 

incorporation [63]. 
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FigIII.27: The variation of film thickness of the In-doped ZnO films. 

 

III.4.2.2.Optical characterization (UV-Vis): 

   FigIII.28 illustrates the optical transmission spectra of In-doped ZnO thin films with doping 

rates 1, 2, 3, 4 and 5 at% recorded as a function of wavelength in the range of 200 nm to 900 

nm. 

We observe for the whole samples a large absorption in the UV region and a high 

transparency in the visible region. However the transmission increase when In doping rates 

increasing. The transmittance goes up from 60% to higher than 80%. The lowest transmission 

value was found for pure ZnO and 1 at% In concentration, which was higher than 60% in the 

visible region; afterward the transmittance has improved due to the In incorporation. 

   All the samples show a sharp absorption edge at hand of 380 nm in the UV region. This 

later shifts towards shorter wavelengths indicates that the optical band gap increases with the 

increasing of indium content [64], as will be seen next. An absence of the interference fringes 

indicates that the films roughness prepared with these conditions are elevated. 
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Fig III.28: Transmittance variation of the Indium doped ZnO films according to the wavelength. 

 

   The transmittance enhancement in the visible region can be associated to an improvement of 

the film quality with indium incorporation during growth process, similar behavior observed 

in refs [65, 66 and 67]. 

 

III.4.2.2.1.Band gap energy and urbach energy: 

   The band gab and Urbach energy were estimated using the transmittance spectrum; the 

TabIII.11 shows the band gap and Urbach energy values of undoped and doped ZnO thin 

films grows in different In doping rates. FigIII.29 presents the relation between optical band 

gap energy and In concentration. 

   Clearly that the optical band gap Eg was equal 3.21 eV for undoped ZnO film; afterward 

increases up to 3.23 eV for 1 at%, 2 at% and 3 at% indium concentration (blue shift) that is 

connected with crystal quality improving [65]. However, at higher indium concentration Eg 

trend to decrease until 3.187 eV (red shift). 
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Fig III.29: the optical band gap Eg and Urbach energy Eu as a function of In doping rate. 

 

   The narrowing band gap energy is attributed to the existence of localized defect states (In 

impurities in Zn) into the forbidden band [68], which induce the formation of new 

recombination centers with lower energy state. The increase in the Eg should be also due to 

the increasing carrier concentration with In content [61]. 

   The urbach energy increased with indium doping rates increase, as expected. However, the 

Urbach energy is closely related to the disorder in the ZnO lattice. Since the ion radius of In is 

larger than Zn, the In incorporation into the film is then followed by the lattice distortion and 

consequently disorder creation [67]. 

Table III.11: The optical band gap Eg and Urbach energy Eu of In-doped ZnO thin films. 

In-doping rate (at %) Eg (eV) Eu (eV) 

0 3,21 0,125 

1 3,23 0,143 

2 3,23 0,185 

3 3,23 0,175 

4 3,19 0,174 

5 3,187 0,185 
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III.4.2.3.Electrical characterization: 

   Undoped ZnO is an n type TCO and has a high resistivity. By adding Indium impurity to 

semiconductor, it substituted by Zn (because of their similarity of ionic radius). Since In has 

one more electron than Zn, acts as donor impurity and creates an n type semiconductor [69]. 

The electrical properties of the samples are investigated by electrical resistivity and 

conductivity measurements. 

 

III.4.2.3.1.Electrical conductivity of Indium doped ZnO thin films: 

   The effect of indium doping on the electrical conductivity was obtained at different doping 

rates and it was shown in FigIII.30 that doping had a significant effect of the electrical 

conductivity of ZnO doped with indium. The estimated electrical resistivity and conductivity 

with respect to indium doping are tabulated in the TabIII.12. 
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Fig III.30: The variation of electrical conductivity of ZnO doped at different In concentrations. 

 

    From the FigIII.30, at lower indium concentration (from 1at % to 3at %) an increase in 

conductivity was observed (from 0,497×102 (Ω.cm)-1 to 0,515×102 (Ω.cm)-1). This may be due 

by the substitution of indium ions (In3+) in place of zinc ions (Zn2+), which induces a free 
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electron to conduction band, besides free electrons produced from interstitial zinc and oxygen 

vacancies. Thereby the carrier concentration enhances [68, 70].  

   With further increase of In concentration (4 at% and 5 at%) the conductivity is decreased. 

This could be due to the inactivity of added dopant atoms. Therefore, at higher doping rates a 

saturation of substitutional sites takes place and this leads to another mode of dopant 

incorporation, which ends by a decrease in crystallinity [29], as observed from XRD patterns, 

thus the electrical conductivity go to the lowest values. 

Tab III.12: estimated electrical resistivity and conductivity of In-doped ZnO thin films. 

 

III.4.2.4.In summary: From the obtained results, for In-doped ZnO thin films, following 

conclusions can be drawn: 

1. The whole prepared In-doped ZnO films are polycrystalline with a hexagonal würtzite 

structure of ZnO. When In-doping rate goes up the (002) peak intensity decrease 

strongly accompanied by an increase in the (100) peak intensity. The crystallite size 

found in the range of 22,6 to 60,22nm. The film thickness found mostly increased with 

in incorporation from ~200 to 343 nm. 
2. We observed a high transparency for all samples in the visible region greater than 

70%; the transparency has improved due to the In incorporation, with a sharp 

absorption edge at hand of 380 nm. The optical energy gaps varied from 3,187 to 3.23 

eV. 
3. The electrical conductivity increased for lower In concentration then decreased for the 

higher. The highest value was achieved at 3 at% of In doping rate (0,52×102 (Ω.cm)-1). 

 

In-doping rate 
(at %) 

Thickness 
(Cm) 

I (A) U (Volt) 
Resistivity 

(Ω.cm) 
Conductivity 

(Ω.cm)-1 
0 2,067 .10-05 0,03 3 0,0216 46,36 

1 2,267 .10-05 0,03 2,55 0,0201 49,74 

2 2,009 .10-05 0,03 2,78 0,0194 51,48 

3 1,999 .10-05 0,03 2,34 0,0163 61,44 

4 1,996 .10-05 0,03 3 0,0208 48,00 

5 0,021 .10-08 0,03 3,46 0,0254 39,36 
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IV.1.Introduction: 

In the present chapter, we will discuss the deposition of undoped and Aluminium 

doped zinc oxide thin films, using the pneumatic spray pyrolysis technique, to study the effect 

of substrate temperature, with two different carrier gas (air) pressures, and the doping rates on 

the structural, optical and electrical properties of the films. 

IV.2.Chapter Objectives: 

The objectives of this chapter are: 

1. Present structural, optical and electrical properties discovered in the present study, as a 

patterns, picture and tables. 

2. Interpretation and discussion this results. 

IV.3. Effect of substrate temperature: 

Undoped Zinc oxide (ZnO) thin films have been deposited with various substrate 

temperatures 300, 350, 400 and 450 °C, with 1 and 1,5 bar as a carrier gas (air) pressure, 

using pneumatic spray pyrolysis technique onto glass substrates. The effects of substrate 

temperature on the crystallization behavior, optical and electrical properties of the films have 

been studied. 

IV.3.1.Part one: Substrate temperature – Spray pressure: 1,5 bar 

In this part we studied the effect of the substrate temperature on undoped ZnO thin 

films properties sprayed at air pressure of 1,5 bar. 

IV.3.1.1.Structural Characterization: 

   FigIV.1 displays X-ray diffraction (XRD) patterns of ZnO films deposited at various 

substrate temperatures 300, 350, 400, 450°C. We can mention that all the films showed only a 

strong peak at 2θ at hand 34°, which in the diffraction angle 2θ region from 10° to 90°. Thus 

identified only the (002) peak of hexagonal ZnO are observed. The diffraction patterns 

emphasize that our ZnO films have a hexagonal structure [1]. 
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FigIV.1: X-ray diffraction (XRD) patterns of ZnO films deposited with various substrate 

temperatures at 1,5 bar as carrier gas pressure. 

    The highest diffraction peak intensity was found at 400°C substrate temperature, while the 

rest intensity values were approximate; see TabIV.1. Strong diffraction peak with narrow 

FWHM implies high crystallinity. However, with substrate temperature increasing the ZnO 

(002) peak position was changed significantly. That is, the ZnO (002) peak position was 
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shifted with increasing the substrate temperature to higher angle side toward compared to 

value of bulk ZnO. This shift means that the lattice constant c decreases with increasing the 

substrate temperature, which is considered to be related to the residual stress in the ZnO thin 

films [2]. 

Tab IV.1: peaks diffraction angles (2θ) and intensity of ZnO films deposited at various substrate 

temperatures with 1,5 bar as carrier gas pressure. 

 2θ (°) intensity 

300 °C 34,45 66 

350 °C 34,66 63 

400 °C 34,54 129 

450 °C 34,54 56 

 

IV.3.1.1.1.Grains size of undoped ZnO thin films: 

   The calculated grain sizes corresponding to (002) diffraction peaks are given in TabIV.2. 

The variation of our films grains size in dependence of substrate temperature were presented 

in FigIV.2. 
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FigIV.2: The grain size variation of ZnO films with substrate temperature deposited at 1.5 bar. 
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   The average crystallite size, is varied in the range of 29-96 nm, was calculated form the full 

width at half maximum. As can be seen, the grain size increases from 29 to 96 nm with 

substrate temperature from 300 to 400 °C and then again decreases to 29 nm for 450 °C. 

Moreover, it can be noted that the optimal value of the average grain size of the undoped ZnO 

films, 95.6 nm, was obtained for substrate temperature 400°C (see TabIV.2), similar result 

found by A. Rahal et all [3]. 

   The lattice constant c of undoped ZnO thin films calculated (see Tab IV.3) was approached 

to the lattice constant of bulk ZnO (c0=5.206 Å)  indicating the strain is along the c-axis. The 

increase of the grain size has been indicated by the enhancement of the crystallinity and c-axis 

orientation of ZnO thin films [4]. At high temperature atoms have more energy to acquire a 

correct site in the crystal lattice, which leads the grains to grow larger [5]. 

Tab IV.2: Variation of diffraction angle, FWHM and Grain size with substrate temperature of ZnO 

films deposited at 1,5 bar as carrier gas pressure. 

Substrate 

temperature (°C) 
2θ (°) FWHM Grain size 

300°C 34,4831 0,288 29,40 

350°C 34,6494 0,216 39,22 

400°C 34,549 0,0886 95,59 

450°C 34,5754 0,288 29,41 

 

IV.3.1.1.2.Stress variation of undoped ZnO thin films: 

   The variation of the film stress and peak shift is described in FigIV.3. Calculated values of 

stress in the undoped ZnO thin films are listed in TabIV.3. Shifts in the (002) peak position 

also indicate stress in the films. The deficiency of crystallites during the growth can allocate 

the intrinsic stress. The intrinsic stress is caused in the thin films by the deposition parameters 

such as substrate temperature, carrier gas pressure and deposition duration [5]. 

   From the TabIV.3, the lattice constant cfilm values of the ZnO thin films deposited at various 

substrate temperatures are greater than to the c value of bulk ZnO (cbulk = 5.204 Å). This 

indicates that the unit cell of ZnO film is elongated along the growth direction, namely, 

compressively strained [2] 
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FigIV.3: The variation of the stress and peak shift as a function of substrate temperature with 1,5 bar 

as carrier gas pressure. 

   However, from the TabIV.3, is obviously that, whole of stresses have a negative signal 

(strain ezz>0) that means tensile stresses occur, as the peak shift described. As the FigIV.3 

shows, there is a decrease in the film stress with an increase in the substrate temperature. In 

addition, the ZnO thin film deposited at 350°C was found to have the highest stress among the 

samples and was in almost stress Free State [2]. These results demonstrate that the stress in 

the ZnO thin film deposited by spray pneumatic method is relaxed with increasing the 

substrate temperature. 

   Tab IV.3: Results of undoped ZnO thin films deposited at varied substrate temperatures. 

Substrate 

temperature (°C)  
(hkl) d (Å) C ezz C33film Stress σ (GPa) 

300°C 

(002) 

2,60 0921 5,2018 0,000607 209,2983 -0,27 

350°C 2,588818 5,1776 0,005257 213,2399 -2,42 

400°C 2,596111 5,1922 0,002455 210,8539 -1,11 

450°C 2,594189 5,1884 0,003193 211,4794 -1,45 
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   The stress relaxation with substrate temperature increasing arises from the thermal 

mismatch of different layers, namely, the ZnO film and substrate due to the difference in their 

thermal expansion coefficients. 

IV.3.1.1.3.Film thickness of undoped ZnO thin films: 

    The variation of undoped ZnO thin films thickness deposited at different substrate 

temperatures is shown in FigIV.4. The film thickness decreased from 222 to 110 nm when 

substrate temperature varied from 300 to 400 °C, then increase again to 223 nm for 450 °C. 
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FigIV.4: The thickness variation of undoped ZnO thin films deposited at different substrate 

temperatures. 

   As can be seen, from FigIV.4, the films deposited for various substrate temperatures show a 

decrease of thickness from 222 to 110 nm as the temperature increase from 300 to 400 °C, 

similar behavior seen by M. Othmane et all [4]. This maybe due by rapid surface diffusion of 

material from the strained surface areas at the grain centers to the grain boundary regions [6], 

without missing that the deposition air pressure was high relatively thus allowing produce 

more stresses [7]. Noting that, a maximum grain size value and strong diffraction peak with 

narrow FWHM, which implies high crystallinity, were observed for the sample deposited at 

400 °C as substrate temperature; this will create a denser film and thus a lowest thickness. 
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IV.3.1.2. Optical characterization (UV-Vis): 

    The percentage of transmission is measured using UV-Vis Spectrophotometer. The optical 

transmission of ZnO films was determined from the transmission measurement in the range of 

290–1000 nm. The optical transparency of the ZnO thin film is one of the most important 

factors which need to be taken into consideration for a better TCO.  
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FigIV.5: Transmittance versus wavelength of ZnO thin films grown at different substrate temperatures 

with pressure of 1,5 bar. 

    FigIV.5 show the transmittance spectra of four ZnO thin films grown at different substrate 

temperatures ranging from 300 to 450°C with an interval of 50 °C, with 1,5 bar as carrier gas 

(air) pressure. The films deposited at 300, 350 and 400°C present a high transmittance above 

to 80% in the visible wavelength range and sharp absorption edge near to 375 nm. The rest 

film, deposited at 300°C present a lower transmittance, but greater than 70%. The increase of 

transmittance related to an increase of films grain size [8], noted that the weakest grain size 

value recorded at 300 °C. 
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    However, the spectra show that the whole films are highly transparent in the visible region 

while a strong absorbance is seen in wavelengths below 380 nm. The  abrupt  fall  in  the  

transmission  (as  shown  in  the  inset  of  FigIV.5)  for  wavelengths  below  380  nm refers 

to the absorbance in ZnO. This corresponds to the region of the onset fundamental absorption 

in the layers due to the transition between the valence band and the conduction band [6]. 

    Moreover, we observed that all spectra appears a bump (boss) between wavelength 290 nm 

to 350 nm, the latter means that our ZnO films have included a porosity which may be due to,  

the thickness effects, the light scattering due to the difference of the quality of the film surface 

or grain size [7], plus high carrier gas pressure. In addition, the films show an absence of 

interference fringes in the transmission spectrum, thus produced by the interference of light 

reflected from air film and film substrate interface. This unfortunately indicates that our film 

surfaces are neither smooth. 

IV.3.1.2.1.Band gap energy and Urbach energy of undoped ZnO: 

   We can see in FigIV.6, which present the variation of the band gap energy Eg and urbach 

energy Eu of undoped ZnO thin films deposited at varied substrate temperature with 1,5 bar 

as deposition air pressure,  

300 350 400 450

3,20

3,21

3,22

3,23

3,24

3,25

3,26  Eg
 Eu

temperature (°C)

Eg
 (e

V
)

0,12

0,14

0,16

0,18
 E

u 
(e

V
)

 

FigIV.6: band gap and Urbach energy of undoped ZnO thin films grown at different substrate 

temperatures with pressure of 1,5 bar. 
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that corresponding to an increase of the substrate temperature pendant the growth, the band 

gap energy increases, from 3.20 eV to 3.26 eV, and similar changes with the corresponding 

Urbach energy, from 0.11 eV to 0.18 eV which was slightly almost (see TabIV.4). The 

Urbach energy is directly link to the defects in the crystal layer, at a low value of Urbach 

energy directly correspond a high crystalline quality. 

   The increase of direct band gap Eg with the increasing of substrate temperature from 300 to 

450 °C, indicates an improvement of the quality of the film. We attribute this behavior to the 

weak presence of the structural defects [9]. In a similar study, A. Bedia et al [10] have 

reported the enlargement of the optical band gap in ZnO films with the increase of the grain 

sizes with the substrate temperature during growth. 

Tab IV.4: calculated optical band gap and Urbach energy of undoped ZnO thin films. 

Substrate temperature (°C) Eg (eV) Eu (eV) 

300°C 3,2 0,113 

350°C 3,24 0,139 

400°C 3,26 0,181 

450°C 3,26 0,164 

 

IV.3.1.3.Electrical characterization: 

IV. 3.1.3.1.Resistivity of Zinc Oxide Films: 

   Dependences of the film resistivity on substrate temperature for the undoped ZnO thin films 

are shown in FigIV.7 Measured electrical resistivity and conductivity using four probes 

technique is presented in TabIV.5.  It is obvious from the curve that the resistivity of the films 

increases from 0,5×10-3 to 28,7×10-3 Ω.cm with substrate temperature increment from 300 to 

450 °C. Similar behavior was found by [11, 12]. The minimum resistivity 0,5×10-3 and 

0,8×10-3Ω.cm, thus maximum conductivity, are found for samples deposited at lowest 

substrate temperature 300 and 350°C. 
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FigIV.7: The variation of electrical conductivity and resistivity of undoped ZnO films deposited at 1,5 

bar. 

   However, the electrical conduction in ZnO is dominated by electrons generated from O2− 

vacancies and Zn interstitials, however, lower resistivity produced by higher crystal 

orientation. This phenomenon is due to the reduction in the scattering of the carriers at the 

grain boundaries and crystal defects, which increases the carrier mobility [13]. 

Tab IV.5: measured electrical resistivity and conductivity of undoped ZnO thin films deposited at 

varied substrate temperatures. 

substrate 
temperature (°C) 

Thickness 
(nm) I (A) U (Volt) 

Resistivity 
(Ω.cm) 

Conductivity 
(Ω.cm)-1 

300°C 221,966 0,03 0,07 0,5×10-3 18,50×102 

350°C 219,8 0,03 0,1 0,8×10-3 13,08×102 

400°C 109,225 0,03 2,53 9,6×10-3 1,04×102 

450°C 223,346 0,03 3,7 28,7×10-3 0,35×102 

 

IV.3.2.Part two: Substrate temperature – Spray pressure: 1 bar 
In this part we studied the effect of the substrate temperature on undoped ZnO thin 

films properties sprayed at air pressure of 1 bar, noted that the whole deposition process 

conditions are remained unchanged. 
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IV.3.2.1.Structural Characterization: 
The XRD patterns of undoped ZnO films grown in various substrate temperature with 1 bar as 

a carrier gas (air) pressure showed at FigIV.8, present the same form, that is only a (002) 

diffraction peak. This indicates that ZnO thin films prepared by spray pneumatic display a 

good orientation perpendicular to the substrate surface (c-axis). 
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FigIV.8: X-ray diffraction (XRD) patterns of ZnO films deposited with various substrate temperatures 

at pressure of 1 bar. 
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   The diffraction peak angles in the present case appears a shifts compared with the (002) 

peak position of powder ZnO (34.42°) as given in TabIV.6, the diffraction angles of the films 

were higher. Which result in the decrease of c-axis value, this indicates that ZnO films suffer 

a compressive or tensile stress along the interfaces. The smaller FWHM value indicates that 

the ZnO films are more textured along the c-axis [8]. 

Tab IV.6: peaks diffraction angles (2θ) and intensity of ZnO films deposited at various substrate 

temperatures with 1 bar as carrier gas pressure. 

substrate 
temperatures (°C) 

2θ (°) intensity 

300°C 34,418 109 

350°C 34,6464 128 

400°C 34,5518 76 

450°C 34,6085 90 

 

IV.3.2.1.1. Grain size calculation of undoped ZnO thin films: 

   The calculated grain sizes of the (002) diffraction peaks and the results are given in 

TabIV.7. The variation of undoped ZnO films grains size versus substrate temperature were 

illustrated in FigIV.9. 
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FigIV.9: The grain size variation of ZnO films deposited at 1 bar, according to (002) peak, with 

different substrate temperatures. 
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    The average crystallite size, is varied in the range of 29-72 nm, was calculated form the full 

width at half maximum. As can be seen, the grain size decreases with substrate temperature 

increment, reverse to the results found in the previous case (1,5 bar of air pressure). That, at 

higher deposition air pressure (1,5 bar) the droplet becomes more fine which makes the 

reaction droplets-substrate occur, thereby film growth efficiency. In addition, we can estimate, 

that 1,5 bar of deposition air pressure, is appropriate to achieve a thin films of Zinc Oxide 

with crystalline structure, as found in ref [7]. The optimal value of the average grain size, 72 

nm, was obtained at substrate temperature 300°C (see TabIV.7). The grain size decrease is 

probably because of the large strain in the films, caused by low pressure, which affects the 

normal growth of ZnO grains [14]. Moreover, B. Godboleis et all [15] observed that the grain 

size decreases with the increase in thickness (consider FigIV.11). 

Tab IV.7: Variation of diffraction angle, FWHM and Grain size with substrate temperature of ZnO 

films deposited at 1 bar as carrier gas pressure. 

substrate 

temperature (°C) 
2θ (°) FWHM Grains size 

300°C 34,418 0,1181 71,69 

350°C 34,6464 0,216 39,22 

400°C 34,5518 0,216 39,21 

450°C 34,6085 0,288 29,41 

 

IV.3.2.1.2.Stress variation of undoped ZnO thin films: 

   FigIV.10 represents the variation of the film stress and peak shift as a function of substrate 

temperature deposited at 1 bar as carrier gas pressure. Calculated values of stress in the 

undoped ZnO thin films are listed in TabIV.8. 

   For ZnO thin films deposited at 300°C the stress found positive (strain ezz<0) which mean 

that the film is exhibited a compressive stress in the plane of the substrate surface, and to 

tensile stress for the rest ZnO films deposited at 350, 400 and 450°C. 
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FigIV.10: The variation of the stress and peak shift as a function of substrate temperature at pressure 

of 1 bar. 

   The stress, along the c-axis, changes from compressive to tensile by providing sufficient 

thermal energy [16]. However, as the figure shows, there is a decrease in stress when 

substrate temperature increasing. In this work, the stress in undoped ZnO thin film is 

considered to be the intrinsic stress which is attributed to lattice mismatch between the ZnO 

film and substrate [2]. 

Tab IV.8: Results of undoped ZnO thin films deposited at varied substrate temperatures. 

substrate 
temperature (°C) 

(hkl) d(A°) C ezz C 33 film Stress σ (GPa) 

300°C 

(002) 

2,606 5,2114 -0,00123 207,7699 0,54 

350°C 2,5896 5,1781 0,005174 213,1683 -2,38 

400°C 2,596 5,1918 0,002533 210,9202 -1,15 

450°C 2,592 5,1836 0,004118 212,2655 -1,89 
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IV.3.2.1.3.Film thickness variation of undoped ZnO thin films: 

    The variation of undoped ZnO thin films thickness deposited at different substrate 

temperatures is shown in FigIV.4.The film thickness increased from 210 to 340 nm with 

substrate temperature increment from 300 to 350 °C and then decrease to 220 nm for 450 °C. 
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FigIV.11: The thickness variation of undoped ZnO thin films deposited at different substrate 

temperatures. 

    The film thickness decrease with substrate temperature increment was also in good 

agreement with the literatures [17, 18]. However, at lower temperatures, the film thickness is 

more due to incomplete decomposition and powdery nature of films while for higher 

temperatures thickness is less due to the early evaporation of precursor solution [19]. 

IV.3.2.2.Optical characterization (UV-Vis): 

    FigIV.12 show the transmittance spectra of ZnO thin films grown in various substrate 

temperature 300, 350, 400 and 450°C, with 1 bar as carrier gas (air) pressure. The films 

deposited at 300, 350 and 450°C present a high transmittance above to 80% for 350 and 450 

°C and above to 70 % for 400 °C, this is in the visible wavelength range, and sharp absorption 

edge near to 375 nm. The rest film, deposited at 400°C, present a lesser transmittance, greater 
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than 60% and sharp absorption edge exposed to shift toward near to 380 nm. However, as can 

be seen, the increase in the substrate temperature improves the films optical transmission; one 

can note that the substrate temperature effect is clearly observed in the film quality. In 

addition the increase of transmittance related to an alteration of films grain size [8]. 
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FigIV.12: Transmittance versus wavelength of ZnO thin films grown at different substrate 

temperatures at pressure of 1 bar.  

    The observed intensive increase in absorption result to the direct electrons transition, as 

previous mention. The highest optical transparency was recorded at 350 and 450 °C. The 

spectra exhibit a shift in the bang edge due to the variation of substrate temperature with the 

absorption edge shifted to shorter wavelength at higher growth temperature, similar behavior 

was found by T. Parasada et all [17]. 

IV.3.2.2.1.Band gap energy and Urbach energy: 

    The variation of optical band gap versus growing process temperature was shown in 

FigIV.13. From the curve the band gap decrement from 3.26 to 3.23 eV was observed, when 

the deposition temperature was changed from 300 to 400 °C, and then increase again to 3.257 
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eV for 450 °C (see Tab IV.9). For the corresponding Urbach energy, a weak increase from 

0.11 to 0.18 eV with deposition temperature varied from 300 to 350 °C was observed, 

followed by smaller values. However, the weak Urbach energy found directly correspond to 

high crystalline quality. 
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FigIV.13: band gap and Urbach energy of undoped ZnO thin films grown at different substrate 

temperatures at pressure of 1 bar. 

    As previously elucidated, this decrease in direct band gap is in agreement with the variation 

in grain size, which decrease with substrate temperature increment, and this was predicted by 

the shifts of absorption edges toward shorter wavelength (see again FigIV.12) for films 

growing at increasing deposition temperatures. 

 

Tab IV.9: calculated optical band gap and Urbach energy of undoped ZnO thin films. 

Substrate 
temperature (°C) 

Eg (eV) Eu (eV) 

300°C 3,26 0,127 

350°C 3,264 0,207 

400°C 3,23 0,122 

450°C 3,257 0,186 
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IV.3.2.3.Electrical characterization: 

IV.3.2.3.1.Resistivity of Zinc Oxide Films: 

    The resistivity change of undoped ZnO films with different substrate temperature is shown 

in FigIV.14. The resistivity films increased from 4,8×10-3 to 13,2×10-3Ω.cm with increased 

deposition temperature, noted that, the resistivity is weak and the change remains slight in the 

same order. Thus, the conductivity decreased. 
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FigIV.14: The variation of electrical conductivity and resistivity of undoped ZnO films deposited at 1 

bar. 

Tab IV.10: measured electrical resistivity and conductivity of undoped ZnO thin films deposited at 

varied substrate temperatures. 

Substrate 
temperature (°C) 

Thickness 
(nm) 

I (A) U (Volt) 
Resistivity 

(Ω.cm) 
Conductivity 

(Ω.cm )-1 
300 °C 213,13 0,03 0,65 4,8×10-3 2,08×102 

350°C 336,284 0,03 0.71 8,3×10-3 1,20×102 

400 °C 201,179 0,03 2,25 15,7×10-3 0,64×102 

450 °C 223,949 0,03 1,7 13,2×10-3 0,76×102 
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   As was observed,  the conductivity  of  ZnO  thin  film  decreases  with  increase  in 

temperature,  which indicating  its  semiconducting  electrical behavior. The film deposited at 

300 °C substrate temperature shows the higher conductivity ~210 (Ω.cm)-1 than deposited at 

350, 400 and 450 °C (see Tab IV.10). As before mentioned, this behavior can be attributed to 

the reduction in the scattering of the carriers at the grain boundaries and crystal defects [13]. 

 

IV.3.2.4.In summary: From the obtained results, for ZnO thin films deposited at various 

substrate temperatures with two carrier gas (air) pressures, following conclusions can be 

drawn: 

1. From XRD analysis, all the films showed only a strong peak at hand of 2θ=34°, this 

emphasizes that ZnO films have a hexagonal structure with high crystallinity. The 

highest diffraction peak intensity was found at 400°C with 1,5 bar and at 350°C for 1 

bar, of substrate temperature and carrier gas pressure respectively. The substrate 

temperature increment changes significantly the (002) peak intensity and position, i.e. 

film crystallinity quality and make more or less stress. For 1,5 bar, the film thickness 

and crystallite size found mostly unchanged, in the range of 220 nm and 30 nm 

respectively, with crystallite size of ~100 nm and thickness of 110 nm found for the 

sample deposited at 400°C. For 1 bar, the crystallite size decreased, from 72 to 30 nm, 

with substrate temperature increases, while the thickness has not changed (~ 220 nm), 

despite 340 nm of thickness found for sample prepared at 350°C. 

2. All the films display high transparency greater than 80%, with absorption edge around 

375 nm. The substrate temperature increases enhances the transparency. The optical 

energy gaps increased from 3,20 to 3,26 eV with substrate temperature increment in 

the case of 1,5 bar as pressure; and decreased from to 3,264 to 3,23 eV in the case of 1 

bar. 

3. The electrical conductivity decreased with substrate temperature increases. For 1,5 bar 

of pressure, the highest values, 18,5×102 and 13,1×102 (Ω.cm)-1, were found for films 

deposited at 300 and 350°C respectively. For 1 bar of pressure, The highest values, 

2,1×102 (Ω.cm)-1, was found for film deposited at 300 °C. 
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IV.4.Effect of doping (Aluminium doped ZnO): 

In order to find out the impact of Aluminium doping rate, we have deposited undoped 

and Al doped ZnO samples with different doping rates 1, 2, 3, 4 and 5 at % on glass substrates 

using pneumatic spray pyrolysis technique, the effects of Al-doping rate on the structural, 

optical and electrical characteristics of ZnO thin films were obtained. In addition, whole of 

thin films have analyzed and discussed. Mention that, the Al-doped were deposited at 400°C 

as substrate temperature with 1bar, 0,1 mo.l-1, 0,2 ml.min-1 and 20 min as carrier gas (air) 

pressure, start solution molarity, solution flow rate and deposition time respectively. In fact, 

these experimental conditions were selected based on the results obtained in the current work 

and the group search results. 

IV.4.1.Structural Characterization: 

    The crystal phases and structures of the synthesized Al-doped ZnO were performed using 

X-ray diffraction analysis. Typical XRD spectra for undoped and Al-doped ZnO thin films 

with various at% Al of 0, 1, 2, 3, 4 and 5 are shown in FigIV.15. The whole films, undoped 

and Al-doped of ZnO, exhibited a strong orientation along c-axis (002) perpendicular to the 

substrate surface, which belong to a hexagonal crystal structure. Noted that, No characteristics 

reflection peaks related to Al and other related impurities alumina phases were detected in the 

X-ray pattern, which supports that whole Al atoms substituting Zn in the crystal lattice or 

redundant Al segregating to the non-crystalline region in the grain boundary [20, 21]. 

    The sharp peaks and high intensity reflect that the synthesized Al-doped ZnO films are well 

crystalline. However, for Al-doping ratio 4 at% new diffraction peak appear with lower 

intensity, (101), thus indicate that the great member of Al atoms causes a loss of preferential 

orientate through the film growth, similar behavior observed in refs [22, 23]. Besides, for this 

latter the spectrum is of poor quality, and this indicates that high Al doping rate causes a 

decrease of the crystalline quality. 
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FigIV.15: XRD patterns of undoped ZnO and Al-doped ZnO with various Al doping rates, at air 

pressure of 1 bar and 400°C substrate temperature. 
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FigIV.16: The variation of (002) peak position and intensity of undoped and doped ZnO deposited 

with various doping rates and at 1 bar. 

   The (002) diffraction peak intensity of Al-doped ZnO films decreased with doping rates 

increasing, as represented in FigIV.16. This indicates that the doping rate increase cause a 

distortion in films crystallinity. In fact, the incorporation of Al into of Zn may give rise to the 

generation of different sorts of stress caused by the differences in the ion size between Al 

(0,054 nm) and Zn (0.074 nm), which could be the reason behind the modifications in the 

structure [21]. When the Al atoms are substituted into Zn sites in the crystal, the lattice 

constant in c-axis are expected to be shorten, so the position of the ZnO (002) peak will 

undergo a shift to the higher 2θ value [24]. 
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    When the Al doping rate increasing to 5 at%, the diffraction peak completely disappears, 

which Emphasizes the film amorphous structure, the act of carrier gas pressure was important 

and causing a fast loss of crystallinity. Furthermore, when peaks sharper and higher in 

intensity indicating to the increase the grain size. 

IV.4.1.1.Grain size calculation of Al-doped ZnO thin films: 

    The effect of doping rates on the films grain sizes is represented in FigIV.17; Tab IV.11 

shows the calculated grain sizes values. The results show an improvement in grain sizes 

versus undoped ZnO. The increasing of Al doping rates increased the grain size from 29 nm 

to 55 nm.  
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FigIV.17: Grain size of Al-doped ZnO films according to (002) diffraction peak, in dependence of the 

aluminium doping rates deposited at 1 bar and 400°C. 

    In fact, during growth of the Al-doped ZnO films, the replacement of Zn2+ ions by Al3+ ions 

takes place. Mention that Zn2+ radius is greater than that of Al3+, so the grain size decreases 

with Al incorporation. A minimum size was found, 29,436 nm, in the 3 at% Al-doped ZnO 

sample, with thickness 342,684 nm, this phenomenon can be attributed to the increasing of 

the structural defects which can be achieved by development of Al atoms number existing in 

the lattice [25, 26], and grain growth disturbed by compression stresses due to the difference 

in ionic radii between Zn and Al [27]. Or probably due by the increment the number of 

nucleation sites on the substrate causing by doping Al3+ions in Zn2+, therefore, smaller grains 
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and dense film structure result from the increased degree of preferential alignment. The 

columnar grain growth enhances with the thickness and it reduces the grain sizes [28]. 

Tab IV.11: Variation of diffraction angle (2θ), FWHM and intensity with Al-doping rate. 

Al-doping rates (at 

%) 
2θ(°) FWHM Height 

Grains size 

(nm) 

0 34,3076 0,288 33,95 29,389 

1 34,74 0,18 126,4 47,078 

2 34,851 0,216 41,5 39,243 

3 34,8919 0,288 44,36 29,436 

4 34,87 0,15538 30,03 54,556 

5 / / / / 

 

IV.4.1.2.Stress variation of Al-doped ZnO thin films: 

    FigIV.18 shows the variation of the stress and peak shift as a function of aluminium doping 

rates deposited at 1 bar and 400°C as carrier gas pressure and substrate temperature 

respectively.  
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FigIV.18: The variation of the stress and peak shift as a function of aluminium doping rates at 1 bar as 

air pressure and 400°C substrate temperature. 
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    As can be seen, for undoped ZnO the stress found positive (strain ezz<0) suggesting that the 

film is subjected to compressive stress in the plane of the substrate surface, and to tensile 

stress for the rest samples. This stress in the thin films is caused by the combined effect of Al-

doping in ZnO and thickness [5]. However, the films stress increasing from 1.89 to 5 GPa 

when the Al doping rates increases (see TabIV.12). 

     Strains originate, in thin films, principally causes from mismatch between the crystalline 

film and the amorphous substrate, the difference in the thermal expansion coefficients of the 

film and the substrate and/or from defects and lattice distortions in the crystal [17, 29], this 

later can be due to the presence of foreign atoms (Al atoms). 

Tab IV.12: Results of Al-doped ZnO thin films deposited at varied aluminium doping rates. 

Aluminium 
doping rate (at %) 

(hkl) d(A°) C ezz C 33 film σ (GPa) 

0 
(002) 

2,6138 5,2277 -0,0044 205,1964 1,896 

1 2,5823 5,1646 0,0078 215,4097 -3,636 

2 2,5743 5,1486 0,0108 218,09 -5,160 

3 2,571 5,1428 0,0120 219,0836 -5,732 

4 2,5729 5,14589 0,0114 218,5512 -5,425 

5 / / / / / / 

 

IV.4.1.3. Film thickness variation of Al-doped ZnO thin films: 

    Fig IV.19 shows the variation of Al-doped ZnO thin films thickness deposited at different 

dopant concentration. The film thickness increased from 200 to 350 nm when Al doping rate 

varied from 0 to 5 at %. 

    Moreover, as the film thickness increases under Al-doping rate increment effect, the 

intensity of the (002) peak decreases when Al-doping rate increase from 1 to 4 at% (consider 

FigIV.15). This suggests that the crystalline quality of the films is impaired and the preferred 

orientation along the c-axis going to change. The peak intensity and crystallite size are 

associated with the crystallinity of the films; however, Poor crystallinity in thinner ZnO film 

could be due to incomplete growth of crystallites [30, 31]. The weakest thickness value found 

at 4 at % Al doping rate may be due to the appearance of new growth orientation (101), thus, 

change in the growth model [32]. 
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FigIV.19: The variation of Al-doped ZnO thin films thickness deposited at different doping rates. 

 

IV.4.2.Optical characterization (UV-Vis): 

   FigIV.20 displays the optical transmittance at room temperature as a function of wavelength 

for undoped and Al-doped ZnO thin films. The transmittance spectrum indicates a high 

degree of optical transparency close to 80% in the visible region, despite 5 at% Al 

concentration where the transparency reduced less than 50%, which was hardly visible to 

naked eye. From the transmittance spectra, we note that all spectra have a sharp fundamental 

absorption edge between wavelength 300 to 360 nm, corresponds to the transition from 

valence band to the conduction band. This is important for applications such as solar cell, 

windows and transparent conductive films. 

    For high Aluminium doping concentration (> 3at %) the transmittance goes to decrease 

with the Al content, thus may be due to the increase in thickness of the films [26] observed in 

the current work. 
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Fig IV.20: Transmittance versus wavelength of Al-doped ZnO thin films grown with different doping 

rates at 1 bar air pressure and 400°C substrate temperature. 

 

In addition to that, a shift in the absorption edge towards shorter wavelengths for 1 and 

3 at% and towards the longer for 2, 4 and 5 at% has observed. This indicates that the optical 

band gap affected by the dopant incorporation, similar behavior war found by W. L. Liu and 

Y. F. Zhang [33]. An absence of the interference fringes indicates that the films roughness 

prepared with these conditions are elevated. 

IV.4.2.1.Band gap energy and Urbach energy of Al-doped ZnO thin films: 

    The dependence of optical band gap and Urbach energy on the doping rate for the Al 

doping ZnO is depicted in FigIV.21. The obtained Eg values of Al-doped ZnO films were 

illustrated in TabIV.12. As can be seen, increase in the Al doping rate decreased the optical 

band gap and Urbach energy Eg and Eu respectively. 
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FigIV.21: band gap and Urbach energy of Al-doped ZnO thin films grown with different doping rates. 

    Similar behavior reported by M. R. Islam et al [36] and P. P. Sahay et al [35]. The direct 

band gap decrement; with increased Al doping rates may be attributed to the presence of 

unstructured defects, which increase the density of localized states in the band gap and 

consequently decrease the energy gap. For the thicker films, these allowed states could well 

merge with the conduction band resulting in the reduction of the energy band gap [34, 35]. 

Noted that, high intensity, widest grain size, lowest stress and greatest electrical conductivity 

were found for the thicker sample, which is Al doping rate equal 1 at%. 

Tab IV.13: calculated optical band gap and Urbach energy of Al-doped ZnO thin films. 

Aluminium doping rates (at%) Eg (eV) Eu (eV) 

0 3,26 0,15 

1 3,15 0,1 

2 3,25 0,172 

3 3,24 0,128 

4 3,22 0,121 

5 3,15 0,094 
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IV.4.3.Electrical characterization: 

IV.4.3.1.Electrical conductivity of Al-doped ZnO thin films: 

    Dependence of the film conductivity on Al doping rates for the undoped and Al-doped ZnO 

thin films are indicated in FigIV.22.  
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FigIV.22: The variation of electrical conductivity and resistivity of Al-doped ZnO films deposited at 1 

bar and 400°C. 

     It is obvious that there is a decrease in the resistivity with increase of dopant concentration; 

this is attributed to the large number of free carrier as a result of electrons coming from the 

donor Al3+ ions incorporated as substitutional ions in Zn2+ cation sites or in interstitial 

positions. Moreover, it is possible that the increase of Al doping can also cause a decrease in 

the crystal grain size, also affecting the mobility [25, 22]. A. A. Al-Ghamdi et al. [21] 

reported that, with increasing of Al concentration the Al atoms get in more neck contact into 

Zn sites leading to the acceleration of driving force of charge carrier’s transport, thus 

conductivity increases. 

    A maximum resistivity of 83,45×10-4 Ω.cm was obtained for films doped with 3 at% 

aluminium, as shown in TabIV.14, witch consistent with highest value of stress found 

5,732GPa and lowest value of grain size 29.436 nm obtained for this sample, Which was 

considered the thickest. While, The highest electrical conductivity of 3,54×103 (Ω.cm)-1 of Al-
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doped ZnO thin film was obtained at 4 at% concentration, whereas the biggest grain size 

54,56 nm obtained for this sample with film thickness of 261,82 nm. However, the larger 

grain size and decreased grain-boundary effect resulting from the increased carrier mobility 

increased the conductivity [36]. 

Tab IV.14: measured electrical resistivity and conductivity of Al-doped ZnO thin films. 

Aluminium doping 
rates (at %) 

l'épaisseur 
(nm) I (A) U (Volt) 

Resistivity 
(Ω.cm) 

Conductivity 
(Ω.cm)-1 

0 204,933 0,03 0,9 64,16 .10-4 155,857 

1 245,359 0,03 0,5 42,68 .10-4 234,3199 

2 318,419 0,03 0,2 22,15 .10-4 451,390 

3 342,684 0,03 0,7 83,45 .10-4 119,835 

4 261,713 0,03 0,045 2,829 .10-4 3534,917 

5 332,819 0,03 0,058 6,72 .10-4 1489,173 

 

IV.4.4.In summary: From the obtained results, for Al-doped ZnO thin films, following 

conclusions can be drawn: 

1. The whole films exhibited a strong orientation along c-axis (002) perpendicular to the 

substrate surface, which belong to a hexagonal crystal structure; with well 

crystallinity. For Al-doping ratio 4 at% new diffraction peak appear, (101), thus 

indicate that the Al incorporation causes a loss of preferential orientate. The Al doping 

into ZnO lattice may generate different sorts of stress. The crystallite sizes improved 

by Al doping versus pure ZnO from 29 nm to 55 nm and the film thickness increased 

from 205 to 343 nm. 

2. The transmittance spectrum indicates a high transparency close to 80% in the visible 

region, despite 5 at% Al concentration where the transparency reduced less than 50%. 

All spectra have a sharp absorption edge between wavelength 300 to 360 nm. The Al 

doping rate increment decreased the optical band gap, which found in the range of 

3,15 to 3,26 eV. 

3. The electrical conductivity increased with Al concentration increment. This is 

attributed to the large number of free electrons coming from the donor Al3+ ions 

incorporated as substitutional ions or in interstitial positions. 
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General Conclusion  

This thesis work focused on the synthesis and characterization of zinc oxide thin 

films using spray pyrolysis technique, with two atomization modes, in order to study the 

effect of the deposition conditions as well as the mode atomization used, on the structural, 

optical and electrical thin films properties. 

In the first part, we have studied the effect of start solution (solute) molarity, 

aluminium and indium doping rate on the Structural, optical and electrical properties of ZnO 

thin films deposited using ultrasonic spray pyrolysis. In the second, the effect of spray 

pressure, substrate temperature and aluminium doping rate on the Structural, optical and 

electrical properties of ZnO thin films deposited using pneumatic spray pyrolysis has been 

studied. 

From the results acquired during the various characterizations conducted and the 

corresponding discussions, we can conclude that: A matching of the observed diffraction 

peaks corresponding to the (100); (002) (101) and (102) planes confirms that the ZnO films 

synthesized at different start solution molarity exhibit polycrystalline structure that belongs to 

the hexagonal; and for high solution molarity (> 2 mol.l-1) ZnO films suffer high stress. 

However, all the films showed an average of optical transparency of about 85 % in the visible 

range, then the decreasing trend of the optical band gap lead an enhancement in the optical 

transmittance, that when the molarity increasing from 0,05 to 0,5mol.l-1, also we have 

observed, that there is an increment on the electrical conductivity of ZnO films was from 

0.023×10-2 (Ω-cm)–1 when the molarity of solution was 0,075 mol.l-1. 

 As for the other process when ZnO thin films are doped with aluminium and 

indium by ultrasonic spray pyrolysis, it’s clear that the effect of indium is slightly obvious on 

the ZnO thin films properties, compare to the ZnO doped by aluminium , whereas all the Al 

doped ZnO films were polycrystalline with a peaks (002) correspond to the hexagonal 

wurtzite structure, with diffraction peak of about 34o on X-ray diffraction results, the film 

thickness taking a highest value390nm at 2 at% of aluminium doping; also when Aluminium 

concentration was 1at%, we observed that the doped ZnO thin films have an enhanced optical 

transmittance higher than 85% in the visible range with crystal size of 23 nm, the 

transparency decreases with Al incorporation. The microscopic observations showed a 

modification of grain shape with Al content and that the films trend to be denser. The 

electrical conductivity reveals an increase on its value as the aluminum doping increase, 

whereas it has the highest value was 6,17×102(Ω.cm)-1 at 3at% of Al concentration. For 
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indium doping, whole of doped ZnO films were polycrystalline that belongs hexagonal 

wurtzite structure; the higher In doping rates changes the preferred growth orientation from 

(002) to (100); the films thickness increases as the In concentration increases, whereas the 

bigger value (about 350nm) was found at 3 at%. The UV-Vis results showed that the indium 

incorporation enhanced the optical transmission of ZnO thin films to become higher than 

85%. The electrical conductivity took the maximum value, 0.62×10-2 (Ω.cm)-1,at 3 at% of 

indium concentration, which is considered a promising sample. 

For the second part when the pneumatic spay was used to deposit undoped and Al 

doped ZnO, we can conclude that:  All the undoped ZnO thin films, deposited at 1 and 1.5 bar 

as carrier gas (air) pressure with different substrate temperature, displays a very good 

orientation perpendicular to substrate surface (c-axis) and an optical transmission sometimes 

up to 90%. the undoped ZnO thin films prepared at 1,5 bar and 400°C as spray pressure and 

substrate temperature respectively shows high crystallinity with (002) lone preferred growth 

orientation; also for this sample the grain size found the biggest (96 nm) with electrical 

conductivity about 1,04×10-2(Ω.cm)-1. Other samples attract attention, which was deposited at 

1 bar and 350°C as spray pressure and substrate temperature respectively, whereas it revealed 

a high crystallinity and transparency; it was also the thicker films (336.3 nm) with grain size 

around 40 nm and electrical conductivity equal to 1,20×102(Ω.cm )-1. For the other process 

when the ZnO doped by aluminium, the whole films exhibited a strong orientation along c-

axis (002) that belong the hexagonal crystal structure, whereas the higher Al doping rate 

caused a loss of crystallinity, when the Al incorporation induced increasing stresses in the 

lattice and enhanced the film thickness. The UV-Vis results showed that the Al doping 

decreased the optical transmission of ZnO thin films to become less than 50% after it was 

around 80%. The electrical conductivity took the maximum value, 35.35×102 (Ω.cm)-1,at 3 

at% of Al concentration. 

Finely,  we conclude that there is a very important factors to get the best 

properties between  dopant and  doping  rate,  affect  directly  on  the  structural,  optical  and  

electrical characteristics, this  brings us to choose an appropriate concentration rate values. 

However, based on the above the Al Doped ZnO films deposited by pneumatic spray showed 

promising electrical and optical properties and they have more advantages than the other due 

to good stability at acceptable temperatures and lower cost to manufacture. 



 

 
 

Abstract: 
Deposition and analysis of Zinc Oxide thin films elaborated using spray 

pyrolysis for photovoltaic applications 
Undoped and doped (by Al and In) ZnO thin films were deposited via two types of spray pyrolysis 

technique, ultrasonic and pneumatic onto glass substrates, to investigate the effect of several factors on 

the structural, optical and electrical properties of ZnO thin films. In the first part, we have deposited 

set samples of ZnO thin films using ultrasonic spray pyrolysis process with various start solution 

molarities for undoped ZnO and various doping concentrations for Al and In doped ZnO films. In the 

second, ZnO thin films were deposited using pneumatic spray pyrolysis process with two deferent 

spray pressure (1 and 1,5 bar) and various substrate temperatures for each pressure; also ZnO films 

with various aluminium doping rates were prepared. As well as, All the ZnO thin films were analyzed 

by assorted techniques X-ray diffraction, X-ray Dispersive Spectroscopy (EDS), SEM, UV-Vis, Hall 

Effect, four and two probes technique. This study allowed us to get ZnO thin films with very 

important structural, optical and electrical properties, which are very promising in photovoltaic 

applications. 

Keywords: Spray pyrolysis, ZnO, Ultrasonic, Pneumatic, Molarity, ZnO:Al, ZnO:In, substrate 

temperature, XRD, SEM, UV-Vis, Electrical properties. 

 

َ مُ    ص:خَّ ل
 للتطبیقات لرشبا الحراري الانحلال باستخدامحضرة الم الزنك كسیدلأ الرقیقةشرائح ال وتحلیل بیترس

 تضوئیةالفول

 من تقنیة نوعینقمنا في ھذه الدراسة بترسیب شرائح رقیقة من أكسید الزنك، مطعمة وغیر مطعمة (بالألمنیوم والأندیوم)، وذلك ب

لدراسة تأثیر مجموعة من العوامل على الخصائص البنیویة، الضوئیة  ،بالموجات فوق الصوتیة والرش الھوائي ،الانحلال الحراري

الشرائح. في الجزء الأول، قمنا بتحضیر عدة شرائح رقیقة لأكسید الزنك باستعمال طریقة الانحلال الحراري والكھربائیة لھذه 

بالموجات فوق الصوتیة وذلك بتراكیز مولیة مختلفة للمحلول الابتدائي في حالة الشرائح غیر المطعمة وتراكیز تطعیم مختلفة في حالة 

. بینما في الجزء الثاني، تم تحضیر شرائح رقیقة لأكسید الزنك بطریقة الانحلال الحراري بالرش الشرائح المطعمة بالألمنیوم والأندیوم

) ودرجات حرارة مسند مختلفة من أجل كل ضغط. كذلك تم bar 1،5و  1الھوائي وذلك باستخدام ضغطي رش ھوائي مختلفین (

  تحضیر الشرائح مطعمة بتراكیز مختلفة لذرات الألمنیوم.

، EDSخصائص جمیع الشرائح المحضرة باستخدام مختلف التقنیات: حیود الأشعة السینیة، التحلیل الطیفي للأشعة السینیة تم دراسة 

المرئیة، مفعول ھول، تقنیة مسبارین واربعة مسابیر للدراسة الكھربائیة. في - المجھرالالكتروني الماسح، الاشعة فوق البنفسجیة

التحصل على شرائح رقیقة لأكسید الزنك ذات خصائص جد مھمة والتي تعتبر جد واعدة لاستعمالھا الحقیقة، سمحت لنا ھذه الدراسة ب

  فولتضوئیةّ.في التطبیقات ال

الحراري، الشرائح الرقیقة لأكسید الزنك، الموجات فوق الصوتیة، الرش الھوائي، المولاریة، أكسید  الانحلالالكلمات المفتاحیة: 

 الزنك المطعم ، درجة حرارة المسند، الخصائص البنیویة، الخصائص الضوئیة، الخصائص الكھربائیة.

 



 

 
 

Résumé: 
Dépôt et analyse de couches minces d'oxyde de zinc élaborées à l'aide d'un 

spray pyrolyse pour applications photovoltaïques 

Des couches minces de ZnO non dopées et dopées (par Al et In) ont été déposées par deux 

modes de spray pyrolyse, ultrasonique et pneumatique sur un substrat de verre, pour étudier 

l'effet de plusieurs facteurs sur les propriétés structurelles, optiques et électriques des films 

minces de ZnO. Dans la première partie, nous avons déposé plusieurs échantillons de films 

minces de ZnO par spray pyrolyse ultrasonique avec diverses molarités de la solution de 

départ pour le ZnO non dopé et diverses taux de dopage pour des films de ZnO dopés à 

l’aluminium et à l’indium. Dans le deuxième, des couches minces de ZnO ont été déposées 

par le spray pyrolyse pneumatique avec deux différentes pressions de spray (1 et 1,5 bars) et 

des températures de substrat différentes pour chaque pression; des films de ZnO avec 

différents taux de dopage en aluminium ont été également préparés. Toutes les couches 

minces de ZnO ont été analysées par diverses techniques: diffraction des rayons X, analyse 

EDS, MEB, UV-Vis, effet Hall, technique de quatre et deux pointes. Cette étude nous a 

permis d’obtenir des couches minces de ZnO ayant des propriétés structurelles, optiques et 

électriques très importantes, qui sont très prometteuses dans les applications photovoltaïques. 

Mots clés: Spray pyrolyse, Couches minces de ZnO, Ultrasonique, Pneumatique, Molarité, 

ZnO: Al, ZnO: In, température de substrat, DRX, MEB, UV-Vis, propriétés électriques. 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


