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ABSTRACT

V isual servoing has undergone major developments in recent years in the field of robotics.
Since digital cameras are less expensive, lighter, and can potentially provide the robot
equipments with a lot of information, which potentially promotes visual object tracking

methods to be very promising for implementation in real-time applications.
Through this thesis, we focus on the development system for a real tracking application

basing on a visual servoing approach and of new visual tracking methods. To reach this goal, we
draw two essential sub-objectives distributed into two parts.

The first part is dedicated to the presentation of two object tracking methods that can
determine the object’s trajectory over a sequence of images, whatever its shape. Although many
object tracking methods have been developed over the last few years, some difficulties such as
occlusion, fast motion, scale variation, and illumination variation can lead these methods to fall
into tracking failure cases. We are particularly interested in improving the correlation filter-based
method, which is one of the most effective tracking methods for real-time applications thanks to
its simplicity. The main principle of these methods relies on the learning of the filter model in
the frequency domain by using the Fourier transform to obtain a high precision with a reduced
calculation complexity. However, Fourier transformation can cause undesirable effects, which can
degrade the tracking quality. This makes these methods unable to distinguish between the target
and its background.
In this context, the first proposed method treats this limit by learning models of correlation
filters via a convolutional neural network (CNN) features in the spatial domain using the PSO
algorithm. In addition, we propose the HSV-based energy condition that has enriched the learning
task by combining the RGB and HSV color bases.

The second method learns the filter’s model in the frequency domain using the histogram of
gradient (HOG) features to enable their implementation in real-time. We treat the drawback
of boundaries in the frequency domain by applying a cosine window on feature channels. Fur-
thermore, we adopt a re-detection module to improve the quality of tracking aginst the precited
challenging cases The two proposed methods are validated on three reference datasets, OTB-50,
VOT 2016 in the case of short-term tracking and UAV20L in the case of long-term tracking.

The second part is dedicated to the design of an image-based controller taking into account
both the quadrotor’s dynamics and the target’s motion during the tracking process, to accurately
preserve it in the field of view (FOV). We adopt the concept of image-based visual servoing (IBVS)
in which the computation of the control law is achieved by minimizing the error between the
desired visual primitives and current primitives extracted from the image information.

Lastly, we demonstrate through a virtual application that the proposed HOG-based tracking
method can work reliably using the quadrotor’s camera to track two targets of variable sizes
and distances, also the efficiency of our system in dealing with occlusion, and scale variation,
demonstrating the applicability of the IBVS-HOG system.
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RÉSUMÉ

L ’asservissement visuel a connu des développements majeurs ces dernières années dans le
domaine de la robotique. Étant donné que les appareils photo numériques coûtent moins
cher, légers, et peuvent potentiellement fournir aux équipements robotiques beaucoup

d’informations, ce qui favorise potentiellement les méthodes de suivi visuel d’objets d’etre très
prometteuses pour la mise en œuvre dans des applications en temps réel.

Dans cette thèse, nous nous concentrons sur le développement d’un système de vision destiné
à une application de suivi dont se basant sur une approche d’asservissement visuel et sur de
nouvelles méthodes de suivi visuel. Pour atteindre cet objectif, nous avons ciblé deux sous-objectifs
essentiels répartis en deux parties.

La première partie est consacrée à la présentation de deux méthodes de suivi d’objet permet-
tant de déterminer la trajectoire de l’objet dans le temps dans une séquence d’images, quelle que
soit sa forme. Malgré des nombreuses méthodes de suivi d’objet qui ont été développées au cours
des dernières années, certaines difficultés telles que l’occlusion, les mouvements rapides, les
variations d’échelle et les variations d’éclairage peuvent amener ces méthodes à tomber dans des
cas d’échec de suivi. Nous sommes intéressés particulièrement par l’amélioration de la méthode
basée sur le filtre de corrélation, qui est l’une des méthodes de suivi les plus efficaces pour les
applications en temps réel, et ce grâce à sa simplicité. Le principe de base de ces méthodes repose
sur l’apprentissage du modèle de filtre dans le domaine fréquentiel en utilisant la transformée de
Fourier pour obtenir une précision élevée avec une complexité de calcul réduite. Cependant, la
transformation de Fourier peut provoquer des effets indésirables, susceptibles de dégrader la
qualité de suivi, et ce qui empêche ces méthodes de distinguer la cible de son arrière-plan.
Dans ce contexte, la première méthode proposée traite cette limite en apprenant des modèles de
filtres de corrélation via un réseau de neurones à convolution (CNN) dans le domaine spatial à
l’aide de l’algorithme PSO. De plus, nous proposons la condition d’énergie basée sur le HSV qui a
enrichi la tâche d’apprentissage en combinant les bases de couleurs RVB et HSV.

La deuxième méthode apprend le modèle du filtre dans le domaine fréquentiel en utilisant les
caractéristiques d’histogramme des gradients orientés (HOG) pour permettre leur implémentation
en temps réel. Nous traitons l’inconvénient des limites dans le domaine fréquentiel en appliquant
une fenêtre cosinus sur les canaux des caractéristiques. De plus, nous adoptons un module de
re-détection pour améliorer la qualité du suivi des cas difficiles précités. Les deux méthodes
proposées sont validées sur trois bases de données de référence, OTB-50, VOT 2016 dans le cas
du suivi à court terme et l’UAV20L dans le cas du suivi à long terme.

La deuxième partie est consacrée à la conception d’un contrôleur basé sur l’image prenant
en considération à la fois la dynamique du quadrotor et le mouvement de la cible pendant le
processus de suivi, et ce afin de le conserver avec haute précision dans le champ de vision (FOV).
Pour ce fait, nous adoptons le concept d’asservissement visuel à base d’image (IBVS) dans lequel
le calcul de la loi de commande est réalisé en minimisant l’erreur entre les primitives visuelles
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souhaitées et les primitives actuelles extraites de l’image.
En dernier, nous démontrons par une application virtuelle que la méthode de suivi proposée

par HOG peut fonctionner d’une manière fiable en utilisant la caméra du quadrotor pour le suivi
de deux cibles de tailles et de distances variables, aussi l’efficacité de notre système pour traiter
à l’occlusion et la variation d’échelle, en démontrant l’applicabilité du système IBVS-HOG.

Mots clés: Suivi d’objet visuel, asservissement visuel, HSV, BA, PSO, IBVS, quadrotor.
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 الملخص

 

لكاميرات ا نظرًا لأنو، الروبوتاتالصيانة البصرية بتطورات كبيرة في السنوات الأخيرة في مجالات  موضوع يمر

اء المرئية تتبع الأشي طرقيعزز ما  للغاية،فهي أقل تكلفة وخفيفة  المعلومات،الرقمية يمكن أن تزود الروبوت بالكثير من 

 .الحقيقيفي الوقت  ليطبقليكون واعدا للغاية 

وطرق  مرئيال التحكمتطبيق تتبع حقيقي يستند إلى منهج تطوير نظام موجه لنركز على  الأطروحة،هذه  من خلال

 جزأين. نرسم هدفين فرعيين أساسيين يتم توزيعهما في الهدف،تتبع بصرية جديدة. لتحقيق هذا 

 لصور،ايخصص الجزء الأول لتقديم طريقتين لتتبع الكائنات يمكنهما تحديد مسار الكائن بمرور الوقت في سلسلة من 

 أن بع  إلا الماضية،أيا كان شكلها. على الرغم من أنه تم تطوير العديد من طرق تتبع الكائنات على مدار السنوات القليلة 

تغيير المقياس وتغيير الإضاءة قد تؤدي إلى سقوط هذه الطرق في فشل التتبع. ، السريعةالحركة ، الصعوبات مثل الانسداد

عالية والتي تعد واحدة من أكثر طرق التتبع ف الارتباط،نحن مهتمون بشكل خاص بتحسين الطريقة القائمة على عامل تصفية 

دام عرفة نموذج المرشح في مجال التردد باستخللتطبيقات في الوقت الفعلي بفضل بساطتها. يعتمد جانب هذه الطرق على م

غير  يمكن أن يتسبب تحويل فورييه في تأثيرات ذلك،تحويل فورييه للحصول على دقة عالية مع تعقيد حساب منخف . ومع 

والتي يمكن أن تتسبب في انخفاض جودة نموذج التتبع. هذا يجعل هذه الطرق غير قادرة على التمييز بين  فيها،مرغوب 

 هدف وخلفيته. ال

م نماذج لمرشحات الارتباط عبر ميزات يهذا الحد من خلال تعلمع عامل الطريقة الأولى المقترحة تت السياق،في هذا 

الطاقة  شرطنقترح أن  ذلك،. بالإضافة إلى PSO( في المجال المكاني باستخدام خوارزمية CNNالشبكة العصبية التلافيفية )

 . HSVو RGBمهمة التعلم من خلال الجمع بين قواعد الألوان  فيساعدت قد  HSVالمستندة إلى 

 لاستغلالها( HOGنموذج المرشح في مجال التردد باستخدام الرسم البياني لميزات التدرج )العلم الطريقة الثانية ت

. ائصالخصنتعامل مع عيوب الحدود في مجال التردد من خلال تطبيق نافذة جيب التمام على قنوات في الوقت الحقيقي. 

صحة  يتم التحقق من ، فإننا نعتمد وحدة إعادة اكتشاف لتحسين جودة التتبع بين الحالات الصعبة المحددة.علاوة على ذلك

في حالة التتبع على المدى  OTB-50 ،VOT 2016 مرجعية،ثلاث مجموعات بيانات  باستخدامالطريقتين المقترحتين 

 حالة التتبع طويل الأجل. في UAV20Lوالقصير 

 الدوار ةرباعيالطائرة تصميم وحدة تحكم قائمة على الصور مع مراعاة كل من ديناميكيات مخصص ل الثاني،الجزء 

 لى الصورع المرتكزةالبصري التحكم مفهوم  للحفاظ عليها بدقة في مجال الرؤية. نعتمد التتبع،وحركة الهدف أثناء عملية 

الحالية  يةوالخصائص المرئالمرئية المرغوبة  الخصائصوالذي يتحقق فيه حساب قانون التحكم عن طريق تقليل الخطأ بين 

 المستخرجة من معلومات الصورة.

، نوضح من خلال تطبيق افتراضي أن طريقة التتبع المعتمدة على خصائص الرسم البياني المتدرج يمكن في الأخير

مما يدل على  ،متغيرة مسافات وأحجام بأن تعمل بشكل موثوق على الطائرة رباعية المحرك ذات الكاميرا الثابتة لتتبع هدفين 

 الشيء، مما يثبت قابلية تطبيق وفعالية النظام المقترح. واختلاف أبعاد مدى قوة نظامنا في التعامل مع التغطية

 

 رباعي. ،HSV، BA، PSO، IBVS، البصري التحكم، تتبع الكائنات البصرية الكلمات المفتاحية:
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CHAPTER 1. INTRODUCTION

1.1 Context

Recently, the field of computer vision has known the emergence of great applications exploiting

a vision-based system in robotics and autonomous systems. Visual object tracking is one of the

most active topics. It deals with several issues such as the object’s location estimation in a

video. In this context, vision-based systems rely on a visual tracking method to follow any

object such as vehicles, pedestrians, cyclists, etc. The diversity of objects makes the diversity of

tracking approaches. The common procedure of these approaches uses a priori information of

the target such as its initial position, height, and width or the box’s coordinates that overlap

the object. Then, estimating the following target’s positions in the following frames. During the

tracking process, the positions of the object are estimated from a certain type of input, including

RGB images, RGB videos, camera images, and grayscale images. The output is often a high

approximation of the actual positions of the object. Generally, the prior information of the tracked

object is not available. This step is performed practically using a detector or manually by a

supervisor. Visual tracking approaches use a bounding box for the first frame to create an object’s

appearance model used to find some similarity between the actual and previous images. In other

words, this appearance model is used to separate the tracked object from its background in each

input frame. The effectiveness of such visual tracker is based on the adaptive updating of the

appearance model during the tracking. The strict issue of visual tracking is reflected in the

dynamic variation of the object’s appearance in the video, which complicates the modeling of

its appearance. Several difficult cases cause this problem, including deformation, fast motion,

background clutter, and occlusion. The smart solution is to learn a filter, which combines the

object’s patch in two successive images. The location of the object is estimated by finding a high

correlation score. The conventional method is built using probabilistic technique [22, 23] or an

appropriate optimization problem [13, 24]. Although the significant improvement made in recent

years, the crucial cases, mentioned above, still limits the reference methods, which stimulates

the quick search in the visual tracking topic. In this thesis, we address some of these difficult

cases in the context of visual tracking [12, 25–28].

Over the past decade, UAV’s commercial use has grown exponentially. thanks to the reduction

of sensors, processing costs and the maturation of autopilot technology, which made it easy

to possess these vehicles. It led to an increase in the activity in the UAV sector with various

applications such as search, rescue, mapping, and parcel delivery. Among all these applications,

the functionality that differentiates and the degree of autonomy of the vehicle. The autonomy of

a UAV relies on its ability to act or react without the help of human intervention and with a little

prior knowledge as possible about the environment in which it operates. The notion of autonomy

is therefore an important issue in robotics, because it differentiates between the simplicity and

the intelligence of the robot where the environment can change during the work of the robot.

In particular, airial vehicles, which have evolved to be progressively or completely controlled,

are used to perform certain applications autonomously such as moving, tracking, detecting and,

2



1.2. PROBLEMATIC

avoiding obstacles. Although the UAV has already found widespread use, they suffered from

two major limitations. The first is that they operate outside and rely on operator observation of

GPS in addition to other on-board sensors for position control and navigation. A good GPS signal

limits the wide and reliable use of quadrotors and it is one of the challenges that researchers

are currently trying to solve. To reduce GPS dependence, several works in recent years has been

devoted to imposing vision information as a major tool for localization, and even in the quest for

the greater autonomy. The reasons of using the camera as visual sensor are double. First, the

camera is light, commercial and versatile. Second, many UAVs had already been incorporated

with cameras into their main mission, making their use possible as aids to alternative navigation

by processing visual data. The second disadvantage is that UAVs have a short flight time, which

limits the operational range. One optional solution is to land the drone and reload it on a mobile

land robot.

1.2 Problematic

Through this thesis, our problem is divided into two parts to maintain the task of visual

tracking of an object in an autonomous way for a quadrotor. The first part studies the improvement

of the discriminative correlation filter (DCF) [29] for visual tracking to deal with the major

problems of deformation, heavy occlusions, fast motion, scale and illumination variations, that

limit most advanced tracking methods. Also, making it impossible to distinguish between two

similar objects and/or between the target and its background since the tracked object may appear

with low-quality images, which provide the missing information.

Unlike conventional correlation filter-based methods, we aim to improve the accuracy of

correlation filter modeling to perform robustly the object’s location estimation. Indeed, we focus

on improving two main steps: feature extraction and correlation filter modeling. For the aim of

performing the ability to detect the target object in the acquired image in the face of constraints

already mentioned. Indeed, the use of visual information to develop robust tracking method is a

scientific challenge. For this pupose, we propose two tracking methods to robustly accomplish the

desired application.

In the second part, we seek to take a step towards a greater quadrotor autonomy by studying

the possibility of performing object tracking automatically from visual information provided

from a camera. We study the adoption of the 2-D approach of visual servoing, which aims at

minimizing the error between the coordinates of the observed image’s features and the desired

one [30, 31].

1.3 Contributions

In the first part, we mainly study the improvement of the work of Ma et al [12]. They learn

three discriminant correlation filter (DCF) models with the deep features extracted from the

3



CHAPTER 1. INTRODUCTION

convolutional neural network (CNN) to precisely locate the tracked object. Their contribution is

the combination between the first and the last layers of CNN. Fast Fourier Transform (FFT) is

exploited in the learning part to reduce the computation time [13, 32]. However, they neglected

the fact that the Fourier domain caused undesirable effects, which gradually deteriorates the

tracking quality. Our main contributions are summarized as follows:

• We propose to use the particle swarm optimization algorithm (PSO) [33, 34] to learn

three correlation filter models in the spatial domain using features extracted from three

corresponding CNN’s layers. We show that it is effective in handling the challenges of

abrupt motion, deformation, and occlusion.

• We switch between two color spaces, RGB and HSV, through the HSV-energy condition for

each RGB input frame, the idea is to classify each frame into high-level illumination or

low-level illumination. Then, we choose which color base is more suitable to learn the DCF

models. We propose also a second tracking method for a real-time application. We use the

histogram of oriented gradient (HOG) features to learn two DCF models for both tasks of

object position estimation and scale estimation.

• We evaluate our methods on three reference datasets of OTB-50 [35], VOT 2016 [3] in the

short-term tracking and UAV20L [2] in the long-term tracking.

In the second part, we propose the image-based visual controller that stabilizes the altitude,

attitude, and position of the quadrotor in space. The controller is to reduce the error between the

desired and the current vector values of the image feature to generate the appropriate speed to

the drone controllers. In this context, the Proportional-Derived (PD) linear controller is chosen

to control the position of the quadrotor in space. Indeed, we use the bat algorithm (BA) [36] to

optimize the PDs’ gains to optimally control the position of the quadrotor in space.

Several simulations are performed in MATLAB, in which a vertical take-off and landing type

(VTOL) unmanned aerial vehicle (UAV), called quadrotor, is implemented. The results obtained

show that the use of the BA algorithm offers great flexibility in tracking the trajectory of the

drone. It also guarantees the stability for performing the trajectory tracking for a quadrotor,

which allows the vision-based controller to achieve the optimal desired positions in minimal time.

Finally, a real-time object tracking application is tested to prove the efficiency of the proposed

HOG-based tracking method.

1.4 Structure

This thesis is organized as follows:

In Chapter 2, we present the state-of-the-art of visual tracking. First, we introduce previous
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works, and then we discuss the tracking attributes and their effects on visual tracking. Besides,

we will summarize the most used databases in the literature. We also give all performance terms

used to judge such a visual tracking method.

Chapter 3 presents in detail the main steps of our methods. Starting with feature extraction,

then modeling correlation filters. Finally, the results and discussions in each database are given.

In Chapter 4, we give a detailed overview of the state-of-the-art of visual servoing. First of

all, we introduce the previous works, as well as the fundamental notions, the basic tools necessary

for understanding our works. Then, we will give a brief overview of the quadrotor type UAVs, as

well as the different approaches of visual servoing used on this system.

In chapter 5, we present the model of the quadrotor used, as well as the bat algorithm used to

optimize the parameters of the designed PD’s control laws.

Chapter 6 presents a validation of the image-based control by adopting the object tracking

technique based on the HOG-based method presented in part I.

The final chapter presents a conclusion on our work and a vision for future work.
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2.1 Introduction

Visual object tracking has been widely studied and implemented in several applications.

The majority of the reference methods can not handle challenging cases including significant

occlusion, deformation, fast motion, scale and illumination variations, which affect the tracking

performance. In this chapter, we present a detailed study of visual object tracking. First, we

discuss in Section 2.2 the methods of object tracking. This section mainly introduces a study

of the three classes of visual tracking methods, namely discriminative, generative and hybrid

methods. Next, we present the most used databases, including their characteristics, attributes,

and evaluation metrics. We introduce in Section 2.4 the theory of discriminative correlation filters

(DCF), which bases on the formulation of Bolme et al [29]. We also introduce in Section 2.5 the

theory of convolutional neural networks (CNN) and the histogram of oriented gradient (HOG).

We begin with CNN’s architecture and we present the commonly used architectures of CNN.

Then, the formulation of the HOG features is presented in detail.

2.2 Visual bject tracking methods

Due to the quick appearance of several visual tracking methods, each method relies on the

main aspect such as detectors, classifiers, and segmentation. In [37], they study block-matching

and classifiers to categorize visual tracking methods. As shown in figure 2.1, the visual object

tracking problem can be categorized according to the number of tracked targets.

Figure 2.1: Categories of visual tracking methods

Most of the visual tracking methods are divided into two groups: Set of trackers and

individual trackers. The first group combines several trackers, while the second group relies

on only one, which means that only one algorithm can search the object in the current image

without limitation, basing on the correlation filter, the optical flow, and the block matching.

The set of trackers group performs the object detection task by associating the extracted

patches of the object with its appearance template [38]. Other studies [39, 40] show that the
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object’s appearance model is the appropriate tool for classifying tracking methods. It allows

distinguishing the target from its background. In this context, we discuss the categories of visual

tracking methods based on the appearance model tool.

2.2.1 Discriminative methods

This category of methods aim to form an efficient classifier for ensuring an accurate separation

between the target and its background. They exploit a conditional probability on the candidate

samples extracted from the appearance representation of the object patch. In other words, the

conditional probability that represents the confidence of the classifier allows estimating the

appropriate candidate sample of the tracked object in the current frame [38]. On the other

hand, this task requires a high-level representation of the object in the large feature space such

as HOG [10, 41], SIFT [42]. Generally, the discriminative methods require a large dataset in

order to achieve good performances. Several studies propose many tools to represent the object’s

appearance to learn robustly the classifier model, in which the common idea is to annotate the

positive samples and the negative samples [43, 44]. Next, they look for the highest confidence

score to locate the object, as shown in figure 2.2.

Figure 2.2: Illustration of discriminative visual tracking system.

In this context, Avidan et al [43], determine the position of the target using the mean shift

algorithm. They proposed to train online an ensemble of weak classifiers to annotate each region

of interest. Then, they fused them to a strong classifier to label pixels belonging to the object

in the next frame. They even propose an online methodology for updating the classifier models.

The best classifiers are trained on the next image, while the others are updated on all images.

Bai et al [45], propose a Bayesian framework, where they exploit the posterior distribution to

design weak classifiers. They extract features robustly to maintain the annotation of the used
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samples. In [46], Zhang et al adopted the bag of positive samples for learning the classifier

via an online discriminative feature selection algorithm, so they outperform the algorithm

proposed in [47], in terms of computation accuracy. In addition, Zhang et al [48] have focused on

computational efficiency by adopting a compression theory for detection. The idea is to compress

large features in a small, randomly selected space. They based on Haar features, as it is suitable

for managing motion blur and rotating appearance changes. Other works avoid the combination

and selection of weak classifiers. In [49], they improve the quality of tracking by proposing a

partially structured model of SVM to model the unknown object’s parts. Also, an SVM-based

system is presented by Ning et al [50]. They present an effective dual linear SVM-based algorithm

to enable fast learning and execution during tracking, it accurately processes large features,

which allow achieving maximum real-time computational efficiency. Since deep learning provides

high-level representation, recent studies have adopted it in many computer vision tasks such as

the classification [51], object detection [52], and saliency detection [53]. Jin et al [54] learned a

CNN model on the current and previous samples. The translation of the object is estimated by

using a gaussian mask function. In [55], Hong et al adopted features extracted from a pre-formed

CNN to learn an SVM model. They estimate the position of the target using a saliency map.

2.2.2 Generative methods

Generative methods study the appearance model of the tracked object to estimate its location

in the current frame. It describes the object, even its background. These methods select appropri-

ate instances to estimate the object’s position. The selection of the appropriate instances is done

by using various tools such as a particle filter framework. Figure 2.3 illustrates the generative

visual tracking framework [38]. Like the discriminative methods, the generative methods exploit

the image’s features to represent the target object, such as the intensity of the image In general,

they do not require a large dataset for training. Updating the appearance model of the object

makes the difference between generative and discriminative tracking methods, where the dis-

criminative methods update the appearance model when the location of the object is estimated,

while the generative methods ignore this step when some cases of significant appearance changes

have occurred as occlusion or deformation.

The optimization problem proposed in [56] is effectively improved by the optimization of

the proximal gradient proposed in [57] in terms of real-time implementation. The idea is to

converge the gradient rapidly using the summations of a smooth function and a non-differential

function. Other trackers update the older appearance models with a new one in the current image.

However, this idea remains limited compared to such variation of the appearance model. Xing et

al [58] solve this problem by using short, medium, and long lifetimes to design the appearance

model of the object. This strategy learns the sparse coefficients robustly and assures the accuracy

of the appearance modeling. Another similar idea to the sparse constraint is adopted in the Non-

negative Matrix Factorization (NMF) for the visual tracking [59]. It relies on the reconstruction

10
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Figure 2.3: illustration of a generative visual tracking system.

of non-negative constraint coefficients to readjust the elements of the dictionary and focus on the

parts of the tracked object. Nevertheless, the NMF algorithm is still unexplored in a real-time

tracking system. Following these works, Zhang et al [60] forced the obtained sparse coefficients

for different samples. They used some dictionary models to represent all the appearance models.

The potential limitation in this approach is that a tracking failure can occur if the object model is

misrouted. In [61], they adopted a CNN to extract features in the context of sparse optimization.

Similar to [57], they use the L1 standard normalized cost function to reconstruct the foreground

object model.

2.2.3 Hybrid methods

This category of method combines both discriminative and generative methods, and even

exploits the two appearance models used in these two methods. In this subsection, we present

the methods classified in the hybrid category.

2.2.3.1 Correlation filters based methods

These methods aim to find the appropriate model used to identify objects in a simplified

scenario. It is based on the adaptive filter theory, in which the correlation operation is adopted

between the candidate samples to obtain the correlation map. This map is then processed to

identify the correlation score according to a peak-shaped signal. The high score is considered as

the desired answer. The appropriate model is then considered as a correlation filter model, which

gives an effective correlation score even for a uniform shift of the target. This leads to consider

that correlation filter methods base on discriminant regressor models. Figure 2.4 illustrates the

main steps of the correlation filter-based framework [38].

11
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Figure 2.4: A representative illustration of a correlation filter-based visual tracking framework.

During the tracking process, the correlation operation requires the multiplication O (N2) (N

is the length of the signal), so that the circular correlation is adopted to handle the correlation

operations for the following reasons: First, the Fourier transformation, which requires the

multiplication O (N), which is an appropriate tool to perform the convolution operation as an

element-by-element multiplication in the frequency domain [62]. Second, the correlation theory is

based on a minimization problem between a correlation filter model of the candidate patch and the

desired response, which is usually chosen as a gaussian function. Figure 2.4 illustrates perfectly

that the accurate correlation response corresponds to the highest score of the appropriate object

location.

The first work based on the correlation filters was done by Mahalanobis et al [63] and

Réfrégier et al [64]. They learn a set of correlation filter models by a set of samples. However,

this idea requires a single correlation result for a centered filter. The following works such as

in [29] handle this disadvantage. They proposed the Minimum Output Sum of Squared Error

(MOSSE). The idea is to design a discriminant correlation filter using the sum of squared errors

to minimize a cost function. This minimization problem requires a correlation response of the

filter model and the desired correlation response for each training example. Other works propose

to use another type of information provided in the form of raw image intensity, such as, but not

limited to, outlines, oriented gradients, and color channels. In [13], they adopted the correlation

filter model designed in [29] for a linear regression problem. They use a multi-channel histogram

of oriented gradient (HOG) in the form of a kernel correlation filter (KCF).
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Zuo et al [65] increase the efficiency of multiple channels by integrating the support vector

machine (SVM) framework. Until now, the adoption of multi-channel filters was intended to

estimate the target location. However, several studies have adopted them in scale estimation.

In [66], they estimate the appropriate scale value using an iterative optimization method. In

addition, Danelljan et al proposed the Discriminative Scale Space Tracker (DSST) [5]. This

method exploits multiple channels and the correlation response to maintain the multiscreen

search in the frequency domain. In [67], they used a multi-scale search to estimate the best target

scale based on the best correlation response. Ma et al [12] proposed to learn three correlation

filters using hierarchical features. Their main contributions are summarized in two key points.

First, they combine hierarchically the layers of a preformed CNN model. They note that the first

layers are used to encode the approximation of the object, while the last ones allow encoding its

details. Second, they used a coarse-to-fine strategy to estimate the location of the object. Other

methods deal with the weakest problem of the correlation filter, which is represented by the

boundary problem. Danelljan et al [68] have proposed to learn a model of correlation filter by

minimizing a cost function in the spatial domain to penalize the resulting limits. They proposed

also an adaptive decontamination system [69]. The idea is to learn the model of the correlation

filter with the weights of the learning samples in order to eliminate the unsuitable scales. As a

result, they outperform the tracker presented in [68]. Besides, they presented the Continuous

Convolution Operator Tracker (CCOT) [24], which aims to learn models of correlation filters

using convolutional layers to make them more compatible with different feature’s sizes in the

spatial domain. Their formulation surpasses other methods in the VOT 2016 database [3].

2.2.3.2 Methods based on deep learning

In recent years, several methods based on deep learning have emerged. These methods adopt

the deep features in several visual tracking tasks. In [70], they exploited the Siamese network,

which is a model of a neural network. The output gives similar features for different samples. The

tracking mechanism is as follows. They extracted the feature vector from the learned model, then

compared it to the candidate appearances of the object to find the similarity between them. The

disadvantage of this method is that the evaluation of these candidates’ models is computationally

expensive. Also, Bertinetto et al [27] designed a CNN model with the same convolutional layers.

They estimated the correlation between the appearance model and the candidate sample using a

sliding window approach. Among the neural networks-based methods, the most widespread is

the recurrent neural network (RNN) [71]. The work of Cui et al exploited the RNN to spatially

model the relationship between the target and its background [72]. This effectively estimates

the target’s confidence map. In [44, 73], they used the RNN to spatially learn the relations

between the input images. The goal is to estimate the target location directly. However, they did

not achieve the performance required for the visual object tracking reference databases VOT

[3, 35, 74] and OTB [4, 75].
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2.2.4 Set of trackers

As discussed in section 2.1, there is a second type of tracking method, which is based on

a combination of trackers. For example, Tokola et al [76] worked on detecting target location

by exploiting the POSSE tracker, which is a generalization of the MOSSE tracker. In addition,

Li et al [23] exploited the KCF tracker [13] for visual tracking. They specifically employ the

response map of correlation filters to facilitate the trackable score function. In [14], they proposed

to construct an expert ensemble, where the best expert is selected to restore tracker in the case

of undesirable model updates using an entropy minimization (MEEM) for visual tracking. This

method used an SVM classifier to select the appropriate expert. There are also hybrid methods

[60, 77], which combined generative and discriminant trackers.

2.3 Databases and attributes

2.3.1 Attributes

To analyze any visual object tracker, it is inevitable to take into account and understand the

challenges that can lead them to drift. It depends on the consecutive frames in which the object

may undergo a strict appearance change. In the literature, these appearance changes occur due

to several crucial problems, called attributes [7]. These attributes are presented as follows:

• Background clutter: This case can occur when the features of the object and its back-

ground are similar, which means that any small change in the appearance of the object

may cause the tracker to consider that the background is much like the target than the

target itself.

• Deformation: This case occurs when all parts of the tracked object move and rotate

depending on each other, where the tracker considered them as a single rigid part.

• Fast motion: This is another critical case of visual object tracking. It presents a fast or

a large movement of the object and/or the camera between two consecutive input images.

This will lead the tracker to drift.

• Occlusion: It is a potentially difficult case. It may appear in any consecutive frames when

part of the target or its complete parts is occluded by its background or other objects. In this

case, the update of the appearance model will necessarily affect the position’s estimation of

the target in the consecutive input frames.

• Blur motion: It is the occurrence of a mess stained in the appearance of the object caused

by fast motion.
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• Scale variation: This case often occurs due to the close or distant movement of the camera

from the target. Resizing the input frame is the basic tool used in visual tracking to address

this problem.

• Illumination variation: The tracked object can be affected directly or indirectly by the

illuminations of the material or the environment. This problem occurs when the lights

are flashing or when there are moving projectors, which certainly affects the efficiency

of extracting image features. Several methods deal with this problem by using invariant

features to light variations [10, 41].

• In-plane-rotation: Videos can show rotation that occurs in a two-dimensional image

plane. The best-known example is seeing the side of a motorcycle driver who has rotated

backward.

• Out-plane-rotation: It differs from the rotation in the plane, which may be out of the

image plane. It could lead to the disappearance of certain parts of the target.

• Out of view: Many tracking methods fail to recover the target as it moves in the border of

the image. In this case, the target can also disappear or move in the video.

• Low resolution: A low resolution is another critical attribute, which is summarized as a

reduction of the information provided from the target’s patch, thus reducing the accuracy

of the location estimation task. In general, this is due to the use of a low-resolution camera

or the considerable distance that separates it from the object.

2.3.2 Databases

In recent years, several applications have appeared in the subject of visual tracking. They

were evaluated using subjective assessments or designed metrics to check the tracker’s perfor-

mance. In order to manage these unfair subjective assessments, many studies had introduced

complex databases, such as OTB-50 [4], VOT 2016 [3] and UAV20L [2], as shown in figure 2.5. The

attributes discussed above are included in these databases. Our proposed methods are evaluated

on these three databases.

• OTB-50: The OTB-50 (OTB2013) database is the most commonly used database in the liter-

ature, which contains 50 fully annotated sequences that are collected from commonly used

tracking sequences. The OTB sequences are annotated sequences according to previously

discussed attributes. Through this dataset, the evaluation and analysis of the strength and

weakness of tracking approaches are performed with two aspects [4]:

– Precision plot: It is defined as the average Euclidean distance between the center

locations of the tracked targets and the manually labeled ground truth. It shows the
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percentage of frames whose estimated location is within the given threshold distance

(threshold = 20 pixels) of the ground truth.

Mµ (ΛG ,ΛP )= 1
N

N∑
t=1

‖xG
t − xP

t ‖ (2.1)

– Success plot: Another evaluation metric is the bounding box overlap. Given the

tracked bounding box r t and the ground truth bounding box ra, the overlap score is

defined as:

Φ= |r t ∩ ra|
|r t ∪ ra|

(2.2)

where ∩ and ∪ represent the intersection and union of two regions, respectively, and

| · | denotes the number of pixels in the region. The number of successful frames is

counted if the overlap Φ is larger than the given threshold of to = 0.5 for each frame.

• UAV20L: As its name indicates, the aim through this dataset is to capture videos from

low-altitude UAVs, which is inherently different from video in popular tracking datasets. It

includes 20 sequences meant for long-term aerial tracking. All sequences are fully annotated

with the 12 discussed attributes. The performance evaluation of tracking approaches is

performed via the same metrics in the OTB-50 dataset [2].

• VOT 2016: In 2013 the visual object tracking initiative was established to address the

performance evaluation for short-term visual object trackers. It consists of 60 challenging

videos that are automatically selected from the OTB, ALOV ++, PTR databases [3]. The

VOT workshops proposed to evaluate the performance of any method using the following

aspects [78]:

– Overlap (Accuracy): The accuracy metric measures the intersection over union

(IoU) between the predicted bounding box and the ground truth bounding box for a

particular sequence.

– Failure (Robustness): The robustness metric measures the number of failures when

there is no overlap between the predicted bounding box and the ground truth bounding

box for a particular sequence. The trackers can be ranked according to the robustness

metric for each sequence. The overall ranking can be found by averaging the ranks for

all the sequences.

– Expected Average Overlap (EAO): A single metric that measures both the accu-

racy and robustness of a tracker is the expected average overlap (EAO). Let Θi be the

overlap between the ground truth bounding box and the predicted bounding box of

the ith frame of a sequence. Let the sequence under experimentation be a sequence of

length Ns. The average overlap of this sequence of length Ns can be calculated as:
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Figure 2.5: Databases (a) UVA20L [2], (b) VOT 2016 [3] and (c) OTB-50 [4].

ΘNs =
1

Ns

Ns∑
i=1
Θi (2.3)

The average of the above quantity can be found by:

Θ̂Ns = 〈ΘNs〉 (2.4)

The expected average overlap metric can be calculated by calculating the average of

ΘNs over typical sequence lengths, from Nlo to Nhi:

Θ= 1
Nhi −Nlo

Nhi∑
Nlo

Θ̂Ns (2.5)

2.4 Correlation filters

In this part of the thesis, the main goal is to improve the learning phase of the correlation

filter models. In this section, we present an overview of the MOSSE method [29]. In the literature,
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this method is considered as one of the reference methods that has adopted a unique linear

correlation filter formulation.

2.4.1 MOSSE tracker

During visual tracking, the area of interest may be a specified object, an interesting point, or

the entire image itself is called sample. The set N of training samples is designated by xi where

xi = {x1, x2, ..., xN }, each xi represents a rectangular region with a width of M1 and a height of M2.

Generally, each sample xi is a function xi = {0, ..., M1}× {0, ..., M2}→R. The MOSSE tracker aims

to find a filter that maintains the relation xi ~h ≈ yi, and it is given as a cost function presented

in equation 2.6.

hopt = argmin
h

N∑
i=1

||h~ xi − yi||2 (2.6)

where {yi}N
i denotes the desired response, which represents the intensities of the region of

interest. Typically, yi is defined by a sampled Gaussian function with a narrow peak centered on

the target object, as shown in figure 2.6. The index ~ indicates the correlation operation that

results from the cyclically shifting of the original patch’s features xi and the previously learned

model h. Hopt is the new learned filter model. We note that the correlation and convolution given

by equations 2.7 and 2.8 are recalled to solve this linear regression problem, especially in the

frequency domain.

c[n]=∑
a[m]b[n−m]=F−1{A¯B} (2.7)

c[n]=∑
a[m]b[n+m]=F−1{A∗¯B} (2.8)

Where a[.] and b[.] present the unidimensional discrete signals, a[n−m] indicates the circular

version of a[n] with the delay m to the right. The symbol ∗ denotes the complex conjugate. The ¯
symbol indicates a elementwise multiplication, while F denotes the discrete Fourier transform

(DFT). All capital letters designate frequency domain signals, while lowercase letters represent

spacial domain signals. The extension of the theorem to the two-dimensional case is simple

because the DFT operation has a separable two-dimensional definition. It is assumed that any

derivation for the one-dimensional signal can be extended to two-dimensional signals if the

operations can be split into two dimensions [38].

Using these properties, the correlation problem given by equation 2.6 is written as follows:

Hopt = argmin
H

N∑
i=1

||H¯ X i −Yi||2 (2.9)

For simplifying the optimization of each element of Hopt separately, we can write:

L =
N∑

i=1
H∗¯H¯ X∗

i ¯ X i +Y ∗
i ¯Yi −H∗¯ X i ¯Y ∗

i −H¯ X∗
i ¯Yi (2.10)
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Where H and H∗ are assumed to be independent. The derivative of this function with respect to

H∗ for all its elements, we obtain:

∂L

∂H∗ =
N∑

i=1
H¯ X∗

i ¯ X i − X i ¯Y ∗
i (2.11)

If ∂L
∂H∗ is equal to zero, the derivative of equation 2.10 with respect to H∗ gives:

H =
∑N

i=1 X i ¯Y ∗
i∑N

i=1 X∗
i ¯ X i

(2.12)

The obtained model H maintains the minimization of the cost function in the frequency

domain. As noted in section (2.2.3), the Fourier transform is the appropriate tool to perform

convolution (elementwise multiplication) because the Fast Fourier Transform (FFT) has a com-

plexity of O (Mlog(M)), and this requires a signal of a complexity of O (M2log(M)). Also, this tool

simplifies the operations of the matrix M2×M2 (inversion and multiplication) since it is practical

as a solution of the linear least-squares method. During the tracking process, the estimation of

the object’s position is made at each input frame to locate the object in the next frame. At the

instant (t+1), the correlation response map f t+1 is computed by multiplying element by element

the obtained filter model Ht at instant t with the sample Z extracted from the object patch at the

instant (t+1), as:

f t+1 =F−1{H∗
t ¯Zt+1} (2.13)

This response map is important for determining the new object’s location, which depends on

the coordinates of the pixel and that has the highest value. Indeed, these coordinates are then

considered as the shift of the center between the consecutive frames at the instances t and t+1.

Figure 2.6: The region of the image corresponding to the patch’s features xi in MOSSE (left, green
zone). Each pixel in the region is given a desired score yi (right) [5].
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Since the location of the tracked object is located in each frame, the efficiency of the filter model

obtained from equation 2.13 must be protected by updating it. This main step is performed using

a learning rate of γ. The role of this parameter lies in learning the numerator and denominator

of the model H at the instant t+1 with a conserved percentage of the preceding filter model Ht,

as follows:

At+1 = (1−γ)At +γ(X t+1 ¯Y ∗
t+1),

Bt+1 = (1−γ)Bt +γ(X t+1 ¯ X∗
t+1)

(2.14)

So, we can write

Ht+1 = At+1

Bt+1
(2.15)

where At+1 and Bt+1 denote the numerator and de-numerator of Ht+1. X t+1 and Yt+1 refer to the

samples, and the desired response map respectively, at the instance t [29].

2.5 Image features

In the computer vision field, a feature extraction is an important tool. It is a special repre-

sentation of the area of interest in the input image. The extraction of features is considered as

a transformation into another image, obviously, with other values. The concatenation of these

features in a vector gives the so-called the feature map. It consists of the sampled entities in

a grid map of Rabc. Where a and b denote the number of pixels in the rows and columns and c

indicates the depth of that map. In the literature, several types of features proved its effectiveness

for the visual object tracking. In this thesis, we have chosen to adopt the CNN [79] and HOG

[10, 80] for feature extraction phase.

2.5.1 Convolutional neural networks

In recent years, we have witnessed the emergence of deep learning-based methods, including

CNN-based methods [11]. They have shown that CNN’s features are very useful for capturing the

semantic and detailed features of target object compared to other useful features on a wide range

of visual recognition tasks [80]. Similar to the ordinary Neural Networks (NN) architecture, a

CNN is a sequence of layers, where their type is specified in advance, but whose parameters are

formed using a large dataset [7].

2.5.1.1 Architecture

There are several pre-formed architectures such as Le-Net [81], Alex-Net [51], ZF-Net

[82], Google-Net [83], Res-Net [84] and VGG-Net [9]. These architectures are inspired by the

architecture of neural networks, which is composed of neurons that have weights and biases that

can be learned. Each neuron is fully connected to all neurons of the previous layer, and each one
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produces a scalar product (multiplication element by element) followed by a non-linear activation

operation. Each set of these neurons builds a layer. [7, 85]. The neural network architecture

receives a single input vector and transforms it through a series of hidden layers. The last layer

is the output of the network and represents the classification scores.

The CNN architectures mentioned above take advantage of the fact that the input consists

of images, which can process them more judiciously. Indeed, the difference between CNNs and

neural network architecture is based on the shape of the layers, which are arranged in three

dimensions height, width and depth in CNN’s architectures. Note that the word depth here refers

to the third dimension of each layer, and not to the depth of the entire architecture. Figure 2.7

shows that the convolutional neural network organizes its neurons in three-dimension layers

(width, height, depth). Each layer transforms the 3-D input volume into a 3-D output volume of

neurons. The most common known layers are summarized as follows [6]:

Figure 2.7: Left: a network of neurons with 3 layers. Right: A convolutional neural network
organizes its neurons in three dimensions (width, height, depth), visualized for each layer. The
red input layer presents the input image. The width and height correspond to the dimensions of
the image and the three-channel red, green and blue [6].

• Input layer: It contains the pixel values of an RGB image.

• Convolutional layer: This layer calculates the output of neurons connected to local

regions, using a scalar product between their weights and this region. A prefixed number of

convolution filters of fairly small size, such as 3× 3, are multiplied by the input respectively.

The output is a volume of size M×N ×D.

• RELU layer: In this layer, an activation function max(0, x), with a threshold of zero, is

applied to the resulting volume of a convolutional layer in which the size of the output is

unchanged.

• Pooling Layer: A subsampling operation is performed on the width and height of the

input volume, which reduces its output size. As shown in figure 2.8, the neighborhood of

each pixel in the input image is limited by the maximum of that area. The values in this
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area are replaced by the corresponding maximum value. The subsampling factor is usually

set to 2.

• Fully connected layer: This layer is usually considered as the last layer where its

components correspond to the probability that the input image belongs to a predefined

class. These values are obtained with the function sof tmax, defined as:

f (x j)= ex j /
∑

j
ex j (2.16)

The output is a volume of size [1×1×D], where D is the number of classes.

Figure 2.8: Illustration of max-pooling operation of an input image of size 224×224. The input
image is to the left, the output image is to the right [7].

2.5.1.2 Local connectivity

As noted above, CNN is intended to process large inputs as images and each neuron is

connected to a local region of the input volume. The extent of this connectivity is defined using

a hyper-parameter called the neuron receptor field [6]. The depth of this connectivity always

depends on the depth of the input and the connections are local over the width and height. In

this context, figure 2.9 illustrates an interesting example. For an input image with the size of

32×32×3 and if the receptor field (filter size) is equal to 5, each neuron of the convolution layer

will have weights corresponding to a local region [5×5×3] of the input volume. This means 75

weights and 1 bias. The extent of connectivity along the depth axis should be 3 since the depth of

the input is 3.

2.5.1.3 Space planning

To know how the neurons are arranged at the exit of the layers, we have to discuss the three

parameters that control the arrangement of the output volume [6].
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Figure 2.9: An example of convolutional layers [8].

• The depth of the output volume: It corresponds to the number of used filters.

• Stride: When the stride is equal to 1, we shift the filters one pixel at a time. When the

stride is 2 (or rarely 3 or more, although this is rare in practice), we drag them 2 pixels at a

time. This will produce a smaller output volume.

• Zero-padding: This parameter refers to fill the input volume with zeros around its border.

The nice property of this parameter is that it allows controlling the spatial size of the output

volumes. The spatial size of the output volume is calculated based on the size of the input volume

(W), the size of the receiver field (F), the stride (S) and the amount of zero (P). In other words,

the convolution layer accepts a volume of size W1 ×H1 ×D1 and uses the parameters: number of

filters (K), the spatial extent (F), the stride (S) and the padding (P) to produces a volume of size

W2 ×H2 ×D2, where:

W2 = (W1 −F +2P)/S+1 (2.17)

H2 = (H1 −F +2P)/S+1 (2.18)

D2 = K (2.19)

With parameter sharing, it introduces weights of F×F×D1 per filter, for a total of F×F×D1×K

and B bias. In the output volume, the dth slice (of size W2 ×H2) results from the execution of a

valid convolution of the dth filter on the input volume with a stride S, then offset by dth bias.

Figure 2.10 completely clarifies the convolutional layer spatial arrangement, where the input

volume is blue, the used filters are is in red, and the output volume is in green. Each output

element is calculated by multiplying element-wise the input with the filter, assembling it, and

then shifting the result through the bias. Note that the convolution operation is adopted as

an element-by-element product between the local region of the input and the filter. Backward

propagation for a convolution operation (for both data and weights) is also a convolution operation.
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Figure 2.10: The input volume is W1 = 5, H1 = 5, D1 = 3 and the convolutional layer parameters
are K = 2, F = 3, S = 2, P = 1.Therefore, the size of the output volume has a size (5−3+2)/2+1= 3.
Also, note that a fill of P = 1 is applied to the input volume, making the outside edge of the input
volume zero [6].

Regarding the pooling layer, it operates independently on each slice of the input using the MAX

operation. In general, it is useful to insert a pooling layer between the convolution layers to

reduce the number of parameters and calculations in the network. The pooling layer accepts a

volume of size W1 ×H1 ×D1 and only requires the parameters F, S to produce a volume of size

W2 ×H2 ×D2 where:

W2 = (W1 −F)/S+1 (2.20)

H2 = (H1 −F)/S+1 (2.21)

D2 = D1 (2.22)
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In addition to maximum pooling, other pooling functions can be used such as the average pooling

or even the L2 standard pooling. Average pooling has often been used, but it has recently fallen

out of favor compared to maximum pooling operation, which has proven its efficiency. In the fully

connected layer, the neurons have a complete connection to all the neurons of the previous layer,

as in neural networks.

In our work, we chose the VGG-19 [9] architecture shown in figure 2.11 for the following

reasons:

• It worked well for both image classification and object detection compared to other reference

architectures [12, 86].

• Available for Matlab users.

• The ability to modify this architecture to reduce the number of sharing parameters without

degrading the performance. Most of these parameters are in the fully connected layers, and

it has been found that these layers can be removed.

• Reference trackers have recently shown that the use of a convolution layer output as a

feature map gives a significant performance gains [12].

During the visual tracking process, the input image is introduced into a pre-formed template

for VGG-19. The output after different convolutional layers will have a different amount of

function channels, which usually decreases the resolution depending on the number of function

channels [7].

2.5.2 Histogram of oriented gradients

In the context of image recognition, several features had shown its ability to represent the

area of interest. In which, the edge is the most represented as a feature. It can be obtained by

using the dominant gradient amplitude on the entire image. In [41], they use the gradient of

histogram (HOG) for pedestrian detection. They noted that the HOG features are highly efficient

for describing the pedestrian movements where they give a high vertical position approximation,

and they proved that this descriptor is particularly suitable for human detection [87]. The

advantage of this technique is that effectively describes the appearance and shapes of the entire

image using gradient intensity distribution. This latter is first obtained by dividing the image

into small contiguous regions called cells, of a size typically equal to 8× 8, then collecting of

gradient directions of each cell to construct the histogram. To improve the detection accuracy

with respect to the variation of the illumination and the shading, a local contrast normalization

can be applied by calculating the intensities in a larger area, called a block, as shown in figure

2.12.

The extraction of HOG features is summarized below [10, 87].
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Figure 2.11: Illustration of the VGG-19 architecture. On the left are the types of operations
performed. Right, the intermediate data sizes. A 224×224× 3 size is used as RGB input image.
The output is a vector of length 1000 [9].
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Figure 2.12: An overview of HOG feature extraction [10].

• Gradient calculation This step is performed by applying the 1-D discrete derivative mask

in the horizontal and vertical directions on each centered point, which has the following

form:

[−1,0,1], [−1,0,1]T

The magnitude and orientation at each pixel I(x; y) is calculated by:

Gmag(x, y)=
√

G2
x(x, y)+G2

y(x, y) (2.23)

θ(x, y)= arctan(G y(x, y)/Gx(x, y))+π/2 (2.24)

where Gx(x, y) and G y(x, y) are the gradient values at each pixel in the horizontal and

vertical directions, respectively. For color images, the channel with the largest magnitude

gives the dominant magnitude and orientation of the pixel. It should be noted that the

value π/2 is needed because the arctan operator gives a range between −π/2 and π/2, but

for an unsigned orientation scheme that gives better performance, it is between 0 and π.

• Orientation Binning: In this procedure, the histograms for each cell are created. The

cells are rectangular or radial pixel regions and the boxes in the histogram are regularly

extended from 0◦ to 180◦ (or from 0◦ to 360◦ in the case of a signed orientation). Each pixel

of the cell generates a weighted vote in one of the 9 boxes of the histogram to which its

orientation belongs. As regards the weight of the votes, it can be either the magnitude
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of the gradient itself or a function of the magnitude, for example, the square root or the

square of the magnitude of the gradient. Generally, the gradient amplitude is used.

• Bloc normalization: There are three different ways to normalize blocks. Let v be the

non-standard feature vector that collects all the cell histograms of a given block, ||v||k
denotes its k−norm for k = 1,2 and ε a constant. Then, normalization schemes have the

following forms:

v̂ = v√
||v||22 +ε2

(2.25)

v̂ = v
||v||1 +ε

(2.26)

v̂ =
√

v
||v||1 +ε

(2.27)

Also, an L2-norm followed by clipping (limiting the maximum values of v to 0.2) then normal-

ized by a Laplacian normalization [42]. All normalization schemes offer better performance than

non-standard cases. The final HOG feature descriptor is then the vector containing the elements

of normalized cell histograms from all block regions.

2.6 Conclusion

In this chapter, the visual object tracking state-of-the-art is presented based on the recent

advances in the literature. We presented the categorization of visual tracking methods and

the critical cases related to the advantages and disadvantages of all methods. Besides, we

presented the most commonly used databases as well as its built-in challenge attributes and the

different evaluation terms used to evaluate such a method in these databases. We also detail the

formulation of the reference method based on the correlation filter, since the purpose of this part

is to manage the attributes mentioned and to improve the modeling of the correlation filter, to

maintain object localization and scale estimation tasks.
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CHAPTER 3. PROPOSED METHODS FOR VISUAL OBJECT TRACKING

3.1 Introduction

This chapter introduces two visual object tracking methods. The proposed methods address

the problems previously discussed methods such as fast motion, illumination variation, occlusion,

scale variation, ...etc.

The proposed methods are decomposed into two tasks: the translation and scale estimations

of the target object. Concerning the first method, it adopts the CNN features to adaptively learn

three correlation filter models in the spatial domain via the PSO algorithm, which helps to

reliably estimate the location of the target object in each frame. We propose a condition based on

the HSV color base to enrich the feature extraction phase. Regarding the scale estimation task,

HOG features are adopted to exhaustively search for the optimal scale. The second proposed

method adopts the HOG features in both tasks. Furthermore, we adopt a re-detection module

basing on the SVM classifier to improve the quality of tracking. We evaluate both methods on

three reference databases OTB-50 [35], VOT 2016 [3] and UAV20L [2].

3.2 Patch processing

3.2.1 HSV-Energy condition

This section presents an innovative idea to solve the problem of illumination variation that

most reference trackers can not handle it. The technique consists of using the components’ energy

of the HSV color space. The use of the energy concept has been widely exploited in various

applications such as wireless sensor networks [88], image reconstruction [89] and many others.

For each input RGB frame, the energy consumption of each HSV’s component is used to classify

each RGB frame into two classes: low light and high light. The first class includes the frames

that present a low energy consumption and low light changes, while the second class includes the

frames with high-energy’s consumption and significant changes in lighting. As shown in figure

3.1, the HSV color base is then used to calculate the energy consumption of each input frame.

The energy is generally ranked by equation 3.1 based on two thresholds, TH1 and TH2, where

they are empirically selected [11]. This phase must be done for RGB input images, while it is

ignored for grayscale images.

i f (E2 − (E1 +E3)> TH1 ∩ E3 < TH2 then HSV ( f rame)

else RGB( f rame)
(3.1)

With Ek represents the energy of the kth component. The percentage of energy consumption of

each HSV component is defined by:

Ek = 100×
∑m

i=1
∑n

j=1(Bki j)2

ET
, k = 1,2,3

ET =∑m
i=1

∑n
j=1((B1i j)2 + (B2i j)2 + (B3i j)2)

(3.2)
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Figure 3.1: HSV-Energy condition.

Where Bk denotes the kth component of the HSV frame and ET refers to the total energy. Due to

the effectiveness of the HSV color database [90], energy-intensive images are transformed into

HSV color databases, while low energy ones remain in RGB base.

To illustrate the effectiveness of this idea, figure 3.2 shows the efficiency of the energy

condition of HSV. It can be seen that without the use of the energy condition, the tracker can

not recover the target object shown in the images 34th and 35th of the sequence Singer 2. On the

other hand, it works robustly, in this case, using the energy condition, as it effectively manages

the variation of energy in each input frame. In this context, according to the table 3.1, it is visible

that the illumination varies between the 30th and 40th images, the energy’s percentage of the

brightness varying from 15.90 % to 26.15%. Concerning the 35th and 36th frames, the energy of

the HSV components (H) and (V) are at the maximum value. In addition, the absolute difference

between the energy of the component (H) and that of the component (S) is minimal compared

to that of the other images, which means that for a maximum energy component (V), we have

a favorable color separation in the component (H) with an appropriate color intensity for the

component (S) [11].

Table 3.1: Illustration of the energy percentage of the three HSV components from the frame 30
to the 40th of the sequence Singer 2.

Frame EH ES EV
30 12.90 71.89 15.20
31 11.75 73.01 15.22
32 12.15 72.35 15.49
33 11.86 72.27 15.86
34 10.72 73.36 15.90
35 41.92 34.33 23.73
36 44.81 29.03 26.15
37 12.87 70.82 16.29
38 14.77 68.86 16.35
39 14.12 69.71 16.16
40 15.02 68.08 16.88
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Figure 3.2: The results obtained from the 34th and 35th frames of the Singer 2 sequence. It is
clear that the energy condition maintains the long-term tracking of the target’s appearance and
improves the handling of unexpected background illumination changes [11].

3.2.2 Object patch extraction

The object patch extraction is one of the most important phases, which necessarily affects the

efficiency of extracting contextual information. Similar to [12], our object patch extraction phase

consists of expanding the patch selection, as shown in figure 3.3. A local background region is

defined as a border that surrounds the foreground region. Specifically, we expand the bounding

box around the current location of the target, by a scale factor τ, so that the size of the extended

region is given by:

Apat(t)= τ2 Aob j(t)= τ2wob jhob j (3.3)

where wob j and hob j denote the width and height respectively of the bounding box, and Apat(t)

and Aob j(t) are the fields of the foreground region and the object patch respectively.

3.3 Correlation filters

The correlation filters can encode effectively the appearance of the target object [29, 68], the

correlation filter models w are learned by solving the following minimization problem:

w∗ = argmin
w

∑
m,n

||w.xm,n − y(m,n)||2 +λ||w||22 (3.4)

Where w∗ refers to the learned correlation filter model. The feature vector x is of size M ×
N ×D, where M, N and D indicate the width, height and number of channels respectively . λ

indicates the regularization parameter (λ≥ 0). w.xm,n =∑D
d=1 wT

m,n,d.xm,n,d. In addition, the size

of the correlation filter model is M×N [91]. Each shifted sample of xm,n(m,n)= {0,1, ..., M−1}×
{0,1, ..., N −1} is regressed to the gaussian function label y(m,n).

32



3.3. CORRELATION FILTERS

Figure 3.3: Object patch extraction.

y(m,n)= e−
(m− M

2 )2 + (n− N
2 )2

2σ2 (3.5)

Where σ is the standard deviation.

It is known that the large discontinuity between the opposite edges of a non-periodic image

will result in a noisy representation in the frequency domain, especially in the Fourier domain,

because the Fourier transform is periodic and does not respect the limits of the image [13]. The

inverse Fast Fourier Transform (IFFT) is used to calculate the l th correlation response map f l ,

i.e.

f l =F−1(
D∑

d=1
Wd ⊙

Z
d
) , l = 1,2, ...,3 (3.6)

During the tracking process, a multichannel vector of Z l was used to compute f l . The capital

letters present the corresponding Fourier transform signals, the F−1 operator indicates the

inverse FFT and the bar signifies complex conjugation. The
⊙

operator is the Hadamard product

(product per element). 1 Therefore, the new target location (x̂p, ŷp) is obtained by detecting the

1The Hadamard product of two matrices is defined by:

A
⊙

B =
m∑

i=1

n∑
j=1

A(i, j).B(i, j)

Exemple:

i f A =
∣∣∣∣1 2
3 1

∣∣∣∣ and B =
∣∣∣∣1 1
2 4

∣∣∣∣ then A
⊙

B =
∣∣∣∣1 2
6 4

∣∣∣∣
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maximum value of the response map f .

3.3.1 Estimation of the location of the object

In order to estimate the location of the object, we weight each response map with a weighting

parameter γl . The final confidence score is obtained by accumulating these weighted maps. The

location of the new target (x∗p, y∗p) is estimated using equation 3.7.

argmax
m,n

3∑
l=1

γl f l(m,n) (3.7)

Where the values of γl are defined experimentally at 0.019, 0.4 and 1.

3.3.2 Update models

During the tracking process, it is obvious that an important change of the object appearance

is observed between two consecutive images, which can make the tracker drifts [92]. To solve this

problem, it is necessary to update the correlation filter model obtained via equation 3.4 with a

learning rate η as presenting in equation 3.8:

x̂t = (1−η)xt−1 +ηxt

Ŵ t = (1−η)W t−1 +ηW t (3.8)

3.3.3 Scale estimation

To quickly estimate the target scale variation, we use the features of the HOG [41] to form

the scale feature pyramid with a fixed size P ×Q×S, where P and Q are the height and width

and S is the condidate scales. The scale estimation task is detailed as follows:

First, we build a pyramid of features around the new estimated position of the target using

the HOG [41], by considering the scale factor α and K indicate the number of candidate scales

S, where S = {αn|n = −K−1
2 ,−K−3

2 , ..., K−1
2 }. For each s ∈ S, the features of the patch Js (of size

sP × sQ) are extracted on the estimated position (x̂p, ŷp) [93]. Then all feature channels are

resized with the size P ×Q again. In addition, we reduce the impact of boundary discontinuities

by weighting each feature channel by a cosine window. Second, we form the Rs model in the

frequency domain using Fast Fourier Transform (FFT) using the equation 3.9. Third, we weight

Rs by a three-dimensional gaussian function to construct the desired correlation response map

f̂s. The optimal Ŝ scale of the target is obtained using the equation 3.10. Finally, the scale model

Rs is updated using the equation 3.8.

Wd = Y
⊙

X
d∑D

i=1 X i ⊙ X
i +λ

(3.9)
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Where λ is a regularization parameter (λ> 0). The Fast Fourier Transform (FFT) is adopted

in the equation 3.4 to exploit the fact that the autocorrelation of a signal x in the Fourier domain

represents the power spectrum [13, 25].

ŝ = argmax
s

(max( f̂1),max( f̂2), ...,max( f̂K )) (3.10)

We update the model Rs image by image using the equation 3.8. A predefined threshold Ta is

used to update only Rs if max( f )> Ta.

3.4 CNN-based method for Visual object tracking

In this section, we present the important parts of our proposed visual tracking method. Our

goal is to develop a robust method, suitable for handling the important appearance changes of

the object, based on two main tasks. First, we estimated the object translation using three models

of correlation filter learned with hierarchical convolution features. In addition, the multi-level

correlation response maps are summed to produce the final confidence output. We propose to

learn these models of correlation filters by the PSO algorithm. We adopt the energy of the HSV

components to manage the illumination variations since it is effective at maintaining an efficient

color separation. Second, we adopt the HOG features [41] for the scale estimation task. Figure

3.4 illustrates an overview of the proposed method steps.

3.4.1 Hierarchical features

In order to track the impression of the target, we extract the features of the object’s patch

from three layers of the CNN architecture, motivating of its ability of describing the target’s patch

through the layers in a suitable way [12], since the deeper architecture are more sensitive of

important appearance changes . We use the VGG-Net model (visual geometry group) [9] to extract

the multichannel features from the conv3-4, conv4-4, and conv5-4 layers respectively. The choice

of using VGG-Net is done, because it is very adopted in many computer science applications,

versus the other architectures. Since the CNN architecture acquires image of size 244×244, each

input patch of size M×N is resized by the bilinear interpolation given by equation 3.11. Then,

we resize each feature map to a fixed size M
4 × N

4 in order to alleviate the resolutions difference

between layers conv5-4, conv4-4 and conv3-4.

xi =
∑
k
αikhk (3.11)

Where xi denotes the upsampled feature vector for the location ith and hk denotes the kth feature

map, while αik represents a weight interpolation which depends on the position of the vectors i

and k of the neighboring features [12].
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Figure 3.4: Flowchart of the CNN-based tracking method.

3.4.2 PSO algorithm

As with all other optimization problems, visual tracking is interpreted as a similarity function

between the desired solution and the candidate solution [94]. In this context, many meta-heuristic

algorithms are used to solve visual tracking problems [95]. Inspired by the social behavior of

birds flock, Particle Swarm Optimization (PSO) is the most useful in this topic because of its

ability to solve a non-linear, multimodal, and large-scale optimization algorithm. Also, the time

computation remains low. In this section, we give a detailed description of the implementation of

PSO for visual tracking.

As previously discussed that the Fourier transform will result in a noisy representation

reflected of the large discontinuity between the opposite edges of a non-periodic image because it

does not respect the limits of the image [13]. We propose to use the PSO algorithm to optimize

correlation filter models in the spatial domain. The main idea is to optimize the equation 3.4, in

order to reach the appropriate correlation, filter models. The basic steps of PSO are summarized

as a pseudo-code presented in algorithm 1. More details on the implementation are presented

below.
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Algorithm 1 Pseudo-code of the PSO algorithm [96]
Input: Problemsize, CNN features, correlation filter model at the instant t−1.
Output: W∗

for i = 1 to n
pi ← rand(Problemsize,n);
vi ← rand(Problemsize,n);
Initialize Wi(n,Problemsize,CNN ’s f eatures);
Generate Wi according to the equation 3.4
xbest

i = xi;
if cost(pi)≤ cost(pbest

g ) then
pbest

g ←− pi
Wbest

g ←−Wi
end

end
while(iteration < 200)

Generate new solution according to the equations 3.12 to 3.14;
if cost(pi)≤ cost(pbest

i ) then
pbest

i ←− pi
Wbest

i ←−Wi
if cost(pbest

i )≤ cost(pbest
g ) then

pbest
g ←− pbest

i
end

end
end
return Wbest

g ;

vi(t+1)= vi(t)+Q1 +Q2 , i = 1,2, ...,n (3.12)

Q1 = c1 × rand× (pbest
i − pi(t)) (3.13)

Q2 = c2 × rand× (pbest
g − pi(t)) (3.14)

where vi(t+1) is the new velocity for the ith particle, n is the size of the population, c1 and c2

are the weights of the best position and best overall position respectively, pi(t) and Wi(t) are

the optimal position and correlation filter model at instant t. pbest
g and Wbest

g denote the best

position and the best model. The position and model of the filter of each particle are updated

using equations 3.15 and 3.16 [96].

pi(t+1)= pi(t)+vi(t) (3.15)

Wi(t+1)=Wi(t)+vi(t) (3.16)
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Table 3.2: The parameters of the PSO algorithm.

Parameter Value
c1 1.3
c2 0.9
n 20

3.4.2.1 Configuration

The PSO parameters are summarized in table 3.2 [11].

3.4.2.2 Optimization procedure

As shown in algorithm 1, each particle is initialized by a set of candidate models, with an

identical size to that of the corresponding features. We use 10 candidate models of correlation

filters for each particle. Noting that this initialization is performed using previous correlation

filter models in the spatial domain. Once the algorithm is initialized, we evaluate equation 3.4 to

initialize the three best models. By resorting to 200 iterations, the dynamics of the PSO algorithm

can suitably meet three appropriate correlation filter models, resulting in an accurate target

location estimation, as shown in figure 3.4. This behavior could lead to efficient optimization of

the correlation filter models as a solution of equation 3.4 in which the Fourier domain could not.

For example, figure 3.5 shows that the proposed method is effective in handling changes in the

appearance of objects, when the cases of fast motion, deformation, and occlusion occur in the

frames 170th, 240th and 250th, respectively of the challenging sequence CarScal.

Figure 3.5: Comparison of our proposed CNN-PSO approach with the HCF tracker [12] in the
challenging sequence of CarScal.

3.4.3 Results and discussion

The proposed method includes three main steps, as shown in figure 3.4. The first step relies

on learning adaptively three correlation filter models in the spatial domain using convolution

features via the PSO algorithm, which is effective in presenting good convergence properties. The
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CNN features are then enriched using the HSV energy condition (Hue, Saturation, and Value).

This condition has a substantial advantage in dealing with illumination variations and allows for

suitable switching between the RGB and HSV color bases. The third step is to use HOG features

to exhaustively search for the optimal scale of the target object.

3.4.3.1 Configuration

We implemented our tracking system in Matlab with an Intel (R) Core (TM) i7-6700K

4.00GHz CPU and with 32GB of RAM. We used MatConvNet toolbox [97] for feature generation.

The regularization parameter λ is set to 10−4 in the equation 3.4 and the learning rate η to 0.01

in equation 3.8. For the object position estimation task, the size of the search window is set to 1.8.

We set Ta = 0.5 to update Rs.

3.4.3.2 Databases

• OTB-50
We evaluated our method by using two metrics, the distance precision (DP), which presents

the average value of the frames where the estimated positions are within the threshold of

20 pixels [4, 75], and the overlap success (OS), which represents the average value of frames

where the overlap between the estimated bounding box and the given one (ground-truth)

exceeds a given threshold to ∈ [0,1]. The result of OP is presented in to = 0.5 [4].

The proposed method is evaluated on a large reference database with 50 image sequences

[4]. To validate the results, we compare our tracker with 9 reference trackers, including

KCF [13], DLT [98], HCF [12], MEEM [14], TGPR [99], Struck [15], SCM [100], TLD [16]

and LSHT [40].

It’s clear that our tracker works effectively compared to the reference trackers. Figure

3.6 shows that the HCF tracker achieves the best distance precision of 89.1 % and the

best overlap success rate of 74 %. The efficiency of our method is demonstrated with

improvement gain of 1.9 % in DP and 2.5 % in OS. Among the existing methods, it is

obvious that our tracker outperforms the others in terms of precision and overlap.

The superiority of the proposed tracker can be justified by the following points: First,

the integration of the HOG features in the scale estimation has effectively solved this

challenging case. Indeed, figures 3.7 and 3.8 indicate that our tracker robustly handles

the case of scale variation versus reference trackers. Second, the correlation filter models

are learned using a PSO algorithm in the spatial domain. Then, the resulted models are

updated in the frequency domain. As a result, the proposed method can recover the target in

the challenging cases of fast motion, occlusion. Figure 3.9 shows the worth of the proposed

method against three state-of-the-art methods. The PSO algorithm improves the accuracy

in cases of fast motion and occlusion through its effective optimization of correlation filter
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Figure 3.6: Comparison with nine reference trackers using distance precision and overlap success
on the OTB-50 database [4].

models. Third, the switching between the RGB and HSV color bases allows for an accurate

treatment of illumination variation case, as shown in figure 3.8. Compared to the three

reference trackers, it is clear that our tracker (in red) follows the object robustly in case of

illumination variation.

Figure 3.7: Illustration of handling of scale changes on sequences Singer1 and Skating1.

• VOT 2016
Figure 3.10 presents the comparison results of our proposed tracker with five highest-

ranked trackers in the VOT 2016 dataset [3], in terms of expected average overlap (EAO).
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Figure 3.8: Precision distance plots of scale variation and illumination variation challenging
cases.

Figure 3.9: Precision distance plots of two tracking challenges: Occlusion and fast motion.

In addition, table 3.3 lists a detailed comparison of our method with the reference methods

in VOT 2016 dataset including: CCCT [101], EBT [102], MDNET_N [103], STAPLE [104]

and DNT [105]. We can see that our tracker exceeds the STAPLE tracker [104] by a

significant gain. Indeed, our tracker demonstrates its effectiveness by obtaining the best

EAO score of 0.31. Also, It gets the third-highest overlap score of 0.50 and the best result

in failures metric with 15.09 %.

• UAV20L
Finally, we evaluate our method on the UAV20L database [2] which contains 20 fully

annotated image sequences ranging in length from 1.177 to 5.527 images. As shown in

figure 3.11, the proposed tracker outperforms the other state-of-the-art trackers including

PTAV [26], SRDCF [68], MEEM [14], Struck [15], DSST [5] , DCF [29], KCF [13], and
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Table 3.3: Comparison results with the reference trackers in the VOT 2016 database.

Tracker Overlap Failures EAO
ours 0.50 15.09 0.31

STAPLE 0.54 23.89 0.30
EBT 0.45 15.19 0.29
DNT 0.51 19.54 0.28

MDNET_N 0.54 21.08 0.26
CCCT 0.44 29.32 0.22

Figure 3.10: Expected average overlap results (EAO) with the top state-of-the-art trackers of the
VOT 2016 database.

TLD [16]. We can see that our tracker outperforms the other trackers in both distance

precision (DP) and overlap success rate (OS) with a gain of improvement of 2.3 % and 0.5 %

respectively over the nearest competitor tracker, PTAV [26].

In addition, figure 3.12 demonstrates the high capabilities of our tracker, who manages long-

term tracking even in difficult cases of fast motion, scale variation, illumination variation,

and occlusion as opposed to other trackers.

3.5 HOG-based method for Visual object tracking

As shown in figure 3.13, we decompose the tracking process into two tasks: translation

estimation and scale estimation. We first deduce the target position from the correlation response

map f of the filter Rt in the frequency domain by using equations 3.6 to 3.9. To estimate the

suitable target’s scale, we adopt the feature pyramid strategy basing on HOG features to learn

another correlation filter Rs by using the equations 3.9 to 3.10. Similar to the first proposed

method, we reduce the impact of boundary discontinuities by weighting each feature channel

by a cosine window. Besides, we propose a re-detection module built using the SVM classifier.
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Figure 3.11: Comparison results with eight reference tracker on the UAV20L database [2] using
distance precision (DP) and overlap success (OS) metrics.

Figure 3.12: Comparison results with eight reference trackers using distance precision and
overlap success metrics on difficult cases of fast motion, scale variation, illumination variation,
and occlusion on the UAV20L database [2].

It is used to recover the tracker from drifting. We activate the re-detection module when the

correlation response is less than a given threshold Tr. Note that we only adopt the detection

result when it is very confident. In other words, when the correlation response is greater than a

given threshold Ta, we only adopt the detection result.

3.5.1 Histogram of oriented gradient features

The features extraction procedure is as follows:

• To improve the contrast of the images, we use the Gamma transformation. It performs a

conversion of the gray level of the images. The transformation function is given as:

43



CHAPTER 3. PROPOSED METHODS FOR VISUAL OBJECT TRACKING

Figure 3.13: Flowchart of the proposed HOG-based method.

x(n1,n2)= xε(n1,n2) (3.17)

where x(n1,n2) is the input pixel. We set the parameter ε to 0.5.

• The gradient can be calculated using the following equations:

yi(n1,n2)= hi(n1,n2)× x(n1,n2) , i = 1,2 (3.18)

Where hi(n1,n2) is the derivative mask.

h1(n1,n2)= [−1 0 1]T , h1(n1,n2)= [−1 0 1] (3.19)

where h1 et h2 present the discrete derivative masks in the vertical and horizontal direc-

tions. The overall gradient and orientation image are calculated as follows:

ym(n1,n2)=
√

y2
1(n1,n2)+ y2

2(n1,n2) (3.20)

yθ(n1,n2)= arctan(y1(n1,n2)/y2(n1,n2))+π/2 (3.21)

• The target patch is partitioned into rectangular cells. Each cell is associated with an edge

orientation histogram. For each cell, the histogram is calculated as follows:

H(τ)=
N∑

i=1
ym(n1,n2)δ.[y’

θ(n1,n2)−τ] (3.22)
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Where δ is the delta function of Kronecker and y’
θ
(n1,n2) is a quantized orientation,

computed from yθ(n1,n2) and N is the total number of pixels in each cell [41]. Then, the

set of magnitude sums of the gradient is represented as an N-orientation histogram:

Hall = {H(1),H(2), ...,H(N)} (3.23)

In our implementation, we concatenate HOG features in 31 bins [106], to provide precision

for important lighting changes. As a result, a vector with 63 channels is used to form the

model Rs.

3.5.2 Online re-detector

A robust tracking algorithm requires a detection module to recover the target from

potential challenging cases of significant occlusion or fast motion. For each feature vector z,

we calculate its confidence index in the form C = max( f (z)). We activate the detector only if

the confidence index C is below the predefined re-detection threshold Tr. The main purpose

of using Tr is to reduce the computational load by avoiding searching window detection in

each image [25, 107]. For more efficiency, we use an online SVM classifier as a detector.

Similar to [14], we gradually train the SVM classifier by drawing learning samples around

the estimated position and then assigning binary labels to these samples based on their

overlap rates. The learning set is defined as {(vi, ci)|i = 1,2, ..., N} with N samples for an

input image, where vi is the feature vector generated from the ith sample and ci ∈ {+1,−1}

is the label of the class.

The objective function for solving the hyperplane h of the SVM detector is given as follows:

min 1
2 ||h||2 + 1

N
∑

i l(h; (vi, ci))
h

l(h; (vi, ci))= max{0,1− c〈h,v〉}
(3.24)

With 〈h,v〉 indicates the element-wise product between h and v.

3.5.3 Results and discussion

3.5.3.1 Configuration

The regularization parameter λ in equation 3.4 is set to 10−4. The learning rate η in

equation 3.8 is set to 0.01. The number of candidate scales s is 25, and the scale factor α

is set to 1.049. To learn the SVM detector, we construct samples densely using a window

centered on the estimated location. We assign these samples with positive labels when

their overlap ratios with the target selection frame are greater than 0.5, and we assign the

others as negative labels. To activate the formed function detector, we set the threshold Tr
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to 0.2. The parameter Ta is set to 0.45. We implement our tracker in Matlab with an Intel

(R) Core (TM) i7-6700K 4.00 GHz processor with 32 GB of RAM.

• OTB-50

We evaluate our method using distance precision (DP) and overlap success (OS)

metrics [4]. We compare the proposed method with 8 reference methods, including

KCF [13], DLT [98], MEEM [14], TGPR [99], Struck [15], SCM [100], TLD [16] and

LSHT [40]. Figure 3.14 shows the comparison results on the OTB-50 database. The

MEEM tracker obtains the second-best result with a distance precision of 83.0%

and an overlap success of 69.6%. The proposed method proves its efficiency with an

improvement gain of 1.1 % at the distance precision and 1.8 % at the overlap success.

Figure 3.14: Comparison with eight reference followers using distance precision and overlap
success on the OTB-50 database [4].

In addition, we compare our method with three reference trackers (KCF [13],

MEEM [14] and TLD [16]) on four challenging sequences illustrated in the figure

3.15. The KCF tracker is based on a correlation filter learned using HOG features

and is therefore similar to our follower. The KCF tracker works well in handling

large deformations and fast motion due to the robust representation of HOG features.

However, it drifts when target objects suffer from heavy occlusions and consequently

cannot re-detect targets in these cases. In addition, the KCF tracker is unable to handle

the background clutter, as only HOG features are less effective at distinguishing

targets from the cluttered background. The TLD tracker works well in case of rotation

(David). However, it does not correctly follow the target in case of large deformation

and fast motion (Tiger2). The MEEM tracker is based on an expert selected to restore

the current tracked object by using minimal entropy criteria to correct unwanted

model updates. This explains its ability to handle heavy occlusion (Lemming, Bolt),

but it does not work well when deformation is important (David, Tiger2). Overall,
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Figure 3.15: The comparaison results of our method with the KCF [13], MEEM [14], Struck [15]
and TLD [16] methods on four complex sequences (from top to bottom are lemming, David, Tiger2,
Bolt), respectively.

our proposed method allows estimating efficiently both the scale and the position

of the target object on these challenging sequences. Its efficiency is attributed to

three reasons. First, the model Rt is learned from robust features rather than just

HOG features or a simple brightness intensity and to estimate the translation of

the target object. The proposed features are less sensitive to background lighting

and clutter (David), and to the occlusion (Lemming, Tiger2). Second, the model Rs is

conservatively updated therefore the errors of scale estimation are not accumulated to

affect subsequent frames. Consequently, our method mitigates effectively the problem

of scale variation. Thirdly, the proposed detector effectively re-detects the target

objects in case of tracking failure, for example with a heavy occlusion (Lemming).

• VOT 2016

Figure 3.16 illustrates the comparison results with three reference trackers on

the VOT 2016 dataset [3] in terms of expected average overlap (EAO). Our proposed

tracker exceeds the best tracker EBT [102]. Table 3.4 presents the detailed results of

our method with three reference methods in VOT 2016 including EBT [102], SRBT

[74] and DNT [105]. The proposed tracker demonstrates its effectiveness by obtaining
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Figure 3.16: Expected average overlap result (EAO) with three reference trackers evaluated on
the VOT 2016 database.

the best EAO score of 0.32. In addition, it provides a considerable result of 0.5 in the

overlap metric and the second-best result of 17.60% in failure metric.

Table 3.4: Comparison in terms of EAO, overlaps, and failures, with the three state-of-the-art
trackers of the VOT 2016 database.

Tracker Overlap Failures EAO
Ours 0.50 17.60 0.32
EBT 0.45 15.19 0.29

SRBT 0.48 21.32 0.29
DNT 0.51 19.54 0.28

• UAV20L

Finally, we evaluate our method on the UAV20L database [2]. As shown in

figure 3.17, the proposed tracker outperforms the other trackers, including PTAV

[26], SRDCF [68], MEEM [14], Struck [15], DSST [5] , DCF [29], KCF [13], and TLD

[16]. It is clear that our tracker surpasses the other trackers on distance precision

(DP) and overlap success (OS) metrics with an improved gain of 1.1 % and 0.9 %

respectively against the competitor tracker PTAV [26]. To give more credence, figure

3.18 clearly demonstrates the high capabilities of our tracker, which manages the

long-term tracking in difficult cases of fast motion, scale variation, and occlusion,

compared to the aforementioned reference trackers.
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Figure 3.17: Comparison results with eight reference trackers on the UAV20L database [2] using
distance precision (DP) and overlap success (OS) metrics.

Figure 3.18: Comparison results with eight reference followers using distance precision and
overlap success metrics for the challenging cases of fast motion, scale variation and occlusion on
the UAV20L database [2].

3.6 Conclusion

In this chapter, we proposed two methods for visual object tracking. These methods

based on image preprocessing, feature extraction, to perform two tasks of translation and

scale estimations. Our preprocessing easily extract the patch from the target object, which

helps the system to retain the important information about the object (foreground and

background). At the feature extraction phase, the CNN and HOG features are used in

our work. We have used the correlation filters in the tasks of the translation and scale

estimation to maintain the object tracking. We finished with a comparison with the state-of-

the-art trackers in visual tracking, which prove the efficiency of our method on three most

well-known databases.
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4.1 Introduction

In the mid-nineties, the first focus on the concept of visual servoing was done by

Hutchinson and his collaborators [108]. They provide a tutorial introduction to visual servo

control. Later, a group of researchers including Chaumette, Corke, Mahony, and others

have led many advances and remain the visual servoing active in this field to date. In this

chapter, we present an introduction to unmanned aerial vehicles and the different visual

servoing approaches applied to this type of vehicle. We discuss the definition of visual

servoing and its classes. Then, we introduce the three basic approaches of visual servoing,

by focusing on the strengths and weaknesses of each approach. In addition, we present

the needed basics to understand the concept of visual servoing, which includes the digital

image and the projection model. Finally, a proof of stability is presented for the visual

servoing based on the image.

4.2 Unmanned aerial vehicles

The UAVs are small unmanned aircrafts. They can be operated remotely by a human

or be autonomous; autonomous vehicles are controlled by an on-board computer that

can be pre-programmed to perform a specific task or a wide range of tasks. This section

first presents a summary of UAVs in a historical way, followed by an introduction of the

applications and classification of these types of vehicles. Then we discuss the vision control

works applied on quadrotor UAVs.

4.2.1 History

Since the beginning, primitive man was fascinated by the idea of flying. In the 19th

century, fantasy became a fact. Scientists based on the principle of creating an airplane

done with a density lower than that of the air, to develop the first aircraft. However, it was

not until the 20th century, where the most important improvements in air navigation were

made. In 1903, the brothers Wright made the first aircraft with a density greater than

that of air and propelled by engines. The first drones were manufactured by Lawrence and

Sperry in 1916. They named it the aviation torpedo (Figure 4.1). They were able to fly it

for a distance of 30 miles [109]. Later, the first experimental helicopter was built for the

US Army Air Service. Following this model and with many electronic improvements, many

scientists have focused their research on autonomous control of air vehicles to improve

their control and make them autonomous in flight. Over time, the emergence of a specific

variant, such as quadcopters able to fly independently, has aroused great interest from

users and researchers until the date [17].
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Figure 4.1: Lawrence and Sperry drone [17].

4.2.1.1 Applications

Drones can be implemented in different applications [17, 110]:

– Research: Research institutes use drones equipped with the appropriate sensors to

observe some environmental phenomena such as pollution.

– Military: It is generally accepted that the use of drones is limited to dangerous

military roles such as ammunition.

– Environmental situations: Such as forest fire detection, pollution monitoring, and

control, sampling and analysis for fisheries forecasting and protection.

– Search and Rescue: The drones can search for survivors after natural disasters

such as earthquakes and hurricanes or survivors of wrecks and plane crashes.

– Agriculture: Agricultural monitoring and spraying.

Some other applications, such as ambulances or satellite drones, are still in development.

These applications require the largest drones to carry out their activities. Nevertheless,

they face problems of battery life and high energy consumption. These potential problems

led the appearance of several works to solve these issues, for example, the optimization of

the batteries for longer flight time, the optimization of the weight of the UAV, the command

autonomous flight, mapping and positioning of the UAV.

4.2.1.2 Classification of drones

In the literature, it exist many ways to classify drones, either according to their action,

their aerodynamic configuration, their size, and their payload, or depending on their level

of autonomy [17]. UAVs can be categorized according to their maximum altitude and

endurance as shown in figure 4.2:
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Figure 4.2: Classe of drones (a) UAV HALE, (b) UAV MALE, (c) UAV TUAV, (d) Short Range UAV,
(e) Mini UAV, (f) Micro UAV, (g) Nano UAV [17].

– High-Altitude Long Endurance (HALE): They can fly over 15.000m with an en-

durance of more than 24 hours. They are mainly used for long-range surveillance

missions.

– Medium-Altitude Long-Endurance (MALE): They can fly between 5.000 and

15.000 m altitude for up to 24 hours. These drones are used for surveillance mis-

sions.

– Tactical Unmanned Air Vehicle (TUAV): They are smaller and operate with sim-

pler systems than HALE and MALE. They can fly in an altitude between 100 and 300

km.

– Short Range UAV: They are mainly used in civil applications such as power line

inspection, crop spraying, traffic monitoring, homeland security, for a range of 100 km.

– Mini UAV (MUAV): They weigh about 20 kg and their range is about 30 km.

– Micro UAV (MAV): Their maximum wingspan is 150 mm. They are mainly used

indoors, where they must fly slowly and remain to hover.

– Nano UAV (NAV): They have a small size of about 10 mm. Their main use is for

swarm applications.

In addition, the aerodynamic configuration plays an important role in the following classifi-

cation:

– Fixed-wing drones This class requires a runway to take off and land. They can fly

long and at high-speed cruising. They are mainly used in scientific applications such

as weather reconnaissance and environmental monitoring.
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Figure 4.3: (a) Monorotor drone, (b) Coaxial rotary-wing drone, (c) Quadrotor drone, (d) Multirotor
drone [17].

– Rotary Wing Drones They can take off, land vertically and even fly over and fly

with great maneuverability. As illustrated in figure 4.3, this type of UAV is classified

as follows:

(a) Monorotor: They have the main rotor at the top and another rotor at the rear

for stability, as in the configuration of the helicopter.

(b) Coaxial: They have two rotors rotating in opposite directions mounted on the

same tree.

(c) Quadrotor: They have four rotors mounted in a cross.

(d) Multirotor: UAV with six or eight rotors. They are agile and fly even in case of

engine failure, due to the redundancy and the number of rotors.

– Swing-wing drones This class is inspired by birds and flying insects (Figure 4.4.a).

These drones have small wings and have extremely low payload and endurance. On

the other hand, they consume little energy and can make vertical take-off and landing.

– Airship Drones They can look like balloons or airships, they lift by their helium-filled

body, as shown in figure 4.4.b. They are very light and have a large size. They can fly

long and slow.
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Figure 4.4: (a) Swinging wing drones, (b) Airship drones [17].

4.2.2 Visual servoing of drones

The visual servo control design for quadrotor UAVs has been a daunting task due to the

under-actuation property of quadrotors. The design of the visual servoing controller usually

consists of two control loops: the outer loop (vision-based loop), which creates control of

the translation and rotational speeds basing on visual measurements. The internal loop

controls the quadrotor to follow the desired reference signals. Different visual servoing

methods combined with other control techniques for quadrotor stabilization have been

proposed, including the adaptive robust control [111], the sliding mode control [112], the

control by fuzzy logic [113], etc. One of the methods is the PID control for which its

effectiveness has been proven in [114]. In this paper, the authors examined PID control,

integral backstepping control, full adaptive backstepping, and fuzzy logic control. They

found that PID control was the most effective. Also, Hamel et al [115] propose an image-

based control strategy for the stabilization of an autonomous helicopter on a marked

landing area. Another similar application was studied in [116], where a real-time vision-

based landing algorithm was developed for a stand-alone helicopter, and in [117], where

vision-based control has been implemented for autonomous road surveillance. Over the

past five years, several developments in quadrotor visual servoing have been discussed in

[118, 119]. Zehra et al [118] proposed an image-based controller of a quadrotor unmanned

aerial vehicle. The authors did not address the negative effects of the under-actuation

property, such as the handling of the image error due to tilt and loss of field of view. The

authors in [119] suggested several modifications to the classical visual servo scheme that

overcame the under-actuation property, such as the introduction of adaptive gains of the

visual servo controller. However, this work did not provide a comparison of the results with

the classical approach and only considered the case where the observed target was static.

In this thesis, we adopt the ideas of [118, 119] to adapt the movement of the target by

assuming that the quadrotor must follow only the position of the target.

56



4.3. VISUAL SERVOING

4.3 Visual servoing

Visual servoing (VS) is an approach that uses visual feedback signals provided by

the image sensor, which is often its a camera, in order to control the movement of a robot

for reaching the desired position relative to a target object. The camera provides images

containing a visual feature, which are then used to guide the robot robustly by the user

with respect to these features.

4.3.1 VS classes

In the literature, visual servoing systems can be classified into two groups depending

on the location of the camera as sown in figure 4.5 [18, 120].

– Eye-to-hand This configuration consists of placing the cameras in the workspace

directed towards the robot. It is useful if many robots are operating in a confined

space, to provide high precision position and speed measurements to robots, where

the provided image is independent of the robot movement.

– Eye-in-hand As the name indicates, the camera is mounted on the end effector of the

robot, where its movement is then linked to the movement of the robot.

Both configurations are valid. In the case of a drone, the second configuration is the most

appropriate, in which a single camera can be used for a larger space because it is more

versatile and less expensive.

Figure 4.5: Visual servo configurations: (a) Eye in hand, (b) Eye to hand [18].

4.3.2 VS approaches

Vision-based control methods are generally categorized into three approaches [120, 121]:

– Image-Based Visual Servoing (IBVS),

– Position-Based Visual Servoing (PBVS),

– Hybrid Based Visual Servoing (HVS).
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These approaches based on designing a velocity controller that gives the robot controller

with suitable control signals to perform the desired application. VS’s approaches differ

in terms of designing the image features used in the control law. The IBVS is also called

2-D visual servoing because the exploited features are extracted from the projection of the

given 3D-point in the image plane of the camera, which resulted in image coordinates in

the unit of pixels. It aims to keep the target object in the camera’s FOV by minimizing

the error of the detected image features and the desired one, as shown in figure 4.6. The

difference between these two signals allows the control law to calculate the convenient

velocity speed. This approach is considered as computationally efficient because it does

not provide an explicit calculation of the relative pose between the camera and a target

[18, 122]. However, in position-based visual servoing (PBVS) [108], the geometric model

of the target is used, together with the visual features extracted from the image, to es-

timate the relative pose, which is then compared to the desired position. This approach

aims to estimate the suitable velocity signals corresponding to the desired 3-D target’s

position. The estimation of the relative pose requires a priori knowledge of the object shape,

where the dimensions are required. Indeed, the regulation of the position is one of the

fundamental problems of control and there are many studies on how to implement various

architectures or control mechanisms. This aspect is one of the advantages of the PBVS

because it performs the regulation of the relative position by separating the control problem

from the error computation. The other advantage is that PBVS relies on global stability.

However, the position-based approach requires a position reconstruction, which requires

more information about the object, and even a precisely calibrated camera. In addition, the

visual features can easily leave the field of view (FOV) because the control law does not

necessarily take into account the image information of the camera. [18, 120]. Image-based

visual servoing requires only a few points of interest of the image, the desired position on

the image and an estimated depth of these points. Its main disadvantage is to fall into

the local minima problem, which results in an unrealizable image because the region of

stability is not defined robustly [123].

In order to reduce the inconvenience of IBVS, two types of work have been proposed: The

first type focuses on adopting soft conventional features decoupled from each other, for

example, points, lines or spheres. The second type focused on combining the advantageous

features of IBVS and PBVS into hybrid methods, where the control problem was decoupled

as a function of translation and rotation elements evaluated separately [124]. However,

this approach was limited because of its sensitivity to noise, as well as the need to use

at least 8 points to reconstruct the homography. The basis of this work is back to work

Chaumette et al [125]. Another technique consists of decoupling the movements around

the different axes by separating the movement on the Z-axis for a robot with 6 degrees

of freedom (DOF) because this axis is less sensitive to the movement [126]. They use two
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Figure 4.6: The two basic approaches of visual servoing [18].

neural network image features to improve the conditioning of the Jacobian image for the

X and Y rotation axes. In particular, for the displacement of UAVs such as the case of

quadrotors, the implementation of the IBVS approach made an additional problem due to

the under-actuation fact of these systems. This fact led researchers to develop techniques to

suppress roll/pitch coupling with image error. There are four main methods in the literature

[121, 127–129].

– Methods uses spherical projection: They treat all the points of the image as if

they were on a sphere unit, then turning them to keep them pointing down [115].

– Methods uses a spring-based virtual approach: These methods use the classical

IBVS on the yaw and altitude parameters and add a compensation term related to

roll and pitch angles. However, it increases the image error since the pitch and roll do

not result in other command entries [121].

– Methods uses the homography projection: The homography matrix integrates

the information of the transformation between two images. The two selected images

are the desired view of the target and the current view which is then used for the

control [130].

– Methods uses a virtual camera approach: They mathematically rotate the image

to find what the image points would look like if the camera was pointed down [127].
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4.3.3 Basic notions

As discussed in the previous section, there are two basic approaches of visual servo-

ing: image-based (IBVS) and position-based (PBVS) visual servoing. The main idea is to

minimize an error e(t) defined as [125]:

e(t)= s(m(t),a)− s∗ (4.1)

where m(t) is a set of image measurements (e.g., the image coordinates of interest points

or the image coordinates of the object’s center). These image measurements are used to

compute a vector of k visual features, s(m(t), a), in which a is a set of parameters that

represent potential additional knowledge about the system (e.g., coarse camera intrinsic

parameters or 3-D models of objects) [120]. In the IBVS, s represents a vector of visual

features of the image and s∗ represents the desired values of the features such as points, the

distribution of colors the linens, the orientations, etc. These features are directly extracted

from the image information provided by the camera. In PBVS, s and s∗ are the actual and

desired 3-D parameters that must be estimated from the image measurements.

4.3.4 IBVS control law

In this thesis, we adopt the IBVS approach. Once the vector s is defined, a velocity

controller must be designed to minimize equation 4.1. To do this, it is necessary to establish

the relation between the movement of the camera and the movement of the image features.

4.3.4.1 Static target

Let consider the case of a fixed desired pose and a motionless target, i.e., s∗ is constant,

and the changes of s depend only on the camera motion [120].

ṡ = Ls.vc (4.2)

where vc presents the spatial velocity of the camera and Ls is the interaction matrix or

Jacobian matrix, which links the motion of the features s to that of the camera. Deriving

the equation 4.1 and substituting in 4.2 we obtain:

ė = Le.vc (4.3)

where the interaction matrix Le is related to the error e. We consider a decreases exponen-

tially of the error i.e.,

ė =−λ.e (4.4)
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We substitute the equation 4.4 in 4.3, the resulting control law will be:

vc =−λ.L−1
e .e (4.5)

Le will not always be an invertible matrix, as it has been shown that its dimensions depend

on the number of features k [18, 125]. Even if Le ∈ R6×6, its determinant is not always

equal to zero. Thus, it is preferable to adopt the Moore-Penrose pseudo-inverse matrix of

Le:

L+
e = (LT

e .Le)−1LT
e (4.6)

In the literature, it is difficult to know the value of Le, so an approximation is necessary.

The procedure for calculating the interaction matrix is only an estimation because there

is no way to know exactly the value of the depth (third component) of each point. For this

reason, the value of the third component must be estimated from other sources. There are

several ways for constructing the estimate L̂+
e to be used in the control law. Some of the

proposed approaches propose that if the current depth Z of each point is available and

Le = Lx is known, they consider L̂+
e = L+

e . Practically, at each iteration of the control scheme,

this parameter must be estimated. The more practical solution is proposed in [124], they

estimate only the desired depth of all points and choose L̂+
e = L+

e∗ where, L+
e∗ is constant,

which means that the 3-D parameters will not be estimated.

4.3.4.2 Dynamic Target

In the case of moving object, the equation 4.3 is modified to consider the generally

unknown target motion:

ė = Levc + ∂e
∂t

(4.7)

By considering an exponential decay of the error given by equation 4.4, the control law

becomes as follows:

vc =−λL+
e e−L+

e
∂̂e
∂t

(4.8)

where ∂̂e
∂t is an estimation of the compensation term ∂e

∂t , which can be obtained using the

error and the velocity components from the previous time step.

From the equation 4.7, we get:

∂̂e
∂t

= (e(t)− e(t−4t))/4t−Levc(t−4t) (4.9)

We note that the use of larger control gain λ may omit the compensation term. However, it

can make the quadrotor system unstable.
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Figure 4.7: The central projection model [18].

4.3.5 Fundamentals of vision

In this section, we discuss the fundamentals of computer vision that underpin the work

being addressed.

4.3.5.1 Perspective transformation

There are several ways to design the model of digital images. Among them, the

commonly used is the Pinhole model or the central perspective model shown in figure 4.7,

which allows the camera’s physical model to be correctly approximated and thus to give an

appropriate relationship between the 3-D and 2-D coordinates of the object. The pinhole

model aims to extract the 2-D coordinates of the object using a perspective projection of

the 3-D coordinates [131]. This model is based on rays that converge on the origin C of the

camera frame called projection center.

Using similar triangles, we can show that a point with real coordinates P = (X ,Y , Z) is

projected on the plane of the image p = (x, y), considering that the non-inverted image is

projected on the image plane located at z = f , and the path of light perceived by the camera

is a line passing through p and C from P. The intersection of this line with the projection

plane is the projection of the point P. The equation 4.10 links the coordinates of a point in

space in R3 with the coordinates of its projection in the image plane [18, 131].

x = f .
X
Z

, y= f .
Y
Z

(4.10)

Preserving homogenization of coordinates on the projective space regardless of the distance
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Figure 4.8: Illustration of the central projection model, the image plane and the discrete pixels
[18].

between P and C requires the use of homogeneous coordinates to rewrite the perspective

projection in linear form as [18]:

p =


f 0 0 0

0 f 0 0

0 0 1 0

 .


c X
cY
cZ

1

 (4.11)

where the homogeneous coordinates relative to the camera frame C are: cP = (c X , cY , cZ,

1) T and p = (x, y,1)T .

4.3.5.2 Image plane

In a digital camera, the image plane is a W ×H grid of light-sensitive elements, called

photosites, that correspond to components called pixels, as shown in figure 4.8. The

coordinates of the pixels are presented by a vector of non-negative integers (u,v), defining

the position of each pixel on this grid. The origin is usually at the top left of the image plane

[18]. The transformation for passing the point coordinates p to the pixel coordinates as:

u = x
ρw

+u0 , v = y
ρh

+v0 (4.12)
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where ρw and ρh are respectively the width and height of each pixel, and (u0,v0) is the

main point.

This relationship is written as [131]:


u

v

1

=


1
ρw

0 u0

0 1
ρh

v0

0 0 1

 .


x

y

1

 (4.13)

From the equations 4.11 to 4.13, the projection relation of a point P, of coordinates cP =
(c X ,c Y ,c Z)T in the image plane is given by [131]:


u

v

1

=


1
ρw

0 u0

0 1
ρh

v0

0 0 1

 .


f 0 0 0

0 f 0 0

0 0 1 0

 .


c X
cY
cZ

1

 (4.14)


u

v

1

=


f
ρw

0 0 0

0 f
ρh

0 0

0 0 1 0

 .


c X
cY
cZ

1

 (4.15)

4.3.5.3 Camera’s model and image plane’s dynamics

The considered system in this thesis is presented in figure 4.9, which based on three

essential frames (inertial frame I, camera frame C and target frame O). The camera moves

with the speed vc as the object moves with the speed vo. The camera model is considered as

described in the previous section (perspective projection model). We can write:

rc + X = ro (4.16)

Where: rc presents the camera’s position with respect to the inertial frame, ro presents the

object’s position with respect to the inertial frame and X presents the distance between the

object and the camera in space. We take the derivative on both sides to obtain:

vc + Ẋ = vo (4.17)

With: vo and vc are expressed in the inertial frame I. The measure of X gives:

Ẋ =
◦
X +ωc × X (4.18)

where
◦
X is the derivative of X corresponding to the camera frame and ωc shows the rotation

speed of the camera relative to the inertial frame I. We obtain as follows:
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Figure 4.9: The relation between frames.

◦
X =−vc −ωc × X +vo (4.19)

The speed coordinates of a target point are measured in the camera frame as follows:


˙c X
˙cY
˙cZ

=−


vcx

vc y

vc z

+


vox

vo y

voz

+


ωz

cY −ωy
cZ

ωx
cZ−ωz

c X

ωy
c X −ωx

cY

 (4.20)

with : vc = [vcx ,vcy ,vcz ,ωcx ,ωcy ,ωcz ]
T .

Deriving the equation 4.10, we obtain:

ẋ = f Ẋ c
c Z − f X c ˙c Z

c Z2

ẏ= f Ẏc
c Z − f Yc ˙c Z

c Z2

(4.21)

Using the equation 4.20 and the equation 4.21 we immediately obtain:

ẋ =− vc x−vo x
c Z + x vc z−vo z

c Z + xyωcx − (1+ x2)ωc y + yωc z

ẏ=− vc y−vo y
c Z + y vc z−vo z

c Z − xyωc y + (1+ y2)ωcx − xωc z
(4.22)

with: s = [x y]T . Finally, the relation between the temporal variation of the image features

ṡ and the spatial velocity of the camera vc is expressed through equation 4.23.

ṡ = Levco (4.23)

where:

Le =
[
− 1

Zc
0 x

Z xy −(1+ x2) y

0 − 1
Zc

y
Z (1+ x2) −xy −x

]
(4.24)
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and:

vco =



vcx −vox

vc y −vo y

vc z −voz

ωcx

ωc y

ωc z


(4.25)

4.3.6 Stability analysis

4.3.6.1 Global asymptotic stability

To ensure the stability of the system, an analysis is done. We used the Lyapunov

analysis [120]. We consider the candidate Lyapunov function defined by the standard

squared error:

L = 1
2
||e(t)||2 (4.26)

whose derivative is given by:

L̇ = eT ė

L̇ =−λeT LeL̂+
e e

(4.27)

Overall asymptotic stability is guaranteed when the condition given by equation 4.28 is

fulfilled so that the product matrix is positive definite.

LeL̂+
e > 0 (4.28)

4.3.6.2 Local asymptotic stability

It is deduced from [120] that local stability can be ensured with a new error:

e′ = L̂+
e e (4.29)

whose derivative is given by:

ė′ = L̂+
e ė+ ˙̂L+

e e

ė′ = (L̂+
e Le +O)Vc

(4.30)

Where O is a matrix ∈ R6×6 that will be zero, when e = 0 and close to zero in the neighbor-

hood of the reference. Using the equation 4.5, we obtain:

ė′ =−λ(L̂+
e Le +O)e′ (4.31)
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which guarantees a local stability in the neighborhood of e = 0 if L̂+
e Le > 0 is positive

definite. This study is used in the next chapter to verify local stability when the drone is

hovering at the reference point.

4.3.6.3 Stability proof for dynamic image

In IBVS, four image points are controlled. In the case of a dynamic image, this relation

cannot be held because ṡ∗ 6= 0. Taking the time derivative of equation 4.1 gives:

ė(t)= ṡ(t)− ṡ∗ (4.32)

thus:

−λe = Levc − ṡ∗ (4.33)

This is rearranged to obtain the desired control law, with the entry vc:

vc = L̂+
e (−λe+ ṡ∗) (4.34)

Here, the Moore-Penrose pseudo-inverse given in equation 4.6 is used. Based on Theorem

4.18 of Khalil’s manual [132], where it is described in the following [133]:

Lemma 1. Let D ⊂ Rn a domain that contains the origin and V : [0,∞)×D −→ R is a

continuous and differentiable function, such as:

α1(||x||)≤V (t, x)≤α2(||x||) (4.35)
∂V
∂t

+ ∂V
∂x

f (t, x)≤−W3(x),∀||x|| ≥µ> 0 (4.36)

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class functions K and W3(x) is a continuous positive

definite function. Taking r > 0 such as Br ⊂ D and suppose that:

µ<α−1
2 (α1(r)) (4.37)

So, there is a function β of class KL. The initial state x(t0) that satisfies ||x(t0)|| ≤α−1
2 (α1(r)),

there is T ≥ 0 (Depends on x(t0) and µ) such as the solution satisfied :

||x(t)|| ≤β(||x(t0)||, t− t0),∀t0 ≤ t ≤ t0 +T (4.38)

||x(t)|| ≤α−1
1 (α2(µ)),∀t ≥ t0 +T (4.39)

Moreover, if D =Rn and α1 belong to the class K∞, the two previous equations are valid

for any initial state x(t0), without restriction as to the size of µ.

In the lemma above, a class function K is a continuous function α : [0,a)−→ [0,∞) which
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strictly increases and has α(0)= 0. It is furthermore K1 if a =∞ and α(r)−→∞ as r −→∞.

A class function KL is a continuous function β : [0,a)× [0,∞)−→ [0,∞) if for each fixed s,

correspondence β(r, s) is of class K compared to r and, for each fixed r, the correspondence

β(r, s) decreases compared to s and β(r, s) −→ 0 as s −→ ∞. We consider the candidate

Lyapunov function defined by equation 4.26. Then by appling equations 4.27 and 4.32 lead

to:

L̇ = eT (ṡ(t)− ṡ∗) (4.40)

By replacing in equations 4.2 and 4.34:

L̇ = eT [LeL̂+
e (−λe+ ṡ∗)− ṡ∗]

L̇ =−λeT LeL̂+
e + eT LeL̂+

e ṡ∗− eT ṡ∗
(4.41)

We pose:

Λ= (1−LeL̂+
e )

L̇ =−λeT LeL̂+
e − eTΛṡ∗ (4.42)

We observe that:

eTΥ≤ 1
2

eT e+ 1
2
ΥTΥ (4.43)

By taking Υ=Λṡ∗, we obtain:

eTΛṡ∗ ≤ 1
2

eT e+ 1
2

ṡ∗TΛTΛṡ∗ (4.44)

thus:

L̇ ≤−λeT LeL̂+
e e+ 1

2
eT e+ 1

2
ṡ∗TΛTΛṡ∗ (4.45)

Tacking Γ= (λLeL̂+
e −1

2 ), in this case, there exists a quadratic form of a real, non-symmetrical,

square matrix. Due to the quadratic form eTΓe, only the symmetrical part of Γ will affect

the result:

Γs = Γ+Γ
T

2
(4.46)

As this part is symmetrical and square, its eigenvalues will be real. We further assume

that Γs is set positive. This allows you to write:

L̇ ≤−λmin(Γs)||e||2 + 1
2

ṡ∗TΛTΛṡ∗ (4.47)
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Similarly, it is easily proven that ΛTΛ is semi-definite positive.

Thus : ṡ∗TΛTΛṡ∗ ≤λmax(ΛTΛ)||ṡ∗||2

L̇ =−λmin(Γs)||e||2 +λmax(ΛTΛ)||ṡ∗||2 (4.48)

This is an equation of the form by by2 −ax2 = (
p

b y+p
a x)(

p
b y−p

a x), thus :

(
p

b
√
||ṡ∗||2 +p

a
√
||e||2 )(

p
b

√
||ṡ∗||2 −p

a
√

||e||2 ) (4.49)

The first term is always positive. The result will be negative if the second term is negative.

As a result, the requirement is that:

p
b

√
||ṡ∗||2 −p

a
√

||e||2 ≤ 0

||e||2 ≥ b
a ||ṡ∗||2

(4.50)

So, if the error is greater than
√

λmax(ΛTΛ)
λmin(Γs)

||ṡ∗||, the derivative of the Lyapunov function

will be negative. As it is not possible to determine when the error is equal to zero as long as

the desired image points move. The error will converge to zero once the points have stopped

moving.

Returning to the theorem 4.18 [132]. We are looking for the functions of class K defined

continuous, [0,a)−→ [0,∞), strictly growing, and having α(0)= 0. The function is K∞ and

even have α=∞ and α(r)−→∞ for r −→∞.

By selecting α1(e) = 1
4 ||e||2 and α2(e) = ||e||2, with: α−1

1 (e) = 2
p

e and α−1
2 (e) = p

e , these

functions are continuous, strictly increasing, α1(0)=α2(0)= 0. Moreover, they go to infinity

as e goes to infinity. So these functions are K∞, and satisfy equation 4.35.

1
4
||e||2 ≤ 1

2
||e||2 ≤ ||e||2 (4.51)

W3 must be a continuous positive definite function. In this case, choose W3(e) = lim
c→0+ce2,

which means that for reasonable values of e and ṡ∗, the function W3(e)≈ 0. Because V̇ (e)≤ 0

is true for:

e ≥
√

λmax(ΛTΛ)
λmin(Γs)

||ṡ∗|| , W3(e)≈ 0

In equation 4.36, µ can be set to µ= (
√

λmax(ΛTΛ)
λmin(Γs)

||ṡ∗||+0.1), since V̇ must always be negative

for µ≥ ||e||, and it is possible to have V̇ = 0 when µ=
√

λmax(ΛTΛ)
λmin(Γs)

||ṡ∗||.
Indeed, D = Rn and α1(e) is K∞, so the equations below are worth for all x(t0), without

restriction on µ. We thus satisfied the conditions of the theorem 4.18 [132] and there exists

a time T such that:
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||e|| ≤β(e(t), t) , ∀t0 ≤ t ≤ T (4.52)

||e|| ≤ 2µ , ∀t ≥ T (4.53)

Thus:

||e|| ≤ 2

√
λmax(ΛTΛ)
λmin(Γs)

||ṡ∗||max +0.2 , ∀t ≥ T (4.54)

Where β is an unspecified function of KL class. Note that the t0 dependency has been

removed because our system is standalone, thus, the dynamics do not change over time.

The observed error will be limited by the movement’s speed of displacement of the desired

image, scaled by the eigenvalues of the matrices Γs and ΛTΛ which means that the camera

can instantly accelerate to the desired value.

4.4 Conclusion

In this chapter, we have given an overview of the drones. Then we presented a detailed

review of the visual servoing approaches applied to them. After discussing the definition of

visual servoing and its three approaches, we have described the basic concepts of visual

servoing in terms of the digital image plane and the projection model and even the stability

proof of the IBVS approach.
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5.1 Introduction

This chapter presents the modeling of a drone and the design of the control laws for a

visual tracking application. We adopt the basic concept of the IBVS approach to allow the

quadrotor to autonomously tracking a target object by keeping it centered on the image

plane. The points that we are interested in are described as follows:

• The dynamic model of the system and the design of a proportional-derivative controller

that stabilizes the quadrotor. Indeed, we propose to optimize the performances of this

controller by the bat algorithm (BA), where its utility is to minimize the error by

optimizing the gains of the PD controller.

• The image-based controller design takes into account both the dynamics of the quadro-

tor and the movement of the target;

• Detect and maintain accurately the target in the camera’s FOV.

This chapter is organized as follows. Section 5.2 describes the quadrotor’s dynamics as well

as the considered model. Then, we present the control scheme based on the BA and the

verification of its validity in section 5.3. Section 5.4 presents the simulation of the control

scheme based on the IBVS approach.

5.2 Modeling and dynamics of the quadrotor

5.2.1 Operation

A quadrotor is a helicopter with four rotors mounted symmetrically around its center.

Its movement results from the increase or decrease of rotational speeds of all rotors. The

quadrotor design is illustrated in figure 5.1.a. Two motors mounted on the same arm rotate

in a different direction from the two other motors mounted on the second arm, which

cancels the aerodynamic effects and gyro moments in the hovering of [134, 135]. Before

deriving the quadrotor model, it is important to explain the mechanism that the quadrotor

uses in its motion shown in figure 5.1.b.

– Lateral motion: This movement is achieved by decreasing the rotational speeds of

the rotors and by increasing the rotational speeds of the opposite rotors to the desired

direction of movement.

– Longitudinal movement The longitudinal movement is obtained by a rotational

moment of the rotors at different speeds, in the same way, that a lateral movement

[136].
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Figure 5.1: (a) Quadrotor design, (b) Quadrotor basic movements [19].

– Altitude motion: This movement is obtained by modifying the speed of all the rotors

of the same quantity, which raises or decreases the quadrotor with respect to the

reference frame [137, 138].

– Roll motion The roll motion is a rotation obtained by simultaneously reversing the

speed of the left and right rotors. This rotation (φ) is produced around the axis x which

causes the quadrotor to move in the direction of the axis y.

– Pitch motion: This movement is a rotation obtained by simultaneously reversing

the speed of the front and rear rotors. The pitching motion (θ) is the rotational motion

around the y axis that causes the quadrotor to move in the direction of the x axis.

– Yaw motion: The yaw movement (ψ) is the rotational movement around the z axis,

obtained by simultaneously reversing the speed of the front and rear rotors and the

left-right torque.

5.2.2 Mathematical model of quadrotor

The system modeling is an essential step in the field of robotics, especially to verify

the suitable behavior of drones to realize a real application. In this section, we present the

model of the quadrotor Parrot AR Drone 2.0 (described in detail in the next chapter).
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5.2.2.1 Model assumptions

Due to the non-linearity and the strong coupling of the system dynamics, it can

be difficult to develop the right model. For that, we present hypotheses simplifying the

modeling task [139, 140]:

– The structure is rigid and symmetrical.

– The center of gravity of the quadrotor coincides with the origin of its body.

– The propellers are rigid.

– The thrust and the drag are proportional to the square of the speed of the propeller.

5.2.2.2 Frames and notations

We first define the frames that they will be used. The modeling of quadrotor consists of

establishing a relationship between its body frame and the inertial frame as a function of

its positions (x, y, z) and Euler angles (φ,θ,ψ). Figure 5.2 shows the reference frames used

to describe the movement of the drone in space. The inertial frame is attached to a specific

location at the ground. Concerned, which is the body frame B, it coincides with the center

of gravity of the vehicle.

Figure 5.2: The reference frames.

– Rotation matrix R

To describe the orientation of the quadrotor in space, two intermediate coordinate

systems must be defined; the vehicle-1 frame v1 and the vehicle-2 frame v2 with the

two previously defined frames [141, 142].

R I
B = R I

v2
.Rv2

v1 .Rv1
B (5.1)
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R I
B =


cψ −sψ 0

sψ cψ 0

0 0 1

 .


cθ 0 sθ

0 1 0

−sθ 0 cθ

 .


1 0 0

0 cφ −sφ

0 sφ cφ

 (5.2)

R I
B =


cθcψ cψsθsφ− sψcθ cψsθcφ+ sψsφ

cθsψ sψsθsφ+ cψcθ sψsθcφ− cψsφ

−sθ cθsφ cθcφ

 (5.3)

where R I
v1

presents the transformation matrix of the reference v1 to the frame I, Rv2
v1

presents the transformation matrix of the frame v1 to the frame v2 and Rv2
B presents

the transformation matrix of the frame B to the frame v2. With c(.) And s(.) Present

the mathematical abbreviations for cos(.) and sin(.) functions respectively.

– Velocities
Using equation 5.3, the linear velocities between the two frames I and B are expressed

as:


vI

x

vI
y

vI
z

= R I
B.


vB

x

vB
y

vB
z

 (5.4)

Concerning the angular velocities, the transformation between the rotational speeds

in the fixed frame I (ζ̇ = [θ̇, φ̇,ψ̇]T ) and those in the body frame B (ω̇ = [ṗ, q̇, ṙ]T ) is

represented in equation 5.5 as follows [142]:


φ̇

θ̇

ψ̇

=


ṗ

0

0

+Rv1
B

−1.


0

q̇

0

+ (Rv2
v1 .Rv1

B )−1.


0

0

ṙ

 (5.5)

Thus, we find:

ζ̇=


1 0 −sφ

0 cθ sθcφ

0 −sθ cθcφ

 .


ṗ

q̇

ṙ

 (5.6)

In the case of small rotations:

{
cθ = cφ= cψ= 1

sθ = sφ= sψ= 0
(5.7)

The ω and ζ vectors are similar.

– Aerodynamic effects
To design an accurate and realistic model, the aerodynamic effects must be included.

There are two types of aerodynamic effects [143], forces and moments (Figure 5.3).
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Figure 5.3: Forces and moments acting on the quadrotor [20].

* Forces

· The quadrotor’s weight: This force results from the impact of the gravity

g on the weight of quadrotor m.

P = m.g (5.8)

· Lift Force: As given by equation 5.9, this force results from the sum of the

forces Fi produced by the rotation of the drone’s engines. Each force Fi is

proportional to the square of a corresponding rotational speed wi, whose

direction is perpendicular to the propellers’ plane.

Fi = k.w2
i

T =∑4
i=1 Fi

(5.9)

Where k presents the lift coefficient.

· Drag force: There are two drag forces acting on the system:

1- A force acts on the propellers. It is proportional to the square of the rotational

speed of each rotor wi

Dr = br.w2
i , i = 1, ...,4 (5.10)

Where br is the coefficient of the drag.

2- A force resulted from the movement of the body along the axes (x, y, z), given

by:

Dm = bm.v (5.11)

where v presents the linear velocity and bm is the translation drag coefficient.

76



5.2. MODELING AND DYNAMICS OF THE QUADROTOR

* Moments
There are two types of moments acting on the body of the quadrotor [142, 143]:

· Moments that produce rotations around the axes (x, y, z): The exis-

tence of a difference between the forces of push and/or drag causes the

creation of these moments.

Mx = l( f4 − f2)= l.k(w2
4 −w2

2)

My = l( f3 − f1)= l.k(w2
3 −w2

1)

Mz = Dr2 +Dr4 −Dr1 −Dr3 = br(w2
4 +w2

2 −w2
3 −w2

1)

(5.12)

Where l is the distance between the center of mass of the quadrotor and the

rotor’s axis.

The values of wi are extracted as follows:

w1 =
√

T
4k − My

2kl − Mz
4br

,

w2 =
√

T
4k − Mx

2kl + Mz
4br

,

w3 =
√

T
4k + My

2kl − Mz
4br

,

w4 =
√

T
4k + Mx

2kl + Mz
4br

· Gyro moments due of the following movements::

· Quadrotor movement.

G yr1 = ζ̇∧ Jζ̇ (5.14)

with: J is the system’s inertia, ∧ is the vector product and ζ̇ is the angular

velocity in the fixed frame I.

· The rotation of the propellers.

G yr2 =
4∑

i=1
ζ̇∧ Jr[0 0 (−1)i+1wi]T (5.15)

5.2.2.3 Mathematical model

The quadrotor’s model can be divided into two subsystems; rotation subsystem

(roll φ, pitch θ and yaw ψ) and translation (altitude z and positions x and y). The

rotation subsystem is fully actuated while the translation subsystem is under-actuated

[143–145].

1- Translational motion equations: We use Newton’s second law, where the

forces applied to the system are expressed in the fixed inertial frame I as:

mΘ̈= Fg +Ft +Fd (5.16)
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with:

Θ: the quadrotor position vector [x, y, z]T ,

m: the total mass of the quadrotor,

Fd: drag force.

Fd =


−ax 0 0

0 −ay 0

0 0 −az

Θ̇ (5.17)

Where ax,ay and az are the coefficients of the drag force.

Ft: total force generated by the rotors,

Ft = R I
B ×


0

0

T

 (5.18)

Fg : force of gravity,

Fg =


0

0

−mg

 (5.19)

Therefore, we get:

m


ẍ

ÿ

z̈

=−mg.


0

0

1

+T


cψsθcφ+ sφsψ

sψsθcφ− cψsφ

cφcθ

−


ax 0 0

0 ay 0

0 0 az

 .


ẋ

ẏ

ż

 (5.20)

We then obtain:


ẍ

ÿ

z̈

=


T
m [cψsθcφ+ sφsψ]− ax

m ẋ
T
m [sψsθcφ− cψsφ]− ay

m ẏ
T
m [cφcθ]− az

m ż− g

 (5.21)

2- Rotational equations: Idem, we use Newton’s second law to develop equations

of the rotational motion.

We have :

Jζ̈=−G yr1 +M f −G yr2 (5.22)
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with:

M f =


Mx

My

Mz

 (5.23)

J =


Ix 0 0

0 I y 0

0 0 Iz

 (5.24)

Ix, I y and Iz present the coefficients of aerodynamic friction. Therefore, we get:


Ix 0 0

0 I y 0

0 0 Iz



φ̈

θ̈

ψ̈

=−


φ̇

θ̇

ψ̇

∧




Ix 0 0

0 I y 0

0 0 Iz



φ̇

θ̇

ψ̇


+


Mx

My

Mz

−


JrΩrφ̇

−JrΩrθ̇

0

 (5.25)

with:

Ωr = w1 +w3 −w4 −w2 (5.26)

Finally, the rotation equations are given by:


φ̈

θ̈

ψ̈

=


(I y−Iz)

Ix
θ̇ψ̇

(Iz−Ix)
I y

φ̇ψ̇
(Ix−I y)

Iz
θ̇φ̇

+


−Jr θ̇Ωr

Ix
Jrφ̇Ωr

I y

0

+


Mx
Ix
My
I y
Mz
Iz

 (5.27)

The complete dynamic model of the quadrotor is as follows:



ẍ

ÿ

z̈

φ̈

θ̈

ψ̈


=



T
m (cψsθcφ+ sφsψ)− ax

m ẋ
T
m (sψsθcφ− cψsφ)− ay

m ẏ
T
m (cφcθ)− az

m ż− g
(I y−Iz)

Ix
θ̇ψ̇− Jr θ̇Ωr

Ix
+ Mx

Ix
(Iz−Ix)

I y
φ̇ψ̇+ Jrφ̇Ωr

I y
+ My

I y
(Ix−I y)

Iz
θ̇φ̇+ Mz

Iz


(5.28)

3- The state representation of the system: In our case, we consider X as the

state vector of the model:

X = [φ φ̇ θ θ̇ ψ ψ̇ x ẋ y ẏ z ż]T (5.29)
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Avec:

X = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]T (5.30)

We obtain :



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

ẋ12



=



x2
(I y−Iz)

Ix
x4x6 − Jr x4Ωr

Ix
+ Mx

Ix

x4
(Iz−Ix)

I y
x6x2 + Jr x2Ωr

I y
+ My

I y

x6
(Ix−I y)

Iz
x2x4 + Mz

Iz

x8
T
m (cx5sx3cx1 + sx5sx1)− ax

m x8

x10
T
m (sx5sx3cx1 − cx5sx1)− ay

m x10

x12
T
m (cx3cx1)− az

m x12 − g



(5.31)

Since the dynamics of the quadrotor is based on the creation of the rotations, it

is inevitable to release the U commands of the quadrotor depending on these

rotations, i.e.


T

Mx

My

Mz

=


k k k k

0 −lk 0 lk

−lk 0 lk 0

−br br −br br




w2

1

w2
2

w2
3

w2
4

 (5.32)

By putting: 
U1

U2

U3

U4

=


T

Mx

My

Mz

 (5.33)

The system state representation can be written as follows:

Ẋ = f (X ,U) (5.34)

with :
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f (X ,U)=



x2
(I y−Iz)

Ix
x4x6 − Jr x4Ωr

Ix
+ U2

Ix

x4
(Iz−Ix)

I y
x6x2 + Jr x2Ωr

I y
+ U3

I y

x6
(Ix−I y)

Iz
x2x4 + U4

Iz

x8
U1
m (cx5sx3cx1 + sx5sx1)− ax

m x8

x10
U1
m (sx5sx3cx1 − cx5sx1)− ay

m x10

x12
U1
m (cx3cx1)− az

m x12 − g



(5.35)

The parameters of the model are shown in table 5.1 [140]:

Table 5.1: The parameters of the model

Parameter Description Value
k Coefficient of lift 8.048×10−6N.S2

br Coefficient of drag 2.43×10−7Nm.s2

Ix Moment of inertia along the axis x 0.002237568kg.m2

I y Moment of inertia along the axis y 0.002985236kg.m2

Iz Moment of inertia along the axis z 0.00480374kg.m2

ax,ay,az coefficients of the drag force 0.25Nm.s2

l Distance between the center of gravity and each propeller 0.1785m
m Mass 0.450kg
g Gravity 9.81m/s2

Jr Rotor inertia 2.029585×105kg.m2

5.3 Control law design

The aspect of servoing is the essential and often necessary aspect in the robotic

field when it is expected that the system behaves in the desired manner depending on

the inputs. In other words, the looped system can maintain a signal of input (set of

points for example) by correcting the produced error. More precisely, the system must

base on a designed control law that corrects the measured error between the input

and the output. In this section, we present a control system based on the hybridization

between the 2-D visual servoing approach, and the optimization of the PD’s gains

using the bat algorithm (BA), where the goal is to stabilize the mathematical model

previously developed in the course of performing properly the task of visual object

tracking.
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Figure 5.4: PID controller architecture.

5.3.1 The PID controller

As its name suggests, the principle of the Proportional (P) Integral (I) Derivative

(D) controller resides in three essential actions:

* Proportional action: The error is multiplied by a gain kp.

* Integral action: The error is integrated over an interval t, then multiplied by

a gain ki.

* Derivative action: The error is derived over an interval t, then multiplied by

a gain kd.

The combination of these three actions differs into three architectures: series, parallel

or mixed. In our work, we use the parallel architecture shown in figure 5.4.

5.3.1.1 Altitude and orientation controllers

Since the quadrotor is an under-actuated system, four PID controllers are de-

veloped to control the altitude z, the roll φ, the pitch θ and the yaw ψ motions. The

PID controller has been simplified to become a PD controller since no steady-state

error has been observed (Figure. 5.5), where the responsible vector for controlling the

quadrotor to the desired inputs is given as follows:

[Uz Uφ Uθ Uψ]T = [U1 U2 U3 U4]T
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Figure 5.5: System architecture.

With: 
U1

U2

U3

U4

=


kp1(zd − z)+kd1(żd − ż)

kp2(φd −φ)+kd2(φ̇d − φ̇)

kp3(θd −θ)+kd3(θ̇d − θ̇)

kp4(ψd −ψ)+kd4(ψ̇d − ψ̇)

 (5.37)

The symbols Ux and Uy present two commands, called virtual, used to generate the desired

angles φd and θd.

Ux = kp(xd − x)+kd(ẋd − ẋ)

Uy = kp(yd − y)+kd( ẏd − ẏ)
(5.38)

where:



kp: Proportional gain,

kd: Derived gain,

zd: desired altitude,

φd: desired roll,

θd: desired pitch,

ψd: Desired yaw.

5.3.1.2 Position controller

As shown in figure 5.5, it is clear that the quadrotor’s positions along the axis x and y are not

directly controlled by the commands U1, ..,U4. The roll and pitch commands will be used as an

intermediates to calculate the desired accelerations ẍ and ÿ.
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By giving :

Ux = ẍd = U1
m (cψsθd cφd + sψsφd)− ax

m ẋ

Uy = ÿd = U1
m (sψsθd cφd − cψsφd)− ay

m ẏ
(5.39)

We can use the small angle hypothesis (sinθd = θd; sinφd = φd et cosθd = cosφd = 1), since

during the operation of the quadrotor, small change (between -20° to 20°) for roll and pitch angles

occur, which results in neglected small gyroscopic effects. We can rewrite equation 5.39 as:

Ux = U1
m (cψθd + sψφd)

Uy = U1
m (sψθd − cψφd)

(5.40)

which can be inverted to get the desired roll and pitch angles φd and θd:

φd = m
U1

(Uxsψ−Uycψ)

θd = m
U1

(Uxcψ+Uysψ)
(5.41)

5.3.1.3 Bat algorithm (BA)

The bat algorithm (BA) is one of the efficient metaheuristics [146]. It simulates the echolo-

cation characteristics of bats with different emission rates and pulse intensities. Since its first

implementation, BA has proven to perform better than other well-known algorithms in solving

a wide range of global optimization issues. Also, studies have shown that this algorithm has

become an active area of research due to the appearance of several BA extensions. In this section,

we focus on the use of bat algorithm in our work.

Table 5.2: BA parameters

Parameter Value
Population size 25
Pulsation rate r 0.55

Loudness A 0.25
λ 0.9
ω 0.99

5.3.2 Procedure

The basics of bat algorithm can be summarized in the following idealized three rules [146].

* All bats use echolocation to detect distance, and they can also distinguish

between food/prey and obstacles;

* For the prey searching, each bat flies randomly with a velocity vi to the position

xi with a fixed frequency and loudness. According to the proximity of the target,

they adjust automatically the wavelength (or frequency) of their emitted pulses.
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Algorithm 1 Pseudo-code of bat algorithm
Input: Problemsize, PD’s gains of the previous step.
Output: PD∗

for i = 1 to n do
xi ← rand(Problemsize,n);
vi ← rand(Problemsize,n);
Define qi at xi;
Initialize the pulse rates r0

i and the loudness A0
i ;

Generate PD i(n,Problemsize);
end
while (iteration number < 150)

Generate new solution according to Eq.s (5.42) to (5.45);
if rand > r i do

Select a solution among the best solutions;
Generate a local solution around the selected;
best solution according to Eq.(5.46);

end
Generate new solution by flying randomly;
if (rand > A)&( f (xi)< f (x∗))&( f (PD i)< f (PD∗)) do

accept the new solutions;
Generate a local solution around the selected;
increase r i and decrease A i using Eq.(5.47);

end
Extract the current best x∗,PD∗ from the best bat;

end
return PD∗;

* It is assumed that the loudness A varies from a large (positive) value A0 to a

minimum value Amin.

5.3.2.1 Gain based scheduling via BA algorithm

The position xt
i −1 and the velocity vt

i −1 of the ith bat are defined in a d-dimensional search

space, and they are updated subsequently in each iteration. The new solutions xt
i, PD t

i and

velocities vt
i at time step t are calculated using the following equations [147].

qi = qmin + (qmax − qmin)β (5.42)

vt
i = vt−1

i + (xt−1
i − x∗)qi (5.43)

xt
i = xt−1

i +vt
i (5.44)

PD t
i = PD t−1

i +vt
i (5.45)

β ∈ [0,1] is a random vector drawn from a uniform distribution. i = 1, ..,n, x∗ is the current global

best solution among all the bats at the current iteration. qi is the frequency value of the ith bat
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Figure 5.6: Setting the PD controller using the BA.

and PD t
i present the candidate PD’s gains generated for each bat in time step t. For the local

search part, once a solution is selected among the current best solutions, a new solution for each

bat is generated using random walk i.e.,

xnew = xold +εAt

PDnew = PDold +εAt (5.46)

where ε ∈ [0,1] is a random value, xold, PDold are the solutions in the current optimization

solution set, and At is the average loudness of all the bats at time step t. In addition, the loudness

A i and the pulse rate r i are updated if the solution is found, i.e.,

At+1
i =ωAt

i

rt+1
i = r0

i [1− e−λt]
(5.47)

where r0
i is the initial pulse rate, ω is the loudness attenuation coefficient and λ is the pulse’s

increasing coefficient. For any ω> 0, and λ< 1 and for t →∞, we have:

At
i → 0 and rt

i → r0
i (5.48)

The basic steps of BA can be summarized as the pseudo-code shown in Algorithm 1 [146].

5.3.2.2 Tests and simulation

In the context of managing the PD controller’s limit to stabilize the system, the chosen

parameters for all the PD’s controllers are adjusted using the bat algorithm, where the objective

function is established to minimize the stabilization time as much as possible. The BA parameters

are shown in table 5.2.

The developed PD controller based on gain scheduling is shown in figure 5.6.
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* Altitude controller: For the altitude controller, the BA was used to select

control’s gains for the PD controller with the desired altitude zd of 3m. The

gains generated by the BA were kp = 4.658 and kd = 2.981. Table 5.3 shows the

performance obtained from the simulations, where the gains obtained give a

stabilization time of St = 1.97s and an overflow of D = 1.36%.

* Rotation controllers: Similarly, the gains of rotation controllers presented in

table 5.3. The system responses and the control inputs are shown in figures 5.7

Figure 5.7: System responses

Table 5.3: Simulation results

Parameter Desired value kp kd St(s) D(%)
Altitude (z) 3(m) 4.658 2.981 1.970 1.36

Position (x et y) 2(m) 9.545 5.102 1.678 1.67
Roll/Pitch (φ,θ) 20° 8.557 1.235 1.3036 3.72

Yaw (ψ) 20° 32.652 5.213 1.2814 5.70
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Figure 5.8: Control signals

and 5.8 respectively. It is apparent that the pitch φ and the roll θ control signals

seem equivalent due to the symmetry of the quadrotor. On the other hand, this

fact has been verified and demonstrated for the positions x and y which are

equivalent for the same reason.

* PD based on gain scheduling: As mentioned briefly, the quadrotor is an

under-actuated system, which implies that it is controllable through four control

inputs and six outputs. Two main choices are possible. The first is to control

angular velocities and total thrust. The second choice is to control the velocities

in the Cartesian directions, as well as the yaw angle. In this subsection, we

design a self-adjusting PD controller for trajectory tracking. We maintain the

trajectory tracking capability optimally by setting four PD controllers for the ψ

angle and the positions {x, y, z} along the desired path given by:
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xd = 0.5.cos(t),

yd = 0.5.sin(t),

zd = 1+ t
10

ψd = 5◦

(5.49)

with: −90◦ < θ, φ< 90◦.

During the tracking process, the BA operates as follows. First, it generates a

"random population of bats" where each bat aims to find its prey, which in our

case will be a vector of the gains of the PD controller. The gains on the iteration

t−1 are used to initialize the BA at iteration t, as shown in figure 5.6. We use the

basic control law presented by equation 5.37 and the gains obtained at iteration

t−1 to minimize the time of establishment by the following objective function:

Ts =− ln(0.02)
ξwn

(5.50)

Where ξ and wn are the damping and the natural pulsation calculated for each

system response.

By applying 150 iterations, the dynamics of the BA can effectively give the

appropriate gains of the PD controllers that guarantee the stability of the

system. We show in the figure. 5.9 the performance of the system to follow the

desired trajectory in the 3-D plane. In addition, figure 5.10 shows the system

responses.

From figures. 5.8 to 5.10, it is very clear that the PD control based on the BA

provides the stability that gives suitable tracking results.

5.4 Visual servoing based on the image

Our work in this section is divided into two parts: The first part deals with the

object tracking task where the object is prefixed to the desired position. Indeed, we

aim to validate that the IBVS approach is suitable to control the developed model of

the drone. In the second part, we demonstrate that the same law is useful to control

the drone to follow a dynamic object. The simulations have been implemented in

MATLAB/Simulink.
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Figure 5.9: The desired and simulated trajectories.

5.4.1 IBVS control law design

The relationship between the dynamics of the point in the image plane and the

speed of the camera is the key to designing the control law (described in chapter 4). To

follow an object with precision it is inevitable to specify at each moment the object by

a bounding box centered on it. For this purpose, it is commonly considered that the

target object will be the four corners of the object for the following reasons [133]:

- The squares are frequently visible because they have an identifying feature that

allows the detection of orientation (a corner with a specific color).

- Visual object trackers use squares (bounding box) to locate the tracked object.

- Delete the limit for the IBVS implementation. Three points are insufficient to

represent practically the object.

We adopt that the object feature vector s and the vector of the desired features s∗ are

presented by:

s =
[

u1 u2 u3 u4

v1 v2 v3 v4

]
(5.51)

and

s∗ =
[

u∗
1 u∗

2 u∗
3 u∗

4

v∗1 v∗2 v∗3 v∗4

]
(5.52)
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Figure 5.10: System responses.

The error is defined as:

e = s(t)− s∗ (5.53)

As detailed in chapter 4, we adopt the relation 4.23 of which Le ∈ R8×6. Figure 5.11

shows the architecture of the proposed control method. This method calculates the

feature velocity expressed in the camera coordinate system to drive the drone to

the desired position. As noted in the quadrotor modeling section, we can provide a

reference signal for the translations along the axis x, y, z and the ψ rotation.

The control architecture consists of three main subsystems: the quadrotor controllers,

the visual sensor, and the image-based controller. The inputs of the quadrotor con-

trollers are: the reference velocity vector v∗q, which is obtained by multiplying the

desired velocity vector of the camera v∗c by the homogeneous transformation matrix

T c
q, and the quadrotor state vector Xq = {x, y, z,φ,θ,ψ}. This vector is returned to the

visual sensor model as a homogeneous transformation matrix 4×4, using the transfor-

mation matrix T given by equation 5.54. Similarly, the homogeneous transformation
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matrix of the quadrotor T I
q is determined from the output vector Xq. Then, T I

q is

converted to a homogeneous camera transform matrix T I
c using the matrix Tq

c .

Figure 5.11: System architecture.

T =
[

R I
B V

O 1

]
(5.54)

With: V = [x, y, z]T , O = [0,0,0] and R I
B is expressed by equation 5.3.

Concerned the visual sensor model, as shown in figure 5.12, it is decomposed from

a camera model and an image processing block. The camera provides the image to

the image processing block to construct the feature vector s. The image processing

block requires the models of camera C and object O [148]. We define the target object

as four 3-D points of coordinates P = (X ,Y , Z) [149]. Each point is projected as a 2-D

point with the coordinates p = (x, y), i.e.

x = f X
Z = pu − cu

y= f Y
Z = pv − cv

(5.55)

Where pu and pv represent the coordinates of the image point in pixels. The set of

parameters (cu, cv, f ) present the intrinsic parameters of the camera. (cu, cv) and ( f )

are the coordinates of the main point and the focal length, respectively.
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Figure 5.12: Visual sensor model.

5.4.1.1 Simulations and results

In this subsection, we aim to check the theoretical work presented above (quadro-

tor control for trajectory tracking) using the IBVS controller. We show the IBVS

controller response when the quadrotor immediately reached the desired setpoints

and to ensure that it satisfies the proof of stability presented in chapter 4. Also, we

present the advantages of using the bat algorithm presented previously to control the

quadrotor, using the classic IBVS approach in terms of guaranteeing the stability and

accuracy of the vision controller to achieve the desired optimal positions.

The simulation was performed using a visual servo toolbox in MATLAB [149]. The

quadrotor has an eye-in-hand configuration, where the camera is considered fixed in

the center of the quadrotor. The camera is supposed to be fully controllable (6 DOF).

The figure 5.13 shows the quadrotor frame Fq, the camera frame Fc and the object

frame Fo. It is assumed that the object is described by a square of length 0.25 m and

it is located at the position X p = (0,0,0). The simulations run for 25 seconds with time

steps of 0.05 second. The homogeneous transformation matrix of the quadrotor T I
q

is determined from the output vector Xq. Then, T I
q is converted to a homogeneous

camera transform matrix T I
c using the matrix Tq

c .

• Static object: We start with the case where the target is immobile, at the

position (0,0). The camera must follow two trajectories, where the object must

be maintained in the FOV. Table 5.4 presents the suggested trajectories. The

proportional gain is set to λ = 2. This value is chosen to stabilize both image

errors and the Cartesian errors at a time not exceeding 4 second. The initial and

the desired images for the target are given in figure 5.14 (a).

We start with the first trajectory, where the initial image is taken at the height 2

m. The rotation angles are initialized by {π2 ,0,−π
2 }. The desired image is taken
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Figure 5.13: Illustration of frames: quadrotor, camera and object.

directly in front of the target at the position (0,1.5) m with pitch and roll of 0◦

and yaw of 90◦. Concerned the second trajectory, it is desirable that the camera

reaches the position (0,−1.5,0) and the orientation (0,0, π2 ), where the initial

image is taken directly in front of the target at position (2.1521,−2.0901) with

pitch and roll of 0◦ and yaw of −90◦. The results are shown in figures 5.14 and

5.15.

Figure 5.14.a shows that the IBVS-BA controller is more robust than the IBVS in

terms of reaching the desired position. This is evident in the absence of overshoots

in the exponential convergence of errors presented in figure 5.15.c. During the

movement from the first position to the end position, the camera path is shown

in figure 5.15 (a-b). It can be seen that the quadrotor maintains a stable pitch

and roll angles and reaches the desired yaw angle. At the same time, it provides

a favorable arrival to the desired position. Figure 5.14.b shows the quadrotor

velocities during its movement. vx,vy,vz represent the linear velocities of the

Table 5.4: Trajectories of the camera.

Trajectory 1 Trajectory 2
Initial condition {0,0,2, π2 ,0,−π

2 } {2.1521,−2.0901,0,0,0,−π
2 }

Final condition {0,1.5,0,0,0, π2 } {0,−1.5,0,0,0, π2 }
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Figure 5.14: (a) Trajectories of the feature points and (b) Errors of the feature points for trajectory
1 (Left) and trajectory 2 (Right).

quadrotor and wz represents the angular velocity around the axis z. It is clear

that all speeds reach zero at the desired position.

To prouve that the IBVS control scheme is asymptotically stable for both trajecto-

ries, we plot in the figure 5.16 the value of the candidate function L = 1
2 ||e(t)|| and

its derivative L̇ =−λeT JJ+e. This guarantees the overall asymptotic stability

of the control law.

• Dynamic object: We consider the case where the target starts from the position

(0,0) following the trajectory:
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Figure 5.15: (a) Positions, (b) orientation and (c) velocities of the camera for trajectory 1 (Left)
and trajectory 2 (Right).
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Figure 5.16: The values of the candidate function of Lyapunov and its derivative.

Figure 5.17: The desired and the actual trajectories.

xo = 0.05∗ cos(t),

yo =−1− t/10,

zo = 0.05∗ sin(t)

(5.56)

97



CHAPTER 5. IMAGE-BASED CONTROL LAW DESIGN FOR QUADROTOR CONTROL

Figure 5.18: (a) Desired and actual trajectory in the image plane, (b) desired and actual trajectory
in 3-D plane, (c) velocities of the camera and (d) errors of the feature points.

The camera starts from the position {2.1521,−2.0901,0,0,0,−π
2 }, and it must

make the first two rotations of 5◦ around the axis z in positive then in the

negative directions, and then track the object during the rest of the simulation.

As it is shown in figures 5.17 and 5.18, the camera suitably follows the target,

which resulted in the quick convergence to the desired position. Figure 5.19

shows that the IBVS control scheme is asymptotically stable.

98



5.5. CONCLUSION

Figure 5.19: The values of the candidate function of Lyapunov and its derivative.

5.5 Conclusion

In this chapter, we have studied the problem of controlling a quadrotor for a static

and dynamic target-tracking task. After presenting the used quadrotor model, we

described the design of the controllers to control the position and the rotation of the

drone. The proposed system has been validated for a tracking task of a static target

and then a moving target.
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6.1. INTRODUCTION

6.1 Introduction

In this chapter, we introduce a virtual application for a drone to perform ob-

ject tracking tasks. The proposed architecture IBVS-HOG is based on the following

components: the visual tracking method, and robotic operating system (ROS), whose

purpose is to validate the use of the approach of the visual servoing presented in the

previous chapter and the efficiency of the HOG-based visual tracking method proposed

in chapter 3.

In this chapter, we briefly present the adopted drone and the robotic operating

system (ROS), in section 2. Then, in section 3, we proceed to a detailed description of

the proposed method. We present the evaluation of our method on two objects in two

tests of robustness.

6.2 Hardware environment

6.2.1 Parrot AR Drone 2.0

The specific model used in this thesis is Parrot AR Drone 2.0, which was introduced

in 2010 in France. It is a small helicopter with four propellers. It can be controlled

with a device through a Wifi connection (Figure 6.1) [150]. Indeed, it can create itself a

wireless network to which computers or smart-phones under iOS, Symbian or Android

can be connected. Connecting a smart-phone allows the pilot to control the drone

easily and it allows to play with it as a high-tech toy in the AR games, which is the

original idea of Parrot society. The AR Drone parrot is relatively light, about 400 g,

and has a flight endurance of 10−15 min. Table 6.1 gives more technical information.

The drone can hold in position using an ultrasonic altimeter and a pressure sensor.

In addition, it can be controlled to perform position maintenance based on visual

algorithms using the bottom/frontal camera. The propellers are light enough to be

stopped with your hands. The choice of this model was made because of its low price,

about 300 e, its great programming capacity and its vast potential for development.

The great interest in this model has created a huge community on the internet where

the users can share their information and experiences. There are several code storage

platforms such as GitHub [151] that allow users to share different programming

packages and libraries. For a detailed description of this model regarding its equip-

ment, capabilities, and performance, please see [1, 152].

6.2.2 Robot Operating System (ROS)

ROS is an operating system derived from the Unix operating system. It was cre-

ated in 2007 by the Stanford Artificial Intelligence Laboratory as part of the Stanford
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Figure 6.1: Parrot AR Drone 2.0.

Table 6.1: Technical characteristics of AR Drone 2.0 [1].

Weight 380 g without hull , 420 g with hull
Cameras Front HD, 720p: Diagonal Viewing Area 92◦

Bottom: QVGA, 320× 240 Diagonal Viewing Area 64◦

Payload 0−100 g, with 250 g The drone could not take off
Maximum speed 2−3 m/s

Networking 802.11n WiFi
Processor ARMCortex− A8 clocked at 1 GHz

IT Resources Digital Video Signal Processor 800 MHz
256 Mo (1 Gbit) of RAM DDR2

IMU, Ultrasonic Elevation Sensor (6 m)
Sensors Pressure Sensor (+/− 10 Pa precision)

3 gyroscopes
3 accelerometers
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Figure 6.2: Flowchart of control under ROS [21].

AI robotics project (STAIR) under the BSD license (Berkeley Software Distribution)

[153]. This license allows the freedom of commercial use and research in the context of

the development of algorithms in robotics. Continuously and increasingly, the robots

become more and more complex by the requirement of the integration of a large

number of sensors and actuators [154].

Several research institutes have begun to develop platforms that support ROS to

facilitate the rapid implementation of algorithms and to reduce the time required for

the integration of new hardware, by adding new robots and sharing their hardware

documentation, their packages, and their codes [155]. This effect has limited the utility

of ROS to an open-source communication link that manages interactions between

programs and libraries, as shown in figure 6.2.

6.2.2.1 ROS operation

The launch of ROS is equivalent to the launch of the master and the global

parameters server, which allows to store and share the parameters of the robot in a

memory from which each executable program can read and/or modify these parameters.

In fact, the master is the core processor that manages a graphical architecture of

different nodes, messages, and topics [154].

• Nodes: The main feature of ROS operation is represented in its nodes architec-

ture. Each of these nodes is an executable C++ or Python program. Each node is

created to publish and/or read messages of a topic independently of other nodes.

• Messages: The nodes communicate with each other by transmitting messages. A

message is a strictly typed data structure. The standard primitive types (integer,

103



CHAPTER 6. VALIDATION OF THE HOG-BASED OBJECT TRACKING METHOD

floating-point, boolean, etc.) are supported. The messages can be composed of

other messages and arrays of other arbitrarily nested messages.

• Topics: A node sends a message by posting it in a given topic, which is simply a

transport system, which controls how nodes can send and receive information

between them. They can be multiple simultaneous publishers and subscribers

for the same subject, and only one node can publish and/or subscribe to multiple

topics.

6.2.2.2 Ardrone_autonomy

The Ardrone ROS package [156] is a driver developed at Simon Fraser University

in Canada for the AR Drone 1.0 and 2.0. It is open-source which uses the Parrot SDK

to provide an ROS node with a designed interface to control drones and collect all

kinds of information. With this package, the users can communicate with AR Drone

and extract data through topic. These topics are published once the AR Drone is

connected to the computer. The most useful are:

• Navdata, which provides general information about the drone, such as battery

level, acceleration or speed,

• Odometer data to locate the drone,

• IMU data for internal gyroscopes and accelerometers.

The package also allows sent commands, such as take-off and landing commands, as

well as velocity commands to move the quadrotor.

The commands that can be sent to the drone via ardrone_autonomy, are sent by

publishing messages in the topic presented in table 6.2.

Table 6.2: Topics and messages of AR Drone 2.0 [1].

Topic Message Characteristic
/ardrone/reset std_msg/Empty Reset the quadrotor
/ardrone/land std_msg/Empty Give the landing order

/ardrone/takeoff std_msg/Empty Give the take-off order
/cmd_vel geometry_msg/Twist Set the speed of the drone

/ardrone/front/image_raw sensor_msgs/Image Actual image recorded

For simulations, there are several open-source simulators with different characteristics

on unmanned vehicles. The gazebo is a realistic open-source simulator compatible with

ROS [157] that provides the necessary information to simulate a complete unmanned

aerial system. For this purpose, we use the Gazebo simulator, combined with the

ROS-ar2landing_neural package [158], which offers all the necessary tools to simulate

and control the quadrotor.
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We have created a ROS-Matlab node that acts as an IBVS controller: the program

retrieves the visual information from Gazebo, as well as the positions and angles of

the drone. Then, since these positions are known, the node can easily republish them

as shown in figure 6.3.

Figure 6.3: System architecture.

The controller produces control inputs (velocities) that move the quadrotor from its

current pose to the desired pose. The controller receives the estimated visual features

of the detection module (HOG) and sends the flight commands to the AR Drone vehicle.

6.3 ROS-based simulations

Through this section, we present our framework for visual tracking of 3D objects

in motion by an unmanned aerial vehicle. This system can autonomously track a

target object in 3-D motion, maintaining it with a fixed distance and centered it on the

camera’s FOV. The system is tested by the robotic operating system (ROS) in several

scenarios using the drone model discussed previously, demonstrating the robustness

of the system in the face of occlusion, fast motion, and unexpected scale variation. The

results obtained indicate that the proposed system is ideally suited for object tracking.

The hypotheses considered are the following [131] :

- The environment is unknown,

- The model of the object is previously unknown,

- The tracking must be in real-time.

The drone must be in front of the target and perform similar movements for a fixed

altitude.

6.3.1 System architecture

As illustrated in figure 6.4, our visual servoing system is based on two essential

modules.
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Figure 6.4: Framework overview, the drone is controlled via a WiFi connection. The main compo-
nents of the system are the drone driver (ardrone_autonomy package), the HOG-based tracker
and the IBVS controller.

• IBVS controller: The controller based on two entries, which are the centroid of

the bounding box and the size of the target, see figure 6.4. The references are the

desired positions. The goal is to make the drone look at the target and roughly

control its relative position to it.

• HOG-based object tracker: Our tracker proposed in chapter 3 can robustly

track the object via the drone’s video stream. The tracker returns the bounding

box coordinates (position, height, and width) around the tracked object, see

the objects shown in figure 6.5. The only constraint considered important for

obtaining high repeatability during the tests is the following: the initialization

of the tracker must be accurate since the correlation filters used to detect the

object are sensitive to the background of the target.

During the experiments, the tracker generates a feature vector {Cx,Cy,L,H}. The error

function compares the feature of the actual vector to the desired one {C∗
x ,C∗

y ,L∗,H∗}.

The error is entered into the visual controller, which transmits the speed information

to the flight controller. Meanwhile, a state estimation algorithm processes the internal

sensor data to maintain the system’s stability [159]. The simulation was done in

Gazebo [160] for stabilization and tracking tasks, the object is considered as a 3-D

model of a car or a man (Figure 6.5 ) [161].

6.3.2 Tracking strategy

To track an object, it is inevitable that the drone will follow it if it moves. Specifi-

cally, we want the object to be always in the center of the drone’s camera as it moves.
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Figure 6.5: Tracked objects: (a) car and (b) man. Left: The tracker output. Right: Screenshot in
the Gazebo simulator.

Whenever the object tracking is lost, the drone automatically recommended switching

to an internal "hovering" mode.

6.3.2.1 Onboard cameras

The drone has two onboard cameras, one facing forward (front camera) and the

other facing down (bottom camera). The front camera is our main tool for capturing

live video streams, which allows the tracking methods to locate the object. Since this

camera supports 720p video quality, we chose a resolution of 640×360 to reduce the

computing time in real-time without losing too much useful information of the video

stream.
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Figure 6.6: (a) Description of the desired and the actual bounding box coordiantes. (b) Distance
error signals.

6.3.2.2 Distance error signal

We can see in figure 6.6 that the object is not always in the center of the camera.

Therefore, it is reasonable to handle the error signals indicating the distance between

the center of the object and that of the camera. The target object is given by the red

bounding box, the center is defined by the pixel coordinates (Cx,Cy). In addition, the

pixel point (320,180) is defined as the center of the camera (in blue). The error signal

is defined by the center coordinate of the camera minus the center coordinate of the

object, then, we normalize them in the range of −0.5 to 0.5 as follows:

ex = 320−cx
640 ,

e y = 180−cy
360

(6.1)

6.3.2.3 Zone report

When the object appears smaller or larger depending on its distance from the

observer. The bounding box size should be estimated in a suitable way to overlap the

outline of the object. The proposed method addresses this issue during the tracking

process. In this context, we aim to maintain a fixed distance between the target and the

camera using the outline of the target and the estimated bounding box’s coordinates.

We calculate the ratio of these two areas to decide if the object is getting far to or closer

to the observer using the equation 6.2. The idea is to estimate the distance depending

on a computed ratio to give the drone the ability to maintain a fixed distance in front

of the object. The ratio is computed using the desired area of the object (red) and the

current area (yellow) shown in figure 6.6.a.

Ẑd =
√

A i

Aa
(6.2)

With Ẑd, A i and Aa present the ratio, the initial and the current areas of the object

respectively.
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When the drone moves in the desired direction, these errors decrease. Thus, the drone

can follow the object. ex expresses the horizontal errors leading to the horizontal

movement of the drone, while e y expresses the vertical errors leading to the vertical

movement of the drone. The object center (Cx,Cy) should coincide with the center of

the camera (320,180), which indicates the efficiency of the proposed tracking system.

The repport Ẑd is used to keep the distance between the drone and the object.

6.3.3 Simulation results

In this section, we aim to demonstrate that our system maintains the tracking

object task efficiently. The system has been tested for stabilization and tracking tasks

for 10 minutes and the z altitude set to 1 m. If Ẑd = 1, this means that the drone

maintains the desired distance.

6.3.3.1 Stabilization task

The stabilization task is presented to validate the correct behavior of the system’s

hovering in front of the target. Figure 6.7 shows the trajectory of targets car and man

in the camera’s FOV. It is obvious that the two objects remain in the center of the

image, with an average error of 0.6241 and 0.3040 pixels along the x and y axes for

the object car and with an average error of 0.7944 and 0.5133 pixels along the x and y

axes for the object man.

Figure 6.7: Trajectory of: (a) car, (b) man in the camera’s FOV.

Figures 6.8 and 6.9 show the velocities (ẋ, ẏ, ż,ψ̇) and its corresponding telemetry

values. The AR drone is able to be stabilized in front of both objects.

The distance between the quadrotor and the object is important so that the quadrotor

does not collide on the object. We estimate this distance using equation 6.2. The
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Figure 6.8: Commands values of (ẋ, ẏ, ż,ψ̇) and corresponding values obtained by telemetry for
the object man.

estimated distance is accept if Ẑd is around the value 1. Which means that A i and Aa

are equal. Figure 6.10 shows the command Ẑd generated for both objects (Car, Man).

The command values converge to the desired value. All commands signals have an

average close to zero because the drone tracks a static object over a distance that is

conserved based on the estimated ratio Ẑd.

6.3.3.2 Pursuit task

This task is dedicated to the treatment of challenging cases: occlusion and object

scale change. In this context, we decompose this task into two tests. Figure 6.11 shows

that the first test deals with tracking the object car. The object moves quickly along

the x axis with a speed of 1 m/s. During this movement, it is partially covered by a

square of the same color. The second test deals with the tracking of the object man,

which is fixed and does not move. The object man can be completely covered by a

square. In this case, we change its position either by approaching it or by moving it

away from the quadrotor, as illustrated in figure 6.12. The problem of scale variation

is addressed in both tests.

- Teste 1
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Figure 6.9: Commands values of (ẋ, ẏ, ż,ψ̇) and corresponding values obtained by telemetry for
the object car.

Figure 6.10: Command Ẑd generated for the objects (a) man and (b) car.
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Figure 6.11: Example of handling partial occlusion and scale variation cases.

Figure 6.12: The HOG-based tracking method keeps the object in the camera’s FOV during it’s
motion.
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Figure 6.13.a shows the trajectory of the target in the image plane. The displacement

of the car is mainly on the axis x, we naturally observe a larger position error along

this axis. The average error is 9.522 pixels along the x axis and 1.696 pixels along the y

axis. The fact that the average position is positive on the x axis presents the efficiency

of the command to handle the acceleration of the car. The control signals generated by

the quadrotor are shown in figure 6.14. The ranges of t = [44,85]s and t = [183,197]s

correspond to times when the object was partially occluded. The ranges of Vx exceeds

0.1 m/s correspond to times when the object was considered in translation with a

displacement speed of 1 m/s. Figure 6.11 shows that the car remains in the field of

view of the camera, which allows the successful completion of the tracking task.

Figure 6.13: Trajectory of the center of (a) car, (b) man in pixellic coordinates. The origin
corresponds to the desired position.

- Teste 2
Figure 6.13.b shows the trajectory of the target in the image plane. The average error is

1.045 pixels on the x axis and 3.456 pixels on the y axis. The control signals generated

are shown in figure 6.15. The ranges of t = [85,118]s, t = [177,210]s, t = [266,285]s, t =
[348,396]s and t = [478,513]s correspond to moments when the object was considered

entirely occluded. Figure 6.13 shows that the object remains in the field of view of the

camera which means that the HOG-based tracking method estimates the appropriate

center of the object which helps the IBVS controller to give the appropriate command

signals to the quadrotor to maintain the tracking task. While the command ẋ has

higher values, the other commands have an average close to zero because the drone

follows an object in translation and must move forward to follow it. The command ẏ is

weak and it is used only during longitudinal movements of the drone. As shown in

figure 6.16, it is obvious that the proposed tracking system was successful in keeping
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Figure 6.14: Commands values of (ẋ, ẏ, ż,ψ̇) and corresponding values obtained by telemetry for
the object car.

Figure 6.15: Commands values of (ẋ, ẏ, ż,ψ̇) and corresponding values obtained by telemetry for
the object man.

the values of Ẑd close to 1 for both tests. This value means that the area of the initial

tracking frame A i matches the area of the current tracking frame Aa.
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Figure 6.16: The command Ẑd generated for the objects: (a) car and (b) man.

6.4 Conclusion

In this chapter, a visual object tracking application for a UAV drone is presented.

The contribution of this is twofold: First, it has been demonstrated that the proposed

HOG-based method can work reliably on the quadrotor’s fixed camera. Second, our

architecture has been able to track two difficult targets of different sizes and distances,

showing the robustness of our system against occlusion, and scale variation, proving

the efficiency and reliability of the IBVS-HOG based system.
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7.1 Conclusion

The need to implement innovative and reliable visual tracking methods, to explore

the capabilities of advanced computer vision methods and their applicability in robotics.

In this thesis, we address the problem of visual tracking of a single object, which

aims primarily to estimate the position of a target object in each frame of a video.

In particular, correlation filter-based tracking methods are adopted thanks to their

outstanding performance, their computational efficiency, and the efficient updating of

models. The main contributions of this thesis are summarized below:

• As explained in chapter 3, two methods had been proposed for visual object

tracking. The first method proposed is mainly composed of three fundamental

steps: spatial learning of correlation filter models using convolutional features,

enrichment of CNN features using the HSV energy condition and the use of HOG

features to exhaustively search for the optimal scale. The spatial learning of

the correlation filter models is based on the PSO algorithm which has mainly

improve the performances in the case of occlusion and fast motion. Besides, a

substantial advantage has been proposed for illumination variations by switching

between the RGB and HSV color bases. We evaluate our method on the three

reference databases including OTB-50 [35], VOT 2016 [3], UAV20L [2].

The results reveal the superiority of the proposed methods compared to the

reference trackers in terms of short-term on OTB-50, in where we achieve the

best distance precision of 91.0 % and the best overlap success rate of 76.5 %. On

VOT 2016, our tracker demonstrates its effectiveness by obtaining the best EAO

score of 0.31 and getting the third-highest overlap score of 0.50 and the best

result in failures metric with 15.09 %. Regarding the long-term tracking capacity,

our tracker proves its efficiency on the UAV20L dataset, where it achieves the

best distance precision of 64.7 % and the best overlap success rate of 48.0 %.

We proposed a second method for real-time application. This method adopts the

HOG features to robustly estimate the location of the target object. In terms of

scale estimation, the HOG features are adopted in both methods to exhaustively

search for the optimal scale. The same three reference databases of OTB-50 [35],

VOT 2016 [3], UAV20L [2] are used to evaluate the performance of proposed

method.

On the OTB-50 dataset, a comparison with eight reference trackers is realized.

The MEEM tracker obtains the second-best result with a distance accuracy of

83.0% and an overlap success of 69.6%. The proposed method proves its efficiency

with an improvement gain of 1.1 % at the distance precision and 1.8 % at the

overlap success. The results reported on the VOT 2016 show that the proposed
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tracker demonstrates its effectiveness by obtaining the best EAO score of 0.32.

In addition, it provides a considerable result of 0.5 in overlap metric and the

second-best result of 17.60% in failure metric. Finally, we evaluate our method

on the UAV20L database. Our tracker surpasses the other trackers on distance

precision (DP) and overlap success (OS) metrics with an improved gain of 1.1 %

and 0.9 % respectively against the competitor tracker.

• A visual object tracking architecture was designed, implemented and evalu-

ated. This architecture has demonstrated that the proposed HOG-IVBS tracking

framework can work reliably on the quadrotor’s fixed camera. Our architecture

has been able to follow two difficult targets in terms of occlusion, fast motion,

and scale variation. In addition, it has been validated using the robotic operating

system (ROS). The system has been successful in solving these problems.

7.2 Future works

Visual tracking systems become very important in the daily life of human beings,

whether for protection or other purposes.

• Our first perspective is related to visual object tracking. Since CNN-based track-

ing is one of the best tracking methods. Despite, this method remains restrictive

in real-time because of their computation time. In the future, we plan to solve

this limitation by re-forming the CNN model and reducing the number of layers

without affecting their performance. We aim also to validate the two proposed

tracking methods, especially the ability of the proposed HSV-energy condition in

a real application.

• The second perspective is related to the reliability of the image-based control

system when the tracked object leaves the camera’s FOV and takes a long time

to reappears in several environments. In fact, we aim to alleviate the issue of the

estimation of the interaction matrix by proposing to learn a CNN architecture

over the input frames and the quadrotor poses.
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