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Abstract

In this thesis, we are interested in the study of the existence and uniqueness of global

solutions, as well as, the blow up in �nite time of solutions for a certains systems of semi-

linear Volterra integro di¤erential equations of parabolic and hyperbolic type. Especially

the non-linear part is de�ned by an integral terms over the past history of the nonlinear

forcing containing fractional time-dependent convolution kernels. We study this type of

generalized problems to obtain similar results to those obtained in the case of an equation.

We will see that under certain conditions on the exponents, the order of the temporal

fractional derivatives there is a critical value of the dimension space for which the global

with small data solution results as well as the explosion in �nite time with initial conditions

having positive average are obtained.

The methodology to be followed to demonstrate the global existence and the asymptotic

behavior based essentially on the use of the semi-group method combined with a priori

estimates in the Lebesgue spaces.

In parallel, in the study of the blow-up in �nite time result, we will focus on the concept

of weak solutions and its connection with the mild ones and thus via the test functions

method�s get the desired results.

Keywords

Damped wave equation, Heat system, damped wave system, Local existence, Global exis-

tence, Asymptotic behavior, Finite time blow-up.
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Symbols and Abbreviations

Sets:

RN the real Euclidean space of dimension N � 1:

Functions and functions spaces:

C([0; T ]; X) the space of continuous functions on [0; T ] to values in X:

C0
�
RN
�

space of all continuous functions decaying to zero at in�nity.

AC([0; T ]) the space of absolutely continuous functions on [0; T ]:

ACn+1[0; T ] ff : [0; T ]! R; and @nt f 2 AC[0; T ]g and @nt is the usual n times derivative.

Cc(I;X) the space of continuous functions with compact support from I to X:

Cb(I;X) the space of continuous and bounded functions from I to X:

S
�
RN
�

The Schwartz space or space of rapidly decreasing functions on RN :

z(resp:z�1) Fourier transform(resp.Fourier transform reverse).

S(t) the heat semigroup on RN :

Lp
�
RN
�

the space of measurable functions on RN such that jujp is integrable.

Lp ([0; T ]; X)
the space of measurable functions u on [0; T ] to values in X such that

jjujjpX is integrable (1 � p <1) :

L1
�
RN
�

The space of measurable functions u on RN such that there exists k

such that ju(x)j � k for almost every x 2 RN :

Wm;p
�
RN
�

the usual Sobolev space.

Hm
�
RN
�

Wm;2
�
RN
�
= ff 2 L2

�
RN
�
; D�f 2 L2

�
RN
�
for all � 2 NN such that j�j � mg:
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Norms:

jjujjp :=

�Z
RN
jujp
�1=p

for u 2 Lp
�
RN
�
:

jjujjp;q;T := sup
0�t�T

�Z t

0

jjujjqp
�1=q

:

jjujj1 := inffk > 0; ju(x)j < k almost every whereg; for u 2 L1
�
RN
�
:

jjujjWm;p :=
P
��m

jjD�ujjLP for u 2 Wm;p
�
RN
�
:

jjujjHm :=

� P
��m

(jjD�ujjLP )2
� 1

2

for u 2 Hm
�
RN
�
: such that

D� := @�

@�1x1:::@
�N xN

; � = (�1; :::; �N) ; j�j =
NP
i=1

�i:

Mathematical operators:

� The convolution product.

j:j Absolute value.

� The classical Laplace operator: �u(x; t) =
NP
i=1

@2u
@x2i
(x; t):

J�t the fractional integral operator in Riemann liouville sense.

a . b i:e a � Cb:
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Chapter 1

General Introduction

The theory of Volterra integro-di¤erential equations is an exciting branch of math-

ematics. It is a mixture of Ode�s and integral equations and is still one of the

actively developing branch of the theory of di¤erential equations. We cite a few mono-

graphs which are the classical source of fundamental facts and approaches in this �eld [7],

[8],[16],[56],[64],. Over the last 50 years or so the theory of VIDE�s has been revealed as

a very powerful and important tool in the study of nonlinear phenomena. It has arisen in

many applications where the current behavior of a system depends not only on the present

state, but also on the entire history of states since some �xed starting time. Many such

problems arise in environmental modeling (in models of evolution, population dynamics,

pollution) as well as in model equations from engineering and the physical sciences. For

example, in viscoelasticity, thermodynamics of phase transition, image processing, control

theory, theory of heat conduction with memory, compression of visco-elastic media and

in the theory of nuclear reactor dynamics (see e.g [9],[11],[19],[70],[74],[75]). The inter-

play between applied sciences and mathematics leads to the development of initial value

problems for nonlinear partial VIDE�s to model physical systems.

In the last few years considerable progress has been achieved in the investigation of

VIDE�s of parabolic and hyperbolic type. Some important results concerning existence,

2



Chapter1.General Introduction

uniqueness, asymptotic behavior and blow-up in �nite time in this theory may be found

in the works cited in our references. In particular, there has now been a great deal

of research on purely time dependent systems with memory delay, and on reaction-

di¤usion systems containing terms which involve time memory delays. Some authors

have proved results on global convergence in some rather general settings (e.g. Pozio[36]

1983; Yamada[74] 1984). In most of these works the nonlinear term forcing is written as

f

�
u(t; x);

Z t

0

g(t; x; s; u(s; x))ds

�
, t > 0; x 2 
. A particular case widely encountered

in population dynamics are Volterra di¤usion equations, where the nonlocal "hereditary"

term takes the form of a convolution with a kernel g(t; x; s; u(s; x)) = k(t � s)h(u(s; x))

with a monotonicity assumption on h, thus allowing the nonlinear term to contribute to

the global existence and blow-up of solutions via comparaison principle (e.g see [4], [9],

[22], [48], [49]). These results are mostly based on the boundedness and the positivity of

the initial data in establishing the �nite-time blow-up results.

However, it seems that there are not so many results concerning global existence study

and �nite-time blow-up theories for PVIDEs with more general kernels, for example, with

weakly singular kernels of the form k (t) = t��; 0 < � < 1; as compared with above

cited works (see [2], [28], [38], [45], [46],[66] and the references therein). Their approach

is completely di¤erent from those described above. Precisely, they do not require any

condition on the sign of the initial data and the solution, also they may consider unbounded

initial data.

On the other hand the study of the critical exponent problem traces back to 1966, when

Fujita considered the initial value problem

8><>: ut = �u+ up, t > 0; x 2 RN ;

u(0; x) = u0(x); x 2 RN ;
(1.1)

with p > 1. He showed in his pioneering work [25] that if 1 < p < pF , where pF = 1 + 2
N

then the equation (1.1) has no global (in time) positive solutions, but if p > pF , then for

3



Chapter1.General Introduction

initial values bounded by a su¢ ciently small Gaussian the solution is global. Later on

Hayakawa [29] and Kobayashi et al. [30] proved that the critical case p = pF belongs to

the blow-up region. The power pF is called the Fujita critical exponent. In [14] Weissler

showed that if the initial data is su¢ ciently small in Lqsc(RN), where qsc = N(p�1)
2

> 1,

then the solution is global. Namely, he established that psc corresponding to qsc is the one

of Fujita exponent (pF = psc). That is the Fujita critical exponent pF can be predicted

from the scaling properties: In other words if u is a solution of nonlinear parabolic equation

on RN with initial value u0(x) then, 8� > 0; �au(�bt; �x) with initial value �au0(�x) is

also solution of (1.1). Let us mention that the Fujita critical exponent can be detected

from rescaling argument by many others equations using the same procedure such as

ut ��u = tkjxj�up; ut �r:(u�ru) = up, ut ��u = u(t; 0)p�qu(t; x) with p > q � 1.

Recently, Souplet [48] studied the boundary value problem ut = �u +

Z t

0

up(s)ds, t > 0,

and in particular he showed that all positive solutions blow up in �nite time for all p > 1

(pF =1).

More recently, Cazenave et al. [66] investigate the global existence/blow-up properties of

the following parabolic equation with non-local in time non-linearity

8><>:
ut ��u =

Z t

0

(t� s)�
 jujpu(s)ds in (0; T )� RN ;

u(0; x) = u0(x); in RN ,
(1.2)

with p > 1; 0 < 
 < 1; they showed that, if

p
 = 1 +
4� 2


(N � 2 + 2
)+
;

and p� = max
n
1


; p


o
2 (0;+1]; where u+ = max(u; 0); then the behavior of solutions

can be divided into the following way:

(i) If 
 6= 0; p � p�; and u0 � 0; u0 6= 0; then u blows up in �nite time.

4



Chapter1.General Introduction

(ii) If 
 6= 0; p > p�; and u0 2 Lqsc(RN)
�
where qsc =

N(p�1)
4�2


�
with jju0jjLqsc ; su¢ ciently

small, then u exists globally.

Their study reveals surprising the fact that for equation (1.2) the critical exponent is not

the one predicted by scaling argument, as we have seen above the well known scaling

technique is e¢ cient for detecting the Fujita exponent for several equations of nonlinear

parabolic type one. Needless to say that the equation considered by Cazenave et al is a

genuine extension of the one considered by Fujita in his pioneering work [25].

The results obtained in [66] are later extended by some authors to the weakly coupled

parabolic systems, damped wave equations, weakly coupled damped wave systems, we

refer the reader to [6, 21, 37, 46, 47, 50, 71, 72].

From the point of view of di¤usion phenomenon, it is expected that for the damped wave

equation 8><>: @2t u(t; x)��u(t; x) + @tu(t; x) = f(u), t > 0, x 2 Rn,

u(0; x) = u0(x), ut(0; x) = u1(x); x 2 RN ,
(1.3)

the same result hold, for f = jujp�1u; existence of classical solutions has been investigated

for a long time (see [5, 65]), for f = jujp Todorova and Yordanov proved in [20] that

the critical exponent of (1.3) is pF . More precisely, they proved if p > pF there exists

a unique global solution of (1.3) for su¢ ciently small initial data in the weighted energy

space while, if 1 < p < pF every solution with initial data having positive average must

blow-up in �nite time. Later Zhang in [51] proved that the exponent pF belongs to the

blow-up region.

In the case of damped wave equation with nonlinear memory

utt ��u+ ut =

Z t

0

(t� �)�
 juj�d� in (0; T )� RN (1.4)

Fino in [2] addressed the global small data solutions and their asymptotic behavior as

t ! +1 to (1.4) when N = 1; 2; 3. he was shown that the solution of (1.4) behaves as

5



Chapter1.General Introduction

that of the corresponding di¤usive equation (1.2), indeed, he showed that when t! +1

the solution decays exponentially outside every ball B(t
1
2
+�); � > 0: Namely

jjDu(t; :)jj
L2
�
RNnB(t

1
2+�)

� = O(e�t2�=4):
Furthermore, he proved that:

1. Let � > 1; 
 2
�
1
2
; 1
�
for N = 1; 2 and 
 2

�
11
16
; 1
�
for N = 3: If pN < �; where

p1 = 1 +
2 (3� 2
)

(N � 2 + 2
)+
; p2 = 1 +

4 (3� 2
)
(N � 4 + 4
)+

; p3 = 1 +
N + 2 (5� 4
)
(N � 2 + 4
)+

:

Then, the problem (1.4) admits a unique global mild solution with small data. While

2. let 1 < � < N
N�2 for N = 3; � 2 (1;+1) for N = 1; 2; N�2

N
< 
 < 1 and (u0; u1) 2

H1
�
RN
�
� L2

�
RN
�
such that

Z
RN
ui(x)dx > 0; i = 0; 1: if � � p�; then the mild

solution of the problem (1.4) blow-up in �nite time.

In [38], Berbiche studied the global existence of solution for (1.4) and he proved that if

p > 2; p > p� for N = 1; 2; 3, then the mild solution with small initial data with low

regularity and not necessarily in L1(RN) exists globally in time. In addition, if 2 < p < 5,

then some of these solutions have the same behavior of the self-similar solutions of the

corresponding heat equation with nonlinear memory (1.2).

Before closing this section, we just brie�y mention the result obtained by M.Loayza,

I.G.Quinteiro which is directly connected to the problem proposed in chapter 3. In [46]

the authors discussed the following weakly coupled parabolic system

8>>>>>>>>><>>>>>>>>>:

ut ��u =
Z t

0

(t� s)�
1jvjp�1v(s)ds; t > 0; x 2 RN ;

vt ��v =
Z t

0

(t� s)�
2jujq�1u(s)ds; t > 0; x 2 RN ;

u(0; x) = u0(x);ut(0; x) = u1(x); x 2 RN ;

v(0; x) = v0(x); vt(0; x) = v1(x); x 2 RN ;

(1.5)

6



Chapter1.General Introduction

with p; q � 1; 0 � 
1; 
2 < 1 and u0; v0 2 C0
�
RN
�
; they interested to �nd conditions

on parameters p; q; 
1; 
2 to determine when solutions of system (1.5) either blow up in

�nite time or exist globally in smooth bounded domain of RN with Dirichlet boundary

conditions.They established the following result: Assume that; pq > 1

(i) if

8><>: 1� p
2 + p (1� q
1) + p (q + 1) < N
2
(pq � 1) ;

1� q
1 + q (1� p
2) + q (p+ 1) < N
2
(pq � 1) ;

(ii) if

8><>: 1� p
2 + p (1� q
1) < 0;

1� q
1 + q (1� p
2) < 0;

(iii) and if
n�

p
r2
� 4

N

�
< 1

q
;
�
q
r1
� 4

N

�
< 1

p
;

with r1 =
N(pq � 1)

2[2� 
1 + p(2� 
2)]
; r2 =

N(pq � 1)
2[2� 
2 + q(2� 
1)]

:

Then global solution with small initial data exists.

Whereas if

(i)

8><>:
N
2
(pq � 1) � 1� p
2 + p (1� q
1) + p (q + 1) ;

N
2
(pq � 1) � 1� q
1 + q (1� p
2) + q (p+ 1) ;

(ii) 1� p
2 + p (1� q
1) ; or 1� q
1 + q (1� p
2) � 0:

Then every nontrivial solution blows up in �nite time.The condition (i) in both cases are

eliminated in bounded domain 
.

1.1 Structure of Thesis

1. In the next section, we show a summary of our main results which are developed in

the chapters of this thesis.

2. In order to provide the reader with a su¢ cient background, we recall in chapter 2

some de�nitions and basic results support our subject, besides we will expose the

well posedness of the damped wave equation with nonlinear source terms.

7



Chapter1.General Introduction

3. The third chapter is devoted to show the blow-up result for damped wave system

with nonlinear memory through which we extend the study of �no [2], and we give

conditions relating the space dimension N with the parameters 
1; 
2; p; q for which

the solution with initial data have positive average blow-up in �nite time. We apply

the method of test functions developed byMitidieri and Pohozaev [12],[13] and Zhang

[51] to prove this result.

4. In the chapter 4, we are interested to study the existence and uniqueness of the local

solution for Cauchy problem of wave equation with both frictional and displacement

dependent damping terms with nonlinear memory in multi-dimensional space RN ,

as well as, we give a su¢ cient conditions on parameters in order to show a blow-up

of weak solution result for any dimension space.

5. In the last chapter, we establish a results to more general class of Cauchy problem

contains strongly coupled semi-linear heat equations with some kind of nonlinearity

in RN , we see under some conditions on the exponents and on the dimension N , that

the existence and uniqueness of time-global solutions for small data and their asymp-

totic behaviors are obtained. The observation will be applied to the corresponding

system of the damped wave equations in low dimensional space.

1.2 Presentation of the Obtained Results

Chapter 4: On The Nonexistence of Global Solution For Wave Equations With

Double Damping Terms and Nonlinear Memory

This chapter is devoted to study the following Cauchy problem:

8><>:
�u(t; x) + ju(t; x)jm�1@tu(t; x) + @tu(t; x) =

Z t

0

(t� �)�
 ju(� ; x)jpd� , in [0; T ]� RN ;

u(0; x) = u0 (x) ; ut(0; x) = u1 (x) ; in RN :
(1.6)

8



Chapter1.General Introduction

Where, � = @2t ��; p;m > 1; 0 < 
 < 1; N � 1; ui(x); i = 0; 1 are given initial data.We

prove the existence and uniqueness of local solution by using some estimates in sobolev

space and we get the following result:

Theorem 1.1 Let N � 1; s > N
2
+ 1 and m; p 2 (0;+1) \ (s � 1;+1): Then for any

u0 2 Hs
�
RN
�
and u1 2 Hs�1 �RN� ; (1.6) admits a unique solution

u 2 C
�
[0; T ] ;Hs

�
RN
��
\ C1

�
[0; T ] ;Hs�1 �RN�� ;

with some positive T , which depends only on jju0jjHs + jju1jjHs�1 :

In the second part of this chapter we deal with the blow-up case and we use the test

method function to show the result below

Theorem 1.2 Let N � 1; 0 < 
 < 1 and p;m such that p > m > 1: Assume that the

initial data (u0; u1) satisfy

Z
RN
u0(x)dx > 0;

Z
RN
ju0jm�1u0(x)dx > 0; and

Z
RN
u1(x)dx > 0:

Then if

p �
�

N + 2

(N � 2 + 2
)+
;
1




�
:

The solution of (1.6) does not exist globally in time.

Chapter 5: Global Small Data Solution For a System of Semilinear Heat Equa-

tions and The Corresponding System of Damped Wave Equations With Non-

linear Memory

This chapter is contains two sections, the �rst one is devoted to study the Cauchy problem

for a strongly coupled semi-linear heat equations

9



Chapter1.General Introduction

8>>>>><>>>>>:
ut ��u =

Z t

0

(t� s)�
1 ju(s)jp1 jv(s)jq1ds in (0; T )� RN ;

vt ��v =
Z t

0

(t� s)�
2 ju(s)jp2jv(s)jq2ds in (0; T )� RN ;

u(0; x) = u0; v(0; x) = v0; x 2 RN :

(1.7)

Where the unknown functions u := u(t; x); v := v(t; x) are real valued,N � 1; p1; q1; p2; q2 �

1; 0 < 
1; 
2 < 1 and u0; v0 are given initial data. We show an important result concerns

the existence and uniqueness of local solution for the system (1.7) then, we give conditions

relating the space dimension N with the parameters of the system for which the mild

solution exists globally in time and satisfy Lp�Lq estimates with the norms of initial data

su¢ ciently small.

Theorem 1.3 Let N be positive integer. Let the real numbers p1; p2; q1; q2 � 1;

0 < 
1; 
2 < 1 be such that

[(1� 
1) (p2 � 1)� (1� 
2) q1] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[(1� 
2) (p1 � 1)� (1� 
1) q2] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[p2 � q1 � 1] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[p1 � q2 � 1] ((p1 � 1) (p2 � 1)� q1q2) > 0:

And u0; v0 2 C0(RN): Let (u; v) 2
�
C
�
(0; Tmax) ; C0(RN)

�	2
:

Assume that 8>><>>:
N

2
> 1� 
1 +

(2� 
1) (p2 � 1)� (2� 
2) q1
(p1 � 1) (p2 � 1)� q1q2

;

N

2
> 1� 
2 +

(2� 
2) (p1 � 1)� (2� 
1) q2
(p1 � 1) (p2 � 1)� q1q2

;
(1.8)

8><>: ((p1 � 1) (p2 � 1)� q1q2)� [p2 (
1p1 � 1)� 
1p1 + q1 (1� 
1q2) + 1� 
2q1] ;

((p1 � 1) (p2 � 1)� q1q2)� [p1 (
2p2 � 1)� 
2p2 + q2 (1� 
2q1) + 1� 
1q2] ;
(1.9)

10



Chapter1.General Introduction

and 8>><>>:
Np1
2

�
p1
r1
+
q1
r2

�
+
Nq1
2

�
p2
r2
+
q2
r1

�
< 2 (p1 + q1) +

N

2
;

Np2
2

�
p2
r2
+
q2
r1

�
+
Nq2
2

�
p1
r1
+
q1
r2

�
< 2 (p2 + q2) +

N

2
:

(1.10)

Then there exists a constant " > 0 such that if the initial data satisfy

(u0; v0) 2 Lr1
�
RN
�
� Lr2

�
RN
�
and

jju0jj1 + jjv0jj1 + jju0jjr1 + jjv0jjr2 � ";

the problem (1.7) admits global solution (u; v) 2 C
�
[0;+1);Lr1

�
RN
�
� Lr2

�
RN
�
\ C0(RN)

�2
satis�es the following decay estimates

jjujj1 � C (1 + t)��1 ; jjvjj1 � C (1 + t)��1 ; t � 0;

where

r1 =
N [(p1 � 1) (p2 � 1)� q1q2]

2 [(2� 
1) (p2 � 1)� (2� 
2) q1]
; �1 =

(1� 
1) (p2 � 1)� (1� 
2) q1
(p1 � 1) (p2 � 1)� q1q2

;

r2 =
N [(p1 � 1) (p2 � 1)� q1q2]

2 [(2� 
2) (p1 � 1)� (2� 
1) q2]
; �1 =

(1� 
2) (p1 � 1)� (1� 
1) q2
(p1 � 1) (p2 � 1)� q1q2

:

In the second part, we consider the following damped wave system in low dimensional

space:

8>>>>><>>>>>:
utt ��u+ ut =

Z t

0

(t� s)�
1 ju(s)jp1jv(s)jq1ds in (0; T )� RN ;

vtt ��v + vt =

Z t

0

(t� s)�
2 ju(s)jp2 jv(s)jq2ds in (0; T )� RN ;

u(0; x) = u0(x); ut(0; x) = u1(x); v(0; x) = v0(x); vt(0; x) = v1(x) x 2 RN :

(1.11)

Where the unknown functions u := u(t; x); v := v(t; x) are real valued,N � 1, p1; q1; p2; q2 �

1; 0 < 
1; 
2 < 1 and u0; v0 are given initial data. We prove the local existence, uniqueness

and global existence theorems similar to the one presented in previous part in di¤erent

spaces.

11



Chapter1.General Introduction

Theorem 1.4 Let 1 � N � 3 be positive integer. Let the real numbers p1; p2; q1; q2 �

1; 0 < 
1; 
2 < 1 be such that

[(1� 
1) (p2 � 1)� (1� 
2) q1] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[(1� 
2) (p1 � 1)� (1� 
1) q2] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[p2 � q1 � 1] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[p1 � q2 � 1] ((p1 � 1) (p2 � 1)� q1q2) > 0:

Assume that the conditions (1.8), (1.9), (1.10) are veri�ed. Then there exists a constant

" > 0 such that if the initial data satisfy (ui; vi) 2
�
W 1�i;1 �RN��W 1�i;1 �RN�	2 ; i = 0; 1

and

jju0jjW 1;1\W 1;1 + jjv0jjW 1;1\W 1;1 + jju1jjL1\L1 + jjv1jjL1\L1 � ";

the problem (1.11) admits global solution

(u; v) 2 C
�
[0;+1);Lr1

�
RN
�
\ L1

�
RN
�
\H1

�
RN
��
\ C1

�
[0;+1);L2

�
RN
��

�C
�
[0;+1);Lr2

�
RN
�
\ L1

�
RN
�
\H1

�
RN
��
\ C1

�
[0;+1);L2

�
RN
��
;

satis�es the following decay estimates

jjujj1 � C (1 + t)��1 ; jjvjj1 � C (1 + t)��1 ; t � 0;

where

r1 =
N [(p1 � 1) (p2 � 1)� q1q2]

2 [(2� 
1) (p2 � 1)� (2� 
2) q1]
; �1 =

(1� 
1) (p2 � 1)� (1� 
2) q1
(p1 � 1) (p2 � 1)� q1q2

;

r2 =
N [(p1 � 1) (p2 � 1)� q1q2]

2 [(2� 
2) (p1 � 1)� (2� 
1) q2]
; �1 =

(1� 
2) (p1 � 1)� (1� 
1) q2
(p1 � 1) (p2 � 1)� q1q2

:

12



Chapter 2

Preliminary Concepts

I n this chapter, we recall some de�nitions and classical theorems of functional

analysis that are necessary for the study of semi linear evolution equations. The

proofs can be found in [65].

2.1 De�nitions and Basic Results

De�nition 2.1 (Lp space). The Lpnorm of function f : RN ! R; denoted by jjf jjLp ; is

jjf jjLp :=

8>><>>:
�Z

R
jf(t)jpdt

� 1
p

; 1 � p <1;

ess sup
x2RN

jf j; p =1:

If jjf jjLp <1; then f 2 Lp
�
RN
�
:

De�nition 2.2 (Sobolev Space) Let k 2 N [ f0g and p 2 [1;+1]; then the sobolev space

W k;p(RN) :=
�
u 2 Lp(RN) : D�u 2 Lp(RN), 8� with j�j � k

	
.

13



Chapter 2. Preliminary Concepts

This space is equipped with the norm

jjujjWk;p(RN ) :=
X
j�j�k

jjD�ujjLp(RN ):

De�nition 2.3 (Hs norm).The Hs norm of function f : RN ! R, denoted by jjf jjHs ; is

jjf jjHs =

�Z
RN

�
1 + j�j2

�s jf̂ j2d��1=2 ;
where � is the Fourier transform variable of f̂ . If jjf jjHs <1; then f 2 Hs:

De�nition 2.4 (Xs Space). The Xs norm of function u(t; x) : RN � [0; T )! R; denoted

by jjujjXs

jjujjXs = sup
t2[0;T ]

(jju(t)jjHs + jj@tu(t)jjHs�1) :

where T � 1 is positive constant. If jjujjXs <1; then u 2 Xs:

Theorem 2.1 (Sobolev Embedding). For any N-dimensional space, the function

u(t0) 2 Hs; if s > N
2
; then

jju(t0)jjL1 . jju(t0)jjHs :

Theorem 2.2 (Banach Contraction-Mapping Principal). Let (X; d) be a complete metric

space and G : X ! X a map such that there exists � 2 [0; 1) satisfying d (G(x); G(y)) �

�d(x; y) for all x; y 2 X: Then, there exists a unique x0 2 X such that G(x0) = x0:

Theorem 2.3 (Gronwall�s inequality ). Let f be a nonnegative, continuous functions on

[0; T ], which satis�es

f(t) .
Z t

0

f (s) ds;

for all t 2 [0; T ]. Then, f(t) = 0 for all t 2 [0; T ] :

14



Chapter 2. Preliminary Concepts

Theorem 2.4 (Leibnitz Integral Rule). For �1 < a(x) < b(x) <1;

d

dx

 Z b(x)

a(x)

f(x; t)dt

!
= f(x; b(x)):

d

dx
b(x)� f(x; a(x))

d

dx
a(x) +

Z b(x)

a(x)

@xf(x; t)dt. (2.1)

2.1.1 Fractional integrals and derivatives

De�nition 2.5 (Fractional Riemann-Liouville Integral): Let f : [a; b) ! RN : Fractional

Riemann-Liouville integral of f of order � > 0 is the integral de�ned by the following

formula:

J�ajtf(t) :=
1

� (�)

Z t

a

(t� s)��1 f(s)ds: (2.2)

Where � is real or complex number. � (�) is Euler gamma function.

De�nition 2.6 (Riemann-Liouville fractional derivatives): Let � 2 [m� 1;m[;

m 2 N�:We say the left derivative of order � in the sense of Riemann-Liouville the function

de�ned by :

D�
ajtf(t) :=

�
d

dt

�m h�
Jm��ajt f

�
(t)
i
;

:=
1

� (m� �)

�
d

dt

�m Z t

a

(t� s)m���1 f(s)ds:

We say the right derivative of order � in the sense of Riemann-Liouville the function

de�ned by :

D�
tjbf(t) : =

�
d

dt

�m h�
Jm��tjb f

�
(t)
i
;

: =
1

� (m� �)

�
� d

dt

�m Z b

t

(s� t)m���1 f(s)ds:

De�nition 2.7 (Caputo fractional derivatives): Let � 2 [m � 1;m[;m 2 N�:We say the

left derivative of order � in the sense of Caputo the function de�ned by :

15



Chapter 2. Preliminary Concepts

CD�
ajtf(t) :=

1

� (m� �)

Z t

a

(t� s)m���1 f(s)(m)ds; t > a:

We say the left derivative of order � in the sense of Caputo the function de�ned by :

CD�
tjbf(t) :=

(�1)m

� (m� �)

Z b

t

(t� s)m���1 f(s)(m)ds; t < b:

Proposition 2.1 Let � and � are real number, and f is continuous function in the in-

terval [a; b)

(1) J�ajt
�
J�ajtf

�
(t) = J�+�ajt f; (�; � > 0) :

(2) d
dt

�
J�ajtf

�
(t) = J��1ajt f(t); � > 1:

(3) lim
�!0

�
J�ajtf

�
(t) = f(t); � > 0:

Lemma 2.1 (Formula of integration y parts) for every f; g 2 C([0; T ]) such that D�
0jtf(t);

D�
tjTf(t) exist and are continuous, for all t 2 [0; T ], 0 < � < 1 we have the formula of

integration by parts

Z T

0

�
D�
0jtf
�
(t)g(t)dt =

Z T

0

f(t)
�
D�
tjTg
�
(t)dt: (2.3)

Note also that, for all f 2 ACn+1[0; T ] and all integers n � 0, we have

(�1)n@nt D�
tjTf(t) = Dn+�

tjT f(t): (2.4)

Moreover, for all 1 � q � 1; the following formula

D�
0jtJ

�
0jt := IdLq(0;T ): (2.5)

holds almost everywhere on [0; T ].
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Lemma 2.2 if w1(t) = (1� t=T )�+; t � 0; T > 0; � >> 1; then

D�
tjTw1(t) = CT��(T � t)���+ ; D�+1

tjT w1(t) = CT��(T � t)����1+ ;

(2.6)

D�+2
tjT w1(t) = CT��(T � t)����2+ ; for all � 2 (0; 1) ;

(2.7)�
D�
tjTw1

�
(T ) = 0;

�
D�
tjTw1

�
(0) = T��;

�
D�+1
tjT w1

�
(T ) = 0;

�
D�+1
tjT w1

�
(0) = T���1:

(2.8)

For the proof of these results, see [1]

2.2 Semigroup of bounded operators

2.2.1 m-dissipative operators

In this part, we recall some facts concerning semigroup of bounded operators. Let X is

Banach space.

De�nition 2.8 (Unbounded operators in Banach spaces). A linear unbounded op-

erator in X is a pair (D(A);A), where D(A) is a linear subspace of X and A is a linear

mapping D(A)! X: We say that A is bounded if there exists c > 0 such that

jjAujj � c;

for all u 2 fx 2 D(A); jjxjj � 1g. Otherwise, A is not bounded.

De�nition 2.9 (dissipative operators). An operator A in X is dissipative if

jju� �Aujj � jjujj;

for all u 2 D(A) and all A > 0.
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De�nition 2.10 (m-dissipative operators) An operator A in X is m-dissipative if

1. A is dissipative.

2. for all A > 0 and all f 2 X, there exists u 2 D(A) such that u� �Au = f .

If X is a Hilbert space, we have the following proposition:

Proposition 2.2 A is dissipative in X if and only if hu;Aui � 0; for all u 2 D(A):

2.2.2 The Laplacian in an open subset of RN : L2; C0 theories

Let 
 be any open subset of RN ; we de�ne the linear operator A in L2(
) by

8><>: D(A) = fu 2 H1
0 (
) \ L2(
);�u 2 L2(
)g ;

Au = �u; 8u 2 D(A):

Proposition 2.3 A is m-dissipative with dense domain.

Let 
 be any open subset of RN ; we de�ne the linear operator B in C0(
) by8><>: D(B) = fu 2 H1
0 (
) \ C0(
);�u 2 C0(
)g ;

Bu = �u; 8u 2 D(B):

Proposition 2.4 Assume that 
 has Lipschitz continuous boundary. Then B is m-

dissipative, with dense domain.

2.3 Contraction semigroups

De�nition 2.11 (Contraction semigroups) one-parameter family (S(t))t�0 of linear op-

erators is a contraction semigroup in X provided that

1. jjS(t)jj � 1 for all t � 0;

18
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2. S(0) = I;

3. S(t+ s) = S(t)S(s) for all s; t � 0;

4. for all x 2 X, the function t! S(t)x belongs to C([0;1); X).

De�nition 2.12 (In�nitesimal generator) The generator of (S(t))t>o is the linear opera-

tor L de�ned by

D(L) =

�
x 2 X; S(t)x� x

h
has a limit in X as h # 0

�
;

and

Lx = lim
h#0

S(t)x� x

h
; for all x 2 D(L):

Proposition 2.5 Let (S(t))t>o be a contraction semigroup in X and let L be its generator.

Then L is m-dissipative and D(L) is dense in X.

Theorem 2.5 (The Hille-Yosida-Phillips Theorem) A linear operator A is the generator

of a contraction semigroup in X if and only if A is m-dissipative with dense domain.

2.3.1 Heat semigroup

In this part, we denote by (S(t))t>o the semigroup generated by B in L2 (
) :

Lemma 2.3 The embedding D(B) ,! H1
0 (
) is continuous.

Homogeneous equations

Proposition 2.6 Let ' 2 L2 (
) and let u(t) = S(t)' for t � 0: Then u is unique solution

solution of the problem

8>>>><>>>>:
u 2 C ([0;+1); L2 (
)) \ C1 ((0;+1) ; L2 (
)) ;�u 2 C ([0;+1); L2 (
)) ;

u0(t) = �u(t);8t > 0;

u(0) = ':
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In addition we have

u 2 C
�
[0;+1); H2

0 (
)
�
;

jj�u(t)jjL2 � 1

t
p
2
jj'jjL2 ;8t > 0;

jj�u(t)jjL2 � 1p
t
p
2
jj'jjL2 ;8t > 0:

Assuming more regularity of '; the solution u is also more regular.

Lemma 2.4 For t > 0, we de�ne K(t) 2 S
�
RN
�
by K(t)x = (4�t)�

N
2 e�

jxj2
4t : Let  2

Cc
�
RN
�
and let v(t) = K(t)� : Then v 2 C

�
[0;+1);Cb

�
RN
��
\C1

�
[0;+1);C2b

�
RN
��

and, for all 1 � p � 1, we have v 2 C
�
[0;+1);Lp

�
RN
��
\ C1

�
[0;+1);Lp

�
RN
��
. In

addition:

(i) vt = �v for all t > 0:

(ii) v(0) =  :

(iii) jjv(t)jjLp � (4�t)�
N
2 (

1
p
� 1
q ) jj'jjLq ; for 1 � q � p � 1 and for all t > 0:

Lemma 2.5 Let ' 2 Y; ' � 0 a.e. on 
: Then, for all t > 0; we have S(t)' � 0 a.e. on


: From the lemma 2.4 and 2.5 we have the following proposition:

Proposition 2.7 Let 1 � q � p � 1: Then

jjS(t)'jjLp � (4�t)�
N
2 (

1
p
� 1
q ) jj'jjLq ;

for all t > 0; and ' 2 X:
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Semilinear problems

Proposition 2.8 : Let ' 2 C0 (
) ; T > 0, and let u 2 C ([0; T ] ; C0 (
)) : Then u solution

of 8>>>>>>><>>>>>>>:

u 2 C ([0; T ] ; C0 (
)) \ C ((0; T ]; H1
0 (
)) \ C1 ((0; T ]; L2 (
)) ;

�u 2 C ((0; T ]; L2 (
)) ;

ut ��u = F (u);8t 2 (0; T ];

u(0) = ';

if and only if u satis�es

u(t) = S(t)'+

Z t

0

S(t� s)F (u(s))ds;8t 2 [0; T ] :

Remark 2.1 For the proofs of these results and more details you can see [65].

2.4 Damped Wave Equation

The original concept of damped wave equation, was appeared in 1965, when James Maxwell

formulated a unifying theory of electricity and magnetism, his theory was concluded by

the following electromagnetic wave equation

r��!B = �0
�!
J + �0�0@t

�!
E : (2.9)

Where
�!
E is the electric �eld,

�!
B is the magnetic �eld,

�!
J is the current density in the

medium, �0; �0 are fundamental constants.

recently, Justin Richman added some conditions to the equation (2.9), he considered it

inside ohmic materials and proposed that Ohm�s law holds everywhere in the medium, i-e
�!
J = �

�!
E , and the conductivity of material � = �0 = �0 = 1:
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using some mathematical tools, then, Maxwell�s equation takes the following form

@2t
�!
E + @t

�!
E ���!E = 0: (2.10)

The new form of Maxwell�s equation (2.10) neglects some physical e¤ect, indeed, the

assumption that the conductivity is constant is good approximation for most metals,

but some e¤ects like heating can cause the conductivity changes over time. However,

perturbations to the system can be reintroduced by adding terms that may depend on

position, time, and the solution itself, generalized as some function F (
�!
E ); which for our

study be the nonlinear source term.

2.4.1 Well-Posedness

De�nition 2.13 (Damped Wave Equation).

8>>>><>>>>:
@2t u+ @tu��u = F (u); (x; t) 2 RN � [0;1);

u(x; 0) = g; x 2 RN ;

ut(x; 0) = h; x 2 RN :

(2.11)

De�nition 2.14 A partial di¤erential equation is called well-posed if the following are

satis�ed:

1. The solution exists in some function space given initial data which is contained in

the function space.

2. The solution is unique within this function space for given initial data.

3. The solution depends continuously on the initial data.

The second part of this section is devoted to solve the damped wave equation (2.11) on

the Fourier transform side. This will provide us necessary formulas for bounding solutions

in Xs space later.
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Lemma 2.6 if

û0 =

8>>>>><>>>>>:
ĝe�1=2t cosh

�
1=2t

p
1� 4j�j2

�
+ ĝ+2ĥp

1�4j�j2
e�1=2t sinh

�
1=2t

p
1� 4j�j2

�
; j�j < 1=2;

ĝe�1=2t +
�
1=2ĝ + ĥ

�
te�1=2t; j�j = 1=2;

ĝe�1=2t cos
�
1=2t

p
4j�j2 � 1

�
+ ĝ+2ĥp

4j�j2�1
e�1=2t sin

�
1=2t

p
4j�j2 � 1

�
; j�j > 1=2;

(2.12)

then u0 solves the equation (2.11) for F � 0 (the homogeneous case).

Proof. Taking the spatial Fourier transform of the homogeneous damped wave equation

yields the following:

ûtt + ût � j�j2u = 0: (2.13)

This is a second order ordinary di¤erential equation with respect to time. this equation

has the following characteristic equation

r2 + r + j�j2 = 0;

in which the solution is

r =
�1�

p
1� 4j�j2
2

:

The solution of (2.13) depends on whether the roots of the characteristic equation are real,

imaginary, or double roots. Depending on the value of j�j these are all possible, so the

solution must be computed piecewise.

Case 1, j�j < 1
2
: In this case, the roots are both real, and so the solution of (2.13) takes

the form

û = Ae�1=2t cosh
�
1=2t

p
1� 4j�j2

�
+Be�1=2t sinh

�
1=2t

p
1� 4j�j2

�
: (2.14)

Evaluating this at t = 0, we get

û(�; 0) = A:
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Since u(x; 0) = g; it follow that û(x; 0) = ĝ; and so A = ĝ:

Taking the partial derivative with respect to time of (2.14) and evaluating at t = 0 gives

ût(�; 0) = �1=2A+ 1=2B
p
1� 4j�j2:

From equation (2.11) we have ût(�; 0) = ĥ; so B = ĝ+ĥp
1�4j�j2

Case 2, � = 1=2 : In this case, there is a double root, so the solution takes the form

û = Ae�1=2t +Bte�1=2t:

Evaluating at t = 0 gives A = ĝ: Evaluating the partial derivative with respect to time at

t = 0 gives B = 1=2ĝ + ĥ:

Case 3, � < 1=2 : In this case, both roots are imaginary. The solution takes the form

û = Ae�1=2t cos
�
1=2t

p
4j�j2 � 1

�
+Be�1=2t sin

�
1=2t

p
4j�j2 � 1

�
:

Evaluating at t = 0 gives A = ĝ: Evaluating the partial derivative with respect to time at

t = 0 gives

ût(�; 0) = �1=2A+ 1=2B
p
4j�j2 � 1:

From (2.11) we have ût(�; 0) = ĥ; so B = ĝ+ĥp
4j�j2�1

. Thus, we have found the homogeneous

solution to the equation (2.11) on the Fourier transform side.

To �nd a particular solution, we use Duhamel�s Principal.

Lemma 2.7 (Duhamel�s Principal) .Suppose w =
Z t

0

v(x; t� s; s)ds; where v solves

@2t v + @tv ��v = 0; vt(x; 0; s) = F (x; s): (2.15)

Then, w solves equation (2.11) for g � 0 and h � 0 (particular solution).

Proof. plugging w into (2.11) and using Theorem 2.4, you can get the proof easily.
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Consequently, we can deduce the following corollary:

Corollary 2.1 For v describe as in Lemma 2.7

v̂ (�; t� s; s) =

8>>>>><>>>>>:

2F̂ (�;s)p
1�4j�j2

e�1=2(t�s) sinh
�
1=2(t� s)

p
1� 4j�j2

�
; j�j < 1=2;

F̂ (�; s) te�1=2(t�s); j�j = 1=2;
2F̂ (�;s)p
4j�j2�1

e�1=2(t�s) sin
�
1=2(t� s)

p
4j�j2 � 1

�
; j�j > 1=2:

(2.16)

Proof. This follows directly from Lemma 2.6 for g � 0 and h = F (x; s):

Now, we have an explicit formula for the solution of equation (2.11) in terms of its Fourier

transform:

Theorem 2.6 If u = u0 + w; with u0 describe as in Lemma 2.6 and w describe as in

Lemma 2.7 then u solves equation (2.11).

Proof. u satis�es the initial condition:

u (x; 0) = u0(x; 0) + w(x; 0) = g + 0 = g;

@tu (x; 0) = @tu0(x; 0) + @tw(x; 0) = h+ 0 = h:

Plugging u into equation (2.11) yields

@2t u+ @tu��u = @2t (u0 + w) + @t (u0 + w)��(u0 + w) = 0 + F = F: (2.17)

As shown in Lemma 2.6 and (2.7). Since u is the sum of the homogeneous solution u0 and

a particular solution (w), u solves equation (2.11).

Theorem 2.7 [53] for the solution u to equation (2.11)

jjujjHs . jjgjjHs + jjhjjHs�1 +

Z t

0

jjF (t0)jjHs�1dt0; t 2 [0;+1);

jj@tujjHs�1 . jjgjjHs + jjhjjHs�1 +

Z t

0

jjF (t0)jjHs�1dt0; t 2 [0;+1):
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Chapter 3

Blow-up Of Solution For Damped

Wave System With Nonlinear

Memory

3.1 Introduction

In this chapter, we are going to extend the result of M.Loayza, I.G.Quinteiro presented in

chapter 1, and we deal the blow-up case of damped wave system

8>>>>>>>>><>>>>>>>>>:

utt ��u+ ut =

Z t

0

(t� s)�
1 jv(s)jpds; t > 0; x 2 RN ;

vtt ��v + vt =

Z t

0

(t� s)�
2ju(s)jqds; t > 0; x 2 RN ;

u(0; x) = u0(x); ut(0; x) = u1(x); x 2 RN ;

v(0; x) = v0(x); vt(0; x) = v1(x);x 2 RN ;

(3.1)

where, p; q � 1 satisfy pq > 1, and 0 < 
1; 
2 < 1, u0; v0 2 C0
�
RN
�
. There is a

wide literature on the qualitative properties of solutions to the heat equations and the

damped wave equations with polynomial nonlinearities, see for example, [10]-[50], and the

references therein. These works deal with the questions of global existence, asymptotic
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behavior, blow-up in �nite time and so forth as well as a variety of methods used to study

these questions.

In [72], Xu considered the problem (3.1), he proved the global existence and asymptotic

behavior as t!1 of small data solutions in the case when N = 1, also, he showed under

some positive data the nonexistence of nonnegative weak solution for N � 1. The method

used in [72] is inspired from the weighted energy method developed by Todorova and

Yordanov [20]. As we have seen, Xu restricts himself in the case of compactly supported

data and the dimension N = 1.

Recently Berbiche [37], studied the problem (3.1), he obtained the small data global so-

lution result in low-dimensional space 1 � N � 3 with non compactly supported initial

data and obtained the L1-decay estimates.

More recently [47], Wu et al. studied the problem (3.1) with 
1 = 
2 = 
 2 (0; 1=2), when

N = 1, and obtained the critical exponent

F (p; q; 
) := max

�
1� 
 +


 (p+ 1)

pq � 1 ; 1� 
 +

 (q + 1)

pq � 1

�
� 1
2
.

They proved that if F (p; q; 
) < 0 there exists a unique global small data solution of (3.1)

and if F (p; q; 
) � 0 the non-existence of global solution can be derived with the initial

data having positive average value.

Before setting the result concerning the nonexistence of global solution of 3.1, let us de�ne

the weak solution of (3.1)

De�nition 3.1 (Weak Solution): Let T > 0; 
1; 
2 2 (0; 1) and u0; u1 2 L1loc
�
RN
�
:We say

that (u; v) is a weak solution if (u; v) 2 Lq
�
(0; Tmax) ;L

q
loc

�
RN
��
�Lp

�
(0; Tmax) ;L

p
loc

�
RN
��

and satis�es

� (�1)

Z T

0

Z
RN
'J�10jt (jvj

p) dxdt+

Z
RN
u1(x)'(0; x)dx+

Z
RN
u0(x) ('(0; x)� 't(0; x)) dx

=

Z T

0

Z
RN
u'ttdxdt�

Z T

0

Z
RN
u'tdxdt�

Z T

0

Z
RN
u�'dxdt

27
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and

� (�2)

Z T

0

Z
RN
 J�20jt (juj

q) dxdt+

Z
RN
v1(x) (0; x)dx+

Z
RN
v0(x) ( (0; x)�  t(0; x)) dx

=

Z T

0

Z
RN
v ttdxdt�

Z T

0

Z
RN
v tdxdt�

Z T

0

Z
RN
v� dxdt (3.2)

holds for any test functions (';  ) 2
�
C2
�
[0; T ]� RN

��2
and satisfying

' (T; :) = 't (T; :) = 0 and  (T; :) =  t (T; :) = 0; where �1 = 1� 
1; �2 = 1� 
2:

3.2 Blow-up Theorem and its Proof

Theorem 3.1 Let N � 1; p; q > 1; and 0 < 
1; 
2 < 1. Assume that

N

2
� min

��
(2� 
2)p+ (1� 
1)pq + 1

pq � 1 ;
(2� 
1)q + (1� 
2)pq + 1

pq � 1

��
, (3.3)

or 8>>>><>>>>:
1� p
2 + p(1� q
1) � 0;

or

1� q
1 + q(1� p
2) � 0:

(3.4)

If the initial data (ui; vi); i = 0; 1; satisfy

Z
RN
ui(x)dx > 0 and

Z
RN
vi(x)dx > 0; i = 0; 1: (3.5)

Then the solution (u(t; x); v(t; x)) of problem (3.1) does not exist globally.

Proof. The proof is by contradiction. Suppose that (u; v) is a nontrivial weak solution of

(3.1) which exists globally in time. Furthermore, let de�ne the following test functions

'(t; x) = D�1
tjT (~'(t; x)) := D�1

tjT
�
'l1 (x)'2 (t)

�
 (t; x) = D�2

tjT (~'(t; x)) := D�2
tjT
�
'l1 (x)'2 (t)

�
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with '1 (x) = �
�
jxj
T
1
2

�
; '2 (t) =

�
1� t

T

�l
+
and �(r) is a smooth non increasing function

such that

�(r) =

8><>: 1 if 0 � r � 1;

0 if r � 2;

with 0 � � � 1: The constant l > 1 in the de�nition of ' and  will be chosen later. We

have from the de�nition of the weak solution

� (�1)

Z T

0

Z
RN
J0jt (jvjp)D�1

tjT ~'dxdt+

Z
RN
u1(x)D

�1
tjT ~'(0; x)dx

+

Z
RN
u0(x)

�
D�1
tjT ~'(0; x)� @tD

�1
tjT ~'(0; x)

�
dx

=

Z T

0

Z
RN
u@2tD

�1
tjT ~'dxdt�

Z T

0

Z
RN
u@tD

�1
tjT ~'dxdt�

Z T

0

Z
RN
u�D�1

tjT ~'dxdt; (3.6)

and

� (�2)

Z T

0

Z
RN
J0jt (jujq)D�2

tjT ~'dxdt+

Z
RN
v1(x)D

�2
tjT ~'(0; x)dx

+

Z
RN
v0(x)

�
D�2
tjT ~'(0; x)� @tD

�2
tjT ~'(0; x)

�
dx

=

Z T

0

Z
RN
v@2tD

�2
tjT ~'dxdt�

Z T

0

Z
RN
v@tD

�2
tjT ~'dxdt�

Z T

0

Z
RN
v�D�2

tjT ~'dxdt: (3.7)

Using the formulas (2.3) and (2.8) in the left-hand sides of (3.6) and (3.7), while in the

right-hand sides using (2.4), we conclude that

� (�1)

Z T

0

Z
RN
D�1
0jtJ

�1
0jt (jvj

p) ~'dxdt+ CT��1
Z
RN
u1(x)'

l
1(x)dx

+ C
�
T��1 + T�1��1

� Z
RN
u0(x)'

l
1(x)dx

=

Z T

0

Z
RN
u
�
D2+�1
tjT ~'+D1+�1

tjT ~'
�
dxdt�

Z T

0

Z
RN
u�D�1

tjT ~'dxdt; (3.8)
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and

� (�2)

Z T

0

Z
RN
D�2
0jtJ

�2
0jt (juj

q) ~'dxdt+ CT��2
Z
RN
v1(x)'

l
1(x)dx

+ C
�
T��2 + T�1��2

� Z
RN
v0(x)'

l
1(x)dx

=

Z T

0

Z
RN
v
�
D2+�2
tjT ~'+D1+�2

tjT ~'
�
dxdt�

Z T

0

Z
RN
v�D�2

tjT ~'dxdt: (3.9)

From (2.5), we may write

� (�1)

Z T

0

Z
RN
jvjp~'dxdt+ CT��1

Z
RN
u1(x)'

l
1(x)dx+ C

�
T��1 + T�(1+�1)

�
�
Z
RN
u0(x)'

l
1(x)dx

=

Z T

0

Z
RN
u
�
D2+�1
tjT ~'+D1+�1

tjT ~'
�
dxdt�

Z T

0

Z
RN
u�'l1(x)D

�1
tjT'2dxdt (3.10)

and

� (�2)

Z T

0

Z
RN
jujq~'dxdt+ CT��2

Z
RN
v1(x)'

l
1(x)dx+ C

�
T��2 + T�(1+�2)

�
�
Z
RN
v0(x)'

l
1(x)dx

=

Z T

0

Z
RN
v
�
D2+�2
tjT ~'+D1+�2

tjT ~'
�
dxdt�

Z T

0

Z
RN
v�'l1(x)D

�2
tjT'2dxdt (3.11)

Using the fact that the support of '1 is included in 
 :=
n
x 2 RN : jxj � 2T 1

2

o
; we get

� (�1)

Z
QT

jvjp~'dxdt+ CT��1
Z



u1(x)'
l
1(x)dx+ C

�
T��1 + T�(1+�1)

� Z



u0(x)'
l
1(x)dx

=

Z
QT

u
�
D2+�1
tjT ~'+D1+�1

tjT ~'
�
dxdt�

Z
QT

u�'l1(x)D
�1
tjT'2dxdt;

and

� (�2)

Z
QT

jujq~'dxdt+ CT��2
Z



v1(x)'
l
1(x)dx+ C

�
T��2 + T�(1+�2)

� Z



v0(x)'
l
1(x)dxZ

QT

v
�
D2+�2
tjT ~'+D1+�2

tjT ~'
�
dxdt�

Z
QT

v�'l1(x)D
�2
tjT'2dxdt:

Where QT := f(x; t); (x; t) 2 
� [0; T ]g : In addition, the condition (3.5) implies that
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Z



vi'
l
1(x)dx > 0 and

Z



ui'
l
1(x)dx > 0 for i = 0; 1. Indeed since

lim
T!+1

ui(x)'
l
1(x) = ui(x); i = 0; 1;

and ui(x) 2 L1loc
�
RN
�
; for i = 0; 1 then by Lebesgue dominated convergence Theorem,

we obtain

lim
T!+1

Z



ui(x)'
l
1(x)dx =

Z
RN
ui(x)dx: i = 0; 1:

lim
T!+1

Z



vi(x)'
l
1(x)dx =

Z
RN
vi(x)dx: i = 0; 1:

So
Z
RN
uidx > 0 (resp.

Z
RN
vidx > 0) implies that

Z



ui'
l
1(x)dx > 0 (resp.

Z



vi'
l
1(x)dx > 0),

for T large. From what we have seen, we can write

Z
QT

jvjp~'dxdt � C

Z
QT

juj
�
D2+�1
tjT ~'+D1+�1

tjT ~'
�
dxdt

+C

Z
QT

juj'l�21

�
j�'1j+ jr'1j2

�
D�1
tjT'2dxdt; (3.12)

and

Z
QT

jujq~'dxdt � C

Z
QT

jvj
�
D2+�2
tjT ~'+D1+�2

tjT ~'
�
dxdt

+C

Z
QT

jvj'l�21

�
j�'1j+ jr'1j2

�
D�2
tjT'2dxdt; (3.13)

where we have used the formula �'l1 =
�
l'l�11 �'1 + l (l � 1) jr'j2

�
and '1 � 1: Using

Hö lder�s inequality, with parameters p and p0 (resp. q and q0), to the right-hand side of

the inequalities (3.12) and (3.13), we get

Z
QT

jvjp~'dxdt �
�Z

QT

jujq~'dxdt
� 1

q

A; (3.14)
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Z
QT

jujq~'dxdt �
�Z

QT

jvjp~'dxdt
� 1

p

B; (3.15)

where

A : = C

�Z
QT

'l1'
� 1
q�1

2

��
D2+�1
tjT '2

�q0
+
�
D1+�1
tjT '2

�q0�
dxdt

� 1
q0

+C

�Z
QT

'l�2q
0

1 '
� 1
q�1

2

�
j�'1j+ jr'1j2

�q0 jD�1
tjT'2j

q0dxdt

� 1
q0

;

B : = C

�Z
QT

'l1'
� 1
p�1

2

��
D2+�2
tjT '2

�p0
+
�
D1+�2
tjT '2

�p0�
dxdt

� 1
p0

+C

�Z
QT

'l�2p
0

1 '
� 1
p�1

2

�
j�'1j+ jr'1j2

�p0 jD�2
tjT'2j

p0dxdt

� 1
p0

;

with p0 = p
p�1 (resp q

0 = q
q�1) Now, combining (3.14) and (3.15), we obtain

�Z
QT

jvjp~'dxdt
�1� 1

pq

� CB
1
qA; (3.16)

and �Z
QT

jujq~'dxdt
�1� 1

pq

� CA
1
pB: (3.17)

Next, we consider the scaled variables t = T� , x = T
1
2y; in the right-hand sides of

(3.16),(3.17), and using (2.6), (2.7) we �nd

8>>><>>>:
�Z

QT

jvjp~'dxdt
�1� 1

pq

� CT �1 ;�Z
QT

jujq~'dxdt
�1� 1

pq

� CT �2 ;

(3.18)

with

�1 =
1

q0

�
� (1 + �1) q0 +

N

2
+ 1

�
+
1

qp0

�
� (1 + �2) p0 +

N

2
+ 1

�
;

�2 =
1

p0

�
� (1 + �2) p0 +

N

2
+ 1

�
+
1

pq0

�
� (1 + �1) q0 +

N

2
+ 1

�
:
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The condition (3.3) leads to either

� The case �1 < 0 or �2 < 0, then, as T ! +1 the right-hand side of the �rst equation

(resp. second equation) of (3.18) tends to zero and the left-hand side converges to

�Z
RN�R+

jvjpdxdt
�1� 1

pq

 
resp

�Z
RN�R+

jujqdxdt
�1� 1

pq

!
:

Consequently, the couple (u; v) � (0; 0).

� The case �1 = 0 (resp �2 = 0), in this case, using (3.18), we conclude that

v 2 Lp
�
(0;1) ; Lp

�
RN
��
; u 2 Lq

�
(0;1) ; Lq

�
RN
��
: (3.19)

Now, we need to modify the test function '1(x) by introducing a new parameter B

(1 << B < T ) as follows '1(x) := �
�

jxj
B�

1
2 T

1
2

�
. From (3.12) and (3.13), we get

Z

1

jvjp~'dxdt � C

Z

1

juj
�
D2+�1
tjT ~'+D1+�1

tjT ~'
�
dxdt

+C

Z
�

juj'l�21

�
�j'1j+rj'1j2

�
D�1
tjT'2dxdt (3.20)

and

Z

1

jujq~'dxdt � C

Z

1

jvj
�
D2+�2
tjT ~'+D1+�2

tjT ~'
�
dxdt

+C

Z
�

jvj'l�21

�
�j'1j+rj'1j2

�
D�2
tjT'2dxdt (3.21)

where
1 := [0; T ]�
n
x 2 RN ; jxj � 2B� 1

2T
1
2

o
;� := [0; T ]�

n
x 2 RN ; T

1
2

B
1
2
� jxj � 2 T

1
2

B
1
2

o
:

It follows from (3.19), that

lim
T!1

Z
�

jvjp~'dxdt = 0 or lim
T!1

Z
�

jujq~'dxdt = 0: (3.22)
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By using Hölder inequality again, we get

8>>><>>>:
Z

1

jvjp~'dxdt � C

�Z

1

jujqdxdt
� 1

q

A1 + C

�Z
�

jujqdxdt
� 1

q

C1;Z

1

jujq~'dxdt � C

�Z

1

jvjpdxdt
� 1

p

B1 + C

�Z
�

jvjpdxdt
� 1

p

C2;
(3.23)

where

A1 :=
�Z


1

'l1'
� 1
q�1

2

��
D2+�1
tjT '2

�q0
+
�
D1+�1
tjT '2

�q0�
dxdt

� 1
q0

:

B1 :=
�Z


1

'l1'
� 1
p�1

2

��
D2+�2
tjT '2

�p0
+
�
D1+�2
tjT '2

�p0�
dxdt

� 1
p0

:

C1 :=
�Z

�

'l�2q
0

1 '
� 1
q�1

2 (�j'1j+rj'1j2)
q0
�
D�1
tjT'2

�q0
dxdt

� 1
q0

:

C2 :=
�Z

�

'l�2p
0

1 '
� 1
p�1

2 (�j'1j+rj'1j2)
p0
�
D�2
tjT'2

�p0
dxdt

� 1
p0

:

If we set Y :=

Z

1

jvjp~'dxdt; Z :=
Z

1

jujq~'dxdt: It follows from (3.23) that

8>>><>>>:
Y � CZ

1
qA1 + C

�Z
�

jujq~'dxdt
� 1

q

C1:

Z � CY
1
pB1 + C

�Z
�

jvjp~'dxdt
� 1

p

C2:
(3.24)

On the other hand by integrating (1.4) on �, we obtain

8>>><>>>:
�Z

�

jujq~'dxdt
�
� C

�Z
�

jvjp~'dxdt
� 1

p

(B2 + C2) :�Z
�

jvjp~'dxdt
�
� C

�Z
�

jujq~'dxdt
� 1

q

(A2 + C1) :
(3.25)

Where

A2 : =

�Z
�

'l1'
� 1
q�1

2

��
D2+�1
tjT '2

�q0
+
�
D1+�1
tjT '2

�q0�
dxdt

� 1
q0

:

B2 : =

�Z
�

'l1'
� 1
p�1

2

��
D2+�2
tjT '2

�p0
+
�
D1+�2
tjT '2

�p0�
dxdt

� 1
p0

:
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Combining (3.24) and (3.25), we obtain

8>>><>>>:
Y � CA1B

1
q

1 Y
1
pq + C

�Z
�

jvjp~'dxdt
� 1

pq
�
A1C

1
q

2 + B
1
q

2 C1 + C1C
1
q

2

�
;

Z � CA
1
p

1 B1Z
1
pq + C

�Z
�

jujq~'dxdt
� 1

pq
�
A

1
p

2 C2 + B1C
1
p

1 + C
1
p

1 C2
�
:

Using "-Young inequality, we get

Y � CA
pq

pq�1
1 B

p
pq�1
1 + C

�Z
�

jvjp~'dxdt
� 1

pq
�
A1C

1
q

2 + B
1
q

2 C1 + C1C
1
q

2

�
; (3.26)

Z � CA
q

pq�1
1 B

pq
pq�1 + C

�Z
�

jujq~'dxdt
� 1

pq
�
A

1
p

2 C2 + B1C
1
p

1 +C
1
p

1 C2
�
: (3.27)

Now, using the scaled variables (y; �) de�ned by � = T�1t; y = T
�1
2 B

1
2x; in the

right-hand sides of (3.26) and (3.27), we then have the estimates

8>>><>>>:
Y � CT

pq
pq�1 �1B

pq
pq�1k1 + C

�Z
�

jvjp~'dxdt
� 1

pq

T �1
�
Bk2 +Bk3 +Bk4

�
;

Z � CT
pq

pq�1 �2B
pq

pq�1 l1 + C

�Z
�

jujq~'dxdt
� 1

pq

T �2
�
Bl2 +Bl3 +Bl4

�
:

where

k1 : = �N
2

�
1

qp0
+
1

q0

�
; k2 :=

1

q
� N

2

�
1

qp0
+
1

q0

�
; k3 := 1� k1; k4 := 1 + k2;

l1 : = �N
2

�
1

pq0
+
1

p0

�
; l2 :=

1

p
� N

2

�
1

pq0
+
1

p0

�
; l3 := 1� l1; l4 := 1 + l2:

The last two inequalities with �1 = 0 (resp. �2 = 0) imply that

Y � CB
pq

pq�1k1 + C

�Z
�

jvjp~'dxdt
� 1

pq �
Bk2 +Bk3 +Bk4

�
; (3.28)

Z � CB
pq

pq�1 l1 + C

�Z
�

jujq~'dxdt
� 1

pq �
Bl2 +Bl3 +Bl4

�
: (3.29)
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We obtain via (3.22) after passing to the limit in (3.28), (resp.(3.29)) when T ! +1

8>><>>:
Z
RN�R+

jvjpdxdt � CB
pq

pq�1k1 ;Z
RN�R+

jujqdxdt � CB
pq

pq�1 l1 :
(3.30)

Finally, as k1 < 0 and l1 < 0 computing the limit in (3.30) when B ! 1 we infer

that u � 0; v � 0; which is contradiction.

� When (3.4) is satis�ed, we argue as in the case (�1 < 0; �2 < 0) by choosing the following

function

'l1(x) := �
l

�
jxj
R

�
We repeat the same computation as above by using the new variables t = T�1� and

x = R�1y in both sides of (3.16) and (3.17) we �nd

�Z
QT

jvjp~'dxdt
�1� 1

pq

� C1 (T;R) ;

�Z
QT

jujq~'dxdt
�1� 1

pq

� C2 (T;R) ; (3.31)

where T > R > 1;

C1 (T;R) := T �1R�1 + T �2R�2 + T �3R�3 + T �4R�4 ;

C2 (T;R) := T �1R�1 + T �2R�2 + T �3R�3 + T �4R�4 :

With

�1 :=
1
qp0 (1� p0 (�2 + 1)) +

1
q0 (1� q0 (�1 + 1)) ;

�2 :=
1
qp0 (1� p0 (�2 + 1)) +

1
q0 (1� q0�1) ;

�3 :=
1
q

�
1
p0 � �2

�
+ 1

q0 (1� q0 (�1 + 1)) ;

�4 :=
1
q

�
1
p0 � �2

�
+ 1

q0 (1� q0�1) :

�1 :=
N
p0q +

N
q0 ; �2 := �1 � 2; �3 := 1

q

�
N
p0 � 2

�
+ N

q0 ; �4 := �3 � 2:
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�1 :=
1
pq0 (1� q0 (�1 + 1)) +

1
p0 (1� p0 (�2 + 1)) ;

�2 :=
1
pq0 (1� q0 (�1 + 1)) +

1
p0 (1� p0�2) ;

�3 :=
1
pq0 (1� �1q

0) + 1
p0 (1� p0 (�2 + 1)) ;

�4 :=
1
pq0 (1� �1q

0) + 1
p0 (1� p0�2) ;

and

�1 :=
N
pq0 +

N
p0 ; �2 := �1 � 2; �3 := 1

p

�
N
q0 � 2

�
+ N

p0 ; �4 := �3 � 2:

The condition (3.4) equivalent to or �4 = 0(resp �4 = 0):

Firstly, if �4 < 0(resp �4 < 0): Passing to the limit in (3.31) as T ! 1 we infer, as

�i < 0(resp �i < 0) for i = 1; :::; 4 that
Z
R+

Z
jxj�2R

jvjp~' (x; t) dxdt = 0; and

Z
R+

Z
jxj�2R

jujq~'(x; t)dxdt = 0;

by lettingR!1, we get
Z
RN�R+

jvjp~' (x; t) dxdt = 0;
Z
RN�R+

jujq~'(x; t)dxdt = 0 ;which

implies that u = v � 0. This is contradiction.

� When �4 = 0 or �4 = 0, we get from (3.31) after passing to the limit when T !1,

Z
R+

Z
jxj�2R

jvjp~' (x; t) dxdt � CR�4 ;

Z
R+

Z
jxj�2R

jujq~'(x; t)dxdt � CR�4 : (3.32)

Precisely, if �4 < 0 or �4 < 0 in particular when
N�2
N

� 
1; 
2 < 1; passing to the limit

in (3.32) as R!1, we �nd u = v � 0. This is contradiction.
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Chapter 4

On The Nonexistence of Global

Solution For Wave Equations With

Double Damping Terms and

Nonlinear Memory

4.1 Introduction

In this chapter we study whether or not there exist solutions to the initial value problem:

8><>:
�u(t; x) + ju(t; x)jm�1@tu(t; x) + @tu(t; x) =

Z t

0

(t� �)�
 ju(� ; x)jpd� , t 2 [0; T ]� RN ;

u(0; x) = u0(x), ut(0; x) = u1(x), x 2 RN ,
(4.1)

where � = @2t ��; u is the unknown real-valued function, N � 1, m � 1, p > 1, 
 2 (0; 1)

and u0 (x), u1 (x) are the given initial data.

There are many literatures concerning this type of equations and all researchers turn

around the fact that the asymptotic behavior of solutions of semi-linear damped wave
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equations is similar to the one of the corresponding semi-linear heat equations, see for

example, ([20], [21], [39], [51], [55], [69]), and the references therein. In order to motivate

our results, it must be recall some facts concern the Cauchy problem for the dissipative

nonlinear wave equation.

A natural extension of (1.4) consists in introducing a displacement-dependent damping

coe¢ cient, thus leading to the following problem

utt ��u+ jujm�1ut =
Z t

0

(t� s)�
 ju (s; :) jpds, (4.2)

where 0 < 
 < 1, p,m > 1 and N � 1, u0 2 C0(RN). Berbiche and Hakem [39], showed

the local existence and blow-up for the problem (4.2). More precisely, they proved that,

if p > m > 1 and the initial conditions satisfy

Z
RN
u0(x)dx > 0;

Z
RN
ju0jm�1u0(x)dx > 0; and

Z
RN
u1(x)dx > 0, (4.3)

and if

N � min

8<: 2(m+ (1� 
)p

p� 1 + (1� 
)(m� 1) ;
2(1 + (2� 
)p�

(p�1)(2�
)
(p�m) + 
 � 1

�
(p� 1)

9=; or p � 1



,

the solution of problem (4.2) does not exist globally in time.

It should be emphasized that the natural space where solutions are found is the one of

the energy H1
�
RN
�
� L2

�
RN
�
. However, such energy inequalities do not seem to �t in

this setting for the following reasons: some di¢ culties appear due to the lack of Lipschitz

continuity of function the jujm�1 v (1 < m < 2) with respect to (u; v) 2 RN �RN , and the

Sobolev embeddingH1
�
RN
�
� L1

�
RN
�
is true only whenN = 1, another di¢ culty comes

from the absence of regularity created by the singular kernel involving in the nonlinear

source term.

In this work, we will focus on the interaction between the nonlinear nonlocal source term
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involving fractional integral kernel and the dissipation term. In particular, we will give

conditions relating the space dimension N with parameters p,
, m, for which the solution

of (4.1) with initial data having positive average does not exist globally. We also emphasize

here that no e¤ect of displacement-dependent damping on the critical exponent as unlike

to what the authors saw in the article from [39].

In order to show that the problem (4.1) is well-posed, we use an idea developed by Lions

and Strauss [27], Katayama et al.[61] combined with energy estimates in higher order

Sobolev spaces (see [53]). Moreover, our approach to derive Fujita exponent is based on

the test-function method, developed by Mitidieri & Pohozaev [12], [13], Pohozaev & Tesei

[60], Pohozaev & Veron [35] and Zhang [51].

The rest of the chapter is divided into three sections. In Section 2, we present some lemmas

which will be needed later in our proof. Section 3 is devoted to the local existence result

and Section 4 contains a nonexistence of global weak solutions result.

The positive constants C will be change from line to line.

4.2 Some preliminary results

The following Lemmas will be used in the proof of Theorems 3.1.

Lemma 4.1 (See [44], Proposition 2.4, p. 5) If s > N
2
, then

Hs
�
RN
�
� C

�
RN
�
\ L1

�
RN
�
;

where the inclusion is continuous. In fact

kukL1 � C kukHs

The next Lemma is consequence of lemma 2.1 and Proposition 3.7, p. 10 in [44]

40



Chapter 4. On The Nonexistence of Global Solution For Wave Equations With Double
Damping Terms and Nonlinear Memory

Lemma 4.2 (See [44]) Assume that s1; s2 � s > N
2
, then for u 2 Hs1

�
RN
�
;

v 2 Hs2
�
RN
�
; we have the estimates

kuvkHs(RN ) � C kukHs1 (RN ) kvkHs2 (RN )

where C is constant independent of u and v:

The last Lemma uses the equivalent norm of kukHs�1 (see [1, Theorem 7.48, p. 214]). We

omit their proof since it can be found in (see [24])

Lemma 4.3 For any s 2 (1; 2) [ N� and p 2 (1;+1) \ (s � 1;+1) we have for a

nonnegative function f 2 L1
�
RN
�
\ Hs�1 �RN� ; fp 2 Hs�1 �RN� and there exists a

positive constant C such that

kfpkHs�1(RN ) � C kfkp�1
L1(RN ) kfkHs�1(RN ) .

Now, proceed with the following linear damped wave equation:

8><>: utt ��u+ ut = F (t; x), x 2 RN , t > 0,

u(x; 0) = g (x) ; ut(x; 0) = h (x) , x 2 RN .
(4.4)

Let us give some results which will be used in the following.

Lemma 4.4 Let s 2 R. Let (g; h) 2 Hs
�
RN
�
�Hs�1 �RN� and F (t; x) 2 L1 �[0; T ] ; Hs�1 �RN��.

Then for every T > 0, there is a unique solution u 2 C
�
[0; T ] ; Hs

�
RN
��
\C1

�
[0; T ] ; Hs�1 �RN��

of cauchy problem of (4.4). Moreover, u satis�es

kukHs(RN ) + kutkHs�1(RN ) � C

�
kgkHs(RN ) + khkHs�1(RN ) +

Z t

0

kF (� ; :)kHs�1(RN ) d�

�
,

for all 0 � t � T , where C only depends on s.
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In addition, if g 2 Hs+1
�
RN
�
, h 2 Hs

�
RN
�
and F (t; x) 2 L1

�
[0; T ] ; Hs

�
RN
��
\

L1
�
[0; T ] ; Hs�1 �RN��, utt 2 L1 �[0; T ] ; Hs�1 �RN�� satis�es

kuttkHs�1(RN ) � C

�
khkHs(RN ) + kgkHs+1(RN ) + kF (t)kHs�1(RN ) +

Z t

0

kF (t0)kHs(RN ) dt
0
�
,

for all 0 � t � T , where C only depends on s.

Proof. The �rst estimate is already shown in [53]. Arguing as in [53] to show the second

estimate. It is known that the �rst derivative of û satis�es in the domain j�j < 1=2 (see

Theorem 2.6),

ût (t) = �1
2
û (t) +

1

2
ĝ

q
1� 4 j�j2e� t

2 sinh

�
1

2
t

q
1� 4 j�j2

�
+
1

2

�
ĝ + 2ĥ

�
e�

t
2 cosh

�
1

2
t

q
1� 4 j�j2

�
+

Z t

0

F̂ (t0)e�
1
2
(t�t0) cosh

�
1

2
(t� t0)

q
1� 4 j�j2

�
dt0,

we derive this expression with respect to t, we �nd

ûtt (t) = �1
2
ût (t)� 1

4
ĝ
q
1� 4 j�j2e� t

2 sinh

�
1
2
t
q
1� 4 j�j2

�
+ 1

4
ĝ
�
1� 4 j�j2

�
�e� t

2 cosh

�
1
2
t
q
1� 4 j�j2

�
� 1

4

�
ĝ + 2ĥ

�
e�

t
2 cosh

�
1
2
t
q
1� 4 j�j2

�
+1
4

�
ĝ + 2ĥ

�
e�

t
2

q
1� 4 j�j2 sinh

�
1
2
t
q
1� 4 j�j2

�
+F̂ (t) +

Z t

0

F̂ (t0)

�
�1
2
e�

1
2
(t�t0) cosh

�
1
2
(t� t0)

q
1� 4 j�j2

�
+1
2

q
1� 4 j�j2e� 1

2
(t�t0) sinh

�
1
2
(t� t0)

q
1� 4 j�j2

��
dt0,
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or

ûtt (t) = �1
2
ût (t)� ĝ j�j2 e� t

2 cosh

�
1

2
t

q
1� 4 j�j2

�
� 1
2
ĥe�

t
2 cosh

�
1

2
t

q
1� 4 j�j2

�
+
1

2
ĥe�

t
2

q
1� 4 j�j2 sinh

�
1

2
t

q
1� 4 j�j2

�
+ F̂ (t)

+

Z t

0

F̂ (t0)

�
�1
2
e�

1
2
(t�t0) cosh

�
1

2
(t� t0)

q
1� 4 j�j2

�
+
1

2

q
1� 4 j�j2e� 1

2
(t�t0) sinh

�
1

2
(t� t0)

q
1� 4 j�j2

��
dt0. (4.5)

Now we consider the case for j�j > 1=2. From Theorem 2.6, we have

ût (t) = �1
2
û (t)� 1

2
ĝ

q
4 j�j2 � 1e� t

2 sin

�
1

2
t

q
4 j�j2 � 1

�
+
1

2

�
ĝ + 2ĥ

�
e�

t
2 cos

�
1

2
t

q
4 j�j2 � 1

�
+

Z t

0

F̂ (t0)e�
1
2
(t�t0) cos

�
1

2
(t� t0)

q
4 j�j2 � 1

�
dt0.

By taking the derivative of ût (t), we get

ûtt (t) = �1
2
ût (t) +

1
4
ĝ
q
4 j�j2 � 1e� t

2 sin

�
1
2
t
q
4 j�j2 � 1

�
� 1

4
ĝ
�
4 j�j2 � 1

�
�e� t

2 cos

�
1
2
t
q
4 j�j2 � 1

�
� 1

4

�
ĝ + 2ĥ

�
e�

t
2 cos

�
1
2
t
q
4 j�j2 � 1

�
� 1

4

�
ĝ + 2ĥ

�
e�

t
2

�
q
4 j�j2 � 1 sin

�
1
2
t
q
4 j�j2 � 1

�
+ F̂ (t) +

Z t

0

F̂ (t0)

�
�1
2
e�

1
2
(t�t0) cos

�
1
2
(t� t0)

q
4 j�j2 � 1

�
�1
2

q
4 j�j2 � 1e� 1

2
(t�t0) sin

�
1
2
(t� t0)

q
4 j�j2 � 1

��
dt0,

which gives

ûtt (t) = �1
2
ût (t)� ĝ j�j2 e� t

2 cos

�
1
2
t
q
4 j�j2 � 1

�
�1
2
ĥe�

t
2 cos

�
1
2
t
q
4 j�j2 � 1

�
� 1

2
ĥe�

t
2

q
4 j�j2 � 1 sin

�
1
2
t
q
4 j�j2 � 1

�
+F̂ (t) +

Z t

0

F̂ (t0)

�
�1
2
e�

1
2
(t�t0) cos

�
1
2
(t� t0)

q
4 j�j2 � 1

�
�1
2

q
4 j�j2 � 1e� 1

2
(t�t0) sin

�
1
2
(t� t0)

q
4 j�j2 � 1

��
dt0.

(4.6)
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Now, using the de�nition of the Hs norm

kuttkHs�1(Rn) =

�Z
RN

�
1 + j�j2

�s�1 jûtt (t)j2 d��1=2
=

�Z
j�j<1=2

�
1 + j�j2

�s�1 jûtt (t)j2 d� + Z
j�j>1=2

�
1 + j�j2

�s�1 jûtt (t)j2 d��1=2
�
�Z

j�j<1=2

�
1 + j�j2

�s�1 jûtt (t)j2 d��1=2 + �Z
j�j>1=2

�
1 + j�j2

�s�1 jûtt (t)j2 d��1=2 := I1 + I2;

(4.7)

where we have used the Triangle Inequality.

Let�s, estimate the �rst integrand. From (4.5), we have

I1 � kutkHs�1(Rn) +

�Z
j�j<1=2

�
1 + j�j2

�s�1 (1+j�j2)
1+j�j2 jĝj

2 d�

�1=2
+C

�Z
j�j<1=2

�
1 + j�j2

�s�1 ���ĥ (�)���2 d��1=2 + kF (t)kHs�1(Rn) +

Z t

0

kF (t0)kHs�1(Rn) dt
0

� C

�
kutkHs�1(Rn) + khkHs�1(Rn) + kgkHs(Rn) + kF (t)kHs�1(Rn) +

Z t

0

kF (t0)kHs�1(Rn) dt
0
�
.

Where we have used that (1� y2) e�
t
2 cosh

�
1
2
ty
�
� 1, e�

t
2y sinh

�
1
2
ty
�
� 1 for y 2 [0; 1],

t > 0.

Inserting the estimate of kutkHs�1(Rn) in the last inequality it yields

I1 � C

�
khkHs�1(Rn) + kgkHs(Rn) + kF (t)kHs�1(Rn) +

Z t

0

kF (t0)kHs�1(Rn) dt
0
�
. (4.8)

Estimate for the second integrand in (4.7). We have

�Z
j�j>1=2

�
1 + j�j2

�s�1 jûtt (t)j2 d��1=2 � kutkHs�1(RN )+"Z
j�j>1=2

�
1 + j�j2

�s�1 �
1 + j�j2

�2 ����ĝ j�j2

1+j�j2 e
� t
2 cos

�
1
2
t
q
4 j�j2 � 1

�����2 d�
#1=2

+

"Z
j�j>1=2

�
1 + j�j2

�s�1 (1+j�j2)
1+j�j2

����ĥ�1 +q4 j�j2 � 1 sin�1
2
t
q
4 j�j2 � 1

������2 d�
#1=2

+ kF (t)kHs�1(RN )

+

"Z t

0

Z
j�j>1=2

�
1 + j�j2

�s�1 �
1 + j�j2

� ����F̂ (t0)�1 + p4j�j2�1p
1+j�j2

sin

�
1
2
t
q
4 j�j2 � 1

������2 dt0d�
#1=2
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� kutkHs�1(RN ) + khkHs(RN ) + kgkHs+1(RN ) + kF (t)kHs�1(RN ) +

Z t

0

kF (t0)kHs(RN ) dt
0.

(4.9)

Using the estimate of kutkHs�1(RN ) into (4.9) and by Sobolev�s embedding theorem, we

�nd that

I2 � C

�
khkHs(RN ) + kgkHs+1(RN ) + kF (t)kHs�1(RN ) +

Z t

0

kF (t0)kHs(RN ) dt

�
. (4.10)

From (4.8) and (4.10), we conclude the proof of Lemma 2.4 .

4.3 Local-existence

In this section, we �rst present the following Theorem concerning the existence and unique-

ness of the local solution to the problem (4.1). Next, we will prove this result.

Theorem 4.1 Let N � 1, s > N
2
+ 1 and m; p 2 (1;+1) \ (s � 1;+1). Then for any

u0 2 Hs
�
RN
�
and u1 2 Hs�1 �RN�, (4.1) admits a unique solution

u 2 C
�
[0; T ] ;Hs

�
RN
��
\ C1

�
[0; T ] ;Hs�1 �RN��

with some positive T , which depends only on ku0kHs + ku1kHs�1.

Proof. The idea of the proof is based on the fact that we havem jujm�1 ut = @t
�
jujm�1 u

�
.

By introducing a new unknown v satisfying u = vt, the problem (4.1) is reduced so to the

following problem of the known case where the nonlinear term is locally lipschitz

8><>:
vtt(t; x)��v(t; x) + vt(t; x) = � 1

m
jvtjm�1 vt(t; x) + 1

1�


Z t

0

(t� �)1�
 jvt (� ; x)jp d�

+ 1
m
ju0jm�1 u0 (x) + u0 (x) + u1 (x) , t > 0, x 2 RN ,

(4.11)
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where v(0; x) = 0, vt(0; x) = u0 (x), x 2 RN . It is not di¢ cult to check that

u 2 C
�
[0; T ] ;Hs

�
RN
��
\C1

�
[0; T ] ;Hs�1 �RN�� solution to (4.1) if and only if v is solution

to (4.11) in the class

8><>: v 2 C
�
[0; T ] ;Hs

�
RN
��
,

vt 2 C1
�
[0; T ] ;Hs�1 �RN�� , vtt 2 C1 �[0; T ] ;Hs�1 �RN�� . (4.12)

Let us de�ne

XT := C
�
[0; T ] ;Hs

�
RN
��
\ C1

�
[0; T ] ;Hs�1 �RN�� ,

YT := L1
�
[0; T ] ;Hs

�
RN
��
\W 1;1 �[0; T ] ;Hs�1 �RN�� ;

YT;M :=

�
u 2 YT ; sup

0�t�T
(kv (t; :)kHs + kvt (t; :)kHs�1) �M

�
.

Next, set XT;M = YT;M \XT . Obviously XT � YT and XT;M � YT;M . Set

G (vt) = � 1
m
jvtjm�1 vt(t; x) + 1

1�


Z t

0

(t� �)1�
 jvt (� ; x)jp ds

+ 1
m
ju0jm�1 u0 (x) + u0 (x) + u1 (x) .

For any w 2 YT , de�ne � [w] = v, where v 2 XT is a solution to8><>: vtt ��v + vt = G (wt) in (0; T )� RN ,

v(x; 0) = 0, vt(x; 0) = u0 (x) x 2 RN .
(4.13)

Since we have G (wt) 2 L1
�
[0; T ];Hs�1 �RN�� for any w 2 YT by Sobolev�s embedding

theorem, existence and uniqueness of such v 2 XT is guaranteed by the Cauchy problems

for linear damped wave equations (Lemma 4.4). LetM = 4 (ku0kmHs + ku0kHs + ku1kHs�1).

We �rst claim that w 2 YT;M implies that � [w] 2 XT;M for su¢ ciently small T > 0.

Set � [w] = v. From the Lemma 4.4, we have

kv (t; :)kHs + kvt (t; :)kHs�1 � C

�
kv0kHs + kv1kHs�1 +

Z t

0

kG(wt) (� ; :)kHs�1 d�

�
.

(4.14)
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From Lemma 4.3, since s > N
2
+ 1, we have

Z t

0

kG(wt) (� ; :)kHs�1 d� � 1
m

Z t

0



jwtjm�1wt (� ; :)

Hs�1 d�

+ 1
1�


Z t

0

(t� s)1�
 kjwtjpkHs�1 (s) ds+ T


 1
m
ju0jm�1 u0 (x) + u0 (x) + u1 (x)




Hs�1

� CT kwtkm�1L1 sup
0�t�Y

kwtkHs�1 + C

Z t

0

(t� s)1�
 kwtkp�1L1 kwtkHs�1 (s) ds

+CT (ku0kmHs�1 + ku0kHs�1 + ku1kHs�1) .

Then by the Lemma 4.1, we �nd

Z t

0

kG(wt) (� ; :)kHs�1 d� � CT sup
0�t�T

kwtkmHs�1 + CT 2�
 sup
0�t�T

kwtkpHs�1

+CT (ku0kmHs + ku0kHs + ku1kHs�1)

� C (TMm + T 2�
Mp + T (ku0kmHs + ku0kHs + ku1kHs�1)) .

(4.15)

From (4.14) and (4.15), we get

sup
0�t�T

(kv (t; :)kHs + kvt (t; :)kHs�1) � C (ku0kHs�1 + TMm + T 2�
Mp

+T (ku0kmHs + ku0kHs + ku1kHs�1))

� C (M + TMm + T 2�
Mp + TM) .

(4.16)

By (4.16) we arrive at

sup
0�t�T

(kv (t; :)kHs + kvt (t; :)kHs�1) � CT;MM ,

where CT;M = C
�
1
4
+ TMm�1 + CT 2�
Mp�1 + T

4

�
. Since we can �nd T1 > 0 such that

CT;M � 1 for any T 2 (0; T1], this implies the claim.

We next prove that � is a contraction mapping in XT;M for small T by using the Lemma

4.4 and the mean value theorem. Suppose that w1; w2 2 YT;M , then we have

� [w1] ;� [w2] 2 XT;M .
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Let vi (i = 1; 2) be solutions to the following problems

8>>>><>>>>:
(vi)tt ��vi + (vi)t = � 1

m
j(wi)tj

m�1 (wi)t (t; x) +
1
1�


Z t

0

(t� �)1�
 j(wi)t (� ; x)j
p d�

+ 1
m
ju0jm�1 u0 (x) + u0 (x) + u1 (x) , in t > 0, x 2 RN ,

vi(0; x) = 0, (vi)t (0; x) = u0 (x) in RN .
(4.17)

Set ~v = v1 � v2, we have ~v veri�es

8>>>><>>>>:
~vtt ��~v + ~vt = � 1

m
j(w1)tj

m�1 (w1)t (t; x) +
1
m
j(w2)tj

m�1 (w2)t (t; x)

+ 1
1�


Z t

0

(t� �)1�
 (j(w1)t (� ; x)j
p � j(w2)t (� ; x)j

p) d� in (0; T )� RN ,

~v(0; x) = ~vt(0; x) = 0 in RN .

(4.18)

for i = 1; 2, respectively.

Since wi 2 YT;M implies that
Z t

0

(t� s)1�
 j(wi)tj
p (s) ds and j(wi)tj

m�1 (wi)t are functions

in L1 (0; T ;Hs�1) by Sobolev�s embedding theorem, we have vi 2 XT and

~v 2 C
�
[0; T ] ;Hs

�
RN
��
\ C1

�
[0; T ] ;Hs�1 �RN�� . (4.19)

By (4.17), (4.18) and (4.20), the higher order energy inequality

k~vt (t; :)kHs�1 + k~v (t; :)kHs

� C

Z t

0

Z s

0

(s� �)1�
 k(j(w1)tj
p � j(w2)tj

p) (� ; :)kHs�1 d�ds

+C

Z t

0



j(w1)tjm�1 (w1)t (� ; :)� j(w2)tjm�1 (w2)t (� ; :)

Hs�1 d� .

(4.20)

Note that since jvjl�1 v with l > 1 is a C1 function, the mean value theorem implies

���jv1jl�1 v1 � jv2jl�1 v2��� � C
�
jv1jl�1 + jv2jl�1

�
jv1 � v2j . (4.21)
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Applying the inequality (4.21) with Sobolev�s inequality k~vkL1 � C k~vkHs�1 to right-hand

of (4.20), it follows for s > N
2
+ 1

k~vt (t; :)kHs�1 + k~v (t; :)kHs

+C

Z t

0

(t� �)1�

�
k(w1)tk

p�1
Hs�1 + k(w2)tk

p�1
Hs�1

�
k(w1 � w2)t (� ; :)kHs�1 d�

+C

Z t

0

�
k(w1)tk

m�1
Hs�1 + k(w2)tk

m�1
Hs�1

�
k(w1 � w2)t (� ; :)kHs�1 d�

� C (T 2�
Mp�1 + TMm�1) sup
0���T

k(w1 � w2)t (� ; :)kHs�1 for 0 � t � T .

(4.22)

Then by (4.22), we get

k� [w1]� � [w2] (t; :)kXT;M � C
�
T 2�
Mp�1 + TMm�1�� sup

0���T
k(w1 � w2)t (� ; :)kHs�1 .

(4.23)

In the following, we �x T 2 (0; T1] which is small enough to have

C
�
T 2�
Mp�1 + TMm�1� < 1

2
:

Therefore

k� [w1]� � [w2] (t; :)kXT;M �
1

2
k(w1 � w2) (� ; :)kXT;M for such T . (4.24)

Finally, de�ne 8><>: v(0) (t; x) = vt (0; x) = u0(x),

v(k) = �
�
v(k�1)

�
k = 1; 2; 3; :::.

By (4.24), there exists some v 2 C ([0; T ] ;Hs) such that v(k) ! v in C ([0; T ] ;Hs) as

k ! 1. Now, we will show that this v belongs to XT and is solution to (4.11). Since

v(k) 2 XT;M ,
�
v(k)
	
(resp.

n
v
(k)
t

o
) has a weak-* convergent subsequence in L1 (0; T ;Hs)

(resp. in L1 (0; T ;Hs�1)). Since v(k) ! v in C ([0; T ] ;Hs), the above subsequence of�
v(k)
	
(resp.

n
v
(k)
t

o
) converges weakly-* to v (resp. to vt) in L1 (0; T ;Hs) (resp. in

49



Chapter 4. On The Nonexistence of Global Solution For Wave Equations With Double
Damping Terms and Nonlinear Memory

L1 (0; T ;Hs�1)), and consequently we see that v 2 L1 (0; T ;Hs) and vt 2 L1 (0; T ;Hs�1).

Then we can see that v 2 YT;M , and then we get � [v] 2 XT;M . Hence we can apply (4.24)

to have

sup
0�t�T



� [v]� � �v(k)� (t; :)


XT;M

� 1

2
sup
0�t�T



�v � v(k)
�
(t; :)




YT;M

. (4.25)

Since the right-hand side of (4.25) tends to 0 as k ! 1; we get �
�
v(k)
�
! � [v] in

C ([0; T ] ;Hs). Since we have showed that v(k) ! v in C ([0; T ] ;Hs), passing to the limit

in v(k) = �
�
v(k�1)

�
, we obtain v = � [v] 2 XT;M . This v apparently the desired solution.

The uniqueness of weak solutions in XT;M follows immediately from Gronwall�s inequality.

As u = vt, we have u 2 C ([0; T ] ;Hs�1). This completes the proof of Theorem 3.1.

Remark 4.1 If we take (u0; u1) 2 Hs+1
�
RN
�
� Hs

�
RN
�
, with s > N=2 � 1, then from

Lemma 2.4 the solution of problem (4.1) (u; ut) 2 C
�
[0; T ] ;Hs

�
RN
��
�C

�
[0; T ] ;Hs�1 �RN��.

4.4 Blow-up results

This section is devoted to the blow-up of solutions of the problem (4.1). We start by

introducing the de�nition of the weak solution of (4.1).

De�nition 4.1 Let T > 0, 0 < 
 < 1 and u0 2 L1loc
�
RN
�
\ Lmloc

�
RN
�
, u1 2 L1loc

�
RN
�
.

We say that u is a weak solution if u 2 Lp
�
(0; T ) ; Lploc

�
RN
��
\Lm

�
(0; T ) ; Lmloc

�
RN
��
and

satis�es

� (�)

Z T

0

Z
RN
J�0jt (juj

p)'dxdt+

Z
RN
u1 (x)' (0; x) dx�

Z
RN
u0 (x)'t (0; x) dx

+

Z
RN
u0 (x)' (0; x) dx+

1
m

Z
RN
ju0jm�1 u0 (x)' (0; x) dx

=

Z T

0

Z
RN
u'ttdxdt� 1

m

Z T

0

Z
RN
jujm�1 u't (t; x) dxdt�

Z T

0

Z
RN
u't (t; x) dxdt

�
Z T

0

Z
RN
u�'dxdt,

(4.26)

for all nonnegative test function ' 2 C2
�
[0; T ]� RN

�
such that

' (T; :) = 't (T; :) = 0, where � = 1� 
.
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Theorem 4.2 Let N � 1, 0 < 
 < 1 and let p, m such that p > m > 1. Assume that the

initial data (u0; u1) satisfy

Z
RN
u0 (x) dx > 0,

Z
RN
ju0jm�1 u0 (x) > 0, and

Z
RN
u1 (x) dx > 0.

Then if

p � max
�

m (N + 2)

(N � 2 + 2
)+
;
1




�
. (4.27)

The solution of problem (4.1) does not exist globally in time.

Proof. The proof is by contradiction. Suppose that u is non trivial weak solution of the

problem (4.1) which exists globally in time. Therefore, let us de�ne

'(t; x) = D�
tjT ~' (t; x) := 'l1(x)D

�
tjT'2(t):

With 'l1(x) := �
�
jxj2
T

�l
; '2(t) :=

�
1� t

T

��
+
, where l; � � 1 and � 2 C1 (R+) be cut-o¤

non-increasing function such that

� (z) =

8><>: 1 if 0 � z � 1,

0 if z � 2,
, with 0 � � � 1.

We have from the de�nition of weak solution

� (�)

Z T

0

Z
RN
J�0jt (juj

p)D�
tjT ~'(t; x)dxdt+

Z
RN
u1 (x)D

�
tjT ~' (0; x) dx�

Z
RN
u0 (x) @tD

�
tjT ~'t (0; x) dx

+ 1
m

Z
RN
ju0jm�1 u0 (x)D�

tjT ~' (0; x) dx+

Z
RN
u0 (x)D

�
tjT ~' (0; x) dx

=

Z T

0

Z
RN
u@2tD

�
tjT ~' (t; x) dxdt� 1

m

Z T

0

Z
RN
jujm�1 u@tD�

tjT ~' (t; x) dxdt

�
Z T

0

Z
RN
u@tD

�
tjT ~' (t; x) dxdt�

Z T

0

Z
RN
u�D�

tjT ~'(t; x)dxdt.

(4.28)
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Using the formulas(2.3),(2.4) and (2.8) in the left-hand side of (4.28), while in the right-

hand side using (2.4), we get

� (�)

Z T

0

Z
RN
(jujp)'l1(x)'2(t)dxdt+

Z
RN
u1 (x)D

�
tjT'

l
1(x)'2(0)dx

+

Z
RN
u0 (x)D

�+1
tjT 'l1(x)'2(0)dx+

1
m

R
RN ju0j

m�1 u0 (x)D
�
tjT'

l
1(x)'2(0)dx

+

Z
RN
u0 (x)D

�
tjT'

l
1(x)'2(0)dx;

=

Z T

0

Z
RN
uD�+2

tjT 'l1(x)'2(t)dxdt+
1
m

Z T

0

Z
RN
jujm�1 uD�+1

tjT 'l1(x)'2(t)dxdt

+

Z T

0

Z
RN
uD�+1

tjT 'l1(x)'2(t)dxdt�
Z T

0

Z
RN
u�D�

tjT'
l
1(x)'2(t)dxdt.

(4.29)

From the fact that �'l1 = l'l�11 �'1 + l(l � 1)jr'1j2, and the support of '1 is included

in


T :=
�
x 2 RN : jxj � (2T )1=2

	
,

we may write

Z

T

(jujp) ~'dxdt+ CT 
�1
Z
RN
u1 (x)'

l
1(x)dx+ C (T 
�2 + T 
�1)

Z
RN
u0 (x)'

l
1(x)dx

+CT 
�1
Z
RN
ju0jm�1 u0 (x)'l1(x)dx � C

Z
QT

juj'l1(x)
���D3�


tjT '2(t)
��� dxdt

+C

Z
QT

jujm 'l1(x)
���D2�


tjT '2(t)
��� dxdt+ C

Z
QT

juj'l1(x)
���D2�


tjT '2(t)
��� dxdt

�C
Z
QT

u'l�21 (x) (j�'1j+ jr'1j2)
���D1�


tjT '2(t)
��� dxdt,

(4.30)

where QT := [0; T ]�RN . By the Lebesgue dominated convergence theorem, we can obtain

for all i = 0; 1 the following limits

lim
T!1

Z

T

ui(x)'
l
1(x)dx =

Z
RN
ui(x)dx,

lim
T!1

Z

T

ju0(x)jm�1u0(x)'l1(x)dx =

Z
RN
ju0(x)jm�1u0(x)dx,
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since we have lim
T!1

ui(x)'
l
1(x) = ui(x); lim

T!1
ju0(x)jm�1u0(x)'l1(x) = ju0(x)jm�1u0(x), and

(ui; u0) 2 L1loc
�
RN
�
� Lmloc

�
RN
�
. SoZ

RN
ui(x)dx > 0

�
resp.

Z
RN
ju0(x)jm�1u0(x)dx > 0

�
implies thatZ
RN
ui(x)'

l
1(x)dx > 0

�
resp.

Z
RN
ju0(x)jm�1u0(x)'l1(x)dx > 0

�
,

for T large. Now, By applying the following "-Young�s inequality

XY � "Xp + C(")Y p0 ; p+ p0 = pp0; X � 0; Y � 0,

to the right-hand side of (4.30), we get

Z
QT

juj'l1(x)
����D3�


tjT +D2�

tjT

�
'2(t)

��� dxdt = Z
QT

juj~'
1
p ~'�

1
p'l1(x)

����D3�

tjT +D2�


tjT

�
'2(t)

��� dxdt
� "

Z
QT

jujp~'dxdt+ C(")

Z
QT

'l1(x)'
� 1
p�1

2 (t)
����D3�


tjT +D2�

tjT

�
'2(t)

��� p
p�1

dxdt.

(4.31)

For " > 0; also, we have the estimate

Z
QT

jujm 'l1(x)
���D2�


tjT '2(t)
��� dxdt = Z

QT

jujm~'
m
p ~'�

m
p 'l1(x)

���D2�

tjT '2(t)

��� dxdt
� "

Z
QT

jujp~'dxdt+ C(")

Z
QT

'l1(x)'
� m
p�m

2 (t)
���D2�


tjT '2(t)
��� p
p�m

dxdt.
(4.32)

The same is true for the third part of the right-hand side of(4.30)

Z
QT

u'l�21 (j�'1j+ jr'1j2)
���D1�


tjT '2(t)
��� dxdt � "

Z
QT

jujp~'dxdt

+C(")

Z
QT

'
l�2 p

p�1
1

�
j�'1j

p
p�1 + jr'1j2

p
p�1

�
'
� 1
p�1

2 (t)
���D1�


tjT '2(t)
��� p
p�1

dxdt.
(4.33)

Combining (4.31), (4.32),(4.33), with " small enough, and some positive constant C, we

obtainZ
QT

jujp~'dxdt � C

Z
QT

'l1(x)'
� 1
p�1

2 (t)
����D3�


tjT +D2�

tjT

�
'2(t)

��� p
p�1

dxdt

+C

Z
QT

'l1(x)'
� m
p�m

2 (t)
���D2�


tjT '2(t)
��� p
p�m

dxdt

+C

Z
QT

'
l�2 p

p�1
1 (x)

�
j�'1j

p
p�1 + jr'1j2

p
p�1

�
'
� 1
p�1

2 (t)
���D1�


tjT '2(t)
��� p
p�1

dxdt.

(4.34)
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Using the change of variables

y = T�
1
2x; s = T�1t.

The equation (4.34) leads to

Z
QT

jujp~'dxdt � C
�
T (
�3)

p
p�1+

N
2
+1 + 2T (
�2)

p
p�1+

N
2
+1 + T (
�2)

p
p�m+

N
2
+1
�
� T �, (4.35)

with � = max
n
(
 � 2) p

p�1 +
N
2
+ 1; (
 � 2) p

p�m +
N
2
+ 1
o
= (
 � 2) p

p�1 +
N
2
+1. At this

stage, we have to distinguish two cases: The case � < 0: we pass to the limit in (4.35) as

T !1; we get

lim
T!1

Z
QT

jujp~'dxdt = 0.

Using the continuity in time and space of u and the fact that lim
T!1

~'(t; x) = 1, then we

based on the Lebesgue dominated convergence theorem, we can conclude the following

Z 1

0

Z

T

jujp~'dxdt = 0) u � 0,

which is contradiction. Now, we move to the second case : case � = 0: using inequality

(4.35) with T !1, we have

u 2 Lp
�
(0;1) ;Lp(RN)

�
;

which implies that

lim
T!1

Z T

0

Z
P
T

jujp~'(x; t)dxdt = 0,

where


T :=
�
x 2 RN ; jxj2 � 2T

	
,
X

T
:=
�
x 2 Rn, T � jxj2 � 2T

	
.
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On the other hand, using Hölder�s inequality instead of Young�s one to the term

Z T

0

Z
RN
juj'l�21 (j�'1j+ jr'1j2)

��D�
tjT'2 (t)

�� dxdt,
we �nd

Z T

0

Z
RN
juj'l�21 (j�'1j+ jr'1j2)

���D�
tjT'2 (t)

��� dxdt �  Z T

0

Z
P
TR�1

jujp~'(t; x)dxdt
!1=p

�
 Z T

0

Z
P
TR�1

'l�2p
0

1 '�p
0

2 (j�'1jp
0
+ jr'1j2p

0
)
���D�

tjT'2 (t)
���p0 dxdt!1=p0 .

We repeat the same calculation as above by taking in this time '1(x) := �
�

jxj2
R�1T

�
where

R is �xed number such that 1 < R < T . Using the change of variables y = R
1
2T�

1
2x,

� = T�1t, and the fact � = 0, we get

Z T

0

Z

TR�1

jujp~'dxdt � C (")

Z T

0

Z

TR�1

'l1(x)'
� 1
p�1

2 (t)

����D3�

tjT '2(t)

���p0 + ���D2�

tjT '2(t)

���p0� dxdt
+

Z T

0

Z

TR�1

'l1(x)j'2(t)j
� m
p�m

���D2�

tjT '2(t)

��� p
p�m

dxdt+

 Z T

0

Z
P
TR�1

jujp~'(x; t)dxdt
!1=p

�
 Z T

0

Z
P
TR�1

'l�2p
0

1 (x)'2(t)
�p0(j�'1jp

0
+ jr'1j2p

0
)
���D1�


tjT '2 (t)
���p0 dxdt!1=p0 ,

which yields

Z T

0

Z
n
jxj�

p
2R�

1
2 T

1
2

ojujp~'dxdt �
�
T (
�3)

p
p�1+

N
2
+1 + T (
�2)

p
p�1+

N
2
+1 + T (
�2)

p
p�m+

N
2
+1
�
R�

N
2

+C
�
T (
�2)

p
p�1+

N
2
+1
�1=p0

R
1� N

2p0 �
 Z T

0

Z
P
TR�1

jujp~'(x; t)dxdt
!1=p0

.

Because of � = 0, we can get

Z T

0

Z
n
jxj�

p
2R�

1
2 T

1
2

o jujp~'dxdt � CR�
N
2 +R

1� N
2p0 �

 Z T

0

Z
P
TR�1

jujp~'(x; t)dxdt
!1=p

.

(4.36)
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Passing to the limit in (4.36) as T !1, we get

Z 1

0

Z
RN
jujpdxdt � CR�

N
2 ,

and then R!1 which give a contradiction.

The case p � 1


we choose '1(x) := �

�
jxj2
R

�
; '2(t) :=

�
1� t

T

��
+
, then by taking the change

variables x = R
1
2y, t = T� , it follows from (4.34) that

Z 1

0

Z
RN
jujp~'dxdt � CR

n
2

�
T (
�3)p

0+1 + T (
�2)p
0+1 + T (
�2)

p
p�m+1

�
+CR(

n
2
�p0)T (
�1)p

0+1.

Now, passing to the limit as T !1 in the last inequality by taking account that p < 1=
,

we deduce that Z 1

0

Z
RN
jujp~'dxdt = 0.

Then, by taking R!1, we get contradiction.

Precisely, in the case p = 1


, we have to use condition N

2
� p

p�1 < 0, which is equivalent to


 > N�2
2
to obtain the desired convergence. This completes the proof

Remark 4.2 When m = 1, we recover the case studied by Fino [2].
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Chapter 5

Global Small Data Solution For a

System of Semilinear Heat Equations

and The Corresponding System of

Damped Wave Equations With

Nonlinear Memory

5.1 Introduction

We consider the two Cauchy problems for a systems of strongly coupled semilinear integro-

di¤erential equations of parabolic type:

8>>>>>>><>>>>>>>:

ut ��u =
Z t

0

(t� s)�
1 ju (s) jp1 jv (s) jq1ds; t > 0, x 2 RN ,

vt ��v =
Z t

0

(t� s)�
2 jv (s) jp2ju (s) jq2ds, t > 0, x 2 RN ,

u (0; x) = u0 (x) , v (0; x) = v0 (x) ; x 2 RN ,

(5.1)
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and hyperbolic type:

8>>>>>>><>>>>>>>:

utt ��u+ ut =

Z t

0

(t� s)�
1 ju (s) jp1jv (s) jq1ds; t > 0; x 2 RN ;

vtt ��v + vt =

Z t

0

(t� s)�
2 jv (s) jp2ju (s) jq2ds; t > 0; x 2 RN ;

u (0; x) = u0 (x) ; ut (0; x) = u1 (x) ; v (0; x) = v0 (x) ; vt (0; x) = v1 (x) ; x 2 RN ;

(5.2)

where the unknown functions u := u(t; x), v := v(t; x) are real-valued, N � 1, p1,q1,p2,q2 �

1, 0 < 
1,
2 < 1 and u0 (x), v0 (x) are the given initial data.

Motivated by the results cited in the Chapter 3 and the papers [37], [46], [47], [66], [72], we

consider the problem (5.1)((5.2) respectively), we will give conditions relating the space

dimension N with the system of parameters 
1, 
2, p1, q1, p2 and q2 for which the solution

of (5.1) ((5.2) respectively) exists globally in time as well as L1 decay estimates.

The best way to do this is to consider appropriately Lebesgue space where we can expect

global well-posedness for this model, we observe that if (u; v) is a solution for the system

(5.1) with initial data (u0; v0), then for all � > 0, (u�; v�) =
�
�k1u(�2t; �x); �k2u(�2t; �x)

�
where

k1 =
(4� 2
1) (p2 � 1)� (4� 2
2) q1

((p1 � 1) (p2 � 1)� q1q2)
, k2 =

(4� 2
2) (p1 � 1)� (4� 2
1) q2
((p1 � 1) (p2 � 1)� q1q2)

,

is also a solution of (5.1). If (u0; v0) 2 Lr1
�
RN
�
� Lr2

�
RN
�
, then the norms in Lr1

�
RN
�

and Lr2
�
RN
�
are preserved if and only if

r1 =
N ((p1 � 1) (p2 � 1)� q1q2)

2 [(2� 
1) (p2 � 1)� (2� 
2) q1]
, r2 =

N ((p1 � 1) (p2 � 1)� q1q2)

2 [(2� 
2) (p1 � 1)� (2� 
1) q2]
: (5.3)

So we could expect that if r1 > 1 and r2 > 1 the mild solution of (5.1) with small initial

data would exist globally. We will show in this chapter that this result partially is not true.

Using the di¤usion phenomenon properties, we can obtain similar critical exponent results
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for the corresponding system of semilinear damped wave equations in low dimension space.

The rest is organized as follows. In the next section, we present some preliminary lem-

mas that we will need in the proof main results of this part. We collect some basic facts

and useful tools such as smoothing e¤ect of the heat semigroup, Lp-Lq estimates of the

fundamental solutions of the damped wave equation. The local existence and the contin-

uation results are presented in Section 3. Finally the proof of main results are presented

in Sections 4 and 5.

In all the chapter, C is positive constant which may have di¤erent values at di¤erent

places.

For any 1 � p � 1; W 1;p
�
RN
�
denotes the usual Sobolev space

W 1;p
�
RN
�
:=
n
f : RN ! R; kfkW 1;p(RN ) = kfkLp(RN ) + krfkLp(RN ) < +1

o
.

For any Banach space B, we denote by C([0; T ] ;B) the space of continuous functions from

[0; T ] into B equipped with the uniform convergence sup
t2[0;T ]

k:kB, and

H l
�
RN
�
:= W 2;l

�
RN
�
(l 2 N) stands for the usual Sobolev space equipped with the norm

kfk2Hl(RN ) =
lP

k=0



@kx

2L2(RN ) < +1.
5.2 Preliminary lemmas

Heat semigroup: Let us recall the de�nition of the so-called smoothing e¤ect of the

heat semigroup on RN and some related basic facts. For a complete presentation and

more details, we refer the reader to [58].

Lemma 5.1 [58] Let 1 � r � s � 1. There exists a constant C > 0 such that

kS (t)u0kLs � Ct�
N
2 (

1
r
� 1
s) ku0kLr ; t > 0 (5.4)

for all u0 2 Lr. In particular for u0 2 Lr
�
RN
�
\ Ls

�
RN
�
, 1 � r � s � 1, there exists
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C = C(r; s) such that

kS (t)u0kLs � C (t+ 1)�
N
2 (

1
r
� 1
s) (ku0kLr + ku0kLs) (5.5)

for t � 0.

We will use also the following interpolation inequality

kukLs � kuk
�
Ls1 kuk

1��
Ls2 , (5.6)

for u 2 Ls1
�
RN
�
\ Ls2

�
RN
�
, where s 2 [s1; s2]; � 2 [0; 1] with 1

s
= �

s1
+ 1��

s2
.

We will need the following lemma which used in the proofs of Theorems 5.1 and 5.2.

Lemma 5.2 [58] Let 0 � a < 1, b � 0. Then there exists a constant C > 0 depending

only on a and b such that for all t � 0,

Z t

0

(t� s)�a (1 + s)�b ds �

8>>>>><>>>>>:
C(1 + t)�min(a;b) if max(a; b) > 1,

C(1 + t)�min(a;b) ln(2 + t) if max(a; b) = 1,

C (1 + t)1�a�b ; if max(a; b) < 1.

(5.7)

Z t

0

(t� s+ 1)�a (1 + s)�b ds � C (1 + t)�b ; for t > 0; a > 1; a � b; (5.8)

and

Z t

0

e�a(t�s) (t� s) (1 + s)�b ds � C (1 + t)�b , a,b > 0. (5.9)
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Linear damped wave equation :

Now, we recall some preliminary results concerning Lp �Lq estimates of the fundamental

solutions K0(t) and K1(t) to the linear damped wave equation

8><>:
utt ��u+ ut = 0; (t; x) 2 (0;+1)� RN ;

u(0; x) = v0(x); ut(0; x) = v1(x); x 2 RN :
(5.10)

The solution u(t) of linear equation (5.10) is given through the Fourier transform by K0(t)

and K1(t) as

u(t) := K0(t)v0 +K1(t)

�
1

2
v0 + v1

�
.

Similarly, we introduce the evolution operators of the linear wave equation as follows:

W0(t)f := F�1
h
cos (t j�j) f̂

i
;W1(t)g := F�1

�
sin (t j�j)
j�j ĝ

�
: (5.11)

In the following, we will consider the properties of these operators.

Lemma 5.3 ([5]) If f 2 Lm(RN) \Hk+j�j�1(RN) (1 � m � 2), then

k@ktr�
xK1(t) � fk2 � C(1 + t)�N=4�N=(2m)�j�j=2�k(kfkm + kfkHk+j�j�1(RN )):

Lemma 5.4 Let 1 � N � 3, 1 � p � 1, f 2 W 1;p(RN) and g 2 Lp(RN). Then there

exist some constants C > 0 such that

kW0(t)fkLp(RN ) � C (1 + jtj) kfkW 1;p(RN ) ; t 6= 0;

kW1(t)gkLp(RN ) � C jtj kgkLp(RN ) ; t 6= 0;

where W0(t)f and W1(t)g are de�ned by (5.11).

The proof of Lemma 5.4 is well known (cf. [32, 67]).

The following Lemma will be used later and the proof of this Lemma can be found in
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[31, 32, 67, 68, 69]), so we omit it here.

Lemma 5.5 Let 1 � N � 3, 1 � q � p � 1 and g 2 Lq(RN): Then, there exist some

constants C > 0 such that for all t > 0,





�K0(t)� e�
t
2W0(t)� e�

t
2
t

8
W1(t)

�
g






Lp(RN )

� C (1 + t)�
N
2 (

1
q
� 1
p) kgkLq(RN ) ,




K1(t)g � e�
t
2W1(t)g





Lp(RN )

� C (1 + t)�
N
2 (

1
q
� 1
p) kgkLq(RN ) ,

where K0(t)g and K1(t)g are de�ned by (5.18)and (5.19).

5.3 Main results

Before presenting the main theorems we introduce the de notion of mild solutions.

De�nition 5.1 For a mild solution of (5.1) we mean a function

(u; v) 2
�
C([0; T );L1

�
RN
�
)
	2 \ �C(0; T ;C0 �RN�)	2 satisfying the integral system

8>>><>>>:
u(t) = S(t)u0 +

Z t

0

Z s

0

(s� �)�
1S(t� s)ju (s) jp1jv (s) jq1d�ds;

v(t) = S(t)v0 +

Z t

0

Z s

0

(s� �)�
2S(t� s)jv (s) jp2ju (s) jq2d�ds;
(5.12)

where fS(t)gt�0 as the family of convolution operators with corresponding Gauss kernels

g(t; x) = (4�t)�N=2e�jxj
2=(4t); t > 0; x 2 RN ; that is S(t)f = g(t; :) � f , here � denotes the

convolution product.

Our �rst result concerns the existence and uniqueness of mild solutions for the system

(5.1).

Proposition 5.1 (Local existence of the heat system) Let N � 1; p1; q1; p2; q2 � 1;


1; 
2 2 [0; 1) and u0; v0 2 C0(RN): There exists a unique function

(u; v) 2
�
C
�
(0; Tmax) ; C0(RN)

�	2
solution of (5.1) such that either
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(i) Tmax =1 (the solution is global) or else

(ii) Tmax < 1 and lim
t!Tmax

(ku(t)k1 + kv(t)k1) = 1 (the solution blows up in �nite

time).

Moreover if (u0; v0) 2 Lr1
�
RN
�
� Lr2

�
RN
�
with r1 � 1 and r2 � 1, then

(u; v) 2 C
�
(0; Tmax) ; L

r1(RN)
�
� C

�
(0; Tmax) ; L

r2(RN)
�
and

lim
t!Tmax

(ku(t)kLr1\L1 + kv(t)kLr2\L1) =1; (5.13)

when Tmax <1:

Under the above notations, our global existence result for the Cauchy problem (5.1) can

be stated as in the following

Theorem 5.1 (Global existence of the heat system) Let N be a positive integer. Let

the real numbers p1; q1; p2; q2 � 1; 0 < 
1; 
2 < 1 be such that

[(1� 
1) (p2 � 1)� (1� 
2) q1] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[(1� 
2) (p1 � 1)� (1� 
1) q2] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[p2 � q1 � 1] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[p1 � q2 � 1] ((p1 � 1) (p2 � 1)� q1q2) > 0:

and u0; v0 2 C0
�
RN
�
: Let (u; v) 2

�
C
�
(0; Tmax) ; C0(RN)

�	2
.

Assume that 8><>:
N
2
> 1� 
1 +

(2�
1)(p2�1)�(2�
2)q1
(p1�1)(p2�1)�q1q2 ,

N
2
> 1� 
2 +

(2�
2)(p1�1)�(2�
1)q2
(p1�1)(p2�1)�q1q2 ,

(5.14)

8><>:
((p1 � 1) (p2 � 1)� q1q2)� [p2 (
1p1 � 1)� 
1p1 + q1 (1� 
1q2) + 1� 
2q1] > 0;

((p1 � 1) (p2 � 1)� q1q2)� [p1 (
2p2 � 1)� 
2p2 + q2 (1� 
2q1) + 1� 
1q2] > 0;

(5.15)
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and 8><>:
Np1
2

h
p1
r1
+ q1

r2

i
+ Nq1

2

h
p2
r2
+ q2

r1

i
< 2 (p1 + q1) +

N
2
,

Np2
2

h
p2
r2
+ q2

r1

i
+ Nq2

2

h
p1
r1
+ q1

r2

i
< 2 (p2 + q2) +

N
2
.

(5.16)

Then there exists a constant " > 0 such that if the initial data satisfy

(u0; v0) 2 Lr1
�
RN
�
� Lr2

�
RN
�
and

ku0k1 + kv0k1 + ku0kr1 + kv0kr2 � "

the problem (5.1) admits global solution (u; v) 2 C
�
[0;1) ;Lr1

�
RN
�
� Lr2

�
RN
�
\
�
C0
�
RN
�	2�

satis�es the following decay estimates

kuk1 � C (t+ 1)�� ; kvk1 � C (t+ 1)�� ; 8t � 0;

where r1; r2 given by (5.3) and

� =
(1� 
1) (p2 � 1)� (1� 
2) q1
(p1 � 1) (p2 � 1)� q1q2

, � =
(1� 
2) (p1 � 1)� (1� 
1) q2
(p1 � 1) (p2 � 1)� q1q2

.

Similar consideration to the system for heat equations can be applied to the Cauchy

problem (5.1) for the system of damped wave equations (5.2) in low dimensional space.

Let us give the de�nition of a mild solution for the Cauchy problem (5.2).

De�nition 5.2 Let u 2 C([0; T );L1
�
RN
�
) \ L1([0; T ) ;L1

�
RN
�
). Then the function

(u; v) is said to be a mild solution for the Cauchy problem (5.2) if there holds

8>>><>>>:
u(t) = K0(t)u0 +K1(t)

�
1
2
u0 + u1

�
+

Z t

0

Z s

0

(s� �)�
1K1(t� s)ju (s) jp1jv (s) jq1d�ds;

v(t) = K0(t)v0 +K1(t)
�
1
2
v0 + v1

�
+

Z t

0

Z s

0

(s� �)�
2K1(t� s)jv (s) jp2ju (s) jq2d�ds;

(5.17)

for all (x; t) 2 RN � [0; T ), where the evolution operators K0(t) and K1(t) solutions of the
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linear damped wave equation are given by

(K0(t)�)(x) := F�1

"
e�

t
2 cos

 
t

r
j�j2 � 1

4

!
F [�]

#
(x); (5.18)

(K1(t)�)(x) := F�1

264e� t
2

sin
�
t
q
j�j2 � 1

4

�
q
j�j2 � 1

4

F [�]

375 (x): (5.19)

Here we denote the Fourier and Fourier inverse transform by F and F�1, respectively. In

particular, when N = 1; 2; 3, like in the paper [69], (5.17) can also be written as follows:

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

u (t; :) = K1(t)(
1
2
u0 + u1) +K0(t)u0 +

Z t

0

�
K1(t� s)� e�

t�s
2 W1(t� s)

�
�
Z s

0

(s� �)�
1ju(� ; :)jp1 jv(� ; :)jq1d�ds+
Z t

0

e�
t�s
2 W1(t� s)

�
Z s

0

(s� �)�
1ju(� ; :)jp1 jv(� ; :)jq1d�ds;

v (t; :) = K1(t)(
1
2
v0 + v1) +K0(t)v0 +

Z t

0

�
K1(t� s)� e�

t�s
2 W1(t� s)

�
�
Z s

0

(s� �)�
2jv(� ; :)jp2ju(� ; :)jq2d�ds+
Z t

0

e�
t�s
2 W1(t� s)Z s

0

(s� �)�
2jv(� ; :)jp2ju(� ; :)jq2d�ds:

(5.20)

Proposition 5.2 (Local existence for the damped wave system) Let 1 � N � 3,

p1; q1; p2; q2 � 1; 
1; 
2 2 [0; 1) and (u0; u1) ; (v0; v1) 2 W 1;1 �RN��L1(RN): There exists
a unique function (u; v) 2

�
C
�
(0; Tmax) ,L1(RN)

�	2
solution of (5.2) such that either

(i) Tmax =1 (the solution is global) or else

(ii) Tmax < 1 and lim
t!Tmax

(ku(t)k1 + kv(t)k1) = 1 (the solution blows up in �nite

time).

Moreover if (u0; u1) 2 W 1;r1
�
RN
�
� L1

�
RN
�
and (v0; v1) 2 W 1;r2(RN) � L1(RN), then

(u; v) 2 C
�
[0; Tmax) ; L

r1(RN)� Lr2(RN)
�
for any r1 � 1 and r2 � 1,
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and lim
t!Tmax

(ku(t)kLr1\L1 + kv(t)kLr2\L1) =1, when Tmax <1.

Furthermore the solution u,v 2 C
�
[0; Tmax) ,H1(RN)

�
\ C1

�
[0; Tmax) ,L2(RN)

�
.

Remark 5.1 The proof of Proposition 5.2 is omitted here since it follows by combining

the proofs of Propositions 5.1 and 3.6 in [37] with Lemmas 5.2, 5.3, 5.5 togethers.

The main purpose of our next theorem is to show that the same result holds also for the

Cauchy problem (5.2)

Theorem 5.2 (Global existence) Let 1 � N � 3 be a positive integer. Let the real

numbers p1; q1; p2; q2 � 1; 0 < 
1; 
2 < 1 be such that

[(1� 
1) (p2 � 1)� (1� 
2) q1] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[(1� 
2) (p1 � 1)� (1� 
1) q2] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[p2 � q1 � 1] ((p1 � 1) (p2 � 1)� q1q2) > 0;

[p1 � q2 � 1] ((p1 � 1) (p2 � 1)� q1q2) > 0:

Assume that 8><>:
N
2
> 1� 
1 +

(2�
1)(p2�1)�(2�
2)q1
(p1�1)(p2�1)�q1q2 ;

N
2
> 1� 
2 +

(2�
2)(p1�1)�(2�
1)q2
(p1�1)(p2�1)�q1q2 ;

(5.21)

8><>:
((p1 � 1) (p2 � 1)� q1q2)� [p2 (
1p1 � 1)� 
1p1 + q1 (1� 
1q2) + 1� 
2q1] > 0;

((p1 � 1) (p2 � 1)� q1q2)� [p1 (
2p2 � 1)� 
2p2 + q2 (1� 
2q1) + 1� 
1q2] > 0;

(5.22)

and 8><>:
Np1
2

h
p1
r1
+ q1

r2

i
+ Nq1

2

h
p2
r2
+ q2

r1

i
< 2 (p1 + q1) +

N
2
,

Np2
2

h
p2
r2
+ q2

r1

i
+ Nq2

2

h
p1
r1
+ q1

r2

i
< 2 (p2 + q2) +

N
2
.

(5.23)

Then there exists a positive constant " > 0 such that if the initial data satisfy
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(ui; vi) 2
�
W 1�i;1 �RN��W 1�i;1 �RN�	2, i = 0; 1, and
ku0kW 1;1\W 1;1 + kv0kW 1;1\W 1;1 + ku1kL1\L1 + kv1kL1\L1 � ",

the corresponding problem (5.2) admits global solution

(u; v) 2 C
�
[0;1) ;Lr1

�
RN
�
\ L1

�
RN
�
\H1

�
RN
��
\ C1

�
[0;1) ;L2

�
RN
��

�C
�
[0;1) ;Lr2

�
RN
�
\ L1

�
RN
�
\H1

�
RN
��
\ C1

�
[0;1) ;L2

�
RN
��
,

satis�es the following decay estimates

kuk1 � C (t+ 1)�� , kvk1 � C (t+ 1)�� , 8t � 0,

where r1; r2 given by (5.3) and

� =
(1� 
1) (p2 � 1)� (1� 
2) q1
(p1 � 1) (p2 � 1)� q1q2

, � =
(1� 
2) (p1 � 1)� (1� 
1) q2
(p1 � 1) (p2 � 1)� q1q2

.

1) From the de�nition of r1 and r1, we note that the left hand sides of inequalities

(5.16) and (5.23) are independent of the dimension N .

2) Notice that the above results remain true for p1; p2 � 0; q1, q2 � 1 with p1 + q1 > 1

and p2 + q2 > 1.

3) Theorem 5.1 and 5.2 are sharp in the case (5.16) (respectively, (5.23)), see (4)�(14)

and generalizes Theorem 1.1 of [66]. In fact let p1 = p2 = 0; q1 = q2 = q and


1 = 
2 = 
. Conditions (5.14) and (5.15) reduce to q
�
N
2
+ 
 � 1

�
� N

2
+ 1 or

q
 � 1 respectively. From these facts, it is possible to conclude that, if (5.15) and

(5.23) are valid, then the value of the Fujita critical exponent is p�.

4) When p1 = p2 = 0. These results are in agreement with results obtained by [46,
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Theorem 2] and [37, Theorem 2.1, 2.2]. In particular the condition (5.23) of Theorem

5.2 improves the one in [37, Formula (10)]

5) The same result can be stated for more general nonlinearities, namely for fi; i = 1; 2

jf1 (u; v)� f1 (�u; v)j � C ju� �uj
�
jujp1�1 + j�ujp1�1

�
jvjq1 ,

jf1 (u; v)� f1 (u; �v)j � C jv � �vj
�
jvjq1�1 + j�vjq1�1

�
jujp1 ,

jf2 (u; v)� f2 (�u; v)j � C ju� �uj
�
jujq2�1 + j�ujq2�1

�
jvjp2 ,

jf2 (u; v)� f2 (u; �v)j � C jv � �vj
�
jvjp2�1 + j�vjp2�1

�
jujq2 :

Proof of Proposition 5.1. The proof relies in the Banach �xed point theorem. Given

M > 0 such that let

K :=
n
(u; v) 2

�
L1
�
[0; T ) ; C0

�
RN
��	2

; ku (t)k1 �M + 1; kv (t)k1 �M + 1
o
; (5.24)

where T > 0 will be chosen later. The space K equipped with the metric

d ((u; v); (�u; �v)) = sup
t2(0;T )

ku (t)� �u (t)k1 + sup
t2(0;T )

kv (t)� �v (t)k1 ;

is a complete metric space. De�ne the mapping � : K � K !
�
L1
�
[0; T ) ; C0

�
RN
��	2

as the following

�(u; v) = (�1(u; v),�2(u; v)), (u; v) 2 K

where8>>><>>>:
�1(u; v) = S(t)u0 +

Z t

0

Z s

0

S(t� s) (s� �)�
1 ju (�) jp1jv (�) jq1d�ds;

�2(u; v) = S(t)v0 +

Z t

0

Z s

0

S(t� s) (s� �)�
2 jv (�) jp2ju (�) jq2d�ds:
(5.25)
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First,we claim that � maps K it into itself, and is contraction when T is chosen appropri-

ately. We have for (u; v) 2 K that

k�1(u; v)k1 � C ku0k1 +
Z t

0

Z s

0

(s� �)�
1 kukp11 kvk
q1
1 d�ds

� C ku0k1 + T 2�
1(M + 1)p1+q1 :

Similarly

k�2(u; v)k1 � C ku0k1 +
Z t

0

Z s

0

(s� �)�
2 kvkp21 kuk
q2
1 d�ds

� C kv0k1 + T 2�
2(M + 1)p2+q2 :

We will prove that for T > 0 su¢ ciently small, � is a contraction map from K into itself.

We consider (u1; u2); (v1; v2) 2 K: For any t 2 [0; T ) ; we have

k�1(u1; u2)� �1(v1; v2)k1 �
Z t

0

Z s

0



S(t� s) (s� �)�
1 (ju1jp1ju2jq1 � jv1jp1ju2jq1

+jv1jp1ju2jq1 � jv1jp1jv2jq1)k1 d�ds:

Then, thanks to Lemma 5.1, we get

k�1(u1; u2)� �1(v1; v2)k1 � C

Z t

0

Z s

0

(s� �)�
1 ku2kq11
�
ku1kp1�11 + kv1kp1�11

�
ku1 � v1k1

+ kv1kp11
�
ku2kq1�11 + kv2kq1�11

�
ku2 � v2k1 d�ds.

Therefore

k�1(u1; u2)� �1(v1; v2)k1 � 2CT 2�
1(M+1)p1+q1�1
 
sup
t2(0;T )

ku1 � v1k+ sup
t2(0;T )

ku2 � v2k1

!
:

(5.26)
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Similarly, we have

k�2(u1; u2)� �2(v1; v2)k1 � 2CT 2�
2 (M + 1)p2+q2�1
 
sup
t2(0;T )

ku1 � v1k1 + sup
t2(0;T )

ku2 � v2k1

!
;

(5.27)

for some positive constant C > 0. From (5.24)-(5.27) it follows that if T su¢ ciently small,

then � is a strict contraction from K into itself, so � has a unique �xed point (u; v) in K;

which is a solution of (5.1).

It is easy to prove that for each T 0 > 0 system (5.25) has at most one solution which lies

to K (T 0). In fact, let (u1; v1), (u2; v2) 2 K (T 0) be two solutions of system (5.12); then

u1 (t; :)� u2 (t; :) =

Z t

0

S (t� s)

Z s

0

(s� �)�
1 ((ju1(�)jp1 � ju2(�)jp1) jv1(�)jq1

+(jv1(�)jq1 � jv2(�)jq1) ju2(�)jp1) d�ds (5.28)

v1 (t; :)� v2 (t; :) =

Z t

0

S (t� s)

Z s

0

(s� �)�
2 ((jv1(�)jp2 � jv2(�)jp2) ju1(�)jq2

+jv2(�)jp2 (ju1(�)jq2 � ju2(�)jq2)) d�ds (5.29)

By the help of the following inequality

���ju1jk � ju2jk��� � C ju1 � u2j
�
ju1jk�1 + ju2jk�1

�
;

for every u1; u2 2 R and all k � 1 and by the de�nition of K (T 0) : Thus from (5.28),

(5.29), Lemma 5.1, we get

sup
t2[0;T 0]

ku1 (t; :)� u2 (t; :)k1 + sup
t2[0;T 0]

kv1 (t; :)� v2 (t; :)k1 �

C(T 0)

Z t

0

 
sup
�2[0;s]

ku1 (� ; :)� u2 (� ; :)k1 + sup
t2[0;s]

kv1 (� ; :)� v2 (� ; :)k1

!
ds, (5.30)
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where C(T 0) constant dependent on T 0. From (5.30 ) and Gronwall�s inequality, we �nd

u1 = u2 and v1 = v2, i.e. system (5.25) has at most one solution which belongs to K (T 0) :

Due to uniqueness, it follows that the solution (u; v) can be extended to a maximal interval

[0; Tmax) : Note that if 0 � t � t+ � � Tmax, we have

u (t+ �) = S (�)u (t) +

Z �

0

S (� � s)

Z �

0

(� � �)�
1 ju(t+ �)jp1jv(t+ �)jq1d�ds

+

Z �

0

S (� � s)

Z �

0

(t+ s� �)�
1 ju(�)jp1 jv(�)jq1d�ds;

v (t+ �) = S (�) v (t) +

Z �

0

S (� � s)

Z �

0

(� � �)�
2 jv(t+ �)jp2ju(t+ �)jq2d�ds

+

Z �

0

S (� � s)

Z �

0

(t+ s� �)�
2 jv(�)jp2ju(�)jq2d�ds. (5.31)

By the �xed point argument, it follows from (5.31) that if

ku (t)kL1((0;T )�RN )+kv (t)kL1((0;T )�RN ) <1, then (u; v) can be extended to interval [0; T 0)

with T 0 > T: This shows that if Tmax <1, then limt!Tmax ku (t)k1 + kv (t)k1 =1.

To show the remaining part of Theorem 5.1, we use again a �xed point argument. Consider

the space E = L1
�
[0; T ) ; Lr1

�
RN
�
� Lr2

�
RN
�
\
�
C0
�
RN
�	2� ; and

K =
�
�u = (u; v) 2 E; ku (t)k1 ; kv (t)k1 ; ku (t)kr1 , kv (t)kr2 < M + 1, for all t 2 (0; T )

	
;

where M � max
�
ku0k1 ; kv0k1 ; ku0kr1 ; kv0kr2

	
: The space (K; d) with the metric

d(�u; �v) = max
i=1;2

(
sup
t2(0;T )

kui (t)� vi (t)k1 ; sup
t2(0;T )

kui (t)� vi (t)kri

)
;

where �u = (u1; u2); �v = (v1; v2) is a complete metric space.

Since r1 � 1 and r2 � 1, we can choose �, !, �1, !1 � 1 by taking 1
�
= 1�k

r1
; 1
!
= 1�k

r2
; 1
�1
= 1�k1

r1

and 1
!1
= 1�k1

r2
for some constants 0 < k; k1 < 1 satisfying

p1
�
+ q1

!
� 1, 0 � N

2

�
p1
�
+ q1

!
� 1

r1

�
� 1, 1

�
� 1

r1
, 1
!
� 1

r2
,

p2
!1
+ q2

�1
� 1, 0 � N

2

�
p2
!1
+ q2

�1
� 1

r2

�
� 1, 1

!1
� 1

r2
, 1
�1
� 1

r1
.

(5.32)
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Using the smoothing e¤ect of the heat semigroup (5.4), interpolation inequality (5.6) and

(5.32), we �nd

k�1(u; v)kr1 = ku0kr1 +
Z t

0





S (t� s)

Z s

0

(s� �)�
1 ju (�) jp1jv (�) jq1





r1

d�ds

� ku0kr1 +
Z t

0

Z s

0

(t� s)
�N

2

�
p1
�
+
q1
!
� 1
r1

�
(s� �)�
1 kukp1� kvk

q1
! d�ds

� ku0kr1 +
Z t

0

Z s

0

(t� s)
�N

2

�
p1
�
+
q1
!
� 1
r1

�
(s� �)�
1 kuk

r1
�
p1

r1 kuk(1�
r1
� )p1

1

�kvk
r2
!
q1

r2
kvk(1�

r2
! )q1

1 d�ds

� ku0kr1 +
Z t

0

Z s

0

(t� s)
�N

2

�
p1
�
+
q1
!
� 1
r1

�
(s� �)�
1 kuk

r1
�
p1

r1 kuk(1�
r1
� )p1

1

�kvk
r2
!
q1

r2
kvk(1�

r2
! )q1

1 d�ds

� ku0kr1 + T
2�
1�N

2

�
p1
�
+
q1
!
� 1
r1

�
(M + 1)p1+q1

Thus

k�1(u; v)kr1 �M + 1;

if T is small enough. Analogously, taking T eventually smaller, we get

k�2(u; v)kr2 � kv0kr2 + T
2�
2�N

2

�
p2
!1
+
q2
�1
� 1
r2

�
(M + 1)p2+q2 �M + 1:

Taking a smaller T if necessary, show that � is a contraction in K, indeed

j�1(u1; u2)� �1(v1; v2)j �
Z t

0

Z s

0

��S (t� s) (s� �)�
1 (ju1jp1ju2jq1 � jv1jp1jv2jq1)
�� d�ds

j�1(u1; u2)� �1(v1; v2)j �
Z t

0

Z s

0

S (t� s) (s� �)�
1 � jju1jp1 [ju2jq1 � jv2jq1 ]j d�ds

+

Z t

0

Z s

0

S (t� s) (s� �)�
1 jv2jq1 jju1jp1 � jv1jp1j d�ds
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Therefore, from (5.4) and the Hölder inequality, we have

k�1(u1; u2)� �1(v1; v2)kr1 �
Z t

0

Z s

0

(t� s)
�N

2

�
p1
�
+
q1
!
� 1
r1

�
(s� �)�
1

�
h
ku1kp1�

�
ku2kq1�1! + kv2kq1�1!

�
ku2 � v2k!

+ kv2kq1!
�
ku1kp1�1� + kv1kp1�1�

�
ku1 � v1k�

i
d�ds:

Hence

k�1(�u)� �1(�v)kr1 � 2 (M + 1)p1+q1�1
Z t

0

Z s

0

(t� s)
�N

2

�
p1
�
+
q1
!
� 1
r1

�
(s� �)�
1 d�ds� d(�u; �v):

That is

k�1(�u)� �1(�v)kr1 � CT
2�
1�N

2

�
q1
!
+
p1
�
� 1
r1

�
(M + 1)p1+q1�1 d(�u; �v).

By analogous computations one can prove that

k�2(u)k1 � M + T 2�
2 (M + 1)p2+q2 ;

k�2(u)� �2(�u)k1 � CT 2�
2 (M + 1)p2+q2�1 d (u; �u) ;

k�2(u)kr2 � M + T
2�
2�N

2

�
p2
!1
+
q2
�1
� 1
r2

�
(M + 1)p2+q2 ;

k�2(u)� �2(�u)kr2 � CT
2�
2�N

2

�
p2
!1
+
q2
�1
� 1
r2

�
(M + 1)p2+q2�1 d (u; �u) ,

if T is suitably small such that CT 1�
2(M + 1)p2+q2�1 � 1=2, we get the claimed result.

Therefore the application � is a contraction in K and by contraction mapping principle

there exists a unique (u; v) 2 K satisfying �[(u; v)] = (u; v) and it is the solution to the

semilinear problem (5.1).

5.4 Proof of global existence theorem of the heat sys-

tem

Proof of Theorem 5.1.

This section is devoted to prove the �rst main result.
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To do this, let (u0; v0) 2
�
C0
�
RN
�	2 \ Lr1 �RN� � Lr2

�
RN
�
where r1; r2 are given by

(5.3). Let (u; v) be a corresponding solution given by Theorem 5.1. Since r1 > 1 and

r2 > 1 from (5.14), we have that

(u; v) 2 C
�
[0; Tmax) ; L

r1
�
RN
�
\ C0

�
RN
��
� C

�
[0; Tmax) ; L

r2
�
RN
�
\ C0

�
RN
��

and (5.13) holds. Let us consider

' (t) = ku (t)kr1 + (t+ 1)
N
2

�
1
r1
� 1
�1

�
ku (t)k�1 + (t+ 1)

� ku (t)k1 ; (5.33)

 (t) = kv (t)kr2 + (t+ 1)
N
2

�
1
r1
� 1
w1

�
kv (t)kw1 + (t+ 1)

� kv (t)k1 ; (5.34)

be functions de�ned for t 2 [0; Tmax) : We show that there exists "0 such that if ' (0) +

 (0) � "0 and T 2 (0; Tmax), then ';  are bounded on [0; T ] ; where � = (1�
1)(p2�1)�(1�
2)q1
((p1�1)(p2�1)�q1q2) ;

� = (1�
2)(p1�1)�(1�
1)q2
((p1�1)(p2�1)�q1q2) and �1; w1 > 0 are given by

1

�1
=
1

r1
� 2

N
[�+ �] ;

1

w1
=
1

r2
� 2

N
[� + �] ; (5.35)

with �; � > 0 satisfying

� < min

�

1 � �;

N

2r1
� �

�
; � < min

�

2 � �;

N

2r2
� �

�
; (5.36)

N

2

�
p1
r1
+
q1
r2
� 1
�
� (�p1 + �q1) < (p1�+ q1�) < 1� �;

N

2

�
p2
r2
+
q2
r1
� 1
�
� (�p2 + �q2) < (p2�+ q2�) < 1� �; (5.37)

If this statement is proved, then T � =1 and (u; v) is global. From (5.35)�(5.37), we have
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that
p1
�1
+ q1

w1
< 1; 0 < N

2

�
p1
�1
+ q1

w1
� 1

r1

�
< 1;

p2
w1
+ q2

�1
< 1; 0 < N

2

�
p2
w1
+ q2

�1
� 1

r1

�
< 1:

(5.38)

Moreover, from (5.14), it easy to check that

8><>:
p1
r1
+ q1

r2
� 2

N
= 2

N

h
(1�
1)((p1�1)(p2�1)�q1q2)+(2�
1)(p2�1)�(2�
2)q1

((p1�1)(p2�1)�q1q2)

i
< 1;

p2
r2
+ q2

r1
� 2

N
= 2

N

h
(1�
2)((p1�1)(p2�1)�q1q2)+(2�
2)(p1�1)�(2�
1)q2

((p1�1)(p2�1)�q1q2)

i
< 1:

(5.39)

From the de�nition of �; �; it yields

8><>: q2�+ (p2 � 1) � = (1� 
2) ;

q1� + (p1 � 1)� = (1� 
1) :
(5.40)

An estimate for (u; v) in Lr1 � Lr2 : From (5.35) and (5.40), we have that

p1
�1
+
q1
w1

<
p1
r1
+
q1
r2
� 2

N
(�p1 + q1�) <

2

N
+
1

r1
:

So, we can select w 2 (r2; w1) and � 2 (r1; �1) such that

max

�
1

r1
;
p1
�1
+
q1
w1
;
p1
r1
+
q1
r2
� 2

N

�
<
p1
�
+
q1
w
< min

�
2

N
+
1

r1
;
p1
r1
+
q1
r2
; 1

�
: (5.41)

To see this, let us take 1
�
= (1�k)

�1
+ k

r1
; 1
w
= (1�k)

w1
+ k

r2
; 0 < k < 1;

p1
�
+
q1
w
=
p1
�1
+
q1
w1
+ k

�
p1
r1
+
q1
r2
�
�
p1
�1
+
q1
w1

��
:

It�s easy to check that for some 0 < k < 1 the inequality (5.41) holds.

Observe that by (5.41)

0 <
N

2

�
p1
�
+
q1
w
� 1

r1

�
< 1; 0 <

N

2

�
p1
r1
+
q1
r2
�
�
p1
�
+
q1
w

��
< 1: (5.42)
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Making use of the interpolation inequality, we get

kuk� � kuk
�
r1
kuk1���1

� kuk�r1

�
(t+ 1)

N
2

�
1
r1
� 1
�1

�
kuk�1

�1��
(t+ 1)

�N
2

�
1
r1
� 1
�

�
;

kvkw � kvk
�0

r2
kvk1��

0

w1
� kvk�

0

r2

�
(t+ 1)

N
2

�
1
r2
� 1
w1

�
kvkw1

�1��0
(t+ 1)

�N
2

�
1
r2
� 1
w

�
;

(5.43)

where 1
�
= �

r1
+ 1��

�1
; 1
w
= �0

r2
+ 1��0

w1
; �; �0 2 (0; 1). We easily check that

2� 
1 �
N

2

�
p1
�
+
q1
w
� 1

r1

�
� N

2

�
p1
r1
+
q1
r2
�
�
p1
�
+
q1
w

��
= 0;

we see from (5.12), (5.42) and (5.43) that

ku (t)kr1 � ku0kr1 +
Z t

0

(t� s)
�N

2

�
p1
�
+
q1
w
� 1
r1

� Z s

0

(s� �)�
1 ku (�)kp1� kv (�)k
q1
w d�ds

� ku0kr1 +
Z t

0

(t� s)
�N

2

�
p1
�
+
q1
w
� 1
r1

� Z s

0

(s� �)�
1 �
�N

2

�
p1
r1
+
q1
r2
�( p1� +

q1
w )

�
d�ds

� ku0kr1 + C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

An estimate for (u; v) in L�1 �Lw1 : From (5.16) as p1
r1
+ q1

r2
� 2

N
< 2

N
+ 1

�1
; p1
r1
+ q1

r2
< 1+ 2

N
:

Since

p1�+ q1� > � = 2� 
1� (1� 
1)� 1+� =
N

2

�
p1 � 1
r1

+
q1
r2

�
� (p1 � 1)�� q1�� 1+�;

which equivalently

N

2

�
p1 � 1
r1

+
q1
r2

�
� (p1 � 1) [�+ �]� q1 [� + �] < 1;

that is
p1 � 1
r1

� 2 (p1 � 1)
N

[�+ �] +
q1
r2
� 2q1

N
[� + �] <

2

N
:

Namely p1�1
�1

+ q1
w1

< 2
N
: From these facts, we can choose w0 2 (r2; w1) ; �

0 2 (r1; �1)

76



Chapter 5.Global Small Data Solution For a System of Semilinear Heat Equations and
The Corresponding System of Damped Wave Equations With Nonlinear Memory

satisfying

max

�
1

�1
;
p1
�1
+
q1
w1
;
p1
r1
+
q1
r2
� 2

N

�
<
p1
�0
+
q1
w0

< min

�
2

N
+
1

�1
;
p1
r1
+
q1
r2
; 1

�
:

Note that

0 <
N

2

�
p1
r1
+
q1
r2
�
�
p1
�0
+
q1
w0

��
< 1; 0 <

N

2

�
p1
�0
+
q1
w0
� 1

�1

�
< 1; (5.44)

and

2� 
1 +
N

2

�
1

r1
� 1

�1

�
� N

2

�
p1
�0
+
q1
w0
� 1

�1

�
� N

2

��
p1
r1
+
q1
r2

�
�
�
p1
�0
+
q1
w0

��
= 0:

From (5.4), (5.5), (5.43) and (5.44), we get

ku (t)k�1 � (t+ 1)
�N

2

�
1
r1
� 1
�1

� �
ku0kr1 + ku0k�1

�
+

Z t

0

(t� s)
�N

2

�
p1
�0 +

q1
w0�

1
�1

� Z s

0

(s� �)�
1 ku (�)kp1
�0 kv (�)k

q1
w0 d�ds

� (t+ 1)
�N

2

�
1
r1
� 1
�1

� �
ku0kr1 + ku0k�1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
�
Z t

0

(t� s)
�N

2

�
p1
�0 +

q1
w0�

1
�1

� Z s

0

(s� �)�
1 �
�N

2

�
p1
r1
+
q1
r2
�
�
p1
�0 +

q1
w0

��
d�ds;

which, yields

(t+ 1)
N
2

�
1
r1
� 1
�1

�
ku1 (t)k�1 � ku0kr1 + ku0k�1 + C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

Estimate for ku (t)k1 : We have to distinguish two situations

Case a: Either N � 2 or (p1
r1
+ q1

r2
< 4

N
and p1

�1
+ q1

w1
< 2

N
): From (5.35),(5.38) and (5.39),
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there exist w
00 2 (r2; w1) ; �

00 2 (r1; �1) such that

max

�
p1
r1
+
q1
r2
� 2

N
;
p1
�1
+
q1
w1

�
<

�
p1
�00
+
q1
w00

�
< min

�
2

N
;
p1
r1
+
q1
r2
; 1

�
:

Since w
00 2 (r2; w1) ; �

00 2 (r1; �1), using interpolation inequality again as in (5.43), we

obtain

ku (t)k1 � (t+ 1)
�N

2
1
r1

�
ku0kr1 + ku0k1

�
+

Z t

0

(t� s)
�N

2

�
q1

w
00 +

p1

�
00

� Z s

0

(s� �)�
1

�ku (�)kp1
�00
kv (�)kq1

w00
d�ds

ku (t)k1 � (t+ 1)
�N

2
1
r1

�
ku0kr1 + ku0k1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1

�
Z t

0

(t� s)
�N

2

�
q1

w
00 +

p1

�
00

� Z s

0

(s� �)�
1 (� + 1)
�N

2

�
p1
r1
+
q1
r2
�
�
p1

�
00 +

q1

w
00

��
d�ds

Notice that 0 < N
2

�
p1
r1
+ q1

r2
�
�
p1
�00
+ q1

w00

��
< 1; N

2

�
q1
w00
+ p1

�00

�
< 1: On the other hand,

since �� N
2r1
= p2�q1�1

((p1�1)(p2�1)�q1q2) < 0; it follows that

�+ 2� 
1 �
N

2

�
q1
w00 +

p1
�00

�
� N

2

��
p1
r1
+
q1
r2

�
�
�
p1
�00
+
q1
w00

��
< 2� 
1 +

N

2r1
� N

2

�
p1
r1
+
q1
r2

�
= 0;

which, together with (5.8), yields

(t+ 1)� ku (t)k1 �
�
ku0kr1 + ku0k1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

Or else, that is N > 2 and (p1
r1
+ q1

r2
� 4

N
; or p1

�1
+ q1

w1
� 2

N
): From (5.35),(5.38) and (5.39),
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there exist w00 2 (r2; w1) ; �00 2 (r1; �1) such that

max

�
p1
r1
+
q1
r2
� 2

N
;
p1
�1
+
q1
w1
;
2

N

�
<

�
p1

�
00 +

q1
w00

�
< min

�
1;
p1
r1
+
q1
r2

�
:

Hence, the inequalities (5.5) and (5.43), give

ku (t)k1 � (t+ 1)
�N

2
1
r1

�
ku0kr1 + ku0k1

�
+

Z t

0

(t� s+ 1)
�N

2

�
p1

�
00 +

q1

w
00

� Z s

0

(s� �)�
1
�
ku (�)kp1

�
00 kv (�)kq1w00 + ku (�)k

p1
1 kv (�)k

q1
1

�
d�ds:

Therefore

ku (t)k1 � (t+ 1)
�N

2
1
r1

�
ku0kr1 + ku0k1

�
+

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1 Z t

0

(t� s+ 1)
�N

2

�
p1

�
00 +

q1

w
00

� Z s

0

(s� �)�
1

+

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1 Z t

0

(t� s+ 1)
�N

2

�
p1

�
00 +

q1

w
00

� Z s

0

(s� �)�
1

�
"
(� + 1)

�N
2

�
p1
r1
+
q1
r2
�
�
p1

�
00 +

q1

w
00

��
+ (� + 1)�(�p1+�q1)

#
d�ds:

Since �p1 + �q1 < 1; we observe that

p1
r1
+
q1
r2
� 2

N
<
p1
r1
+
q1
r2
� 2

N
(�p1 + q1�) :

It easy to see from (5.35), (5.39) and (5.40) that

max

�
p1
�1
+
q1
w1
;
2

N

�
<
p1
r1
+
q1
r2
� 2

N
(�p1 + q1�) :

From these facts, we can assume that
�
p1

�
00 +

q1
w00

�
� p1

r1
+ q1

r2
� 2

N
(�p1 + q1�) : Thus

�+1�
1�
N

2

�
p1
r1
+
q1
r2

�
+
N

2

�
p1

�
00 +

q1
w00

�
= �p1+q1��

N

2

�
p1
r1
+
q1
r2
�
�
p1

�
00 +

q1
w00

��
� 0;
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and therefore, we conclude as in the previous case

(t+ 1)� ku (t)k1 � C
�
ku0kr1 + ku0k1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

From the previous estimates of ku1 (t)kr1 ; ku1 (t)k�1 and ku (t)k1, we obtain

' (t) � C
�
ku0kr1 + ku0k1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

By analogous computations, we get  (t) � C
�
kv0kr1 + kv0k1

�
+C

"
sup
s2(0;t)

 (s)

#p2 "
sup
s2(0;t)

' (s)

#q2
:

Denoting f(t) = sup
s2(0;t)

' (s) and g(t) = sup
s2(0;t)

 (s), we get

f(t) � C
�
ku0kr1 + ku0k1

�
+ Cf(t)p1g(t)q1 ; (5.45)

g(t) � C
�
kv0kr2 + kv0k1

�
+ Cg(t)p2f(t)q2 : (5.46)

Now, we de�ne h (t) := f (t) + g (t). Taking into account (5.45), (5.46) reads

h (t) � C ("+ hp1+q1 (t) + hp2+q2 (t)) ;8t 2 [0; Tmax) ;

for some positive constant C independent of t and A = ku0kr1+ku0k1+kv0kr2+kv0k1 < ":

We conclude by standard arguments for su¢ ciently small " as in [57], it then follows that

h(t) � C"; 8 t 2 [0; Tmax) : Hence f(t) � C"; g(t) � C"; 8t 2 [0; Tmax) :

5.5 Damped wave system

Similar considerations to the system for heat equations can be applied to the Cauchy

problem (5.2) for the system of damped wave equations in low dimensional space.
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5.5.1 Proof of theorem 5.2

We follow the same steps as in the proof of Theorem 5.1 with a slight modi�cations. So

we maintain some notations used in the previous proof.

Let us de�ne �1; w1 > 0 by

1

�1
=
1

r1
� 2

N
(�+ �) ;

1

w1
=
1

r2
� 2

N
(� + �) ,

with �; � > 0 satisfying

� < min

�

1 � �;

N

2r1
� �

�
, � < min

�

2 � �;

N

2r2
� �

�
,

N

2

�
p1
r1
+
q1
r2
� 1
�
� (�p1 + �q1) < (p1�+ q1�) < 1� �,

N

2

�
p2
r2
+
q2
r1
� 1
�
� (�p2 + �q2) < (p2�+ q2�) < 1� �,

with

� =
(p2 � q1 � 1)
p1 � q2 � 1

�: (5.47)

The existence of � and � are insured by the conditions (5.21)-(5.23).

Let (ui; vi) 2
�
W 1�i;1 �RN��W 1�i;1 �RN�	2, i = 0; 1. From (5.34), we have r1 > 1 and

r2 > 1.

Let (u; v) be a corresponding solution of (5.2) given by Proposition 5.2.

Our aim is to seek upper bound of solution in the functionals de�ned in (5.33), (5.34) each

t > 0. It easy to check that all the requirements (5.38), (5.39) and (5.40) are ful�lled.

An estimate for u in Lr1
�
RN
�
. From (5.40), we conclude that

p1
�1
+
q1
w1

<
p1
r1
+
q1
r2
� 2

N
(�p1 + q1�) <

2

N
+
1

r1
.

81



Chapter 5.Global Small Data Solution For a System of Semilinear Heat Equations and
The Corresponding System of Damped Wave Equations With Nonlinear Memory

So, we can select w 2 (r2; w1) and � 2 (r1; �1) such that

max

�
1

r1
;
p1
�1
+
q1
w1
;
p1
r1
+
q1
r2
� 2

N

�
<
p1
�
+
q1
w
< min

�
2

N
+
1

r1
;
p1
r1
+
q1
r2
; 1

�

Note that

0 � N

2

�
p1
�
+
q1
w
� 1

r1

�
< 1; 0 � N

2

�
p1
r1
+
q1
r2
�
�
p1
�
+
q1
w

��
< 1.

and by (5.21)-(5.23), we get

1

r1
<
p1
�1
+
q1
w1
;
1

�1
<
p1
�1
+
q1
w1
;
1

w1
<
p2
�1
+
q2
w1
; and

1

�1
<
p2
�1
+
q2
w1
.

From (5.20), we have

ku (t; :)kr1 �




�K1(t)� e�

t
2W1(t)

�
(
1

2
u0 + u1)






r1

+





e� t
2W1(t)(

1

2
u0 + u1)






r1

+





�K0(t)� e�
t
2

�
W0(t) +

t

8
W1(t)

��
u0






r1

+





e� t
2

�
W0(t) +

t

8
W1(t)

�
u0






r1

+

Z t

0





�K1(t� s)� e�
t�s
2 W1(t� s)

�Z s

0

(s� �)�
1ju (�) jp1 jv (�) jq1





r1

d�ds

+

Z t

0

e�
t�s
2





W1(t� s)

Z s

0

(s� �)�
1 ju (�) jp1jv (�) jq1





r1

d�ds:

Next, by the lemma 5.4, lemma 5.5, and (5.6) we get, for all t 2 [0; Tmax)

ku (t; :)kr1 � C (ku1kLr1 + ku0kW 1;r1 ) +

Z t

0

(1 + t� s)
�N

2

�
p1
�
+
q1
w
� 1
r1

�

�
Z s

0

(s� �)�
1 ku(� ; :)kp1� kv(� ; :)k
q1
w d�ds

+

Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 kju (�) jp1 jv (�) jq1kr1 d�ds:
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By using the interpolation inequality to the last term, we get

ku (t; :)kr1 � C
�
ku1kr1 + ku0kW 1;r1

�
+

Z t

0

(t� s+ 1)
�N

2

�
p1
�
+
q1
w
� 1
r1

� Z s

0

(s� �)�
1 ku(� ; :)kp1� kv(� ; :)k
q1
w d�ds

+

Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 kju (�) jp1jv (�) jq1k1���
p1
�1
+
q1
w1

��1
�kju (�) jp1jv (�) jq1k�1 d�ds; (5.48)

with 1� � = 1
r1

�
p1
�1
+ q1

w1

��1
: Therefore

ku (t; :)kr1 � C
�
ku1kr1 + ku0kW 1;r1

�
+

Z t

0

(t� s+ 1)
�N

2

�
p1
�
+
q1
w
� 1
r1

� Z s

0

(s� �)�
1 ku(� ; :)kp1� kv(� ; :)k
q1
w d�ds

+

Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 ku(� ; :)kp1(1��)�1
kv(� ; :)kq1(1��)w1

ku(� ; :)kp1�1 kv(� ; :)kq1�1 d�ds;

From the de�nition of ' and  , we infer that

ku (t; :)kr1 � C
�
ku1kr1 + ku0kW 1;r1

�
+

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
�
Z t

0

(t� s+ 1)
�N

2

�
p1
�
+
q1
w
� 1
r1

� Z s

0

(s� �)�
1�
�N

2

�
p1
r1
+
q1
r2
�( p1� +

q1
w )

�
d�ds

+

Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 (1 + �)
�(�p1+�q1)��N

2

�
p1
r1
+
q1
r2
�
�
p1
�1
+
q1
w1

��
(1��)

d�ds

�
"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
;

where we have have used the fact that (5.33) and (5.43) since (u; v) 2 X:

By virtue of (5.40), we know that

1� 
1 � (�p1 � �q1) � �
N

2

�
p1
r1
+
q1
r2
�
�
p1
�1
+
q1
w1

��
(1� �)

= 1� 
1 � (�p1 � �q1) � � (p1 (�+ �) + q1 (� + �)) (1� �)

= ��� (p1�+ q1�) (1� �) < 0;

and since 2�
1�N
2

�
p1
�
+ q1

w
� 1

r1

�
�N

2

�
p1
r1
+ q1

r2
�
�
p1
�
+ q1

w

��
= 0: Applying again Lemma
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5.2, we obtain

ku (t; :)kr1 � C
�
ku0kW 1;r1 + ku1kr1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

An estimate for ku (t; :)k�1 : Arguing in the same way as in the previous estimate

ku (t; :)k�1 �




�K1(t)� e�

t
2W1(t)

�
(
1

2
u0 + u1)






�1

+





e� t
2W1(t)(

1

2
u0 + u1)






�1

+





�K0(t)� e�
t
2

�
W0(t) +

t

8
W1(t)

��
u0






�1

+





e� t
2

�
W0(t) +

t

8
W1(t)

�
u0






�1

+

Z t

0





�K1(t� s)� e�
t�s
2 W1(t� s)

�Z s

0

(s� �)�
1ju (�) jp1 jv (�) jq1





�1

d�ds

+

Z t

0

e�
t�s
2





W1(t� s)

Z s

0

(s� �)�
1 ju (�) jp1jv (�) jq1





�1

d�ds:

From (5.23), exist w0; �0 satisfying

max

�
p1
r1
+
q1
r2
� 2

N
;
p1
�1
+
q1
w1

�
<
p1
�0
+
q1
w0

< min

�
1;
1

�1
+
2

N
;
p1
r1
+
q1
r2

�

Note that 0 < N
2

�
p1
�0 +

q1
w0 �

1
�1

�
< 1; 0 < N

2

��
p1
r1
+ q1

r2

�
�
�
p1
�0 +

q1
w0

��
< 1 and

2� 
1 +
N

2

�
1

r1
� 1

�1

�
� N

2

�
p1
�0
+
q1
w0
� 1

�1

�
� N

2

��
p1
r1
+
q1
r2

�
�
�
p1
�0
+
q1
w0

��
= 0:

From (5.20) (replacing w by w0) and thanks to lemma 5.5, lemma 5.4 and (5.6), we have

ku(t; :)k�1 � C(1 + t)
�N

2

�
1
r1
� 1
�1

� 



(12u0 + u1)
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+C(1 + t)
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�
1
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(ku1kL�1 + ku0kL�1 ) + C (1 + t)
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�
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(1 + t� s)
�N

2

�
p1
�0 +

q1
w0�

1
�1

� Z s

0

(s� �)�
1 ku(� ; :)kp1�0 kv(� ; :)k
q1
w0 d�ds

+

Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 ku(� ; :)kp1(1��
0)

�1
kv(� ; :)kq1(1��

0)
w1

�ku(� ; :)kp1�
0

1 kv(� ; :)kq1�
0

1 d�ds:
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with 1 � �0 = 1
�1

�
p1
�1
+ q1

w1

��1
: Combining the last inequality with (5.33), (5.34) and

(5.43),we obtain

ku(t; :)k�1 � C (1 + t)
�N

2

�
1
r1
� 1
�1

�
(ku0kr1 + ku1)kr1)

+C (1 + t)
�N

2

�
1
r1
� 1
�1

�
(ku1kL�1 + ku0kL�1 ) + C (1 + t)

�N
2

�
1
r1
� 1
�1

�
ku0kW 1;�1

+

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1

�
Z t

0

(1 + t� s)
�N

2

�
p1
�0 +

q1
w0�

1
�1

� Z s

0

(s� �)�
1 (1 + �)
�N

2

�
p1
r1
+
q1
r2
�
�
p1
�0 +

q1
w0

��
d�ds

+

Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 (1 + �)
�(�p1+�q1)�0�N

2

�
p1
r1
+
q1
r2
�
�
p1
�1
+
q1
w1

��
(1��0)

d�ds

�
"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

(5.49)

Multiplying both sides of (5.49) by (1 + t)
N
2

�
1
r1
� 1
�1

�
, we �nd

(1 + t)
N
2

�
1
r1
� 1
�1

�
ku (t; :)k�1 � C

�
ku0kW 1;�1 + ku0kr1 + ku1k�1 + ku1kr1

�
+[ sup

s2(0;t)
' (s)]p1 [ sup

s2(0;t)
 (s)]q1

� (1 + t)2�
1+
N
2

�
1
r1
� 1
�1

�
�N

2

�
p1
�0 +

q1
w0�

1
�1

�
�N

2

�
p1
r1
+
q1
r2
� p1
�0 �

q1
w0

�

+[ sup
s2(0;t)

' (s)]p1 [ sup
s2(0;t)

 (s)]q1 (1 + t)
N
2

�
1
r1
� 1
�1

�

�
Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 (1 + �)�(�p1+�q1)�
0

� (1 + �)�
N
2

�
p1
r1
+
q1
r2
�
�
p1
�1
+
q1
w1

��
(1��0)

d�ds:

We have from the de�nition of �1; w1 that

� (�p1 + �q1) �
0�N
2

�
p1
r1
+
q1
r2
�
�
p1
�1
+
q1
w1

��
(1� �0) = ���(p1�+ q1�) (1� �0)+
1�1:
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Using the fact � = �w1
�1
and the condition � < 
1 � �, to obtain

��� (p1�+ q1�) (1� �0) + 
1 � 1 > �1:

It yields then by the Lemma 5.2 that

(t+ 1)
N
2

�
1
r1
� 1
�1

�
ku (t; :)k�1 � C

�
ku0kW 1;�1 + ku0kLr1 + ku1kr1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1

+C (1 + t)
N
2

�
1
r1
� 1
�1

� Z t

0

e�
t�s
2 (t� s) (1 + s)���(p1�+q1�)(1��

0) ds

�
"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

From (5.47), we obtain N
2

�
1
r1
� 1

�1

�
� �� (p1�+ q1�) (1� �0) = �� �w1

�1
= 0: Therefore,

by virtue of the Lemma 5.2 again, we conclude

(t+ 1)
N
2

�
1
r1
� 1
�1

�
ku (t; :)k�1 � C

�
ku0kW 1;�1 + ku0kLr1 + ku1kr1

�
+C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

Now, we estimate ku (t; :)k1 : We have to distinguish two situations.

Either: N � 2 or (p1
r1
+ q1

r2
< 4

N
and p1

�1
+ q1

w1
< 2

N
): From (5.35),(5.38) and (5.39), there

exists w00 such that

max

�
p1
r1
+
q1
r2
� 2

N
;
p1
�1
+
q1
w1

�
<
p1
�00
+
q1
w00

< min

�
1;
2

N
;
p1
r1
+
q1
r2

�
:

Note that

0 <
N

2

�
p1
�00
+
q1
w00

�
< 1; 0 <

p1
�00
+
q1
w00

< 1 and 0 <
N

2

�
p1
r1
+
q1
r2
�
�
p1
�00
+
q1
w00

��
< 1:

Since w00 2 (r2; w1), using interpolation inequality as in (5.43), we obtain
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ku (t; :)k1 � (t+ 1)
� N
2r1 (ku0kr1 + ku1kr1) + (t+ 1)

� N
2r1 (ku0kW 1;1 + ku1k1)

+

Z t

0

(t� s+ 1)
�N

2

�
p1
�00+

q1
w00

� Z s

0

(s� �)�
1 ku(� ; :)kp1�00 kv(� ; :)k
q1
w00 d�ds

+

Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 ku(� ; :)kp11 kv(� ; :)k
q1
1 d�ds:

Making use (5.33), (5.34) and (5.43), we get

ku (t; :)k1 � (t+ 1)
� N
2r1 (ku0kr1 + ku1kr1 + ku0kW 1;1 + ku1k1)

+

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1 Z t

0

(1 + t� s)
�N

2

�
p1
�00+

q1
w00

�

�
Z s

0

(s� �)�
1 (1 + �)
�N

2

�
p1
r1
+
q1
r2
�
�
p1
�00+

q1
w00

��
d�ds

+

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1 Z t

0

e�
t�s
2 (t� s)

�
Z s

0

(s� �)�
1 (1 + �)�(�p1+�q1) d�ds;

and as (�p1 + �q1) < 1;

�� N

2r1
=

p2 � q1 � 1
(q1q2 � (p1 � 1) (p2 � 1))

< 0; � + 1� 
1 � �p1 � �q1 = 0;

it follows from N
2

h
(p1�1)
r1

+ q1
r2

i
= 2� 
1 that

�+ 2� 
1 � N
2

�
p1
�00 +

q1
w00

�
� N

2

�
p1
r1
+ q1

r2

�
+ N

2

�
p1
�00 +

q1
w00

�
= �+ 2� 
1 � Np1

2r1
� Nq1

2r2
< N

2r1
+ 2� 
1 � Np1

2r1
� Nq1

2r2
= 0:

Therefore, we conclude from Lemma 5.2 that

(t+ 1)� ku (t; :)k1 � C(ku0kr1+ku1kr1+ku0kW 1;1+ku1k1)+C
"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:
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Or else N = 3 and (p1
r1
+ q1

r2
� 4

N
or p1

�1
+ q1

w1
� 2

N
): Then, from (5.35), (5.39) and (5.40),

we can choose w00 such that

max

�
p1
r1
+
q1
r2
� 2

N
;
p1
�1
+
q1
w1
;
2

N

�
<
p1
�00
+
q1
w00

< min

�
1;
p1
r1
+
q1
r2

�
:

Since w00 2 (r2; w1) ; �00 (r1; �1) by interpolation inequality, we get

ku (t; :)k1 � C(ku0kr1 + ku1kr1 + ku0kW 1;1 + ku1k1)

+

Z t

0

(1 + t� s)
�N

2

�
p1
�00+

q1
w00

� Z s

0

(s� �)�
1 ku(� ; :)kp1�00 kv(� ; :)k
q1
w00 d�ds

+

Z t

0

e�
t�s
2 (t� s)

Z s

0

(s� �)�
1 ku(� ; :)kp11 kv(� ; :)k
q1
1 d�ds:

ku (t; :)k1 � C(ku0kr1 + ku1kr1 + ku0kW 1;1 + ku1k1)

+

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1 Z t

0

(1 + t� s)
�N

2

�
p1
�00+

q1
w00

�

�
Z s

0

(s� �)�
1 (� + 1)
�N

2

�
p1
r1
+
q1
r2
�
�
p1
�00+

q1
w00

��
d�ds

+

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1 Z t

0

e�
t�s
2 (t� s)

�
Z s

0

(s� �)�
1 (1 + �)�(�p1+�q1) d�ds:

Since �p1 + �q1 < 1; we observe that

p1
r1
+
q1
r2
� 2

N
<
p1
r1
+
q1
r2
� 2

N
(�p1 + q1�) :

It easy to see from (5.35), (5.39) and (5.40) that

max

�
p1
�1
+
q1
w1
;
2

N

�
<
p1
r1
+
q1
r2
� 2

N
(�p1 + q1�) :

From these facts, we can assume that
�
p1
�00
+ q1

w00

�
� p1

r1
+ q1

r2
� 2

N
(�p1 + q1�) : Thus

�+ 1� 
1 � N
2

�
p1
r1
� p1

�00

�
� N

2

�
q1
r2
� q1

w00

�
= �p1 + q1� � N

2

�
p1
r1
+ q1

r2
�
�
p1
�00
+ q1

w00

��
� 0;
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and therefore, we conclude as in the previous case

(t+ 1)� ku (t)k1 � C
�
ku0kr1 + ku0k1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

A combination of the above estimates yields the inequality

' (t) � C
�
ku0kr1 + ku0k1

�
+ C

"
sup
s2(0;t)

' (s)

#p1 "
sup
s2(0;t)

 (s)

#q1
:

By analogous computations, we get  (t) � C
�
kv0kr1 + kv0k1

�
+C

"
sup
s2(0;t)

 (s)

#p2 "
sup
s2(0;t)

' (s)

#q2
:

Denoting f(t) = sup
s2(0;t)

' (t) and g(t) = sup
s2(0;t)

 (t), we get

f(t) � C (ku0kW 1;r1\W 1;1 + ku1kLr1\L1) + Cf(t)p1g(t)q1 ; (5.50)

g(t) � C (kv0kW 1;r2\W 1;1 + kv1kLr2\L1) + Cg(t)p2f(t)q2 :

We now de�ne h (t) := f (t) + g (t). Taking into account (5.50) reads

h (t) � C
�
A+ hp1+q1 (t) + hp2+q2 (t)

�
;

� C
�
"+ hp1+q1 (t) + hp2+q2 (t)

�
;8t 2 [0; Tmax) ;

where C is positive constant independent of t and A = ku0kW 1;r1\W 1;1 + ku1kLr1\L1 +

kv0kW 1;r2\W 1;1 + kv1kLr2\L1. By using this estimate and standard arguments as in [57], it

then follows that h(t) � C"; 8 t 2 [0; Tmax). Hence f(t) � C", g(t) � C", 8t 2 [0; Tmax).

Now, we show the global existence result in the energy space. We de�ne H(t) = ku(t)kL1+

kv(t)kL1 for all t 2 [0; Tmax). Making use of Lemma 5.4 and Lemma 5.5, it is deduced from

(5.20) that, for all t 2 [0; Tmax),8>><>>:
ku(t)kL1 � C (ku0kW 1;1 + ku1kL1) +

Z t

0

Z s

0

(s� �)�
1 ku(�)kp11 kv(�)k
q1
q1
d�ds;

kv(t)kL1 � C (kv0kW 1;1 + kv1kL1) +
Z t

0

Z s

0

(s� �)�
2 kv(�)kp21 ku(�)k
q2
q2
d�ds:

(5.51)
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Adding the two inequalities of (5.51) and using the L1-estimates of u and v, we have that

H(t) � C (ku0kW 1;1 + ku1kL1 + kv0kW 1;1 + kv1kL1)

+C

Z t

0

Z s

0

(s� �)�
1 (1 + �)��p1��(q1�1) kv(�)k1 d�ds

+C

Z t

0

Z s

0

(s� �)�
2 (1 + �)��p2��(q2�1) ku(�)k1 d�dds

� C"+ C

Z t

0

Z s

0

(s� �)�
1 (1 + �)��p1��(q1�1)H(�)d�ds

+C

Z t

0

Z s

0

(s� �)�
2 (1 + �)��p2��(q2�1)H(�)d�ds

� C"+ C

Z t

0

�
(1 + s)��� + (1 + s)���

�
sup
0���s

H(�)ds. (5.52)

From (5.52), and Gronwall�s inequality, we get that H(t) � C" expC
�
t1+��� + t1+���

�
for all t 2 [0; Tmax) : Therefore, we have that (u; v) 2

�
C([0; Tmax) ;L

1
�
RN
�	2
, N = 1; 2; 3;

so for any r � 1, the solution (u; v) satis�es

ku (t)kLr � C
1
r "

1
r eC(t

1+���+t1+���)=r (1 + t)�(r�1)�=r ;

kv (t)kLr � C
1
r "

1
r eC(t

1+���+t1+���)=r (1 + t)�(r�1)�=r ; (5.53)

for all t 2 [0; Tmax).

Now, let D = (@t;rx),

uL (t) = K1(t)(
1

2
u0 + u1) +K0(t)u0; vL (t) = K1(t)(

1

2
v0 + v1) +K0(t)v0.

From Lemma 5.3 with m = 1, we see that

kDuL (t)k � C (1 + t)�N=2�1=2 I0;u; kDvL (t)k � C (1 + t)�N=2�1=2 I0;v;


DK1(t� s) � J1�
10js (jv(s)jp)



 � C (1 + t� s)�N=2�1=2

h
J
1�
1
0js (kju(s)jp1 jv(s)jq1k2)

+J
1�
1
0js (kju(s)jp1 jv(s)jq1k1)

i
, (5.54)
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DK1(t� s) � J1�
20js (ju(s)jq)



 � C (1 + t� s)�N=2�1=2

h
J
1�
2
0js (kjv(s)jp2 ju(s)jq2k2)

+J
1�
2
0js (kjv(s)jp2 ju(s)jq2k1)

i
,

where 8><>:
I0;u := ku0k1 + ku0kH1 + ku1k1 + ku1kH1 ,

I0;v := kv0k1 + kv0kH1 + kv1k1 + kv1kH1 .

Then by use of (5.53) and (5.54) and choosing "� 1, we deduce from (5.17) that

kDu (t)k � kDuL (t)k+
Z t

0




DK1(t� s) � J1�
10js (jv(s)jp)



 ds

� C (1 + t)�N=2�1=2 I0;u + C

Z t

0

(1 + t� s)�N=2�1=2
h
J
1�
1
0js (kju(s)jp1 jv(s)jq1k2)

+J
1�
1
0js (kju(s)jp1 jv(s)jq1k1)

i
ds

� C"+ C

Z t

0

(1 + t� s)�N=2�1=2
Z s

0

(s� �)�
1 kukp11
�
kv(�)kq12q1 + kv(�)k

q1
q1

�
d�ds

� C"+ C

Z t

0

(1 + t� s)�N=2�1=2

�
Z s

0

(s� �)�
1
�
"
1
2 eC(�

1+���+�1+���)=2 (1 + �)�(2p1�1)�=2 + "eC(�
1+���+�1+���) (1 + �)�(p1�1)�

�
d�ds

� C
�
1 + eC(t

1+���+t1+���) (1 + t)�
�p

"; 8t 2 [0; Tmax) ;

where C is positive constant independent of t: Similarly

kDv (t)k � C
�
1 + eC(t

1+���+t1+���) (1 + t)�
�p

"; 8t 2 [0; Tmax) ;

which completes the proof of the Theorem.
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Conclusion

As conclusion of this work, we note that the qualitative study of evolution problems such

as the study of existence and uniqueness of local / global for heat and damped wave

system with nonlinear source terms is interesting because it is a generalization of ordinary

problem equation, that we always have the asymptotic behavior of solution for damped

wave system is similar to the corresponding heat system in the in�nity. We should also

note the importance of studying the blow up problem in �nite time because they are

closest to reality because it is considered to be a model to many problems in many areas,

for example in chemistry.

Many questions remain unresolved and deserve closer consideration, including

� the blow up case of the semilinear heat system and the corresponding system of

damped wave system with nonlinear memory.

� The aim is to seek the necessary conditions between the parameters of the systems

p1; p2; q1; q2; 
1; 
2;and the dimension of energy spaceN without the need for a scaling

argument and without using the Fujita critical exponent, i-e the objective is to

establish the blow up of weak solution by using the test method function.
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