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ABSTRACT

In this thesis, we have studied and modeled by a numerical simulation in laminar and stationary, the
cooling by convective flows adlectronic components using nanofluids, with the aim of improving heat
exchanges and to increase the cooling efficiency. For this reason, we have carried out several studies in
the form of applications. The first application numerically examined heatferains three different
geometries of minchannels using Ciuwater nanofluid with a volume concentration of 0.05.

As for the second, fourth and third applications devoted to the study of the effect of the type of hanofluids
and their volume concentratigras well as the effect of the sections and shapes of the mini channels on
the heat exchange and on the cooling of the electronic compénérse studies we used three different

types of nanofluids at different concentratiolbese studies showed thae minichannels of the third

and ninth case improve the heat transfer compared to other cases as well as the value of the maximum
junction temperature of the electronic component and that the use of diavaterdnanefluid gives
significantly higher heatransfer coefficients than Agater and Cwwater nanofluids. And increase in the
concentration of nanoparticles in the base fluid (water) improves the heat transfer coefficient.

The fifth application aims to determine the effect of the position of teaole inside a horizontal mini

channel on the cooling of the electronic component using-fiaias with a volume fraction of 0.05. In

this study, we found that the position of the obstacle intwadfth case offers much better thermal
performance tharhe other cases.

In the sixth application, we investigated the effect of addingigehaped fins and parallelogram fins in
the microchannels on thermal performance using a Diamaer nanofluid with a volume fraction of
0.05. In this study, the heaux generated by electronic components is equal g = 100 W./Tdme
Reynolds (Re) number was taken between 200 and 600. The results showed that tbhamieztsn the
seventeentbase which contained the parallelogralnaped fins gave an improvemenhgat transfer.

Key words: natural convection, narituids, obstacleelectronic componenhumerical simulation, CFD
fluent, microchannels, mimhannels, heat transfer, solid fractiBg shaperibs, parallelograntibs.




RESUME

Danscettethése,nous avons étudiét modélisépar une simulation numériquen régimelaminaire et
stationnaire]e refroidissement par les écoulements convedt composants électroniguen utilisant

des nanofluides, dans le bdi@mélioration des échanges thermiques et pour augnmiéifeacité du
refroidissement Pour cette raison, nous avons réalisé plusieurs études sous forme des applications. La
premiére application a examiné numériqguement le transfert thermique dan®twiétiges différentes

des minicanaux en utilisant nanofluide Gaau avec une concentration volumique de 0.05.

Quant aux deuxieme, quatrieme et troisiéapplicationsconsacrées a l'étude de l'effet du type de
nandluides et de leurs concentrations volgoes, ainsi que de l'effet des sectiehdormesdes mini

canaux sur lI'échange thermique et sur le refroidissement du composant électronique dans ces études, nous
avons utilisé trois types différents dandluides a différentes concentrais et ces étwd ontmontré que

les minicanaux du troisieme Beuvieme cas améliorent le transfert de chaleur par rapport aux autres cas
ainsi que la valeur de la température maximale de jonction du composant électronique et que I'utilisation
de nanefluide diamanteaudonne des coefficients de transfert de chaleur significativement plus élevés
que les nanofluides Agau et Cteau.Et L'augmentation de la concentration de nanoparticules dans le
fluide de base (eau) permet d'améliorer le coefficient de transfert derchale

La cinquiemeapplicationvise a déterminer I'effet de la position de I'obstacle a l'intérieur d'un mini canal
horizontal sur le refroidissement du composant électronique en utilisant déuides avec une fraction
volumiqgue de 0,05. Dans cette é&udous avons constaté daeposition de l'obstacle dansdeuziéme

cas offre de bien meilleur@grformances thermiques que les autres cas

Dans la sixiemeapplication nous avons étudié I'effet de I'ajout des ailettes en forme de trois quarts du
cercle et des ailettes en parallélogramme dans les wacr@aux sur les performances thermiques en
utilisant un nanofluide Diamanteau avec une fraction volumique de 0,05nPaette étudde flux
thermique généré paes composants électroniquest égal & g = 100 W /énmi_e nombre de Reynolds
(Re) a été pris entre 200 et 600. Les résultats ont montiésmecro-cana dans ledix-septiemecas qui
contiennent les ailetten forme de parallélogramme ont donné une amélioration de transfert thermique.

Mots clés: convection naturelle, nanofléd, obstacle, composant électronique, simulation numérique,
fluent CFD, microcanaux, minicanaux, transfert de chaleur, frastiumique ailettesen forme derois
quarts du cercleailettes en parallélogramme
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NOMENCLATURE

A Cross sectional ares micro channel(nt)
Aw Inner wall or fluid contact surface area,Jm

b Constant term in the discretization equation
Oy Specific heat of the fluid, (JKgK™)

Dn Hydraulic diameter of channdd=4*AJ/P; (m)
Fin,: The total flow at the input of the variabie
Fq The skewness factor

g The acceleration of gravityms ?)

Height (m)

Hc Mini / micro channeheight (m)

hav Average heat transfer coefficient, (W’&™)

h Convective exchange coefficient, (W™

k Thermal conductivity, (WK™

L Mini /micro channelength (m)

N Number of micrechannels

Nu Nombre de Nusselt local
NUay Nombre de Nusselt moyen

Pc Wettedperimeter, (m)

p pressure, (Pa)

P Dimensionless pressure

Pr Number of Prandtl, ¢/U)

Q Heat flux dissipated in the chip, (W)

n Power density dissipated, (W/mn

oy Volumetric hea({W /m°)

Re Reynolds numbeiRe =} wDy/u

Y, The absolute sum of the residuals
Ra Rayleigh number

Source term

T Temperature, (K)

To The temperature at the entrance of the channel, (K)
Tm Massaverage temperature of the coolant, (K)

11



Tw Area-weighted temperature of the channel wall surface, (K
Tmax Maximum temperature on the bottom wall, (K)
X, Y, Z Dimensionless coordinates,(X/ly/L , z/L)
X, Y, Z Cartesiarcoordinate, (m)
u,V,w Di mensionless compenknwlst)o
u, Vv, w Velocity component# three directions x, y and Zm s%)
W, Mini /micro channel width, (m)

Greek letters:

Thermal diffusivity, (n3.s%

a Volume fractionof solid, (%)

L general dependent variable

‘ Dynamic viscosityof coolant,(kg/m.s)
M Coolantdensity, (kg/m)

b Thermal expansion coefficier{t< ™)
d The dimensionless temperature,
o] The intrinsic viscosity,

* Kinematic viscosity, (rfs)

or Total volume, (M)

Os Volume of solid (nanoparticles)

7 Theunderrelaxation factor

a The diffusion coefficient

Indices

av Average

f Base fluid (water)

in Inlet

n Outer normal coordinate at interface between the wall and fl
nf Nanofluid
out Outlet

S Solid

12
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General introduction

Heat transfer is a process of great importance in several areas, including technology and
industry. Although itmanifeststself in various formgradiation, conduction and convection), the
latter is the most targeted in most fields of industry. Convection can be natural, forced or mixed.

This transfer mode concerns fluids (liquids and gagés) movement of the fluidanresult
from variations indensity of this same fluid due to the temperature differences inducéue
transfer ofheat between the fluid and the wall. If the movement of the fluid is caused by the

action of external forces (pumps, fans), it will be forcedvection.

The convectia heat transfer can be improved in a specific engineering by several methods,
including adjusting the geometry, adding the fins, using the surface roughness as well as
changing the physical properties of a liquid used in the cooling processcdntyears, nano
fluids have attracted a lot of attention because of their use for cooling in various industrial
applications such as cooling of electronic components, cooling of vehicles, cooling of

transformers, impplications of nucleaeactors, solarapl i cat i ons et cé

Nanofluids consist ofolid nanaparticles suspended in a basic liquid (such as: waier | € )
and are also called colloidal solutions, a promising new technology in the context of heat
transfer, especially in the field of cooling electiordevices, which is known to develop
continuously, this led to reducing its siaed increased operating rate has led to problems with
its high temperature. To ameliorate this temperature, it is necessary to ameliorate the
heattransferand find approprige ways to cool the electronic componeriise latteris our goal
in this study.

Objective of study
Theaim of this doctoral thesis is to model and to study the heat exchange of the channels in

order to better cool the electronic components usampfluids.

In our study, our effort focuseoh clarifying the effect of the parametessich as the solid
volume fraction, type ohanoparticles and the geometry ofini-channel on the cooling of
electronic chips. The study assessed the importanaddng solid particles to the pure fluid in
improving the cooling efficiency of hot surfaces as well as the effect of the shapes of channels
and the nature of the coolant (nafhed), on the junction temperature of the electronic

components.
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We also studied the numerical modeling of heat transfer in microchannels and mini channels
by adding obstacles and ribsing nanefluid. The objective of this section is to find tbetimal
position of obstacle placement inside the channels as wellfesita suitable shape for the fins
using nanefluid in order to save the temperature of the electronic chips and in order to improve

the heat exchange between the coolant (+flamd) and the walls of the channels

Organization of the thesis

The thesis rporting the work accomplished within the framework of this Doctorate in
Sciences consists of 4 chapters and a general conclusion.

The first chapter contains the results of bibliographic research on improving heat transfer in
mini channels and microchannels using nanofluids

The second chaptepresents reminders on the thermophysical properties offhaids.

The third chapter contains the mathemasic modeling of heat transfer. There is a
presentation of the equations of fluid flows accompanied by thermal transfer (the continuity
equation, momentum equation, energy conservation equation and the equation of the solid) as
well as the hypotheses assdeth with this modelIn this chapter, we present the numerical
method chosen for the simulation (Finite volume method). At the end of the chapter, we briefly
describe the ANSYS WORKBENCHE FLUENT trade codes used in the calculations of the
numerical simulaon.

The fourth chapter contains the results of a study divided into six parts (applications), the
first part in which we studied numerically the thermal transfer in different geometries of the
mini-channels, as for the second part, we studied numerigalynfluence of nandluids on
thermal exchange in miahannels.

The mathematical model, the numerical method, the geometry for this study are given in
chapter Ill(In section 1114.3 and section 114.4). In section V.12 of part one and section 1V.2.2
of the second part, we present the results of the mesh independence tests. Section 1V.1.3 and
section 1V.2.3 contain the results in graphical form and their discussion. The first and second
parts are ends with a conclusibrnging together the various observations.

The third part of this chapter contains the results of a numerical study of the thermal
exchanges in different geometry sections of rsimannels of a cooler for cooling a chip using
nanofluids. In section 1V3.2 and 1V.3.3 of this part of this chapter, we present the results of the
mesh independence tests and the validation ofdtglts SectionlV.3.4 contains the results in
graphical form and their discussion. The fourth part is closed with a conclussatiofs
IV.3.4.5). As for the fourth part, we studied the influence of types of 4pamiicles, nano
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particles volume concentratipand types of cooler metals on the heat transfer in achigmnels
cooler.

The fifth part of this chapter presents the results of a numerical study in three dimensions of
theinfluence of the fluidshature and obstacle position cooling of electronic componenthis
part is closed with a conclusion.

The sixth part(application of this chapter presents the results of a numerical study of the
effect of the addition of the pie shape ribs and Parallelogram ribs in-ctiernels on thermal
performance using Diamondwater nandluid. The results of this chapter have been validated
and mesh independence tested. This part ends with a conclusion.

Finally, the thesis is closed with the general conclusions drawn from the cases studied and the

perspectives for the rest of the work.




Chapter |

Bibliographic review

In the last part of the twentieth century, interest in the field of nanofluids by researchers
appeared and this is evident from the increase in the number of studies related to nanofluids that
are published annually (Figure (1.1.4))] nanofluid have good physical properties which is a
mixture of metallic nanoparticles and between a basic liquid such as water or oil. These
nanoparticles can be in different shapes, as a circular or cylindrical shape, and the ratio of
particles in the basdiquid controls the physical properties of the nanofluid. It has the ability to
improve heat exchange despite the fact that there are some disadvantages. It is used in several
fields especially the one related to refrigeration Fighver electronic compwnts (such as
processors, transistors, integrated circuits... etc) that emit high heat during op@iatibhis
high temperature makes the electronic components not work properly and may be damaged by
overheating especially with the increased energgighsion of the electronic components. It is
expected that the maximum power dissipation and heat flux from the high performance
microprocessor chips was projected to reach about 360 W and 190 Weésmectively by the
year 2020 (Figure (1.1.b]3B].

Therefore, the heat generated must be removed by designing a suitable thermal management
system for reliable operation of the electronic device using the nawflBesides, the design of
a thermal management system can contain micro channels, which hng etements that can
provide and reduce the temperatures of electronic components due to their performance in

dissipating large amounts of heat,

The term micrechannel applies to channels with a hydraulic diameter of 10 to 100
micrometer. Micrechannelsconsist of a heat sink made of a solid with a high thermal
conductivity such as silicon or copper with the mict@nnels machined within the solid. A
micro-channel heat sink generally contains a large number of parallel -charmels. The
coolant is fored to pass through these channels to remove the heat generated in the hot surface

in contact with the heat sink wall.

The improvement of the heat exchange between the cooling liquid and the cooler walls

contributes in improving the cooling process of tioé $urfaces and the improvement of the heat
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exchange is mainly related to the improvement of the physical properties of the cooling fluids,
and also it is related to the improvement of the geometrical shape of the cooler, for example, by

adding fins and baiers inside the micro channels ... etc. To dissipate heat, where we find many

published studies of researchers in the field of improving heat exchange, among them
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Figure (1.1): (a) Nanofiidsrelated publication in the past decdilp
(b) Projections of maximum heat flux and power dissipation for microprocessor{8hips

Chavda (2015) [4] studied experimentally the effect of various concentrations (0,003%,
0,002% and 0,004%) of narparticle (CuO) mixed in base fluid (water) on heat exchange
perfromance of double pipe thermal exchanger for counter and parallel liquid flow arrangement.
The results show that the heat transfer coefficient increases with the increases of the volume

fraction of CuO nanopatrticle.

Esfe et al. (2015) [5] studied the laminar mixed convection of nanofluid in a horizontal
channel provided with two sources thiermalat constant temperature mounted on the bottom
wall. In this study, they used a &s/water nanofluid. They also used the limited volume method
to solve the governing equations where they chose three thermal models for the study. Their
study showed that ¢haverage Nusselt number increases by less than 10% over the obstacles,
with the fraction of nanoparticles increasing from 0% to 5%. They found that and the difference
between the average number of Nusselt figures and three thermal models does not%xceed 3

Gui-Fu Ding et al. (2015)[6] investigated experimentally and numerically the leeahange
and friction characteristics with rectangular, triangular and semicircular ribs on the sidewalls of
microfluidic channels by a surfageicromachining micreelectro-mechanical system to
ameliorate the heatxchangeate of the microfluidic heat sink. Théydicatedthat the using of
micro-ribs provides a preferablihnermal exchangerate, but also increases the pressure drop
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penalty for microchannels. Furthermorthey found that the heaéxchangeand friction
characteristics of the microchannels are strongly influenced by the rib form and the triangular
ribbed microchannel possesses the biggest Nusselt number and friction factor between the three

rib forms.

Si cover

Si substrate

Figure (1.2): Schematic of the microfluidic heat sirg]
x S x
%i P P
(b)
X S X
M 4

I~ <

Figure (1.3): (a) The rectangular ribbed microchannel; (b) the trlangular ribbed microchannel; (c) the

semicircular ribbed microchannel; and (d) the conventional smooth microchi@jnel.
Also, on the other handNonino et al. (2015) [7] developed an analytical study of the
conjugate conduction/convection heat transfer in cligegd micro heat exchangers. It was
showed that the increase of the microchannels number per layer yields incetstsaspressure

dropincrements that are larger than those displayed by the relative heat flow rates.
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(a) Physical system

Figure (1.4): Crossflow micro heat exchangefg]

Ciloglu et al. (2015)[8] studied experimentally the effect of nanoparticles types (silica, SiO
alumina AbOs, titania TiQ and copper oxide CuO) on the quenching process with 0.1% particle
of volume concentration. They mentioned that the type of nanoparticle used ifluidao

substantially influenced the cooling, particularly with S@noparticbs.

On the other hanNavaei et al. [9]studied numerically the influence of geometric parameters
and four types of nanoparticles (8, CuO, ZnO and Sig¢) on the thermal performance of
grooved and ribbed channels with uniform heat flux. The studycasaed out for three forms of
ribs (rectangular, senuircular and trapezoidal) with a Reynolds number which varies between
5,000 and 25,000, the volumetric fraction of nanoparticles vary between 1 and 4%, and the
diameter of nanoparticles varies betw@énm and 60 nm. They indicated that the semicircular
rib has the highest Nusselt number, in the case of the use of nanofluids by modifying parameters

such as the diameter of the nanoparticles.
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Figure (1.5): Diagram of a channel with ribs agdooved9].

Hongtao et al. (2016]10] studied numerically the influence of the geometric parameters on
heat exchange performance and flow of the rectangular, trapezoidal and triangular cross
sectional formed microchannel heat sink. The results confirmed that the shape and geometric
parametersof microchannel have a remarkable impact on the flow and heat transfer
characteristics of the microchannel heat sink. For the rectangular microchannel, it bastthe
performance with the aspect ratio among 8R4. Also the channel numbienpactsthe thermal

resistance (The increase of channel nundeereasé¢he thermal resistance).
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Figure (1.6): Schematic of (a) microchannel heat sink geometry and (b) cross section of different
microchannel with its dimensiond 0]

Also, Abed Ammar et al. (2016)[11] studied the heat transfer and liquid flow in different
forms of micrechannels. They concluded that the Nusselt number and convective heat transfer
coefficient increase with the increase of the Reynolds number. They also confirmed that the
micro-chanrels with two notches form present the convective heat transfer coefficient and
Nusselt number (Nu) with the highest value, compared to the wi@onels with straight
rectangular form and micrchannels with six and four notches form.

(2) (b) © @

(a) microchannelithout notoches
(b) Microchannel with two Notches
(c) Microchannel with four Notches
(d) Microchannel with six Notches

Figure (1.7): Schematic of straight and with notches microchannels




Lei C. et al. (2016)[12] numerically investigated the characteristics of laminar flow and heat
transfer in the MCHS with offset ribs on the sidewalls. The study is carried out for five different
shapes of offset ribs that are designed, including rectangular, isosceles triabgokavard
triangular, semicircular and forward triangular. Besjdesthis study, Reynolds number is
between 190 and 838. The results presented in this article show that the offset ribs result in
significant heat transfer enhancement and rise pressupe @hos higher pressure drop, the
microchannel heat sink with offset ribs progressively loses its advantage as an effective thermal

exchange enhancement method at rise Reynolds number values.

Also, Sharma et al (2016)[13] have experimentally studied tliieid flow and heat transfer
with micro-channels. The material used for MCHS is copper and utilizing water as a cooling
agent. They studied the evolution of heat transfer rates, the impact of friction factor, and the
impact of pressure drop and evolutiontemperature distribution. They concluded that the mass
flow rate and the friction factor are reduced by a decrease in velocity of flowing fluid.
Decreasing pressure increases with increased fluid velocity and heat removal rate. The heat

transfer rate ineases with MCHS, with an increase in the flow rate of the mass.

In this contexfTogun (2016)[14] investigated numerically the Cul®,0O nancfluid and heat
transfer inthe four configurations of backward facing step with and without obstacle. The
Reynolds number (Re) in this study varied from 75 to 225 with volume fraction on CuO
nanoparticles varied from 1 to 4 % at constant heat flux. | also use the finite volume method in
two dimensions, where | tried four different configurations (without obstacle, with obstacle of
1.5 mm, with obstacle of 3 mm, with obstacle of 4.5 mm) to improve thermal performance. He
observed that there is an increase of the vortex zone along withraase in the obstacle height

of the wall channel has remarkable effect on thermal performance.

Chemloul and Belmiloud (2016)[15] studied the influence of the nature of the nanofliud, the
variation of the Rayleigh number and the volume concentration of the nanoparticles QuiO
and ALOsz) on the convective heat transfer performance in a square cavity whose lower
horizontal wall ad right vertical wall are heated to a constant temperature. They used in this
study volumetric fraction of the nanoparticles betweed1®. And the Rayleigh number is
between 103 and £0and the Prandtl number at Pr=6.2. They concluded that the thermal
exchange increases with the Rayleigh number and the volume concentration. Also, they

confirmed that improvement of the heat exchange is achieved by using Cu nanopatrticles.

/4




Andreozzi et al. [16] studied numerically the turbulent forced convection of a raiubf
(Al.03 / HO) in a twedimensional channel heated outside for different shapes of ribs
(triangular, rectangular and trapezoidal). In this study, they used the finite volume method which
is used to solve the equations of the model. They chose the etianconcentration of
nanoparticles that is varied between 0% and 4% and Reynolds number between 20,000 and
60,000. They noticed that the triangular ribs have higher thermal performance than the trapezoids
and also the presence of nanoparticles incre@igesean Nusselt number compared to the pure
base fluid, and that the average Nusselt number increases by increasing the Reynolds number.
They concluded that the mean Nusselt valt@sthe triangular ribs are higher than for the

trapezoidal ribs.
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Figure (1.8): Characteristic parameters of the ribs and shapes considered.

Kumar et al. (2016) [17 conducted a comprehensive review of the physieaimodynamic
properties of nanofluids such as the convective heat transfer coefficient for laminarbarent
region, thermal conductivity, viscosity and specific heat capacity as they also talked about how

to prepare and maintain nanofluid stability.

Zunaid et al. (2017)[18] have numerically investigated the heat exchange and pressure drop
characteristis of semi cylindrical and a straight rectangular projections microchannel heat sink
made of copper. In this study they used water as a coolant for Reynolds number ranging between
200 to 1000 with constant heat flow of°M / n?, They compared the pressuirop and heat
transfer between rectangular and semi cylindrical projections microchannel. The results show

thatthermalexchange raises with the use of semi cylindrical projections micro channel heat sink.
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Behnampour et al. (2017) [19kt