
RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ MOHAMED KHIDER - BISKRA

N° d’ordre :.

Serie :.

– FACULTÉ DES SCIENCES EXACTES ET DES SCIENCES DE LA NATURE ET DE LA VIE –

— DÉPARTEMENT D’INFORMATIQUE —

THÈSE
présentée pour obtenir le diplôme de

DOCTORAT EN SCIENCES

SPÉCIALITÉ : INFORMATIQUE

A Graph Transformation Approach
for Dynamic Reorganization in

Multi-Agent Systems

Par

Fayçal GUERROUF

Soutenue le : / /

Devant le jury composé de :

Pr. Okba KAZAR, Professeur à l’Université de Biskra, Algérie Président
Pr. Allaoua CHAOUI, Professeur à l’Université Constantine 2, Algérie .Rapporteur
Pr. Hammadi BENNOUI, Professeur à l’Université de Biskra, Algérie Examinateur
Pr. Laid KAHLOUL, Professeur à l’Université de Biskra, Algérie Examinateur
Dr. Elhillali KERKOUCHE, MCA à l’Université de Jijel, Algérie Examinateur
Dr. Toufik MAAROUK, MCA à l’Université de Khenchela, AlgérieExaminateur

http://univ-biskra.dz
https://scholar.google.com/citations?user=MK6WAkAAAAAJ&hl=en
https://scholar.google.com/citations?user=atn9oSkAAAAJ&hl=en
https://scholar.google.com/citations?user=XjMOpRwAAAAJ&hl=f
https://scholar.google.com/citations?hl=en&user=w69abq4AAAAJ
https://scholar.google.com/citations?hl=en&user=W9hTcRQAAAAJ
https://scholar.google.com/citations?hl=en&user=yFmYjwcAAAAJ
https://scholar.google.com/citations?hl=fr&user=-3XbmIcAAAAJ

To my dear parents with all my love and gratitude

To my lovely wife and my little angels Soumia, Hiba, and Sohayb

To my brothers and my sisters

To my friends

I dedicate this thesis.

Acknowledgment

I would like to express my sincere gratitude to my supervisor Allaoua

Chaoui for his constant guidance, insightful comments, and considerable en-

couragement to complete this thesis.

Special thanks to Prof. Kazar Okba, who always offers his unlimited sup-

port to the LINFI laboratory members.

I would also like to express my gratitude to the jury members who give me

the honor by accepting to evaluate and review this work.

ii

Abstract

Nowadays, complexity and high distribution are considered as the main prop-
erties of large real-world systems such as airports and manufacturing systems.
The Organization Centered Multi-Agent System (OCMAS) approach is advo-
cated as an appropriate solution to handle the complexity and the distribu-
tion of such systems. These systems are often open, and execute under a dy-
namic environment with unpredictable interaction. In fact, the concept of or-
ganization that is explicitly defined in OCMAS provides a key feature to the
designed system which is the “stability”. Despite that, when the Multi-agent
system operates in dynamically changing environments and often unreliable
communication resulting in various events originating from its external envi-
ronment and/or its internal elements which de-stabilize the system state. To
overcome this kind of undesirable situation, the Multi-Agent System has to re-
organize its behavior and structure to continue fulfilling its overall objectives.
In this dissertation, we proposed a formal approach for the reorganization of
a multi-agent system statically at design time or dynamically at run-time. In-
deed, we proposed to formulate the reorganization using graph transforma-
tion. In particular, we have defined a type graph to represent the multi-agent
system organization and a set of rules that define the different actions that can
be performed to reorganize the system. We implemented our approach using
AGG. We evaluated our approach on a case study related to a manufacturing
system implemented as a Multi-Agent System. The obtained results show the
efficiency and the effectiveness of our approach.

Keywords: Multi-Agent System, Organization Centered Multi-Agent System,

Reorganization., Complex System, AGG, Graph Transformation

iii

Résumé

De nos jours, la complexité et la distribution sont considérées comme les prin-
cipales propriétés des grands systèmes du monde réel tels que les systèmes
des aéroports et de fabrication. L’approche “Organization Centered Multi-
Agent System” (OCMAS) est considéré comme solution appropriée pour gérer
la complexité et la distribution de ces systèmes. Ces systèmes sont souvent ou-
verts et s’exécutent dans un environnement dynamique avec une interaction
imprévisible. En fait, le concept d’organisation qui est explicitement défini
dans OCMAS fournit une caractéristique clé du système conçu qui est la “sta-
bilité”. Malgré cela, lorsque le système multi-agent fonctionne dans des en-
vironnements changeants de manière dynamique et souvent des communica-
tions non fiables qui résultent de divers événements provenant de son envi-
ronnement externe et / ou de ses éléments internes peuvent déstabiliser l’état
du système. Pour surmonter ce genre de situation indésirable, le système
multi-agents doit réorganiser son comportement et sa structure pour contin-
uer à remplir ses objectifs généraux. Dans cette thèse, nous avons proposé
une approche formelle pour la réorganisation d’un système multi-agents sta-
tiquement au moment de la conception ou dynamiquement au moment de
l’exécution. En effet, nous avons proposé de formuler la réorganisation en
utilisant la transformation de graphe. En particulier, nous avons défini un
type graph pour représenter l’organisation du système multi-agents et un en-
semble de règles qui définissent les différentes actions qui peuvent être effec-
tuées pour réorganiser le système. Nous avons implémenté notre approche en
utilisant AGG. Nous avons évalué notre approche sur une étude de cas liée à
un système de fabrication implémenté en tant que système multi-agents. Les
résultats obtenus montrent l’efficacité de notre approche.
Mots clés:

iv

Système Multi-Agents, Système Multi-Agents centré sur l’Organisation, Ré-
organisation, Système Complexe, AGG, Transformation de Graphes

�� 	jÊÓ
ú

	̄ �èXñk. ñÖÏ @ �éÒ 	¢	�

CË �éJ
��
KQË @ ��A�	mÌ'@ 	áÓ ú
ÍAªË@ ©K
 	Pñ�JË @ð YJ
�®ª�JË @ Q�. �JªK
 , Qå 	�AmÌ'@ �I�̄ñË@ ú

	̄

Q�. �JªK
 �éÒ 	¢	JÖÏ @ úÎ« 	Q»QÒ�JÖÏ @ ZC¿ñË@ XYª�JÓ ÐA 	¢ 	JË @ i. î 	E . ©J
 	���JË @ ð �H@PA¢ÖÏ @ �éÒ 	¢	�

@ É�JÓ ù

�®J
�®mÌ'@ ÕË AªË @
Õ �æK
ð �ékñ�J 	®Ó �éÒ 	¢	�

B@ è 	Yë 	àñº�K AÓ A�J. Ë A 	« . �éÒ 	¢	�

B@ è 	Yë É�JÓ ©K
 	Pñ�Kð YJ
�®ª�K ©Ó ÉÓAª�JÊË I. �A 	JÓ Ém»

ZC¿ñË@ XYª�JÓ ÐA 	¢ 	JË @ ” Ðñê 	®Ó Q 	̄ñK
 , ©�̄ @ñË@ ú

	̄ . ©�̄ñ�JÓ Q�
 	« É«A 	®�K ©Ó �éJ
ºJ
ÓA 	JK
X �éJ�
K. ú

	̄ Aë 	YJ
 	® 	J�K
ÉÒªK
 AÓY 	J« , ½Ë 	X 	áÓ Ñ 	«QË@ úÎ«. “ �HAJ. �JË @ ” ù
 ëð ÕÔ�ÖÏ @ ÐA 	¢ 	JÊË �éJ
�A�

@ �è 	Q�
Ó “

�éÒ 	¢	JÖÏ @ úÎ« 	Q»QÒ�JÖÏ @
ø
 X ñ�K AîD
	̄ ��ñ�KñÓ Q�
 	« �HBA���B@ 	àñº�K AÓ A�J. Ë A 	«ð A�J
ºJ
ÓA 	JK
X �èQ�
 	ª�JÓ �HAJ�
K. ú

	̄ ÉÓ@ñªË@ XYª�JÓ ÐA 	¢ 	JË @
�HAJ. �K ð P@Q�®�J�@ ÉK
 	Q�K ú

�æË @ �éJ
Ê 	g@YË@ AëQå�A 	J« ð

@ / ð �éJ
k. PA	mÌ'@ Aî �DJ�
K. 	áÓ

A �� 	��K �é 	®Ê�J	m× �H@Yg

@ úÍ@

ÉÓ@ñªË@ XYª�JÓ ÐA 	¢ 	JË @ úÎ« 	á�
ª�JK
 , AîD
	̄ H. ñ 	«QÖÏ @ Q�
 	« É¿ A ��ÖÏ @ 	áÓ ¨ñ	JË @ @ 	Yë úÎ« I. Ê 	ª�JÊË . ÐA 	¢ 	JË @
A�J
ÖÞ�P A �j. î 	E A 	JkQ���̄ @ , �ékðQ£

B@ è 	Yë ú

	̄ . �éÓAªË@ é 	̄ @Yë

@ ��J
�®m��' �éÊ�@ñÖÏ éÊ¾J
ëð é»ñÊ� Õæ

	¢	J�K �èXA«@
, ©�̄ @ñË@ ú

	̄ . ÉJ
 	ª ����Ë @ �I�̄ð ú

	̄ ð Õæ
Ò��JË @ �I�̄ð ú

	̄ ZC¿ñË@ XYª�JÓ ÐA 	¢ 	� Õæ

	¢ 	J�K �èXA«B @ (ú
Î¾ ��)

	K
Qª�JK. A 	JÔ�̄ , �ñ�	mÌ'@ ék. ð úÎ« . �éJ
 	K AJ
J. Ë @ Ðñ�QË@ ÉK
ñm��' Ð@Y 	j�J�AK. Õæ

	¢ 	J�JË @ �èXA«@

�é 	«AJ
� A 	JkQ���̄ @
�H@Z@Qk. B @ XYm��' ú

�æË @ Y«@ñ�®Ë@ 	áÓ �é«ñÒm.×ð ZC¿ñË@ XYª�JÓ ÐA 	¢ 	JË @ �é�� ñÓ ÉJ
�JÒ�JË ú

	GAJ
K. Õæ�P ¨ñ	K

Õæ
J

�®�JK. A 	JÔ�̄ . AGG Ð@Y 	j�J�AK. A 	Jj. î 	E 	YJ
 	® 	J��K. A 	JÔ�̄ . ÐA 	¢ 	JË @ Õæ

	¢ 	J�K �èXA«B Aë 	YJ
 	® 	J�K 	áºÖß
 ú

�æË @ �é 	®Ê�J 	jÖÏ @

Õç�' ú

�æË @ l .�

'A�J 	JË @ Qê 	¢�� . ÉÓ@ñªË@ XYª�JÓ ÐA 	¢ 	J» è 	YJ
 	® 	J�K Õ �æK
 ©J
 	���� ÐA 	¢ 	JK. ��Êª�J�K �éËAg �é�@PX ú

	̄ A 	Jj. î 	E

. A 	Jj. î 	E �éJ
ËAª 	̄ð �èZA 	®» AîD
Ê« Èñ�mÌ'@
Õæ

	¢ 	J�JË @ �èXA«@ , �éÒ 	¢	JÖÏ @ úÎ« 	Q»QÒ�JÖÏ @ ZC¿ñË@ XYª�JÓ ÐA 	¢ 	� , ZC¿ñË@ XYª�JÓ ÐA 	¢ 	� : �éJ
kA�J 	®ÖÏ @ �HAÒÊ¾Ë@
. �éJ
 	K AJ
J. Ë @ Ðñ�QË@ ÉK
ñm��' , Y�®ªÖÏ @ ÐA 	¢ 	JË @ ,

Contents

Acknowledgment ii

Abstract iii

Résumé iv

Contents vii

List of Figures xi

1 Introduction 1

1.1 Context . 2

1.2 The problem studied in the thesis 4

1.3 Contributions . 5

1.4 Thesis Outline . 7

I State of the Art 8

2 Background 9

2.1 Introduction . 10

2.2 Graph Transformation System . 10

2.2.1 Graph and Graph Morphism 11

vii

2.2.2 Typed Graph and Typed Graph Morphism 11

2.2.3 Graph Rule . 13

2.2.4 Concept of Transformation 14

2.2.5 Negative Application Conditions 14

2.2.6 Typed Attributed Graph 14

2.2.7 Typed Graph Transformation System 15

2.2.8 Typed Graph Grammar 16

2.2.9 Graph Transformation Tools 16

2.3 Agent-Oriented Software Engineering 17

2.3.1 Concept of Agent . 17

2.3.2 Multi-Agent System . 19

2.3.3 Agent Centered Multi-Agent System 20

2.3.4 Organization Centered Multi-Agent System 22

2.3.5 Concept of Organization 22

2.3.6 Types of Agent Organization 25

2.3.7 Organizational Change Motivation 29

2.3.8 Reorganization . 31

2.4 Conclusion . 35

3 Literature Review 36

3.1 Introduction . 37

3.2 Semi-Formal Approaches . 37

3.2.1 GORMAS Approach . 37

3.2.2 OMACS Framework . 39

3.2.3 MOISE . 41

3.3 Graph Transformation Based Approaches 42

3.3.1 Multi-level graphs for System Reorganization 42

3.3.2 A Model for MAS with Dynamic Organizations 44

3.3.3 Rule-Based Modeling and Static Analysis of Self-adaptive

Systems . 45

3.4 Formal specification approaches for Multi-Agent Systems 47

3.4.1 Formal Semantics Framework 47

3.4.2 Rewriting Logic for the Specification of MAS 48

3.4.3 Automatic generating algorithm of rewriting logic for

multi-agent system . 49

3.5 Conclusion . 49

II Contributions 51

4 Graph Transformation Approach for the Reorganization in Multi-Agent

Systems 52

4.1 Introduction . 53

4.2 Approach Overview . 53

4.2.1 MAS Monitor . 54

4.2.2 MAS Organization . 55

4.2.3 Reorganization Manager 55

4.2.4 Basic Elements Life Cycle 56

4.3 MAS Organization Type Graph 59

4.3.1 ORG . 59

4.3.2 Goal . 60

4.3.3 Role . 61

4.3.4 Agent . 63

4.3.5 Structural State (sstate) . 63

4.3.6 Behavioral State (bstate) 64

4.3.7 Extension Mechanism . 64

4.4 MAS Organization Rules . 65

4.4.1 Behavioral Rules . 66

4.4.2 Structural Rule . 74

4.5 Mathematical Notation of our MAS Organization 79

4.5.1 Priority . 81

4.5.2 Sequentially Independent 82

4.5.3 Confluence . 83

4.5.4 Termination . 85

4.6 Conclusion . 86

5 Evaluation: Case Study 87

5.1 Introduction . 88

5.2 Case Study Description . 88

5.3 Planning and execution . 89

5.4 Scenario 1: Agent Entering the System 91

5.5 Scenario 2: Agent Leaving the System 91

5.6 Scenario 3: A Goal Being Ended 94

5.7 Discussion and limitations . 97

5.8 Conclusion . 97

6 Conclusion and Future Work 98

6.1 Summary . 99

6.2 Perspectives . 100

Bibliography 101

List of Figures

2.1 Graphs Category Diagram . 12

2.2 GraphsTG Category Diagram . 13

2.3 Double pushout construction from G to H (Direct derivation) . 14

2.4 NAC Structure . 15

2.5 Agent interacting with its environment 18

2.6 General structure of a multi-agent system 20

2.7 Hierarchical organization . 26

2.8 Holarchical organization . 26

2.9 Agent federation . 27

2.10 Coalition-based organization . 28

2.11 Team-based organization . 29

2.12 Congregations of agents . 29

3.1 GORMAS Activity Diagram . 38

3.2 OMACS model . 40

3.3 O-MaSE meta-model . 41

3.4 three aspects of an organizational structure 43

3.5 An example of the multi-level graph 44

3.6 Rule schema for agents . 44

3.7 Type Graph of the Car Logistics 46

3.8 Formal framework modules . 48

xi

3.9 Generating algorithm description 49

4.1 Approach Overview . 54

4.2 Agent Life Cycle . 56

4.3 Role and Goal Life Cycle . 58

4.4 Type Graph. 59

4.5 AgentEnter Rule . 66

4.6 AgentSetIdle Rule . 67

4.7 AgentEnactRole_enter Rule . 67

4.8 AgentEnactRole_idle Rule . 68

4.9 AgentChangeRole Rule . 69

4.10 AgentChangeRole_freeRole Rule 70

4.11 AgentChangeRole_NoFreeRole Rule 70

4.12 AgentAchieve Rule . 71

4.13 AgentSetIdle_Achieve Rule . 71

4.14 AgentSetIdle_Normal Rule . 72

4.15 AgentLeave Rule . 72

4.16 AgentLeave_remove Rule . 73

4.17 AgentFail Rule . 73

4.18 RoleFail_FromAgentFail Rule . 74

4.19 AgentSetIdle_Fail Rule . 74

4.20 GoalSetEnd Rule . 75

4.21 GoalSetEnd_SubGoal Rule . 75

4.22 GoalSetEnd_Role Rule . 76

4.23 RoleEnd_AgentIdle Rule . 76

4.24 GoalEnd_Remove Rule . 76

4.25 RoleEnd_RemoveRole Rule . 77

4.26 RoleAchieve_FromAgentAchieve Rule 78

4.27 GoalAchieve_FromRoleAchieve Rule 78

4.28 GoalAchieve Rule . 79

4.29 GoalFail_Recover Rule . 79

4.30 Minimal dependence between Rm and Rreo 82

4.31 Minimal dependence between rules of the set Rm 83

4.32 Confluence between rules of the sets Rm and Rreo 83

4.33 The confluence between rules of the set Rreo 84

4.34 The confluence between rules of set Rm 84

5.1 Initial Graph of the manufacturing system 90

5.2 Scenario of Agent Entering the System 91

5.3 Scenario of Agent leaving the system 94

5.4 Result of the application of Rules AgentEnter, and AgentSetI-

dle_enter . 96

CHAPTER 1

Introduction

1

1.1 Context Chapter 1

1.1 Context

Nowadays, complexity and high distribution are considered as the main prop-

erties of large real-world systems. The latter are mainly composed of many

aspects, such as distribution of control and implication of a significant number

of components. Such systems are often open, and execute under a dynamic en-

vironment with unpredictable interaction. Examples of these systems are air-

ports, manufacturing systems, etc. Besides, the classical life cycle of software

engineering is not the suitable paradigm for developing such systems (they

require a nontraditional approach). Indeed, agent-oriented software engineer-

ing (AOSE) is considered as one of the most popular paradigm that is used

to develop complex and distributed systems [Jen99; DeL09]. It is applied in a

variety of domains, such as: social sciences [Saw03], information retrieval, dis-

tributed data mining, robotics, e-commerce, networks, virtual reality, biologi-

cal simulations, etc [Woo09]. Moreover, AOSE uses concepts of a multi-agent

system such as agents, and organization (societies) of agents which allow to

abstracting the complexity of systems. In addition, the convenient choice of

multi-agent systems for the development of complex systems over classical

software engineering arises from the fact that the manifested complexity in

a system is presented naturally with a multi-agent system [Jen01b]. Further-

more, systems that are developed with multi-agent paradigm are in general,

fast and efficient thanks to their asynchronous and parallel computation na-

ture. They are also scalable and flexible due to the simplicity of adding and

removing agents from the system [FGM04].

In the literature, two viewpoints of AOSE are proposed [FGM04; Pic+09]

: i) Agent-Centered Multi-Agent System (ACMAS); ii) Organization-Centered

Multi-Agent System (OCMAS). ACMAS focuses on the micro-level of a Multi-

agent System, i.e., at the level of the agent’s states itself and their relationship

to its overall behavior. ACMAS considers the agents as the force that generate

and drive the organization. This latter is created implicitly at run-time with

no prior design. The collective behavior of the cooperation pattern between

agents shapes the organization’s structure following a bottom-up approach

(start at the agent level). Agents must figure out how to organize amongst

2

1.1 Context Chapter 1

themselves, and the organization emerges as an observable phenomenon.

Unfortunately, ACMAS suffers from two significant drawbacks when de-

signing large systems, namely; unpredictability and uncertainty. Predicting

the overall behavior of the system from the interaction and cooperation of its

agent is extremely difficult and uncertain due to the probability of unwanted

emergent behaviors [FGM04]. Additional drawbacks are related to the secu-

rity of applications, modularity, uniqueness of framework or approach, etc.

The drawback of ACMAS has forced to the second type of design where the

importance is given to the use of organizational concepts within MAS such

as “organizations”, “groups”, “communities”, “roles”, “functions”, etc [FG98;

Jen00; PO01; CD96; ZV02].

Ferber et al. consider OCMAS as the modern design of MAS, and it allows

to eliminate the drawbacks of ACMAS [FGM04]. Indeed, it starts from the

opposite direction of ACMAS, in which the organization is explicitly defined

before running the system. So, the organization is a first-class citizen that holds

all the system elements in addition to agents. In other words, it is a top-down

approach where the designer defines the organization and the cooperation pat-

tern in order to specify or constrain the agent’s behaviors. Thus, agents who

play in the system have to comply with the rules that are imposed by the or-

ganization. In this type of design, the organization’s agents are aware of the

system’s structure and state, which gives them the capability to manipulate

primitives to alter their social environment.

Several pioneers [FGM04; Gas01; OPF03; HL04; Van+05; HVB08; Dig09] in

the field of MAS have advocated OCMAS as a solution for mastering the com-

plexity of systems. In addition, they argue that using the concept of organiza-

tion in MAS allows to increase the efficiency and improves system scalability

[HL04]. Furthermore, the system’s abstraction with an organization decreases

or controls its uncertainty and unpredictability. Also, it allows formalizing

global goals that require the awareness of a set of agents instead of a single

one. Moreover, organization structure helps to impose rules on agents’ behav-

iors and improve the achievement of coordination effectively [Dig09].

3

1.2 The problem studied in the thesis Chapter 1

1.2 The problem studied in the thesis

In this thesis, we are interested in studying the following general question:

How to ensure the stability of a complex system even in a dynamic environ-

ment?

Despite complex systems that are developed with an OCMAS approach

are supposed to be stable, but unfortunately, these systems can be subject to

destabilization caused by the fact that organizations are operating under un-

certainty, in dynamically changing environments, and often unreliable com-

munication which result in a multitude of events. Therefore, these characteris-

tics make organizations dynamic where they can evolve, disappear, or expand.

An example of the events in a manufacturing system is when a product is no

longer in demand, and it causes the need of a producing a better product with

the best features. Hence, the organization can evolve to realize this objective, or

simply disappear. When there is an over-demand for a particular product, the

organization can be expanded by creating a production line. In the context of

MAS, events can be a change in organization objectives or when agents leave

the system for any given reason. Besides, some undesirable events can neg-

atively affect the organization, which causes degradation to its performance

and effectiveness. For instance, production can be suspended when a machine

is broken. It is obvious that this can affect negatively the performance. There-

fore, flexibility and adaptation (a.k.a. reorganization) are essential proprieties

for an organization to acquire for achieving its overall objective. Without these

properties, the system goes into a state of failure.

We distinguish two types of adaptation (reorganization) : static reorgani-

zation (at design time) and dynamic reorganization (at run-time). i) Static reor-

ganization: carried out at design time by the system designer using different

tools such as prototyping, model checking, and simulation tools. In this case,

the designer has to perform the adaptation by changing the system’s model

statically. Unfortunately, not all undesirable situations can be identified at this

stage, but they can emerge at run-time. ii) Dynamic reorganization: refers to

the modification of an organization during the execution of the system. The

4

1.3 Contributions Chapter 1

reorganization can affect its two dimensions; structural (static) and behavioral

dimensions such as substitution, addition, removal of elements. Therefore, the

reorganization process should include the definition of situations changing the

organization’s behaviors, such as the departure or the arrival of agents, as well

as the organization’s structure, such as defining new goals. [Pic+09]

The problem tackled in this thesis is to find a way to precisely define the

reorganization in complex systems that are developed using OCMAS. Indeed,

we focus on how to accurately describe the effect of the dynamics of a given

complex system. We are interested in finding a manner to describe the reor-

ganization unambiguously. The reorganization can affect either the behavioral

or the structure of the system. In fact, we want to describe the series of sys-

tem reactions it must takes in response to undesirable events occurring in the

system.

1.3 Contributions

In this dissertation, we propose a formal approach for the reorganization of

MAS at design time and run-time to overcome most of the predictable and

unpredictable events, which keeps the system in a functional and stable state.

Our approach consists of providing a formal definition of the process of reor-

ganization. First, we describe the MAS organization and the reorganization

process as three main components, namely i) MAS monitor, ii) MAS organi-

zation, iii) Reorganization Manager, where each one represents a particular

concept of the MAS organization. The three components interact with each

other in a specific manner. Besides, we use as formal tool the Graph Gram-

mar, which has a solid mathematical foundation that allow proofing properties

such as termination and consistency. Moreover, the Graph Grammar is used

to specify and verify a variety of complex and distributed systems [Ehr+15a].

Additionally, the existence of tools support such as AGG [RET12], GROOVE

[Ren04], facilitate the operation of edition and offer different techniques for

analysis purposes such as model checking, critical pair analysis, etc. There-

fore, we use in our approach graph grammar concepts to define a Multi-Agent

5

1.3 Contributions Chapter 1

System and describe the process of reorganization. The main contributions of

this thesis are : i) MAS organization type graph definition, ii) MAS organiza-

tion rules definition, and iii) An evaluation of the proposed formal definition.

These contributions can be summarized as follow:

1. MAS organization type graph definition : We have defined a type graph

that acts as a meta-model for representing the structure (state) of a given

MAS. The system state is represented as an instance of such meta-model.

2. MAS organization rules definition: We have defined a set of rules repre-

senting possible actions that can be performed to reorganize the system.

These rules are used to monitor and describe the behavior of a Multi-

Agent System. In our approach, the static reorganization is expressed

with the different mechanisms that a designer (or an administrator with

privileged access) can modify not only at design time but also at run-

time. These mechanisms can be used for the behavioral part (such as re-

stricting the organization to some types of agents) and the structural part

(such as defining priority between goals, preventing a role from being

executed more than a defined amount of time). The dynamic reorgani-

zation is expressed through the application of different graph transfor-

mation rules. These rules are equipped with three mechanisms: i) neg-

ative application conditions to prevent them from execution in specific

contexts. ii) context conditions to enforce a needed requirement, such

as the condition put on agent capabilities to satisfy role requirements.

iii) rule priory to prioritize the execution of a rule before others. These

mechanisms allow defining policies for reorganization that suits differ-

ent situations and different types of organization. Hence, our approach

can be applied in various MAS with a slight modification to the provided

mechanism.

3. An evaluation of the proposed formal definition: In this evaluation, we

use a case study related to a manufacturing system to see the effective-

ness of our approach. Indeed, we use a set of scenarios of different sizes.

For each scenario, we show how our specification is used and which rules

6

1.4 Thesis Outline Chapter 1

can be applied. In the end, we perform a semi-automatic check to see

how the system still consistent and stable.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2: gives an overview of graph transformation system and Multi-

Agent System. We first introduced the standard definition of simple

graphs and then the concepts of graph transformation systems using

typed graphs. Second, we go through the concepts of multi-agent sys-

tems, in which we focus on organization and what relates to it, such as

the elements of an organization, and the process of reorganization, etc.

Chapter 3: provides an overview of the state-of-the-art of formalizing Multi-

agent systems using different techniques. In fact, we divided the pro-

posed contributions in literatures into three categories which are; i) ap-

proaches that use semi-formal notation such as the unified modeling lan-

guage to design and describe the system, ii) approaches that use graph

transformation to describe the different aspects of the system, and finally,

iii) approaches that use formal languages to specify the system.

Chapter 4: presents the proposed approach for formalizing reorganization in

MAS using graph transformation. It comprises a general picture of the

approach as well as detailed explanations of its different components.

After that, we present the defined type graph and the MAS organization

rules. At the end of this chapter, we present the mathematical notation

and details some properties of the formalized MAS organization.

Chapter 5: introduces the details of our evaluation. We present the selected

case study and the different scenarios that are used to validate our ap-

proach.

Chapter 6: concludes the dissertation and draws some future directions.

7

Part I

State of the Art

8

CHAPTER 2

Background

9

2.1 Introduction Chapter 2

2.1 Introduction

In this chapter, we give a background about the context of this work, which

helps in the understanding of the concepts that are used in this thesis. We

begin (in Section 2.2) with an overview of graph transformation. Subsequently,

we introduce simple graphs, typed graphs, and typed attributed graphs. In

section 2.3, we present a Multi-Agent System in general and, more specifically,

the organizational point of view in Multi-Agent System. We start by defining

what an organization is and the different types of agent organizations. Then

we present what motivates a change in an organization and its types. Finally,

we detail the concept of reorganization and give a general process of it.

2.2 Graph Transformation System

Graph transformation systems allow transforming a given graph by applica-

tion of the rules of a given graph grammar. A rule is applicable whenever a

match to its left-hand side is found in the working graph. Meaning an inclu-

sion from the left rule side into the working graph can be found such that the

application conditions of the rule are fulfilled. Besides, In an attributed graph,

each graph object of the source graph (left rule side) has to have a matching

graph object in the target graph (working graph), such that also the object’s

attributes match.

The application of graph grammar rules in the graph rewriting approach

allows deriving a graph from another.

The algebraic approaches [Cor+97] [Ehr+97], node replacement [ER97], and

edge replacement [DKH97] are examples of various approaches to graph trans-

formation, and the most prominent to algebraic graph transformation are the

single pushout (SPO) approach and double pushout (DPO).

In our work, we used the algebraic graph transformation according to the

double pushout approach [EPS73]. These approaches are based on graphs and

graph morphisms. In this section, we review the basic definitions of this ap-

proach. These definitions are standard in this field, and more details can be

10

2.2 Graph Transformation System Chapter 2

found in [Ehr+15b].

2.2.1 Graph and Graph Morphism

Essentially, a graph comprises edges and nodes (called vertices also). An edge

is a link between two nodes. Formally a graph is defined as follows:

Definition 2.1 (Graph).

A graph G = (V,E, s, t) where

– V is a set of nodes.

– E is a set of edges.

– s : E → V is the source function.

– t : E → V is the target function.

The purpose of graph morphisms is to match a graph or sub-graph to an-

other graph, in which all the elements of one graph (edges and vertices) are

mapped into the corresponding elements of another graph while preserving

the structure of a graph. (i.e., if an edge n1 is mapped to an edge n2, the source

and target vertices of n1 must be accordingly mapped to the source and target

of n2). Formally, it is defined as follows:

Definition 2.2 (Graph Morphism).

Let G, H be two graphs. A graph morphism f : G → H, f = (fV , fE), consists of

two functions fV : VG → VH , fE : EG → EH such that sH ◦ fE = fV ◦ sG and

tH ◦ fE = fV ◦ tG.

Figure 2.1 illustrates The category Graphs formed with graph and graph

morphisms.

2.2.2 Typed Graph and Typed Graph Morphism

A typed graph is defined with a type graph and a type graph morphism. The

nodes and edges of the type graph are types that can be used to assign types

11

2.2 Graph Transformation System Chapter 2

EG1 VG1

=

EG2
VG2

sG1

tG1

fE fV

sG2

tG2

Figure 2.1: Graphs Category Diagram

to the nodes and edges of the typed graph. This typing is done using a typed

graph morphism between the type graph and the typed graph.

The relation between typed graph and type graph can be seen as the re-

lation between model and meta-model where the model must conform to the

meta-model. To formally define a typed graph and typed graph morphism we

start by the definition of a type graph:

Definition 2.3 (Type Graph).

A type graph is a distinguished graph TG = (VTG
, ETG

, sTG
, tTG

). where

– VTG
is a set of nodes type alphabets.

– ETG
is a set of edges type alphabets.

– sTG
: E → V is the source function.

– tTG
: E → V is the target function.

Using this definition of a type graph, we continue to define a typed graph

as follow:

Definition 2.4 (Typed Graph).

a typed graph is defined as a tuple (G, type) where :

– G is a graph.

– type : G→ TG. is a graph morphism called the typing of G

a typed graph morphism is no different to ordinary graph morphism as

they are used to match a graph or sub-graph to another graph except that the

12

2.2 Graph Transformation System Chapter 2

used graphs are typed and typed with the same type graph. the formal defini-

tion of typed graph morphisms is as follows:

Definition 2.5 (Typed Graph Morphism).

Given typed graphsGT = (G, typeG) andHT = (H, typeH), a typed graph morphism

f : GT → HT is a graph morphism f : G→ H such that typeH ◦ f = typeG

Considering a type graph TG, the category GraphsTG formed with typed

graphs and typed graph morphisms is illustrated in Figure 2.2.

G H

=

TG

typeG

f

typeH

Figure 2.2: GraphsTG Category Diagram

2.2.3 Graph Rule

A rule (production) is an overall specification of local changes that may take

place in graphs. Generally, it consists of a left-hand side (LHS), a right-hand

side (RHS), and a mechanism that describes how to replace LHS by RHS.

Formally it is defined as follows:

Definition 2.6 (Rule).

A typed graph rule p = (L
l←− K

r−→ R) where :

– L : is a typed graph called the left-hand side.

– R : is a typed graph called the right-hand side.

– K : is a typed graph called gluing graph.

– l, r : are typed graph morphisms.

13

2.2 Graph Transformation System Chapter 2

2.2.4 Concept of Transformation

A transformation is a sequence of direct transformations. It specifies how a

rule is applied to a graph using a match. Formally it is defined as follows:

Definition 2.7 (Transformation).

Given a typed graph rule p = (L
l←− K

r−→ R), a typed graphG, and a typed morphism

m : L → G called match, a direct typed transformation G p;m
==⇒ H from G to a graph

H is given by the pushouts (1) and (2) (Figure 2.3).

L K R

(1) (2)

G D H

m k

l r

n

f g

Figure 2.3: Double pushout construction from G to H (Direct derivation)

2.2.5 Negative Application Conditions

A negative application condition (NAC) is used to define a banned context

that prevents rule application or to prohibit the application of the same typed

graph production infinitely. Formally a NAC is defined by:

Definition 2.8 (NAC).

A simple negative application condition is of the form NAC(x), where x : L→ X is a

(typed) graph morphism. A (typed) graph morphism m : L→ G satisfies NAC(x) if

there does not exist an injective (typed) graph morphism p : X → G with p ◦ x = m.

The Figure 2.4 shows the NAC structure to the double pushout construction.

2.2.6 Typed Attributed Graph

many applications require more than a simple graph to represent their com-

plex data structure. Therefore, nodes and edges are enriched with attributes

14

2.2 Graph Transformation System Chapter 2

X L

G

|p
m

x

Figure 2.4: NAC Structure

of a given data types (e.g. boolean, integer, string) to stores additional infor-

mation. Attributes can be used to define guards to restrict the applicability of

transformation rules. For example, a rule can only be applied if a certain at-

tribute is above some threshold). Also, it is possible to perform computation

on them to deduce useful information for the application.

As in object-oriented languages, an attribute in the context of typed graphs

is declared by its name and data type in the type graph. After declaration, each

node in the instance graph can have different values in the attribute having the

same data type.

To formally define the attributed graphs, the classical notion of graphs is

extended to E-graphs to allow nodes and edges to store additional informa-

tion through attributes. In an E-graph, there are two distinct kinds of nodes

representing the traditional graph nodes and data nodes that carry values for

attributes. An E-graph also has three kinds of edges as well, the normal graph

edges and special edges used for the node and edge attribution. To formal-

ize the problem of reorganization in a Multi-Agent System, we used a typed

attributed graph. However, to simplify our work, we will be using a typed

graph as it is also valid. Thus, we gave just this informal definition. The com-

plete formal definition can be found in [Ehr+15b].

2.2.7 Typed Graph Transformation System

simply, a typed graph transformation system is composed of a type graph and

a set of typed rules.

Definition 2.9.

A typed graph transformation systemGTS = (TG, P) consists of a type graph TG and

15

2.2 Graph Transformation System Chapter 2

a set of typed graph productions P .

2.2.8 Typed Graph Grammar

A typed graph grammar is a combination of a typed graph transformation

system and a typed start graph.

Definition 2.10.

A typed graph grammar GG = (GTS, S) consists of a typed graph transformation

system GTS and a typed start graph S.

2.2.9 Graph Transformation Tools

Many graph transformation tools such as AGG [Tae99], AToM3 [DV02], VIA-

TRA [Cse+02], and FUJABA [NNZ00] are available for many different purposes

such as model transformation, model checking, rapid system prototyping, and

state-space exploration.

The main capacity of these software tools is to automate the process of

graph transformation. They are fed with a graph transformation system with

a set of initial graphs and return the resulted transformation.

Many of these tools have a graphical user interface that can be used to

graphically create and edit graphs and transformation rules. Others are terminal-

based and require the user to specify graphs and graph transformation rules

textually.

They are equipped with additional functions to fulfill the different pur-

poses for which they are created.

In our work, we used AGG to implement our approach. In the next section,

we give a brief description of this tool.

2.2.9.1 Attributed Graph Grammar System (AGG)

The development environment for attributed graph transformation systems

AGG [Tae99] targets prototyping and rapid specification of applications with

16

2.3 Agent-Oriented Software Engineering Chapter 2

complex, graph-structured data. It allows :

– The edition of graphs and rules.

– Attribution of graphs and rules with basic java data types and object

classes.

– Additionally, Rules may be attributed with Java expressions, which are

evaluated during rule applications and conditions that are boolean Java

expressions.

– Analysis of graph grammar using critical pair analysis and consistency

checking.

– Simulation.

– Controle the applicability of Rules using negative application conditions

and layers.

2.3 Agent-Oriented Software Engineering

In this section, we will introduce the main concepts related to the agent-oriented

software engineering.

2.3.1 Concept of Agent

Despite the progress made in the last decades, there is no agreement about

what an agent is [Woo09]. Hence, many definitions of agents have been pro-

posed in the literature. The following are some of the most notable definitions:

Starting from a linguistic point of view, The term agent comes from the

Latin word “agere” which means to do and refers to the capacity of an entity to

do or to act.

Wooldridge [Woo09] define “an agent as a computer system that is situated in

some environment, and that is capable of autonomous action in this environment in

order to meet its design objectives”.

17

2.3 Agent-Oriented Software Engineering Chapter 2

For Franklin and Graesser [FG97] “an autonomous agent is a system situated

within and a part of an environment that senses that environment and acts on it, over

time, in pursuit of its own agenda and so as to effect what it senses in the future”.

Similarly, Knapik and Johnson [KJ98] define an agent as “a piece of software

which performs a given task using information gleaned from its environment to act

in a suitable manner so as to complete the task successfully. The software should be

able to adapt itself based on changes occurring in its environment, so that a change in

circumstances will still yield the intended result”.

Also, for Ferber and Weiss [FW99] “an agent is an entity that perceives its

environment and acts autonomously in accordance with the information gathered”.

Finally, the definition which we will use in this thesis is that of Russell,

Norvig, and Davis [RND10]. they define an agent as “anything that can be

viewed as perceiving its environment through sensors and acting upon that envi-

ronment through actuators”. This definition is illustrated in Figure 2.5, which

depicts the interaction of an agent with its surrounding environment.

Figure 2.5: Agent interacting with its environment [RND10].

Although this variety of definitions, a classification of proprieties by Wooldridge

[Woo09] and Russell [RND10] have been widely accepted. The following gen-

eral properties can be attributed to an agent:

– Autonomy: Agents are capable of performing autonomously without the

direct intervention of a third party (human or agent) and control their

own actions as well as their internal state.

18

2.3 Agent-Oriented Software Engineering Chapter 2

– Reactivity: Agents exist in an environment that may be the physical

world, a collection of other agents, etc. They are able to perceive it and

respond in a timely manner to changes that occur in it.

– Proactiveness: In addition to the capability of responsiveness to their

environment, they are also able to perform goal-directed behaviors in a

proactive manner.

– Social ability: In order to achieve goals in competitive or cooperative

behavior, agents must be able to interact with other agents (human or

software).

Many other agent properties exist and can influence their engineering. How-

ever, they are not the scope of this thesis. The reader can find further details

about agents in [RND10].

2.3.2 Multi-Agent System

In order to solve a complex problem, multiple agents must cooperate and coor-

dinate together towards a common goal instead of one agent that is limited in

terms of its resources such as computing power, knowledge, and perspective.

This manner of grouping agents is called Multi-Agent System. Consequently,

a Multi-Agent System is composed of a number of decentralized, autonomous

agents. The characteristics of a MAS are:

1. Each agent has partial capabilities and knowledge required for solving

the problem. Consequently, it has a limited viewpoint.

2. An agent shares a global goal with other agents in a multi-agent system

and its own goal at the same time.

3. Each agent acts towards its own goal; there is no global control system.

4. The computation in a multi-agent system is asynchronous, and the agents

are decentralized.

19

2.3 Agent-Oriented Software Engineering Chapter 2

Agents in a MAS are perceiving, reasoning, and acting by collaborating

with each other towards a global goal, even though every agent works toward

its own goals to find a solution to a certain problem aspect in a MAS environ-

ment.

Agent Interaction
Organizational
Relationship

Environment

Area of
Influence

Multi-Agent
System

Figure 2.6: General structure of a multi-agent system [Jen01a].

Two-point of view exist for designing a Multi-Agent System: i) The Agent-

Centered Multi-Agent System (ACMAS), ii) The Organization-Centered Multi-

Agent System (OCMAS).

2.3.3 Agent Centered Multi-Agent System

An agent-centered multi-agent system (ACMAS) is designed with regard to

the mental states of agents. Therefore, the designer sees agents as individuals

and focus on agents’ local behaviors and their interactions without concerning

the global structure of the system.

We can say that the agent is the engine that drives the organization. The

existence of this latter is the result of the emergent global behavior of agents’

individual behaviors and their interactions in a common shared and dynamic

environment [FGM04]. This type of Multi-agent system is designed according

to a bottom-up approach, which means the designer start by defining the agent

interactions’ rules (with other agents and the environment) and its behavior.

20

2.3 Agent-Oriented Software Engineering Chapter 2

Consequently, the organization emerges out as a result of the application of

these rules.

The bottom-up approach is used to produce systems that are autonomous,

scalable, and adaptable, often necessitating minimal (or no) communication

[CGL08], such as the control of robotic systems [KZ96; AB97; HM99], embed-

ded systems, sensor networks [IGE00], and information agents [Cha+01], etc.

In order to simplify the design of an ACMAS based system and make them

compatible with other systems, the designer of the system should respect the

following points [FGM04]:

– No restriction is imposed on the communication between agents. An

agent may communicate with any other agent.

– Any agent can access the provided services by any other agent in the

system.

– Only the agent itself can constrain its accessibility from other agents.

– Every agent has an ID used to access it from the outside. Thus, agents

are presumed to be autonomous, and no constraint is placed on the way

they interact.

Drawbacks of ACMAS

What makes a system an ACMAS based system is also what makes its

weakness when engineering large systems [Jen00]. According to Jennings, the

two major drawbacks are: first, the unpredictability of the interaction patterns

and their outcomes. Second, the difficulty or the impossibility to predict the

global behavior of the system based on its composing elements because of the

high probability of emergent (and unwanted) behavior.

To overcome these drawbacks, an Organization Centered Multi-Agent Sys-

tem is proposed. In the next section, we will see the basic concept of this design

model.

21

2.3 Agent-Oriented Software Engineering Chapter 2

2.3.4 Organization Centered Multi-Agent System

The agent-oriented software engineering (AOSE) and social reasoning have

influenced this approach, where both the designer and agents use the orga-

nization. The former one to specify the desired system, and the latter one to

perform organizational acts and possibly modify the organization [Pic+09].

In contrast to the ACMAS approach, the organization in the organization

centered multi-agent system (OCMAS) approach is explicitly defined by the

designer and exist as an explicit entity of the system [Pic+09]. In this type

of system, the cooperating patterns are specified by the designer(or by agents

themselves) following a top-down approach. Therefore the designer starts by

defining the organization and then the agents’ behavior according to organi-

zation’s imposed rules or norms [Pic+09].

Agents in the OCMAS approach are characterized by:

i) The awareness of the organization they are taking part in.

ii) They are provided with a representation of the organization or some

part of it.

iii) They can reason about it and make interactions and relationships to

reach their objectives using this knowledge.

In this thesis, we are interested in The OCMAS approach. The rest of this

chapter will be dedicated to the concept of organization and what relates to it.

2.3.5 Concept of Organization

In this section, we depict the concept of organization and what relates to it,

starting from the basic definition of an organization.

2.3.5.1 Definition

In reality, the term organization is a multidisciplinary term. Its definition dif-

fers from one area to another. In the following, we will give definitions related

to organization theory and Multi-Agent Systems.

22

2.3 Agent-Oriented Software Engineering Chapter 2

Starting from a linguistic point of view, the Cambridge1 dictionary defines

an organization as: “a group of people who work together in an organized way for a

shared purpose”.

Several definitions were proposed for the concepts of an organization due

to the complexity of its meaning. In the following, we present examples of

these definitions.

Definition 1: Gasser [Gas92] proposed the following definition of an orga-

nization: “An organization provides a framework for activity and interaction

through the definition of roles, behavioral expectations and authority relation-

ships (e. g. control)”. This definition is very broad and gives no hint as to how

organizations should be designed.

Definition 2: a more practical definition proposed by Jennings and Wooldridge

in [WJK00]: “We view an organization as a collection of roles, that stand in cer-

tain relationships to one another, and that take part in systematic institutional-

ized patterns of interactions with other roles”.

Definition 3: Organization theory defines an organization as an entity that

enables an element inside (It can be a person or a moral element) to identify its

role as well as the other element’s roles to achieve a common goal.

Organizations are created for a particular goal (goals), either statically by

a designer, or dynamically by emerging from the collective behavior of sev-

eral agents. The decision of an agent to join an organization or not is based

on how it will contribute to (some of) their goals. They essentially have two

purposes [DD12]:

1. Minimize the complexity of decision making.

2. Support coordination across the part of the organization.

In the following section, We will introduce the main components of an or-

ganization.

1https://dictionary.cambridge.org/dictionary/english/organization

23

2.3 Agent-Oriented Software Engineering Chapter 2

2.3.5.2 Components of organization

the three main components of an organization are

1. Environment: In organizational theory, the environment is the space

outside the organization exerting all kinds of forces on an organization,

and that can impact it. Neither The organization can fully control the

changes that may happen over time, nor the individual agents populat-

ing it [DD12]. For agents inside the organization, the environment repre-

sents [MN10]:

• The space for their interactions and operation with respect to the

constraints (e.g. boundaries) it imposes.

• The provider of resources they use and consume.

• The source of events they perceive and consider.

Different software platform exists as environments for Multi-Agent Sys-

tem that offers services (e.g, communication, life cycle management, or

advertisement of agent’s services) such as JADE [BCG07] or EVE [JSP13].

2. Structure: It describes the different relationship that exists inside the or-

ganization and its intended strategy. It is defined in terms of organiza-

tional goals and roles.

i) Goal

a goal descript a desirable situation, such as defining city walls or

producing a piece in a manufacturing system. Also, a goal is consid-

ered as the objective of a computational process. Furthermore, the

goal defines the purpose of the existence of an organization. This

latter only exists to fulfill its overall objective.

ii) Role

generally, a role describes a function inside an organization, and

they are used to achieve a particular goal. Hence, they can also be

defined as the set of responsibilities required to fulfill a goal. They

are similar to the roles played in a real-world organization such as

chief the executive officer (CEO).

24

2.3 Agent-Oriented Software Engineering Chapter 2

3. Agent

They are capable entities fulfilling different roles in the organization. We

already defined in detail in section 2.3.1 what an agent is.

2.3.6 Types of Agent Organization

It is generally accepted that there is no one type of organization that is appro-

priate for all situations [IGY92; CL98; Les91; CG99]. The obvious is that what

makes a type of organization suitable or not for a particular problem is the set

of characteristics and properties it provides.

A variety of organizational types has been proposed in the literature. Namely,

hierarchical, Holarchies, Coalitions, Teams, Congregations, Societies, Federa-

tions, Markets, Compound Organizations, etc. In the next sections, we sum-

marize some of these Multi-Agent System organizational models.

2.3.6.1 Hierarchical Organization

One of the earliest used to capture the structure of the organizational design

in a multi-agent system [MD93]. Simply, the concept of this organization is

to arrange the agent in a treelike structure as depicted in Figure 2.7. The in-

teraction between agents is only allowed between entities connected directly.

Thus, agents at an elevated level have a more global view than those below

them. The flow of information going from the low level to the higher one is to

provide a broader view, while the opposite direction is to control agents below.

This hierarchy is easily generated by the natural decomposition possible in

many different tasks environments. As a result, the larger groups of agents are

used more efficiently and allows to address larger-scale problems [YKO03].

2.3.6.2 Holonic Agent Organization

The concept of holonic was first introduced by Arthur Koestler, in his book

“The Ghost In The Machine” [Koe68] where he made the following observa-

tion. i) To satisfy a continuously complex and changing needs, a simple system

25

2.3 Agent-Oriented Software Engineering Chapter 2

Figure 2.7: A hierarchical organization [HL04].

evolves and grows by creating a better and more capable version of itself. ii) in

social organization and biological organisms, it is hard and confusing to make

a distinction between wholes and parts in an absolute manner, because of an

element can be at once an autonomous whole and an integrated section of a

larger, more capable body.

The structure of These wholes is the basic unit of the holonic organization.

They are named by Koestler “holons”, , derived from the Greek word holos,

meaning “whole”, and on, meaning “part”. Every Holon can be seen at the

same time as a distinguishable entity made up of a collection of subordinates

and as part of a larger entity. A Holon is described as being i) stable, ii) coop-

erative but most importantly is iii) autonomous [Tia07]. Figure 2.8 represents

an example of a holonic organization where the directed edges represent hier-

archical relationships, and holon boundaries are represented by circles.

Figure 2.8: A holarchical organization [HL04].

26

2.3 Agent-Oriented Software Engineering Chapter 2

2.3.6.3 Agent Federation

A variety of agent federation (federated systems) exist. However, all share

the same concept of a group of agents who gives over more autonomy to a

single delegate agent (called a facilitator, mediator, or broker) to represents

the group [Gen97]. This type of organization is modeled in a similar fashion

to the governmental federation system in which every regional province has

some amount of local autonomy while operating under a single central gov-

ernment [DSW97; HCY99]. All interaction between members of the group and

the outside world goes through the agent delegate as depicted in Figure 2.9.

In that figure, every grouping of agents represents a federation and the agent

delegate is designated as a white agent. The intermediary must have the ca-

pabilities to communicate and understand the members of its federation and

other intermediary agents. Generally, this is done using a declarative commu-

nication language [Gen97].

Figure 2.9: An agent federation [HL04].

2.3.6.4 Coalitions

The concept of the coalition has been used both in multi-agent systems and

in real-world economic scenarios as it has been demonstrated to be a useful

strategy. A coalition can be seen as a subset of a bigger set of agents popula-

tion [HL04]. Generally, coalitions are: goal-directed, short-lived, i.e., a coali-

tion appears to satisfy a need and disappear if that need no longer exists or

can no longer satisfy the need built for or lost its population [HL04]. Mul-

tiple coalitions can be formed iteratively in response to a dynamic task en-

27

2.3 Agent-Oriented Software Engineering Chapter 2

vironment [MW04]. They may form in populations of both cooperative and

self-interested agents.

The organizational structure inside a coalition is typically flat Even though,

there may be a “leading agent” to act as a representative and intermediary for

the group as a whole [KG02]. Coalitions may be dealt with as a single, atomic

entity once formed. It is possible to form a hierarchy of coalition by nesting

one inside another. It is also possible to overlapping coalitions [SK98]. Figure

2.10 represents a population of agents organized into coalitions.

Figure 2.10: A coalition-based organization [HL04].

2.3.6.5 Teams

An agent team-based organization consists of a set of agents that have agreed

to work together cooperatively to achieve a global goal [Tam97; BH01].

In contrast to coalitions, teams prioritize the overall objective (goal) of the

organization rather than that of the individual members [HL04]. Consequently,

agents’ actions coordinating together must be aligned together and in favor of

the team’s goal. Inside a team-based organization, the interaction pattern can

be entirely random, as depicted in Figure 2.11. Yet, generally, each agent will

enact as many roles as required to achieve the team’s goal. Those roles are sub-

ject to planned or unplanned events, whilst, the global goal itself continues to

be the same. The primary benefit of this organization style is, a larger problem

can be addressed by a group of agents than a single agent [GS88].

28

2.3 Agent-Oriented Software Engineering Chapter 2

Figure 2.11: A team-based organization [HL04].

2.3.6.6 Congregation

The congregations-based organization is similar to teams and coalitions where

a set of individuals agents are grouped together (in order to derive additional

benefits) into a typically flat organization. In contrast to these other paradigms,

congregations i) are long-lived ii) are shaped based on complementary or sim-

ilar characteristics to ease the task of finding convenient collaborators. Figure

2.12 depicts an example of congregations. In this figure, the potentially het-

erogeneous goal behind each grouping is represented with different shadings.

In contrast to coalitions (Figure 2.10) where it is typically more homogeneous.

What drives the need to congregate is not the single or fixed goal of agents but,

their set of stable capabilities or requirements [BDA00; Gri03].

Figure 2.12: Congregations of agents [HL04].

2.3.7 Organizational Change Motivation

Generally, an organizational change is the result of the application of forces

originating from different sources, which can be classified as i) internal forces,

ii) external forces. The former concerns the environment where the organi-

29

2.3 Agent-Oriented Software Engineering Chapter 2

zation resides. Here the source forces are the other element that populates

the same environment, such as other organizations that may be competing to-

gether. The latter concerns the organization itself. Here the sources of forces

are the internal elements of the organization, such as agents populating it. The

impact of these forces on an organization depends on its vulnerability. For in-

stance, an organization that has diffuse objectives is more vulnerable which

means more aptitude to change. In the following, we will detail each type.

2.3.7.1 External Forces

It can be defined as the results of a change in the environment that may push

for a change inside an organization. Many external forces can be found, of

which we mention the following:

- Market Forces:

Client (internal and external agents) demand for an organization’s prod-

uct and service change over time. This number of demand determines if

products and services are enough required, which impacts the way an or-

ganization produces products or offers services. If there is no interest in

what an organization produces, there is no reason for its existence unless

it adapts [Ald08].

- Technological Changes:

An organization can enhance its competitive position by improving its

productivity through the adoption of new technologies. However, adopt-

ing new technologies over the old ones implies a cost for the organiza-

tion. The managers have to decide about it considering its pro and cons

for the organization [BC95].

- Demographical Features:

Agents populating an organization are diverse and heterogeneous. Hence

an organization has to control this heterogeneity effectively. On the one

hand, by fulfilling the needs of agents .and on the other hand, by avoid-

ing the malicious behavior [MT03]. For instance, by assigning deter-

mined roles to these malicious agents, which can limit their actions.

30

2.3 Agent-Oriented Software Engineering Chapter 2

- Laws and Regulations:

External laws might affect the environment of an organization or its neigh-

bor organizations [BC95]. It can force the organization to change its ob-

jective, such as the produced product for a manufacturing system.

2.3.7.2 Internal forces

The internal forces are signals originating from the organization’s inside itself.

They represent signs of a required change inside the organization. In order to

perform the required change in the most appropriate form and moment, it is

essential to identify these forces and monitor them. Many internal forces exist,

of which we mention the following:

- Growth:

An organization grows (in either members or budget) to a point where it

will become a requirement to modify its structure to a more hierarchical

and bureaucrat organization with specialization of its members [Ald08].

A solution to this force is by decomposing it into smaller organizations.

- Goal Succession:

An organization exists for a reason. Hence, two situations may arise if it

achieves its overall objectives; i) The organization disappears, ii) The or-

ganization changes its strategy and start to fulfill a new overall objective,

which allows it to continue with its existence [Ald08].

- Crisis:

A drop in the efficiency of an organization may put it in a crisis. a po-

tential remedy to such a situation is a profound organizational change in

which its structural and/or functional elements are modified depending

on the organization’s specific needs.

2.3.8 Reorganization

Organization is considered a factor to achieve stability. However, organiza-

tions can be subject to different types of force that destabilize them (as stated

31

2.3 Agent-Oriented Software Engineering Chapter 2

in section 2.3.7), which drive the organization to adapt. This adaptation in the

context of OCMAS is called reorganization [Pic+09]. Such a mechanism allows

an organization to be flexible to face the changing forces to come back to its

stable state after being destabilized. Hence, reorganization is the answer to

changes in the environment. It gives the organization the ability to do some-

thing other than that which was originally intended to survive [DD14].

The reorganization mechanism has two aspects; i) temporal and ii) inten-

tional. For the temporal aspect, it is called “proactive” when preparing for an

unpredictable future change in advance, and “reactive” when an adjustment

is made after the occurrence of an event. For the intentional aspect, it is “of-

fensive” if the organization’s objective is to gain a competitive advantage and

“defensive” if the objective of the organization is just to survive. These aspects

form the Ws of reorganization, which are used to evaluate a reorganization

decision. They are as follows:

• What: Which aspect of an organization to be reorganized. It can be be-

havioral or structural (see section 2.3.8.1).

• Who: Authority for the decision-making of the reorganization. It can be

directive (role-based decision making) or collaborative (consensus-based

decision making).

• When: Is it proactive or reactive?

• Why: What is the strategic reason that drives the reorganization? It can

be offensive or defensive.

• Whether: It allows defining the reorganization threshold (how likely the

reorganization is beneficial). A higher threshold means stability is more

desirable than flexibility and vice versa.

In the following subsection, we detail the aspect of reorganization when

considering what to change in an organization, and then we present a generic

process for the reorganization and the types of changing process.

2.3.8.1 Aspects of Reorganization

Two aspects of reorganization can be identified if we consider what to change

in the organization: i) behavioral (dynamical) and ii) structural [Dig09]. In

32

2.3 Agent-Oriented Software Engineering Chapter 2

the behavioral one, the structure of the system stays unchanged, whereas the

agents’ state changes. Structural changes are what affect the structural ele-

ments of the system such as roles. In the rest of this section, we detail these

two types [DSD04].

1. Behavioral Changes: Change at this level concerns the alteration in the

behavioral state of the agent itself and the roles enactments inside the or-

ganization such as when agents join or leave the organization, when they

change between existing roles, or when they upgrade or downgrade their

capabilities or when they fail or succeed in fulfilling a role. Some changes

require an assessment before they are accepted, such as when an agent

joins the organization, it must agree to the term of the organization or it

must be evaluated if it can fit inside the organization. For an agent that

tries to enact a role, it must be verified if it has the required capabilities

to play the desired role.

2. Structural Changes: This type of change concerns the structural ele-

ments of an organization. However, it can also influence the behavior

of the current and future organization society. Its purpose is to accom-

modate long-term changes such as new goals or situations. For example,

to stay competitive, a manufacturing system sets new goals to shift its

production toward new products to accommodate customers’ needs. In

other cases, the old goals are modified to fulfill customer requests such

as using different materials to produce the same product. Goals can also

be deleted if they are no longer beneficial to the organization stability.

2.3.8.2 Generic (Re)Organisation Process

As we stated in the introduction, an organization is subject to the effect of its

environment. A change in this later can have a negative or a positive effect on

the organization, which may result in failure to achieve its purposes of exis-

tence. Avoiding such a situation requires an organization to undergo changes.

These latter are generally a process that is composed of two phases: monitoring

and reparation. In the remainder of this section, we detail this process [Pic+09].

33

2.3 Agent-Oriented Software Engineering Chapter 2

1) Monitoring Phase:

Monitoring means observing and recording the system’s external and in-

ternal elements continuously and gathering information that is of signif-

icance to the organization about the different aspects of these elements.

When processed, it allows the detection of problems. The monitoring can

be done at the agent level or at the structure of the organization itself. The

reported information about the different situations is then used in taking

the right action to rectify the problem.

2) Repairing Phase:

This phase is a response to the reported problem by the monitoring phase.

It aims to find back the normal state of a system at run-time as optimal as

possible. This phase itself can be seen as a process decomposed of three

main steps which are:

(a) Design: In this phase, a set of potential substitutes for the present

organization is defined and developed.

(b) Selection: In this phase, one alternative to the current organization is

select to be applied. The selection is based on criteria that determine

the best alternative. One important question is how to define the

best criteria.

(c) Execution: In this phase, the select alternative is applied.

2.3.8.3 Types of Changing Processes

Three types of changing processes exist, Namely Predefined, Controlled, and

Emergent [Pic+09]. In our work, we are interested in the first two that can

occur in the OCMAS type of MAS design. The rest of this section presents a

brief description of these types [Pic+09] :

- Predefined:

This case is characterized by prior planning of changes by the designer at

design time. Also, the designer specifies the precise moment of applica-

tion. The execution of this process of the adaptation is simple and clear.

An external entity or the agents themselves perform the monitoring.

34

2.4 Conclusion Chapter 2

- Controlled:

This case is characterized by the prior knowledge of the designer of the

condition for triggering the change but not of when or how the organiza-

tion should be changed. Here, the change process is carried out accord-

ing to a known procedure. In this case, the designer defines monitoring

and repair strategies for the organization. If the monitoring phase iden-

tifies an undesirable situation, the design phase provides (predefined or-

ganizations or created on-demand) a set of the possible alternative orga-

nization; then, the selection phase selects the most appropriate one to be

executed by the execution phase.

- Emergent:

This process concerns the emergent type of organization. In contrast to

the other change process types, the designer does not know global strate-

gies to monitor (time to trigger the process) and repair the organization.

Local entities (at the local level of agent) of the system lead the change.

In our work, we are interested in the first and the send type of process

change.

2.4 Conclusion

In this chapter, we presented the main concepts related to our work. First, we

started by defining the basic concepts of graph transformation, such as graph

and graph morphism, and then, we detailed the concepts of type graph and

transformation rule. Second, we presented the multi-agent system in which

we define what an agent and organization is as well as the definition of orga-

nization and reorganization process.

35

CHAPTER 3

Literature Review

36

3.1 Introduction Chapter 3

3.1 Introduction

In this chapter, we present a state of the art of modeling approaches of agent

organization and reorganization. We have classified these approaches into two

main categories : semi-formal, formal. In Section 3.2, we present the first cate-

gory where most of the approaches are based on UML (semi-formal language),

which is used as a tool to describe their different aspects. The second category

can be divided into two sub-categories: works that use graph transformation

(in Section 3.3) and works that use formal notations like logic notation (in Sec-

tion 3.4).

3.2 Semi-Formal Approaches

Several approaches are proposed in this category. We concentrate on the works

that are the most related to our solution.

3.2.1 GORMAS Approach

The authors in [ABJ11] proposed a methodological guideline for MAS mod-

eling based on the Organization Theory and the Service-Oriented approach.

This methodological guideline is called GORMAS (Guidelines for ORganiza-

tional Multi-Agent Systems). They define a set of activities for the analysis and

design of virtual organizations. They also provide a way to model organiza-

tional structure and behavior. With this method, the services that are provided

and required by this virtual organization are clearly defined.

As illustrated in Figure 3.1, GORMAS proposes to follow a basic sequence-

guideline of organizational design, which allows to be integrated in a complete

software development process, covering the phases of analysis, design, imple-

mentation, installation, and maintenance of the MAS.

To obtain the organizational model, the designer has to follow these steps:

1. Mission analysis: it implies the analysis of the system requirements, iden-

tification of use cases, stakeholders, and global goals of the system. This

37

3.2 Semi-Formal Approaches Chapter 3

Figure 3.1: GORMAS Activity Diagram [ABJ11].

step answers to the questions: why we create the organization; what are

the expected results; and which environment the organization should be

located, what are the offered products and/or services.

2. Service analysis: in this step, an analysis of the offered services is per-

formed and their requirements and associated processes. In addition, we

precise the objectives and tasks that are associated to these services.

3. Organizational design: in this step, the most appropriate organizational

structure is selected. Organizational models are used to describe roles,

interactions that are related to the structure.

38

3.2 Semi-Formal Approaches Chapter 3

4. Organizational dynamics design: it identifies interaction for each service.

QoS contracts are also specified. Moreover, it quantifies and evaluates

tasks and activities in order to see if the system goals are achieved are

established.

As we can see in Figure 3.1, the design phase is divided into two other

phases: design of the organizational structure and design of the organizational

dynamics. The positive point in their approach is that the development process

is iterative. Indeed, we can return to a previous phase from any step in the

process. This is important from the maintenance point of view. GARMAS is

also interesting from the point that it models the dynamics. In contrast to our

approach, the dynamic aspect in GORMAS is modeled only at the design time

and cannot be changed at run-time, which is not the case in our approach.

3.2.2 OMACS Framework

Scott A. DeLoach in [DeL09] proposed a framework for Adaptive, Complex

Systems called Organization Model for Adaptive Computational Systems (OMACS).

The framework allows the system to design its own organization at run-time.

The key component of the framework is a model (depicted in Figure 3.2) that

allows to reorganize the system at run-time thanks to the defined knowledge

in this model. This knowledge is about a system’s structure and capabilities.

The OMACS model allows being applied on a variety of systems thanks to a

set of supported methodologies, techniques, and architectures.

Formally OMACS defines an organization as a tuple:

O = (G,R,A,C,Φ, P, σ, oaf, achieves, requires, possesses) where:

– G represents the set of organization’s goals.

– R represents the set of roles.

– A: represents the set of agents.

– C: represents the set of capabilities.

– Φ : is a function that defines a relation over G × R × A. It represents the

current set of agent, role, and goal assignments.

39

3.2 Semi-Formal Approaches Chapter 3

– P : is a set of constraints on Φ.

– σ : domain model used to specify environment objects and relationships.

– oaf : function P (G × R × A) → [0,∞] defining quality of a proposed

assignment set.

requires

O rganization
: se t(P o ten tia l)

o a f() : [0 ..�]

Policy

Achieves
sco re : [0 ..1]

Potential
sco re : [0 ..1]

Role
rc f (A g en t) : [0 ..1]

O rganizational
Agent

Agent

Capabilities

Capable
sco re : [0 ..1]

Possesses
sco re : [0 ..1]

Dom ain
M odel

uses

constrains

G oal

Figure 3.2: OMACS model [DeL09].

Besides, OMACS is related to the Organization-based Multiagent Systems

Engineering (O-MaSE) methodology [Gar+07]. O-MaSE allows to create pro-

cesses during the development of OMACS-based systems. The goal of the

O-MaSE methodology is to allow process engineers to customize the construc-

tion of agent-oriented processes. It is based on a meta-model (in Figure 3.3), a

set of method fragments, and a set of guidelines.

The meta-model (in Figure 3.3) defines the main concepts used in O-MaSE

to design MAS organization. The O-MaSE meta-model extends the OMACS

meta-model [DeL09] (featuring elements like Organization, Agent, Role, Goal

or Domain Model) by adding new elements like Protocols or Environmental

objects and properties.

Regarding method fragments, O-MaSE defines three main activities: i) re-

quirements engineering, ii) analysis, and iii) design. The requirement engi-

neering activity translates the system requirements into system-level goals.

40

3.2 Semi-Formal Approaches Chapter 3

achieves

requires

Policy

Role

constrains

Goal

External
Protocol

Actor participates-in

participates-in

initiates

interacts-with

Internal
Protocol

Protocol

usesDomain
Model

Organization

possesses

plays

Message

Agent

Capability

responds

relation

Environment
Property

Environment
Object

Organizational
Agent

Plan Action

Figure 3.3: O-MaSE meta-model [DG14].

The analysis activity focuses on modeling the relationships between the or-

ganization and its environment. The design activity defines the entities that

build the system, such as agents.

3.2.3 MOISE

Hannoun et al. proposed an organizational model for multi-agent systems

called MOISE (Model of Organization for multI-agent SystEms) [Han+00]. MOISE

model is structured into three levels: i) individual level: definition of the set of

tasks that agent is responsible ii) aggregate level : allows to aggregate agents in

a large structure and iii) society level: global structuring and interconnection

of the agents and structures with each other.

The organization in MOISE is viewed as a set of normative rules that con-

trol the agents behaviors. MOISE looks for identifying the rights and duties

of the agents inside a society from four points of view: structural, functional,

41

3.3 Graph Transformation Based Approaches Chapter 3

contextual, and normative.

The authors in [HSB02] propose the MOISE+ model which is an extension

of MOISE. The main aspect of this extension is to clearly distinguish the struc-

ture, the functioning, and the deontic organizational aspects. The objective is to

create an organization centered model. MOISE+ represents a good approach to

organizational change, where new roles join the system to carry out the adap-

tation process.

MOISE [Han+00] and its extension MOISE+ [HSB02] are considered as the

most popular methodologies for designing an OCMAS. Indeed, agents inside

MOISE+ designed systems are organized following groups. When a reorga-

nization process starts, a set of roles (the reorganization group) is created in

order to carry out with this process. After that, reorganization scheme is cre-

ated in response to the assignment of the roles from the reorganization group

to agents.

3.3 Graph Transformation Based Approaches

Few works have used graph transformation for the formalization of system

reorganization such as [WLZ06; MFC13; Buc+15; RGR15].

3.3.1 Multi-level graphs for System Reorganization

In [WLZ06], the authors presented a model based on graph transformation to

describe the process of reorganization in the context of organizational struc-

tures. They consider the following aspects of organizations: the social struc-

ture (roles and their inter-relations), the coordination relations between agents

and the role enactment for agents.

42

3.3 Graph Transformation Based Approaches Chapter 3

Figure 3.4: A diagram consisting of three aspects of an organizational structure
[WLZ06].

For modeling the organizational structure elements, the above three aspects

are described as a multi-level graph model (in Figure 3.4):

– the top-level: represents the role-graph that describes the social structure

of an organization. The social structure corresponds to the certain goal

hierarchies of the organization.

– the middle level: represents a connection graph for each agent which role

is enacted. As shown in Figure 3.4, a1, a2, ..,a5 represent agents and SP,

PM, and PE represent enacted roles.

– the bottom level: represents the agent-graph. It models the inter-relations

between agents. In the agent-graph, the relations between agents are

considered as the instantiation of the relations of roles.

Figure 3.5 depicts an example of the application of this approach.

Both role-graphs and agent-graph are labeled, directed acyclic graph and

agent-graphs labeled, directed acyclic graph of the form:

G = (N,E, s, t, l,m) where:

– N and E are two finite sets of nodes and edges with N ∩ E = Φ

– s, t : E → N are two functions mapping each edge to its source and target

node respectively.

– l : N → Σ,m : E → δ are the node and edge labeling functions respec-

tively.

43

3.3 Graph Transformation Based Approaches Chapter 3

Figure 3.5: An exemplar of the multi-level graph [WLZ06].

3.3.2 A Model for MAS with Dynamic Organizations

The authors in [MFC13] introduce basic definitions that will be the basis of a

framework for the specification of different levels of MAS using Graph Gram-

mars. They are based on Population-Organization Model (PopOrg) (published

in [DC96]), which is introduced as a minimal and formal model for a multi-

agent system with dynamic organizations. The populational level of a multi-

agent system is modeled by a set of agent graph grammars. Each agent graph

grammars is defined by a graph grammars and a behavioral function. Their

graph grammar is defined as follows: i) a type graph: it is considered as meta-

model of agents and all its possible actions ii) a set of rules which define the

behaviors of agents. A behavioral function is defined to control the application

of the rules for each agent. All rules follow the schema depicted in Figure 3.6.

iii) initial graph: represents the initial state of a given agent.

action
L

agent / role
K

action agent / role
Rl ragent / role

Figure 3.6: Rule schema for agents [MFC13].

The organizational level of a MAS has the same structure as the popula-

tional level. Only that, the organizational level gives a more abstract view of a

system, where the agents are classified based on their roles

44

3.3 Graph Transformation Based Approaches Chapter 3

The organizational model is defined by a set of role graph grammars, which

are defined as agent graph grammars. The interactions between pairs of roles

are given by micro-links. Micro-links and link capability are analogous to ex-

change processes and exchange capacity, respectively. A graph grammar for

the organization is given by a union of role graph grammars and the link ca-

pabilities of these roles.

Compared to our approach, their formal model is specific to the PopOrg

model. Our approach is generic and can be applied to a variety of MASs,

including PopOrg model.

3.3.3 Rule-Based Modeling and Static Analysis of Self-adaptive

Systems

In [Buc+15], a typed attributed graph grammars based approach has been pro-

posed to model and analyze self-adaptive systems. The system is modeled as

a typed graph and its behavior is specified as a set of rules. The type graph

proposed in their approach is related to a car Logistics System (see Figure 3.7).

It contains types used for modeling the “normal” aspects of the car logistics

scenario, as well as the “context” types used for adaptation.

45

3.3 Graph Transformation Based Approaches Chapter 3

Figure 3.7: Type Graph of the Car Logistics [Buc+15]

They proposed three categories of graph transformation rules to describe

the behavior of the system: i) normal behavior rules, ii) context rules applicable at

any time to simulate unforeseen system changes by creating adaptation hooks,

iii) Adaptation rules represent the adaptation performed in case of a change in

the context.

The proposed graph grammar in [Buc+15] is used to model a specific sys-

tem that is a “Car Logistic System”. Their solution cannot be easily applied

in another kind of systems such as Multi-Agent systems. They need to rede-

fine the proposed type graph and all the rules, which is not the case in our

approach. We have defined a generic approach for any kind of Multi-Agent

system organization. In fact, we have modeled most of the concepts (such as

Agent, Role, State, Goal, etc.) that can exist in a MAS.

46

3.4 Formal specification approaches for Multi-Agent Systems Chapter 3

3.4 Formal specification approaches for Multi-Agent

Systems

Several approaches have been proposed to specify the Multi-agent System for-

mally. We present in this section the works that are related (re)organization

such as [Dig+05; DD14; KKS19; LMS17; BKC18; FK18; Mey14]

3.4.1 Formal Semantics Framework

Dignum et al. [Dig+05; DD14] proposed a theoretical framework to represent

both organizational performance and the reorganization itself. They present a

generic formal model to specify the MAS organizations and the organizational

changes.

This approach is applied at design time. Reorganization consists of two ac-

tivities: i) formalize the organization evolution and compare the actual state

with the desired state. ii) specify the components of the reorganization strate-

gies in order to trace a path to the desired state.

They define a function on the environment that allows to establish the cost

of achievement of a given state of affairs, by giving the current state and the

group of agents. The cost of reorganization plus the cost of achieving the new

state is used to decide the strategy of reorganization.

Reorganization activities ir their approach can be classified in three groups:

– Staffing: update the set of agents, add a new agent, delete an existing

agent.

– Structuring: alter the structure order of the organization.

– Strategy: update the objectives of the organization such as : add or delete

a desired state.

47

3.4 Formal specification approaches for Multi-Agent Systems Chapter 3

3.4.2 Rewriting Logic for the Specification of MAS

Another approach has been proposed in [LMS17], which has as objective, spec-

ifying formally the elements of an organization (Agent, Group and Role). The

authors proposed to transform organizational models given in “AgentUML”

into Maude. In their approach, they simulate the system behavior which, al-

lows to get feedback about the suitability of the solution. The proposed frame-

work (depicted in Figure 3.8) is composed of several Maude modules:

– functional modules: describes actions that can be performed by an agent

in order to go from a state to another. It is also used to define the basic

concept of Agent-Group-Role model which role those agents can play

within groups.

– object-oriented modules: Provide easy syntax for object-oriented rewrite

theories. The basic concept of group is defined.

– timed object-oriented modules: Support object-oriented specification of

real-time systems.

Figure 3.8: Formal framework modules [LMS17]

48

3.5 Conclusion Chapter 3

3.4.3 Automatic generating algorithm of rewriting logic for multi-

agent system

In [BKC18], the authors proposed an algorithm to automate the generation

(Figure 3.9) of rewriting logic specification for multi-agent system models. A

Multi-agent system specified as a Petri net model is given as input to this algo-

rithm. As a result, a Maude specification is generated as output which is used

later to verify different proprieties of the candidate system.

Figure 3.9: illustration of generating algorithm [BKC18].

3.5 Conclusion

This chapter sums up some of the existing works in the state-of-the-art in

three main categories: semi-formal approaches which are based on UML lan-

guage, Graph transformation-based approaches, and formal notations based

approaches. The first category represents the easiest and intuitive choice. How-

ever, the lack of formal verification makes it prone to errors (made by a human

designer). Our work can be classified in the second category as we also use

graph transformation. In contrast to our work, the existing approaches in this

category are in general more specific to one type of system.

In the third category, The Maude language and multi-modal logic that are

49

3.5 Conclusion Chapter 3

used in these works to describe a MAS can be considered an added difficulty to

the learning curve. They require that the designer must be familiar with these

notations. On the contrary to these works, in our approach, we use graphs and

graph transformation to formally describe a Multi-Agent System. We assume

that graphs are intuitive and easy to use. They do not require any additional

effort from the designer.

50

Part II

Contributions

51

CHAPTER 4

Graph Transformation Approach for the

Reorganization in Multi-Agent Systems

52

4.1 Introduction Chapter 4

4.1 Introduction

This chapter covers the heart of this thesis, where we present our formal solu-

tion for specifying a multi-agent system (re)organization based on the graph

transformation approach. First, in Section 4.2, we present an overview of the

approach in which we present the components of our process. After that, we

describe our MAS Organization Type Graph (in Section 4.3), which is consid-

ered as the static part. The MAS Organization Rules that we have proposed

are presented in Section 4.4. It represents the dynamic part of our approach.

Our formal definition of MAS Organization is presented in Section 4.5.

4.2 Approach Overview

Our approach consists of the formalization of the system organization and the

reorganization process. First, we describe the MAS organization and the reor-

ganization process as three main components (see Figure 4.1), namely i) MAS

monitor, ii) MAS organization, iii) Reorganization Manager, where each one

represents a particular concept of the MAS organization. The three compo-

nents interact with each other in a specific manner. Second, the main objective

of our approach is the use of graph transformation to formalize the three com-

ponents: “MAS Monitor”, “MAS Organization”, and “Reorganization Manager”.

As we mentioned above, graph transformation is suitable to represent com-

plex systems, where the dynamic part is modeled as a set of rules, and the

static part is modeled as a type graph. The “MAS Organization” component

represents the static part of the system, which is formalized as a type graph.

The “MAS Monitor” and “Reorganization Manager” components represent the

dynamic part of the system. Hence, we formalize them as a set of rules called

respectively: “Monitor Rules” and “Reorganization Rules”.

Before presenting our formalization as a type graph, we illustrate in the

next sub-sections the role of each component in our process.

53

4.2 Approach Overview Chapter 4

MAS Organization

MAS Monitor

Reorganization Manager

flagsstate

problemsolution

Figure 4.1: Approach Overview

4.2.1 MAS Monitor

Generally, the concept of “monitoring” means capturing properties of the envi-

ronment, whether they are virtual or physical. Sensors (software or hardware

) are the tools used to perform monitoring. The monitored properties in our

approach can be related to:

– The capacity of agents: a change in the capacity of an agent can be of two

types; degradation and augmentation. The first one can be caused by los-

ing a capability, for example, by losing or damaging physical resources

it possesses. In contrast to the first one, the second one can be caused by

acquiring new capabilities, either physical such as new tools or mental

knowledge. The intention of agents regarding leaving or staying in the

organization.

– Agents intention: An agent is free to stay or leave the organization as it

suits its objectives. Hence, monitoring its intention can prevent situations

such as understaffing in the organization.

– Status of the system structure: we mean by the system’s structure the

sets of goals and roles defining the system organization. Monitoring

54

4.2 Approach Overview Chapter 4

these properties means detecting the change occurring on these elements,

whether positive (such as finishing a role, achieving a goal) or negative

(such as a goal or role failure).

– Organization’s environment: It can affect the system organization by cre-

ating new goals or terminate other to adapt to the environment change.

This component monitors the system continuously in order to identify any

undesirable change. Indeed, it provides a set of flags describing different kinds

of changes that could occur in the system. It is defined as a set of rules. By

applying these rules, the MAS Monitor component marks the system to trigger

the reorganization.

4.2.2 MAS Organization

This component describes the state of a MAS at a given time. In fact, the state

of a MAS represents its condition, which is identified by the set of flags pro-

vided by the MAS Monitor component. Therefore, we have two types of system

states: a normal state (a stable and functional state) and a reorganizing state. A

reorganizing state may be composed of several reorganizing sub-states for a

system with a significant number of Goals, Roles, and Agents.

4.2.3 Reorganization Manager

The main role of this component is to re-stabilize the system’s state which is

marked as unstable by the MAS monitor component. It specifies how the sys-

tem should react in case of such an event. First, it assesses the system’s undesir-

able state, which results in; i) the state does not require a change in the system,

and the event is ignored. ii) the state requires a change in the system as a reor-

ganization. If it is the second case, this component provides a list of actions to

execute in order to bring the system back to its normal state. Essentially, this

component is defined as a set of rules. The details of the formalization of these

rules is presented below.

55

4.2 Approach Overview Chapter 4

4.2.4 Basic Elements Life Cycle

The application of different rules provided by MAS Monitor or Reorganization

Manager components can modify the state of the basic elements (Goal, Role,

and Agent) that are used to represent the MAS organization. The different

changes that can be applied to these elements should follow a well-defined set

of state transitions. All these transitions for a given element allow what we

call the element life cycle, which starts from the element’s existence until its

removal from the MAS organization. In the following, we detail the life cycle

of each kind of element.

Enter Normal

Leave

Achieve

Fail

ChangeRole

Idle

Figure 4.2: Agent Life Cycle

4.2.4.1 Agent Life Cycle

Figure 4.2 presents the life cycle of an agent in the system. This cycle can be

summarized as three different phases:

– Agent entering the organization.

– Agent life within the organization.

– Agent leaving the organization.

56

4.2 Approach Overview Chapter 4

In the following, we will detail each phase.

1. Agent Entering the Organization

An agent entering an organization must assess and answer several ques-

tions before choosing to enter the organization and play a role within it.

Firstly it should consider the reasons for its entering and what it will gain

from entering the organization. What are the resources that are allowed

for it to access? Moreover, what are the capabilities that it will lose and

what the organization is expecting from it? After considering these ques-

tions, an agent’s life in the organization begins with their entry into the

system.

2. Agent Inside the Organization

If it succeeds in enacting a role, it goes to a normal and functional state;

else it goes to an “Idle” state. During its execution to fulfill the enacted

role (when it is in “normal” state), the agent may go to a state of failure.

In this case, it can go to an “Idle” state, so it would be possible to replace

it with another agent.

Besides, the designer 1 can wait 2 for the agent to return to its “normal”

state and continue its role. The waiting is not always the right solution as

it depends on the nature of the system. For instance, in a critical system,

the waiting could put the system in a devastating state.

When the agent is in a “normal” state and wants to change its newly

enacted role, so, it should go first to a “ChangeRole” state. After that, it

returns to its “normal” state, either accorded the wanted new role or not.

When an agent is in an “Idle” state, two cases are possible, either it waits

for a new role to be enacted, or it leaves the system. If the agent is in an

“achieve” state, it can only go to an “Idle” state.

3. Agent Leaving the Organization

Different reasons may push the agent to leave an organization. Consid-

ering these reasons, it has to decide whether to leave or not. For example,

1Responsible for the management of the organization and reorganization
2The duration depends to the chosen policy or type of the system

57

4.2 Approach Overview Chapter 4

if the agent has achieved the goal for which he entered in the first place,

it will be very reasonable to want to leave. After deciding to leave the

organization, the agent must first free itself from any obligation toward

the organization. To do so, the agent must at first go to the state “Idle”

and then leave the organization.

NormalNew

End

Fail

Achieve

Figure 4.3: Role and Goal Life Cycle

4.2.4.2 Role and Goal Life Cycle:

Figure 4.3 shows the life cycle of goal and role elements in an organization.

For each one of them, its life starts with its creation. After that, it goes to a

“normal” state to be fulfilled.

While the system is running, if the goal (or role) is achieved, it changes its

state to an "achieved" state and then to an “End” state. If it is not achieved, it

is put in a "fail" state, where we have two choices:

• Wait until the failure is resolved, and the state is back to “normal”.

• End the goal as it is impossible to recover from this state, or the wait-

ing cost is expensive. For example, when a manufacturing system tries

to produce new pieces, and this system has not (cannot acquire in the

future) knowledge to perform this goal.

58

4.3 MAS Organization Type Graph Chapter 4

4.3 MAS Organization Type Graph

We use the type graph to capture the structural aspect of the MAS organization.

Figure 4.4 depicts our MAS organization type graph. This type graph contains

a set of types used for modeling the MAS Organization elements, their states,

and the triggering of the reorganization. Here, we detail each type in our type

graph.

Figure 4.4: Type Graph.

4.3.1 ORG

It is a unique and main element (root) in a type graph representing a single

MAS organization. All the other elements are attached directly or indirectly to

this root. This element is an abstraction of the existence of a MAS Organization.

The multiplicity of 1 to 1 is used to model the fact that this root element is

unique. Each organization is characterized by a set of attributes which are

explained in the following points:

• n: It is of string type. It holds the name of the organization.

59

4.3 MAS Organization Type Graph Chapter 4

• Magent, Mrole, Mgoals: These three attributes are of integer types. Each

one of them holds a value that represents the maximum number of agents,

roles, and goals an organization can have at an instant “t”.

4.3.2 Goal

This node is an abstraction of an organization Goal (green circle in Figure 4.4).

This node type can be connected to other nodes types using three types of

edges, which are:

1. gg: represented by a green and continuous line. It can connect an ORG

type to a goal representing the global goals of the organization, which

can be of any number required by the organization. This property is

expressed as a multiplicity of “*”.

Additionally, it can connect a goal to another goal with a multiplicity of

“*”. Hence a goal can be solo or be composed of several other sub-goals.

This decomposition defines a hierarchy of levels of goals which has an

important impact on how the organization progress.

2. gr: represented by a continuous blue line. It can connect a goal to a role

with a multiplicity of “*”, which means that a goal can have zero or mul-

tiple Roles. We note that even a parent goal divided into several other

goals can also have roles.

3. ss: represented by a green dashed line. It can connect a goal to the type

node sstate. This connection if it exists, it represents the current state of

the connected goal; otherwise, it is in a normal state.

In our type graph, the control flow between Goals is expressed implicitly;

this is because it represents only existing elements of an organization at run-

time. Here we give some examples of such control flow. If we have two Goals

g1 and g2:

(i) If g1 and g2 must be achieved sequentially, then g1 must be created at first.

If it is achieved, we can create g2.

60

4.3 MAS Organization Type Graph Chapter 4

(ii) If there is a choice between g1 and g2. Only one goal must be created.

(iii) If g1 and g2 must be achieved together, they are created at the same level.

Moreover, different attributes are defined in the Goal type to represent dif-

ferent concepts such as priority. In the following, we present the most impor-

tant:

• Id: It is of string type, and it is used to identify each goal uniquely in the

organization. All the identifiers of Goals are started by the letter “G”.

• P: This attribute represents the concept of priority. It is an integer that

takes its value in an Interval starting from the value “0” to a value defined

by the designer. The smallest value represents the biggest priority. It

allows the distinguishing between Goals by priority to pursue those that

are more important than the others. It is only significant between Sub-

Goals that are at the same level and attached to the same parent.

• C: The letter “C” stands for critical. It is a Boolean attribute that takes the

values true or false. The value true means that it is critical, and if it fails,

its parent Goal will automatically fail. The value false means that it is not

critical, and its failure does not imply the failure of its parent goal.

4.3.3 Role

It is an abstraction of an organization’s Role (the blue circle in Figure 4.4). This

node type also can be connected to other nodes types using three types of

edges (some of them are already mentioned before. Hence we explain the mul-

tiplicity only):

1. gr: It connects a goal to a role with a multiplicity of “0.1”, which means

that a role can only be connected to one goal.

2. ra: represented by a continuous red line. It can connect a role to an agent

with a multiplicity of “*”, which means that a role can have zero or mul-

tiple agents. The number of agents connected to a role determines the

number of agents involved (they collaborate together) fulfilling this role.

61

4.3 MAS Organization Type Graph Chapter 4

3. ss: The same as in goal edges.

In addition, this node type has multiple attributes that represent different

types of information. These attributes can be used in different situations, such

as in the enactment of Roles. The most important ones are:

• Id: It represents a unique identifier of a role. It is of string type. All

identifier of Roles starts with the letter “R”.

• P: It represents the notion of priority between Roles, and it is of integer

type. A Goal may be fulfilled by a different number of roles that may

not be of the same priority. This attribute allows defining the biggest

priority starting from the number “0” to the smallest priority defined by

the designer.

• R: It is used to store the set of required resources to fulfill a role. It is a list

of strings where each string is a resource itself. An Agent that is trying to

enact a role R1 must possess all the required resources by R1.

• T: It holds an approximate amount of time that is required to complete

the Role.

• minA: It represents the minimal number of agents required to fulfill a

role. It is of integer type. A number of agents below the minimum can

still enact this role; however, it can not be achieved without all the mini-

mal required number of agents. By default, this number is “1” and can’t

be “0”.

• maxA: As opposed to minA this attribute defines the maximum number

of agents required to fulfill a role. An agent cannot enact a role where

the number of agents already enacted this role is greater or equal to this

number.

• C: This attribute defines the importance of a role compared to other roles

fulfilling the same Goal. In many situations, we could find that a Goal

may be fulfilled with a variety of roles. However, one role may be critical

to the achievement of this goal while other roles are not and do not pose

62

4.3 MAS Organization Type Graph Chapter 4

a threat to the achievement of this goal in case of failure. A failed critical

Role implies the failure of the fulfilled Goal. It should be noted that many

failed non-critical Roles may also imply the failure of the fulfilled goal.

4.3.4 Agent

This node is an abstraction of an Agent (red rounded rectangle in Figure 4.4).

It uses the following edges to connect to other node types:

1. ra: same as mentioned before; however, the multiplicity of its part is

“0,1”, which means that an agent can be connected to zero or one role to

fulfill the role functionality.

2. bs: represented by a red dashed line. It can connect an agent to the type

node bstate. This connection, if it exists, represents the current state of

the connected agent; otherwise, it is in a normal state.

3. og: represented by a continuous cyan line. It connects an agent to the

ORG node with a multiplicity of “*” that allows us to connect every avail-

able agent (not fulfilling a role) to the ORG node.

Similarly to the other types, an agent contains the following attributes:

• Id: It represents a unique identifier of an Agent. It is of string type. By

convention, all agents’ identifiers are started with the letter “A”.

• R: Similarly to the attribute “R” of a Role, It stores the set of capabilities

that an agent possesses. It is also a list of strings where each string is a

capability itself.

4.3.5 Structural State (sstate)

It allows describing the state of the structural part of the system. It includes

the following types:

– “new” to denote the creation of a new Role or Goal.

63

4.3 MAS Organization Type Graph Chapter 4

– “end” to denote that a Goal or a Role has been ended.

– “fail” to denote that a Goal or a Role has failed.

– “achieve” to denote that a Goal or a Role has been achieved.

4.3.6 Behavioral State (bstate)

It allows describing the state of the behavioral part of the system. It includes

the following types:

– “leave” to denote an agent leaving the system. Therefore, to be removed

from the organization.

– “enter” to denote that an agent is entering the system.

– “change” to denote that an agent wants to change its enacted role. It has

an attribute named “IdRole” of type string used to denote the identifier

of the role desired for the change.

– “achieve” to denote that an agent has achieved its enacted role.

– “fail” to denote that an agent has failed to achieve its role.

– “Idle” to denote that an agent is in an “Idle” state.

It is important to note that an element (Goal, Role, Agent) that is not con-

nected to any of the sub-types of sstate and bstate is considered in a “normal”

state.

4.3.7 Extension Mechanism

Our types (Goal, Role, and Agent) can be easily extended to provide further

information or put a restriction on a certain operation. This extension takes the

form of attributes. For instance, the type Agent has the attribute “capabilities”

to determine its skills. The type Role has the attributes “min Agent”, “max

Agent” to determine the maximum and the minimum number of agents that

collaborate together in order to achieve this Role. Also, it can have the attribute

“required skills” to determine the minimum skills that an agent must have to

enact a Role.

64

4.4 MAS Organization Rules Chapter 4

4.4 MAS Organization Rules

We model the dynamic part of the MAS organization as a set of graph trans-

formation rules (see Section 4.2). Two types of rules exist; Monitor Rules (Rm)

and Reorganization Rules (Rreo). A monitor rule is applied if a change (event)

has occurred in the system at run-time (such as removing a goal from the sys-

tem). A response to an event to reorganize the system occurs by applying the

reorganization rule if it is necessary.

The idea here is to represent every possible event (according to the life cy-

cle of the different elements of an organization) with a rule which marks the

element subject to the event with the corresponding flag to trigger the required

response. For example, for removing a goal, we mark the node “Goal” by con-

necting it to a node “end” (of type sstate).

Furthermore, an event that affects one node type can propagate to other

types as well. This propagation can be ascending to the node parent until the

global goal or descending to the children nodes. Consequently, there could

be more than one rule doing the same thing. The only difference is that one

represents the event, and the other represents a reaction to the event. The ap-

plication of the rules according to the events occurring in the system makes the

different elements of the organization (Role, Goal, and Agent) subject to tran-

sition from state to state. The more the states change, the bigger the number of

rules involved in this change.

According to the type of change (structural or behavioral) that may occur

in the system, two types of rules exist:

– Behavioral rule.

– Structural rule.

In the following, we present the main rules that can be applied to demon-

strate the most pertinent states that can be taken by the system elements.

65

4.4 MAS Organization Rules Chapter 4

4.4.1 Behavioral Rules

The life cycle of agents inside an organization determines the behavior of the

system. In the following, we present the most important rules related to differ-

ent states and changes that may occur to an agent during its life, starting from

its entering to its leaving.

4.4.1.1 Agent Entering the System

This rule represents an agent that desire to enter the system. It is modeled

by the rule AgentEnter as in Figure 4.5. The application of this rule marks the

agent with the flag “enter” (see Figure 4.5), which will trigger other rules to

put it in an appropriate state according to the global state of the system (enact

new role or put the Agent in an “Idle” state). This rule belongs to the MAS

monitor component.

Figure 4.5: AgentEnter Rule

The designer can put an additional restriction on the agents entering the

system to allow only those that have certain features or skills. For example, it

is possible to restrict the set of agents to those with some capabilities that allow

them to operate a certain type of machine.

Other restrictions can be applied to the way agents enter the organization.

For example, in an organization where Agents must enter the system one by

one, the designer can put a negative application condition represented as an

agent with the flag “enter”. It will restrict other agents from entering the sys-

tem as long as there is an agent with the flag “enter” in the system.

66

4.4 MAS Organization Rules Chapter 4

Figure 4.6: AgentSetIdle Rule

After entering the organization, an agent tries first to enact a role as de-

scribed in Section 4.4.1.2. If the agent does not succeed, it is put in an Idle state

by applying the rule “AgentSetIdle ” (Figure 4.6)

4.4.1.2 Agent Enacting a Role

This event represents an agent enacting a Role in the system. Its state must

be an “Idle” or an “enter” state to do so. Two rules that belong to the reor-

ganization manager component are available to address the two states, which

are:

• AgentEnactRole_enter Rule: In this rule, for each agent with the flag “en-

ter”, we create a link between the role and that agent. After that, we

remove the flag “enter” and the direct link to the organization node (see

Figure 4.7).

Figure 4.7: AgentEnactRole_enter Rule

• AgentEnactRole_idle Rule: In this rule, for each agent in an “Idle” state,

67

4.4 MAS Organization Rules Chapter 4

we act as the previous rule by deleting the flag “Idle” and creating a link

between the role and that agent (see Figure 4.8).

Figure 4.8: AgentEnactRole_idle Rule

The system designer defines the policy of enactment of Roles. This designer

can define a priority for the two previous rules. This means, which agent can

enact a role first, the ones that just entered the system or those in an Idle state.

In other words, choose the ones that had already seen the system and expe-

rienced with its different elements or the ones that have no experience inside

this organization. This choice is left to the designer who can perceive the sig-

nificance of this experience for the benefit of the organization.

Furthermore, the designer can define conditions based on the agent capa-

bilities and the role requirements (for instance, what fittest agent can play a

given role?).

4.4.1.3 Agent Changing Role

This event represents an agent that desires to change its current Role in the

system to another one.

During its life in the system, an agent may lose one or several of its capabil-

ities or acquire other capabilities. These are some of the reasons that push the

agent to change its role to upgrade to a more demanding one or downgrade

to a less demanding one. Other reasons may relate to its objective itself in the

system. Two situations may arise; i) the requested role is not enacted; ii) the

requested role is already enacted to another agent.

68

4.4 MAS Organization Rules Chapter 4

The first situation poses no problem as the role is just given to the agent.

However, the second one is treated as a conflict. The resolution of this conflict

depends on the policy chosen by the designer at design time. We identify tow

policies;

– Preemptive where the agent changes its role to the requested one by first

de-enact it from the other agent (This is may only be possible if the first

agent is more fit to the role than the second agent).

– Non-preemptive policy where the agent can change to a role that is not

enacted by any other agent.

In the next, we present the rules that are involved in the non-preemptive

policy

• AgentChangeRole: This rule (see Figure 4.9) models the event of an agent

desiring to change its current Role. The negative application condition

ensures that the agent is in a normal state. The application of this rule

results in an agent attached to the flag “change”. The identifier of the

requested Role is stored in the attribute IdRole of the “change” node. This

rule belongs to the MAS monitor component.

Figure 4.9: AgentChangeRole Rule

• AgentChangeRole_freeRole: This is the first rule to apply after triggering

the event of changing the current Role. To be applied first, the requested

role must be in a normal state, which means it is not connected to any

state node. Second, a condition over the attribute context must be sat-

isfied. This condition allows verifying that the agent possesses the re-

69

4.4 MAS Organization Rules Chapter 4

quired capabilities to fulfill the role and that the number of agents in-

volved in the desired role did not reach the maximum. This rule belongs

to the reorganization manager component. Figure 4.10 depicts this rule.

The application of this rule results in removing the node “change” con-

nected to the agent.

Figure 4.10: AgentChangeRole_freeRole Rule

• AgentChangeRole_NoFreeRole: This Rule (see Figure 4.11) is applicable

only if the previous rule was not applied. It simply means that the system

is denying the request of the agent to change its current role. It removes

the node “change” linked to the agent without other changes. This rule

belongs to the reorganization manager component.

Figure 4.11: AgentChangeRole_NoFreeRole Rule

4.4.1.4 Agent Achieving Roles

After spending the required time and effort, the agent completes the assigned

task. This event may be propagated to the goal parent. Hence, this event

involves structural and behavioral rules. In this section, we present the second

ones, and the others are presented in Section 4.4.2.2.

70

4.4 MAS Organization Rules Chapter 4

• AgentAchieve: This rule that belongs to the MAS monitor component sim-

ply marks the concerned Agent with the flag “achieve”. It is only applied

if the agent is in a normal state. This condition is expressed as the nega-

tive application condition “AgentNotInState” (see Figure 4.12).

Figure 4.12: AgentAchieve Rule

• AgentSetIdle_Achieve: An agent that achieved its role must first go to an

idle state before deciding what to do next(leave the organization or enact

another Role). Hence, the application of this rule (see Figure 4.13) that

belongs to the reorganization manager component. It removes the con-

nection to the achieved role and the flag “achieve” from the agent and

create a new connection to the ORG node and the flag “Idle”.

Figure 4.13: AgentSetIdle_Achieve Rule

4.4.1.5 Agent Leaving the System

For each agent that desires to leave the system (whatever its actual state “nor-

mal”, “fail”, or “achieve”), its state must be changed to an “Idle” state first.

Afterward, it has the choice to stay or leave the system. We present here the

71

4.4 MAS Organization Rules Chapter 4

case of an agent in a “normal” state that wants to leave (other cases are pre-

sented in Section 4.4.1.6 and Section 4.4.2.1). In such a situation, the involved

rules are:

• AgentSetIdle_Normal Rule: This rule (see Figure 4.14) models the event

of an agent that is already fulfilling a role, and it is in a “normal” state.

For some reason, this agent wants to stop playing this role. In this case,

we put the agent in an “Idle” state by creating a new node “Idle” and

removing the link between the agent and the role and creating a new link

between the “ORG” node and the Agent. In addition, we create another

link between the Agent and the new node “Idle”.

The fact that the agent must be in a “normal” state is modeled using a

negative application condition (AgentNotInstate in Figure 4.14).

Figure 4.14: AgentSetIdle_Normal Rule

• AgentLeave Rule: This rule model the event of an agent wants to leave the

system. So, as in Figure 4.15, we replace the “Idle” flag with the “leave”

flag.

Figure 4.15: AgentLeave Rule

• AgentLeave_remove Rule: This rule model the leaving of an agent. In this

case, we remove the node Agent and the flag “leave” (see Figure 4.16).

72

4.4 MAS Organization Rules Chapter 4

Figure 4.16: AgentLeave_remove Rule

4.4.1.6 Agent being failed

An agent may fail to complete the assigned role for different reasons shus as

a lost capability. Agent failure may be permanent or temporary. If the failure

is permanent, the agent is de-enacted the role and put to an Idle state. If the

failure is not permanent, the policy defined as a response in such a case must

answer to questions such as: is this role critical? How much time is required

to recover? etc. In the following, we present the rules involved in case of

permanent failure:

• AgentFail: This Rule (see Figure 4.17) marker the agent with the “fail”

flag. However, to fail, the agent must be first in a normal state. This

condition is represented as the negative application condition “Agent-

NotinState”.

Figure 4.17: AgentFail Rule

• RoleFail_FromAgentFail: Similarly to rule RoleAchieve_FromAgentAchieve,

this rule propagates the failure of an agent to the connected role. Other

rules to reproduce the failure of roles to the parent nodes (sub-goals and

goals).

73

4.4 MAS Organization Rules Chapter 4

Figure 4.18: RoleFail_FromAgentFail Rule

• AgentSetIdle_Fail: This rule (see Figure 4.19) sets the failed agent to an

Idle state in the case of unrecoverable failure.

Figure 4.19: AgentSetIdle_Fail Rule

4.4.2 Structural Rule

Structural rules can modify an organization structure (Goals and Roles) in re-

sponse to an event. Because Goals and Roles are of similar nature, many rules

may seem the same with small modifications in the types of elements used. In

the next sections, we will illustrate the most important rules and omit similar

ones.

4.4.2.1 Goals Being Ended

A Goal can be ended for many reasons, which are related to the overall objec-

tive of the system. For example, ending the Goal of producing a piece because

it is no longer in demand. For this, we have the following set of rules:

74

4.4 MAS Organization Rules Chapter 4

ss

1:Goal

end

 RHS

1:Goal

 LHS

 GoalSetEnd of MAS-ORG

Figure 4.20: GoalSetEnd Rule

• GoalSetEnd Rule: In this rule, as shown in Figure 4.20, we mark the Goal

to be removed from the system with the flag “end”.

As a response to this event, other rules should be applied to reorganize

the system. We resume these rules as follows:

– Mark all Goals in its hierarchy with the flag “end”.

– Mark all Roles that are attached to the ended goals by the flag “end”.

– Put all Agents that are attached to the ended roles in an “Idle” state.

– Remove from the system all Goals and Roles that have the flag “end”.

• GoalSetEnd_SubGoal Rule: This rule is applied for each sub-goals. It en-

ables marking them by the “end” flag (see Figure 4.21).

4:ss

5:

ss

1:Goal 3:end

2:Goal end

 RHS
4:ss

5:

1:Goal

2:Goal

3:end

 LHS

 GoalSetEnd_SubGoal of MAS-ORG

Figure 4.21: GoalSetEnd_SubGoal Rule

• GoalSetEnd_Role Rule: This rule enables marking a Role attached to an

ended Goal by the flag “end” (Figure 4.22). Besides, a role can be ended

without ending its parent goal. The reasons for such a situation are many

like it is achieved and no longer required. In this case, we apply other

rules.

75

4.4 MAS Organization Rules Chapter 4

4:ss

5:

ss

1:Goal 2:end

end3:Role

 RHS

4:ss

5:

1:Goal

2:end

3:Role

 LHS

 GoalSetEnd_Role of MAS-ORG

Figure 4.22: GoalSetEnd_Role Rule

• RoleEnd_AgentIdle Rule: This rule is applied in response to an ended Role

event. It puts the agent in an “Idle” state when the Role is ended (see

Figure 4.23).

Figure 4.23: RoleEnd_AgentIdle Rule

• GoalEnd_Remove Rule: This rule (Figure 4.24) removes all the goals marked

by the flag “end” from the system. For goals attached directly to the or-

ganization (the ended Goal is attached to the ORG node on the left-hand

side), we apply another rule. Indeed, on the right-hand side, we maintain

only the ORG node.

1:Goal

 RHS

ss

1:Goal

Goal end

 LHS

 GoalEnd_remove of MAS-ORG

Figure 4.24: GoalEnd_Remove Rule

• RoleEnd_Remove Rule: In this rule (see Figure 4.25), each Role that is

marked by the “end” flag is removed from the system,

76

4.4 MAS Organization Rules Chapter 4

Figure 4.25: RoleEnd_RemoveRole Rule

4.4.2.2 Goals being Achieved

A goal is achieved in two ways:

– Down-Top: All roles of a Goal must first be achieved (or all the critical

ones). After that, the achieved goal propagates its achievement to its

parent.

– Top-Down: the goal is achieved directly, and then it propagates it to its

children node to terminate their roles and free the agents fulfilling the

roles.

The first way starts with an agent’s event achieving a role as presented in

Section 4.4.1.4, which triggers other rules that start to mark the parent role with

the flag “achieve”. As long as the condition holds for applying these rules, this

process continues to the parent goal. The following rules describe this process:

• RoleAchieve_FromAgentAchieve: This rule (depicted in Figure 4.26) marks

the role connected to the agent with the “achieve” flag. Because the role

can have multiple agents fulfilling it, all agents connected to it must

be in the state of “achieve”. This condition is represented by the neg-

ative application condition “NoAgentNotAchieved”. Besides, the NAC

“RoleNotAchieved” (not shown in Figure) prevents marking an already

achieved role with the flag “achieve”.

Othe rules exist similar to this one that propagates the “achieve” event of

an agent from roles to sub-goals and goals.

77

4.4 MAS Organization Rules Chapter 4

Figure 4.26: RoleAchieve_FromAgentAchieve Rule

• GoalAchieve_FromRoleAchieve: This rule (see Figure 4.27) allows marking

the goal with the “achieve” flag. It represents the case where all the roles

must be fulfilled to achieve a goal. As we did in the other rules, a neg-

ative application condition represents this condition. The next step after

achieving a goal is to end it. This process is the same described in Sec-

tion 4.4.2.1.

Figure 4.27: GoalAchieve_FromRoleAchieve Rule

Many other cases, such as achieving goals with sub-goals, have rules not

presented here. However, they all follow the same process.

Unlike the first way, the second one is a top-down process. It begins with

an event that marks a goal as achieved without fulfilling its roles. This event

triggers further rules to terminate its roles and release the agent enacting them.

The rule GoalAchieve (see Figure 4.28) starts this process by connecting the

goal to the achieve flag. After consuming this event in achieving the parent

goal, if it exists, it is simply ended following the process described in Sec-

tion 4.4.2.1.

78

4.5 Mathematical Notation of our MAS Organization Chapter 4

Figure 4.28: GoalAchieve Rule

4.4.2.3 Goals being Failed

Depending on the system’s nature, we distinguish two types of failures: recov-

erable and unrecoverable failure.

1:Goal

 RHS

ss
1:Goal

fail

 LHS

 GolaFail_recover of MAS-ORG

Figure 4.29: GoalFail_Recover Rule

The recoverable failure is represented in the life cycle of a goal as a connec-

tion from the “fail” state to the “normal” state. The rule that is applied here

removes the flag “fail” from the Goal node (see Figure 4.29). In the unrecover-

able failure, the “fail” state is connected to the “End” state. Here, the rule puts

the Goal node in the “end” state.

4.5 Mathematical Notation of our MAS Organiza-

tion

In Multi-Agent Systems, organizations are expected to be subject to various

changes where their effect can be local, to a small part of the organization, or

global for the whole system. Moreover, multiple small changes can occur si-

multaneously in multiple places of the organization. Therefore, multiple rules

(monitor and reorganization rules) can be applied simultaneously at the same

79

4.5 Mathematical Notation of our MAS Organization Chapter 4

level or at different levels of the hierarchy. Hence, different sets of rules must

not interfere with each other. Therefore they have to be confluent and terminat-

ing. Also, rules have priorities that serve different purposes, such as defining

the policy of enacting roles by agents. In this section, we provide a mathemat-

ical notation of our formal definition of the MAS organization.

Indeed, we define in an unambiguous way the MAS (re)organization using

typed graph grammar as follow:

Definition 4.1.

A multi-agent system is given by a triple MAS = (Tmas, Gi, Rmas) where:

– Tmas: is the type graph (it introduced in Section 4.3).

– Gi: is the initial graph. It represents an organization in its initial state.

– Rmas: represent the set of typed rules with negative application condition (it is

presented in Section 4.4).

In our approach, the rules that define the behaviors of the MAS are for

monitoring or reorganization. Therefore, the Rmas can be defined as the union

of the two sets Rm and Rreo as follow:

Rmas = Rm ∪Rreo

where,

– Rm represents the set of monitoring rules.

– Rreo represents the set of reorganization rules.

We have defined 61 rules for the monitor component and the reorganization

manager that varies from utility rules to those that do the reorganization. We

have presented in Section 4.4 the most pertinent rules. Hence Rm and Rreo

contains only the presented rules in Section 4.4.

Rm = { AgentEnter, AgentEnactRole, AgentChangeRole, AgentAchieve, Agent-

Leave, AgentFail, GoalSetEnd, GoalAchieve}

80

4.5 Mathematical Notation of our MAS Organization Chapter 4

Rreo = {AgentSetIdle, AgentEnactRole_enter, AgentEnactRole_idle, AgentChang-

eRole_freeRole, AgentChangeRole_NoFreeRole, AgentSetIdle_Achieve, AgentSetIdle-

_Normal, AgentLeave_remove, RoleFail_FromAgentFail, AgentSetIdle_Fail, GoalSet-

End_SubGoal, RoleAchieve_FromAgentAchieve, GoalAchieve_FromRoleAchieve, Go-

alSetEnd_Role, RoleEnd_AgentIdle, GoalEnd_Remove, _Remove, GoalFail_-Recover}

In the following, we present the properties: priority, sequential indepen-

dence, confluence, and termination.

4.5.1 Priority

The rules have priorities allowing them to be executed in a specific order if

they can be applied at the same time. Rules from Rm have a higher priority

compared to the rules from Rreo. Rules in the same set, their priority reflects

the process dialing with the event. For example, in response to the event of

ending a goal, the rule “GoalSetEnd_SubGoal” has a higher priority compared

to the rule “GoalSetEnd_Role” because the process requires to set the end flag

to the sub-goal before to set an end to the role linked to the ended goal.

Furthermore, the designer can change the priority at design time according

to the policy chosen. For example, to make the agent entered the system en-

acts a role before the agent already in an Idle state, the designer has to make

the rule “AgentEnactRole_enter” have a higher priority than the rule “Agen-

tEnactRole_idle”.

81

4.5 Mathematical Notation of our MAS Organization Chapter 4

Figure 4.30: Minimal dependence between Rm and Rreo

4.5.2 Sequentially Independent

Each pair of rule (Rm, Rreo) (see Figure 4.30 is sequentially independent (zero

means that there is no dependency) except for some pairs that are considered

as a normal dependency. For example, the rule AgentLeave is dependent on

rules that put an agent in an Idle state such as RoleAchieve_AgentIdle.

Figure 4.31 represent the minimal dependencies computed between rules

of the set Rm.

82

4.5 Mathematical Notation of our MAS Organization Chapter 4

Figure 4.31: Minimal dependence between rules of the set Rm

4.5.3 Confluence

We have used AGG to compute the minimal conflict between pairs of differ-

ent sets of rules. For example, the set Rm and Rreo. Figure 4.32 shows that

these pairs are confluent (zero mean that there is no conflict). Some computed

conflicts are to be ignored, such as “AgentLeave” and “AgentEnactRole_idle”

because the rules representing events are applied first. Moreover, an agent

leaving cannot enact a role unless it returns to an idle state.

Figure 4.32: Confluence between rules of the sets Rm and Rreo

Figure 4.33 represents the minimal conflict computed between the struc-

83

4.5 Mathematical Notation of our MAS Organization Chapter 4

tural and behavioral rules. Also, in this example, some conflicts are computed,

but they are also to be ignored. For example, “RoleEnd_RemoveRole” and

“AgentEnactRole_enter” because the reorganization manager will remove an

ended role before any agent enacts it. Hence this rule is executed before any

other rule of enactment.

Figure 4.33: The confluence between rules of the set Rreo

Figure 4.34 represents the minimal conflict computed between the rules of

the the set Rm.

Figure 4.34: The confluence between rules of set Rm

84

4.5 Mathematical Notation of our MAS Organization Chapter 4

4.5.4 Termination

In our approach, the problem of termination can arise from two reasons: the

number of processed nodes (agent, goal, or role) and the loop generated in

applying one or a series of rules repeatedly. In the following, we describe the

solution provided by our approach:

1. The number of agents, roles, and goals is controlled via the three at-

tributes of the ORG node presented in Section 4.3.1. Their values are

given at design time and are adjustable at run-time. They are used in a

condition of the form:

if Magent ≥ 0 then

Magent ←Magent − 1

allow the agent to enter

else

agent not allowed

end if

2. By a loop of rules, we mean, for example, the case of an agent failing

and recovering continuously. In this case, the agent is in a loop by failing

to fulfill its enacted role and recovering continuously. These two events,

represented by several rules, are applied continuously, constructing an

infinite loop.

The monitor component watches and prevents these cases by following a

predefined policy at design time. For the example of a failing and recov-

ering agent, we present the most straightforward policy using the num-

ber of failures an agent is allowed to have. This number is represented

via the attribute “Mfailur”. If this number is exceeded, the agent cannot

recover and must be put in an Idle state. Other complex policies can be

defined, such as using the time required to recover.

3. Negative Application Condition: It prevents a rule from being applied

multiple times for the same nodes if it is not required. For example, the

rule RoleAchieve_FromAgentAchieve (see Figure 4.26) prevents marking a

role with the flag “achieve” if it is already achieved.

85

4.6 Conclusion Chapter 4

4.6 Conclusion

We have presented in this chapter an approach to formalize Multi-Agent Sys-

tems using graph transformation. In particular, we have defined a type graph

to represent the state of the static part of the system and a set of rules to rep-

resent the dynamic part of the system. The application of the proposed rules

can modify the state of the basic elements that are used to represent a MAS

organization. We have defined a formalization of the life cycle of each kind of

these elements. Our approach has been validated in the publication [FC19].

In what follows, we conclude our work with a general conclusion of what

has been presented and the perspectives of the present work.

86

CHAPTER 5

Evaluation: Case Study

87

5.1 Introduction Chapter 5

5.1 Introduction

In order to evaluate the proposed approach in this thesis, we used a case study

related to a manufacturing system. In this chapter, we present how to model

the manufacturing system using our specification as an organization-centered

multi-agent system. After that, we use a set of scenarios of different sizes to

show how the reorganization is performed based on the defined rules in this

thesis. At the end of this chapter, we present the results of the semi-automatic

check that is performed to see how the system still consistent and stable.

5.2 Case Study Description

In this evaluation, we use a case study related to a manufacturing system. The

latter refers to a set of processes and operations used to manufacture a given

product. The manufacturing system is also defined as the complex disposition

of the physical manufacturing elements (machines, machine tools, people, ma-

terials handling equipment, and tooling) that are characterized and controlled

by measurable parameters. They can manufacture products with a high de-

gree of automation and many different specifications. Hence, they are more

and more applied in factory automation.

Our selection of the manufacturing system as a case study is motivated by

the fact that: manufacturers are stumbling into increasing challenges driven

by vigorous global competition, well qualified and demanding consumers and

fast product and process technological improvements. More precisely [Kor10]:

• Market shifts are increasingly rapid and unpredictable.

• Fast addition of new products and continuously varying demands for

products.

• Increasing demands for personalized products, etc.

Hence, to stay competitive, manufacturers have to fast reorganize itself in

response to those challenges. For instance, it can stop producing a particular

piece no longer in demand to start producing a new one. This change of goal

will require a reorganization in the system at hand.

88

5.3 Planning and execution Chapter 5

In this case study, we consider a manufacturing system as a multi-agent

system. The system is composed mainly of three components: i) a hardware

component: such as production machines, tools, fixtures, and material handling

equipment, ii) measurable system parameters such as machines state, production

rate/cycle time, inventory, etc. and iii) an operational component: it is required

to operate the manufacturing ranging from manager and controller to workers

stuff.

According to our approach, these components can be seen as an organiza-

tion defined by a set of goals, roles, and agents fulfilling roles. Here the goals

initially vary from production of pieces to management of the manufacturing

and marketing of the goods. The manufacture can produce many different

pieces. Moreover, one-piece can be the result of the composition of many dif-

ferent smaller pieces. Each agent category has a set of capabilities that satisfy

a set of role requirements’ to be fulfilled.

As stated in the general introduction, several desirable or undesirable events

can occur in a manufacturing system, affecting the system organization neg-

atively or positively. In this chapter, we show examples of these events and

how our approach can be applied to re-stabilize the system.

5.3 Planning and execution

In order to perform our evaluation, we have followed these steps:

• Use a set of scenarios of different sizes that represent events occurring in

our manufacturing system

• For each scenario, we show how our specification is used and which rules

can be applied

• A semi-automatic check is performed to see how the system still consis-

tent and stable

• Describing and discussing the obtained results

89

5.3 Planning and execution Chapter 5

Initially, we consider that our manufacturing system is composed of the

following roles: a Product Manager (PM), an ENgineer (EN), and two Su-

Pervisors (SP) to supervise the production of two types of pieces. For every

piece, there is one machine, which is operated by a maximum number of two

workers.

The graph that models the initial state of our system is shown in Figure 5.1.

In this initial state, we have one global Goal related to the “Produce Pieces

Goal” (PPG). This goal is decomposed into two sub-goals: “Produce Piece 1”

and “Produce Piece 2”. They are labeled respectively, PP1 and PP2. For each

sub-goal, there are two Roles attached to it. For example, the sub-goal PP1

has attached to the roles “supervise product 1” (labeled as sp1) and “machine

operator 1” (labeled as mo1).

ORG
n="man"

Goal
id="MS"

Role
id="PM"

Agent
id="A0"

Agent
id="A1"

Role
id="EN"

Agent
id="A7"

Agent
id="A2"

Goal
id="PP1"

Role
id="sp1"

Role
id="mo1"

Agent
id="A3"

Goal
id="pp2"

Role
id="mo2"

Role
id="sp2"

Agent
id="A6"

Agent
id="A5"

Agent
id="A4"

Figure 5.1: Initial Graph of the manufacturing system

We have prepared a set of scenarios that can be applied to this system. We

show the results of the application of the corresponding rules that represent

the different events and the possible reorganization. The selected scenarios in

this case study are: “Agent Entering the System”, “Agent Leaving the System”,

90

5.4 Scenario 1: Agent Entering the System Chapter 5

and “A Goal Being Ended”. The result of the applicability of different rules for

these scenarios is presented in a way, we show only the changed parts of the

graph that represents the state of the system.

5.4 Scenario 1: Agent Entering the System

In this scenario: An agent named A8 enters the manufacturing system and

would like to enact a Role. However, all the Roles are satisfied. Therefore, it

cannot enact a Role. Hence, it is put in an idle state. The application of dif-

ferent rules to handle this scenario is as follows: At first, the rule AgentEnter

is applied to represent the event of an Agent entering the system, which is de-

picted by the Figure 5.2a. We can see that the agentA8 is connected to the ORG

node and is marked with the flag “enter”. Because there is no Role available to

play, agent A8 is put in an “Idle” state by applying the Rule AgentSetIdle. We

can see (Figure 5.2b) that the flag “enter” is removed and replaced by the flag

“Idle”.

bs

ORG
n="man"

Goal
id="MS"

Agent
id="A8"

enter

(a) Agent Entered the System

bs

ORG
n="man"

Goal
id="MS"

Agent
id="A8"

Idle

(b) Agent in an “Idle” state

Figure 5.2: Scenario of Agent Entering the System

5.5 Scenario 2: Agent Leaving the System

In this scenario, Agents A3 and A5 want to leave the system. They are first put

in an “Idle” state, which will result in Role mo1, and mo2 being not completely

satisfied. Therefore, agent A8 enacts one of the available roles. Agent A3, and

A5 flagged with the “leave” flag are removed.

91

5.5 Scenario 2: Agent Leaving the System Chapter 5

The application of different rules to handle this scenario is as follows: At

first, the rule AgentSetIdle_Normal is applied to put the agents that want to

leave the system in an “Idle” state, which is depicted by the Figure 5.3a. We

can see that the two agents, A3 and A5 are now connected to the ORG node

and marked by the “Idle” flag. The Rolesmo1, andmo2 are now not completely

satisfied, which trigger the rule AgentEnactRole_idle. We can see (Figure 5.3b)

that the agent A8 have enacted the Role mo1 The rule AgentLeave is applied

to mark the two agents with the flag “leave” to be removed from the system.

We can see (Figure 5.3b) that the Idle flag is removed from the two agents and

replaced with the flag “leave”. Finally, the rule AgentLeave_remove is applied to

remove the two agents from the system. We can see (Figure 5.3c) that the ORG

node now has no direct connection to any agent.

92

5.5 Scenario 2: Agent Leaving the System Chapter 5

bs

bs

bs
ORG
n=6man6

Goal
id=6MS6

Role
id=6PM6

Agent
id=6A06

Agent
id=6A16

Agent
id=6A56

Role
id=6EN6

Agent
id=6A76

Agent
id=6A26

Agent
id=6A36

Goal
id=6PP16

Role
id=6sp16

Role
id=6mo16

Idle
Idle

Agent
id=6A86

Idle

Goal
id=6PP26

Role
id=6sp26

Role
id=6mo26

Agent
id=6A46

Agent
id=6A66

(a) Agent A5 and A3 put in an “Idle” state

bsbs

ORG
n=vmanv

Goal
id=vMSv

Role
id=vPMv

Agent
id=vA0v

Agent
id=vA1v

Agent
id=vA5v

Role
id=vENv

Agent
id=vA7v

Agent
id=vA2v

Agent
id=vA3v

Goal
id=vPP1v

Role
id=vsp1v

Role
id=vmo1v

Agent
id=vA8v

Goal
id=vPP2v

Role
id=vsp2v

Role
id=vmo2v

Agent
id=vA4v

Agent
id=vA6v

leave
leave

(b) Agent A5 and A3 marked to leave the sys-
tem. Agent A8 enacted mo1

93

5.6 Scenario 3: A Goal Being Ended Chapter 5

ORG
n="man"

Goal
id="MS"

(c) Agent A5 and A3 Left the Sys-
tem

Figure 5.3: Scenario of Agent leaving the system

5.6 Scenario 3: A Goal Being Ended

In this scenario, a piece (piece 2) being produced by the manufacturing system

is no longer in demand. Therefore, it stops its production by ending the Goal of

producing this piece. The application of different rules to handle this scenario

is as follows: Firstly, the rule GoalSetEnd is applied to mark the Goal pp2 with

the flag “end”. The result of this application is depicted in Figure 5.4a. After

that, the rule GoalSetEnd_Role is applied to mark all the Roles connected to the

Goal pp2 with the flag “end”. we can see (Figure 5.4b) that the Roles sp2 and

mo2 are marked with this flag. This trigger the rule AgentSetIdle_Normal and

put the AgentsA6 andA4 in an “Idle” state. The result of this application is de-

picted by Figure 5.4c. Finally, the rules GoalEnd_Remove and RoleEnd_Remove

are applied to remove the Goals and Roles marked by the “end” flag from the

system.

94

5.6 Scenario 3: A Goal Being Ended Chapter 5

ss

ORG
n="man"

Goal
id="MS"

id="A2"

id="mo1"

Goal
id="PP2"

Role
id="sp2"

Role
id="mo2"

Agent
id="A4"

Agent
id="A6"

end

(a) Goal pp2 ended

ss

ss
ss

ORG
n="man"

Goal
id="MS"

Goal
id="PP2"

Role
id="sp2"

Role
id="mo2"

Agent
id="A4"

Agent
id="A6"

end

end

end

(b) Roles connected to Goal pp2 ended

95

5.6 Scenario 3: A Goal Being Ended Chapter 5

ss

ssss

bs

bs

ORG
n="man"

Goal
id="MS"

Goal
id="PP2"

Role
id="sp2"

Role
id="mo2"

Agent
id="A4"

Agent
id="A6"

end

endend

Idle

Idle

(c) Agents connected to the ended
Roles are put in an “Idle” state

bsbs

ORG
n="man"

Goal
id="MS"

Role
id="PM"

Agent
id="A0"

Agent
id="A1"

Agent
id="A4"

Role
id="EN"

Agent
id="A7"

Agent
id="A2"

Agent
id="A6"

Goal
id="PP1"

Role
id="sp1"

Role
id="mo1"

Agent
id="A8"

Idle
Idle

(d) The ended Goal and Roles are re-
moved from the system

Figure 5.4: Result of the application of Rules AgentEnter, and AgentSetI-
dle_enter

96

5.7 Discussion and limitations Chapter 5

5.7 Discussion and limitations

The application of the different rules during the case study shows that our

approach is easy to use and allows us to represent the system (and the reor-

ganization) in an expressive way. For instance, agents A2 and A3 in the initial

graph are connected to the same Role mo1, which means that they are collab-

orating in fulfilling this role. In addition, the use of the formal representation

allows performing the reorganization in an exact way. Also, our evaluation

demonstrates that our formal definition of the MAS (re)organization allows to

make the system re-stabilize even for large scenarios (such as the third sce-

nario) of events.

As with any graph transformation approach, our solution suffers from some

limitations. In fact, our solution depends on a graph transformation engine.

Hence, the performance of our solution depends on the performance of the

used engine. So, if we have a large system with an important number of Goals,

Roles, and Agents, this can be modeled using a large-sized graph. By conse-

quence, it can slow down the application of rules.

5.8 Conclusion

We have used a concrete example related to a manufacturing system to demon-

strate all the aspects of our approach. We have applied a set of scenarios of

reorganization that cover all the aspects defined in our rules. The obtained

results showed the efficiency of the proposed approach.

In the near future, we plan to develop a simulation tool that integrates our

approach, which can be used to check an organization’s effectiveness under

different circumstances.

97

CHAPTER 6

Conclusion and Future Work

98

6.1 Summary Chapter 6

6.1 Summary

For decades, formal approaches in software engineering are used to develop

safety-critical or security-critical software and systems. Nowadays, formal ap-

proaches are proposed to deal with the problem of systems reorganization and

adaptation. They show that the formalization can preserve certain properties

of organizations and are also used to reason about what reorganization actions

are required to achieve basic organizational structure [DD14]. In this disserta-

tion, we presented a formal approach to formalize the process of reorganiza-

tion in MAS (in Chapter 4). We have used the algebraic graph transformation

approach to describe and define the different aspects (structural and behav-

ioral) of a MAS organization. In fact, we have split our approach into three

components to precisely describe each aspect, which are : i) MAS Monitor, ii)

MAS Organization, and iii) Reorganization Manager. MAS Organization: repre-

sent the structural aspect of MAS. It is a type-graph (similar to the meta-model

concept) that defines its architectural elements (goal, role, and agent) and the

different relationships between them. The latter can be as follow: a goal can

be decomposed into several goals. A goal can have one or several roles. An

agent or several ones can enact a role in order to fulfill it. MAS Monitor: rep-

resent the behavioral aspect of MAS. It is a set of graph transformation rules.

Specifically, they define the monitoring behavior in a MAS organization. It

watches the system continuously for any given change and changes its state

from normal to a reorganizing state by applying the corresponding rule. Re-

organization Manager: Like the MAS monitor component, it is a set of rules

that manages the reorganization response to any change detected by the mon-

itor component. For every change detected, a series of rules can be applied to

return the system to its normal state.

The advantage of our approach can be summarized as follow:

• It uses graph transformation as a descriptive tool that benefits the user

from the intuitive and easiness of graph notation usage and from the

formal foundation of the algebraic graph transformation.

• The small learning curve for a designer to start using our approach as it

99

6.2 Perspectives Chapter 6

is almost a graphical notation.

• The ease of extending our approach using different mechanisms such as

attributes and context conditions.

We have implemented our approach using AGG, which is beneficial to us

as it facilitates the editing process and provides integrated tools such as critical

pairs analysis. We have evaluated our approach using a case study related to

a manufacturing system. We have used a set of imaginary scenarios of events

occurring to show how our approach reorganizes the system for the purpose

of achieving a stable state. The obtained results show the efficiency and effec-

tiveness of our approach.

6.2 Perspectives

Since the use of AGG in the implementation made it coupled with its environ-

ment. Hence we cannot use other tools such as GROOVE with our implemen-

tation. As a future work, we plan to provide a translation layer that allows us

to transform our implemented approach with a particular tool to another.

In the near future, we plan to implement a simulation tool that uses the

proposed graph grammar. This tool will allow us to test an organization to

find the best configuration that allows it to survive the change in its environ-

ment. Consequently, this tool has to show graphically how the reorganization

is performed using our rules.

At the conceptual level, we plan to define additional rules that allow trans-

forming the MAS graph into a Maude specification. This latter can be used to

verify at run-time that the system preserves its properties after a given reorga-

nization.

100

Bibliography

[Ald08] H. Aldrich. Organizations and environments. Stanford University Press,

2008.

[ABJ11] E. Argente, V. Botti, and V. Julian. “GORMAS: An Organizational-

Oriented Methodological Guideline for Open MAS”. In: Agent-

Oriented Software Engineering X. Ed. by M.-P. Gleizes and J. J. Gomez-

Sanz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 32–

47. ISBN: 978-3-642-19208-1.

[AB97] R. C. Arkin and T. Balch. “Cooperative multiagent robotic sys-

tems”. In: (1997).

[BC95] W. P. Barnett and G. R. Carroll. “Modeling internal organizational

change”. In: Annual review of sociology 21.1 (1995), pp. 217–236.

[BH01] G. Beavers and H. Hexmoor. “Teams of agents”. In: 2001 IEEE

International Conference on Systems, Man and Cybernetics. e-Systems

and e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236). Vol. 1.

IEEE. 2001, pp. 574–582.

[BCG07] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing multi-

agent systems with JADE. Vol. 7. John Wiley & Sons, 2007.

101

BIBLIOGRAPHY BIBLIOGRAPHY

[BKC18] A. Boucherit, A. Khababa, and L. M. Castro. “Automatic generat-

ing algorithm of rewriting logic specification for multi-agent sys-

tem models based on Petri nets”. In: Multiagent and Grid Systems

14.4 (2018), pp. 403–418. DOI: 10.3233/MGS-180298.

[BDA00] C. H. Brooks, E. H. Durfee, and A. Armstrong. “An introduction

to congregating in multi-agent systems”. In: Proceedings Fourth In-

ternational Conference on MultiAgent Systems. IEEE. 2000, pp. 79–86.

[Buc+15] A. Bucchiarone, H. Ehrig, C. Ermel, P. Pelliccione, and O. Runge.

“Rule-Based Modeling and Static Analysis of Self-adaptive Sys-

tems by Graph Transformation”. In: Software, Services, and Systems:

Essays Dedicated to Martin Wirsing on the Occasion of His Retirement

from the Chair of Programming and Software Engineering. Springer In-

ternational Publishing, 2015, pp. 582–601. ISBN: 978-3-319-15545-6.

DOI: 10.1007/978-3-319-15545-6_33.

[CG99] K. M. Carley and L. Gasser. “Computational organization theory”.

In: Multiagent systems: A modern approach to distributed artificial in-

telligence (1999), pp. 299–330.

[Cha+01] H. Chalupsky et al. “Electric Elves: Applying Agent Technology to

Support Human Organizations.” In: IAAI. Vol. 1. 2001, pp. 51–58.

[CL98] D. D. Corkill and S. E. Lander. “Diversity in agent organizations”.

In: Object Magazine 8.4 (1998), pp. 41–47.

[Cor+97] A. Corradini et al. “Algebraic approaches to graph transformation–

part i: Basic concepts and double pushout approach”. In: Handbook

of Graph Grammars and Computing by Graph Transformation. World

Scientific, Feb. 1997, pp. 163–245. DOI: 10.1142/9789812384720_

0003.

[CD96] A. d. R. Costa and Y. Demazeau. “Toward a formal model of multi-

agent systems with dynamic organizations”. In: Proceedings of the

International Conference on Multi-Agent Systems, MIT Press, Kyoto,

Japan. Vol. 431. 1996.

102

https://doi.org/10.3233/MGS-180298
https://doi.org/10.1007/978-3-319-15545-6_33
https://doi.org/10.1142/9789812384720_0003
https://doi.org/10.1142/9789812384720_0003

BIBLIOGRAPHY BIBLIOGRAPHY

[CGL08] V. Crespi, A. Galstyan, and K. Lerman. “Top-down vs bottom-

up methodologies in multi-agent system design”. In: Autonomous

Robots 24.3 (2008), pp. 303–313.

[Cse+02] G. Csertán et al. “VIATRA-visual automated transformations for

formal verification and validation of UML models”. In: Proceedings

17th IEEE International Conference on Automated Software Engineer-

ing, IEEE. 2002, pp. 267–270.

[DV02] J. De Lara and H. Vangheluwe. “AToM 3: A Tool for Multi-formalism

and Meta-modelling”. In: International Conference on Fundamental

Approaches to Software Engineering. Springer. 2002, pp. 174–188.

[DSW97] K. Decker, K. Sycara, and M. Williamson. “Middle-agents for the

internet”. In: IJCAI (1). 1997, pp. 578–583.

[DeL09] S. A. DeLoach. “OMACS: A framework for adaptive, complex sys-

tems”. In: Handbook of research on multi-agent systems: Semantics and

dynamics of organizational models. IGI Global, 2009, pp. 76–104.

[DG14] S. A. DeLoach and J. C. Garcia-Ojeda. “The o-mase methodology”.

In: Handbook on Agent-Oriented Design Processes. Springer, 2014,

pp. 253–285.

[DC96] Y. Demazeau and A. R. Costa. “Populations and organizations in

open multi-agent systems”. In: Proceedings of the 1st National Sym-

posium on Parallel and Distributed AI. 1996, pp. 1–13.

[DD14] F. Dignum and V. Dignum. “A formal semantics for agent (re)organization”.

In: Journal of Logic and Computation 24.6 (Dec. 2014), pp. 1341–1363.

DOI: 10.1093/logcom/ext058.

[DSD04] M. V. Dignum, E. Sonenberg, and F. P. M. Dignum. “Dynamic re-

organization of agent societies”. In: Proceedings of workshop on coor-

dination in emergent agent societies. 2004.

[Dig+05] M. Dignum, F. Dignum, V. Furtado, A. Melo, and L. Sonenberg.

“Towards a simulation tool for evaluating dynamic reorganiza-

tion of agents societies”. In: Workshop on socially inspired computing.

2005.

103

https://doi.org/10.1093/logcom/ext058

BIBLIOGRAPHY BIBLIOGRAPHY

[Dig09] V. Dignum. Handbook of research on multi-agent systems: semantics

and dynamics of organizational models. Information Science Refer-

ence Hershey, 2009.

[DD12] V. Dignum and F. Dignum. “A logic of agent organizations”. In:

Logic Journal of the IGPL 20.1 (2012), pp. 283–316.

[DKH97] F. Drewes, H.-J. Kreowski, and A. Habel. “Hyperedge replacement

graph grammars”. In: Handbook of Graph Grammars and Comput-

ing by Graph Transformation. World Scientific, Feb. 1997, pp. 95–162.

DOI: 10.1142/9789812384720_0002.

[EPS73] H. Ehrig, M. Pfender, and H. J. Schneider. “Graph-grammars: An

algebraic approach”. In: 14th Annual Symposium on Switching and

Automata Theory (swat 1973). Oct. 1973, pp. 167–180. DOI: 10.1109/

SWAT.1973.11.

[Ehr+15a] H. Ehrig, C. Ermel, U. Golas, and F. Hermann. Graph and Model

Transformation. Monographs in Theoretical Computer Science. An

EATCS Series. 00105. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2015. DOI: 10.1007/978-3-662-47980-3. (Visited on

01/26/2016).

[Ehr+15b] H. Ehrig, C. Ermel, U. Golas, and F. Hermann. Graph and Model

Transformation. Monographs in Theoretical Computer Science. An

EATCS Series. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

DOI: 10.1007/978-3-662-47980-3. (Visited on 01/26/2016).

[Ehr+97] H. Ehrig et al. “Algebraic approaches to graph transformation–

part II: Single pushout approach and comparison with double pushout

approach”. In: Handbook of Graph Grammars and Computing by Graph

Transformation. World Scientific, Feb. 1997, pp. 247–312. DOI: 10.

1142/9789812384720_0004.

[ER97] J. Engelfriet and G. Rozenberg. “Node Replacement Graph Gram-

mars”. In: Handbook of Graph Grammars and Computing by Graph

Transformation. World Scientific, Feb. 1997, pp. 1–94. DOI: 10.1142/

9789812384720_0001.

104

https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1109/SWAT.1973.11
https://doi.org/10.1109/SWAT.1973.11
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1142/9789812384720_0004
https://doi.org/10.1142/9789812384720_0004
https://doi.org/10.1142/9789812384720_0001
https://doi.org/10.1142/9789812384720_0001

BIBLIOGRAPHY BIBLIOGRAPHY

[FK18] M. I. Fakhir and S. A. R. Kazmi. “Formal specification and verifica-

tion of self-adaptive concurrent systems”. In: IEEE Access 6 (2018),

pp. 34790–34803.

[FC19] G. Fayçal and A. Chaoui. “A graph transformation based approach

for multi-agent systems reorganization”. In: Multiagent and Grid

Systems 15.4 (2019), pp. 375–394.

[FG98] J. Ferber and O. Gutknecht. “A meta-model for the analysis and

design of organizations in multi-agent systems”. In: Proceedings

International Conference on Multi Agent Systems (Cat. No. 98EX160).

IEEE. 1998, pp. 128–135.

[FGM04] J. Ferber, O. Gutknecht, and F. Michel. “From Agents to Organiza-

tions: An Organizational View of Multi-Agent Systems”. In: Agent-

Oriented Software Engineering IV. Ed. by G. Goos et al. Vol. 2935.

00000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 214–

230. DOI: 10.1007/978-3-540-24620-6_15.

[FW99] J. Ferber and G. Weiss. Multi-agent systems: an introduction to dis-

tributed artificial intelligence. Vol. 1. Addison-Wesley Reading, 1999.

[FG97] S. Franklin and A. Graesser. “Is It an agent, or just a program?: A

taxonomy for autonomous agents”. In: Intelligent Agents III Agent

Theories, Architectures, and Languages. Ed. by J. P. Müller, M. J. Wooldridge,

and N. R. Jennings. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 1997, pp. 21–35. ISBN: 978-3-540-68057-4.

[Gar+07] J. C. Garcia-Ojeda, S. A. DeLoach, W. H. Oyenan, J. Valenzuela,

et al. “O-MaSE: a customizable approach to developing multia-

gent development processes”. In: International Workshop on Agent-

Oriented Software Engineering. Springer. 2007, pp. 1–15.

[Gas92] L. Gasser. “An overview of DAI”. In: Distributed Artificial Intelli-

gence: Theory and Praxis 9.9-29 (1992), p. 28.

[Gas01] L. Gasser. “Perspectives on organizations in multi-agent systems”.

In: ECCAI Advanced Course on Artificial Intelligence. Springer. 2001,

pp. 1–16.

105

https://doi.org/10.1007/978-3-540-24620-6_15

BIBLIOGRAPHY BIBLIOGRAPHY

[Gen97] M. R. Genesereth. “An agent-based framework for interoperabil-

ity”. In: Software agents (1997), pp. 317–345.

[Gri03] N. Griffiths. “Supporting cooperation through clans”. In: Cyber-

netic Intelligence–Challenges and Advances, Proceedings IEEE Systems,

Man and Cybernetics, 2nd UK&RI Chapter Conference. 2003.

[GS88] B. J. Grosz and C. L. Sidner. Plans for discourse. Tech. rep. BBN

LABS INC CAMBRIDGE MA, 1988.

[Han+00] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat. “MOISE:

An organizational model for multi-agent systems”. In: Advances in

Artificial Intelligence. Springer, 2000, pp. 156–165.

[HCY99] S. C. Hayden, C. Carrick, and Q. Yang. “A catalog of agent coor-

dination patterns”. In: Proceedings of the third annual conference on

Autonomous Agents. 1999, pp. 412–413.

[HM99] O. Holland and C. Melhuish. “Stigmergy, self-organization, and

sorting in collective robotics”. In: Artificial life 5.2 (1999), pp. 173–

202.

[HL04] B. Horling and V. Lesser. “A survey of multi-agent organizational

paradigms”. In: The Knowledge engineering review 19.4 (2004), pp. 281–

316. DOI: 10.1017/S0269888905000317.

[HSB02] J. F. Hübner, J. S. Sichman, and O. Boissier. “MOISE+: Towards

a Structural, Functional, and Deontic Model for MAS Organiza-

tion”. In: Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems: Part 1. AAMAS ’02.

Bologna, Italy: ACM, 2002, pp. 501–502. DOI: 10.1145/544741.

544858.

[HVB08] J. F. Hübner, L. Vercouter, and O. Boissier. “Instrumenting multi-

agent organisations with artifacts to support reputation processes”.

In: International Workshop on Coordination, Organizations, Institutions,

and Norms in Agent Systems. Springer. 2008, pp. 96–110.

106

https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1145/544741.544858
https://doi.org/10.1145/544741.544858

BIBLIOGRAPHY BIBLIOGRAPHY

[IGE00] C. Intanagonwiwat, R. Govindan, and D. Estrin. “Directed diffu-

sion: A scalable and robust communication paradigm for sensor

networks”. In: Proceedings of the 6th annual international conference

on Mobile computing and networking. 2000, pp. 56–67.

[IGY92] T. Ishida, L. Gasser, and M. Yokoo. “Organization self-design of

distributed production systems”. In: IEEE Transactions on Knowl-

edge and Data Engineering 4.2 (1992), pp. 123–134.

[Jen01a] N. R. Jennings. “An agent-based approach for building complex

software systems”. In: Communications of the ACM 44.4 (2001), pp. 35–

41.

[Jen99] N. R. Jennings. “Agent-Oriented Software Engineering”. In: Multi-

ple Approaches to Intelligent Systems. Ed. by I. Imam, Y. Kodratoff, A.

El-Dessouki, and M. Ali. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 1999, pp. 4–10. ISBN: 978-3-540-48765-4.

[Jen00] N. R. Jennings. “On agent-based software engineering”. In: Ar-

tificial Intelligence 117.2 (2000), pp. 277–296. ISSN: 0004-3702. DOI:

10.1016/S0004-3702(99)00107-1.

[Jen01b] N. R. Jennings. “An Agent-based Approach for Building Complex

Software Systems”. In: Commun. ACM 44.4 (Apr. 2001), pp. 35–41.

DOI: 10.1145/367211.367250.

[JSP13] J. d. Jong, L. Stellingwerff, and G. E. Pazienza. “Eve: A Novel

Open-Source Web-Based Agent Platform”. In: 2013 IEEE Interna-

tional Conference on Systems, Man, and Cybernetics. 2013, pp. 1537–

1541.

[KKS19] N. Khakpour, J. Kleijn, and M. Sirjani. “A Formal Model to Inte-

grate Behavioral and Structural Adaptations in Self-adaptive Sys-

tems”. In: International Conference on Fundamentals of Software Engi-

neering. Springer. 2019, pp. 3–19.

[KG02] M. Klusch and A. Gerber. “Dynamic coalition formation among

rational agents”. In: IEEE Intelligent Systems 17.3 (2002), pp. 42–47.

107

https://doi.org/10.1016/S0004-3702(99)00107-1
https://doi.org/10.1145/367211.367250

BIBLIOGRAPHY BIBLIOGRAPHY

[KJ98] M. Knapik and J. Johnson. Developing Intelligent Agents for Dis-

tributed Systems: Exploring Architecture, Technologies, & Applications.

USA: McGraw-Hill, Inc., 1998. ISBN: 0070350116.

[Koe68] A. Koestler. “The ghost in the machine.” In: (1968).

[Kor10] Y. Koren. The global manufacturing revolution: product-process-business

integration and reconfigurable systems. Vol. 80. John Wiley & Sons,

2010.

[KZ96] C. R. Kube and H. Zhang. “The use of perceptual cues in multi-

robot box-pushing”. In: Proceedings of IEEE international conference

on robotics and automation. Vol. 3. IEEE. 1996, pp. 2085–2090.

[LMS17] M. A. Laouadi, F. Mokhati, and H. Seridi-Bouchelaghem. “A for-

mal framework for organization-centered multi-agent system spec-

ification: A rewriting logic based approach”. In: Multiagent and

Grid Systems 13.4 (2017), pp. 395–419.

[Les91] V. R. Lesser. “A retrospective view of FA/C distributed problem

solving”. In: IEEE Transactions on Systems, Man, and Cybernetics 21.6

(1991), pp. 1347–1362.

[MN10] C. M. Macal and M. J. North. “Tutorial on agent-based modelling

and simulation”. In: Journal of Simulation 4.3 (2010), pp. 151–162.

DOI: 10.1057/jos.2010.3.

[MT03] S. McShane and T. Travaglione. Organisational behaviour on the Pa-

cific Rim. McGraw-Hill, 2003.

[MFC13] A. M. de Mello, L. Foss, and S. A. da Costa Cavalheiro. “Towards

the use of graph grammars for specification of multi-agent system

organizations”. In: Simposio Brasileiro de Metodos Formais 2013-Short

Papers. 2013, pp. 42–47.

[MW04] C. Merida-Campos and S. N. Willmott. “Modelling coalition for-

mation over time for iterative coalition games”. In: (2004).

[Mey14] J.-J. C. Meyer. “Logics for intelligent agents and multi-agent sys-

tems”. In: (2014).

108

https://doi.org/10.1057/jos.2010.3

BIBLIOGRAPHY BIBLIOGRAPHY

[MD93] T. A. Montgomery and E. H. Durfee. “Search reduction in hierar-

chical distributed problem solving”. In: Group Decision and Negoti-

ation 2.3 (1993), pp. 301–317.

[NNZ00] U. Nickel, J. Niere, and A. Zündorf. “The FUJABA environment”.

In: Proceedings of the 22nd international conference on Software engi-

neering. 2000, pp. 742–745.

[OPF03] J. J. Odell, H. V. D. Parunak, and M. Fleischer. “The Role of Roles in

Designing Effective Agent Organizations”. In: Software Engineer-

ing for Large-Scale Multi-Agent Systems. Springer Berlin Heidelberg,

2003, pp. 27–38. DOI: 10.1007/3-540-35828-5_2.

[PO01] H. V. D. Parunak and J. J. Odell. “Representing social structures in

UML”. In: International workshop on agent-oriented software engineer-

ing. Springer. 2001, pp. 1–16.

[Pic+09] G. Picard, J. F. Hübner, O. Boissier, and M.-P. Gleizes. “Reorgan-

isation and self-organisation in multi-agent systems”. In: 1st In-

ternational Workshop on Organizational Modeling, ORGMOD. 2009,

pp. 66–80.

[RGR15] V. Rafe, M. Golparian, and S. Rasoolzadeh. “Using graph transfor-

mation systems to formalize Tropos diagrams”. In: Journal of Visual

Languages & Computing 30 (2015), pp. 1–16.

[Ren04] A. Rensink. “The GROOVE Simulator: A Tool for State Space Gen-

eration”. In: Applications of Graph Transformations with Industrial

Relevance. Ed. by J. L. Pfaltz, M. Nagl, and B. Böhlen. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2004, pp. 479–485. DOI: 10.

1007/978-3-540-25959-6_40.

[RET12] O. Runge, C. Ermel, and G. Taentzer. “AGG 2.0 – New Features for

Specifying and Analyzing Algebraic Graph Transformations”. en.

In: Applications of Graph Transformations with Industrial Relevance.

Ed. by D. Hutchison et al. Vol. 7233. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 81–88. DOI: 10.1007/978-3-642-

34176-2_8.

109

https://doi.org/10.1007/3-540-35828-5_2
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/10.1007/978-3-642-34176-2_8
https://doi.org/10.1007/978-3-642-34176-2_8

BIBLIOGRAPHY BIBLIOGRAPHY

[RND10] S. J. Russell, P. Norvig, and E. Davis. Artificial Intelligence: A Mod-

ern Approach. 3rd ed. Prentice Hall series in artificial intelligence.

Prentice Hall, 2010. ISBN: 978-0-13-604259-4.

[Saw03] R. K. Sawyer. “Artificial Societies”. In: Sociological Methods & Re-

search 31.3 (Feb. 2003), pp. 325–363. DOI: 10.1177/0049124102239079.

[SK98] O. Shehory and S. Kraus. “Methods for task allocation via agent

coalition formation”. In: Artificial intelligence 101.1-2 (1998), pp. 165–

200.

[Tae99] G. Taentzer. “AGG: A tool environment for algebraic graph trans-

formation”. In: International Workshop on Applications of Graph Trans-

formations with Industrial Relevance. Springer. 1999, pp. 481–488.

[Tam97] M. Tambe. “Towards flexible teamwork”. In: Journal of artificial in-

telligence research 7 (1997), pp. 83–124.

[Tia07] H. Tianfield. “A new framework of holonic self-organization for

multi-agent systems”. In: 2007 IEEE International Conference on Sys-

tems, Man and Cybernetics. IEEE. 2007, pp. 753–758.

[Van+05] E. L. Van Den Broek, C. M. Jonker, A. Sharpanskykh, J. Treur, et al.

“Formal modeling and analysis of organizations”. In: International

Conference on Autonomous Agents and Multiagent Systems. Springer.

2005, pp. 18–34.

[WLZ06] Z.-g. Wang, X. Liang, and Q. Zhao. “A Graph Transformation Sys-

tem Model of Dynamic Reorganization in Multi-agent Systems”.

In: Intelligent Data Engineering and Automated Learning - IDEAL 2006,

7th International Conference, Burgos, Spain, September 20-23, 2006,

Proceedings. Ed. by E. Corchado, H. Yin, V. J. Botti, and C. Fyfe.

Vol. 4224. Lecture Notes in Computer Science. Springer, 2006, pp. 1182–

1190. DOI: 10.1007/11875581_140.

[Woo09] M. Wooldridge. An introduction to multiagent systems. 2nd. John Wi-

ley & Sons, 2009. ISBN: 978-0470519462.

110

https://doi.org/10.1177/0049124102239079
https://doi.org/10.1007/11875581_140

BIBLIOGRAPHY BIBLIOGRAPHY

[WJK00] M. Wooldridge, N. R. Jennings, and D. Kinny. “The Gaia method-

ology for agent-oriented analysis and design”. In: Autonomous Agents

and multi-agent systems 3.3 (2000), pp. 285–312.

[YKO03] O. Yadgar, S. Kraus, and C. L. Ortiz. “Scaling-Up Distributed Sen-

sor Networks: Cooperative Large-Scale Mobile-Agent Organiza-

tions”. In: Distributed Sensor Networks: A Multiagent Perspective. Ed.

by V. Lesser, C. L. Ortiz, and M. Tambe. Boston, MA: Springer US,

2003, pp. 185–217. ISBN: 978-1-4615-0363-7. DOI: 10.1007/978-

1-4615-0363-7_9.

[ZV02] F. Zambonelli and H. Van Dyke Parunak. “From design to inten-

tion: signs of a revolution”. In: Proceedings of the first international

joint conference on Autonomous agents and multiagent systems: part 1.

2002, pp. 455–456.

111

https://doi.org/10.1007/978-1-4615-0363-7_9
https://doi.org/10.1007/978-1-4615-0363-7_9

	Acknowledgment
	Abstract
	Résumé
	Contents
	List of Figures
	1 Introduction
	1.1 Context
	1.2 The problem studied in the thesis
	1.3 Contributions
	1.4 Thesis Outline

	I State of the Art
	2 Background
	2.1 Introduction
	2.2 Graph Transformation System
	2.2.1 Graph and Graph Morphism
	2.2.2 Typed Graph and Typed Graph Morphism
	2.2.3 Graph Rule
	2.2.4 Concept of Transformation
	2.2.5 Negative Application Conditions
	2.2.6 Typed Attributed Graph
	2.2.7 Typed Graph Transformation System
	2.2.8 Typed Graph Grammar
	2.2.9 Graph Transformation Tools

	2.3 Agent-Oriented Software Engineering
	2.3.1 Concept of Agent
	2.3.2 Multi-Agent System
	2.3.3 Agent Centered Multi-Agent System
	2.3.4 Organization Centered Multi-Agent System
	2.3.5 Concept of Organization
	2.3.6 Types of Agent Organization
	2.3.7 Organizational Change Motivation
	2.3.8 Reorganization

	2.4 Conclusion

	3 Literature Review
	3.1 Introduction
	3.2 Semi-Formal Approaches
	3.2.1 GORMAS Approach
	3.2.2 OMACS Framework
	3.2.3 MOISE

	3.3 Graph Transformation Based Approaches
	3.3.1 Multi-level graphs for System Reorganization
	3.3.2 A Model for MAS with Dynamic Organizations
	3.3.3 Rule-Based Modeling and Static Analysis of Self-adaptive Systems

	3.4 Formal specification approaches for Multi-Agent Systems
	3.4.1 Formal Semantics Framework
	3.4.2 Rewriting Logic for the Specification of MAS
	3.4.3 Automatic generating algorithm of rewriting logic for multi-agent system

	3.5 Conclusion

	II Contributions
	4 Graph Transformation Approach for the Reorganization in Multi-Agent Systems
	4.1 Introduction
	4.2 Approach Overview
	4.2.1 MAS Monitor
	4.2.2 MAS Organization
	4.2.3 Reorganization Manager
	4.2.4 Basic Elements Life Cycle

	4.3 MAS Organization Type Graph
	4.3.1 ORG
	4.3.2 Goal
	4.3.3 Role
	4.3.4 Agent
	4.3.5 Structural State (sstate)
	4.3.6 Behavioral State (bstate)
	4.3.7 Extension Mechanism

	4.4 MAS Organization Rules
	4.4.1 Behavioral Rules
	4.4.2 Structural Rule

	4.5 Mathematical Notation of our MAS Organization
	4.5.1 Priority
	4.5.2 Sequentially Independent
	4.5.3 Confluence
	4.5.4 Termination

	4.6 Conclusion

	5 Evaluation: Case Study
	5.1 Introduction
	5.2 Case Study Description
	5.3 Planning and execution
	5.4 Scenario 1: Agent Entering the System
	5.5 Scenario 2: Agent Leaving the System
	5.6 Scenario 3: A Goal Being Ended
	5.7 Discussion and limitations
	5.8 Conclusion

	6 Conclusion and Future Work
	6.1 Summary
	6.2 Perspectives

	 Bibliography

