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0.1. INTRODUCTION 1

0.1 Introduction

It is well established today that quantum mechanics, like other theories, has two aspects, the
mathematical and conceptual. ,in the first aspect, it is a consistent and elegant theory and
has been immensely successful in explaining and predicting a large number of atomic and
subatomic phenomena. But in the second one, it has been a subject of endless discussions
without agreed conclusions, without quantum mechanics, it was impossible to understand
the enormous phenomena in microscopic physics, which does not appear in our macroscopic
world. In this endless way of success for quantum mechanics, mathematics, especially math-
ematical physics developed to help quantum mechanics.the quantum mechanics give a good
results for systems of a particle in a Colombian potential or harmonic potential when the en-
ergy and wave function is well defined but these central potentials is not exist in microscopic
world but it exist a lot of predict potentials in atomic and subatomic systems some of them
have a same proprieties like non-central potentials

Non-central potentials are potentials without spherical symmetry,they don’t depend only
to the radius () but is depend to another parameters like angels, they represent the nature of
non-central forces ,this kind of potential take his importance from the real physical systems,
such as atoms and molecules, are rarely spherically symmetric such as hydrogen.The study
of non-central potential began with the pioneering works of Makarov [1] when he take up the
quantum mechanical problem of a particle in the torus shaped potential and after the works
of Hartmann [2] in his paper he gave the non-central potentials for which the Schrodinger
equation separates in the spherical coordinate and then structured with the work of Hautot
[3]. Thus these works have paved the way for more realism in studies,when he was give all
non-central potentials which we can solve it analytically in classical mechanics and quantum
mechanics when the Newton’s and Schrodinger’s mechanics are considered ,and he found
some exact solutions exist in 2 dimension space and others in 3 dimension space

Hartmann has focused on the ring-shaped potential which called Hartmann potential ,he
had many papers in this subject [4] one of them is investigated Spin-Orbit coupling for the
motion of a particle in a Ring-Shaped potential.

The non-central potentials especially for which the Schrodinger equation can be solved
exactly by separation of variables have been found many applications, particularly in quantum
chemistry [5]. They are used to describe the quantum dynamics of ring-shaped molecules
like benzene molecule , they have solved the 3 dimension Schridinger equation by using
the Kustaanheimo-Stiefel transformation ,another application of non-central potential is the
interactions between deformed nuclei pairs [6] . The potentials without spherical symmetry
have some applications within the nanostructure theory [7], and also help us about structuring
the metallic glasses [8] . The non-central potentials serve to the theory of the material
sciences, for example, describing microscopic elasticity, and obtaining of elastic constants of
a cubic crystal [9] .

There are currently a lot of works in the field of non-central, few of them have analytical so-
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Table 1: The solvable non-central potentials in 2 dimensions

lutions and thus they have been studied either with numerical technics or with approximated
methods,like the asymptotic iteration method [10] Pekeris approximation [11],factorization
method [12],orthogonal polynomial solutions [13],the formalism of supersymmetric quantum
mechanics (SUSYQM) [14], Laplace transform approach [15]

The exact analytical solutions of the non-central potentials and their generalizations have
been studied in relativistic/non-relativistic regions for many years There are currently a lot

of works like [16][17]

To reach our goal this thesis was organized in form with two parts the first part allotted to
the study in ordinary space as it contains two chapter ,the first chapter devoted to the study
of all solvable non-central potentials V' (r,0) = p [V(T) + @] in 2D ordinary space,when we
have considered the four potentials of Hautot and the dipole potential that appear in the
(Tablel)

This chapter contain in the first section the nonrelativistic case when we have solved the
Schrodinger equation analytically by the separation of variable method to get the energy
spectrum and the wave function,also in this section we focused on the dipole,in the two
cases with Kratzer and with pseudoharmonic potential where we plotted the energy in terms
of the radial and angular momentum then we found a crtical values for this momentum
that make the states bounded,moreover,we studied the 2D disc-shaped quantum ring (QR)
under the effect of an ionized donor atom quantum where we took the GaAs as an example
,and we plotted the the corrections of the energie due to the dipole the second section is
consecrate to studies the relativistic case when we just have considered the spin and pseudo
spin limits also in this section we detailed the study of relativistic kratzer +dipole potential
and pseudoharmonic dipole too where we found the realivistic energy and we plotted it to

show the difference between it and the nonrelativistic energy

In the second chapter we treated all solvable non-central potentials in 3D ordinary

space,when we have considered the three potentials of Hautot which appear in the(7T'able 2)

In first section we studied it in nonrelativistic case to find the non-relativistic energy and

wave function and in the second section we investigated the spin and pseudo spin limits of
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relativistic case also in this chapter we focused to ring shaped potential ,where we plotted

the energy of some levels

In the second part of this thesis we addressed in detail the potentials of the first part in

deformed space ( de-sitter and anti di-Sitter space) in nonrelativistic case when the deformed

energy and deformed wave function are deduced ,this part contain tow chapter the first is

devoted to two dimensional deformed space and the second chapter is allotted to the three-

dimensional deformed space ,the deformed energy and wave function are deduced ,we focused

to the dipole and ring-shaped potential where we plotted the deformed energy in terms of the

parameters of deformation ,we found critical values for the parameter of deformation which

make the bound states exiset







Part 1

The Quantum Studies of Some
Non-Central Potentials in Ordinary

Space






Chapter 1

Studies of Two Dimensional

Non-Central Potentials

1.1 Introduction

Between the complexity of the three dimensional and the simplicity of the one dimensional
system the 2D domain attracted the attention of many researchers in several axes in technol-
ogy ,physics, chemistry and biology. Since the discover of the graphene the 2D matter was
be a real and open a big fields of researches .Interest for 2D systems comes from the great
popularity of graphene (and co. like Silicene and Manganene) , being one atom-thick car-
bon nanosheets, became the first 2D nanostructure, which was isolated from parent graphit
and also the interest comes from experimental achievements like the motion of the electron
around the proton is constrained to be planar (say, by applying a strong magnetic field) then
this problem will considered within the context of quantum mechanics as a two-dimensional
hydrogen atom. There are many physical applications in which systems are effectively two-
dimensional (e.g., adsorbed atoms on surfaces that behave like 2D at low temperatures)with
the realization of quantum gases at low dimensions [18][19] and before that from quasi-
condensate experiments [20]. furthermore great success has been achieved in nanofabrication
techniques in the past decades, especially for the low-semiconductor systems, such as su-
perlattices, quantum well, quantum dots and quantum wires. the immense technological
advancement in nano-processing, new beings appear in low dimensional systems like quan-
tum dots (QD) which can be regarded as low-dimensional heterostructures whose carriers
are confined in all spatial dimensions [21]. Their manufacturing techniques make it possible
to control their properties and thus they are made in such a way that they acquire the same
characteristics of atomic systems; this is why they are sometimes called artificial atoms [[21],
[22]]. The confinement potential in QD may originate from various physical effects and pos-
sesses different symmetries in different nano-structures and the knowledge of realistic profile
of confinement potential is necessary for a theoretical description of the electronic proper-

ties of QDs and, more importantly, for fabrication of nano-devices [22]Regarding non-central

7
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potential in 2D systems there are, the potentials of Hautot which have been solved ana-
lytically in nonrelativistic case with the Colombian potential or oscillator potential despite
the exact mathematical solution of the Schrodinger equation for these potentials and find-
ing the eigenvalues and the eigenvectors, they remain physically without application in 2D
space , and recently, Moumni and Falek were able for the first time to solve the Schrodingar
equation analytically for a pure dipole potential where are they found well defined energy
and wave function [23],In contrast to the Hauto potentials the pure dipole is present in
ultrathin semiconductor layers [24] , in spin-polarized atomic hydrogen absorbed on the sur-
face of superfluid helium [25] , for charged particles in a plane with perpendicular magnetic
field [26] and also in gapped graphene with two charged impurities [27] [28] . On the other
hand,non-pure dipole potential was recently found in the case of electron pairing that stems
from the spin-orbit interaction in two-dimensional quantum well [29].ring-shaped was found
in disc-shaped quantum ring (QR) under the effect of an ionized donor atom, the conduction
band electron is described by a PHO as a confinement potential and a donor impurity term
[[30],[31], [32]].This chapter is divided into two section the first section is devoted to study
the analytic solution of 2D Schrodinger equation with some non-central potentials which
are mentioned in(table 1) in ordinary space,in the second section we particularize the same

potentials but in the spin and pseudo spin symmetries of relativistic case,

Figure 1.1: V(r,0) = -2 + Br L (%) (avcos ) in terms of r and 60
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Figure 1.2: V (r,0) = _%"“%4'%2 (%) (acos f) in terms of r and 6 in cylindrical coordinates
system

1.2 Non-Relativistic Studies of 2D Non-Central Poten-

tials

1.2.1 2D Schrédinger Equation

To see the behavior of the potentials shown in the T'ablel, we plotted it in terms of r and 6,in
cartisian coordinates system and in polar coordinates system the graphs shown in the figures
[1.1,...,1.20] ,regarding the non-relativistic studies in this section we illustrated the solution of
Schrodinger equation with the non-central potential of kind V' (r,0) = [@ + V(r)} ,where

p is the mass ,f(#) and V (r) are mentioned in general introduction T'ablel .

The Schrodinger equation is written as

[;—TA v 9)} b= By (L1)

When we substitute the potential by its expression the Schrodinger equation of our system

is

[;—TAJW(V(erﬁf))] Y =By (1.2)

To solve this equation by the separation of variable method ,it is better the using of the

polar coordinates (r,#) ,in this case the Schrodinger equation is written as

1f(0)

r2

a2 e T

We put the equation in the more convenient following form:

{—Fﬁ (62 19 1062

o S+ >+MV(T)+ }ib—Ew (1.3)
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150% P

Figure 1.3: V(r,0) = kr* + % + & (%) (accos ) in terms of r and 6 in

Figure 1.4: V(r,0) = kr?+Z¢ 4+ 5% (%) (avcos @) in terms of r and # in cylindrical coordinates

system

2 10 2u? 1 /0% 242 2uE
—+—-———-—=V — | = — =5 f(0 = — 1.4
(51— Vi) + 5 (-2 10) |0 =-%F0
The variables can be separated when the wave function is written as :) = r=2 R(r)O(6),
we have to calculate the derivatives of the wave function with the new form
The first derivative of ¢ with respect to  in terms of the new form is
0 1 1
W rtrmeE) + 0

The second derivative of ¢ with respect to r in terms of the new form is

o(9) (1.5)

82¢ . 3 s 7§8R(T)
w = é__lr R(T)@((g) - T ar

1 O?R(r)

S 0(0) (1.6)

o) +r
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Figure 1.5: V(r,0) = =2 + Ly + & (%) ((asin®6 + Bsinf + v) cos™?) in terms of r and ¢

The second derivative of 1) with respect to @ is

o

2

00°
We substitute the equations 1.5 ,1.6and 1.7 in the Schrodinger equation 1.4

_1 62R(7“)
52 o) —r

3 OR(r)
or

3 JR(r)
or

242

o

s 0*0(0)  2u?

R

3 _s 1 s
1" 2R(T)@(9)—§r 2R(r)O(0)+

Vi RO0) + 2L rirjo9)+

h2

O(0) +

r

o(0)

r

(6)r 2 R(r)O(f) = 0 (1.8)

After some simplification we get the following equation:

_éazjigr)@(e) " }JLT_SR(T)@(Q) _ ZH_AfV(T)T_éR(T)@(Q)-F
020(0) 242 s _
7~ gz O R)S(0) =0 (1.9)

5
2

We divide the last equation by r~

r—2

55 | o) + RO - TV RO + RIS

- |-r0 T2 2 orne) (110

To separated this equation we divide it by R(r)©(f) then we find the following equation
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Figure 1.6: V(r,0) = -2 + Ly + & (%) ((asin® @ + Bsinf + ) cos™2) in terms of 7 and 6

in cylindrical coordinates system

Rzr) = [a T 4 1m0 - 2v i R(ry + 2E R(r)] _
1 9?0(0)  2u?
5 [— P+ f(@)@(e)] (L11)

When we put the both sides of equation 1.11equal to Ey we find two equations as

1 [ 9%e0) , 2 B
o(0) {_ 0> " h? (9)@(9)} - b (112)

Then it is easy to find the linear differential equations

{a a@ege) - QELQ (9)@(9)] = E£,0(0) (1.14)
{8;27") + }17’2}2(7“) — %V(T)R(T) + 2ZQER(T)] = —12EyR(r) (1.15)

So the equation 1.2 give us two equations

%@@ - <E9 + % f(e)) 0(f) =0 (1.16)
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Figure 1.8: V(r,0) = kr? + & + & (%) ((asin® @ + Bsinf + ) cos™2) in terms of r and 0
in cylindrical coordinates system
d*R(r)
dr?

1\ 1 242 2ukE

From the radial equation we can plot the effectiv potential Vo;; = — (Ee + ;11) T% + %V(r)
in terms of r and # to show the existence of the bound state ,and now we have to solve the
angular equation 1.16 to find the separation constant Fj, and then we substitute it in the
solution of the radial equation 1.17; this will give us the energies E of the system and also

the wave function ¢ (7, 0).,where we take as applications the potentials of T'able 1

1.2.2 Non-relativistic Energy and Wave Function (Applications )

in this subsection we calculated the energy and wave function of our system for previous

potentials and will treat it case by case
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Figure 1.9: V(r,0) = =& + Br 4 & (5—22> (atan? § + Btan g + ) in terms of r and 0

Figure 1.10: V(r,0) = — & + 5r + & <%> (wtan?£ + Btan? ++) in terms of r and 6 in
cylindrical coordinates system

Casel:V, (r,0) = p |- 2L + 5 + & (%) (acos 0)]

The kratzer plus dipole potential we can find it in many chimecal and physical systems
sach in ring-shaped organic molecules [33] [94] the Kratzer potential has been experimentally
justified in 2D systems because Rydberg series of s-type excitonic states in monolayers of
semiconducting transition metal dichalcogenides, [95] which are 2D semiconductors, follow
a model system of 2D Kratzer type instead of a 2D hydrogen atom,in order to deduce the
Kratzer potential of a system consisting of a point charge ¢ under the effect of a non-zero dis-
tribution charge @ = [ dg (a cluster of point charges dg). One this later create a Colombian
potential in the space equal the sum of Colombian potential of elementary charge ¢; can

take as an example of this system a polar ion and a point charge. So the potential produced
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Figure 1.12: V(r,0) = kr* + % + % (%) (atan? g + Btan? + ) in terms of r and 6 in
cylindrical coordinates system

by the charge distribution at the position of the test charge ¢ is written as follows

V(T)=/ L0, (1.18)

dmeg 1y

We choose a reference with the origin O be coincide with the center of the charge @).,and
we denoted M as the position of the test charge ¢,and it’s vector position by the vector 7, the
position of elementary charge relative to the test charged qis 7, = AM = AO—OM = 1" —a
(when the position of the charged dg,denoted by Aand defined by the vector @. Thus we

write

V(r) = / L A9 _ / L g, {(7—7)2]_§ (1.19)
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Figure 1.14: V(r,0) = -2 + Zr 4 1 (%) (acot?>§ + Beot g ++) in terms of r and 6 in
cylindrical coordinates system

By spreading the square ,we find

V(r) = / L [(7? - 27w + @) (1.20)

1
To finding the Colombian we extract — so
r

| dg, »7 a0
V(T):/Mso? (1_2 =2 +ﬁ) (1.21)

We suppose that the dimensions of the extended charge () are small compared to those
of the whole system constituted by @ and the point charge ¢, such that we write |a| << ||

, and we use the Taylor series thus we have
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2u2

Figure 1.15: V(r,0) = kr? + & + % (—) (acot? £ + Beot £ + ) in terms of r and 6

7 @ vd [
[(1—2 - +:2)] =1+ +0< ) (1.22)
T T 'I° T

We restrict ourselves to the 1st order of the multipole expansion

1 dq, . ad dqa dqa r.a
Vir) = 1 V(r 1.2
(r) /47r€0 T { + r? }:> 47‘(’80 (/ (1.23)

By substitute the result of the scalar product we find

Qacos 0, dq,
Vir)= Tne ( fo o ) (1.24)

1 1 1
Q — Jacosfadq, (1.25)

v
(r) = dmeg v 4dmegr

we put f acosf,dq, = D, and EDT = ad, ,d, is the dissociation energy and a is the

equilibrium internuclear separation,thus the Kratzer potential is writing as follow

1 Q 1 D,
dmeg v 4Ameg 2

Vir)= (1.26)

We see that the potential is central and this may not reflect reality because the distribution
is not usually perfectly symmetric. Therefore, we have to take into account the possible
anisotropy

in the charge distribution and to do this we consider that the positive and the negative
centers of charges do not coincide in Q and we denote their positions a; and a_ This two
centers form an electric dipole representing this anisotropy and the potential of such a dipole

is just M;’Se.The dipole moment Dy is proportional to the distance between the two charge
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5 ) .-"""\-\. I 7

"~ g
10

Figure 1.16: V(r,0) = kr* + Zr + & (%) (acot?§ + Beot ++) in terms of r and 6 in
cylindrical coordinates system

centers and the angle @ defines the orientation of the position 7 according to the dipole axis
defined by a; a_. We call this term the "angular” dipole to differentiate it from the ”radial”
one. adding all the terms together gives us the Coulomb potential with two dipoles and we

call it a non-central (N-C) Kratzer potential i

1 Q 1 D, 1 Dgcost

0) = — 1.2
V(r9) Ameg v Amey 2 Ameg 2 (1.27)
To keep the labels of Hauto we put 4330 = —uH, Zf; = = puD, and Zfs 2 = %a where the
dipole potential take the forme f (0) = %OJ cos(f),we substitute it in the angular equation
1.16 to becomes 7
<@ — FEy — acos(@)) ©0)=0 (1.28)
We put the following changes to get a known equation
0 =2z (0 is 27 periodic and z is 7 periodic) (1.29)
And
a=—4FE, p =2« (1.30)
So when we substitute the new parameters the angular equation 1.28 becomes
d*e
d (2"’) 4 (a— 2pcos(22))0(Z) = 0 (1.31)
z

This equation is Mathieu equation [37].and its solutions are the cosine-elliptic cey,,(2)
and the sine-elliptic seg,12(2) functions where m is a natural number [38] . The solutions

of the Mathieu equation are periodic because z has m as a period and this leads us to
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Figure 1.17: V(r,0) = =& + 5r + 5 (%) (atan? 6 + Btanf + ) in terms of r and 6

Figure 1.18: V(r,0) = =& + Zx 4 & (%) (atan®6 + Btanf + ) in terms of 7 and 6 in

cylindrical coordinates system

consider the Floquet’s theorem [39] or the Bloch’s theorem [40]. They stipulate that, for a
given value of the parameter p, the solution is periodic only for certain values of the other
parameter a; They are called characteristic values and denoted a(2m,p) or ag,(p) for the
ce solutions and b(2m, p) or by, (p) for the se ones..There is no analytical expression for the
Mathieu characteristic values as,,(p) and by, (p), so they are usually given either numerically
or graphically. This doesn’t preclude that we can write approximate analytical expressions

for small and large values of « [41].
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Figure 1.19: V(r,0) = kr® + Lp + & (%) (atan? 0 + Btanf + ) in terms of r and 6

|U
_l’_
tol"‘

Figure 1.20: V(r,0) = kr? + L¢

r

(h—Z) (atan?6 + Btan 6 + ) in terms of r and 6 in
cylindrical coordinates system
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For small values of a, we can express a and b for m > 3 as (I = 4m2 — 1):

20m? + 7
- — b " :4 2 2 4
aam) (P) = bm) (p) = 4m” + 50—y + o2 @z 1P amz—a)"
36m? + 232m?2 + 29
°+0 (p°) (1.32)

64 (4m? — 1) (4m? — 4) (4m? — 9)"

The coefficients of the power series of as,,(p) and by, (p) are the same until the terms in
p?™~2 we have similar polynomials for m < 3 but with different coefficients for the a’s and
the b’s..We note here that there is no se solutions for m = 0 and so there is no b(m = 0).

For large values of p, we get another polynomial (k = 2n + 1):

1
an (p) = bpy1(p) = —2p+ 2kp1/2 -3 [k2 + 1] _
1

[k + 3K] L [5k* + 34K + 9] 712,

2Tpi/2 + O (p*3/2) (1.33)

From now we use the same symbol ¢y, (p) for both characteristic values as,,(p) and bs,,(p).

Using the equation 1.30 ,we get energy as:

1 1
Ey = E;™ = —70= 7% (p) (1.34)

And the angular wave function is Mathieu function ©(6)
©(0) = Mathieufunction (1.35)

From 1.32, we see that for small values of a (or p), the angular solution can be put in the
form:
EP™ = —m? 4+ P, (a) (1.36)

WhereP,,(«) is a polynomial in terms of even power of « starting from 2. This expression
will be used to validate our solutions in the limit & — 0 (or p — 0). In this case, we see
from 1.32 that as,(p) and by, (p) have the same limit 4m?. So the ceyy,(2)and sesy, 2(2)
are degenerate and the solution becomes a linear combination of cos(2mz), which is the
limit of cey,,(2), and sin(2mz), which is the limit of ses,,2(2); Here we retrieve the solution
exp(2imz)of 1.31 for p = 0.

We substitute by the kratzer plus dipole potential ,the radial equation 1.17 of this case is

R(r) +K 1_@) L 2 2B oy g (1.37)

e F, 4= I e e
ar? TITTR )T e T TR

To solve the equation 1.37 we use the following change

R(r) = r*e P f(r) (1.38)
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The first derivative of R in terms of new functions is

dR — d(re™™f(r) | 4 4 g g df(r)
= == - = AP f(r) = Brie () e T (1.39)

The second derivative of R in terms of new functions is

2 2
R T,\e—md f(r) + (201 — 9t df (r)

dr? dr? dr
+(AA=1) A 2e7 P —2p A e Bzrke_'g”) f(r) (1.40)

We substitute the results of 1.40 in the equation 1.37 we find

d2f(r) df (r)
A _—pBr A=1_—Br A _—pBr
ret— + (2)\7" e 20r°e ) T
+ ()\ (A= 1) 2e7Pm — 2B e P 1 BQTAe_ﬂ’”) f(r)
1 2u*D.\ 1 2u*H 2uE]| _Br
+[(E9+Zl_ 2 )ﬁ—kﬁ?—'—ﬁ re P f(r) =0 (1.41)
We divide by r*~le™#" we get
d*f(r) df (r)
L + (2A —26r) =
+(AA=1)r Tt =281+ 527“) f(r)
1 22D\ 1 2u*H 2uE
+[<E@+Z—T>ﬁ+ﬁ7+ﬁ ’I“f(T’):O (142)
After some simplification we find this equation
d*f(r) df (r)
2(\—
" +2( fr) dr
2u2D, 1\ 1 212 2uk 9 B
+|:()\(/\—1)+E9— 72 +Z);+(WH_25/\ + ) ‘|—6 r f(T’)—O (143)
Because the parametersg and \ are free ones, we chose them as follows to simplify the
equation:
2uk
2
=0 (1.44)
212D, 1 B
AMA—=1)+ Ey— 72 +Z_0 (1.45)
So we get a new differential equation for f(r) as
d’f(r) df(r) , 1*H
r—a T 2(\—pBr) e 2( o t AB)f(r)=0 (1.46)

As 1(r,0) must be convergent, the accepted solutions for these parameters that let R(r)
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nonssingular at » = 0 are:

2uk
b=\ (1.47)
And
1 (m) , 2p*Dr
A=+ \/—Ee + 0 (1.48)

To change the equation to a known equation we define a new variable :

z2=20r=r= %z (1.49)
And
dz
Z _9 1.
o (1.50)

We calculate the derivatives of a function f(r) in terms of the derivatives with respect to

the new variable 2

df(r) _ df(r)dz df (r)
- ~Z =9 1.51
dr dz dr P dz ( )
And the second derivatives is
d*f(r) 2 2 f(r)
=4[5 ——= 1.52
dr? P dz? (152)
We substitute this derivatives in the equation 1.46 we get
i) 1 a4z , pw*H
202——= +2(A — =2)2 -2 = 1.
g o - 220262 — o ) () = 0 (1.5
We divide by 2/ we get a confluent hypergeometric :
d*f(z) df(z) p’H1
2\ — 2)—— — —+ A =0 1.54
S @ =S - (S e ) (154
The solution here is just the confluent hypergeometric function:[36]
fPH
And
pPH
f(?") = NlFl )\—l— 72 6 ,2)\,267’ (156)

1F1 ()\ + ‘g—éfﬁ—l, 2, 267’) can be written as Laguerre polynomials of degree n,

(n, +2X —1)!

L 20 = = s

2H B
F (A+ “h2 3 1,2)\,2ﬁr> (1.57)
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To find the radial wave function of the systemR (r) ,we use the equation 1.38;s0

urH
72

We substitute by A = % + 1/ —Ey+ Zl%and [ = _Z}I;TE

P] _/_2[,LET
R(r) = Nr2*v *Eﬁ%el "
1 22D, u2H 1 \/ 202D, \/ 2uE
F (= —E — 1424/ —F 2/ — 1.59
11(2“/ e e 2E + 0t p 7| (1.59)

N, is a normalization constant

R(r) = Note ™ |y (A+ 72, 257«) (1.58)

From the asymptotic behavior of the confluent series (r — oo = 1 F; = 0) which lead to

1 — 0 when r — oo we find the general condition of quantization :

2
H
,uh2 B =-n.n,=0,1,2,.. (1.60)

We use the relation\ = % +1/—FEy + 2’% “2H5* = —n, and 3% = 2“E to obtain

the energy of our system

2 2\ 2
pH 2 h -2
And
9 2uF o,
S E=—— 1.62
B T = 2M6 (1.62)
So ) , )
I o\ _
E= 3 (/PH) (n,+A)~° (1.63)

We substitute by the expression of A = % +4/—FEy+ 2“ Dr we find the radial energy in terms

of angular energy as

-2
312 212D,
B, = 2k (an b o) —Ey + 1) (1.64)

h? h?
n,=0,1,2, ...

The radial equation is the same of the potential of casel thus the energy expression
and the radial part of the wave function is the same then we substitute the constant of

separationl.34in energy expression 1.64 ;we find the final expression energy of the system as
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-2
SH? 1 242D,
Brnnam) = —25— (an—l—Z\/ 20 (20) + 20 +1> (1.65)

Com (2av) is characteristic values of Mathieu function

20m? + 7
32 (4m? — 1) (4m? — 4)

1

2(dm? — 1)

N 36m* + 232m? + 29
64 (4m? — 1)° (4m2? — 4) (4m?2 — 9)

A (2m) (20&) = b(2m) (20&) = 4m2 + (20{)2 + (20[)4

(20)° + O ((22)%) (1.66)

n,=0,1,2,...,and m=0,1,2, ...
We deduce the wave function of our system 1 (r, ) = r~2 R(r)©(#) from the angular part
1.35 and the radial part 1.59

_1 _g H
Uy = Nr*~ie 70 (), 1y ()\+ ’%—2 1,2)\,25r) (1.67)
_ [ omE 1 1 22D,
Where 3 = reand A = 5 + \/402m (200) + 53

For the potential V5 (r,0) = & [—% + (%) Q COs 0} we deduce the energy and wave

function of this case from the energy and wave function of V; (r,6) when we put D, — 0 so

-2
SH? 1
By = =25 {20, + 24/ Zcam (20) + 1 (1.68)
’ h? 4
The wave function is
_1 g wH
q/)QzN’T‘)\ 2e ’8@(9) 1Fy ()\4*?6 1,2/\,267“) (169)
Where 3 = —QZEEand A= % + icm (2a)
The energy of charged particles moving in a non pure dipole potential and under the
effect of Kratzer potential as we obtained it is% = —uH, Zﬂ = uD, and Zﬂ = 3—2(1
TEQD TEQ TEQ I

(1.70)

dregh® 2 \/ 1 2ugD, 1
E nem) — iy T —Com 2 =
1(ny,m) [( g€ K2 ny + 12 (2a0) + Ireol? + 5

Starting from this expression, we can get the solutions of the usual 2D Kratzer potential
96],[97] by taking H = ——22_ D, = 2= and o = 2425 the limit & — 0 ,and P,,(2a) — 0

dmegp’ 4dmegu’ 2megh?
1

which lead to £{™ = 1Com (2a) — —m?, s0

-2
dreoh® 2 2ugD, 1
E, ,.=-— — . 2 — 1.71
. [( e ’/h2 ny +4/m +47T50h2+2 (1.71)
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Make the liaison with the Coulomb energies when D, — 0 so

dreoh? [2p 1\ 2 dmeoh?  [2p 1\ ?
En m = Yy r = = — ey — 1.72
h (IWQ i )\ imi @ Va2 ) "2 (1.72)

this is the energy of the electron in the 2D hydrogen atom [98],[99] .So we obtain n =

n, + |m| and n, = n — |m| , now the energy eigenvalues of the system is written as

-2
dregh® 2 \/ 1 2mgD, 1
B = — = - = Com (2 - 1.
’ [( oo\ |l e Qo) + 20 4 (1.73)

Where n is the principal quantum number and m is the angular quantum number

For our numerical computations, we use the same considerations as those of molecular
systems. We choose the extended charge as a positive ion and the point charge is an electron,
so we get two opposite charges equal in magnitude ¢ = —(Q) = —e. We use the Hartree atomic

units where h = e = u = 4meg = 1 and a = 2Dy the energies become:

-2
1 1
&m=—<n—WW+¢meDw+ﬂ%+§> (1.74)

We note in this relation of the energies, that the angular dipole removes the degeneracy
of the se and ce states for m # 0 This degeneracy is restored when the angular moment
vanishes since the two Mathieu’s characteristic parameters a»,, and by, have the same limit
in this case equation 1.32. The result restores those of the ordinary Kratzer potential (or
Coulomb potential) where the wave function of each level E, ,, is a linear combination of
bothse and ce states. For the s-states (m = 0), we only find the ce solutions because the se
solutions are absent in this case. Through the expression 1.74, we see that the behavior of the
energies follows essentially that of the Mathieu’s parameters and thus the angular moment,
whereas the effect of the radial moment merely shifts the energies to larger or smaller values
according to its sign. The sign of the angular moment doesn’t affect the results because the
parameters cs,,, are even functions. ,of course, the energies increase with the n and decrease
with the m but the main effect of the m is to extend the allowed region for the values of the
angular momentum. We also note that the energies corresponding to the ces,,(2) solutions
(we note them EZ ) are larger than the sey,(2) ones (noted Ef, ) and this is caused by the
fact that the as, are bigger than the by, see(Figuresl.21,1.22,1.23 and 1.24). The main
remark that can be drawn from 1.74 is that there is an essential condition for the system to
have bound states:

The condition is that £, ,, is real this means

1
2D, + JCo (4Dp) 2 0 (1.75)

This condition shows that there are critical values for the two dipole moments, depending
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LD lm [ o [ 1 [ 2 [ 3 |
sl e | - | 9% | so0d | 17de
s | - — | 4553 | 12.308
o e | - 2002 | 86 | 18132
se | — | 1047 | 5211 | 12976
o3 | cc | 0543 | 3384 | 9323 | 1s7s2
Sl se | - || 1526 | 5878 | 13624
oo | ce | 0923 [ 3851 | 9942 | 19.420
O se | = || 2007 | 6am9 | 14254
0o | cc | 1281 | 4385 | 10543 | 20.06
P se | = | 2200 | 7054 | 14870

Table 1.1: Critical values for the dipole momentum

E1 o
_03}
—04F
05 — 0.3
[ 0.6
_06F
: 0.9
_07[
~08}
05 10 15 20 °

Figure 1.21: E; as a function of Dy for D, = 0.3,0.6 and 0.9
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only on the quantum number m, that make the corresponding bound state no longer exists.

If we put D, = 0, all the s-states(m = 0) are absent because the critical value for D here is

zero. We say here that the presence of radial dipole is essential for s-states to exist, otherwise

the angular moment make them disappear. The same observation is made concerning the

other m-states (m > 0), but the critical value of the angular moment is positive in all these

cases and these critical values increase with m and also with the values of D, (Figure 1.25).

This critical value is smaller for the sine states and this causes the spread of the spectrum of

these states to be less than that of the cosine states on the axis of the angular momentum

(figures 1.14 and 1.15 where the indice a is for cosine solutions and the b for sine ones). So

the radial dipole has two effects, it moves the energies to higher values while enlarging the

region of possible values of angular moment (Figure 1.26)..The Tablel.1 shows the critical

values of Dy for different values of D, and m
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—n=1 — nN=2 — nN=3 — n=4 — n=54
En.[l

Figure 1.22: E, o as a function of Dy for D, = 0.5 and n =1,2,3,4 and 5

1 2 3 4 5 6 7

Figure 1.23: E,; as a function of Dy for D, = 0.5 and n = 1,2, 3 (se solutions are dashed )
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Figure 1.24: Ej,, as a function of Dy forD, = 0.5 and m = 0,1,2 and 3 (se solutions are

dashed)

m=0 71 mib)=1 [1 m{a)=1 [] m(b)=2 [ m{a)=2

10 -

Dg

Figure 1.25: Forbidden regions of D, and Dy form = 0,1,2 (a is for ce solutions and b for se

ones)
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Figure 1.26: E5; as a function of Dy and D,

From the graphes of effective potential we note that the dipole effecte to the bound state
wile ,for the s-state the ce solution of dipole makes the state more bounded (Figure 1.36),for
the state m = 1 the se solution of dipole still makes the states more bounded then the ce
solution which go rapidly to diffusion state as the angular momentum increas but the states
of se solution become more bounded (Figuresl1.37,1.38 and 1.39),for the state m = 2 for
small angular momentum the two solution ce and se make the states Less bounding ,when
the angular momentum increas the se state become more bounded but the ce state remaine
less bounded (Figures 1.40,1.41 and 1.42) ,the state m = 3 regarding se and ce solutions of
dipole is less bounded (Figures 1.43,1.44 and 1.45)

Case2 V; (r,0) = p |kr? + 55 + & (h2 ) (ozcos@)}

212

This potential consists of pseudoharmonic potential PHO and dipole potential wille recently
it was found to be one of those that best correspond to (quantum dots)QDs, for 2D disc-
shaped quantum ring (QR) under the effect of an ionized donor atom, the conduction band
electron is described by a PHO as a confinement potential and a donor impurity term where
the angular equation with respect to it is the same of the case 1 and the constant of separation

is the same FEjy equation 1.133 ,and the radial equation 1.17 in this case becomes

r2 h2 r h2

&2 1 22D,\ 1 2%k , 2uE
R(T)+|:< a ) P2 22 Ry =0 (1.76)

Fo+ - —
ar "I TR
From the radial equation we deduced the effective potential concern this case and plotted

its variance in terms o r and m (Figuresl.46, ...,1.49)
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And to solve this equation we followed the following steps where we put
r=a\/p (1.77)
So

2 d 2 d 2
rt_ dp_2r dp _ 2\/p

PCE T w @ T ar o (178)
We calculate the derivative of R(r) in terms of a new parameter p
The first derivative is
d 2/pd
dr a dp
The second derivative
d*R 4p d*R 2 dR

dr?  a? dp? a?> dp

To make the equation as a known equation we put the following changes

2 h?
= 1.81
a 5%k (1.81)

2uk
And L 92D
42D,
=|(Ey+-— 1.
0= (B0t - 25 (1.83)
Then we substitute by the equation 1.79 to 1.83 in equation 1.76 so we get the following
equation :
4p °R 2 dR ay/p)’
dp & Rip) +— (o) + d 5 — (av) +e| R(p)=0 (1.84)
a?  dp? a? dp (a\/_p) a*
We divide the last equation by a* we find
*R(p) . dR(p)  (n 2
4 2 - — R(p)=0 1.85
P tig, t\, et (p) (1.85)
To solve this equation, we use the following change:
R(p) = p*e™*w (p) (1.86)

Now we calculate the derivative of R(p) in terms of a derivatives of a new function w (p)

The first derivative is

( ) -1 _—p/2 1 —p/2 —p/2 ( )
dilp) _ a e a dw (p) 1.
<ap e 5P%e w(p) + pZe (1.87)
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The second derivative is

d’R d> d
dpgp) _ pae—p/Q ;jpgp) + (2apa—1€—p/2 _pae—p/Q) w(p)+

1
<a (o — 1) p*2e7 P2 —qp~te?/? 4 zlpaep/2> w (p) (1.88)
From the equations 1.86 ,1.87 and 1.88 the equation 1.85 becomes
d? d;
4pa+1e’p/2—w () + [2(4a + 1) ple Pl — 4pa+1e’p/2} dw (p) +

dp? dp
[40& (a o 1) paflefp/2 o 4Oépa€fp/2 + pa+1€fp/2 + QOépaflefp/Z

(1.89)
— pte P2 4 (% —p+ 5a2> po‘e"’/Q] w(p) =0
We dived the last equation by 4p%e~*/% we find
d*w (p) 1 dw (p)
9 il I
P 0 + o+ 1 P dp +
1, 1 1 1 1 n  ea?
R ot — (= — oLy = 1.
{(404 +4a)p +tapt (4+a> 4p+4p—|— 1 w(p)=0 (1.90)
So we get a new differential equation for w(p):
L CYOE d 1 1+12+477—1 | e Do =o
P ) a T \\2Y Ty 16 4\
(1.91)
The last equation can be written as
> 1 d 1 1\? 4p—1\ ea? 1
212 ) —p) = 4= ~ = = _ - =0
[pdp2+( (a+4> p)derp((& 4) L6 >+ 4 <a+4) we)
(1.92)

Because « is a free parameter, we put:

1\?> 4p-1
_ 2 — 1.
(a 4> + =g =0 (1.93)

Solving this latter equation for « yields two solutions:

1 1—4n
=-+ — 1.94

However since we require w (p) to be a nonssingular function at p = 0, then the accepted
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value of « is:

1 1—4n
=4+ X 1.95
We put:
4n, = ea® —4a—1;n, =0,1,2, ... (1.96)

And this simplifies the equation 1.91 to be a hypergeometric equation :

LAY YN S R DR (1.97)
pdp2 andp n, | w(p) = :

And the solutions are the hypergeometric functions:
1
w(p) = NlFl(—nr,2a+§,p) in,=0,1,2, ... (1.98)

Here N is the normalized constant.

In terms of the variables r and 6, we can now write the general form of the radial wave
function R(r) by using 1.77 ,1.86and 1.98 as follows :

r\2e 2 1 ca? 1 72
— — T 242 — - _
R(r) =N (a) ¢ 32 F) ((a—i— 4) 20+, a2) (1.99)

. . - 2 .
For the energies we use the relations ¢ = Q}QL—QE,Q = }1 + @ and n = (E@ + i — 2“thT> in

4n, = ca® — 4o — 1we find :

2uF 1 212D,
= a2:4nr+\/1—4(E9—|—1— - >+2 (1.100)
We have a? = u\/Lﬁ so the energy of the system is
212D,
E =hV2k |20, + 1+ 4/ —Ey + Mh? ] (1.101)

n,=0,1,2, ...
When we substitute the parameters €, a, 7 and a?by its expressions in 1.99we find the

radial wave function as:

1 1 2u2D, E 212D, v 2kr?
Fil| =+ =y\/—F — 1+4/—E 1.102

N, is a constant of normalization

To find the final expression of energy of the system we substitute the constant of separation
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1.34in energy expression 1.101 ,as

E3(nr,m) — h\/ 2]{3

1
2n, + 1+ \/Z—LCQm (2cr) + (1.103)

202D,
h2

If we take the limit of the the harmonic oscillator when D, — 0anda — 0 the energy

becomes
Esn,m) = IV2E [2n, + 1 4 |m]] (1.104)
comparing with the energy of harmonic oscillator we find 2n, + |m| = n = n, =

%(n — |m|) where n =0,1,2,3,...and m = 0, 1,2, 3, ...,then the energy becomes as

1 22D,
Esn.m) = hV/2k [n —|m|+1+ \/Zczm (20) + “hz ] (1.105)
Com (2a0) is characteristic values of Mathieu function
2()m2 + 7 4
Q(am) (200) = biam) (2c —Am?+ ———(20)* + 2cv
m) (20) = bam) (20) 2(4m2—1)( ) 32(4m2—1)3(4m2—4)( )
36m* 4+ 232m? + 29

Mt AsemT (20)° + O ((20)°) (1.106)

61 (4m? — 1)° (4m? — 4) (4m? — 9)

And m=0,1,2,...
In the Hartree units system and where <\/ 2k =w,a = 2D9) the last expression of energy

becomes

1
B3, m) = [n —|m|+1+ \/—CQm (4Dg) + 2D, (1.107)

4

The wave function of our system ¥ (r,8) = r—2 R(r)©(6) is deduced from the angular part
1.35 and the radial part 1.102

20—3 2 2
s, 1 1
by = NGy 220(0), Fy <<@ + Z) _ %, 20+ 3, %) (1.108)

When a? = ,/QZ—Qk e=2%a=1 (L4 /T=4) and
2
n= (—%Cgm (2&) + é_i — 2w Dr thT)

For the potential V4 (r,0) = % [kr2 + (%) QU COS 0} we deduce the energy and wave

function of this case from the energy and wave function of Vig (r,6) when we put D, — 0

SO

1
E4(nr,m) = hvV 2k [n — |m\ + 1+ ZLCZm (20&)] (1109)
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n=2 n=4

n=6 ----- nN=2(35)

Eng---- n=4(338) ----- n=6(53)

Figure 1.27: the non-relativistic energy and the non-relativistic limit of spin symmetry for
(PHO + dipole) potential E, o (s states)in terms of Dy

m=0 m=2 m=4 ----- m=0({55)

Eem- - - m=4(8S) ----- m=6(33)
6.0 [

551

5.0

45}

40
35 \

0.5 1.0 15 2.0

Figure 1.28: the non-relativistic energy and the non-relativistic limit of spin symmetry for
(PHO + dipole) potential Eg ., in terms of Dy
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n,=0,1,2,....,and m=0,1,2, ...

The angular wave function is

1

by = N(%e&i@(a)ﬂ ((a + 1) P 2—2) (1.110)

n = (=5com (20) +3)
We atemted to apply these results to the two-dimensional QR we use the notations of
[[30],[31], [32]]. where the energy is written as

1 4
EQr(n,m) = Iwo ln —|m[+1+ \/ZCZ(m) (6—;;2D9> + A2

Focusing on the effects of the dipole moment on the energies, we see in their expression

(1.111)

1.111 that the main modification is due to the parameter ¢y, which replaces m. So we will

study the effects on these energies through the root term:

1 4 9
)\ce ,se — \/102(711) (ﬁDQ) + A (1112)

And especially through the correction that Dy adds to this value and therefore we will
focus on the dimensionless difference A\ ;. — Ao where \g = /m? + A2 since will give us also

the corrections of the energies in hwg units. The indices ce and se in 1.112 indicate that

the corrections depend on the chosen solution type for the angular equation 1.111.Parameter
values used in our computations correspond to GaAs devices where A = 2, y = 0.067m,,
e, = 12.65 [[30],[31], [32]] and we use the Hartree atomic units . For the energy numerical
values, we have hwy =~ 0.1 ~ 1leV and this means that the energies of the levels considered
in our work (n =1 and 2 and m = 0 and 1) are in the intervals 0.5 to 0.8 eV or 5 to 8 eV
depending on the value of hwy. For D, we choose them in the range 1 to 10 a.u. because it
corresponds to the experimental values of most molecular systems .Because of the behavior
of the Mathieu characteristic values as,, and b,,,, the corrections for the ce states m = 0
and the se states m = 1 are negative, while they are positive for all the other states for
bothce and se solutions (m = 0 states exist only for ce solutions). Their values decrease with
increasing m and those corresponding to ce solutions are larger than those of se ones for the
same quantum numbers (Figures 1.29 and 1.30). These figures show that we can neglect
the modifications for m > 2 as they are 10? smaller than those corresponding to the s-states
(m = 0) and so they give corrections of the order of 1072V or less. Depending on the values
o fhwy mentioned above, the energy corrections for m = 0 are around 103V while those
corresponding to m = 1 are just a little bit smaller for ce states and approximatively equal to
10~%eV for se states.Since these corrections are not the same for the different values of m, the

dipolar term modifies the transition energies between the levels; in(Figuresl.31 and 1.32),
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Age—Ap

0.0010 {

0.0005 |

-0.0005 [

-0.0010

-0.0015F
Figure 1.29: Corrections of ce energies in Awy units form = 0,1, 2

we give as an example the effects on the transitions (n,1) — (n,0) and (n,2) — (n,1). Note
that the presence of the dipole term increases the transition energies by more than 1% in the
case of (n,1) — (n,0) while it decreases that of (n,2) — (n,1) by about 0.1%; this concerns
ce states. Regarding the se states, its presence increases the energy of the (n,2) — (n,1)
transition by less than 0.04

From 1.112, we see also that the corrections increase with the ratio p /e, and thus they are
more pronounced for the compounds Ga;_, Al,As,since the effective mass for these materials
is given by the formula p = (0.067 4+ 0.085x)m,. with x real [47]. We show in (Figures
1.33,1.34 and 1.35), these changes for z = 0.3 used in [[43], [47]] and also for the parameters
of CdSe p/e, = 0.13/9.3 studied in [42].We observe that the dipole corrections are 2 times
greater for the Ga;_,Al,As than for the GaAs and they are 7 times more pronounced than
the latter in the case of C'dSe

For the effective potential of this case pseudoharmonic plus dipole (Figuresl.46 to 1.49)
we not that all states are confemed by the oscillator and the bounded stats not affected by
the dipole potential or kratzer potential whoever the energy level or the momentum of this

stats

Case 3: V5(r,0) =p |[-Z + 5 + 5 (%) (asin® @ + Bsin g + ) cos ™ 9]

this potential at limit becomes what is called ring-shaped potential and its variations in terms
of r and 0 are shown in the graphs of (Figuresl.5 and 1.6)
For this case the angular equation 1.16becomes
d*0

T (asin® @ + Bsing + ) cos 2 00 — Ey© = 0 (1.113)

We make the following substitutions: y = PSTM and © = y”(1—y)?T in the last equation
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}:"SE_J"

0.00005 |

0

~0.00005 |

-0.00010 |

-0.00015 |

~0.00020

Figure 1.30

Mg

0.2385 |
0.2380 |
0.2375 [

02370

0.2365

: Corrections of se energies in hwq units for m =1, 2,3

4 B
— (n,1)=(n,0)

Figure 1.31: Correction of the transitions (n,1) — (n,0)in fuw, units for ce solutions
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e(n,2)-e(n,1)
0.5926 —
0.5924
0.5022
0.5920
0.5918

0.5916 |

Figure 1.32: Correction of the transitions (n,2) — (n, 1)in hwg units for ce and se solutions

Ape—Ag(m=0)

~0.001f

~0.002} o
~0.003f *.
~0.004 *a

~0.005f

~0.006 [ "

Gafs - - - Gau_?ﬁm_gﬁﬁ ————— CdSe

Figure 1.33: Corrections for some materials of ce energies in hwg units for m =0
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.-"-SE_.-"-D|m=-1|

-0.0002

-0.0004

T
#

—0.0006 |

T
#

~0.0008 |

Gads - - - Gag7AlgsAsS - ---- Cdse

Figure 1.34: Corrections for some materials of ce energies in hwg units for m = 1
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Figure 1.35: Corrections for some materials of ce energies in hwg units for m = 1
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,50 we have to compute all parts of the equation by the new variable
1—siné . . 9 2
y:T:>sm9:1—2yz>sm 0= (1-2y) (1.114)
And
cos? 0 = 4y (1 —y) (1.115)
The first derivative of © with respect to  is
5 _ _cos0dS (1.116)
do 2 dy
The second derivative of © with respect to 6 is
0 1-2ydo d*e
— = — 1—y)— 1.117
P > +y(l—y) 07 (1.117)
The first derivative of © with respect to a new variable y
de dTr
— = (py" "1 —y)" —oy’ (1 —y)" T +y°(1 —y)"— 1.118
iy (py" (L= y)" = oy (L —y)7 ") T+ y'( Oy (1.118)
The second derivative of © with respect to a new variable y
d2@ p—2 o p—1 o—1 o) o—1
; [(p(p =Dy (1 —y)" = 2p0y (L —y)"  +o (0 =)y’ AL —y)" ") +] T
dy
_ - N , A>T
+2 (py" (1= y)" — oy’ (1 —y)7™) PR A 2 (1.119)

By substituting the results 1.114to 1.118 in equation 1.113we find a new angular equation

2T T 4y [(a (1 =29)°) + B(1—2y) +7) (dy (1 —y)) "~ Ep] ©=0

20 1—-24dOe
y(1—y) vee

(1.120)
By using the equations 1.118 and 1.119the equation 1.120 becomes
d*T - 1—2y dr
p+1 1 — o+l — 9 P(1 — o+l _ p+11_ P(1 — )| =—
AT s (py"(L=9)"" = oy (1 =) ) + —5—v"(1 =) "
[ (py (1= y)7 —oyP(L—y)" ) +
(p(p—Dy (1 —y)™ —20py"(1 —y)7 + 0 (0 — 1) y*" (1 — y)7) (1.121)

+ (= (a(l=29)" + B (1 —2y) +7) 4y (1 —y)) " = Ep) y*(1 - y)°] T =0
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We divide the equation 1.121 on y”(1 — y)? we find

v+ (pa-n-or-4) L
! _22y (py ' —cl=y) )+ (plp—Dy ' (1—y)—20p+0(c—1)y)
+(—(a(@=29)*+B(1—2y)+7) 4y (1 —y)] > = Ep)] T =0 (1.122)

When we take '
p= Z+Z—l(1+4a+4ﬂ+4”y)1/2 (1.123)

1 1
o = Z+Z(1+4&—45+4’}/)1/2 (1'124)

Thus the equation 1.122 becomes

d*T 1 ar 1
1—y)— 2p+=) —(2p+2 1 — — = (—2F —a)T=0
y( y)dy2+K p+2) (20 + 20 + )y] a0 5 ( +p+o+poty—a)
(1.125)
The last equation is a hypergeometric equation type and its solution is hypergeometric
function [3][36] :
1
T=F (2,0, 20, (2p + 5), y) (1.126)

From the asymptotic behavior of the confluent series (r — oo = F' = 0) which lead to

T — 0 when r — oo we find the general condition of quantization :

20=—-m,m=0,1,2, ... (1.127)
We use 1.123,s0
1 1
2p+m:O:>m+§+§(1+4a+4ﬁ+4fy)l/220 (1.128)

From 1.124 and 1.128 we find

1 1
20 =m+1+(1+4a+45+ 49)1? (1 +4a— 45+ 4y)1/? (1.129)

And

11
2+ 5 = 5(1+4a+45 +47)2 +1 (1.130)
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So we can write the hypergeometric equation as

1 1 1
T = F(—m,m+1—i—5(1—1—404—1—46—1—47)1/2—1—5(1+4a—4ﬁ+4fy)1/2; 1—1—5(1—1—404—1—45—1-47)1/2; Y)
(1.131)

From the form of the hypergeometric equation
1
dpo = —5[2E9+p+0+4pa+’y—a] — 8po = —2FEy—p—o0—4poc—v+a (1.132)

This require that

11 1 2
Ey=a—|m+g+7(1+4a+45+ 4% 4 T +d0— 48+ 4y)1/2 (1.133)
m=1,23,..
Which is the angular energy
We find the angular wave function when we substitute the function 7" in equation © =
y'(1—y)°T as

1 1
O(y) =y (1—y) F(—m,m~+1+ 5(1 + 4o+ 45 + 49)? + 5(1 + 4o — 46 4 49)V2

1
1+§(1+4a+4ﬂ+4fy)1/2;y) (1.134)

1—sinf

We use y = —5

,SO

o= (1) (11300

—m,m+ 14 2(1+ 4o+ 48+ 49)"% + (1 + da — 48 + 49)V/3;
F (1.135)
1+ 2(14 4o+ 48 + 4y) /2, 1=siné

We substitute the constant of separation Ejy 1.133 in the expression of the energy 1.64 we

find the final expression of the energy of the system as

37172
wH

11 1 > ouD,
\/—a+{m+§+Z(1+4a+4ﬁ+4fy)1/2+Z(1+4a—45+4y)1/2 + ’;2

(1.136)

n,=0,1,2,....,and m=0,1,2, ...
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We deduce the wave function of our system 1 (r,6) = r~2 R(r)©(#) from the angular part
1.135 and radial part 1.59

_ NV Eer 2R \/ (1—81110) <1+sin9>g

1 2M2D p2H \/ 2u2D \/ 2uE
Fy Ey+ 14 2y/—F —
(2 \/ 0t e o\ 2 E * T ]

—m,m+1+ (1 +4da+48 +49)V2 + 1(1 + 4o — 4B + 49) V3
F (1.137)
1+ 2(14 4o+ 48 + 4y)1/?; 1=giné

When p=1+1(1+4a+48+47)Y? and o = 1 + 1(1 4+ 4da — 48 + 47)"/?

For the potential Vg (r,0) = p [—% + % <%) (a sin? @ + Bsin 6 + ”y) cos 2 9} we deduce
the energy and wave function of this case from the energy and wave function of V; (7, §) when
we put D, — 0 so

The energy of system is

H
E, = -2 [2n, +1+2

-2
11 1 2
\/—a + [m +g+ 1(1 + 4o+ 46 + 4y)1/2 + 1(1 +4a— 40 + 47)1/2} (1.138)

And the wave function is

Yy = Npd VT, VT (1 —sinﬁ)p (1 +sin9)"
1= 1

2 2

1 urH RS 2uk
VA —E 14+ 2y —Fy, 24/ —

—m,m+ 1+ (1 + 4o+ 48 + 49)Y2 + L(1 + 4o — 4B + 4y) V3
F (1.139)
1+ 2(14 4o+ 48 + 4y)1/?; 1=siné

When p=1+1(1+4a+48+47)Y? and 0 = 1 + 1(1 4+ da — 48 + 47)"/?

Case 4: V;(r,0) = p [kr® + &5 + 5 (%) (asin® @ + Bsinf + ) cos™ 9]

We substitute the constant of separation Ejy 1.133 in the energy expression 1.101 ,we find

the final expression of the energy of the system as
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E = h/2k 2n, + 1+

1 1 1 > 22D,
—at mA g 1(1 + 4o+ 46 + 4y)1/2 + 1(1 + 4o — 45 4+ 49)1 2| + = (1.140)

n,=0,1,2,...,.andm = 0,1, 2, ...

We deduce the wave function of our system 1 (r, ) = r~2 R(r)©(#) from the angular part
1.135 and radial part 1.102

A k12
2h

D=

e

1.1/ p 2H22Dr
be= N 1—sinf\” /1+sin6 Ur_ N/ 2kr? Ok o
5 2 2 h

1 1 2u2D, E 22D, pv2kr?
Fil=+4+=\/—-FE — 1 —F, X
1<2+2 TR oy VT T TR Ty

—m,m+ 1+ (1 + 4o+ 48 + 49)V2 + L(1 + da — 4B + 4y) V3
F (1.141)
1+ 2(144da + 48 + 4y)Y/2; Lsinf

When p =1+ 1(1+4a+48+47)Y?and 0 = 1 + 1(1 + 40 — 453 + 47)*/?

For the potential V5 (r,0) = u [/{:7’2 + % (%) (a sin? @ + Bsin 6 + ’y) cos 2 0] ;we deduce

the energy and wave function of this case from the energy and wave function of the last case
above when we put D, — 0 so

The energy expression is

E = 2k 2n, + 1+

1 1 1 2
\/—a + [m +5+ 1(1 + 4o + 483 + 4y)1/2 + 1(1 + 4o — 46 + 4)1/2 (1.142)

n,=0,1,2,...,and m=0,1,2, ...

The angular wave function is
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Figure 1.36: V. of( Kratzer+dipole) potential in terms of r for m =0, D, =1 and Dy = 2

D=

1—sinf\” /1+sinf\° _
e () (F)

1 1 E vV 2kr?
1F1<5+5V—E9——1+V‘E9’“ h)

e 2 X
h

1+1V=Ey
(u\/ri2)4 2V e

2h/2k’

—m,m+ 1+ (1 + 4o+ 48 + 49)Y2 + L(1 + da — 4B + 4y) V3
F (1.143)
1+ 2(1+ 4o+ 48 + 4y)1/2, 1=gnd

When p =1+ 1(1+4a+48+47)"? and 0 = 1 + 1(1 + 4o — 48 + 47)'/?

Regarding the caseb to casel0 the solution of angular equation is obtained by the same
methode of the case3 and cased as a solution of hypergeometric equation and the angular
part of wave function is found as hypergeometric function ,the energy expression and the
radial part of wave function is a same of case 1 for kratzer potential and is a same of case2
for pseudoharmonic potential, the results are shown in the (T'ables 1.1, ...,1.7) below and the

detailed calculation is provided in Appendizl

1.3 Relativistic Studies of 2D Non-Central Potentials

1.3.1 Introduction

In quantum mechanics, it is well known that the Schrodinger equation plays important roles
for describing the behaviors of a particle at the microscopic scale. However, when the relativis-
tic effect becomes important, the Schrodinger equation should be replaced with relativistic
wave equations, i.e., the Klein—Gordon equation for spin-0 particles and the Dirac equation

for spin-1/2 particles, Recently, many researchers have been working on the exact solution of
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Lf(9) [ Es
(%) o cosf _};C2m (2cv)

11
o — [m+§+1(1+4a+45+47)1/2
(%) (asin® @ + Bsin g + ) cos ™

1 2
+Z(1 +4o — 458+ 47)}

1 1
[m—i—— +—(1+16a)1/2] — 43*
" , 0 0 2" 2
(W) o tan §+5tan§+7 a—5— 1 5
4 —+—-(1+1
{m+2+2( + 604)]
I 1 1/2 2
m+ -+ = (1+16a)""| — 45
. , 0 0 2" 2
(W) a cot §+ﬁcot§+’y a—y— 1 5
4{m+§+§(1+16a)}

4
[(1 tda) P p 14 Zm] 4B

2
4 [(1 +4a)? + 1+ Qm]

(%) (atan®@ + Jtan6 + ) a—y—

Table 1.2: The 2D constant of separation
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Figure 1.37: Vs of( Kratzer+dipole) potential in terms of r for m =1, D, = 1 and Dy = 2
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| © )

Mathieu function

h2
2p

2) (asin® @ + Bsinf + ) cos ™

I

1—sinf\” /1+sin6\’ :

2

)

2

0 0
(222> (atan2§ + Btan = —1—7)

2

—eP(1 4 ) F (2,0, 20,(2p+ 1); —eie)

0
h2
(W) (a cot? 2 + [ cot

2

)

(_1)ip+1 6ip6’<1 _ ei@)oF <2p’ 20_7 (2,0 + 1)’ ei@)

h2
242

) (atan®@ + Stand + )

(14 €%%) (—e**)7F (2p,20,1 + (1 + 40)'/%;1 + €%7)

Table 1.3: The 2D angular part of wave function
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Figure 1.38: V. of( Kratzer+dipole) potential in terms of r form =1,D, =1 and Dy =5
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Lf(9)

I

[ o

(%) (awsin®6 + Bsinf + v) cos ™2

11
Y Z(1+40muw+zw)1/2

1 1
Z—i— Z(1+4a—4ﬁ+4’y)1/2

2 0 0
hZ 22 Z
(2u2> (atan 5 +Btan2 +fy)

p=(—Ep+a—if—n7)?

—_

1
o=5+50+ 160)!/2

(]

2 0 0
hZ 22 Z
(2#2> (acot 5 + (B cot 5 +’y)

p=(—Eg+a—if—)?

—_

1
o=5+5(1+ 16a) /2

(]

(%) (atan? 0 + Btanf + )

—_

—(1 +4a)'/?

-
22

1 .
5(—]59 +a—if—v)"?

Table 1.4: The parameters of 2D constant of separation
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Figure 1.39: V,;; of( Kratzer+dipole) potential in terms of r for m =1,D, =1 and Dy =7
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[ V() | R(r) [ A E
H D 2
= 2u° D, 2uF
~ | Nt LBy (—n,, 20, 267) Ly —Ey+ “h2 - ’;2
A _— . 2E
r Nrr € 1F1 (_nra 2)‘7 QBT) 2 + v _EG - 2
1 V1—4\ r2
S A
(g)z e W 1 242D h
12D,
D, Eo+ - — —
kr? + - o 4 R? 2k
r o  VITT
141 T 9 7/82
1 v1—4\ r2
. S A
N’r <Z> 2 2 € 2/62 X
5 g 4L h
kr? 0Ty 2k
Fl-n,1+ —m - '
111 " 2
Table 1.5: The radial part of 2D wave function
[V(r) | En. |
H D 3772 -2
= H 2uD,
el —2”7 <2nr+2 _E,+ ’;2 +1)
3H2 _
H — b (2, 2V=E + 1)
-
D 2
24 " 2u°D,
AT | AR |2n 4 14 [ —Ee+ T ]
2
b W2k [2n, + 1+ V=

Table 1.6: The 2D energy expression
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| V(r0) | ¥(r,0) |
_H D fO)) | N re B (<np,20,26r) O (0)
H r r2 r2
e q, 70 Nr*=2e=#7 [ Fy (—n,, 2),287) © (6)
r r2
1 V1I—4)\ 42
9t T 9 o VI—4)\ r?
D, 0 1(ry2 2 23 _ vi—4r
Iu(kr2+,r_2_’_f:2)> NT’ (B) (& 1F1 n,«,l—l— 5 762 @(9)
1 V1I—4)N 42
s vios=A ,
-1 T2 2 252 B 1—4)\ r
Goe®) G i (s S e

Table 1.7: The 2D wave function
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Figure 1.40: V,; of( Kratzer+dipole) potential in terms of r for m =2, D, =1 and Dy = 2
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Figure 1.43: V.s; of( Kratzer+dipole) potential in terms of r for m =3, D, =1 and Dy = 2
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Figure 1.44: V_;; of( Kratzer+dipole) potential in terms of » for m =3, D, =1 and Dy =5
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Figure 1.45: V.5; of( Kratzer+dipole) potential in terms of  for m =3, D, =1 and Dy =7
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the Dirac equation with different non-central potentials [48] [49] [50] [51] [52],but there are no
analytical solutions for the Klein-Gordon and Dirac equations for this potentials,then both
equations reduce to the same Schrédinger type equation if we consider the cases of spin and
pseudo-spin symmetries The near realization of these symmetries may explain degeneracies
in some heavy meson spectra (spin symmetry) or in single-particle energy levels in nuclei
(pseudospin symmetry) [53] [54] [55]. The spin and pseudospin symmetries are SU(2)-type
symmetries of a Dirac Hamiltonian. They have been studied since 1969 in quasidegener-
acy. Besides, these symmetries were considered in the context of deformed nuclei [56], the
superdeformation [57] , the magnetic moment interpretation [58] [59] , the identical bands
[60][61][62] [63] and the effective shell-model coupling scheme [64] . These symmetries were
also used to study the relativistic theory of both central and ring-shaped Kratzer potentials
[65][66].and the relativistic effects of a moving particle in the field of a pseudoharmonic oscil-
latory ring-shaped potential under the spin and pseudospin symmetric Dirac wave equation
[67]

1.3.2 Klein-Gordon Equation

The stationary Klein-Gordon equation for a single charge ¢ in both scalar S(7")and vector

U(7") potentials is written as:

[c2p2 —(E-UT))* + (uc® - S(?))Q] (7)) =0 (1.144)

Spin or pseudo-spin symmetry are defined by the relation S(7°) = +U(7) , we substitute

it in equation 1.144,so
2 = (B = U(T) 4 (ue = +U(7))*| (7)) =0
The wave equation 1.144 reduce to the following second order equation:

[p* —2(E£pc®)U(T) — (B* = 2] (7)) =0 (1.145)
The equation is easily written as a Schrodinger equation with the transformations:
E _ N E? 9
(Eil)U(r)ﬁU(T)and—(——uc)—>E (1.146)
We dived the equation 1.145 by uc? ,we get

[@ _9 (£ + 1) U(T) — (ﬁ _ M02>} V(7)) =0 (1.147)

juc? pac?
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The equation is easily written as a Schrodinger equation with the transformations:

<% + 1) U(7) — U(7)and 5 <— — ucQ) — B (1.148)

So we use the last transformation we find following equation

P o) - 7) =
(ﬁ 20 (7) 2E)¢( ) =0 (1.149)

When we divide the equation 1.149 by 2 ,we find the Schrédinger equation

{ﬁ —(U(T)+ E)] Y(T) =0 (1.150)

Here we get a system where the potential depends on the energy. These energy dependent
potentials have been considered for a long time when the relativistic effects began to be taken
into account in quantum physics [68][103][70] and recently a lot of works are devoted to this
type of potentials [71][72][73]

1.3.3 Dirac Equation
We consider now the stationary Dirac equation:
[c@P + B (pc® +S(7)) = (E-=U(T))] (7)) =0 (1.151)
We use the Pauli-Dirac representation:

7 = —ihv (1.152)

_ 0 o
a=\ _ (1.153)
c 0

I 0
B = ( 0 ) (1.154)

where 7 is the vector of Pauli matrices and I is the 2 x 2 identity matrix.

We write the wave function as a two component vector of the Pauli-Dirac representation:

(7) = ( Mi; ) (1.155)

x(

We substitute the Pauli-Dirac representation of the wave function in Dirac equation 1.151
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0T o (T L 0 I W L
(7 0>p<x(7’)>+<0 f)(x(?)>(“ +5(7)) = (B -U( >)<x<7))
(1.156)

And we obtain two coupled differential equations:

o -px(T)=[E-U(T)—pc®—=S(7)] o(7) (1.157)
o - Po(T)=[E-U(T)+pu?+S(7)] x(7) (1.158)

If we consider spin symmetry, where S(7°) = U(7") , the equation 1.157 and 1.158 become

respectively:
o -px(7T)=[E-2U(7T) — puc?] o(7T) (1.159)
o - Pe(T) = [E+ pu?] x(7) (1.160)
Thus NN
— co-p -
1.161
X(F) = (™) (1161)

We substitute 1.161 in equation 1.159 we find a second order equation

(PP +2 (B4 p®) U(T) — (B> = )] o(7) =0 (1.162)

In the same way, using pseudo-spin symmetry relation S(7°) = —U(7) , the equations

1.157 and 1.158 become

o - Px(7T) = [E—puc®] o(T) (1.163)
o -po(T)=[E=2U(7)+ p?] x(7) (1.164)
Then 1.163 requires
co -
) = T 1.1
o) = L) (1.165)

We use the last equation 1.165, the equation 1.163 gives

(P> +2(E+pc®) U(T) — (B* — )] x(7) =0 (1.166)

We note that the two equations 1.162 and 1.166 are equivalent to the equations 1.145.
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1.3.4 Solutions of Schrédinger Type Equation
The Spin Symmetry Case

The Schrodinger type equation for the spin-symmetry case is:
(P> +2(E+pc®) U(T) — (B* — pi*c")] (7)) =0 (1.167)

With the potential energy:

f(0)

U(r) :p{ 2 +V(r)} (1.168)

We use the polar coordinates and the same transformation as before ¢ (r, 8) = r~2 R(r)©(6)
to get two separate equations:

To get two separate equations,the equation 1.167 becomes

[—02712 (82 10 107

i (v oo +age) 2 () (10 + 5520 ) ()|

r 2R(r)©(0) =0 (1.169)
From the non-relativistic case we fond

8_¢_1

5, = 57 *R()6() +r7F— —6(0) (1.170)
821/) - 3 _g _%aR(T) _% 82R(T’)
53 = |37 TRO0) — r 3= 26(0) + 1 e(0) (1.171)
And
5 _ r—%R(r)a2@(9) (1.172)

Fra 00>

We substitute the derivatives in equation 1.169,thus

= [r—é T e0) + 1t Rir)O) + %r—%R(T)aa@e@] T
[2 (E+ uc?) (uV(r) + W;ge)) — (E* - ,u204)} r_%R(T)@(H) =0 (1.173)

We divide by %Tr‘g we find

& P 6(0) + {r00)] + {——4“2 iy ry 4 2 <E;g2“2‘f“>] PR(r)O(8) =
R 220 | AP EL ) o piyo(e) (1.174)

06? c2h2
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Then we divide by R(r)©(0) we get

% [(r262£g7“> + iR@«)) + (——4“2 (52; M) () 4 2L = “2c4>> rzmr)] _

1 [ 0*e(0) | 4 (E+ puc?)
o) | o R2c2

f(@)@(é’)} (1.175)

We put the right part and the left part of equation 1.169 equal —Fjy ,we deduce two

equation

1 [_ 020(0)  4u? (E + pc?)

o) | a6 22 f(9)@(9)} = —Ey (1.176)

(PR )+ (D Gy 2 e | -

R(r) or? 4 h2c? h2c?
(1.177)
Thus ,the separate equations are
d*0(0) 4p? (E + pc?)

{diigr) n %2 (}1 + Eg) R(r) + (—va = (E;2;2M264)) R(r)} (:1.179)

Now we solve this equation with the same method of the non-relativistic case

1.3.5 Relativistic Energy and Wave function (Applications)

Solution of Angular Equation The angular equation of non-relativistic case is

di;g” _ (Eg + Qh—’f f(e)) o(0) = 0 (1.180)

The angular equation of relativistic case is

2 2 2
{d 5)929) _ (4“ (52; 1) b + Eg) @(9)} ~0 (1.181)
We note that the angular equation of relativistic case is the same of nonrelativistic
case when we put the following changes £ — (EL—SQCAL) and f(0) — 203:#2) f(0),s0 the
parameters of f(6) change from (o, 3,7) to (5 (E + pc?) a, % (E + pc®) 8, % (E + pc?)v)
So the angular energy and the angular wave function of relativistic case are the same of

non-relativistic case with change of the parameters

(. 8,7) to(Z (B + pc®) o, 5 (B + pe®) B, 5 (E + pc®) ) respectively
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Solution of Radial Equation The radial equation of non-relativistic case is

% + KEQ + i) Tl Ay 4 2’};]3} R(r) =0 (1.182)

The radial equation of relativistic case is

B0 (o) (2 S ] o

We note that the radial equation of relativistic case is the same of nonrelativistic case
2_,2,.4 2 E 2 3 .

when we put £ — (EC—;”) and V(r) — %V(r),so the radial energy and the radial

part of wave function of relativistic case are the same of non-relativistic case with change of

the parameters
(, 8,7) to(F (B + uc®) o, 5 (E + pe®) B, 5 (E + pc’) )

The Energy Spectrum and Wave Function of the System We use this transformation
to write the energy and wave function of relativistic case as

For the kratzer potential

—2
(E? — uch) 13 (E + pc?)® H? 4u (E + pc?) 1
R . Mt A —Eo+ 52Dyt (1.184)

For the pseudoharmonic potential

c? c? h? c?

E2— 2.4 E 2 4u (B 2
( uc):h 4( +’uc)k<2nr—|—1+\/—Ee+—uMDr) (1.185)

The constante of separation FEjy in relativistic case for all studied potentials , the an-
gular part of wave function ,the radial part of relativistic wave function are shown in the
(T'ablesl1.8, ..., 1.13)

The Pseudo-Spin Symmetry Case

The Schrodinger type equation for the pseudo-spin-symmetry case is:
[p* +2(E = pu®) U(T) — (B> = i’ (7)) =0 (1.186)

Following the same procedure as that of spin case when just take F — puc? instead of
E + pc?,in this case when we take the non-relativistic limit we substitute the energy E by

the non-relativistic energy £, ,,, = £/ — pcso B = E,m+ uc?
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SHD ce

Figure 1.46: V.; of (PHO+dipole ) potential for m =0, D, = 1 and Dy = 2

The Schrodinger type equation of the pseudo-spin-symmetry becomes

[PD* + 2(Eppm) U(T) — (B2, + 2Epmpc®) ] (7)) =0 (1.187)

The las equation can be writen as

Enm
{CQpQ +2(Bm) U(T) — 2B, ppuc? (QM*CQ + 1)} o(7)=0 (1.188)

We divide by 2uc? we find

U(T) — Epm (% + 1)} o(T)=0 (1.189)

2 E
p_ + n,m
[2u pac?
The non-relativistic limit is obtained by neglecting the term F,, ,, beside the factor 2uc?

so we obtaine the Schrédinger equation of free partical
p? .
— —FE,m =0 1.190
L= B o) (1.190)

We note that the last equation is the equation of free partical and this equation does not

give us any information on potentials

The potential V; (r,0) = u [—% + 55+ <%) (e cos 0)]

We substitute the transformation above in the nonrelativistic energy 1.65 and wave function

1.67 we get the expression of the relativistic energy and relativistic wave function as

The relativistic energy equation is
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100{H

Figure 1.49: V,; of (PHO+dipole ) potential for m =2, D, =1 and Dy =5
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1 (E + pc?) 4p (B + pc?) 1
(nr + \/ZCZm (40—204 + ﬁC—2DT + 5 (1.191)

n,=0,1,2,....,and m=0,1,2, ...

The relativistic wave function

by = Nr*"3e=70 (0), F (A “hfz (E:;“C ) g1, 2/\,2ﬂr> (1.192)

[ am (B2
When 5 = 72 2

and \ = = + \/-sz (4M ) + 4u (E-i-ucz)D

c2

The electric dipole plus kratzer potential is our contribution [74] for this reason we illus-

trate it in naturals units ,when we can take the following changes H = mO hQ D, = 4(715(:“7 a=
2’;‘16? 2,0 = e,Q = Ze ,then the angular and radial equation becomes

d*©(0) (E + pc?)

|: d02 — QWeDg cos + Eg @(9) =0 (1193)

d*R(r) (E + pc?) 1\ 1 (E + uc?) .1 (E? — 2t
i [(E T2 e D) et e et e | i =0
(1.194)

We used the non-relativistic energies F + puc? and we denoted them F,, ,,, the constant of

separation Fjy becomes
1 (Enm + 2p¢?)
Ey = _Zcm (4T€Dr (1.195)
We substitute the constant of separation in the relativistic energy expression 1.191 ,we find

the final expression of energy of the system as

((En,m + )’ u264> - K 22 )

e (B + 252) 222
-2
(Enm + 20c?) 1

We extract Eyfrom equation 1.196 we find
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2
(Epm + 2uc?)
h2c?

Eym + e
\/M 4 — (Bym + pic?)’

1
Ey=2 eD, — | n— |m|+——Za (1.197)

Where a = —e? is the fine structure constant
The non-relativistic limit is obtained by neglecting the term F,, ,, beside the factor 2uc?
in equation 1.195,

1
By = —Zm <8 eD ) (1.198)

hZ

then we replace the last equation in 1.197 and we get the energy expression as

2

A

B = —2uc a (1.199)
n—|m|+/—Ey +45eD, + 5

use the Taylor series according to a?:

27 4
Ep = — SuctZ o’ + R2ucZa 2+O(0z6)
(n—|m|+ /—Ey +45eD, + ) (n—|m|++/—Es +45eD, + 3)

(1.200)
We use the Hartree units (h = e = p = 4mgy = 1) for the numerical computations the

equations 1.197 and 1.195 become :

1

Ey = = com (4(Epma” +2)Dy) (1.201)
2

E,m 2

Ey=2(Epma® +2)D, — | n+|m| — = — Za ol + (1.202)
\/ 1— (Epmo?+1)°
And the non-relativistic limit becomes(Z = 1):

2 8a?

En,m:_ 2+ a 2+O(CY6)
(n =l +/tern 8D) +4D, +8) (n— pml 4 /e (8D,) + 8

(1.203)

We see here that 1.203 differs from 1.74by a factor of 2 in front of the dipoles moments Dy
and D,.. This factor comes from the addition of scalar and vector potentials in spin-symmetry
case which gives a Schrodinger equation with a potential 2V instead of V' in ordinary theory

[100],[101] . We cannot solve the system of equations 1.201 and 1.202 analytically because



64 CHAPTER 1. STUDIES OF TWO DIMENSIONAL NON-CENTRAL POTENTIALS

E
0.5 1.0 15 20 25 2.0 L

_l:l_z:""pl-’"‘I‘”[l‘""’ . [3,1)

[ . 21)
_|:|_4: “‘,,111-14.,“‘ "

f B * . .
-06}F L]
-0.8 . A1)

Figure 1.50: Relativistic energy E(n,1) in terms of Dy for D, = 0.3 and n = 1,2 and 3

Mathieu characteristics don’t have inverse functions. Nevertheless, this system can be solved
using graphical methods by seeking the intersection points of the graphs representing the two
equations.equation 1.202 shows that Fjyhas an inverted and non-symmetric parabolic shape
and the intersection point with the plots representing 1.201 can not exceed its maximum;
This limitation gives the critical dipole moments for each quantum numbers. Unlike the
non-relativistic case where D.,.;; depends only on the value of m, its values here are weakly
dependent on the other quantum number n. This dependence on n comes from the presence
of the energies En,m with D in the angular eigenvalues 1.201 and these energies depend on
n as can be seen from 1.202. The weakness of this dependence comes from the presence
of the factor o® with E,,,,. The study of the dependence of the energies according to the
values of Dy shows that this moment increases the energies of the system to a maximum
value and then its effect is transformed into a decrease thereof; This shape follows that of
the cs,, and it is common to all levels but decreases with increasing n. The effect of D,can
be summarized in a shift of the energies to larger or smaller values depending on its sign
(Figures1.50 and 1.51). We mention here that the non-relativistic approximation 1.203 can
be used as a quasi-analytical solution since it gives results in excellent agreement with those

computed numerically (Figure 1.52).

For the pseudo-spin symmetry case following the same procedure as that of the spin case,
we end up with two relations that come from the eigenvalues of radial and angular equations.
We find the following relations for the nonrelativistic energies of the system E,, ,, = F — uc?
(In Hartree units):

Ep = —i@m (4B, ;ma” Do) (1.204)
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Figure 1.51: E(2,1) in terms of Dy for D, = 0,0.3 and 0.6
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Figure 1.52: Relativistic and Non-Relativistic energy F(1,1), £(2,1) and E(3,1) in terms of

Dy for D, = 0.3
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1.0

Figure 1.53: The wave function ¢ (r, #) in terms of Dy and D,

2
E,ma?

1
Ey =2E,,a’D, — | n—|m| - = — Za
V1= (Buma? +1)°

2

(1.205)

The main difference between these equations and those of the spin symmetry case (1.2011.202)

is the absence of factor 2 in front of the a*term. This means that the graphs representing the
radial solution 1.205 are almost linear and that the parameter p inside the Mathieu charac-
teristics 1.204 is very small. Our calculations show that we have to consider very large radial
moments (Dr > 100 a.u.) to find solutions higher than —200 a.u.. These results are outside
the regions of interest for the energies of the atomic systems and support those of works that
consider only the case of spin symmetry in their studies,[101],[102] .

In the non-relativistic case, the spectrum shows that the energies follow mainly the be-
havior of Mathieu’s characteristic parameters and thus the angular moment Dy, whereas the
effect of the radial moment D, is merely a shift in these energies to larger or smaller values
according to its sign. We have shown also that there is an essential condition for bound
states to exist, which is: ¢9,,(4Dy) + 8D, > 0. This condition imposes a critical value for
the angular moment Dy, depending on the value of m, otherwise the corresponding bound
state disappears. These critical values of Dy depend also on the value of D, and the negative
value of this moment which makes ¢y,,(4Dy) + 8D, = 0 is also a critical value for the radial
moment. So we see that by increasing, the radial dipole displaces the energies towards larger
values while widening the region of possible values of the angular moment. In the relativistic
cases the eigenfunctions are determined analytically but the energies can only be calculated
using graphical methods. Only the spin symmetry has given results corresponding to atomic

systems. The behavior of the energies is the same as that of the Schrodinger spectrum but
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it is shifted because the Schrodinger type equation of the relativistic systems has 2V as a
potential instead of the potential V' in the ordinary Schrédinger equation. We also note that
the critical values of the dipole moments D, and Dy depend on the two quantum numbers
n and m in the relativistic case instead of just m in the case of non-relativistic systems. We
have found that the angular term removes the degeneracy found in the exp(im#) part of the
solutions for central potentials. This is equivalent to the effect of a constant magnetic field
in 3D systems, where its action removes the degeneracy of the exp(im¢) solutions too. In
both cases, the privileged direction of the interaction (dipole axis in 2D and field direction

in 3D) removes the degeneracy that existed due to the isotropy of the action before.
For the potential Vy (r,0) = % [—% + (%) Qv COS 9} we deduce the energy and wave
function of this case from the energy and wave function of V; (r,#) when we put D, — 0 so

(m + \/}lc2m <4WQ) + %)] (1.206)

(B —p’c') _ i (B pc?)
e Ah2

The relativistic wave function

H2(E + uc®
’%2 ( ;MC)ﬁ_l,L\,%’r) (1.207)

¢2 = NT’)\iéeiﬁr@ (9) 1F1 <)\ +

— 2m (E?—p2ct)
When 5 = 2T 2

2
2y N\ 1/2
[m+;+; (1+16%a) ]432

5 1/212
m+é+§(1+162(’5j+°)a) ]

and)\ = % + | —2AEdpe?) (v — )+

o2
4

The potential Vs (r,0) = [/{:7“2 + 5+ (%) o cos 49]

We substitute the transformation above in the nonrelativistic energy 1.103 and wave function

1.108 we get the expression of the relativistic energy and relativistic wave function as

The relativistic energy equation is

(E — uc®) /(E + pc?) = 2hevk [n — |m| + 1+
S ({2, e

4 c? h? c?

(1.208)

We substitute by the relation £, ,,, + uc? = E,so
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Enmr/ (Epm +2uc?) = 2hevk [n—|m|+ 1+

1 E, o+ 2uc? 4p (B + 2uc?
\/_sz (le@) 4t (B + 20¢%) Dr] (1.200)

4 c? h? c?

by neglecting the term F, , beside the factor 2uc?

2k 1 8
Epm =y [ — . [n —|m|+1+ \/ZCQm (8ua) + :2 D ] (1.210)

In the Hartree units system and

1
Enm = [n —|m|+1+ \/Zcm (16Dy) + 8D, (1.211)

This expression of the non-relativistic energy of the spin symmetry case is defferent by
the number 4 for the contribution of the dipole and Kratzer potential ,the variation of this
energy in terms of Dy and D, is showen in (Figures 1.27,1.28)

The wave function is

(7")2a7% _a? 1 ea® 17
=N-—F—— 2a@9 -] -—,2 - — 1.212
1/}3 (CL)2 € () O[—|—4 47 a+27a2 ( )
12 E?2—p2¢
When az = 2 (Er+uc )k & = ?LM ( c2 )7
( + 1 — )and
, 2 1/2
(Bane?) |:m+é+%<1+16 (E:r—2 )a> ]452 (o)
0= |25 0 ) - oA,

2(E+pc?) 1/2]*
4 m+%+2(1+167“a> ]

For the potential V4 (r,0) = p [lcr + ( >acos 6’] we deduce the energy and wave
function of this case from the energy and wave function of V3 (r,6) when we put D, — 0 so

the relativistic energy equation is

4 c?

(B — puc®) /(B + uc?) = hi2evk [n —|m|+1+ \/lcgm (4M@)] (1.213)

n=20,1,2,...,and m=0,1,2, ...

The relativistic wave function

20—12 2 2
Wy = N(Zl) e*f@(ﬁ) ((a + %) - %, 2 + %, %) (1.214)
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2 2.4
2 B2 . 2li<E —pcc )
When a* = " TN € = 32 2
2
C

(asin2t9 + Bsinf + ”y)
cos?

1/2
2( E+ (:2
|:m+é+é<1+16 ( o )a> ]—452
2y \1/2]°
4[m+§+;(1+162(’5;“)a> ]

The results of the 2D relativistic studies is summarized in the (T'ables1.8, ..., 1.13)

+1

1.4 Discussion

2u2
2D quantum systems in both non-relativistic and relativistic cases. We solved the Schrodinger

In this chapter, we studied some non-central potentials V (r,6) = p [V(T) + % <ﬁ> f (0)} for

equation analytically and studied the relativistic spectrum for Klein-Gordon and Dirac equa-
tions in both spin and pseudo-spin symmetry We note in this chapter that in the 2D space to
find a bond state of a particle moving in noncentral potential and with the presence of kratzer
or pseudoharmonic potential the following condition %Dr — Ey > 0 must be fulfilled this
give as a critical values for the parameters of the noncentral potential and this critical value
influenced by the parameters of the kratzer potential when it can get bigger or smaller.Unlike

212
results .when in the non-relativistic case, the spectrum shows that the energies follow mainly

other potentials, the dipole + Kratzer potential p —% + % + %2 <i> Qv COS 0] , gave good

oL
whereas the effect of the radial moment D, is merely a shift in these energies to larger or

the behavior of Mathieu’s characteristic parameters and thus the angular moment Dy =

smaller values according to its sign. We have showed also that there is an essential condition
for bound states to exist, which is: ¢, (4Dg) + 8D, > 0. This condition imposes a critical
value for the angular moment Dy,depending on the value of m, otherwise the corresponding
bound state disappears. These critical values of Dy depend also on the value of D, and the
negative value of this moment which makes cy,,(4Dy) + 8D, = 0 is also a critical value for
the radial moment. So we see that by increasing the radial dipole displaces the energies
towards the larger values while widening the region of the possible values of the angular mo-
ment.in the relativistic cases the eigenfunctions are determined analytically but the energies
can only be calculated using graphical methods. Only the spin symmetry has given results
corresponding to atomic systems. The behavior of the energies is the same as that of the
Schr”odinger spectrum but it is shifted because the Schrodinger type equation of the rela-
tivistic systems has 2V as a potential instead of the potential V' in the ordinary Schr”odinger
equation. We also note that the critical values of the dipole moments D, and D, depend on
the two quantum numbers n and m in the relativistic case instead of just m in the case of
non-relativistic systems.We have found that the angular term removes the degeneracy found
in the exp(im@) part of the solutions for central potentials. This is equivalent to the effect

of a constant magnetic field in 3D systems, where its action removes the degeneracy of the
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L) | Eo |
(%) acosl —%cm <4<Et#2)a>
2(E;|—2,u02)a_
hZ
2% 11 &2
<”) [m+§+1(1+8(]3j—2”)(a+6+7))1/2+
(asin® @ + Bsinf + ) 1 ( 8(E+uc?) 2
—(1+ 2 (a=B+7))
cos? 4
2( E+pc?
o) (=)
12 1/2 2
2 C C
(5) m—|—§+§<1+32(Et52) > ]—16<<Et§2)5)
0 0 1 1 2
(atan2§+6tan§+7) 4[m+§+§<1+32(13t562)a>]
e
12 1/2 2
2 1 1 2 2
<2“> m+§+§<1+32(E+C—5)a> ]—16<<Etf )6)
0 0 2
1 1
(ot 5 ot ) gy (1 m2iEia)]
22 (- ) -
2 , 1/2 4 , 2
(3) (1+8E2%00) " rzm| — 16 (E2)
2 (Etuc?)\ /2 2
(atan® 6 + Btant + ) 4 (1+8C—§> +1+2m

Table 1.8: The relativistic 2D constant of separation



1.4. DISCUSSION

71

Mathieufunction

(%) (a sin? @ + Bsin 6 + 7) cos 2

2

P N
) <1—|—sm0) F (20,20, (2p + 1); L=sine)

(%) (atan Q ﬁtang—i—fy)

—e(1 4 )7 F (2p, 20,(2p + 1); —ew)

(=) eirf(1 — ) F (2p,20,(2p + 1);€")

VS
‘\’|~r

2 ) (atan? 6 + Btanf + )

(1 + 62i0p) (_

e F (2p,20,1 + (1 +4a)Y/?; 1 + €27)

Table 1.9: The relativistic 2D angular part of wave function

[ o

10+ gy

Case 3 | (—Ep+2 (EtéwQ) (=i =)'

(14 3282) v

1+1
2 2

Case 4 | (—Eg +2<E+MC ) (

a—if—7)?

(1 +3259) iy

1+1
2 2

1 1
C 5 —
ase 2+2

(1 + 8<E+“C ))1/2

— i — )2

1 2
5(—]59 + Q(Ets ) (a

Table 1.10: The parameters of the relativistic 2D constant of separation
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[ V() | R(r) B [ES H
4(FE 2\ 2D B2 — 24
a Dr NTT)\ei/BT 1F1 (_nT7 2>‘a 2BT) : + _EG + ( + re )Iu - _2_5( re )
_t 4= 2 h2c2 7 2
r r2
E2 _ 24
H NP P Py (=n,,20,20r) | A+ V=B A
_z ! »
r
1 v1—4\ r2
vy
r\2 2 2
NT(B> e 28 E+l_4(E+NC2)U2Dr 5
kTQ_'__T 0 4 h202 <E+ 2)
r2 \/7 ) 4 uc 2
1—4\
1F1 (_nTal—i_T;%) C2
1 V1—4X r2
vy
M (£> e h
er 6 E9 +i -
T, J B 1),
Vv1—4
1Fy —nT,l—i——,T— 2
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Table 1.11: The relativistic 2D radial part of wave function
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V(r,0) (E2;52C4)
H D,  [f() S( B e? ) 2H2 -
“<—?+r—2 r? ) - sl [(nrw By + 4 4D, + ﬂ
f(e) 3 2\2 172
w5 T 82 I [, + V= Ey + 1))
D,  f(9)
2 2 2
M(’W ot ) m/Nt#k{znﬁH\/ Ey+ % 4D,
., f(0) :
1 <’W’ T ) fin/ ACHD (20, + 1+ /]
Table 1.12: Equation of 2D relativistic energy
[ V(r.0) | ¢(r,0) [
H D, f(0) )
H T T2 + r2 Nr*=ze " | Fy (—nr,2X,207) © ()
H ) 1
K ” r2 Nri—2e= " | Fy (—nr, 2X,207) © ()

D, f(6) N5t d — 2
(k s 2 * r2 ) Nr—z (%) 2 2 e 2521F1 (—nr,l + ! 5 4>\,%) © (0)
1 1—4\ r?
f(0) St 5 -t -
u(k?"2—|— r2 ) Nr—z (%)2 2 e 2521}711 (_nr71+ 12 4)\,;—22)@(9>

Table 1.13: Relativistic 2D wave function
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exp(ime) solutions too. In both cases,the privileged direction of the interaction (dipole axis
in 2D and field direction in 3D) removes the degeneracy that existed due to the isotropy of
the action before

Also we studied a systemof quantum ring confined by apseudoharmonic potential and
under the effect of a dipolar impurity and we find that The first characteristic of the dipole
term is that it removes the degeneracy present for central potentials; thus the energies depend
on the orientation of the solutions compared to the dipole direction, which broke the central
symmetry by becoming a privileged one. Corrections are more pronounced for ce states and
therefore states whose orientations are in the same direction as the dipole; this is similar to
the dependence of 3D energies on the azimuth number m as soon as we are in the presence of
a Hamiltonian term depending on the direction like a constant magnetic field.Our solutions
generalize the azimuthal quantum number m through the Mathieu characteristic values. The
corrections are larger for m = 0 and they decrease as it increases; this generates a correction
on the transition energies between the different levels and it is more apparent for those
between the lowest ones as (n,1) — (n,0) and (n,2) — (n,1). All these corrections
depends on the chosen materia.Regarding to the relativistic study of pseudoharmonic dipole
we find the relativistic energy take the same non-relative energy curve but with a shift in all

levels



Chapter 2

Studies of Three Dimensional

Non-Central Potentials

2.1 Introduction

counter to two dimensional quantum mechanic the three dimensional quantum mechanics
have used extensively in all fields of science particularly in chemistry and also in nuclear
physics when the non-central potential give arises as a good description of a ro-vibrational
energy levels of the molecules, atoms, and distorted nucleus In recent years many efforts
have been made to solve the Schrodinger equation for non-central potentials in three dimen-
sions like Hartmann potential, The non-central Makarov potential,the Coulombic ring-shaped
potential,deformed ring-shaped potential ,,double ring-shaped Coulomb potential and this po-
tentials is a limits of a non-central potentials of Hautot which mentioned in (T'able 2) On
the other hand, to study these potentials in the relativistic case, and with the difficulty of
solving the Dirac and Klein Gordon equation, many researchers have resorted to the use of

spin and pseaudospin symmetry

This chapter is arranged as follows: in section 2,we focused to the nonrelativistic case
when we write the Schrodinger equation in spherical coordinates for a particle in the pres-
ence of non-central potential and separated it into radial and angular parts, we solve this
separate equations to get the nonrelativistic energy and the nonrelativistic wave function
In section 3 we illustrate the spin symmetry and pseaudospin symmetry limit of relativistic
case when we deduced the relativistic energy and the relativistic wave function,also in this
chapter we focused extensively on ring-shaped potential where we plotted its energy and
we have discussed its variations ,The studied potentials in this chapter are shown in graphs
(Figures 2.1, ...,2.12)

()
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Figure 2.1: V(r,0) = =& + Lr 4 &

Figure 2.2: V(r,0) = -4 + Zx 4 4 (%) (avcos? @ + Bcos + ) sin20 in terms of 7 and 6

in cylindrical coordinates system
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10

Figure 2.3: V(r,0) = kr* + 5 + % (%) (avcos?f + Bcosh + ) sin 26 in terms of r and @

5 T |/
T
10

Figure 2.4: V(r,0) = kr? + &y + & (%) (acos?@ + Bcosf + ) sin~ 26 in terms of 7 and 6
in cylindrical coordinates system
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Figure 2.5: V(r,0) = -2 4 Br 4 L

s e (ﬁ) (acos* O + Bcos? 0 + ) sin~2 6 cos 20 in terms of
r and 0

212

Figure 2.6: V(r,0) = & + Ly 4 & (%) (acos* @ + Bcos? O + ) sin 26 cos™2 6 in terms of
r and 6 in cylindrical coordinates system
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Figure 2.7: V(r,0) = kr* + &y + & (%) (avcos* @ + Bcos? O + v)sin 20 cos™2 6 in terms of

r and 60

T
10

Figure 2.8: V(r,0) = kr* + L&y + & %) (avcos* @ + Bcos? 0 + ) sin 20 cos™2 6 in terms of

r and 6 in cylindrical coordinates system
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Figure 2.9: V(r,0) = =& + Lp 4 & (%) (acot? @ + Bcot @ + ) in terms of r and 6

Figure 2.10: V(r,0) = =& 4+ Ly 4+ & (%) (accot? @ + Bcot + ) in terms of r and 6 in
cylindrical coordinates system
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Figure 2.11: V(r,0) = kr? + &y + % (%) (acot? @ + Bcot @ + ) in terms of r and 6

10

Figure 2.12: V(r,0) = kr? + % + % (%) (acot?§ + S cot + ) in terms of r and € in
cylindrical coordinats system
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2.2 Non-Relativistic Studies of 3D Non-Central Poten-

tials

2.2.1 3D Schroédinger Equation

The Schrodinger equation is written as

[%§A+vuﬂﬂw—Ew (2.1)

When we substitute the potential by its expression the Schriodinger equation of our system
is
—h? f(0)
—A V — =F 2.2
{M +u(<r)+r2 Y=Ey (2:2)

To separate the variables it is better the using of the spherical coordinates (7,6, ) then

the Schrodinger equation is written as

-2 (0% 290 1 9> coth O 1 0? wf(0)
— =ttt ==+ —=+ — =F 2.
{2/1 <8r2+r8r+r2892+ r? 89+7"251n293902)+u U }w e
We put the equation in the more convenient following form:
92 20  2u? 1 [ 0 0 1 9% 2u? 2uk
— - - — — = t0— — — 0 =—
[(87“2 * ror  h? V(r)) - 72 (892 o 90 r2sin?0 0> k2 I/ )ﬂ 4 h? 4
(2.4)

The variables can be separated when the wave function is written as :1) = exp (imep) R(r)0(6),s0
we have to calculate the derivatives of the wave function in new expression

The first derivative of ¢ with respect to r is

oy OR(r)
ar  Or

exp (imyp) ©(0) (2.5)

The second derivative of ) with respect to r is

9% O°R(r)
orz  or?
The first derivative of ¢ with respect to 6 is

exp (imp) ©(0) (2.6)

NI
a0~ a0

The second derivative of 1) with respect to 6 is

exp (imy) R(r) (2.7)

*  9*0(0)
00> Or2
The first derivative of i) with respect to ¢ is

exp (imep) R(r) (2.8)
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g—z = 1mexp (imy) R(r)O(0) (2.9)
The first second of ¢ with respect to ¢ is
0%

o —m? exp (imy) R(r)O(0) (2.10)

We substitute the equations 2.5 to 2.10 in the Schroédinger equation 2.4,we find

T exp (i) 000) + LU0 exp i) 00) + (2~ v () ) ex ) RrYO0)+
(%828(3(20) exp (imy) R(r) + cot 98(320) exp (imp) R(r)—
ng 5 eXD (imep) R(r)©(0) — 2h—ﬂ22 (0) exp (imep) R(r)@(e)) =0 (2.11)

We divide by exp (imy)

{32}2(7«) , LORE) (2/};73 B QH_/fv(r)) R(r)] 0 (0)+

or? r Or
1 [020(0) 00(8) m2 22 B
72[ o o5y _sin29@(9)_ﬁf(9)@(9)} R(r)=0 (2.12)

We divide by R(r)©(#) ,then we find

1 {aQR(r) 20R(r) L2 (E — uV(r)) R(T):| O(0)+

R(r)©®) | or2 r or h2
1 1 [0%0(0) 00(0)  m? 21 )
R(r)©(0) 2 { g2 Teotl—og" = =5 00) — 55 (9)@(9)} Riry=0  (2.13)

And multiplying the equation by r?we get

When we put the right of equation 2.14 equal to Ey we find two equation as

1 [0%°6(0) 00(8) m2 21 B
EI0) [ oz O aeg® Y e f(Q)@(G)} = E,
RET’) {7’28;;{&) + 2T8R(;£T) + 7’2;_/; (E — ,uV(r)) R(r)} =—Fy
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So this give as two equations the radial equation and the angular one

26(0) o)  m? 242

o2 T cot 0 TR sin20@(0) 7y (0)0(0) — Ey©(0) =0 (2.15)
2d2§ny) + 2rd§£T) + 7“2;—‘; (E—puV(r) R(r)+ EgR(r) =0 (2.16)

We replaced the partial derivative 0 with the total derivative d because the functions
R(r) and O(0) have single variable

We have to solve the angular equation 2.15 to find the constants Fy and then we use these
angular eigenvalues to solve the radial equation 2.16, this will give us the energies E of the

system and also the wave function 1 (r, 6).

2.2.2 Non-Relativistic Energy and Wave Function (Applications)
Casel Vi (r,0) = p|-Z +2r 4 & (%) (avcos? @ + Bcost + 7)sin 2 9}

Solution of Angular Equation For this case the angular equation 2.15 becomes

2 2
PO0) | ,d00)  m

dp? do sin? 6

O(0) — (awcos® 6 + Bcosf + ) sin > 00(0) — EyO(0) = 0 (2.17)

We make the following substitutions

v = cos’ <g> (2.18)

And

O=v"(1-0v)°T (2.19)

So we have to compute all parts of the equation by the new variable

0
= 2 — =
U = COS (2)

And

(14 cosf) = cosf =20 —1 = cos?0 = (2v — 1) (2.20)

DN | —

sinf=1— (20 -1 =4(1-v) (v) (2.21)

From the equations above
20 —1
cotfh = — o = (2.22)
2y/v(1l—w)
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The first derivative of © with respect to 6 in term of new variable v is
doe doe
A 1 } = 2.23
do [ vl=v)] (2.23)
The second derivative of © with respect to # in term of new variable v is
d*e 1 al@+ a )d2® (2.24)
— = |z —v v(l—v)— )
do® 2 dv dv?
The first derivative % in term of the new function 7" is
de _ - o - 4T
e (po" (1 —v)7 —ov’(1—0)" ) T +0°(1 —v) o (2.25)
The second derivative flji(;) in term of the new function T is
d?@ p—2 o p—1 o—1 p o—1
T2 [(p(p—D v 21 =0) = 2pov’ (1 =0v)" 4o (c—1)v°(1—0v) ") +]|T
dr d*T
+2 (pv* (1 =) —ov’(1 —v)" ") — 4+ (1 — U)JF (2.26)
v v

By substituting the results 2.20 to 2.24 in equation 2.17 we find a new angular equation
in terms of the variable v

(1- )d2@+ 1_ d@_ _1 d@_
v v dv? 2 v dv v 2/ dv
1

0oy ™ — @1+ 8@u-1)+9)6(0) - BOH) =0 (227)

We use 2.25 and 2.26 we get
v(l—v) [wp(l — w)"% +2(pwr (1 —w)” —owP(l —w) 1) Ly

(0P~ D)wr2(1 — w)” — 20w (1~ )7 + 0 (0 — Dwr(1 - w)™) 4] 7] +

(1—2v) [wp(l — w)”fl—z + (pw" (1= w)” —ow’(1 —w)” ) T| -
1

m(m —a2u—1)"+ (20 - 1) +9)| W (1 —w)'T — Egw’(1 - w)? =0

(2.28)
We divide by v”(1 — v)? we find
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a*T ar
U(l—v)WJr [(2p+1) — (2p+20+2)v]%+

vt —o(l—v) " =2p+200(1—v) +plp—1 v (1 —v) —2p0 +0 (0 —1)v] T—
1

m(m —a(2v—1)"+8Q2v—-1)+7)T - ET =0 (2.29)

And

We get a hypergeometric equation

d*T dr
W+[(2p+1)—(2p+20+2)v]—— E9+2p0+0+2p2+p—a+é]T:O

v(l—wv) 7 5
(2.30)

The solution is hypergeometric function :

T = NoF (=L 1+14+(P+a—B+7)"2+(m* +a+B4+7) %1+ (m* +a—B+7)"%v) (2.31)

And

1
p= LB ra-payp (2.32)

This require that
I 1/2
afz(l +a+B+7) (2.33)
We find the angular wave function when we substitute the function 7" in the equation

O (v) =v°(1 —v)’T as

O (2) = Ngv (1=0)7 F(=L 1+ 14+ (P +a—+7) P+ (P +a+f+7) 2 1+ (P +a—F+7) % v)
(2.34)

We use v = cos? (£),s0

o) e () (1w (2))

0
F(=Li+1+ P +a= B+ + (P +a+B+9)Y51+ ( +a—F+7)"% cos? (§)>

(2.35)

And the constant of separation is

1 1 1 11?
Ey=+o- l—i—§(m2+a—5+’y)1/2+§(m2+a+ﬁ+’7)1/2+51 (2.36)
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Solution of Radial Equation This case is of the kratzer potential The radial equation

2.16 becomes

d*R(r) 2dR(r) [2u 2/ 1 211 1
= E H)-- (%D, -F R(r)=0 2.37
i r +{h2 +<h2 >7~ (h2 9) } (r) (2.37)

To solve this equation we use the following change

p=1/ —;—'[;Er (2.38)

We calculate the derivatives of R(r) in the radial equation in terms of the derivatives with
respect to a new variable p

The first derivative d]Z—E,T) can be write as

dR(r) _ dR(r) dp _ /_S_MEdR(r) (2.39)
dr dp dr h? dp
The first derivative 227 can be write as

dr

*R(r) _8_,uEd2R(r)

= 2.40
dr? h? dp? (240)
By this expression the radial equation becomes
8u d*R — 5 8u dR
h2 pz h2
_8u 8
24 242 V TRz b 242 —h—‘ZLE
72 —E+ ( = H) P 2 —-D, — Ey o R(r)=0 (2.41)

We divide by— E we find p = \/—%ET
d*R(r)  2dR(r) 1 u 1 2112 1
- —= = ————uH ) -—|-—+5D,—E — = 2.42
i dp +{4 ( 2r2E" )p (h2 B ) ()| B =0 )

We put

2
2 B, (2.43)

BB+1) ==

And
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_
o=\ ~gmpht (2.44)

CR(p)  2dR(p) 1
dp? p dp 4

To solve this equation we take following substitution

So the radial equation become

~2apen (5) | Rio =0 (2.45)

R(p) = p’e 2 f(p) (2.46)

We have to calculate the derivatives of in terms of the derivatives of a new function

The first derivative is

dR L d (pﬁe*gf(p)) . p-1,-2 1 g 5 _gdf(p)
d—p——d—p—ﬂp € f()_—Pe flp) + d—p (2.47)
The second derivative is
d’>R o d?f( 1 _e _e\ df
d_p2 = ple 2 dp2p) + (2506 ez — ple 2) %
+ (6 (B-1)p e —Bp’le s + ip e 2) fp) (2.48)

We substitute the results of 2.47 and 2.48 in the equation 2.45 we find

2
pﬁe_g d*f(p)
dp?

B(B—1)prP %2 —

+ (26p’3_1e_§ —ple 2

(M)

DN T N

P 1 p
(ﬁpﬁ‘le‘Qf(p) — 5P (o) + et

LB+ ()| et =0 (2.49)
{4 p (p H

We dived by p?~le~% we get

P - T (506 - 5+ 1) 1000+
2 1 df (p) 1« 1 B
2 (5100 - goro+ o D) - 124 s+0(5)] -0 @0

After some simplification we have
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resr2-n L v@-s-1) 1) (251

a?f(p)

e

The last equation is well-known associated Laguerre differential equation,and the solution

here is just the confluent hypergeometric function:

f(p) = NiFy (o= B — 1,28+ 2,p) (2.52)

From the asymptotic behavior of the confluent series (r — oo = 1 F; = 0) which lead to

1) — 0 when r — oo we find the general condition of quantization :
a—pF—-1=n.n,=1,23, ... (2.53)

Then

a=n+p+1 (2.54)

We substitute by o = —/—5rzuH,p = ,/—%’%Er and f=a—mn, —1

f (7") = N, 1F1 (nm 26 + 2, \/ _;_/;ET> (255)

1By (n,,, —2 (, /—orspH + nr) 1/ —%%Er) can be written as Laguerre polynomials of de-

gree n,
26+2 8 il 8
LnT ( _ﬁET) =1 Iy | ny, =2 _%_E'UH +n, |, _ﬁET (2.56)

From 2.46 we have :

B
8t 1 8 [ 8u
R(r) =N, ( —ﬁEr> exp (—5 —ﬁEr> 1 F (nr, 20+ 2, —ﬁEr> (2.57)

Since

a=—\/—gznH,p= ,/—%Er and f=a—n,—1,8(+1)= QHL;DT—EQ
We use the relation o = —/— sz pH ,p = \/—%Er bB=a—n,—1

and S (6+1) = QHL;DT + Fy to obtain the energy of our system

H 2 M3 2 ,U3 2
=T\ ettt T ohE 2ha (2.58)

We substitute a = n, + 8 4 1 so the energy is
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13

. 2
2y 4 B (2:59)

We have to calculate  from the following equation

2p4° > 242
This equation have to solution
1 1 212
=——+4+—/14+4(—5D, - E 2.61
8, 2+2\/+ (h 9> (2.61)
And
1 1 2142
=————/14+4(—=D, - E 2.62
Pa=—3 2\/+(h27’ 9) (2.62)
The acceptable solution is the first 5, ,we use it in the expression of the energy 2.59 we
find L
3772 2
3 H 1 \/ 1 2u
E, =—"——1|n+= -+-—=D,—E 2.63
P o (”+2+ 17T ’ (2.63)

And the radial part of wave function is

_%+%‘/1+4(2}7%2D7«—E9> 1 8M
r exp | —=
P73
2012 8
¥2 (nr,l—i— \/1 4 <h—‘;DT —E9>,,/—h—’jEr

Energy and Wave function of the System We substitute the constant of separation

(2.64)

N——

2.36 the expression of energy 2.63 ,we find the final expression of energy as

37172
wH 1
B, =—"—+r -
ST e (”’“JrfL
-2
22 1 1 17?
FDT—OPF l—l—§(m2+a—ﬁ—|—’y)1/2+§(m2+a—|—5+7)1/2+5 (2.65)

ny=0,1,2,...,1=0,1,2, .and m = 0,41, +2, ...
We deduce the wave function of our system ¢ (r,0,¢) = exp (imp) R(r)0O(f) from the
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angular part 2.35 and radial part 2.64

0 AR 1 8
2 2
cos™ (§> (1 — cos (5)) exp (—5 —ﬁEr>
212 8
¥2 (—nr, 1+ \/1 4 (h—/éDr _ E9>, ,/—h—’jEr> x

F(_l’l+1+(m2+0‘_5+7)1/2+(m2+a+ﬁ+7)1/2;1+(m2+a—6+7)1/2;0052 <g))

(2.66)

Where p = g(m* +a — B +7)"2,0 = 3(m* + a + 5 +7)'/?

For the potential V,(r,0) = pu [—g + 5 (%) (avcos? @ + Bcost + 7) sin 2 9] we de-
duce the energy and wave function of this case from the energy and wave function of V (r, @)

when we put D, — 0 so

372
__WH L
T <”T+2+
5 -2
1 1 1
\/—a+ [H§(m2+a—6+7)1/2+§(m2+a+6+7)1/2+§] (2.67)

n.=0,1,2,..., 1 =0,1,2,...and m = 0, £1,£2, ...

0
F(=Ll+ 14+ (m* +a— B+ 4+ (m* +a++7)% 1+ (m? +a— f+7)"/%cos® <§))

(2.68)

We can studied in this case the limit at o = § = 0 where the potential is the ring-shaped

potential V (r,0) = p -2 4+ L + & (%) L20
sin

quantum chemistry as a model for the Benzene molecule

] ,this potential has an application field in
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Ei,0,0

Figure 2.13: The non-relativistic energy and the non-relativistic limit energy of spin symme-
try case E1o0 (n = 1,1 = 0,m = 0) of Kratzer +ring-shaped potential in terms of v and for
D, =0.3,0.6 and 0.9

-2

3172 2 2

wH 1 2u 1
Eps=——— |1+ = —-D, l 2 1/2 4 2.
RS 572 n+2+\/h2 —|—[+(m +7) +3 (2.69)

If we take the Colombian limit v = 0 and compare it by the energy of hydrogen atom we

find n, +1+1l+m=n=n, =n—1—1—m,;so the energy can be written as

-2

32 1 9,2 112
Eps = -~ n—l—m——+\/iDT+{l+(m2+7)1/2+§} (2.70)

2h? 2 h?

n=12,..,1=0,1,2,...and m = 0, +1, +2, ...
We noted that the expression under the root is always positive that means we haven’t a
critical values for v and D,

By using the Hartree units the last equation becomes

-2

2
ERS——% n—l—m—%+\/2DT—i—{l+(m2+7)1/2+% (2.71)
We plotted the variation of this energy in terms of v the parameter of the ring-shaped
potential and for different values of radial momentum D, (Figures 2.13; ...,2.15)
From the radial equation we can plotted the effective potential ,for the ring-shaped po-
tential was showing in (Figures2.16, ...,2.19) ;we note that the state of ring shaped potential
are bounded Whatever the energy level,and it is not affected by the radial momentum D, or

the parameter v of ring-shaped potential
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Bz 1,21
-0.017

0018}
_o0faf
_0.020f
0021}

~0.022 |

~0.023F

0.5 1.0 15 2.0 g

Figure 2.14: The energy Esy 1 (n = 2,1 = 1,m = —1)of Kratzer+ ring-shaped potential in
terms of v and for D, = 0.3,0.6 and 0.9

Bz 1,21
L 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1 F’
0.1 0.2 0.3 0.4 0.5
005
- —— {0.3,0.6, 0.9}
[ —— 0.3(S8)
-0.10 }
- —— 0.6(SS)

o5 ﬂ

Figure 2.15: The non-relativistic energy and the non-relativistic limit energy of spin symme-
try case By 1 (n = 2,1 = 1,m = —1)of Kratzer +ring-shaped potential in terms of v and
for D, =0.3,0.6 and 0.9
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Col Kr =---- Rs

Figure 2.16: V.ss the effective potential of Colombian, kratzer and kratzer +ring-shaped for
l=0m=0,D.,=1,7=1in terms of r

y Col Kr =---- Rs
0.4
0.2t
s == - -
-0.2F
-0.4
.':

Figure 2.17: Vs the effective potential of Colombian kratzer and kratzer +ring-shaped for
l=2m=1,D,=1,7=1 in terms of r

v Col Kr ====- Rs

0.4

0.2
1 _‘_‘_.-_-_l 1 1 L 1
5 3 t ____E';l

-0.2 |

04

-0.8 |

Figure 2.18: V. the effective potential of Colombian ,kratzer and kratzer +ring-shaped for
l=2,m=1,D,=1,7=3 in terms of r
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Col Kr Rs
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Figure 2.19: Vs the effective potential of Colombian ,kratzer and kratzer +ring-shaped for
I=2m=1,D,=3,7v=1 in terms of r

Case2 Vs (r,0) = p |kr2 + 2 + L (22 (acos® 0 + Bcosf + ) sin 26
T T 21

Solution of Angular Equation The constant of separation and the angular part of wave

function is the same of casel

Solution of Radial Equation This case is of pseudoharmonic oscillator potential,the

radial equation 2.16 in this case becomes

2 2
dR(r)+2dR(r) Z_ME_QLkQ %

2142
az Ty a2t T <_DT_E9>]R(7“>:O (2.72)

h2

Using the dimensionless abbreviations

2
a? = h—’;E (2.73)
And
242
BB+1) = FDT — Ey (2.74)

So the radial equation 2.16 becomes

d®R 2dR 2012 1
)y 2AR0) e - B2 L84 1)| B =0 (2.75)

According to the asymptotic behaviors of the radial wave functions asr — Oand r —
oo,the physically acceptable solution of R(7) can be expressed as

To solve this equation we make the following change

R(r) = Tﬂe_krzf (r) (2.76)
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Now we calculate the derivatives of R(r),the first derivative is

dR(r) B—1 _—\r2 a2 2 df (r)
— ™ _9 B+1 _—Ar B_—Ar .
= (ﬁr e ArPtle ) f(r)+r’e = (2.77)
The second derivative is
d*R(r) B p—Ar? d*f (r) B—1,—Xr? 61 a2\ 4f (r)
g2 —Te = + (257“ e — 4 rPtle ) o +

<B (B—1)rP 2 —228rPe™ — 2N (B+ 1) rPe ™ + 4)\57“5“6_’\”2) f(r) (2.78)

Substituting in equation 2.75 we find

2d2 2 2
7,667/\1' f (T) + <2ﬁr67167)\r . 4)\7,5%»167/\1' > df (T)‘i‘
dr? dr

(ﬁ (B-1) PP=2e72% _o\Brfe N — 2\ (B+1) e 4 4/\67“5”6’)”2) fr)
+2 |:<57‘B_1€_>\T2 - 2/\rﬂ+16_kr2> f )+ rPe —dfdir)} +

r

{oﬁ - QH—M;IWQ - % BB+ 1))} e f(r) =0 (2.79)

We divide by r? e’ we find

) 2
d ;;ﬂ(;) + ((28+2)r ' —4ar) dfdgr) + (—thzkr2 —2X(28+3)+a® + 4)\57“2) f(r)=0
(2.80)
We put
- 2M2 B /~L2k
A\ _ﬁk:> =\ 5 (2.81)

The equation 2.75 becomes

afir) ;lfrgr) + ((25 +2)rt — 44/ ;—:27“) dfdsqr) — (2/\ (28 +3) 2;;_2145 - 042) f(r)=0 (2.82)

We take

d
p=2\"= 1= % — d—ﬁ:2x/2/\p (2.83)

We calculate the derivative of f (r) the first derivative is

df (r) df (p)
o =2 2)\pd—p (2.84)
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The second derivative is

G- (47) - () -t

Then we substitute this derivatives in equation 2.82 so we get the following equation :
1) | df (p)
dp? dp

8Ap + (=22 (28+3)+a®) f(r) =0 (2.86)

+ (4N (28 +3) — 8)Ap)

By dividing the last equation by 8\ we find

d*f(p) (28 +3) df (p) 2h? _
e +<T—P) ap ( (25+3)—§ ﬁa)f(/ﬁ—o (2.87)

Equation 2.87 is the Kummer’s (confluent hypergeometric) differential equation and the
solution of this equation that is regular at » = 0 or p = 0 is the degenerate hypergeometric

function or the Kummer’s function :

1 [2r2 , (26 +3)

1
=N, F 2 — = yn, =0,1,2, ... 2.
f(p) r1 1( ( B_’_?’) 8 IMQI{?Q ) 2 7p) 3 oy 07 ) <y ( 88)
And
1 1 /22 , (26+3) w2k
= N1 Fi(= (2 — = 2 2 2 2.
f(/r) rl 1(4( /B+3) 8 /,LQka ) 2 ) 2h2r ) ( 89)
We calculate the radial wave function from the relation R(r) = rPe=*"f (r)
_ 1 /2r2 , (26+3) w2k
Ar? 2 2
R(r) = No” 1F1( (26+3) — 3 ,u2/<:a Ty 2\ S ) (2.90)

For large values of p, the solution in 2.87 diverges as exp(r?), thus preventing normaliza-

1 | 2h2
=—|=q/—a°—2 =0,1,2,.. 291
Ny 4 [2 ﬂ ka 6 3] 07 » S ( 9 )

From the relation o = 2/E , and 2.88 we have

tion,except for

(2.92)

h? 2k
E=—|2 4 2
2u[ 2h2(nr+ B+ 3)

We solve the equation (5 + 1) = %ZDT — FEjy to find § and use it to find the energy,so

we have to solution
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1 1 21
51:—§+§\/1+4(h2 D, E@) (293)
And
1 1 21
61——5—5\/1+4(h2 D, Eg) (2.94)
The acceptable solution is the first one [3; ,s0 the energy of the system becomes
1 Q;L
E =2k 2n,+1+ h2 —-D, — Ej (2.95)

And the wave function becomes

141 202 p
R(r) = Ny 2PV Pem) oy %Tlel(l - \/1 - 2;; D, — Ey—

1k
\/7E 1+\/ D = Ep. 24/ 5577) (2.96)

We substitute the constant of separation 2.36 the expression of energy 2.95 ,we find the

final expression of energy as

2

9
£ = W2k 2nr—i—1+\/:2

1 1 177
Dy —a+ {l+§(m2+a—ﬁ+7)1/2+§(m2+a+ﬁ+7)1/z+§} )

(2.97)
n,=0,1,2,..,1=0,1,2,..and m = 0,41, 42, ...
We deduce the wave function of our system 1 (1,6, ¢) = exp (imy) R(r)O(f) from the
angular part 2.35 and radial part 2.96

6 g _141 22 2
3 = N exp (imgp) cos® (5> (1 — oS ( )> A 4< nz D EG) e‘@r2x

1 1 2u? Wk
1F1<§+\/ hQD Eg— \/7E 1+\/ D EQ,Q 2—7:1[27“)

F(=lLl+1+m?+a—-B+7)"*+ (m? +a+5+7)1/2

14 (m* 4+ a — B4 7)Y?; cos? (g)) (2.98)

Where p = §(m + — 5 +9)"%and o = K +a + 8+ )12

Furthermore we can studied in this case the limit at « = f = 0,and k = %w where the po-
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Figure 2.20: The non-relativistic energy and the non-relativistic limit energy of spin sym-
metry case for PHO+ring shaped potential for n = 1,/ = 0,m = 0, D, = 0.3,0.6,0.9 and
w = lin terms of v

f)/

tential is the pseudoharmonic ring-shaped potential V' (r, 0) = p [%wrQ + % + T,% (%) —} ,this

)
sin“ @
potential has an application field in quantum chemistry as a model for the Benzene molecule

the energy of this system is

242 17?
EPHO+RS’ = hw 27’L7-+1+\/h—,u;Dr+ |:l+(m2+,-y)1/2+§:| (299)

The limit of harmonic oscillator is deduced where D, =y =0

E = hw <2nr—|—l+m+;> (2.100)

Comparing to the energy of 3D harmonic oscillator £ = hw (n + %) we find 2n,. +14+m =

n = 2n, =n — | — m,so the energy becomes

212 177
EPHO+RS:FLLU n—l—m—l—l—{—\/h—ﬁgDer [l+(m2+7)1/2+§] (2.101)

In Hartree system of units the energy was written as

1 2
EPHO+RS:W n—l—m+1+\/2DT+ |:l—|—(m2—|—’y)1/2—|—§:| (2102)

n=0,1,2,..,1=0,1,2,...and m =0, +1,£2, ...
The graphs of the energy are showed in (Figures 2.20 and 2.21)
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Bz 11

Figure 2.21: The non-relativistic energy and the non-relativistic limit energy of spin symme-
try case for PHO+ring shaped potential for n = 2,1 =1,m =1, D, = (0.3,0.6 and 0.9)and
w =1 in terms of v

From the graphs of effective potential (Figures 2.22,...,2.24) we note that the state of
ring shaped potential are bounded

For the potential V4 (r,0) = [k:r + 3 ( ) (avcos?f + Bcos + ) sin~? 9} we deduce
the energy and wave function of this case from the energy and wave function of Vj (r, ) when

we put D, — 0 so

1 1 1]?
= hv/2k %M+L+¢—a+P+§mﬂ+a—ﬁ+vﬂﬂ+§Mﬁ+a+6+7Pﬂ+i]

(2.103)
n,=0,1,2,..,1=0,1,2,..and m = 0, £1, £2, ...

The angular wave function is

7 0\\" a2
Y, = N exp (imp) r° e cos? ( ) (1 —cosz< )) pm3tsVITAEL o=y Gt o

W2k
*/—_Ee \/7E1+\/ — Ep,2 2h2 r?)

F(~LI+1+ (m?+a— B+ 4+ (m?+a+ 8+

14+ (m? + o — B4 )3 cos? (g)) (2.104)

When p = 3(m? + o — 8+ 7)"?and 0 = L (m? + a + B +7)'/?
For the rest of the studied potentials,the constant of separation is obtained by the same
way as a solution of hypergeometric equation and the angular part of wave function obtained

as a hypergeometric function ,regarding the energy expression and the radial part of the wave
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HO - o - PHO ----- Rs
150§
1:]:1:1
\ I
501}
1 L 1 LI\Th‘-l-\—. &
-10 -5
!
_50E
I]
~1o0 b

Figure 2.22: V.;s the effective potential of HO, PHO and PHO +ring-shaped for [ = 0,m =
0,D,=1,7v=11in terms of r

HO - - - PHO ----- Rs

_-_=Q;:|;'

-100 [

Figure 2.23: Vs the effective potential of HO, PHO and PHO +ring-shaped for [ =1, m =
1,D,=1,7=10 in terms of r

HO - - - PHO ----- Rs

Figure 2.24: Vs the effective potential of HO, PHO and PHO +ring-shaped for [ =1, m =
1,D, =10,v =1 in terms of r
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[ ) H £y ”
2 1
(5)
29 0 1 1’
(ovcos ;rnfgos +7) [l—i——(m2+a—5+7)1/2+§(m2+a+ﬁ+7)1/2+5}

h2
(37)
(avcost O + Bcos? O + )
sin 6 cos? 0

1 1 2
S ta+t [21+1+—(1+7)1/2+(m2+a+/3+7)1/2]

4 2

2
(z%) L (20 +1+2vVm2 + ) — 482
4 420+ 1+2vVm?
(accot? @ + Bcot O + ) (20 +1+2vm? +a)

Table 2.1: The 3D constant of separation

function are the same results of case 1 and case 2 .the results of the study are shown in the

(T'ables 2.1, ...,2.6), and a detailed calculation is provided in the Appendix 2

2.3 Relativistic Studies of 3D Non-Central Potentials

2.3.1 Solutions of Schriodinger Type Equation
The Spin Symmetry Case
The Schrodinger type equation for the spin-symmetry case is:
(P> +2(E+ pc®) U(T) = (B* — pi*c*)] o(7) =0 (2.105)
With the potential energy:

U(T) = qV(r,0) = qg [@ + vm} _ [@ + V(r)] (2.106)

r2 r2
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H f(6) H o) [
ﬁ) 20 (0Y (1 — coc? (2))°
(2u2 Ny cos (2) (1 cos (2))
(avcos® 0 + Beost +7) F(=l,l+1+2p+20;1+ 2p;cos® (£))
sin? @
(%) Ny (cos8)” (1 — cos? )’
(OzCOs4(9—|—ﬁCOSQH—|—fy) F(—l,l—l-1+2p+20;1+2p;00829)

sin? @ cos? 0

2 2

(4)

(acot? 6 + B eot O + )

N9€i2p¢9p(1 o 627?9)0

1 1 ,
F(=L1+ 5 +2p+20: 5 +2p; e??)

Table 2.2: The 3D angular parts of wave function

103

12
(#)
(cvcos? @ + Beos + )
sin® @

1 1
§(Z2+04—5+7)1/2 5(52+OK+5+7)1/2

(#)

(acos* @ + [ cos? 0 + 7)

sin? 0 cos? 6

1 1
Z+—(1+47)1/2 S +at g+t

h2
(3%) !

(cvcot? 0 + B eot O + )

z_l+

11—7—E9+i5+al/2 1?4 a)l/?
4

DO |

Table 2.3: The parameters of the 3D constant of separation
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| V() | B(r) [ Lr

H D,
_7_‘_? Nr (p)ﬁexp(p)l Fl (_nr726+27P) _%+%\/1+4(%D7’_E9) \/_%ET

o N, (p) exp (=30), Fr (=10, 28+ 2,p) | =5+ 3vT— 4B, - %Er

2 -_-r o 3 2 2
kr®+ 5 N, (r)**exp (p), Fi <—nT,B+§,p> —%+§\/1+4<%DT—E9> 24/ rr?

k 2 « 3
" N, (r)** exp (p), Fy <—nr,5+§»P> —5 +35V1—4Ep 2/ Lky?

Table 2.4: The 3D radial part of the wave function

H D, [ 2
(T3 0P) | (vt i D )

H f(0) 2

r 72 _Qg(r+;+ i_E9>

24° D,
h2

D, [(6
M(kr2+r—2—|— £2>> 2k

2, +1+1/—Eg+

2, IO
M(’”‘ +%) h2k [2n, + 1+ /= Ej]

Table 2.5: Expression of 3D energy
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[ V(r.0) [V(0.¢) H
! (‘% i % i fﬁf)) N exp (imp) (p)” exp (=3p), Fi (1,28 42, p) x O(0)
. <_g f7§20>> N exp (imep) (p)” exp (—3p), Fi (—n,, 28 + 2, p) x O(6)
" (W s 2y fi?) N exp (imy) exp (), Fy (—nr,ﬁ + g,p) % 0(0)
! (W + @) N exp (img) exp (o), Fi (—nr, B+, p) « ©(0)

Table 2.6: The expression of 3D wave function

In the spheric coordinates the equation 2.105 becomes

(P 20 10 cotbd 1 &N
2u \Or?  rdr 1200 r? 00  r2sin®00p?
E + uc? (6 E? — 2
o B+ pe) 62“ )(MV(rH“rg))—( Cz“ M(?):o (2.107)

We use the same transformation as before 1(r, 6, p) = exp (imy) R(r)O(f) to get two

separate equations as :

dc(;g@) + cot gdec)lée) ~ 8;1299(6) B 2}; [2 (E;uc )] HO)00) — E,0(0) =0 (2.108)
T2d£gr) +2rd§fﬁr> +r2;—l; <(E _02“ <) — MQ(E;:MC )V(r)> R(r)—EgR(r) =0 (2.109)

We compare the equation above with the equations of the non-relativistic case

&26(0) o)  m? 242
t0 — 0) — — f(0)O(0) — EyO(0) = 2.11
— et 0~ T0(0) - T f(8)6(0) — E0(8) =0 (2110
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PO o 0 B 5y (o) BO) 4 oG =0 (1)

We note that the equations of relativistic case is the same of nonrelativistic case when

we use the following transformation

B— = (2.112)
V(r) — %EC—WV(T) (2.113)
£(0) — 2EXED pp) (2.114)

C

So the parameters(a, 3,7) of f(#) change to (2 (E + pc®) o, 5 (E + puc?) 8, % (E + pc?) )

2.3.2 Relativistic Energy and Wave Function (Applications)

When we substitute by the transformations above in the expression of nonrelativistic energy
we find the equation of relativistic energy

For the kratzer potential the equation of energy is

-2
(EQ N M204) 2M3 E—i—,ucz 2 1 1 4M2 (E+p02)

For the pseudoharmonic potential the equation of energy is

(B? — p2ct) E + pc? 1 42 (B + pc?)

After some simplification the last equation the energy of non central pseudoharmonic

energy becomes

1 42 (E + pe?
(E + u®) (E — pc®) = 2hevk (m +1+ \/Z + h—’é(t—;w)DT - Eg) (2.117)

Concerning the wave function and the rest of the results are shown in the (T'ables 2.7, ...,2.12)
For the kratzer +ring- shaped potential the separation constant and the energy in

relativistic case fulfilling the following equations
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L@ | Ly [
;l—i-QEté‘CQa—
casel 1 , 1 , 112
[l—i—§(m2+2%(a—ﬁ+v))l/z+§(m2+2%(a+ﬁ+7))1/z+§}

1 1 1/2 2
vasen | 7+ 2R+ {21+1+5 (1+2Et—5027) + (m? + 22 (04+5+’Y>>1/2}

4 2
<2z 142y m? + 2%—5%) 16 (Z525)
2
4 (21 +142y/m?+ 2E+C—gcza>

Table 2.7: The relativistic 3D constant of separation

1
case3 7 X 2Etgc2 (a _ 7) B

H f () H o(0) |
(%)
Ny cos?’ (g) (1 — cos? (g))a F(=1,l+1+2p+ 20;1+ 2p; cos? (g))
(acos® 0 + B cosh + )

S
2

<2ﬂ2> 2 1 1

Ny (cosf)” 0 (1 —cos?0)” F(—1,l+ =+ 2p+ 20; = + 2p; cos? 0)
(avcost O + Bcos? O + ) 2 2

sin? @ cos? 6

h2
<W> i2p0p 2i0\0 1 1 2i0
Nye*r?P(1 — e )F(—l,l+§+2p+20;§+2p;e )
(acot? @ + Beot O + )

Table 2.8: The relativistic 3D angular part of wave function
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H 70 [ ; H .
h2
(W> 1 E+ 2 1 E+ 2
FP+ 254 (0= B+ ) (2 + 254 (a + B +7))'2
(cvcos? @ + Beos +7)
sin? 0
ﬁ2
(W) 1 1 E+puc? 1/2 1 E+pc?
1+ (1+86—5’“ny> 5(l2+2%(oz+ﬁ+v))1/2
(acos O+ Bcos? 0 + )
sin? 6 cos?
<h—22) 1 11
24 Zl + 5(ZL . E@ 4 2Eté1,02 (O[—i—lﬁ _7))1/2 (l2 +2E‘|;_é1402a)1/2
(accot? @ + Beot O + )

Table 2.9: The parameters of the relativistic 3D constant of separation

L V() | R(r) | 5 | p H
N, (p)” exp (p) x
r r? 1F1 (_nr7 25 + 27[7)
NT (p)B €Xp (_lp) X 2_,,2.4
i i ~1+ WI—1E, G
r 1By (=00, 28+ 2, p)
N, (r)* exp (p) x
er -+ & 3 _% + %\/]‘ + 4 <4EL22 (EthQ)Dr - E9> 2 /;_2 (Etéw2)k7“2
r? 1F1 (—nr,5+§,p)
N, (7’)2(1 exp (p)
2
ker? 3 —5+3VI—4E 2/ 1 ) oy
1F1 (—nr,ﬁ + 5,,0)

Table 2.10: The 3D radial part of the wave function
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V(r,0) <E2*C—5204>
H D, f(0) \ ) . -2
K s + 2 + 2 % (E—Hw H) (nr +1 + \/ + E'Hw )D E9>
H o f(0) 3 L
'M( . 7"2) %(Eté‘cH> (nr—k%vﬂ/i—Ea)
D, ()
2 2 2 2
(k TQ + r2 > h 4%]{; {2nT+1+\/_E9+%(Eth)Dr}
f(9)
2
z ("“” 73 hJAZLR) ) (20, + 1 + /= Fy]
Table 2.11: The relativistic 3D energy
LV(r0) L4 (r,0,9) |
“H D, [
roor? 72 N exp (imgp) (p)” exp (-3 ) Fy(=n.,28+2,p) x 6(0)
rr? N exp (img) (p)” exp (—3p), Fi (=1, 28 + 2, p) x ©(0)

., D f(0)

<kr TRt ) N exp (im) exp (p); Fy (—nr,ﬁ + ;P) x ©(0)
., f0)

<l<:7“ + 2 > N exp (imgp) exp (p), FA (—nr,ﬂ + g,p) x 0(0)

Table 2.12: The expression of 3D wave function
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2 (E + puc? 17°
wy)lﬂ + _} (2.118)

1
Ey=-— |l 2
b= {—F(m—l— . 5

-2

E2 — 24 23 [ E 2 2 1 1 4.2 (E 2
( pect) o 2u < +MCH> (n_l_m__+\/_+LwDT_E9>

c? h? c? 2 4 h? c?
(2.119)
We substitute Fjy in the equation of energy and after some simplification we get
203 H? 1
2\ _ 2
-2
4p? (E + pc?) 2 (F + pc?) 11?

\/ﬁTDT—i— [+ (m2+T’y)1/2+ 3 (2.120)

We use the relation between the relativistic and non-relativistic energy E, ,, = F — uc?

,where we neglecting the term E,, ,, beside the factor 2uc?

1 177
Ey=7 - [l + (m? + 4py) V2 + 5} (2.121)
—2
At H? 1 Q.3 172
(Enm) = — Mh2 n—1—m-— 5 + \/h_/éDr + {l + (m? + 4py)V/2 + 5} (2.122)

We use the Hartree units the energy becomes

-2

1 112
(En,m)RS:—4 n—l—m—§+\/8Dr+ {l+<m2+47)1/2+§}

We note that this expression is different comparing by the expression of equation 2.71 by
the number 8 the graphs of this energy is shown in (Figures 2.13, ...,2.15)
For the pseudoharmonic +ring- shaped potential we substitute the constant of sep-

aration then the energy equation is the equation of relativistic energy is F = E,,,, + uc?

1 4p?(E 2
(E—l—,uc2)(E—,u02):\/icﬁw(n—l—m—i—l—i—\/—jL Mw

it D,,—E9> (2.123)

We substitute the relativistic energy by his expression in terms of the non-relativistic

energy E, ., + uc> = E
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81° 1]
(B + 2u¢2) (Bym) = V2chw (n —l-m+1+ h—/zDT + [l + (m? + 4uy)'? + 5]
(2.124)
by neglecting the term E, ,, beside the factor 2uc? we find
h 8y’ 2 1/2 1°
En,m:ﬁw n—Il—m+1+ ?DML [+ (m?+4py) +3 (2.125)
In the Hartree system of units the last equation becomes
112
(Enm) pposgs =@ | n—1—m+1+4/8D, + [l + (m? + 4v)1/2 + 5} (2.126)

This expression is different comparing by the expression of equation 2.101 by the number

8 the graphs of this energy is shown in (Figures 2.20, ...,2.21)

2.4 Discussion

In this chapter, we studied some non-central potentials V(r,0) = p [V(r) + @} for 3D
quantum systems in both non-relativistic and relativistic cases. We solved the Schrodinger
equation analytically and studied the relativistic spectrum for Klein-Gordon and Dirac equa-
tions in both spin and pseudo-spin symmetry We note in this chapter that in the 3D space to
find a bond state of a particle moving in noncentral potential and with the presence of kratzer
or pseudoharmonic potential the following condition must be fulfilled }l + ZHL;DT —Fy >0
this give as a critical values for the parameters of the noncentral potential and this critical
value influenced by the parameters of the kratzer potential when it can get bigger or smaller
,the non-central potentials remove the degeneracy occurrence of the three quantum numbers
(n,, 1, m).Concerning the relativistic case we note the energy is found in the form of a second-
order equation in terms of the potential parameters and in terms of numbers(n,, [, m), and
to find its expression, we must give numerical values for the potential parameters to solve
this equation,we studied the ring-shaped potential as a example The previous condition is
always fulfilled and all the states of energy are bound state whatever its level or its radial

momentum and this states don’t affected by the parameter of the ring-shaped potential
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Part 11

The Quantum Studies of Some
Non-Central Potentials in Deformed
Space (deSitter Space and Anti
deSitter Space )
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Chapter 3

Studies of N-C Potentials in 2D (dS
and AdS) Spaces

3.1 Introduction

Historically, at a microscopic scale of high energy, several scenarios have been proposed
to study the deformed quantum mechanical systems at small scales in order to absorb the
infinities vitiating the standard field theories. Notably the Snyder model; which has suggested
that measurements in noncommutative quantum mechanics can be governed by a generalized
uncertainty principle (GUP) [103], admitting a fundamental length scale that is supposed
to be in the order of the Planck length as to that proposed by Kempf [104], leads to a
nonzero minimal uncertainty in the measurement of the position. This was motivated by
noncommutative geometries [105], doubly special relativity [106], string theories [107] and
black hole physics [108].

On the other hand, there is a great interest on studying of the curved space-time which
has important astrophysical and cosmological implications in general relativity, where grav-
ity is described as a property of the geometry of space—time. This implication was a great
advance in understanding the expansion of space and the shape of the universe. Furthermore,
at the atomic scale, the study of quantum mechanical problems in curved space-time can be
considered as a new kind of interaction between quantum matter and gravitation in the mi-
croparticle world. In this situation, curved space-time was a great advance in understanding
the nature, dealing with the structure of the space—time which is perturbed by the gravita-
tional field. In other way, at small length scales as a doubly special relativity (DSR) theory
[106], there are many arguments on that quantum gravity implies also a minimal measurable
length in the order of the Planck length as in the previous case of Snyder.

For this reason, a large amount of effort has been devoted to extend the study of quantum
mechanics in the flat space Snyder model to a curved space-time generalized algebra. The
idea behind this extension is to take into account the modification of the standard Heisenberg

algebra by adding small corrections to the canonical commutation relations such as the gener-
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alization of the uncertainty relations (GUR)[109] and extended uncertainty principle (EUP)
[110] in order to incorporate the noncommutative geometries and gravity effect, respectively
into quantum mechanics. Recently, at the level of relativistic and non-relativistic quantum
mechanics, some problems were solved within this framework; for example, the Schrédinger
equation was exactly solved with the free particle, the harmonic oscillator and the Dirac

oscillator in curved Snyder model [111, 112].

Our work will be structured as follows: In section 2, we will give a review of the Snyder-de
Sitter model. In section 3,will be devoted to explain the Nikiforov—Uvarov method section
4.is the crux of this work when we will solve the Schrodinger equation of non-central Kratzer
potential with Snyder model ,. The exact solution will be obtain for this equation and the
energy spectrum and wave functions will be deduce The last section will be left for concluding

remarks.

3.1.1 Review of the Deformed Quantum Mechanics Relations

In three-dimensional space, the deformed Heisenberg algebra leading to EUP is defined by

the following commutation relations [111][112]
[X,L',Xj] =0 y [Pl, Pj] = ihT)\EijkLk y [XZ,PJ] =1h ((5@] - T)\XZXJ> with 7 = —1,—|—1 (31)

Where A is the parameter of the deformation and it is very small because, in the context of
quantum gravity, this EUP parameter is determined as a fundamental constant associated to
the scale factor of the expanding universe and it is proportional to the cosmological constant
[' = 37\ = 37/a® where a is the deSitter radius [113]. L; is the component of the angular

momentum expressed by:

And satisfying the usual algebra:
[Li, Pj| = iheiji Py, [Li, Xj] = itheyu Xy, [Li, L] = iheyn Ly (3.3)

As in ordinary quantum mechanics, the commutation relation 3.3 gives rise to a Heisen-
berg uncertainty relation:
h
AXAP > 5 (1 —7A(AX,)?) (3.4)

where we choose the states for which (X;) = 0.

According to the value of 7 we distinguish two kinds of subalgebra. For 7 = —1, the
deformed algebra is characterized by the presence of a nonzero minimum uncertainty in
momentum and it is called anti-deSitter model. For simplicity, we assume isotropic uncer-

tainties X; = X and this allows us to write the minimal uncertainty for the momentum in
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— A=0.0 A(AdS)=0.1 A(dS)=0.1

=]
T

[=]
T

Figure 3.1: Graphic of HUP and FUP in both dS and AdS Cases

anti-deSitter model:

(APR),.. = hVTX (3.5)

min
For de Sitter model 7 = +1, the relation 1.204 does not imply a non-zero minimal value for
momentum uncertainties.

This is shown in(Figure 3.1),where the Heisenberg uncertainty relations are plotted ac-
cording to the modified relation found in 3.4 . The hatched region in (Figure 3.1) is the
forbidden area for position and momentum measurements in Anti-deSitter space.

From now on, we will employ the noncommutative operators X; and P; satisfying the
modified algebra 1.204 which gives rise to rescaled uncertainty relation 1.204 in momentum
space. In order to study the exact solutions of the deformed Schrodinger equation, we
represent these operators as functions of the operators x;and p; that satisfy the ordinary

canonical commutation relations; This is done thanks to the following transformations:

l'<
X; = ———P, = —ihvV/1 + 720, 3.6a
V14 T1Ar? ¢ ( )

P, = —ihv/1+ TAr%0,, (3.6D)

When 7 = —1, the variable r varies in the domain ] —1/V\, l/ﬁ[

3.2 2D Schrédinger Equation of N-C Potential in (dS
and AdS) Spaces

In this section, we clarify the effect of deformed space on the energy eigenvalues and eigen-
functions of a non relativistic system in presence of non-central potential V' (r,8) which is

given by
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Vr0) = <V(r) s (9>> (3.7)

r2

When V (r) take the form (—Z£ + Z¢ = — 2 fr2 4+ De fr2) and f (6) is given in (Tablel)

We consider the following stationary Schrodinger equation with a non-central potential-

type interaction
{% + (V(r) + %)} v (r,0) = Ex (r,0) (38)

In order to include the effect of EUP on the above Schriodinger equation, we use the trans-

formations 3.6a and 3.6bto obtain the deformed Schrodinger equation

The vector position transform as

,
NEov (39)
So 2 2
- 1
" 14+ 7Ar? (3.10)
The momentum transform as
2
p’ = (\/ 1+ T)\T2p> = (L+7Ar?) p* + TArp (3.11)

The Schrodinger equation in deformed space is written as

(VI+rarZp)’ y (V( r (1+7A2) £ (6)

2p o)t 2 )]WW):EWW) (3.12)

We substitute the equations 3.9 ,3.10 and 3.11 in equation 3.12we find

r (1+7Xr2) f(0)
(M

)] b (r,0) = B4 (r,0)
(3.13)

{% ((1 + 7')\7“2) P2+ T)\rp) +

Using the polar coordinates 0 < r < oo and 0 < 6 < 27, and we write the Schrodinger

equation 3.13 as follows

2 (O 10 1 9
{—Z{(l—l—T)\T)(w—i-;a-i-ﬁﬁ)—i-T)\Ta}+

(Vi + O g~y (3.14)
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We put the equation in the more convenient following form:

2 2 2
(mﬁ)+(”m)3—2’”‘V( A

or r or  h? 1+ 71\2
(1+7M2) (0% 242 2uE
R C A | R (3:19)

We write the solution as ¢ (r,0) = R(r)0(6), to get two separate equations as in previous
section

The angular equation is

> 2u? B
(@ — ﬁf (0) — E9> O) =0 (3.16)

The radial equation is

d\> (A+7 a2 d (1472 2u r 2uE
14+ 7Ar2— -~ Ey — _
(v + T dr> + . o + = 0~ 32 V( o 7')\7“2) + R(r)=0

FEy is separation constant.

Now we have to solve this equations

3.3 Non-Relativistic Solutions of N-C Potentials in 2D
Deformed Space

Casel Vi (r,0) =pu [—% + &+ (%) (cv cos 0)]

Solution of Angular Equation We note that this equation is the same of the case of the
ordinary space of the first chapter ,then the constant of separation and the angular part of
wave function are deduced by the same manner of the first chapter

The angular part of wave functions and the constant of separation are appear in equations
1.34,1.34

Solution of Radial Equation

The Nikiforov-Uvarov (NU) Method Nikiforov-Uvarov (NU) method was devel-
oped basically on the hypergeometric differential equation. The formulas used in NU method
reduce the second order differential equations to the hypergeometric type with an appropriate

coordinate transformation s = s (x):

¥ (s) =0 (3.18)
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where o (s) and o (s) are polynomials of the second degree at most and the degree of the

polynomial 7 (s) is strictly less than 2 [114][115]. If we take the following factorization:

P (s)=d(s)y(s) (3.19)
the equation 3.19 becomes [115]:
7 ()5 (5) +7 ()9 (5) + Ay () = 0 (3.20)
where: y
7 (s) =0 (s) oy (Ing(s)) and 7(s)=7(s)+ 27 (s) (3.21)
A is defined as: |
An+m‘+% —0, n,=0,1,2, .. (3.22)

And the energy eigenvalues are calculated from the above equation. We first have to deter-
mine 7 (s) and A by defining:
k=A—x(s) (3.23)

Solving the quadratic equation for 7 (s) with 3.23 , we get

w(s):(0\2_?>:|:\/(0\2_%)2—&+0k (3.24)

Here, 7 (s) is a polynomial with s as the parameter and the prime denotes the first .

One has to note that the determination of %k is the essential point in the calculation of
7 (s) and it is simply defined by stating that the expression under the square root in 3.21

must be a square of a polynomial; This gives us a general quadratic equation for k.

To determine the polynomial solutions ¥, (s), we use 3.20 and the Rodrigues relation:

c, dv .
e (s) = 5T 0" ()0 (5) (325)

where (), is normalizable constant and the weight function p (s) satisfies the following relation:

o)) =7(5)p(s) (3.26)

This last equation refers to the classical orthogonal polynomials that have many important

properties and especially orthogonality defined by:

b
/ Yn () ym (5) p (s) ds = 0ifm #n

So in this case the radial equation is
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d\? 1+ d (1472
( TTW%) I e i) N U 0 3

r dr 72
V1+7Ar2H (1 + 7Ar?) D, 2uE
h2 ( ! 5 + = R =0 (3.27)

After sum simplification we get

d\? 1+ d (14 7M2 212D,
<\/1+T>\T2%) +( 7 T)——l—( 7 T)<E9— & >

r dr r2 h?2
202 H /1 A2 2ul
+ ’;2 tf L Z? R(r)=0 (3.28)

In order to solve this radial equation we use the Nikiforov-Uvarov method ,when we use

the following transformations

) V14 TAr? 2 1+ 72 2 1 . 1
Vr Ar? Ar? V(52 —7)
ds VA 1
R— \/_7'_\/_\/14_ >\7”2) = _— -— 329
dr (\/1 + TAr? ! V1+71Ar2 ) Ar? ( )

By using this transformation we can writ the following derivative in terms of new variable

14+7M2) d 14 7Ar? —VA 1 d
w_: (1 +7Ar%) VA — =—As (s —7') (3.30)
r dr r V1+71I2 ) Ar? ds
and 4
1 2_ — _ — 31
+ TAr = \/_(s T) — 7 (3.31)
We substitute this derivatives in equation 3.28 we find
d\’ d 202D 212 H 2uE
2 T
[(—\/X(s _T)ds) — As (s° —T>£—|—)\S <Eg— 2 >—|— 2 \/XS—FF R(s)=0
(3.32)
We divide by A ,then, the equation 3.32 becomes as
9 d? d 202D,
{(7—32) @_S(T_S)ds (Eg = )s —|—773—|—€]R12() 0 (3.33)
Where 021 0
a =k (3.34)

Ty T
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We divide the last equation by (7 — 32)2 that give arise

d? S d 1 2u%D
—_— = — Ey — ") s? R =0 3.35
ds® (1 —s?)ds * (1 — 52)2 (( o h2 ) STEns 6)} 12(5) ( )

Solution of the Radial Equation in de Sitter Space (7 = +1) This case is repre-
sented by the equation 3.35 with (7 = +1) as

d? s d 1 21D,
i (1-s9ds (1— s2)° ((Eg N ) G 6)} Fuats) =0 (330

To determine polynomials we compare equation 3.36 with equation 3.18,s0

o(s)=(1—-5"), 7(s)=—s and & (s) = (Eg— >s2+ns+6 (3.37)

- 1 22D,
W(S)ZTSi\/(Z—(Eé“——“hQ >—k’)82—775+k—5 (3.38)

The value of k is obtained from the condition that quadratic expression under the square

root in 3.38 has to be completely square of first degree of polynomial

7 (s) = _75 + \/(}1 - (Eg””) - 2“;?) - k> (s — so) (3.39)

And

n
(- () 1)

Therefore the discriminate of the quadratic expression under the square root that has to

(3.40)

Sp —

be zero is given as

1 2m 2[1,2DT
n2—4<1—<E§ ) = )—k)(k—a):o (3.41)
We writ the last equation as algebraic equation of second degree with respect to k

my 242D, m) 212D,
4k? — (1—4<E§2 - > +4g> k+ <1—4(E§2 =TT ) et =0 (3.42)
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Now to find k& we have to solve this equation ,the discriminate of this equation is A

1 o 22D\ \?
A= (E—Z+<Eg2 ) _ “h2 )) — P (3.43)

So we have two solution for the equation 3.42 k; and ko

1 (2m) 212D,
1 E(2m) 2u2D, e
1 0 B #h2 - VA

1 m 2u2D,
012 = \/Z — <E§2 ) Mh2 ) — ko (3.45)

From the equations 3.40 and 3.45 sy can be written as

(3.44)

We put

1 U
0= 2 - (3.46)
92 (le i <E§2m) _ 2,uh2Dr> - k172> 2 (51,2)2
Substitute it in equation 3.39 ,then
m(s) = |
T34 = (_71:&62)3:*:%, for kQZ% 6—|—}1— Eé2m)_ QM;Dr —\/Z

Here, we choose k; and m; witch give us the limit of ordinary space , and use the relation
7 (s) =7 (s) + 27 (s) ,then

T(s):—8+2{(_71+51>8+2i51] :2(51—1)s+5ﬁl (3.48)

From equation 3.23, we calculate

1
kle—ﬂ'\1<S):>A:]€1+7T\1(8>:/{?1—§+(51 (349)

In other hand from equations 3.22, 3.48 and the relations o (s) = (1 — s?) ,we have

r r = 1 W T r 1)(—2
A= —w‘—w @) (6 — )= 5 )2 e 41-260), m=0.1.2, .
(3.50)
We not that equation 3.49 and equation 3.50 are equal that means
1 1
k‘l — 5 -+ (51 = Ny (nr +1-— 2(51) — kl = 5 — (51(2nr -+ 1) -+ TLT<TL,» + 1) (351)

Now we have substitute the expression of k1 and §;from equation 3.44 and equation 3.45

,then we get a algebraic equation of second order for k1,we have to solve it to find the energy
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22D,
k2 4 (2n% 4 2n,)k +n? (n, +1)% — (Eg - ) (2n, +1)>=0 (3.52)

We solve the last equation we find two solution

o —(2nf+2nr)—2(2nr+1)\/— (B0 — 25) o i D,
1k = 5 = —n,(n,+1)—(2n,+1) <E9 72 >
(3.53)
And
—(2n2 + 2n,) + 2(2n, + 1)\/ (Ee 2M2Dr> ;
ok1 = = —n.(n,+1)+(2n +1)\/_ (Ee _ 2p Dr)
5 r (T r 72
(3.54)

We choose the solution 5k; which give as the correct limit of energy

9 2
1= () ot (m-2) -
Lt (g 202D, . L (g 212D\ |
2|74 °T TR Ty " TR =

In other side we have k; =

,SO

202D,
n.(n. +1) — (2n, + 1)\/— <E9 — ) (3.55)
we solve the above equation to find and after we substitute by the expressions of ¢ = %
and n = w2 ﬁ,hence the energy eigenvalues are found as
32 20D, ”
H H
E,=-2 72 <2nr+2 —FByg+ —— 2 —1—1) —
2 212D,
@ (2n, + 1) <2nr + 1444/ —Fy+ 2 > — 1] (3.56)

where n is the principal quantum number.
The wave function R, (z) is obtained from equation 3.19 by using ¢ (s) and y, (s) as
follows. We first get 7 (s) from equation 3.21

T(s)=0(s) % (Ing(s)) = ¢ (s) = Eiﬂp( WEZ% s) = ¢ (s) = Exp <fﬂ(8)ds>
(3.57)
We substitute by the expression of 7 (s) = 7y (s) equation 3.47 and o (s) equation 3.37

we find
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B S+251
xp 1_52 ds | =
+9

)f< 5% a5 )

6(s) = Ep((

— Ezp <f (ij)lzf:jlds) (3.58)
After the calculation of the integral we obtain
6 (s) = Eap <ln (14 5)3(7208) (q 8)1(1-251-;1)> (3.59)
So the function ¢ (s) is
6 (s) = (14 )3 (7200450) (g _ gyi(i-20-) (3.60)

We use 3.26 to find the weight function p (s)

Sl = = [LE (T 5 e @

o) = (25 = 200 ) ds = (o) = Bap | (20 - 20 Yas| o)

We substitute by the expression of 7 (s)equation 3.48 and o (s) equation 3.37 we find

b= 2[5 (28 0]

1
p(s) = Eap {2511‘ (ﬁ) ds + 631] <ﬁ) ds} (3.63)
After the calculation of the integral we find
p(s) = Bap [In (1= 5) 73 (14 5) 73k (3.64)
So we have
p() = (14 9)730) (1 - o)~ (+3h) (3.65)

the y, (s)part is given by Rodrigues relation
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C, da° N
m(e) = S (1) ()] (366

We substitute by the expression of p (s) from equation 3.65

o (5) = pc(z) % (1 s2)" (1 + )0 30) (1 = ) (rvath) (3.67)

Yn (s) stands for the Jacobi polynomials as

—b1+ 5, —01— 7 )

Yn (8) = Pn( (s) (3.68)

Hence, R(s) can be deduce from the equation 3.20 R(s) = ¢ (s) y, (s) written in the

following form

—O1+ 5,01 7 )

R(s) = C, (1 — s)i@*%l*%) (1+ S)i@*%l*%) PTS () (3.69)

In terms of the variables r,we can now write the radial wave function R(r) as follows:

R(S) . . m Z<172617§> . m Z<17251+a>
" Vr Vr
P(—&-‘-%,—&—ﬁ) V14 Ar?
n \/X'r

Where d; = \/ = (BP™ = 282) — —py(n + 1) + (20, + 1>\/— (B — 25Pe) = 221

C,, is a normalization constant

Solution of the Radial Equation in Anti de Sitter Space This case is represented
by the equation 3.35 with (7 = —1) as

d? s d 1 (E _ 24*D,

- =

— 2
ds? ' (1+ s2) - = 71
ds2 + (I+s%)ds | (1+s2) ) s°—ns +6] Ri5(s) =0 (3.71)

As the same way when comparing equation 3.71 with equation 3.18 , we determine poly-
nomials as

212D,
hQ

o(s)=(1+5%), 7(s)=s and 5 (s) = <E§2m) — ) s —ns+e (3.72)
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Substituting them into equation 3.24 we obtain

1 202D,
W(S)Igi\/(kJrZ—(Eé”——“hQ )>s2+ns+k—g (3.73)

The constant k is determined in the same way as in deSitter case. Therefore, we get:

m(s) = |
W374:(%i52)3i%, for ky =% e+ 3 — EéQm)_%;ZDT — VA
Where

1 202D, 1 202D\
5:\/1_(Eé2)—7>—|—kand A= (€+Z—(Eé2)—7 +1° (3.75)

Here, we choose k; and mofrom equation.3.74 for the limit in ordinary space

7 (s) :2(1—51)s+5£ (3.76)

1

From Equation.3.38, we calculate

1 1 2m) quDr 1 (2m) 2:u2D7"
A= bifmmy == (EC™ 292N L (41 —2y )= — (B - k
1 \/4 ( 0 T menz ) T T T\ 1\ o)t

(3.77)
Hence, the energy eigenvalues are found as
SH? 24D -
H KL
E,=-2 2 (Qnr—f—Z —FEy + 2 —I—l) +
2 212D
(2m) we Ly

We see that the energy spectrum in de Sitter space is smaller than the energy in anti-de

Sitter space.

To deduce the complete expression of the wave functionsR (r), we use the relations of

7o (s) as follows. We first get

7 () = 72 () = 0 (5) = (06 (5)) =

¢ (s) = Exp (f: Egds> — ¢(s) = Exp <f;r 8@) (3.79)
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We substitute by the expression of 75 (s) equation 3.74and o (s) equation 3.72we find

1 51 S ﬁ—
6 (s) = Bap (f(”(H)J d)

& (s) :Exp(<%+51> fﬁd +2i51f<1+182)ds> (3.80)

After the calculation of the integral we obtain the function ¢ (s) as

6 (s) = (14 s2) 2570 gaip o) (3.81)

We use equation 3.62 to find the weight function p (s) when substitute by the expression
of 7 (s) equation 3.76and o (s) equation 3.72we find

Inp(s)=[ (T(S) — da(? )d3:>p(s):Emp

2(1-6y) s+ 25
f( 1+ %) 1‘<1+s%>d4
= p(s) :Exp[ 26} f( )> ds + 5\f (%2)) ds} (3.82)

After the calculation of the integral we get
v T tan~ (s
p(s) = (1+4s7) Pren ™ ¢ (3.83)

The vy, (s) part is given by Rodrigues relation
And using Rodrigues formula expressed in.3.25,3.26 and o (s) from equation 3.72 , we

find o
Yn (8) = p(s)ﬁ [(1 + s ) p(s)] (3.84)

n n—1

Where p(s) = (1+s2) e ) equation 3.84 stands for the Romanovski polynomials as

Aty Cn dar n—¢6" S tan"l(s
Yn (s) = RS 61) (s) = ——— | (14 5%) SPRE (3.85)
(Lt sty 5 ho O

Hence, R(s) can be written in the following form
1(1_ —61,
Ro(s) = C, (14 52)3(570) iy ton” gl () (3.86)

In terms of the variables r,we can now write the radial wave function R(r) as follows: —Vi}/\;\f’z

Ro(s) = G (1 + 52) 2(5700) gl tan” gl () (3.87)

C,, is the normalization constant



3.3. NON-RELATIVISTIC SOLUTIONS OF N-C POTENTIALS IN 2D DEFORMED SPACE129

In terms of the variables r,we can now write the radial wave function R(r) as follows:

(3.88)

Rir)y=0C, 1+ €201 n -
(r) < AT Vr

Where §; = \/i — (EéQm) — 2“;2&) —n.(n, +1) + (2n, + 1)\/— (Ee — —2”;2’3’")777 — ;gfg

Non-Relativistic Energy and Wave Function

de Sitter Space We substitute the constant of separation from equation 1.34 in the

energy expression 3.56 ,we get the deformed energy as follows:

-2
3172 2
wH 1 212D,
En = —27 (27’Lr + 2\/ZCQm (20&) + 72 +1 —

e
81t

1 22D,
(2n, +1) <2nr +1+ 4\/1627% (2a) + ,uh2 ) - 1] (3.89)

We deduce the wave function of our system ¢ (1, 6) = ¢ (r,0) = R(r)©(f) from the angular
part 1.35 and radial part 3.70

Y(r,0) = N (1 B @) 1(1-26- ) ( @> 1(1-2604+22)

ploiran i) (_w> % 0(6) (3.90)

Where §; = \/i + <%1C2m (2ar) + 2’%) +n.(n, +1) — (2n, + 1>\/(71102m (2cr) + 2’%),

_ 2u’H
and 7 = 355

cam(p) Mathieu characteristic values and ©(#) is Mathieufunction

Anti de Sitter Space We substitute the constant of separation from equation 1.34 in

the energy expression 3.78 ,we get the deformed energy as follows:
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h? h?

1 212D,
(2n, + 1) <2nT F14 4\/1(;% (20) + Mﬁ—2> —1

-2
3H? 1 2u2D,

2

5 (3.91)

We deduce the wave function of our system ¢ (1, 6) = ¢ (r,0) = R(r)©(f) from the angular
part 1.35 and radial part 3.88

————>xmm (3.92)

Where §; = \/i + <}1ch (2ar) + 2“;#) +n.(n. +1) — (2n, + 1)\/(i62m (2a) + 2“;#);

_ 2u*H
and n = oY

cam(p) Mathieu characteristic values and ©(#) is Mathieufunction

For the potential The potential V5 (r,0) = u [—% + = (%) (acos 9)} we deduce the
energy and wave function of this case from the energy and wave function of V; (r, 6) when we

put D, — 0 so

de Sitter Space The deformed energy is

Iu3 2 1 2
En = —27 2n¢ + 2 ZCQm (20[) +1 -
AR? 1
o (2n, +1) <2nT +1+4 16 (2@)) — 1] (3.93)

The deformed wave function is

) T\ R e He)
pli i) (—”}T ) 0 (3.0

Where 6; = \/% + (%eam (20)) + np(ny + 1) — (20, + 1)1/ (3com (2)) ,and 7 = Z‘;i}j\l,

cam(p) Mathieu characteristic values and ©(#) is Mathieufunction
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Anti de Sitter Space The deformed energy is

/1/3 2 1 —2
En = —27 277'7‘ + 2 Z_chm (20&) +1 +
A2 1
m (2n, +1) | 2n, +1+4 1o (2a) | — 1 (3.95)
1%

The deformed wave function is

= /\T2) %(%_61> 7 tan~1(

e201
AT

W(r,0) = N (1 + > x00)  (3.96)

Where §; = \/i + (iczm (204)) +n.(n, +1) — (2n, + 1) (%cm (204)),and n= ;Zf/lj\l,

cam(p) Mathieu characteristic values and ©(#) is Mathieu function

In order to show the effects of the deformed Heisenberg algebra leading to EUP on the
bound states of the Coulomb potential in nonrelativistic quantum mechanics systems, we
plot, as an example, the energy levels of the s-states E,, o versus the deformation parameters
A for different values of n. (We use the Hartree atomic units.).According to the results shown
in (Figures3.1,...,3.5) and to the expression of energies 3.91, it is clear that the deformation
increases the energies in AdS case and thus decreases the binding energies of the states. We
thus arrive at a critical point where the value of the deformation parameter cancels the bound

state or F, o = 0:

)
16 (2 (n—m) +2y/Lean (4D5) +2D, + 1)
Ae(n,m) =

(3.97)

[(2n —2m +1) <2n —2m+ 1+ 4y /1oy, (4Dy) + 2DT) - 1]

This critical value of the spatial deformation parameter can be interpreted as a resonance
point because the corresponding state of the atomic system ionizes.We give in Table 1 some
critical values \.(n, m) corresponding to the first levels in (T'able 3.1) for the Colombian
,(T'able 3.2) for the Kratzer +dipole (ce solution ) (T'able 3.3) for the Kratzer +dipole (se

solution )

Note from 3.89 that this is not the case for dS space because the deformation increases the
bonding of atomic states and so no ionization effect occurs here.(Figures3.1,...,3.5) and the
expression of the dS energies 3.89 show that the deformation can reverse the order of energy
levels since the correction depends on the main quantum number. If we take the level n = 4

as an example, we see that it decreases faster than the third level and therefore it becomes
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Table 3.1: Critical values for the levels n = 2, 3, 4 and 5 in AdS case for the 2D Colombian

potential

Table 3.2: Critical values for the levels n = 2, 3, 4 and 5 in AdS case for the 2D kratzer

CHAPTER 3. STUDIES OF N-C POTENTIALS IN 2D (DS AND ADS) SPACES

[de [m=0 [m=1 [m=2 [mw=3 [m=d |
[p=1]022 ] I N AN
[p=2]00266 0032 [N\ [~ [~ |
| n=3 [ 0.0068 | 0.0074 [ 0.0102 [\ |\ |
| n=4 [ 0.0024 || 0.00259 | 0.00308 || 0.0044 [\ |
| n=5 [ 0.0011 | 0.00113 || 0.00127 || 0.00157 || 0.00236 |

=1

Q

o
| 0.0116 | 0.0257 ||
| 0.0036 || 0.0063 ||
| H H

[ [

0.0015 [ 0.0022
| 0.0007 || 0.0010

0.0038
0.0015

Ao [ m |
n=1 | H
n=2 | H
n=3 | 0.0132 |
n=4 | | 0.
n=>b | Lo

H
H
H
H
H
H

+dipole( ce solution) potential

Table 3.3: Critical values for the levels n = 2, 3, 4 and 5 in AdS case for the 2D kratzer

=1

Q

} 0.5684
| 0.2393
|
|

m=
N
0.4424 |\

| m=1_|
[N ]
H [
| 0.1980 ||
H |
| |

0.1318
0.0834
| 0.0575

0.1133
0.0735

0.1684
0.0992

Eﬁﬁtﬁﬁy

| H
L H
2 | H
3] 0.3594 |
4| | 0.
5 | Lo.

H
H
H
H
H
H

+dipole( se solution) potential

Figure 3.2: E,,

— 1{AdS) 2(AdS3) 3(AdS)

Ein.0 — 1d8) — 2(d3) — 3(dS5)

(A) of (2D Colombian potential)for n = 1,2 and 3in dS and AdS cases



3.3. NON-RELATIVISTIC SOLUTIONS OF N-C POTENTIALS IN 2D DEFORMED SPACE133

— 1(AdS) — 2(AdS) — 3({AdS)
Ein.0) — 1(dS) — 2(dS) — 3(dS)

Figure 3.3: E,,(A) of (2D Kratzer potential) for n = 1,2 and 3 in dS and AdS cases

— 1(AdS) — 2(AdS) — 3(AdS)
Ein.0) — 1(dS) — 2{dS) — 3(dS)

Figure 3.4: E,o(\) of 2D ( Kratzer +dipole) potential (ce solutions) for n = 1,2 and 3 in
dS and AdS cases

— 2(AdS) — 3(AdS) — 4{AdS)
B0l — 2(dS) — 3(dS) — 4(dS)

Figure 3.5: E,,1(A\) of 2D ( Kratzer +dipole) potential (se solutions) for n = 2,3 and 4 in
dS and AdS cases
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m=0 =1 m=2 =3 4

} 0.7777
| 0.3066
| 0.1598
|
|

.

m=1_| |
NN
0368 [\ |
0.1743 || 0.2397 |
H |
H |

m
N
N
N

m=
N\
N\
N\
0.0975 N
0.0655

0.1026 || 0.1219
0.0678 || 0.0756

0.1773
0.0936

[ X H |
| o= H |
| n= H |
| n= H |
| n= H |
[ n= [ 0.1404 |

1
2
3
4
)

.1404

Table 3.4: Critical values for the levels n = 2, 3,4 and 5 in dS case for the 2D colombian
potential

lower. Then, it continues to decrease until it becomes lower than the second level, which
will no longer be the fundamental one. The value of A\; that causes this inversion between

the upper levels and the fundamental one is calculated from 3.89

2
8 (2 (n—m) + \/Leam (4D5) +2D, + 1) — 16

Ar(n,m) =

(2 (n—m) + \/icm (4Dy) + 2D, + 1)2

x ! (3.98)

[(2n —2m+1) <2n —2m + 1+ 44/ Lean (4D5) + 2DT) - 1}

In (Table 3.4), we give some numerical values of As(n,m).

Case 2:V3 (r,0) = [l{:r +5+ 4 ( " > (cvcos 0)]

Solution of Angular Equation The angular wave functions and constant of separation

appear in equations 1.34 and 1.35

Solution of Radial Equation So in this case the radial equation is

> 1d d 1+ 7A

{(1 + 7')\72) (— + ——) + TAr— + wEQ—
r dr 72

2412 r? (1+7Ar?)D, 2uE B

= <K v = + =5 | B(r) =0 (3.99)

After some simplification we get

? 1d d 1+ 7Ar? 212D,
{(1 + 7')\7’2) (— + ——) + T/\T% + W—ZT) (E@ — Mﬁ? )

212K r? 2uk
+ R(r) = 1
R 14 7Ar? h? (r)=0 (3.100)
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In order to solve this radial equation we use the following transformations

2
~1
y= VIt === (3.101)

We have to calculate the derivatives with respect to a new variable y,the first derivative

d 2SN —
_:d_yd TAT d \/y d (3.102)

dr drdy 1+ VIt a2 dy Y dy

The second derivative is

is

d_2 _a (T—Mi) __ ™ 4 + (T—)‘T) @ (3.103)
dr?dr \WT+7A2dy) (14 ra2)zdy \VI+7A2) dy? '

When we substitute the expression of r by y we find

d? d A d Ad Ay?—1) d?

& A T d)_7Ad A1) & (3.104)

dr?  dr \/1+ 7 \r2dy 3 dy y? dy?

by using the derivatives of equations 3.102 and 3.103 the equation 3.100 becomes
d? d 1> 212D 212K (y* —1)  2uFE
21 2 Ey — ") - =0
W= g+ 2, oy (P gy e | T

(3.105)

In order to writ the last equation 3.105 as a Nikiforov—Uvarov equation we have to use

the following transformation

R(y)=1v"g () (3.106)

Thus the equation 3.105 becomes

2

(y* = 1) [v (v—1)y"2g (y) + 2vy“‘1%9 (y) + y“j—ygg (yﬂ +

2y [vy“ Y9 (y) +y d%g( )} + (y;l/—il) (Ee - 2”;2&) y’g (y)

20K (2 —1) WwE
TR e Y IW Ty ey =0 (3.107)

We divide by y",we get

d> d 2
{(y—l)d2 <2 (v+1) y——)d— y v(v—1)+ 2v+

2,u2D K (y? —1) 2uF
(y? —1 < > o oroge o) 9w =0 (3.108)
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We put v (v —1) — % = 0 this require that v = vy = 3 — 31/1 + _hilif; or

+ %\ /1+ ﬁi‘ff/\{g and the equation 3.108 becomes

d? 2v d e 202D 2uE
1—9?) —+ (= -2 Dy | — Ey — ") - -2 =
{( y)dy2+<y v+ >y)dy+(1—y2)( R ) TAR? U}g(y) ’
(3.109)

N[ =

UV = Vg =

The accepted value of v is the second solution because, from the expression of R(r), the

function ¢(y)should be nonsingular at ;y = +1
We note that the equation 3.109 possesses three singular points y = 0, &1 and to reduce

it to a class of known differential equation with a polynomial solution, we use a new variable

s+ 1

s=2-1=y= 5 (3.110)
Now we have to calculate the derivatives with respect to a new variable s
The first derivative with respect to y in terms of s is
d d
— == 92./2 1)— 3.111
- G+ (3.111)
The second derivative with respect to y in terms of s is
d? d d?
— =4— 1) — 112
0 75 +8(s+1) 7 (3.112)
We use the last derivatives in equation 3.109 we get
4(1—52)d—2+(4u—2—2(2v+3)s)i+
ds? ds
1+s 202D, 2uk
— | By — — -2 =0 3.113
(1—s)<9 12 ) vl K0 (3.113)
We put ff\‘fg + 2v = ¢ that give us
d> d 1+s 212D
4(1-8)—+Aw—-2-22v+3)s)— Eg———"]— =0
|:( S)d52+(v (U+ )8)d5+(1—5)<0 72 5g(y)
(3.114)
We divide by 4 (1 — s?) this yield the following equation
d2+(v—%)—(v+§)sd s2+2s5+1 5 212D, e(1—s?) (4) =0
ds? (1— 5% ds 41— " w2 -7 |7
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After some simplification the last equation.3.115 becomes

NN BT

ds? (1—s?) ds
<E0_2HDT+€>82+2<E9_2;A;DT Jr<EQ9_2;L2DT_E)
=0 3.116
a7 9() (3.116)

To determine polynomials we compare equation .3.116 with equation 3.18 ,so

o) = (1—?), 7(s)= (U—%) _ <U+g>s and

1 22D, 22D, 22D,
g(s)= 2 [(E@ ,uh + 5) s>+ 2 (E@ - Mh2 ) s+ (E9 - uh2 - 5)} (3.117)

Substituting them into equation 3.24 7 ()

— 0 + ok we obtain

W(S):(U_%)Q(s_l):t
1 ((U— ) —Ee—i—ZuDr_ —4k‘>82+2< Eg—i-z“Dr—(U—%)z)S

+((v——) — B +2%+e+4k)

The value of k is obtained from the condition that quadratic expression under the square
root in 3.118 has to be completely square of first degree of polynomial therefore the dis-

criminate of the quadratic expression under the square root that has to be zero is given
as

1\’ 202D, 1\’ 202D,
((U—§> _E9+7_5_4k> ((u—§> — FEy + 2 +e+4k| =0 (3.119)

And
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2u2 Dy 2
1 12 242D, (B0 — 2522+ (v - 3)°)
- v ) —EBgt+ TSt —e—dk | [ s— - .
2 2 h ((U_l) _E9+2uDT_5_4k>

72
(3.120)

1 1 202D,
kl:z_l <—8+2<U—§) —E9+ h2 )and
1
4

(—5 —9 (U - %) \/—E9 + 2“;?) (3.121)

No we have to calculate 7 (s) from the relation 3.120 for the two values of k

For ki = 1 (—5+2(U— 5\ —Eo+ 2“;2DT)

() ) (oo (V)

(3.122)

1 212D,
m =5\~ Eo + “h2 (s+1) (3.123)

1 202D,
my = =5\ =B+ 5 (s 4+ 1) (3.125)

From equation 3.21 7 (s) =7 (s) + 27 (s) and 7 (s) = (v— 1) — (v+2) s

For mand k;we have
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5 2u2D, 1 212D,
T(S):<’U—§— —E9+T>S—(U—§+< —Ey + 5 (3.126)

From equation 3.23 k =A — 7' (s) = A=k + 7' (s) so

1 1 2u2D 1 1 \/ Z;RD

n, (n, —1)o"

In other side we have from equation 3.22 A,,+n, 7'+ =0, n,=0,1,2,...thus

2
1 1 202D, 1 1 202D,
—|—e+2(v—2 —Ey + —— —(2|lv—2 | —\/—-Eo+ ——
4<5+ (U 2) 0+ e >+2((v 2) 0+ e >+
5 2u2D, n(n—1)(-2)
n, (v 5 \/ 9 + 2 ) + 5 0 (3.128)

We use the relations 2 /\EQ +20=¢c0=0vy = % + %\ /14 % and after some simplifica-
tions we find the energy as

h 202D,
E = 2—\/77/27'2)\2 + 8M2K <2nr + 1 + \/ Eg —+ H ) —
M

h?

A2 2u?D, 1
T | ((Qn,, +1) \/_ Mh2 n:+ 2n, + 5) (3.129)

where n, = 1,2,3, ....

Now we have to writ the expression of the radial wave functions as R (s) = ¢ (s) p (s), we

first get g(s) = ¢ (s) p(s)
We substitute by the expression of m; and o (s) = (1 — s?) in equation 3.57 to find ¢ (s)

as

T
(14502

We use the expression of 7 (s) from equation 3.126 and o (s) to find the weight function

(3.130)

p (s) from equation 3.62

(U—%— —E9+2‘L§#)S—(U—%+(\/—Eg+zl§#>)
il

1= ds

p(s) = Exp

(3:131)
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After the calculation of the integral we find

#2D7‘
] — )V Fot?

p(s) = 1) ; (3.132)

(1+ 3)(”_5)

the y,, (s)part is given by Rodrigues relation

C, d" n
n(S) = -— 3.133
n(s) = [ () o () (3.13)

1 - 9+2“§2DT
Wherep (s) = 1= O and o (s) = (1 — s?) equation 3.133 stands for the Romanovski
(141772

polynomials as

o () = p< B ) (s) =
Ch (1+8)(U_%) dr B nﬂ/W gy (v-3)
- \/mds" {(1 5) (1+5) ] (3.134)

From equation 3.130 and 3.134 the function g(s) is

(1 . 8)7\/—E9+2M DT (%7 \/W)

i+ 3)(“_%) Dn (s) (3.135)

9(s) = Cy

v

Hence, R(s) can be written in the following form R (y) = yYg (y),s = 2y* — 1

(2 — 222V B (G oEer Bp)

o )( oy Dn (23/2 — 1) Yy (3.136)

R(y) = C,

We have v = vy = % + %1 /14 ﬂ 2/\2 and y = v/1 + 7Ar? so the radial wave function can

be written as

R(r) = O (2ra?)sV B8, (-3 e
123 _1 2
(rart o 1) VIR WIS ) (WEE) gy

C,, is the normalization constant

Solution of the Radial Equation in Anti- deSitter Space (7 = —1) By the same

way of deSitter case we find the energy and wave function of anti deSitter space

The deformed energy is
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I 202D,
E:—\/h2)\2+8uK<2nT+1+\/—E9+ a )+
241 h?

AR? 212D, 1
— <(2nr + 1)1/ —Ep + Py 2n2 + 2n, + 5) (3.138)

It h?

The radial wave function is

HDr ( \/+%—I§\/ E—&-z“Dr)

R(r)=C, (—2)\7“2)% P

(coxr? 1) VIt HEEE ) (31435 (3.139)

Energy and Wave Function

de Sitter Space We substitute the constant of separation from equation 1.34 in the

energy expression 3.129 ;we get the deformed energy as follows:

h 2 1 212D,
E = @\/Fﬂ/\ + 8u?K <2nr +1+ \/ZCQm (2a0) + 2 ) —

AR 1 212D, 1
o <(2nr +1) \/Z% (20) + “ﬁQ +2n% + 2n, + 5) (3.140)

We deduce the wave function of our system v (r,0) = ¢(r,0) = R(r)©(0) from the angular
part 1.35 and radial part 3.137

8ulK 2u2 Dy
202D \/ + cz (20)+ 5T
71102m(2a)+ “’72 T ( h2x27 m (20) n2

Y (r,0) = N (2)r2)?

(202 + 1) VI a2 2V () +W>@(9) (3.141)

n,=1,2,3,....m=123,...

cam(p) Mathieu characteristic values and ©(#) is Mathieufunction

Anti de Sitter Space We substitute the constant of separation from equation 1.34 in

the energy expression 3.138 ,we get the deformed energy as follows:
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h [ o5 1 212D,

\h? 1 212D, 1

It h?

n,=1,2,3,...m=123,...

b (r,0) = N (—2r2) 3V o oy 250 ( TS e 2P

(—20r 1) VI n22 2V ("V”SM) o(0) (3.143)

cam(p) Mathieu characteristic values and ©(#) is Mathieufunction

For the potential The potential Vy (r,0) = p [kr* + % (acos§)] we deduce the energy
and wave function of this case from the energy and wave function of V3 (r,#) when we put

D, — 0so

de Sitter Space: The deformed energy is

h 1
E = —\/h2\? + 812K <2nr +14+1/=Com (2a)> —
21 4

2 1 1
AR <(2n,~ +1) 1Com (2a) + 2n% + 2n + 5) (3.144)
o]

The deformed wave function is

b (r0) = N (2x2) VI | (31 T )

1 s;ﬂK

(23 +1 )\/1—|—>\7“2%7%V i ( ? ’12*2)@(9) (3.145)

ne=1,2,3,....m=123,...

Cam(p) Mathieu characteristic values and ©(6) is Mathieufunction

Anti de Sitter Space: The deformed energy is
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ho/ 1
E = —\/h2\? 4+ 812K <2nr + 14+ 1/ =com (2@)) +
20 4
A2 /1 1
. ((Qnr +1) 7C2m (2a) + 2n% + 2n, + 5) (3.146)
i

The deformed wave function is

1 8uK

Y (r,0) =N (—QATZ)%\/W Sz +i5 \/m)
1 8u2K

(2002 +1) VT = a2e 2V (2)(é ) Cl()) (3.147)

ny=1,2,3,...om=1,2,3, ...
cam(p) Mathieu characteristic values and ©(#) is Mathieufunction

We summarize the previous results in (T'ables 3.5 and 3.6)

5 = \/ + <E9+ 2 DT) +n.(n, +1) — (2n, + 1) (E@ + 2 DT) and n = Z‘;ig

2,u DT _ 1 8u?K
Ep + SRV e

E@ and O(6) are shown in(Tabels 1.2 and 1.3)

3.4 Discussion

We remark that the expression of energies contains the ordinary energy term and an ad-
ditional correction term proportional to the deformation parameter A, . It should be noted
here that

for the potentials which contain the Colombian potential the first term of the correction is
proportional to n? and so it is equivalent to the energy of a nonrelativistic quantum particle
moving in a square well potential. In our case, the boundaries of the well are placed at
igﬁ The second term in the correction contains the number m. We also notice that in
the deSitter case the deformed energy increase comparing to the ordinary energy unlike the
anti deSitter when the energy is decrease and is inversely proportional to the deformation
parameter A,

For the potentials which contain oscillator potential unlike the Colombian case ,.in the
deSitter case the deformed energy decrease comparing to the ordinary energy unlike the anti
deSitter when the energy is increase and it appears that the momentum of the oscillator is

affected by the deformation
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-2

— el (an + 24/ —Ep+ %D 4 1)
— A {(2 +1) (Qnr +1+4y/—FEg + 2*“”) — 1}

-2
+§—T [(27% +1) (2717« +1 +4\/W> B 1}

-/ 2N+ 8K (an +14 4/ —Ep+ WDT)
—a ((2m + 1)/ =B+ 2D 4 2n2 4 2, + -)

I [—% + f(f)} ds

pl-2 - 1Q] | Ads

1 [kr2 + @} s

5 V12N 4 8K (Qnr +14+4/—FEy+ WDr)
+28 ((an+1) v/ —Bo + 2P 4 902 4 2, + —)

Table 3.5: The expression of deformed energy in 2D space

[kr 41 w)} AdS
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H V(r,0) H Space H Y H
N (1 %)K 3) (i @)iﬁ—%ﬁﬂ) §
pl-Z+ 12 |as

i-01) .1 (,51 1)
1-Ar2 ) 2\2 25, tan (s) o1 1—Xr?
AR N (1+5) Fin (477)
o(0)
2 4 f(O) 1
p [’W‘ + ] ds | N @)= pl? a2 + 1) VIt a2 (2)9 e)
2, [0 1 1
“[’“" + ] AdS || N (=2Xr2)7 pls) (1 - 20r2) VT — M 22 (2)9) 9(0)

Table 3.6: The expression of deformed wave function in 2D space
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Chapter 4

Studies of N-C Potentials in 3D (dS
and AdS ) Spaces

4.1 3D Schriodinger Equation of N-C Potentials in De-

formed Space

We consider the following 3D stationary Schrodinger equation with a non-central potential

2

Eru(vo+ L) veo=poeo m

In order to include the effect of EUP on the above Schrodinger equation, we use the

transformations 3.6a and 3.6b to obtain:

1 o o r (1+7Xr2) f(0) B
{Q,M ((1 + TAr )p + T)\rp) +u (V(m) + = WY (r,0) = Ey(r,0)
(4.2)
We use the spheric coordinates
(1_|_ )\73) a_2+22+i6_2+wg+;8_2 4 )\7«2_
4 or2  ror  r296* r2 00  r2sin?®f 02 [
2112 r (1+7Ar%) f ()  2u
After some simplification we get
”? 20 o 2u 242 r
1 H=—=+== —+ —=F—
{( +T)\r)(ar2+rar)+7')\rar+h2 h2V(m)+
(1+7Ar?) [ 02 0 1 02 B 202 B
r2 062 - cot 939 * sin? 6 O¢? h?2 FO)|v=0 (4:4)

In order to separate the variables, we write the solution as (r,6) = r~Y/2R(r)e"™*0(f)

and this enables us to split the equation into two parts, one angular and the other radial

147
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The first derlvatlve in terms of a new function is

o 0 o
(;f . ZR(r)e™O(0)  (4.5)

—r Y2R(r)e™O(0) = —%T_SR(T)G”’W@(Q) + 7“_1/28
”

The second derivative 2 - 9% in terms of a new function is

g%f = 27’3 (r)e™eO(0) — rg%R('r’)eim“"@(H) + rl/Qg—;R('r)eim“"@(H) (4.6)
We substitute the derivatives in the Schrodinger equation 4.4
(maﬁ) M) *:W) 2,

() [;;2 +cotd 380 Smlg - aa; - 2;2 / (9)” R(r)e™00) =0 (47)

The last equation can be written as two equations the angular equation and the radial

equation as

P coppg 2 (9)} 0(0) = FO(0) (48)

r dr 2 n?

(mi)lLMW@_<—Ee+i)<1+7”2)-2"2v< L )| Ry =

4.2 Non-Relativistic Solutions of N-C Potentials in 3D
Deformed Space

Casel Vi (r,0) = p|-Z +2r 4+ & ( )(ozcos29+ﬁcosﬁ+y)sm 20

Solution of Angular Equation We note that the angular equation 4.8 is same to equation

2.14 of chapter 2 and his solutions are appear in equations 2.36 195 and 214 depend to f(0)

Solution of Radial Equation For this potential the radial equation 4.9 becomes
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2u? 1 2
d 2 1 Ar2) d —Eg—l——lzDr—l—— (1—}—7‘)0“) 212 H1 \r2
(Vl—l—T)\rQ ) +—( T rAT) ( ! 4) + A R(r)

r r dr r2 h? r

_ (ng n %) ) (4.10)

In order to solve this equation , we use the following transformations:

A/ 2
6 — 1+7—)\T (411)

Var

Then, the new form of 4.10 becomes:

9 d? d 212 1
(1-7s%) T TS (1—7s%) i (-Ee + ﬁDT + Z) s> +ns+ &?] Ri5(s) =0 (4.12)

B 2u*H _ 2uE T

We divide the last equation by (1 — T82)2 ,that give arise

d? s d 1 21 1

4 4 B+ D, + 1) _

i (—rs?)ds | (1—rs2) ( ( ot ot 4) s +ns+ 5)} Ry 5(s) =0
(4.14)

de Sitter Space(7 = 1) This case is represented by the equation 4.14 with (7 = 1) as

d? s d 1 242 1
ds? s =By + 55Dt =0 (4.1
i (=8 ds = (1— ) ( ( 0 Tt 4) sHnst 5)] Ria(s) =0 (4.15)

To determine polynomials we compare equation 4.15 with equation. 3.18,s0

o(s)=(1—-5%, 7(s)=—s and 5(8)2—(—E9+M+1)82+778+8 (4.16)

h? 4

Substituting them into Equation. 3.24: 7 (s) = (#) + \/("\2_%)2 — 0 + ok we obtain

_ 1 22D, 1
W(S)ZTSi\/(Z—i—(—Ef)—i- Mﬁ? +z_1>_k)82_n8+k_8 (4.17)

The value of k is obtained from the condition that quadratic expression under the square
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root in 4.17 has to be completely square of first degree of polynomial

1 202D, 1 202D,
(5—( EP™ Mh )—k)32+ns+k—g:(§—( EP™ Mh ) k)(s—80)2

(4.18)
And
—S 1 om 2N2Dr
7r(S)ZTi\/G_ (_Eé )+7) —k> (s = s0) (4.19)
The solution of equation 4.18 obtains the following possible solutions for each k:
M= (F40) 5% g for k= 3 [e 43— (B - 22) 4 VA
" (S) B 1 1 (2m) 2u2D (4'20)
T34 = —:|:52)$:F2(s for ky =5 |e+5— (Ey "~ — & VA

1 (2m) 2M2D7‘ 1 (2m) 2ﬂ2D7‘ 2 2
(5172 = \/5 — (Eg — h2 — kJLQ and A = (e — 5 + Eg — h2 -0 (421)

Here, we choose kjand mibecause they give as the limit of the ordinary space so that yield

T(s) =200 —1)s— 53 (4.22)

1

And

k=A—m(s) (4.23)

From equation 3.22, and the expressions of 7 (s) and o (s) = (1 — s*) we calculate:

1 1
A=k1—§+51 =n,(n,+1—-206) =k = 5—51(2nr+1)+nr(nr+1), n,=0,1,2, ...
(4.24)
By the same method of 2D space of chapter 2 , the energy eigenvalues are found as:
1 1
ki — 5 + 61 =N, (nr +1-— 251) — k| = 5 — 51(27’Lr + 1) + TLT(TLT + ].) (425)

Now we have substitute the expression of k1 and §;from equation 3.44 and equation 3.45

to find the energy

2
e+ — (EéZm) — 2“;#) + \/(5—;114— (E(gzm) - 2“;5’”)) —772]and
61 g \/i — (E§2m) — —2M}jQDT> — kl

-1
ki =3
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The energy is

32 1 1 22 a2 2
By =—trr <nr+—+\/—+iDr—Ee> —2—( +E—7§§D 1) (4.26)
m

where n, = 1,2,3, ...

Now let us find the corresponding eigenfunctions. Taking the expression of 7 (s) from
4.20, the ¢ (s) part is defined by the same way of previous sections as

6(s) = (1 + ) (778) (1 )i 0-20e3)) (427)

and according to the form of o (s) = (1 — s?), the y (s) part is given by Rodrigues relation:

C, d"
) = S (1) ()] (4.28)

where p (s) = (1 + 3)<_51_%) (1-— s)_<51_%). The expression of y, (s) stands for the Jacobi

polynomials as:

—01— 3¢ —01+ 54,
Yn (8) = Pn(T T 51) (s) (4.29)

Hence, R(s) can be written in the following form:

R(s) = € (1 — ) (02008) (g g (oame) poosinsvat) () g

In terms of the variables r, # and ¢, we can now write R(r) as follows

Vr
Pn<r 81— 251 5+251) <” \/_ > (431)

m)“”dl* ( m)“”‘”ﬂ)

h?2 h2vV/A

2
e+1- (Efm)—?“;#)Jr\/(e—§+<E§2m)—2@%>) —772]

where (), is a normalization constant,d; = \/ % - (E(SZm) - M) — ki, = 2°H and

1
oy = 1

Anti- deSitter Space(r = —1) The radial equation of the anti-deSitter space is
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d? S d 1 2u%D, 1

- 4+ = (- (=-E,+==D, 2 =

ds? (14 s%)ds * (1+ s2)° ( < 0t T h? +4)5 +7]S+€)} Ryia(s) =0
(4.32)

To determine polynomials we compare Equation. 4.32 with Equation. 3.18,s0 we get

212D,
h?

o(s)=(1+s%) ,%(s)zsand&(s):—(—Eg—l— D+le)s2+77$—|—5 (4.33)

Substituting them into 3.24, we obtain:

1 2u2D, 1
w(s):%:l:\/(k—l—z—i—(—Eg—k Mh D+4)>52—ns+k—€ (4.34)

The constant k is determined in the same way as in deSitter case. Therefore, we get:

(s) = 7T12—(%:|:51)S:F25\ forki:% %—i—E 2,uDTD \/— .
7T34_(%:|:(52)S:|:%f0rké:% %_{_E@ QMDTD—i—\/_

1 22D 1 22D
5/172:\/——E9—|— K D+k;23ndA:<5+__E6_|_ [

2
5 3 5 7 Dr) +n (4.36)

Here, we chooseky and 74 for the limits in ordinary space so that we have:

T(s)=2(1—d))s— 532 (4.37)

And

k=A—m(s) (4.38)

From equation 3.22, and the expressions of 7 (s) and o (s) = (1 + s*) we calculate:

1 1 2u2D, 1 212D,
A:k\2+§_\/§+E9+TDT+k\2:_nr <nT+1_2\/§+E9+TDT+k\2

(4.39)

Hence, the energy eigenvalues are found as:

-2
3 11 AR? 2
En’l’m:_ﬂw <nr+—+\/—+h—l§Dr—Eg) +—< LB -2, 1) (4.40)

2 4 2m h?

Now, to deduce the complete expression of the wave functions 1,,, we use the expression
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4.35 of my (s) as follows:
V) —ZLtan"l(s
6 (s) = (14 s2) 2370 gauf o) (4.41)
and according to the form of o (s) = (1 + s?), the y (s) part is given by Rodrigues relation:

c, d N
Yn (5) = () ds [(1+5%)" p(s)] (4.42)

)_5\1 e% tan~1(s)

where p (s5) = (1 + s?
als [116] as:

.The function y, (s)stands for the Romanovski polynomi-

&y, =2 (@) d" n—38" =ZLtan"1(s
yn (8) = RS 52) (s) = n —— | (1+ 5% e ) (4.43)
(1 + 82) —0y 2 0 \2 I tan~1!(s) ds™

Consequently, the expression of R(s) is written as:

R(s) = C, (14 s2)3(570%) gt tan” 0 pl ) (o (4.44)

In terms of the variables r, # and ¢, we can now write R(r) as follows

101 _ s
12 )2( —5b) ntanfl(S)R(—é'w;—;) (@) (4.45)

€251 A
AT Vr

where C,, is a normalization constant,d, = \/ — FEy + 2" De D+ ky,m = ?‘2‘ ﬁand

R(s) = C, (1 +

2
k;;:%[5—%+E9—2“;2D*Dr+\/<5+——E9—|—2“D’“D) +n?| with C,, is a normal-

ization constant.
Energy and Wave Function

deSitter Space We substitute the constant of separation 2.36 the expression of energy

4.26 ,we find the final expression of energy as

3172
wH 1
En m = T T a19 r o
'r:ly 2h2 n + 2+

-2

1 2u2 1 1 177
\/4+ ;—LzD _O‘"‘{H‘§(m2+04—ﬁ+7)1/2+§(m2+a+ﬁ+7)1/2+5} —

AR?

2m

1 1 112 2
<nf+a—[l—l—§(m2+a—6+7)1/2+§(m2+a+ﬁ+7)1/2+§] :zD 1)

(4.46)
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n,=0,1,2,..,1=0,1,2, ..and m = 0,41, 42, ...
We deduce the wave function of our system 1 (1,6, ¢) = exp (imy) R(r)O(f) from the
angular part 2.35 and radial part 4.31

N v G DA Y/ ey v A i)
VoA 1+ 2
or Vor

Pn(r ST 5+251) ( v 1\/_—‘:\—)\742) cos?’ (g) (1 — cos? (g))” X
r

F(-Ll4+1+m*+a—-B+N+m? +a+B8+)Y%51+ (m*+a—B+7)?% cos? <g))

1, = N exp (imyp) (1 —

(4.47)

h2 T OR2VA
p=im?+a—-B+7)20=1m?+a+B+7)/?

Where 51 = \/% _ (EéQm) _ 2u2D7-> _ kl; _ 2p’H

Anti deSitter space We substitute the constant of separation 2.36 the expression of

energy 4.40 ,we find the final expression of energy as

3172
wH 1
Epim =—"—— -
ny,l,m 2h2 nr+2+
2—2
1 2 1 1 1
\/71 “D [l+§(m2+oz—5+*y)1/2+§(m2+a+ﬂ+’y)1/z+§] +
A L 2 Lo 1/2 17? 244°
2—< —l—a— L +a= B+ 2+ o(m* +at f+9)"2 45| - 55D -1

(4.48)

n,=0,1,2,..,1=0,1,2,..and m = 0,41, 42, ...
We deduce the wave function of our system v (r,0,¢) = exp (imp) R(r)©(#) from the
angular part 2.35 and radial part 4.45

1, = Nexp (imy) (1 +

) ) ) -

F(~LI+1+m*+a—B+)"2 4+ (m* +a+B+7)Y%51+ (m? + o — B+ )2 cos? <g>)
(4.49)
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2 2
Where 6§, = \/%—E(;—l—z%—kkg,n: %
p=3(m*+a—pB+7)20=3m*+a+pf+9)"
For the potential V, (r,0) = p |2 + % (%) (acos? 0 + Bcos + ) sin~? 6’] we deduce
the energy and wave function of this case from the energy and wave function of V; (r, ) above

when we put D, — 0 so

deSitter Space The final expression of energy is

3172

wH 1

En m = T T az9 r o
'r:ly 2h2 n + 2+

-2

1 1 1 1]?
\/Z—a—l—{l+§(m2+a—ﬁ+7)1/2+§(m2+a+ﬂ+7)1/2+§] -

AR? 2 Lo, 1/2 L, 1/2 12
5 |t a— l+§(m +a—L0+7) +§(m +a+8+7) +3 -1 (4.50)

n.=0,1,2,...,0=0,1,2,...and m = 0, £1, +2, ...

The wave function of our system is

VI+ N2 ) L VI H(1-20;)
Vor Vor

Vr 2 i

0
F(=lLl+ 14 (m* +a—B+7)"2+ (m* +a+ B+)% 1+ (m? + a — f+7)"/% cos® <5>)

¥y = N exp (imep) (1 -

(4.51)

Whered;, = \/% — (Eézm) - —2“;2DT> —ki,n= ?L‘;ig

p=im?+a—-pB++)20=1m?+a+B+7)/?

Anti deSitter Space The final expression of energy is

37172
wH 1
En m = T azo r a
L on2 |:n + 2+

-2

1 1 1 177
\/Z—a+{l—i—§(m2+a—ﬁ+7)1/2+§(m2+a+ﬁ+7)1/2+5} +

A2

1 1 11?
o (nf—i—a—[l—i—§(m2—|—a—ﬁ+7)l/2+§(m2+a+ﬁ+7)1/2—|——} —1) (4.52)

2
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n,=0,1,2,...,1=0,1,2,..and m = 0, 1, £2, ...

The wave function of our system is

6251

1=\ 2 %(%761) =1 tan—1(s
1, = N exp (imyp) <1+ i ) e (e)

(Ao ()0 ()

F(=Ll+ 1+ (m* +a=F+7)"2 4 (m? +a+ 5+ 1+ (m® + a = 5+ 7)1 cos’ <g>)
(4.53)

Whered, = ./%—E9+k2,n:%};

p=1im*+a-B+)20=1m?+a+pB+7y)/?
For the deformed Kratzer +ring shaped potential

Viirs (r,0) = 1 [—% + 5+ 4 (%) (=2 )] ,the deformed energy in Hartree units sys-

sin2 0
tem is

In deSitter space

EK+RS (na l7 m) =

-2

1 1 1 11°
—|n—-l-m-= = +2D, + | 2 /2 4 = —

K m 2+\/4+ —i—l—l—(m +7) +21

A 2 2 1/2 1 ?

3 (n—1—1-—m)"— |+ (m*>+~) +3 —2D, -1 (4.54)

In anti deSitter space

EK+RS (na l7 m) =

2
! l L 1+2D+l+(2+ )1/2+12 +
——|n=-l-m-— - . m =
2 2"\ 1 " 2

%((n—l—l—m)2—[l+(m2+7)1/2+%r—21)r—1> (4.55)

in order to show the effects of the deformed Heisenberg algebra leading to EUP on the
bound states of this potential in 3 dimensional space we plotted the variation of the deformed

energy in terms of the parameter of deformation A (Figures 4.1,4.2)

The critical values of the deformation parameter which cancels the bound state is
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— 15(AdS) — 1s(dS) — 2s5(AdS)

Ein.0} — 25(d5] — 3s(AdS) — 3s5(dS)
0.05F

-0.05F
-0.10 |
-0.15]

-0.20f

Figure 4.1: E,, 90()) of 3D Kratzer potential for n = 1,2 and 3 in dS and AdS cases

— 1s(AdS) — 1s(dS) — 2s(AdS)
E{n,0} — 25([]3]- e 35[.!‘:".(15]' — 35[,dS]'

Figure 4.2: E,, o(\) of 3D Kratzer + ring-shaped potential for n = 1,2 and 3 in dS and AdS
cases
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[Me(m=0)[1=0 [l=1 [I=2 [I=3 [l=4 |
[p=1  Jomu6]N [N [N [N ]
[p=2  Joorodo0224 [N [N [N\ ]
| n=3 | 0.0123 | 0.0106 || 0.0055 |\, [\ |
| n=4 | 0.0037 || 0.0044 | 0.0033 || 0.0020 | \. |
| n=5 | 0.0015 || 0.0019 | 0.0018 | 0.0013 || 0.0009 |

Table 4.1: Critical values for the levels n = 2, 3, 4 and 5 in AdS case for the 3D Kratzer+ring-

shaped potential

[de(m=0)1=0 [1=1 [1=2 [1=3 [I=4 |
[ n=1 H\ H\ [N 1N [N ]
[p=2  [O04709]00596 [~ [N [~ |
| n=3 [ 0.0200 [ 0.0204 [ 0.0060 [ \. [\ |
| n=4 | 0.0050 || 0.0059 | 0.0036 || 0.0015 [ \ |
| n=5 | 0.0018 || 0.0021 | 0.0018 || 0.0011 | 0.0005 |

Table 4.2: Critical values for the levels n = 2, 3, 4 and 5 in AdS case for the 3D Kratzer

potential

Ae (n,l,m) =

—2
(n—l—m—%+\/i+2Dr+[l+(m2+7)1/2+%]2)

((n—l—m—l)Q—

1+ (m2+)2+ 4] =20, — 1)

(4.56)

In (Table 4.1) some critical values \.(n,[,0) for the Kratzer+ring-shaped potential and

(T'able 4.2) for Kratzer+ring-shaped potential in Hartree system of units and for (D,

=0.5v=1),

that to compare the influence of ring-shaped potential to the effect of the deformation

parameter

The value of As(n,l,m) that causes this inversion between the upper levels and the

fundamental one is

Ar(n,l,m) =

2
2<n—l—m—§+\/§+2DT+[Z+(m2+7)1/2+§}2) —1

X

2
(n—l—m—%—l—\/}1+2Dr+[l+(m2+’y)1/2+%}2>

1

((n—l—l—m)z—

1+ (m2+)2+ 4" —20, —1)

In (Tables 4.4,4.3), we give some numerical values of s (n,[,0)

(4.57)
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[X(m=0]1=0 [1=1 [l=2 [1=3 [l=4 |
[o=1  [[72883 ] \ [ N AN
[p=2  [us2o5]0ds81N [N [N |
| n=3 104582 [ 0.3703 [ 0.1895 [ . [\ |
| n=4 1 0.2124 [ 0.2380 || 0.1744 [ 0.1075 [ \ |
| n=5 ] 0.1215 || 0.1490 [ 0.1385 || 0.1025 || 0.0698 |

Table 4.3: Critical values for the levels n = 2, 3, 4 and 5 in dS case for the 3D Kratzer+ring-
shaped potential

un=01=0 [1=1 [==2 [1=3 [1=4 ]
Tu=1 [ 66553 \ [N N [N ]
[n=2 (1492204287 [ [~ [~ |
[0=3 [0.4536 [ 0.3641 | 0.1858 [\ |~ |
| n=4 [0.2113 ] 0.2360 [ 0.1728 [ 0.1064 [ \. |
| n=5 | 0.1211 || 0.1483 || 0.1377 || 0.1019 || 0.0694 |

Table 4.4: Critical values for the levels n = 2, 3, 4 and 5 in dS case for the 3D Kratzer
potential

Case2 \@,(r,@):u[k‘rz—l—%—k ! (h )(a00820+60089+7)81n 20}

2\ 2p2

Solution of Angular Equation The constant of separation and the angular part of wave

function is the same of casel

Solution of Radial Equation So in this case the radial equation 4.9 is

2 d 2(1+7Axr?)d
|:(1—|—T)\T’)P+T/\ E‘f‘fﬁ_
<E —%Dwi) (1+7r%) 20 (2ME A R(r)=0  (4.58)
r2 h2 " 1+ 72 h? 2 Yo .

In order to solve this radial equation we use the following transformations

2
-1
T

We have to calculate the derivatives with respect to a new variable y,

the first derivative is

d dyd ot d VNP 1d (.60

dr  drdy 1+ VIt a2 dy Y dy
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The second derivative is

LR R W (VA o
dr2  dr \\/1+ 7 x2dy) (1 +T)\r2)% dy VIFra2) dy? '

When we substitute the expression of r by y we find

d> d A d Ad Ay?—1) d?
( AT >7‘ A (y ) (4.62)

" a \Viroed)  vay T 2 ap

by using the derivatives of 3.102 and 3.103 the equation 4.58 becomes

7 1) 2
<y2—1)d—2—|— yi—@e ik y—2—”2Ky2_1+ b1 R(r) = -0
dyy? dy y?—1 h2  T2)2%y2 TARZ 2

(4.63)
In order to writ the last equation 4.63 as a Nikiforov—Uvarov equation we have to use the

following transformation

R(y) =y"g9(y) (4.64)

Thus the equation 4.63 becomes

(y* —1) [v (v=1)y"?g(y) + 2vy“1d%g (y) + y“dd—;g (y)] + 3y {vy“g (y) + y“%g (y)] +

(4.65)

2 2 2 2
Y 2u*D, 1 21K (y* — 1) 2uE 1
Y (B - 2 ) g (y) — v D o =0
(y2—1)( o +4>y9(y) h? 72/\2y2yg(y>+ SRS LA

We divide by y",s0

(y* —1) j—;g (y) + ((2v +3)y — %U) d%g (y) + %U (v—1)g(y) +3vg (y)+ (4.66)

2 2 2 2
Yy 2u*D, 1 21K (y* — 1) 2uE 1 B
W2 —1) (Ee T 4> 9) — =33 2 g+ ts)o)=0

We put v (v —1) — %g = 0 this require that v = v, = 3 — 34/1+ ﬁgﬁf; or

V=g = % + % 1+ % and the equation 4.66 becomes

d? 2 d
{(l—gﬂ) d_y2+ (;U— (2v+3)y> d_y+
2 2
Y 2u°D, 1 2uFE 1
(1—9?) (Ee “Tw T Z) - (7)\h2 +g ) —3vjgy) =0 (4.67)

The accepted value of v is the second solution because, from the expression of R(r), the



4.2. NON-RELATIVISTIC SOLUTIONS OF N-C POTENTIALS IN 3D DEFORMED SPACFE161

function g(y)should be nonsingular at ;y = +1

we note that the equation 3.109 possesses three singular points y = 0, £1 and to reduce

it to a class of known differential equation with a polynomial solution, we use a new variable

1
s=2-1=y= 8—; (4.68)
Now we have to calculate the derivatives with respect to a new variable s
the first derivative with respect to y in terms of s is
d d
— =242 1)— 4.69
=2/ (169
the second derivative with respect to y in terms of s is
d? d d?
— =4—+38 1) — 4.70
dy? ds +8(s+1) ds? ( )
We use the last derivatives in equation 3.109 we get
d> d
{(1—5 ) — 7o +((v—1)—(v+2)3)£+
1+s 2uD, 1 1 /2uE 1 3
— | By — -] —-- e I =0 4.71
4(1—s)<0 72 +4) 4(7/\712+2 70 9) (4.71)
We divide by (1 — s?) this yield the following equation
d_2+((v—1)—(v+2)s)£ 1+s EQ—ZMQDT—FE
ds? (1—s2?) ds 4(1—s)(1—s?) h? 4
1 uE 1 3v
_ )27 =0 4.72
4(1— 2) (7Ah2+2) 4(1—32)}9(8) (4.72)
We put 255 47 /\h2 —|— — 3v = ¢ that give us

P (v=1)—(w+2)s)d (6)(1—5) (1+5s) 212D, 1 B
[@+ (1—s2) d8_4(1—32)2+4(1—82)2 (E"_ h? +1>]g<8)_0

(4.73)

After some simplification the last equation.4.73 becomes

2 (w-1)-(v+2)sd
[@“L (=)  ds

(E9—2“DT+ +6>s2+2<E 20 De 4 )s+(E9 2De 1 )
4(1 — s2)?

g(s)=0 (4.74)
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To determine polynomials we compare equation 4.74 with equation 3.18 ,so

o( :( —s%), 7(s)=(w—-1)—(v+2)s and
1 22D 1
:Z{ By — “ +4—|—€+3U)
2u2D 2u’D, 1
o el AR 4.
2<E9 o +4>8+<9 72 +4 e—3v (4.75)

Substituting them into Equation.3.24 7 (s) — 0 + ok we obtain

vs—(v—1)

= +
1 (v2—E9+2’%—;11—€—4k>32+2(— i—v(v—l))s (476)
2 +<(v—1) —E9+2“DT——+5+41€) '

The value of £ is obtained from the condition that quadratic expression under the square
root in 3.118 has to be completely square of first degree of polynomial therefore the discrim-
inate of the quadratic expression under the square root that has to be zero and 7 (s) can be

written as

—(v—1 1 202D, 1
m):%iﬂ/(vz_m oD L)

(Bo— 2P+ 4+ 0 -1))

(v2— Bo+ 252 — 1 - - ak)

(4.77)

Therefore the discriminate of the quadratic expression under the square root that has to

be zero is given as

2u2D, 1 2
(—E@ + gV (v — 1)) - (4.78)
202D 1 22D, 1
P B+ — e -1 - E - = 4k) =0
(U o + = 1 € k) ((U ) o+ ——— 2 4+€+ k

We writ the last equation as algebraic equation of second degree with respect to k

2u2D, 1) 2u—172+e2—(2v—1)e=0 (4.79)

16k2+4(2€—2v+1)k—4( Ey+ =53
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Now to find k& we have to solve this equation ,the discriminate of this equation is A

2u°D
A= 64 (20 —1)° (—Eg + “h2 > (4.80)

So we have to values for k

P [(% 1-2)—2(20— 1)/ —Ep+ MDT] (4.81)
8 h2
And
kQZé [(21}—1—25)+2(2v—1)\/<—E9+2M;Dr)] (4.82)

we substitute by & in equation 4.79 to find 7 (s)

For kywe find two values of 7 (s) as bellow

1 1 212D, 3\ 1 212D,
S Y (o=2) 42 ()-B 4
7T1(8) (’U 4+2\/ Eo“* 72 )3 ('U 4>+2< 0+ 72 ( 83)

And

1 1 212D, 1 1 212D,

We choose 75 (s) for the limit of ordinary space and use it to calculate 7'

7(s) = (v—1)—(v+2)s+2n(s) =7 =—(v+2)+27
212D
N Y o) " 4.85
= () 2 0 + h2 ( )
from the relation A,, + n, 7" + n(n_Tl)U“ = 0 we have
3 212D,
A=A,=—n, |—v—2— —E9+Mh—2 +n, (ny — 1) (4.86)
When we use the expression 7 (s) = 72 (s) of in the equation &k = A — 7 (s)
1 1 212D,
A=k - ——1\/—FE, 4.87
1+ ( 1 2\/ 0+ =3 ) (4.87)

We get the energy eigenvalues from equations 4.86 and 4.87 when we use ¢ = 425\%2 + % —3v
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and v=vy =4+ 414 300
f 202D,
B = D\ herex 2k (2 (1= np) =\ =B+ £ )
]
2T 212D,
= (_4”’%_4”’"”‘(4”’“) \/ o+ =5 ) (4.88)

Now we have to writ the expression of the radial wave functions as R (s) = g(s), we first
get g(s) = ¢ (s) p(s)
We substitute by the expression of m; and o (s) = (1 — s?) in equation 3.57 to find ¢ (s)

as

We substitute by the expression of 7 (s) = <}l — % —Fy + 2“;2DT> s—i—;li—%\/—Eg + 2“;?

and o (s) we find

(1475 ) (4me-2)
(4 Eh_D) (_;1n<1_8>+;m<1+s>)) (191

So the function ¢ (s) is

N[

5(5) = (14 52V E ) (4.92)

We use 3.26 to find the weight function p (s)
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Lo @ p (] =79 p(5) = o (5) L4 2 () g

When we compute the integral we get

We use the expression of 7 (s) from equation 3.126 and o (s) to find the weight function

p (s) from equation 3.62

p(s) =exp

(v—l)—(v+2)8+(%—1 —Ee+2“§#)s+§—1 —Fy+ 2P 4 9

J ) ds
(4.94)
After the calculation of the integral we find
ot = 5 (5 -1y 22 ) (1)
%(a—%—1 —E9+2“;DT> (—In(1—s)+In(1+s)) (4.95)
So
p(s) = (1 — VB2 (1 4 gyv (4.96)
the y, (s)part is given by Rodrigues relation
n d" n
Yn (8) = e T [(1 — 32) P (s)} (4.97)

i (5) =~ (1 ) (1 )V E (1

p(s)ds®

After the calculation of the integral we find

(1—5) ~ Byt 2P

(1+ 3)(”_%)

p(s) = (4.98)
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the y, (s)part is given by Rodrigues relation

C, d"

(s) = B o () (o) (4.99)

(VB : :

Wherep (s) = CORE and o (s) = (1 — s?) equation 4.99 stands for the Romanovski
(1+s)\"72

polynomials as

s (v—% n 212Dy 1
( Ch (1):;%% {(1 B Syzﬂ/ﬂ (1+ S)”(Uz)} (4.100)
L—s)V 7w

From equation 4.92 and 4.100 the function g(s) is

9(s) = (s) yn (s) = (1+8)é( fé@) pg;_v, —ngj#)

N

Hence, R(s) can be written in the following form R (y) = y'g (y),s = 2y*> — 1

$ (-4 B ) p£m> " (4.101)

R(y) = Cn (25%)"

We have v = vy = % %\ /1 + 2 hQ 2/\2 and y = V1 4+ 7Ar? so the radial wave function can

be written as

R(r)=C, (2+27)\7) (é_4

+l - —Egp+ 24~ Dr 141 /1, 8u?K
( B ) (m>2 B (4.102)

C,, is the normalization constant
Energy and Wave Function

deSitter Space We substitute the constant of separation 2.36 in the expression of

energy 4.88 ,we find the final expression of energy as
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h
E=—\/h2\ + 812K
21
11?7 2u2D, 1
|+

1 1
WM+I+¢—a+P+§Wﬂ+a—ﬁ+vﬂﬁ+§mﬂ+a+6+vﬁﬂ+—

2 R
2\R2
— (—4n? —4n, +2 — (4n, + 2)
7!
1 1 11> 242D,
\/—a—i— [l+§(m2+a—ﬁ+7)1/2+§(m2+a+ﬁ+7)1/2+§] + Mrﬂ (4.103)

The radial wave function is

1y = N exp (imp) cos™ (g) (1 — cos? ( ))U(2+2)\r2)(é ‘MW)
(m)é %\/7 (’%\/Hrzm \/ Ee+2"2DT)

X

0
F(-LI4 14 (m? +a— B4+ (m* + ot B+7)"% 1+ (m +a— 8+ 7)"% cos’ (5))

(4.104)

ny=0,1,2,...,1=0,1,2,...and m = 0, £1, +2, ...
Wherep = %(m2 +a—B+y)20 = %(m2 +a+ B+ )2

Anti- deSitter Space We substitute the constant of separation 2.36 in the expression

of energy 4.88 ;we find the final expression of energy as

h
E = —\/R2\? + 812K
21

1 1 11> 2u2D, 1
2n, + 1+ —a+l+§mﬂ+a—ﬁ+wm+§Mﬂ+a+ﬁ+wm+§ Tty
2\R?
+ (—4n? —4n, + 2 — (4n, + 2)
7]
1 1 11* 22D,
\/—a+[l+§(m2+a—ﬁ+7)1/2+§(m2+a+ﬁ+’y)1/2+§] + Mfﬂ (4.105)

The radial wave function is
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Q) e-anl

8# K \/ E9+2“ Dr)

F(=Ll+1+(m*+a—+7)"+(m +a+8+9)"%1+ (m* +a— f+7)"? cos’ <§))
(4.106)

=0,1,2,..,1=0,1,2,..and m = 0,1, +2, ...

Wherep = (m +a—p+7)20 = l(m2 —|— a+ B+ )2
For the potential Vjy (r,6) = [kzr + 4 ) (avcos® 0 + Bcosf + ) sin™ 9] we deduce
the energy and wave function of thls case from the energy and wave function of V3 (r, ) when

we put D, — 0 so

deSitter Space the final expression of energy as

h
E=—\/R2X\* + 812K
24

1 1 1]
2nr+1+\/—a—|—ll—i-é(mz—i-oz—ﬁ—i-’y)l/z—i-§(m2+a+5+7)1/2+§} i

(4.107)
2\h?
(—4n? —4n, + 2 — (4n +2)
1
1 1 11°
—a+ [+ §(m2 +a—-F+7)Y2+ 5(m? +a+f+7)V2+ 5 (4.108)
The wave function of our system
0 " (2 4 22®) (- 1VT)
¥y = N exp (imyp) cos® 3 1 — cos® (2+2xr%) 50
3*+3 ~LWi+E VR
(i) ( ),
F(-Ll4+1+m*+a—B+N2+m?+a+8+Y%1+ (m?+a—B+7)%cos <§>)
(4.109)

n.=0,1,2,...,0=0,1,2,...and m = 0,£1, £2,.
Whefef)=%<m +a—f+9) o = 5(m? ot
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Anti- deSitter Space

E= E\/h%\Z + 8u2K
24

1 1 1?1
2nr—|—1—|—\/—a+{l—i—§(m2+a—ﬁ+’y)1/2+§(m2+a+ﬁ+’y)1/2+5} +7

(4.110)
2\h?
+

(—4n? —4n, + 2 — (4n, + 2)

1 1 1]’
\/—a—i- llJr§(m2+&—5+7)1/2+§(m2+04+5+7)1/2+5] ) (4.111)

We deduce the wave function of our system ¢ (7,6, ¢) = exp (imy) R(r)O(f) from the
angular part 2.35 and radial part 4.102

1y = N exp (imp) cos® (g) (1 — cos? (g)) (2 B 2)\7“2)(%% ~T)
( *>+W (i)

1— M2 X

0
F(=Ll+ 14 (m* +a—= B+ 4+ (m* +a+ B+)% 1+ (m? + a — f+7)"/% cos® <§>)

(4.112)

n,=0,1,2,...,1=0,1,2,...and m =0, £1,+2, ...

Wherep = 3(m?+a — B +7) 20 =L(m? + a+ B +~)"/?

We summarize the previous results and the results of the rest of the studied potentials in
the (T'ables 4.5,4.6)

Ey and ©(0) are shown in(T'abels 1.2,1.3) (Tables 2.1,2.2)

4.3 Discussion

We note the same remarks of the two dimensional case in this three dimensional cases. We
also notice that the correction deformation affects all energy levels except the ground level
(n = 1), which remains not affected by the deformation even for large values of \.(parameter

of deformation)
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H V(r,0) H Space H E H
2
1) E ( T+%+\/711+2’£DT Ee)
H
H |:_? + r2 ds
;ﬁj (n2 + Ee - 2h2 DT — 1)
5 2
2
4 <nr+ 1+ \/;11 + 20D, E9>
p [—% + L9 | Ads
+4 (n2 +Ey— 2D, 1)
E=2VnN + 212K (2 (1—n)—+/—FEy+ 2“;217’“)
I [er + 1O s
+22 (—4n2 —4dn+2— (4n+2)/—Es + 2“,?)
E=2VnN + 212K (2 (1—n)—/—Ey+ 2“;1’")
pkr? + 29 | Aas
—% <—4n2 —4dn+2— (4n+2)4/—Ey + 2#;2Dr)

Table 4.5: The expression of deformed energy in 3D space



4.3. DISCUSSION

171

H Space H )

p [—% + f(‘))] ds

N exp (imy) (1 _ \/W) i(17261+%) (1 n @)Ai(l%l;il)
Var =

—51—L7—6 _n -
P'rgy. 261 +251> (W) X @(6)

Ad
" [—% n f(H)] 8

N|=

1_5 -~ 3 P
N exp (imy) (1+1—A_>:~2> (3 1)eﬁtan I(S)RSL 1,51> < 1_/\T2>

x0(6)

p [IWQ + M} d5

1./ 2u2 Dy
1 Eq+ 2

N exp (img) (2 + 2Ar2)<é ) (VIT aZ)2 2V s

_LiyselK ) gL 2u?Dr
( 2\/1-"_;7,2/\27\/ Eg+ 72

Pn >@(9)

" [k‘r2 I @} AdS

8/,1.2K

2 T
N exp (img) (2 — 2xr) V) (e b 88

_1 8u? K \/7 22D,
( 2\/1+n2x2’ Eg+=—

Pn >@<9)

Table 4.6: The expression of deformed wave function in 3D space
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General Conclusion

The important task of quantum mechanics is to find the exact bound-states solution of the
Schrodinger equation in nonrelativistic case and Dirac ,Klein Gordon in relativistic case the
aim of our works is reach this task for a kind of potentials which is the non-central potentials
in the first part of this thesis we studied some of non central potentials in the ordinary space
,the first chapter devoted to the tow dimensional space Where did we study the potentials
analytically in 2D space ,in first section of this chapter we have solved the Schrodinger
equation for five potential the first four haven’t names and the five one is the dipole ,this
solvable potentials in 2D not much known because Two-dimensional technology is very recent
and The usual field of use for this type of potential is chemistry and nuclear physics but this
fields are three-dimensional except the dipole have a real applications like grafen ,where we
have a good empirical results .So we solved the Schrodinger equation and extracted a well-
defined energy and wave function ,but to get bound-states a condition must be fulfilled is
QEL;DT — Ey > 0 where Ej is a constant of separation of equations contain the parameters of
the noncentral potential and D, is the parameter of kratzer this condition appears in both
cases of the Colombian and the oscillator .Since that dipole is our contribution to physics
we illustrate it in details ,so for the dipole plus Kratzer potential the spectrum shows that
the energies follow mainly the behavior of Mathieu’s characteristic parameters and thus the
angular moment Dy, whereas the effect of the radial moment D, is merely a shift in these
energies to larger or smaller values according to its sign. We have showed also that there is
an essential condition for bound states to exist, which is: ¢g,,,(4Dy)+8D, > 0. This condition
imposes a critical value for the angular moment Dy,depending on the value of m, otherwise
the corresponding bound state disappears. These critical values of Dy depend also on the
value of D, and the negative value of this moment which makes ¢y,,(4Dy) +8D, = 0 is also a
critical value for the radial moment. So we see that by increasing,the radial dipole displaces
the energies towards the larger values while widening the region of the possible values of the
angular moment.. The second chapter of first chapter is about the relativistic case ,we took
just the spin and pseudospin symmetry ,the eigenfunctions are determined analytically but
the energies can only be calculated using graphical methods. Only the spin symmetry has
given results corresponding to atomic systems. The behavior of the energies is the same as
that of the Schrodinger spectrum but it is shifted because the Schrodinger type equation

of the relativistic systems has 2V as a potential instead of the potential V' in the ordinary
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Schrodinger equation. We also note that the critical values of the dipole moments D, and Dy
depend on the two quantum numbers n and m in the relativistic case instead of just m in the
case of non-relativistic systems ,we have found that the angular term removes the degeneracy
found in the exp(imf) part of the solutions for central potentials. This is equivalent to the
effect of a constant magnetic field in 3D systems, where its action removes the degeneracy of
the exp(im¢) solutions too. In both cases,the privileged direction of the interaction (dipole
axis in 2D and field direction in 3D) removes the degeneracy that existed due to the isotropy
of the action before chapter two is about the three-dimensional non-central potential where
we studied four non-central potentials which are general cases of known potentials Hartmann
potential Makarov potential ring-shaped potential and double ring potential in both cases
non relativistic and relativistic(spin and pseudo spin symmetry),where we found the energy
spectrum and the wave functions and the condition to get a bound states is different to the
two dimensional potential and it is ; + %DT —Ey,>0.

In the second part of this thesis we analytical studied all the potentials of the first part
but in deformed space (deSitter and anti deSitter space ) by using the position representa-
tion of the Extended Uncertainty Principle formulation and the Nikiforov—Uvarov method.
For both cases, we obtained the exact eigenenergies and eigenfunctions. The radial wave
functions were expressed as associated Jacobi polynomials for de Sitter space and in terms of
Romanovski polynomials for anti-de Sitter space.The deformed energy spectrum was written
as the ordinary term with an additional correction term The main effect of the deformation
parameter A is an increase in the energies for AdS spaces and a decrease in these energies
for dS spaces. for the non-central potential plus Colombian but for the non-central plus
oscillator is opposite moreover we deduced a critical values Ao for the deformed parameter
which cancel the energy and critical values A\; for the deformed parameter which that causes

the inversion between the upper levels and the fundamental one



Appendix

.1 Details of Non-Central Potential in 2D Ordinary
Space

Case3 Vs (r,0) = o [~ + L5 + & (£5) (atan? § + ftan § +7) |

For this case the angular equation 1.16 becomes

657(;)—<atan2g+ﬁtan§+’y>@—E9@:0 (113)
To solve this equation we make the following substitutions:
z = —¢" (114)
and
©=21-2)°T (115)

Now we have to compute all parts of the equation 113 by the new variable z and the new
functionT

From the equation 114 we deduce the following relation

z=—e" = 0= —iln(—2) (116)
And its derivative is
d .
d—; = —ie? = iz (117)
From the trigonometric relation we find
) .0 il A —i2 .
. § sind ez —e 2 62(62_6 2) e —1 z—1 z—1
2 cost <€ig i e_’%> oidi <€ig i 6—1%) i(e?+1) i(z+1) (z4+1)
(118)
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The first derivative of © with respect to € in terms of a new variable z is

doe do
i Vet 11
o~ "7z (119)
The second derivative of ©® with respect to 6 in terms of a new variable z is
d*e ,d?O doe
222 120
a0~ T d2 Tz (120)

The first derivative of © with respect to the new variable z in terms of a new function
s 4o dT
- = (p(1=2)7 —02f(1—2)7 )T+ 2°(1 - Z)UE (121)
The second derivative of © with respect to the new variable z in terms of a new function

is

d2
L = [l D22(1 =2y ~ 2002 (1= 2 o (o= ) (1= 2 4] T
— o o— dT Ud2T
+2(pz'" (1= 2)7 —02°(1 — 2)7 ) - T 2P(1—2) e (122)

By substituting the results 116 to 120 in equation 113 we find a new angular equation for

— dz? ZE

,d°0  dO _a(z—1)2_w z—1
(z4 1) (z+1)

+ 7> O — E©0 =0 (123)

By using the equations 121 and 122 ,the last equation 123 becomes

d*T dT
2 o 1 o 2 o—1 1 o
— Pt (1 — Z) _dZQ — |:2 (pZ’H_ (1 _ Z) — gaPt (1 _ Z) ) 4Pt (1 _ Z) E} _

[(p(p—1)2°(1 —2)7 —2po2"TH 1 —2)" "+ 0 (0 —1)2°2(1 — 2)72)

o—2
e P(1—2)7 — Egzr(1 — 2)7| T =0
—(TeGay ~ e ) F (= 2) - Bt (-2 T =

(124)

We divide the equation 124 by 2*7!(1 — 2)°~lwe find The following differential equation

—2(1—2)— — [2 (p(1=2)—02)+ (1 — z)c(li—f —

(p(p = 1) =711 =) ~ 200+ 0 0~ 1) 51— 2)1) -
(—oz(zfl) - zﬂ(z_l - 7) M1 —2)—Epz Y (1—2)|T=0

(125)

Where we take

1 1
p= Z+—(1+4@+45+47)1/2 (126)

W
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1 1
o=5+50+ 160)%/2 (127)

The equation 124 becomes a hypergeometric equation type as:

z(1— z)ﬁ +[(2p+1) = (2p+ 20 + 1)z] d

T 1 .
— =5 [—2p0 + 0 +4a =2 T =0  (128)

The last equation is a hypergeometric equation type and its solution is hypergeometric
function [3][36]:
T =F(2p,20,(2p+1);y) (129)

From the asymptotic behavior of the confluent series (r — oo = F' = 0) which lead to

T — 0 when r — oo we find the general condition of quantization :

2p=—-m,m=0,1,2, ... (130)

This means that

2p0+m =0 (131)
From 127 we have
1
20 =2 (— +5(+ 16a)1/2) =14 (1 + 16a)/?
we use 131 we find
20 =m +2p+ 1+ (14 16a)"? (132)
By using 130 and 132 we can write the hypergeometric function as
T =F(—m,m+2p+ 1+ (1+16a)"?2p+1;2) (133)

From the from of the hypergeometric equation [36]

-2

PP = —if + }l { {m—l— % + % (1+ 1604)1/21 - 452} lm + % + % (14 16a) (134)

From 126 we have

p=(—Ey+a—if-N"?=p =-Ey+a—-if—y=Ey=a—if—y—p° (135)

This require that the angular energy is
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-2

1 1 1 1 1
E(;:a—iﬁ—”y—i—iﬁ—Z—l{{m+§+§(1+16a)1/21 —452} [m+§+§(1+16a)

In another form Fjy can be written as

[m+ 4+ 1 (1+160)'72] — 4
4[m+1+1(1+16a))

Ey=a—~vy— (136)

m is the angular quantification number, m =0,1,2, .....

We find the angular wave function when we substitute the function 7" in the equation

©(z) =2"(1—2)°T as
O (2) =2°(1 — 2)°F(—m,m+2p+ 1+ (1 + 16a)"%,2p + 1; 2) (137)
We have

O (0) = =1+ ) F(—m,m+2p+ 1+ (1+16a)"%2p 4+ 1; —¢™) (138)

caseb:Vy (r,0) = j [~ + D + & (£5) (acot? § + feot § + )]

T

For this kind of potential the angular equation 1.16 becomes

2
C;TS)—(acot2g+ﬁcotg+7)@—Eg®:0 (139)

To solve this equation we substitute § = 7— 6’ then we have to deduce a new equation for

6/
0 o' o' 6 o'
cot 5= cot (g - E) = tan 7= cot? 3= tan? 3 (140)

The first derivative of © with respect to # and The first derivative of © with respect to ¢

are equal

46 d¥'de  de

= 2 _ 2 141
a0 do do’  do’ (141)
The second derivative of © with respect to 6 and 6’ is same also
d*e  d’e
@ P (142

We substitute the equation 140 to 142 the equation 139 for the new variable 6’ becomes

d2 0/ 0/
d@% — <atan2§+ﬁtan§+’y> O —FEyO =0 (143)
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Which is the same angular equation of case2 ,then we can deduce the angular wave function
and the angular energy just by change 6 by ¢’ in the expression of wave function 138 and

energy 136 of case2
O (0) = ' (14 ) F(—m,m +2p+ 1+ (14 16a)"%2p + 1; —¢”) (144)

We substitute by 0’ = 0 + 7

O (0) = =P (1 4 N P (—m,m 4+ 2p+ 1+ (14 16a)V% 2p + 1; =@+ (145)

So the angular function for this case is

O (A) = —€e™ e (1 + ) F(—m,m +2p + 1+ (1 +16a)"2;2p + 1; —e™e)  (146)

Finally after the simplification the angular wave function of this case is
O (0) = (—1)" e (1 — ) F(—=m,m+2p+ 1+ (1 + 16a)"2;2p + 1;¢%) (147)

And the constant of separation Fjy is a same of the energy of case2

[m+ 4+ 1 (1+160)72] — 4

Ey=a—vy— 5 (148)
1/2
tm+ 5+ (1+160)7]
m=20,1,2,.....
p=(—Ey+a—iB—~)"%and o = 1+ (1 + 16a)"/?
Case7 Vi3 (r,0) = [—% +Z+ 5 (%) (atan®6 + Stan 6 + ’y)]
For this case the angular equation 1.16 becomes
W—(atan 0+ Btanf ++)© — Ey© =0 (149)
To solve this equation we have to make the following substitutions:
z=1+¢" (150)

And
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©=21-2)°T (151)

From 150 we deduce the following relations

0 =—iln(l—2) (152)
e = (1 —2)° (153)
inf 0 —if —i(ei20 — 1 (1 — 2_1
wmp= S0 _ - (1) i(( 2)2 ) (154)
cos i(e? 4 e ) (€20 +1) (1=2)"+1)
1-2)?2-1)°
an? g — 2)2 )2 (155)
(1—2)°"+1)
The derivative of a new variable z with respect to 0 is
d d(1—e? .
d—;:—( d@e ) = i =i(z—1) (156)
The first derivative of the wave function © with respect to 6 is
d® dOdz do®
e (-1 — 1
@ aza CTUE (157)
The second derivative of the wave function © with respect to 6 is
d2@7_( _1)2d2@_( _1)d® (158)
ar - a2
We calculate the derivative of © in terms of a new function T’
T
% = (p''(1—2)7 —02’(1—2)7 )T+ 2(1 - z)”fi—z (159)

The second derivative is

2
g = [(p(p—1)2"2(1—2)" —2poz" (1 —2)" ' +o(c—1)2"(1—2)7 ) +]| T
dT T
p—1 _ o __ p . o—1\ %+ P _ s L
+2(p2 (1= 2)7 =02 (1= 2)") (1= 2)7 (160)

By substituting the results 154 to 158 in equation 149 we find a new angular equation

(-2 -1) )
m—F”}/)@—Eg@—O

(161)
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By using the equations 151, 159 and 160 the equation 161 becomes

—2P(1 — z)a+2% +[=2 (p2r (1 — 2)72 — 020 (1 — 2)7) + 22(1 — 2)7] %—I—
[_p( )Zp 2(1 — Z)0+2 + 2po 2P~ 1(1 — Z)a+1
7o =)= = pr 1 - o (1 - 2 (162)

) A (L) I B
(Oé ( ((172)2+1) 0+ 6 ( 2 +1) +7] %z (1 z) EGZ (1 Z) T =0
We divide by z#71(1 — z)°"lwe find

—z(1— z)cj;—]; +[-2(p(1 —2) —02) + 2(1 — 2)7'] Z—f—l—

[—p(p—1)z7H (1 —2)+2p0 — 0?2(1 — 2) ™" — p—
<Oz (%) 0+ 5% + 'y> Epz(1 — Z)—l — Eypz(1— Z)_l (163)

Where we put

1 1
P=35 +§(1+404)1/2 (164)
And
1 : 1/2
o= 5(—E9+a—zﬁ—’y) (165)

We get following hypergeometric equation

2(1=2)T +[-2p+20+ 12T — |2p0 4+ p+a — g T=0 (166)
The solution of this equation is hypergeometric function :[3][36]
T =F (2p,20,1+ (1+4a)'?;z) (167)

From the asymptotic behavior of the confluent series (r — co = F' = 0) which lead to

T — 0 when r — oo we find the general condition of quantization :

20=—-m=—=2p+m=0,m=0,1,2,... (168)

From the condition of hypergeometric equation we have

20 =2 (%(—Eg +a—iff - 7)1/2) = (—Eg+a—if — )2 (169)
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By using 168 we find

20 =m+2p+ (—Ey+ a —iff — )2 (170)
So we can write the hypergeometric function as
T=F(=mm+1+1+40)"?+ (—Es+a—if—7)Y%1+ (14 40)V% 2) (171)
The equation 170 give us the energy FEjy as
Ey=a—if—~—40° (172)
From the form of the hypergeometric function we have

0'2:

{—zﬂ + { [(1 +40) P 414 2m]4 - 452} [(1 +40)' 2 +1+ Zm] _2} (173)

B~ =

We substitute the last equation in 172 we find the expression of angular energy as

[(1 +40) P 414 2m}4 — 43
(174)

By=a=7y- 1/2 2
4[(1+4a)/ +1+2m}

.2 Details of Non-Cenral Potentials in 3D Ordinary
Space

Case3 V5 (r,0) = p|-Z + Lp 4+ 4 (%) (vcos? @ + Bcos? § + ) sin ™2 9}

For this case the angular equation 2.15 becomes

2 2
d c(;(f) + cot Hd(zée) - siTZZ 9@(9) — (acos® 0 4 Bcos® 0 + ) sin >0 cos 2 0 — E40(6) = 0
(175)
We make the following substitutions
w = cos? (0) (176)
And
O=w(1-w)’T (177)

So we have to compute all parts of the angular equation by the new variable

sin? (0) =1 —cos® () =1 —w (178)
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And Vo
w
cotf = 179
— (179)
The first derivative of © with respect to € in terms of new variable w is
de doe
== [2 (- w)} = (180)
The second derivative of © with respect to # in terms of new variable is
<o _ [2—4}@+4w(1—w)d2® (181)
do* dw dw?
The first derivative % in terms of new function 7T is
do® _ " o dT
o (pw’ (1 —w)” —ow’(1 —w)” )T +w(l —w)”— - (182)
The second derivative ‘fi %9 in terms of new function 7 is
d2@ p_2 o p—l o—1 P o—1
T [(p(p—1Dw?1-w)” —2pow ' (1-w) 40 (0 - 1w (l—w)’ " T
T 2T
+2 (puw" M1 — w)” — ow’(1 — w) ) fl_w + w’(1 — w)"zw2 (183)

By substituting the results 178 to 181 in equation 175 we find a new angular equation in
terms of the variable w

4w(1—w)227(2+[2—6]28 [1i (m +aw+ 5+ >+E9]@(9):0 (184)

We use 182, 183 the last equation becomes
d*T dT
4w (1 - w) {Wp(l - W)Uw +2 (pw" (1 — w)” — ow’(1 — w)" ) d—+
(p(p— 1) w21 —w) —2p0w’ (1 —w) " +0(0—1)w(l—w)’)T]

+(2 — 6w) {wp(l — w)”j—z + (pw" (1= w)” —ow’(1 —w)” ) T| -

[1—1w(m +ow+ 5+ >+E9]wp(l—w)"T:0 (185)

We divide by 4w”(1 — w)? we find
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d*T 1 3 dr
w(l—w)w—l— [<2p+§) — (2p+2o—+§)w] o

1 1 3
plp—Dw+pp—1)+0o(c—1)w+ épw_l — 50(1 —w) T+ §aw(1 —w) -

1 9 ’y) Eg 3
- 1Y —op5 — =2 —ZpT =0 186
4(1 —w) (m +aw—|—5—|—w Pe— g —oF (186)
Where we put
1 1 1/2
=—-4+—-(1 187
p=y+;0+7) (187)
And
1
o= 5(m* +a+8+)" (188)

We get a hypergeometric equation

” 1 3 / 1
w(l-w)T +[(2p+§) —(2p+20+§)w T_é_l [Ey+8po +2p+2a+2y+m?+ B8] T =0
(189)

The solution is hypergeometric function :

1 1
T:ﬁ%F@¢l+1+§u+q&”+(m?+a+6+wﬂ@1+§(L+w”%w) (190)

From the form of the hypergeometric equation

1
Z[Ey%&m+ﬂp+2a+27+nﬂ+ﬁ}Z(—%ﬁ@p+2® (191)

This require that

1 1 ’
By=g+at |20+1+ 5 (14" + (m +at f+9)" (192)

We find the angular wave function when we substitute the function 7" in the equation
O=w(1-w)’T as

1 1
O (2) = Ngw” (1 — w)° F(—1, 1+ (1492 +(m2+a+B+7)Y% 1+ (14+7)"2;w) (193)
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We use w = cos? ,s0

O (2) = Ny (cos 9)2/) 0 (1 —cos®6)”

1 1
F(=ll+1+ (1 NP mPra+ B+y)%1+ 5 + )% cos? ) (194)

Where p =1+ 1(1+7)"*and 0 = L(m?® + a + § + )"/
And the angular energy is

1 1 i
E9=Z+Oz+[2l—|-1+5(14‘7)1/24‘("’/2‘*‘044‘5‘1'7)1/2} (195)

1=0,1,2,...m=0,%+1,4+2, ...,

r

Caseb Vg (1,0) = i [H + %+ 4 (%) (ozcotZQ—l—Bcot@—l—v)}
For this case the angular equation 2.15 becomes

d*0(0) o)  m?
7 + cot 6 T 9@(9) — (acot® 0+ Beot b +~) ©(F) — EO(0) =0 (196)

To solve this equation we have to make the following substitutions:

z=e" == —% In (2) (197)
And
©=2(1-2)T (198)
From 197 we have
sin?f = —(-2)° (199)
B 4z
And )
(1 —(1
cot@zl( +Z):>cot29:(—+22) (200)
1—-=2 (1—-2)
de _ d(e*”) 20 _ o
F7 R T 2ie*” = 2iz (201)

The first derivative of © with respect to 6 in terms of new variable z is

© _dod: . do

T 952 202
a0~ dzdo T de (202)
The second derivative of © with respect to # in terms of new variable z is
d? d? d
O 42?9 _ 90 (203)

a0? dz? dz
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We calculate the derivative of ©® with respect to z in terms of the new function 7' ,the

first derivative is

% = (pzp’l(l —2)7 —o0zP(1 — 2)071) T+ 27(1— Z)JCCZZ_Z (204)

The second derivative is

d2
o = [Pl = )22~ —2p02 (1= 2 40 (0~ 1) (1 - 2)72) 4] T
— o o— dT Ud2_T
+2(p2' (1= 2)7 =02 (1= 2)77) =+ 27(1 = 2) 0 (205)

By substituting the results 199 to 203 in equation 196 we find a new form of angular

equation

dz? — 2

d2
1 dz
< m24e'20 (1+ 2)2

(14 2)
1—2

Q_iﬁ

(1 — ei20)? + a<1 ) +7 - Ee) ©() =0 (206)

By using the equations 204 and 205 the equation 206 becomes

—42? {z”(l — z)”% +2 (pzp_l(l —2)7 —o02’(1— z)"‘l) Ccil_z
((plp—1)2"2(1—2)7 =2po2""'(1—2)" ' +o (0 —1)2"(1—2)72)) T] —
(42 + 2z (1 i_ ?) {(pzpl(l —2)" —02"(1—2)" )T+ 2°(1 - z)"fl—f +
m24e'?0 (1+2)°  (1+2) p o
(1—ei29)2+a(1—z)2_251—2 +y—Fy| 2’(1—2)T =0 (207)

We devise by [—42°T1(1 — 2)°~1] we fin
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d*T 1 3 dT
[<p<p—1>z—1<1—z>—2pa+a<a—1> <1—z> Y+
_ 1142
(pzH(1—2) — )+§(1_—)(p '1—2)— )}T
1| m* 27 (14 2)? L
- — i3 (1 - —FEy| T = 2
+4 ) « ) +if(1+2)z""+~v— Ep 0 (208)
Where we put
1 1.1
=-4+ (== E 1/2 2
p=gt5G -7 Etif+a) (209)
And
o= (m?+ a)'? (210)
We get a hypergeometric equation
d*T 1 3 drT 1B
z(l—z)w+ [<2p+§) - (2pz+20+§) z] y i [2,00+p+a—3 T=0 (211)

The solution is hypergeometric function :

1 1
T= F(—l,l+1+(1—7—E9+iﬁ+a)1/2+2(m2+a)1/2; 1+(Z—7—E9+iﬁ+a)1/2; z) (212)

From the form of the hypergeometric equation

1
4p0:—§[2E9+p+0+4p0+7—a]:>8,00:—2E9—p—0—4p0—fy+a (213)

This require that

4
1 2l + 14 2vVm? +a) — 43
Eg:——7+a—( ) 26 (214)
420+ 1+2vVm? +a)

4

1=0,1,2,....and m = 0, £1, £2

......
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We find the angular wave function when we substitute the function 7" in equation 198 as

O(y) =2(1-2)
1 1
NoF(=ll+1+ (3 =7 = Ep+if + a)? +2(m? + )% 1 + (77— EotiB+ )% 2)
(215)

0

We use z = 2 so

s} (Z) — N06i2p9p(1 o e2z’9>o

1 1 4
F(=ll+1+(;—v—Ey+iB+ )2 4 2(m? + )V 1+ (77— EotiB+ a)l/2; 2i9)
(216)

Wherepzi%—%(l—l—v)l/z pP=1+1E-7—Ey+if+a)/*and o = (m*+ a)"/?



Afterword

The works concern to this subject which we can study it in future are

e The effect of gravity on the non-central potentials

e The non-central potentials in the formalism of non commutative geometry
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Abstract

In this thesis we conducted a quantum study of non-central potentials that can be studied analytically,
where we addressed the solvable potentials in the 2D ordinary space where we addressed both the
relativistic and non-relativistic states and as a results of the study we concluded the energy spectrum
and the wave function of a charged particle circulating in these potentials ,in this case we studied in
detail the Kratzer potential plus dipole potential, then the pseudoharmonic oscillator potential plus
dipole potential. In the second stage, with the same previous study, we dealt with other potentials that
can be solved in the 3D ordinary space, where in this case we studied in detail the ring-shaped potential
plus Kratzer potential, then the ring-shaped potential plus the pseudoharmonic oscillator potential. In
the final stages, we treated the same potentials with the same dimensions, but in the deformed space
(de Sitter and anti-de Sitter) where we noted the influence of the deformation coefficient on the energy
spectrum and its effect on the wave function, then we deduced the critical values of the deformation
coefficient for the existence of bound states

Keywords: Schrodinger equation, Non-Central Potentials, de Sitter and anti-de Sitter Space
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Abstrait

Dans cette these, nous avons mené une étude quantique des potentiels non-centraux qui peuvent étre
étudiés analytiqguement, ou nous avons abordé les potentiels résolubles dans I'espace 2D ordinaire
dans le cas relativiste et non relativistes, a la suite de I'étude, nous avons conclu le spectre énergétique
et la fonction d'onde d'un corps chargé circulant dans ces potentiels, dans ce cas, nous avons étudié en
détail le potentiel de Kratzer plus le potentiel dipolaire, puis le potentiel d’oscillateur
pseudoharmonique plus le potentiel dipolaire. Dans la deuxieme étape, avec la méme étude
précédente, nous avons traité d'autres potentiels qui peuvent étre résolus dans l'espace 3D ordinaire,
ou dans ce cas nous avons étudié en détail le potentiel d'anneau plus le potentiel de Kratzer, puis le
potentiel d'anneau plus le potentiel d’oscillateur pseudoharmonique. Dans les étapes finales, nous
avons traité les mémes potentielles avec les mémes dimensions, mais dans I'espace déformé (de Sitter
et anti-de Sitter) ou nous avons remarque l'influence du coefficient de déformation sur le spectre
d'énergie et son effet sur la fonction d’onde, puis nous avons déduit les valeurs critiques du coefficient
de deformation pour I'existence des états liés

Mots clés : I’équation de Schrédinger, les potentiels non-centraux, 1’espace de Sitter et anti-de Sitter



