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General Introduction 

Duplex stainless steels (DSS) are Fe-Cr-Ni alloys having an approximately volumetric 

fraction of 50% ferrite and 50% austenite in their microstructures . DSS combine some 

characteristics of each of these phases. They have been introduced into the market during 

1930s; since that time there has been an accentuated development and rapid spreading of their 

use.  

They have been widely used in various industrial sectors due to their higher strength, better 

weldability, and higher resistance to stress corrosion and pitting . Hence, DSS are attractive 

material for applications where these properties are desired like in off-shore industries, food 

industries, chemical industries, paper industries, nuclear industries and in structural 

applications as well . In particular, the UNS S31803 alloy (also known as steel SAF 2205) is 

the most widely employed duplex stainless steels nowadays. This material grade found 

widespread use in oil and gas industry, especially for high chloride containing process fluids 

like oily produced water and injection process systems. The superior properties of the duplex 

stainless steels come primarily from approximately equivalent amounts of austenite (γ) and δ-

ferrite .  

However, the use of DSS at high temperature is a typical concern to users of duplex stainless 

steels owing to their susceptibility to the formation of dangerous intermetallic phases, such as 

σ- and χ-phase, which form after ageing the material in a temperature range over 600°C. 

Furthermore, DSS components are generally subject to thermal embrittlement which takes 

place at intermediate temperatures (~475°C) via α-α' phase separation  .Therefore, the use of 

duplex stainless steels has been usually limited to temperatures not exceeding approximately 

500 °C. For instance, according to ASME B31.3 Process Piping Code, the limit of use of 

UNS31803 Duplex stainless steel grade is 315°C. 

It is supposed that among intermetallic precipitates, Sigma phase is the most detrimental one, 

as it causes a considerable drop in toughness as well as corrosion resistance . Even small 

amounts of sigma phase influence the resistance against most corrosion forms such as pitting, 

sulfide stress corrosion cracking, intergranular corrosion and hydrogen embrittlement. 

Consequently, the standard criterion is that no sigma phase is allowed in produced duplex 

materials. Sigma phase is a Cr-Mo rich hard precipitate which occurs at temperatures between 
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600-1000°C . The fastest sigma phase precipitation kinetics occurs at 850°C. Once sigma 

phase is introduced in the microstructure it is difficult to recover the optimum microstructure . 

The detrimental effect of sigma phase on corrosion resistance was usually associated to the 

formation of Cr- Mo depleted regions adjacent to sigma phase as a consequence of the 

eutectoid mechanism generating sigma phase. Concentration can fall below the minimum 

12wt.% to 13wt.% of chromium required to ensure the passivation process. Regions with 

quantities below the minimum Cr range undergo active dissolution and usually corrode at 

rates close to those of carbon steel and pure iron . 

From a practical standpoint, sigma phase precipitation can be encountered during the welding 

process if the cooling rate from 1200 to 800°C is too slow. This usually occurs because either 

the heat input is too great or the interpass temperature is too high. Incorrectly heat treated 

DSS may also suffer from sigma phase precipitation. Even though strict specifications and 

qualification tests are usually required for such grades, the delivery of "Sigmatized" (aged) 

duplex stainless steel components still occurs at times .Recently, it was reported that there 

have been a large number of sigmatized DSS fittings that were delivered and installed in 

several projects related to offshore production facilities . 

Numerous studies have been published about the impact of sigma phase on the corrosion 

resistance. However, most of the available studies have been conducted using a various 

electrochemical tests in chloride containing solutions (NaCl, CaCl2,..). On the other hand 

there is no published studies examining the electrochemical behavior of sigmatized DSS when 

exposed to oil and gas field environment. There have been only a limited number of studies 

related to Super Duplex stainless steel (SDSS) materials tested in a simulated oil field 

environment. Also the amount of literature on the seawater pitting of aged DSS is limited, 

more specifically in term of correlation between sigma phase content and pitting potential 

values. 

Given the above facts, and knowing that most of Oil and Gas companies base their materials 

selection on field experience data coupled with laboratory tests, this research work was 

mainly conducted to contribute to enhance the understanding of corrosion behavior of 

sigmatized DSS in oil field environments. Therefore the investigated materials were exposed 

to two different chloride containing environments: simulated seawater solution and produced 

water solution. It is expected from this study to show the relationship between sigma phase 

content and pitting potential values. The sigmatized samples were obtained by aging treatment 

at 850°C during various holding times to introduce varied levels of sigma phase. Therefore, as 
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part of this study, the microstructural evolution after ageing and the effect of sigma phase on 

the hardness behaviour were also investigated.  

The kinetic of embrittlement process associated with α-α' phase separation was also 

investigated in the current study using DSC technique coupled with Kissinger analysis. Again, 

according to our literature survey, there is no published work up to date investigating the 

kinetic of thermal embrittlement of DSS via DSC technique. The obtained activation energy 

governing the embrittlement process has been compared with the results of some previous 

works as demonstrated on Chapter III.  This activation energy has been used as "Prediction 

Tool" trough the JMA model to estimate the end of life of DSS components operating at 

intermediate temperatures. 

This thesis is structured in three (03) Chapters and General Conclusions as follows: 

• In chapter I, we have introduced briefly the stainless steel families then we have given 

more care on the Duplex stainless steels and related concerns and more specially the 

issue of  sigma phase precipitation and its resulting effects on mechanical and 

corrosion behaviour. Some definitions, prediction equations and models are also 

provided in order to support Chapter III. 

• Chapter II, is aimed to detail the investigated material grade in this study and the used 

technical procedure of characterizations. 

• In Chapter III, we have presented our findings with some explanations and comparison 

with previous works documented in literature where necessary. 

And finally, concluding remarks and suggestions for future works are given on last part.   
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I 

Literature Review 

 

 

1. General Introduction to Stainless Steels 

1.1 Introduction and Historical developments 

STAINLESS STEELS are iron-base alloys that contain a minimum of about 12% Cr, the 

amount needed to prevent the formation of rust in unpolluted atmospheres (hence the 

designation stainless). Few stainless steels contain more than 30% Cr or less than 50% iron. 

They achieve their stainless characteristics through the formation of an invisible and adherent 

chromium-rich oxide film. This oxide forms and heals itself in the presence of oxygen. [ASM 

00].  

The history of stainless steels starts around 1910, in Germany with Friedrich Krupp AG and in 

England with Thomas Firth & Sons [ARO 10, STE 13]. But the scientific background was 

started as early as 1821 in France; where the French mineralogist Berthier reported about Cr-

steels resistance to acid attack. The situation was for some time obscured by the famous 

English metallurgist Robert Hadfield who reported in 1892 that Cr was not beneficial for the 

corrosion resistance. He based this statement on tests in 50 % sulphuric acid. In 1911 

Monnartz published a thorough article on Fe-Cr-alloys and specially their acid-resistance and 

pointed out that the results from traditional testing with sulphuric acid could not be 

generalized. He was also the first to point out the beneficial effect of Mo on the corrosion 

resistance of Cr-steel[OUT 13].  

At the same time in Sheffield, England, Brearley was experimenting with 12–14 % Cr steels 

and observed that they did not etch in normal etching acids. He also noticed that Cr steels 

resisted corrosion much better in the hardened than in the annealed condition. Brearley saw 
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commercial possibilities of this material in cutlery and gave non-rusting steel the name 

Stainless Steel [OUT 13]. 

The earliest stainless steel grades were martensitic and ferritic Fe-Cr steels, but quite soon the 

austenitic Fe-Cr-Ni steels became the largest group. The first reference for duplex stainless 

steel group appears in 1927, when Bain and Griffith' published data on ferritic -austenitic 

structures [GUN 03]. 

 

1.2 Classification of Stainless Steels 

Historically, stainless steels have been classified by microstructure and are described as 

austenitic, martensitic, ferritic, or duplex (austenitic plus ferritic). In addition, a fifth family, 

the precipitation- hardenable (PH) stainless steels, is based on the type of heat treatment used 

rather than the microstructure [ASM 00].  

Figure I.1 provides a useful summary of some of the compositional and property linkages in 

the stainless steel family. 
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Figure I.1: Composition and property linkages in the stainless steel family of  

alloys [ASM 00]. 

 

1.2.1 Ferritic stainless steel 

The standard ferritic grades are alloyed with chromium (11.2–19 %), but with no, or very 

small addition of nickel. As nickel is one of the most expensive alloying elements and has 

demonstrated high price volatility, the low nickel content of the ferritic grades make them 

more price stable compared to grades with high nickel content. 

Molybdenum is added to some grades to improve the corrosion resistance, while alloying with 

niobium and/or titanium improves the weldability [OUT 13]. 
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1.2.2 Martensitic and precipitation hardening stainless steel 

The martensitic grades are the smallest group of stainless steel. To improve the strength and 

hardenability of the martensitic grades they have higher carbon content compared to other 

grades, and nitrogen is sometimes added to further improve the strength. These grades contain 

no or rather small amounts of nickel, and molybdenum is seldom added. By adding some 

nickel and reducing the carbon content the rather poor weldability of martensitic grades can 

be improved. Sometimes sulphur is added to improve the machinability. The martensitic 

grades are magnetic and hardenable. 

The precipitation hardening grades are hardened by a special mechanism involving the 

formation of precipitates within the microstructure[OUT 13]. 

 

1.2.3 Austenitic stainless steel 

The austenitic grades are the largest group of stainless steels, and can be divided into five sub-

groups, Cr-Mn grades, Cr-Ni grades, Cr-Ni-Mo grades, high performance austenitic grades 

and high temperature austenitic grades. The austenitic grades have good, to excellent 

corrosion resistance, good formability and weldability. 

Their good impact strength at low temperatures is often exploited in cryogenic applications. 

The austenitic grades are non-magnetic in the solution annealed condition due to the austenitic 

microstructure [OUT 13]. 

 

1.2.4 Duplex stainless steel 

Duplex stainless steels have a mixed structure of austenite and ferrite and typically contain 

chromium (20 – 25 wt%) and nickel (1.5 – 7 wt%) as the main alloying elements [ASM 05]. 

Further details on this alloy grade are provided on Section 2, as the instigated steel in the 

current work is belonging to duplex stainless steels family. 

 

1.3 Production of Stainless Steels 

With specific restrictions in certain types, the stainless steels can be shaped and fabricated in 

conventional ways. They are produced in cast, powder metallurgy (P/M), and wrought forms. 
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Available wrought product forms include plate, sheet, strip, foil, bar, wire, semi-finished 

products (blooms, billets, and slabs), and pipe and tubing. Cold rolled flat products (sheet, 

strip, and plate) account for more than 60% of stainless steel product forms.  

Figure I.2 illustrates the most commonly employed mill processes for making various 

wrought stainless steel products. 

Production of stainless steels is a two-stage process involving the melting of scrap and 

ferroalloys in an electric-arc furnace (EAF) followed by refining by argon oxygen 

decarburization (AOD) to adjust the carbon content and remove impurities. Alternative, 

melting and refining steps include vacuum induction melting, vacuum arc remelting, 

electroslag remelting, and electron beam melting. 

Melting and refining of stainless steels is, however, most frequently accomplished by the 

EAF/AOD processing route. In fact, about 90% of all stainless steel produced in the United 

States is processed by EAF melting followed by AOD. 

During the final stages of producing basic mill forms—sheet, strip, plate and bar—and 

bringing these forms to specific size and tolerances, the materials are subjected to hot 

reduction with or without subsequent cold rolling operations, annealing, and cleaning. Further 

steps are required to produce other mill forms, such as wire and tube [ASM 00]. 
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Figure I.2: Stainless steel manufacturing routes [ASM 00]. 

 

2. Duplex stainless steel 

2.1 A brief history 

The first reference to such alloys appears in 1927 [BAI 27], when Bain and Griffith published 

data on ferritic: austenitic structures. Within the next few years, several foundries in France, 

Germany, Sweden and the USA explored such steels, initially in the cast form [GUN 03]. 

Possibly the first commercial product dates from 1929 [LEF 97] when Avesta Jernverk 

produced a grade called 453E with approximate composition 25%Cr-5%Ni. Soon after in 

1932 and 1933 a modified grade with 250/0Cr-50/0Ni-1%Mo (grade 453S) was marketed. 

Applications included coolers of the Brobeck type (plate and forgings), autoclaves for 

gunpowder production (castings) and valves for sulphite pulping (castings) [GUN 03]. 

Another record of early duplex products dates back to 1933, when an error during the melting 

of an 18%Cr-9%Ni-2.5%Mo grade at the Firminy works of the J. Holtzer Company, France, 

led to a 200/oCr-8%Ni-2.5%Mo steel. Subsequent analysis [HOC 50] of the casting found it 

had a high volume fraction of ferrite in an austenitic matrix and was not sensitive to 
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intergranular corrosion (IGC) in various corrosive media. This was a significant discovery, as 

the high carbon austenitic grades of the time tended to form a continuous chromium carbide 

network, leading to rapid corrosion in the surrounding chromium depleted zones. 

Research was undertaken at several laboratories so that, by the late 1940s, a new family of 

stainless steel was available which was patented and marketed simultaneously in France, 

Sweden and the USA [HOS 86, GUN 03]. 

The Korean war (1950-51) encouraged a nickel shortage, which led to further research into 

the relatively low nickel-content duplex alloys. 

During the late 1960s and early 1970s, there were two main factors which advanced the 

development and use of duplex alloys. First, there was another nickel shortage that pushed up 

the price of austenitic alloys, combined with increased activity in the offshore oil industry 

which demanded a stainless material to handle aggressive environments. Second, steel 

production process techniques improved dramatically with the introduction of the vacuum and 

argon oxygen decarburization (VOD and AOD) practices. These techniques led to steels with 

simultaneously low carbon, sulphur and oxygen contents etc., while allowing for greater 

control of composition, especially nitrogen [GUN 03]. 

 

2.2 Modern Development of DSS 

In the early 1980’s, a second generation of duplex steels was introduced with improved 

welding properties mainly through nitrogen alloying. The most common duplex grade today is 

EN 1.4462 or 2205 (UNS S31803), which has a nominal composition of 22% Cr, 5%Ni, 3% 

Mo, and 0.16% N. The success of the 2205 grade led to the development of an entire family 

of duplex alloys, which range in corrosion resistance depending on their alloy content [CER 

10]. The modern duplex stainless steels can be divided into four groups [NIL 95, CER 10]: 

• Lean duplex as 2304, with 0.05-0.6 wt% of Mo 

• 2205, the work-horse grade accounting for more than 80% of duplex use. 

• 25Cr duplex as Alloy 255 and DP-3 

• Super duplex, with 25-26 Cr and increased Mo and N compared with the 25 Cr grades, 

including grades such as 2507, Zeron 100, UR52N+, and DP-3W. 

Table III.1 lists the chemical composition of the modern wrought duplex stainless steels and 

includes also the first generation of duplex stainless steels as a point of reference. 
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Table I.1 : Chemical composition in wt. % of wrought Duplex Stainless Steel grades with the 

corresponding Unified Numbering System and European Norm [IMO 09]. 

Grade UNS No. EN No. C Cr Ni Mo N Mn Cu W 

Wrought duplex stainless steels 

First-generation duplex grades 

329 S32900 1,4460 0,08 23.0–28.0 2.5–5.0 1.0–2.0 – 1,00 – – 

** S31500 1,4424 0,03 18.0–19.0 4.3–5.2 2.5–3.0 0.05–0.1   – – 

  S32404   0,04 20.5–22.5 5.5–8.5 2.0–3.0 0,20 2,00 1.0–2.0 – 

Second-generation duplex grades 

Lean 

  S32001 1,4482 0,03 19.5–21.5 1.0–3.0 0,6 0.05–0.17 4.0–6.0 1,0 – 

  S32101 1,4162 0,04 21.0–22.0 1.35–1.7 0.1–0.8 0.20–0.25 4.0–6.0 0.1-0.8 – 

  S32202 1,4062 0,03 21.5–24.0 1.0–2.8 0,45 0.18–0.26 2,00 – – 

  S82011   0,03 20.5–23.5 1.0–2.0 0.1–1.0 0.15–0.27 2.0–3.0 0,5 – 

2304 S32304 1,4362 0,03 21.5–24.5 3.0–5.5 0.05–0.6 0.05–0.20 2,50 0.05–0.60 – 

    1,4655 0,03 22.0–24.0 3.5–5.5 0.1–0.6 0.05–0.20 2,00 1.0–3.0 – 

Standard 

  S32003   0,03 19.5–22.5 3.0–4.0 1.5–2.0 0.14–0.20 2,00 – – 

2205 S31803 1,4462 0,03 21.0–23.0 4.5–6.5 2.5–3.5 0.08–0.20 2,00 – – 

2205 S32205 1,4462 0,03 22.0–23.0 4.5–6.5 3.0–3.5 0.14–0.20 2,00 – – 

25 Cr 

  S31200   0,03 24.0–26.0 5.5–6.5 1.2–2.0 0.14–0.20 2,00 – – 

  S31260   0,03 24.0–26.0 5.5–7.5 2.5–3.5 0.10–0.30 1,00 0.2–0.8 0.1–0.5 

  S32506   0,03 24.0–26.0 5.5–7.2 3.0–3.5 0.08–0.20 1,00 – 0.05–0.30 

  S32520 1,4507 0,03 24.0–26.0 5.5–8.0 3.0–4.0 0.20–0.35 1,50 0.5–2.0 – 

255 S32550 1,4507 0,04 24.0–27.0 4.5–6.5 2.9–3.9 0.10–0.25 1,50 1.5–2.5 – 

Super duplex 

2507 S32750 1,4410 0,03 24.0–26.0 6.0–8.0 3.0–5.0 0.24–0.32 1,20 0,5 – 

  S32760 1,4501 0,03 24.0–26.0 6.0–8.0 3.0–4.0 0.20–0.30 1,00 0.5–1.0 0.5–1.0 

  S32808   0,03 27.0–27.9 7.0–8.2 0.8–1.2 0.30–0.40 1,10 – 2.1–2.5 

  S32906   0,03 28.0–30.0 5.8–7.5 1.5–2.6 0.30–0.40 0.80–1.5 0,8 – 

  S32950   0,03 26.0–29.0 3.5–5.2 1.0–2.5 0.15–0.35 2,00 – – 

  S39274   0,03 24.0–26.0 6.8–8.0 2.5–3.5 0.24–0.32 1,0 0.2–0.8 1.5–2.5 

  S39277   0,025 24.0–26.0 6.5–8.0 3.0–4.0 0.23–0.33 0,80 1.2–2.0 0.8–1.2 

    1,4477 0,03 28.0–30.0 5.8–7.5 1.5–2.6 0.30–0.40 0.80–1.50 0.8 – 

Hyper duplex 

  S32707   0,03 26.0–29.0 5.5–9.5 4.0–5.0 0.30–0.50 1,50 1,0 – 

  S33207   0,03 29.0–33.0 6.0–9.0 3.0–5.0 0.40–0.60 1,50 1,0 – 

 

2.3 Mechanical proprieties of DSS  

Duplex stainless steels have exceptional mechanical properties. They are listed for the 

standard duplex grades in Table I.2. Their room temperature yield strength in the solution-
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annealed condition is more than double that of standard austenitic stainless steels not alloyed 

with nitrogen. This may allow the design engineer to decrease the wall thickness in some 

applications. The typical yield strengths of several duplex stainless steels are compared with 

that of 316L austenitic stainless steel between room temperature and 300°C (570°F) in Figure 

I.3. 

Because of the danger of 475°C (885°F) embrittlement of the ferritic phase, duplex stainless 

steels should not be used in service at temperatures above those allowed by the applicable 

pressure vessel design code for prolonged periods of time (see Table I.4). 

 

Table I.2 : Minimum ASTM and EN mechanical property limits for duplex stainless steel 

plate [IMO 09]. 

  ASTM EN 

Grade UNS No. 
Yield strength 

0.2% 
MPa (ksi) 

Tensile 
strength 
MPa (ksi) 

Elongation 
in 2" 
(%) 

EN No. 
Proof 

strength Rp0.2 
MPa (ksi) 

Tensile strength 
R m 

MPa (ksi) 

Elongation A5 

(%) 

2304 S32304 400 (58) 600 (87) 25 1,4362 400 (58) 630 (91) 25 

2205 S32205 450 (65) 655 (95) 25 1,4462 460 (67) 640 (93) 25 

2507 S32750 550 (80) 795 (116) 15 1,4410 530 (77) 730 (106) 20 

 

 

Figure I.3: Comparison of typical yield strength of duplex stainless steels and Type 316L 

between room temperature and 300°C (572°F) [IMO 09] 
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2.4 Physical proprieties of DSS 

Ambient temperature physical properties for a selection of duplex stainless steels are given in 

Table I.3. Data are included for carbon steel and austenitic stainless steels for comparison. 

In all cases, differences in physical property values among the duplex grades are very slight 

and probably reflect differences in test procedures. The physical properties of the duplex 

grades all fall between those of the austenitic stainless steels and carbon steels but tend to be 

closer to those of the stainless steels. 

 

Table I.3: Ambient temperature physical properties of duplex stainless steels compared with 

carbon steel and austenitic stainless steels [IMO 09]. 

Grade UNS No. Density Specific heat Electrical resistivity Young’s modulus 

    g/cm3 lb./in3 J/kg K Btu/lb./°F micro Ωm micro Ω in. GPa x106  psi 

Carbon 
Steel 

G10200 7,64 0,278 447 0,107 0,10 3,9 207 30,0 

Type 304 S30400 7,98 0,290 502 0,120 0,73 28,7 193 28,0 

Type 316 S31600 7,98 0,290 502 0,120 0,75 29,5 193 28,0 

Type 329 S32900 7,70 0,280 460 0,110 0,80 31,5 200 29,0 

  S31500 7,75 0,280 482 0,115     200 29,0 

  S32101 7,80 0,281 500 0,119 0,80 31,5 200 29,0 

2304 S32304 7,75 0,280 482 0,115 0,80 31,5 200 29,0 

  S31803 7,80 0,281 500 0,119 0,80 31,5 200 29,0 

2205 S32205 7,80 0,281 500 0,119 0,80 31,5 200 29,0 

  S31260 7,80 0,281 502 0,120     200 29,0 

  S32750 7,85 0,285 480 0,114 0,80 31,5 205 29,7 

255 S32550 7,81 0,282 488 0,116 0,84 33,1 210 30,5 

  S39274 7,80 0,281 502 0,120     200 29,0 

  S32760 7,84 0,281     0,85 33,5 190 27,6 

  S32520 7,85 0,280 450 0,108 0,85 33,5 205 29,7 

2507 S32750 7,79 0,280 485 0,115 0,80 31,5 200 29,0 

 

2.5 Pitting Resistance Equivalent number PREN  

It is common to define the corrosion resistance of duplex grades by their pitting resistance 

equivalence number [CER 10] (𝑃𝑅𝐸𝑁) as defined by Equation  I.1: 
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𝑃𝑅𝐸𝑁 =  %𝐶𝑟 + 3.3%𝑀𝑜 + 16%𝑁      (I. 1) 

Some alloys contain an addition of tungsten, which is another element that acts to increase the 

pitting resistance of stainless steels. For these alloys, the pitting resistance is expressed as 

PREW, according to Equation. I.2 [SAI 07, CER 10]: 

𝑃𝑅𝐸𝑊 =  %𝐶𝑟 + 3.3%𝑀𝑜 + 1.65𝑊 + 16%𝑁    (I. 2) 

In fact, the pitting resistance equivalent number (PREN) has been introduced by the alloy 

producers as a tool for comparing stainless steels for their relative resistance to pitting. As the 

user of stainless steels has only a very limited knowledge of suitability of a specific steels for 

applications in the plant. It will allow the user to judge and select a material that is suitable for 

a environment and gives guidance about the alternate materials for various applications [SAI 

07]. 

 In general, materials having a pitting resistance number in the low 30’s or lower are classified 

as lean duplex grades, those with PRE’s in the mid 30’s such as 2205, are classified as 

standard duplex, and those with PRE’s of 40 or more are known as super-duplex alloys [CER 

10]. 

2.6 Applications of DSS 

As stated above, Duplex stainless steels (DSS) are Fe-Cr-Ni alloys having an approximately 

volumetric fraction of 50% ferrite and 50% austenite in their microstructures, therefore they 

combine some characteristics of each of these phases. Their main feature is that they 

compromise the favorable corrosion resistance of austenitic stainless steels with good 

mechanical properties [ARI 12]. The superior properties of the duplex stainless steels come 

primarily from approximately equivalent amounts of austenite (γ) and δ-ferrite [WEN 03]. 

They have been widely used in various industrial sectors due to their higher strength, better 

weldability, and higher resistance to stress corrosion and pitting [WEN 03]. Hence they are 

attractive material for applications where these properties are desired like in off-shore in-

dustries, food industries, chemical industries, paper industries [ROL 17, EZU 06], nuclear 

industries and in structural applications as well [KES 09].  

In particular, the UNS S31803 alloy (also known as steel SAF 2205) is the most widely 

employed duplex stainless steels nowadays [EZU 06, KAI 14]. This material grade found 

widespread use in oil and gas industry, especially for high chloride containing process fluids 

like oily produced water and injection process systems.  
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At the Sixth Conference of Duplex Stainless steels, Charles [CHA 10] provides a paper which 

outlines the high number of applications where DSS and SDSS were extensively used, in 

particular [CER 10]: 

• Pulp and paper industry (chip preparation and chip presteaming vessels, bleaching 

pulp storage tank, pulp batch digester- sulfite and sulfate processes, chlorine 

dioxide bleach water drums); 

• Chemical and petrochemical industries (PVC stripper columns and heat exchangers, 

pressure vessel for organic products, reactors for the alcohol production); 

• Hydrometallurgy; 

• Chemical fertilizer industry (phosphoric acid production, urea industry); 

• Organic and caustic media; 

• Pollution control equipments; 

• Chemical tankers; 

• On/Offshore applications; 

• Seawater and chloride containing water (hot water tanks and drums, seawater 

applications, reverse osmosis desalination, industrial and domestic water storage tanks 

and pipings); 

• Architecture; 

• Transports. 

2.7 Limit of use of DSS 

The use of DSS at high temperature is a typical concern to users of duplex stainless steels 

owing to their susceptibility to the formation of dangerous intermetallic phases which form 

after long exposure at high temperature [CAL 13]. The technical aspects related to the 

intermetallic phases precipitation will be treated in extent on Section.3. 

Because long-term, elevated temperature exposure can result in loss of ambient temperature 

toughness, pressure vessel design codes have established upper temperature limits for the 

maximum allowable design stresses (Table I.4). The German TüV code distinguishes between 

welded and unwelded constructions and is more conservative in its upper temperature limits 

than the ASME Boiler and Pressure Vessel Code. The temperature limits for these pressure 

vessel design codes for various duplex stainless steels are summarized in Table I.4. 
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Table I. 4: Upper temperature limits for duplex stainless steel for maximum allowable stress 

values in pressure vessel design codes [IMO 09]. 

Grade Condition ASME TüV 

    °C °F °C °F 

2304 Unwelded 315 600 300 570 

2304 Welded, matching filler 315 600 300 570 

2304 Welded with 2205/2209 315 600 250 480 

2205 Unwelded 315 600 280 535 

2205 Welded 315 600 250 480 

2507 Seamless tubes 315 600 250 480 

Alloy 255 Welded or unwelded 315 600     

 

2.8 Chemical composition: effect of main alloying elements 

The mechanical proprieties and corrosion resistance features of stainless steels depend on the 

chemical composition. Some of the main alloying elements effects are described on the 

following section: 

Chromium: 

The main advantage of adding chromium to steel is to improve the localized corrosion 

resistance, by the formation of a passive chromium-rich oxy-hydroxide film [HAS 79]. 

Electrochemically this is achieved by extending the passive range (see Figure I.4) and 

reducing the rate of general corrosion [GUN 03].  
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Figure I.4: effect of alloying elements on passive range [SED 85]. 

Chromium and other elements stabilize ferrite, although the effect of different elements varies. 

Equations have been derived to quantify elemental effects (the so-called chromium 

equivalents, 𝐶𝑟𝑒𝑞) of which the most favored is [KOT 92, GUN 03]: 

𝐶𝑟𝑒𝑞 = %𝐶𝑟 + %𝑀𝑜 + 0.7%𝑁𝑏    (I. 3) 

 

The "stabilizing effects" of Cr on the ferrite is well illustrated on the binary iron–chromium 

equilibrium diagram (Figure I.5) which shows that chromium restricts the occurrence of the 

𝛾 -loop to the extent that above 13wt% Cr the binary alloys are ferrite over the whole 

temperature range, while there is a narrow (𝛼 + 𝛾) range between 12 and 13wt%Cr.The ferrite 

is normally referred to as delta ferrite, because in these steels the phase can have a continuous 

existence from the melting point to room temperature [BHA 06]. 

However, there is a limit to the level of chromium that can be added to such a steel, as the 

beneficial effect of ever higher levels is negated by the enhanced precipitation of intermetallic 
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phases (Figure I.6) such as sigma. These phases often lead to reduction in ductility, toughness 

and corrosion properties, and are covered later in this chapter. 

 

Figure I.5: The Fe–Cr equilibrium diagram [BHA 06]. 

 

Figure I.6: Schematic TTP, time-to-precipitation, diagram for duplex stainless steels with 

secondary phases and influence of alloying elements[CHA 91] 
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Molybdenum 

The molybdenum has a beneficial influence on the pitting and crevice corrosion resistance of 

an alloy in chloride solutions (Figure I.4). As for chromium, molybdenum extends the passive 

potential range and reduces the corrosion current density ( 𝑖𝑚𝑎𝑥 ) in the active range. 

Molybdenum is included in both PRE relationships, Equations I.1 and I.2, and is given a 

coefficient of 3.3 times that of chromium, while it has a similar effect on ferrite stability as 

chromium, as indicated in Equation I.3 [GUN 03].  

Nickel  

Counter to the ferrite stabilizing effect of chromium (Mo and Nb), there is another group of 

elements which stabilize austenite: 

𝑁𝑖𝑒𝑞 = %𝑁𝑖 + 35%𝐶 + 20%𝑁 + 0.25%𝐶𝑢    (I. 4) 

In summary, nickel does have some direct effect on corrosion properties, for instance moving 

𝐸𝑝 (Pitting potential), in the noble direction and reducing ipass (Figure I.4), and yet it appears 

that the main role of nickel is to control phase balance and element partitioning [GUN 03]. 

Nitrogen 

Nitrogen has a multiple effect on stainless steels by increasing pitting resistance, austenite 

content and strength. It has a similar influence on pitting as Cr and Mo, moving 𝐸𝑝, in the 

noble direction and thus increasing the passive potential range, (Figure I.4). This effect is 

enhanced in the presence of Mo and it has been suggested by other authors [TRU 77, OGA 

82] that Mo and N have a synergistic influence on pitting characteristics. The proposed factor 

for nitrogen in the 𝑃𝑅𝐸𝑁 relationship varies between 13 and 30, but the most widely used 

value for duplex alloys is 16. 

Another important property of nitrogen is its ability to stabilize duplex alloys against the 

precipitation of intermetallic phases, such as sigma and chi, by reducing Cr-partitioning. It is 

also reported that increasing the nitrogen level reduces the risk of nitride formation. This may 

appear contradictory but is due to an increase in austenite content and so a reduction in the 

distance between austenite islands [GUN 03]. 

Manganese 

Manganese has been quoted as an austenite stabilizer for austenitic steels and yet, for duplex 

alloys, mixed results have been obtained. Manganese additions to stainless steel increase 

abrasion and wear resistance and tensile properties without loss of ductility; Further, Mn 
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increases the solid solubility of nitrogen and thus allows for increased nitrogen contents to be 

achieved without risk of out-gassing. Nevertheless, the combined addition of Mn and N in 

modern duplex alloys improves the pitting resistance and counteracts the singular problems 

associated with Mn [CHA 82, GUN 03]. 

Carbon 

The addition of carbon to the binary alloy extends the 𝛾-loop to higher chromium contents 

(Figure I.7), and also widens the (𝛼 + 𝛾) phase field up to 0.3wt%C [BHA 06]. 

The carbon content of most wrought duplex stainless steels is limited to 0.02% or 0.03%, 

primarily to suppress the precipitation of Cr-rich carbides which can act as initiation sites for 

pitting corrosion and intergranular attack [GUN 03]. 
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Figure I.7: Effect of carbon on the Fe–Cr diagram: (a) 0.05C wt% [BHA 06]. 

 

2.9 Effects of alloying elements on phase balance 

An important aspect related to duplex stainless steels is the phase balance control, because it 

has a direct impact on corrosion and mechanical properties [CER 10].  The optimum phase 

balance for modern wrought products varies between manufacturers, but overall a range of 

between 45% and 60% austenite may be expected. The structure is obtained by simultaneous 

control of the chemical composition and annealing temperature[GUN 03]. 

Traditionally, the effects of different alloying elements on phase balance have been quantified 

by using the nickel and chromium equivalent numbers [CER 10]. One of the most convenient 
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ways of representing the effect of various elements on the basic structure of chromium–nickel 

stainless steels is the Schaeffler diagram, often used in welding. It plots the compositional 

limits at room temperature of austenite, ferrite and martensite, in terms of nickel and 

chromium equivalents (Figure I.8). At its simplest level, the diagram shows the regions of 

existence of the three phases for iron–chromium–nickel alloys [BHA 06]. 

 

 

Figure I.8: Schaeffler diagram illustrating the Stainless Steels families positions [CHA 10] 

 

On the other hand, several formulas have been proposed to determine the nickel and 

chromium equivalent numbers. Equations (I.5) and (I.6) show the formulas reported by Datta 

et al., as a reference [DAT 01]: 

𝐶𝑟𝑒𝑞 = %𝐶𝑟 + 2%𝑆𝑖 + 1.5%𝑀𝑜 + 5%𝑉 + 5.5%𝐴𝑙 + 1.75%𝑁𝑏 + 1.5%𝑇𝑖 +

0.75%𝑊  (I. 5) 

𝑁𝑖𝑒𝑞 = %𝑁𝑖 + %𝐶𝑜 + 0.5%𝑀𝑛 + 0.3%𝐶𝑢 + 25%𝑁 + 30%𝐶                    (I. 6) 

 

To be noted that the Schaeffler diagram was originally developed for weld metal, i.e. it 

describes the structure after melting and rapid cooling, but it has also been found to give a 
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useful preview of the effect of the alloying elements for wrought and annealed material. 

However, annealed steels with predicted ferrite contents in the range 0–5 % according to the 

diagram contain in practice smaller amounts of ferrite [OUT 13]. 

Other empirical expressions have been proposed, based on the concept of equivalent Cr and 

Ni. The expression introduced by Leger et al. [LEG 88, ALV 09] states: 

𝐶𝑟𝑒𝑞 = %𝐶𝑟 + 1.21%𝑀𝑜 + 0.48%𝑆𝑖 + 0.14𝑁𝑏 − 4.99    (I. 7) 

𝑁𝑖𝑒𝑞 = %𝑁𝑖 + 24.5%𝐶 + 0.11%𝑀𝑛 − 0.0086%(𝑀𝑛)2 + 2.77   (I. 8) 

𝛿(%) = 95.49 (
𝐶𝑟𝑒𝑞

𝑁𝑖𝑒𝑞
)

3

− 225.96 (
𝐶𝑟𝑒𝑞

𝑁𝑖𝑒𝑞
)

2

− 191.35 (
𝐶𝑟𝑒𝑞

𝑁𝑖𝑒𝑞
) − 58.27              (I. 9) 

 
where 𝛿(%)  is the ferrite/austenite ratio.  

Bonnet et al. have adjusted an empirical relation using the experimental results obtained on 

many CF8 and CF8M heats. This relation applies to ferrite content covering the range 

between 4% and 33% [BON 90, ALV 09]:  

𝐶𝑟𝑒𝑞 = 𝐶𝑟 + 𝑀𝑜 + 0.65. 𝑆𝑖 − 17.6            (I. 10) 

𝑁𝑖𝑒𝑞 = 𝑁𝑖 + 20. 𝐶 + 8.3. 𝑁 + 0.08. 𝑀𝑛 − 5.18          (I. 11) 

𝛿(%) = 21.8. (
𝐶𝑟𝑒𝑞

𝑁𝑖𝑒𝑞
)

2

− 5.96. (
𝐶𝑟𝑒𝑞

𝑁𝑖𝑒𝑞
) + 3.39𝑥 (

400

1500−𝑇
)        (I. 12) 

 

where 𝑇 is the annealing temperature in °C.  

More recently, using thermodynamical calculations, Longbottom and Hayes [LON 94] have 

proposed an equation that gives not only the amount of ferrite, but also the mean composition 

of both phases.  

However, the accuracy of those predictions remains limited as other factors, such as the 

thickness of cast parts, must also be considered [LEG 81, ALV 09]. 
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3. Precipitation of secondary phases 

Inevitably, a lot of stainless steel components are used or processed at elevated temperatures. 

In contrast to austenitic stainless steels, which are often used in high temperatures 

applications, DSS are not recommended in applications where temperatures exceed 250°C, 

the reason being the thermal instability of ferrite. In the temperature range 250-500°C 

spinodal decomposition of ferrite termed “475°C embrittlement” may occur after long term 

exposure, whereas various types of precipitate may form at temperature in the range 550-

1000°C: σ, χ, ε, R phases, carbides and nitrides (figure I.9). 

Although DSS most commonly used at temperatures below 250°C and, therefore, the effects 

mentioned above are not expected during service, the producers and manufacturers of these 

steels have to be aware of these phase transformations because they may occur either during 

production or during welding when the material is exposed to elevated temperature for shorter 

or longer times [CER 10]. 

 

Figure I.9: Intermetallic phase precipitations for UNS S31803 DSS [PRA 15]. 

 

The various intermetallic phases that can occur in DSS and SDSS are tabulated in Table 5. 
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Table I.5: observed intermetallic phases in DSS [ALV 09]. 
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An overview of the various types of precipitates that may form in duplex stainless steels upon 

thermal ageing is reported briefly in the following sections (3.1 to 3.7). A special care is given 

for alpha prime (𝛼’) and sigma phases in dedicated sections (Section.4 and Section.5) as a 

great part the current work was allocated to these phases. 

Precipitates can be categorized into two groups considering the temperature range of thermal 

aging as follows [CER 10]: 

• Low range (250-500°C) where the most important precipitate is alfa prime (α’) 

• High range (550-1000°C) where the possible precipitates are σ, χ, secondary 

austenite, ε, R phases, carbides and nitrides. 

3.1 Secondary austenite (𝜸𝟐) 

Austenite precipitations in duplex steel created because of reheating to a temperature lower 

than the solvus line temperature (Figure I.10) after fast cooling are considered as the 

secondary austenite [CER 10]. 

 

 

Figure I.10: Section through the Fe-Cr-Ni ternary phase diagram at 68% iron (small changes 

in the nickel and chromium content have a large influence on the amount of austenite and 

ferrite in duplex stainless steels [IMO 09]. 
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There appear to be three mechanisms for secondary austenite formation [CER 10, GUN 03]: 

• as a result of the eutectoid reaction δ → σ + 𝛾2 in the temperature range 700–

900°C (at the ferrite/austenite grain boundaries). 

• a diffusive transformation at a temperature above 650 °C resulting in a 

Widmanstätten precipitates (intragranular) 

• a non-diffusive isothermal transformation at a temperature lower than 650°C 

analogous to a martensitic transformation. 

It was reported that intragranular secondary austenite has a lower chromium, molybdenum 

and nitrogen content compared to the primary austenite, therefore it is more susceptible to 

pitting attack [NIL 95, CER 10]. 

3.2 Chi (𝝌) phase 

Chi phase formation takes place prior to sigma phase formation between temperatures 750-

850°C. This phase is thermodynamically unstable. Chi phase (χ) forms on the ferrite/ferrite 

interface and grows into the ferrite. The sigma phase formation takes place at the expense of 

Chi phase as shown in Figure I.11. As Chi-phase is richer in Mo than sigma phase and Mo 

being a heavy element, it is easy to contrast between sigma and chi phase using Back-

Scattered Electron Microscope (BSE) [MIC 06, ESC 09, PRA 15]. 
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Figure I.11: Chi phase precipitation in DSS [ESC 09]. 

 

 

3.3 Chromium nitrides (CrN/Cr2N)  

Chromium nitrides precipitation is commonly found between temperatures 700–900°C, 

during fast cooling from high annealing temperatures [PAR 15]. 

Slow cooling rates reduce the amount of Cr2N due to increasing austenite formation, where 

nitrogen can dissolve. The precipitation decreases the pitting corrosion resistance due to 

depletion of chromium and nitrogen. There is also another nitride, CrN, which forms during 

the welding operations in the Heat affected zone [NIL 92, HOF 94, LIA 01, CER 10]. 

3.4 R-phase  

R-phase precipitates between temperatures 550-650°C in an initial stage of aging and later, 

disappears with aging time by transformation to Sigma phase. They form at intra and inter 

granular sites. R-phase is Mo rich compound and their stability increases with increase in Mo 

content [PRA 15]. 
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3.5 Π-phase  

Π-phase formation takes place after isothermal heat treatment at 600°C for long aging time. 

This phase is often confused with Sigma phase as it is also rich in Cr and Mo [PRA 15]. 

3.6 τ-phase  

τ-phase is a needle like structure which forms at ferrite/ferrite boundaries after heat treatment 

between 550-650 °C [PRA 15]. 

3.7 Carbides M23C6 and M7C3 

M7C3 forms between 950°C and 1050°C at the 𝛿/𝛾  grain boundaries. However, as its 

formation takes 10 minutes, it can be avoided by normal quenching techniques. Further, as 

modern duplex grades contain less than 0.02 % C, carbides of either form are rarely if ever 

seen [GUN 03]. 

4. Sigma phase precipitation: 

Sigma phase is a Cr-Mo rich hard precipitate which occurs at temperatures between 600-

1000°C. This phase is one of the main reasons for the deterioration of stainless steels 

properties, for example, mechanical property, corrosion resistance, and weldability [CHI 12]. 

4.1 Development Progress of the σ Phase: 

In the review article published by Chih et al [CHI 12], an overview of the historical 

development of sigma phase was given: 

 
(1) In 1907, Treitschke and Tammann found that the σ phase in the Fe-Cr binary system 

was an intermetallic compound of 30wt.% Cr∼50wt.% Cr. 

(2) In 1927, Bain and Griffiths observed the successful σ phase in the Fe-Cr-Ni ternary 

system. They found that the σ phase was a very hard and brittle compound which 

impacted the toughness of the steels. At that time, the σ phase was called the “B 

constituent”. 

(3) In 1936, this Fe-Cr compound was called the “σ phase” by Jett and Foote, which 

became its official name. 

(4) In 1951, the crystal structure of the σ phase in the Fe-Cr binary system was examined 

by Yano and Abiko They pointed out that the σ phase exhibited slower precipitation 

kinetics in the Fe-Cr alloy system than in the Fe-Cr-Mo and Fe-Cr-Si ternary systems. 
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(5) In 1966, the σ phase was observed by Hattersley and Hume-Rothery and Hall and 

Algie in austenitic stainless steels. 

(6) By 1966, the σ phase had been found in over 50 transition alloys [6], including Cr-Ni, 

Fe-Cr-Ni, Fe- Cr-Mo, Fe-Cr-Mn, Fe-Cr-Ni-Mo, Fe-Cr-Si, Fe-V, Re-Cr, Mo-Re, Ta-Al, 

W-Te, Ta-V, Zr-Ir, Nb-Pd, Ti-Mn, and Nb-Fe. 

 

4.2 Precipitation Characteristic of the σ Phase: 

The σ phase is a tetragonal crystal structure with 30 atoms per cell, and its precipitation 

temperature is between 600°C and 1000°C. The crystal information and chemical 

composition of the σ phase are listed in Table I.6 [CHI 12]. 

The elements Cr, Mo, Si and Mn have been noted to encourage sigma formation (previous 

Figure I.6). In addition, nickel has been found also to enhance 𝜎 formation, but reduce the 

equilibrium volume fraction. This occurs as nickel induces 𝛾 formation and so concentrates 

the  𝜎 promoting elements in the remaining ferrite [GUN 03]. 

The “Sigma Equivalent” (𝜎𝑒𝑞) is a parameter proposed by Ramirez et al to measure the 

tendency of a DSS or SDSS to σ precipitation [CER 10]: 

𝜎𝑒𝑞 = 𝑋𝑐𝑟(𝛿) + 4.5. 𝑋𝑀𝑜(𝛿) + 1.5. 𝑋𝑆𝑖(𝛿)     (I. 13) 

 

Where, 𝑋𝑐𝑟(𝛿), 𝑋𝑀𝑜(𝛿)and 𝑋𝑆𝑖(𝛿) are the amounts of Cr, Mo and Si in the ferritic matrix. 

Therefore, it can be easily noted that super duplex stainless steels with high additions of Cr 

and Mo are more prone to sigma precipitation. 

Gow and Harder pointed out an empirical formula to examine the precipitation tendency of 

the σ phase, as expressed in equation I.14 [GOW 42, CHI 12]: 

𝑅𝑎𝑡𝑖𝑜 𝑓𝑎𝑐𝑡𝑜𝑟 =
%𝐶𝑟−16%𝐶

%𝑁𝑖
      (I. 14) 

 

If ratio factor >1.7, the σ phase can precipitate in stainless steels. When the C content is much 

higher, the ratio factor is much lower, and the precipitation tendency of the σ phase is 

decreased. 
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This phase occurs due to Eutectoid reaction where ferrite is converted to Sigma (σ) and sec-

ondary austenitic phase (𝛾2) [MAR 09, CHI 12].  

δ → 𝛾2 + σ 

 

Table I.6: Chemical composition and lattice constant of the σ phase [CHI 12]. 

 

 

At temperature between 850-900°C, sigma phase has fastest precipitation rate. 

Sikka pointed out that the σ phase was easy to precipitate at the δ/γ interphase boundaries 

[SIK 83] because the δ/γ interphase was a high boundary energy place and so a beneficial site 

for the heterogeneous nucleation of the σ phase. Sato et al. [SAT 99] found that a high lattice 

coherent degree and low δ/γ boundary energy could suppress the precipitation of the σ phase. 

Na et al. [NA 00] found that the σ phase formed in γ-austenite when the aging time was high; 

they constructed a schematic diagram to explain the precipitation behavior of the σ phase, as 

shown in Figure I.12. For Case 1, the σ phase was formed in γ-austenite, but needed a higher 

aging temperature (above 1000°C), as shown in Figure I.12(a). For Case 2, the σ phase 

precipitated at the δ/γ interphase boundary because this boundary was a region of high 

boundary energy, as displayed in Figure I.12 (b). For Case 3, the σ phase precipitated in δ-

ferrite particle and was attributed to the high Cr region of δ-ferrite. This precipitation behavior 

was the least difficult condition to accomplish, as represented in Figure I.12 (c). Padilha and 

Rios [PAD 02] pointed out that the σ phase precipitating directly in γ-austenite was very slow 

(about several thousand hours) [CHI 12]. 
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Figure I.12: Schematic diagram of the σ phase precipitation [CHI 12]. 

 

However, the schematic diagram shown in figure I.13 has been proposed by Villanueva et al. 

[VIL 06] to explain the precipitation mechanism of the σ phase in a duplex stainless steel 

(UNS S31803). 

Here are δ and γ phases in UNS S31803 duplex stainless steel without heating (𝑇0). Some 

laminar cellular structures (σ + 𝛾𝑛𝑒𝑤) are formed at the δ/γ interphase boundaries when the 

aging temperature is 𝑇1. Furthermore, the laminar cellular structures continue to grow when 

the aging temperature is increased to T2. Finally, the δ-ferrite is occupied completely [CHI 12]. 
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Figure I.13: Precipitation mechanism of the σ phase in UNS S31803 stainless steel [CHI 12]. 

 

 

4.3 Isothermal Kinetics Modeling of Sigma Phase Formation 

(a) Classical JMA Model 

The fraction of sigma phase can be described by a Johnson-Mehl-Avrami (JMA) type 

expression, which is formulated in the original paper by Avrami [AVR 39, FER 17] as 

follows: 

1 − 𝑉 = 𝑒𝑥𝑝[−𝐵𝑡𝑘]        (I. 15) 
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Where, V is the fraction transformed at time t, B is a function of temperature and k is a 

constant varying between 1 and 4 and depending upon the nucleation and growth mechanism. 

Since then, many workers commonly write Equation (I.15) as: 

𝑦 =
𝑉

𝑉𝑒𝑞
= 1 − 𝑒𝑥𝑝[−𝐾𝑡𝑛]       (I. 16) 

 

where y is the fraction of sigma phase formed (0 < y < 1) after an isothermal treatment at a 

time period t, 𝑉𝑒𝑞 is the equilibrium amount of transformed phase at temperature T, K is an 

overall rate constant related to the activation energy to sigma phase formation and n is the 

Avrami exponent [MAG 09, FER 17]. 

The constant K is defined by Equation (I.17), where 𝑄𝜎 is the activation energy for sigma 

phase formation and R is the universal gas constant.  

𝐾 = 𝑘0. 𝑒𝑥𝑝 (−
𝑄𝜎

𝑅𝑇
)      (I. 17) 

In order to extrapolate the kinetic parameters (n, K) from experimental data, Equation  (I.16) 

is often rearranged as follows: 

𝑙𝑛 [𝐿𝑛 (
1

1
− 𝑦)] = 𝑙𝑛(𝐾) + 𝑛. 𝑙𝑛(𝑡)     (I. 18) 

 

The phase transformation kinetics obeys the classical JMA model when the evolution of 

𝑙𝑛 [ln (
1

1
− 𝑦)] as a function of 𝑙𝑛(𝑡) gives a straight line (Avrami plot). 

Although the JMA exponent can’t be used to precisely identify the mechanism, it can be used 

as an indicator of the type of nucleation and growth conditions that are occurring. According 

to Christian [CHR 75], a JMA exponent above 4, like those observed at low fractions of sigma, 

would indicate that the transformation is taking place by either a discontinuous precipitation 

or an interface controlled growth mechanism, with a nucleation rate that increases with 

increasing [ELM 06]. 

The kinetic studies of sigma phase formation were explored earlier [ELM 07,MAG 09, SAN 

13] and a divergence between proposed kinetic mechanisms was observed. Palmer et al.[ELM 

07] suggested that a change in the mechanism of sigma phase formation occurs during aging. 

The authors mentioned that in the beginning of aging time, n varies between 7 for high and 

0.75 for low temperatures and sigma was formed by continuous precipitation controlled by 
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interface. With increasing aging time, the mechanism changes to a diffusion-controlled 

growth[SAN 16].  

However, Magnabosco et al [MAG 09] pointed that the mechanism of sigma phase formation 

is diffusion-controlled growth, with n values of approximately 0.9, during aging between 

700 °C and 850 °C, and proposed that the activation energy for sigma phase formation may be 

related to the activation energy for Cr diffusion in ferrite (185 kJ/mol). 

(b) Modified JMA model: 

When studying intermetallic phase precipitation, different authors have found that a better 

interpolation of the experimental results is obtained by using a modified JMA model [LEE 90, 

BAD 14, FER 12, FER 17]: 

𝑦 = 1 − [
1

1+𝑐.(𝐾.𝑡)𝑛]

1

𝑐 , 𝑤𝑖𝑡ℎ 𝑐 ≠ 0     (I. 19) 

 

Where c (coefficient) is the impingement exponent used to correct some complex competing 

effects that may occur during precipitation such as [BAD 08, FER 17]: 

(1) depletion of the solute content in the untransformed matrix due to competitive growth 

of the fraction products,  

(2) direct collision of two advancing reaction products, or  

(3) exhaustion of nucleation sites. 

In addition to the theoretical restrictions of the JMA model, there are also physical phenomena 

to take into account. Kinetic parameters of intermetallic phase precipitation are influenced by 

chemical composition [HUA 05], solution heat treatment [KAS 12] (and consequently 

primary phase proportion, phase and grain size), hot and cold working [CHO 13], as well as 

aging time and temperature [FER 17]. 

The above equation can be rearranged as follows [BAD 08, FER 12] : 

(𝐾. 𝑡)𝑛 =
(1−𝑦)−𝑐−1

𝑐
         (I. 20) 

and then: 

𝑛. 𝐿𝑛(𝐾) + 𝑛. 𝐿𝑛 (𝑡) = 𝐿𝑛 [
(1−𝑦)−𝑐−1

𝑐
]      (I. 21) 
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There are now 3 adjusting parameters, n, K and c. When a suitable value of c is adopted, a 

plot of Ln [
(1−𝑦)−𝑐−1

𝑐
]   vs. 𝐿𝑛 (𝑡) can result in a straight line. Then, the value of n and K can 

be obtained from the slope and the intercept [BAD 08]. 

During our literature review, we noted that only few studies have investigated the modified 

JMA model to follow the kinetic process of sigma precipitation in DSS steels. Hence, this 

aspect will be examined in the current study.  

4.1 Effect of the σ Phase on the Properties of Duplex Stainless Steels 

It is supposed that among intermetallic precipitates, sigma phase is the most detrimental one, 

as it causes a considerable drop in toughness as well as corrosion resistance [KES 09]. 

Without doubt, even small amounts of sigma phase influence the resistance against most 

corrosion forms such as pitting, sulphide stress corrosion cracking, intergranular corrosion 

and hydrogen embrittlement. Consequently, the standard criterion is that no sigma phase is 

allowed in produced duplex materials [MAT 13]. 

Recently in 2019, C.R. de Farias Azevedo et al [FAR 19] have conducted a literature survey 

on the main cases of failure analysis of DSS. Most of these failures took place in the welded 

joints either in the heat-affected zone (HAZ) or in the molten zone. Additionally, almost 50% 

of these failures involved the precipitation of deleterious phases, usually the sigma phase. The 

corrosion failures usually started with the action of a localized corrosion mechanism, like 

pitting corrosion or preferential corrosion. This corrosion mechanism can be promoted by the 

precipitation of deleterious phases (Cr-rich carbide and sigma phase) and the unbalance 

between the proportion of ferrite and austenite phases. 

In the table I.7, we have reported some failure cases involving sigma phase precipitation.  

Table I.7: Some failure cases involving sigma phase precipitation, from [FAR 19]. 

Class. Product Failure and causes 

UNS J93370 
(CDM4Cu) 

Casting valves 
The valves operated with circulating 
seawater at 69 bar and working 
temperature between 40 and 45 °C during 
15 years. 

Type of failure: Pitting corrosion. 
Causes: The chemical composition of 
DSS casting presented 
higher content of Mo and lower 
content of Cu than the required. 
The proportion of ferrite was much 
higher than the required. 
The crack propagated along α/γ 
interfaces due to the 
precipitation of Cr-carbide and σ 

phases 
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Class. Product Failure and causes 

UNS S32750 Welded vessel 
(polymer industry) 
The vessel was manufactured by 
circumferential and 
longitudinal welds of wrought DSS plates. 

Type of failure: Stress corrosion 
cracking (SCC) in the HAZ. 
Causes: Two circumferential joints 
were made by SMAW (shield 
metal arc welding)/GMAW (gas metal 
arc welding followed by 
SAW (submerged arc welding), 
leading to the formation of 2% 
of σ phase in the HAZ. The service 
environment was rich in 
chloride (~ 220 ppm) and worked at 
110 °C. The remaining 
SAW joints did not show SCC. Crevice 
corrosion of the sigma/ 
austenite interface of the HAZ 
promoted the stress corrosion 
cracking (SCC) propagation along the 
α/γ interfaces and in the 
austenite phase. 
 

UNS S32900 Forged double disc valve stem 
(nuclear industry) 
The DSS stem of a heavy water plant 
failed after 30 year of use 
in an environment containing H2S, pH 4, 
128 °C and pressure of 
19 kg/cm2. The stem was forged and 
annealed at 1000 °C. 

Type of failure: Sulphide stress 
cracking. 
Causes: The annealing heat treatment 
of the valve stem caused the 
precipitation of σ phase.  
The SSC crack preferentially 
propagated in the ferrite phase and 
along the α/γ boundary due 
to the presence of the σ phase. 
 

UNS S31803 Welded duct nozzle 
(oil industry) 
The nozzle injected steam (fluid of 
99.99% of H2O with a flow 
rate of 262,000 lbs./h at 105.5 °C and 
14.6 psi) into a heavy oil 
reservoir and failed after four years of 
operation. 

Type of failure: Fatigue crack in the 
weld region (perpendicular 
direction to the weld axis). 
Causes: The fatigue failure was 
promoted by the vibration of the 
piping system. The high content of 
austenite (~ 70%) and the 
precipitation of deleterious phases (σ 
phase and a Cr-rich intermetallic) in 
the weld region facilitated the crack 
propagation. 

UNS S32760 Welded pipe for oil transportation 
(oil industry) 
The pipe failed with 1 month of operation 
with pits on the 
weld joint region. 

Type of failure: Pitting corrosion in the 
HAZ. 
Causes: Preferential corrosion of the 
α/γ interface due to a precipitation of ~ 
8% of σ phase during the heating 
procedure before the repair welding, 
which is not recommended for SDSS 
pipes. 
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5. Alpha Prime (α’) phase 

The lowest temperature decomposition within a duplex steel is that of alpha prime (α’), which 

occurs between 300 and 525°C (figure I.14), and is the main cause of hardening and “475 

embrittlement” in ferritic and Duplex stainless steels [MAE 14]. This embrittlement is 

caused by decomposition of ferrite phase into α phase (rich in iron) and α’ phase (rich in 

chromium). The presence of miscibility gap in Fe-Cr phase diagram causes this embrittlement. 

At 475 °C [SAH 09], the rate of embrittlement is highest, hence this occurrence is known as 

475 °C embrittlement [PRA 15]. 

 

Figure I.14: Time-Temperature Transformation diagram for alloy S32404 [GUN 03]. 
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Figure I.15: Fe–Cr binary phase diagram [MAE 14]. 

Depending on the temperature and the composition of the ferrite, the 

decomposition can occur according to two mechanisms: either by spinodal decomposition, or 

by a classical mechanism of nucleation and growth (see figure I.15). These mechanisms are 

briefly described on the following section. 

5.1 Spinodal decomposition and nucleation – growth mechanism 

These unmixing mechanisms are illustrated in Figure I.16. 

During decomposition by germination and growth, the precipitates of α’ dispersed in the 

matrix α, germinate directly to their equilibrium composition and grow by absorbing the 

surrounding elements. During spinodal decomposition, composition fluctuations appear, 

which give rise to a progressive enrichment of α’ and α zones, in chromium and iron [MIT 10, 

POR 92]. 

However, whatever the mechanism of decomposition of the 

ferrite, the morphology of α’ and α becomes identical when the system tends towards 

equilibrium, with respectively concentrations equal to the solubility limits of chromium in 

iron and of iron in chromium, as shown in figure I.16 [MAE 14]. 
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Figure 1.16 : Formation of precipitates by a classical mechanism of nucleation and growth or 

by spinodal decomposition. C0, C
1

E and C2
E are respectively the initial composition of phase 1 

and the equilibrium compositions of phase 1 and phase 2. R is the radius of the nuclei then of 

the precipitates and 𝜆 is the wavelength of the fluctuations [MAE 14]. 
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It is well documented in literature that the spinodal decomposition of ferrite into chromium-

rich (𝑎') and iron-rich (𝑎) phases at intermediate temperatures is the primary mechanisms of 

thermal embrittlement of DSS [CHU 90, LEA 92, CHU 92, WEN 04, PAR 15]. 

5.2 Activation energy of ferrite spinodal decomposition: 

The unmixing of ferrite by spinodal decomposition is considered as a thermally activated 

mechanism that follows the Arrhenius law. The activation energy “Q” related to this 

decomposition process has been extensively studied by many researchers using different 

methods. A critical review of several methods had been carried out by Chung to explain the 

complex behavior of activation energy of decomposition process [CHU 92]. 

The great importance allocated to this parameter is justified by the fact that this activation 

energy “Q” is essential for design life prediction of DSS components operating at high 

temperature particularly in nuclear and petroleum industries. In fact it is generally accepted 

that the activation energy measured for the embrittlement process is consistent with that 

derived from hardening kinetics in ferrite, and in agreement with the development of the 

spinodal reaction in the ferrite phase [MEY 11].  

Information obtained at a number of laboratories shows, however, that the activation energy 

of aging embrittlement is strongly influenced by nominally small differences in chemical 

composition and fabrication process, and a consensus among investigators on the 

understanding of the activation energy of aging has not been reached yet [CHU 92]. 

The activation energy determined by Pareige et al [PAR 11] for this mechanism is 

approximately equal to 243 ± 80 kJ/mol, consistent with the activation energy for the 

diffusion of chromium in iron (Q = 250.3 kJ/mol [MEH 90]).  

Meyer et al [MEY 11] studied the relationship between the chemical composition of ferrite 

and embrittlement, through resilience measurements on six different commercial duplex steels, 

aged between 250 °C and 400° C. The activation energies determined by this research group 

from these measurements are between 100 kJ/mol, for the low alloyed steels and 300 kJ/mol 

for the high alloyed steels. They therefore established a correlation between the chemical 

composition of the ferrite of the various steels and the activation energies associated with 

embrittlement phenomena, and Q (in kJ/mol) follows an empirical law of type: 

𝑄 =  −64 −  2%𝐶𝑟 −  49%𝑆𝑖 −  5%𝑀𝑜 −  11%𝐶𝑢 +  33%𝑁𝑖 +  64%𝑀𝑛 +

 4123%𝑁          (I. 22) 
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In the current study, the activation energy has been determined using DSC technique. During 

our literature survey, we have found only one research work published in 2014 [COU 14], in 

which DSC technique was used to follow the embrittlement kinetic for a precipitation 

hardening stainless steel grade (15-5 PH grade).  

In our study, a simplified method was used. DSC curves were analyzed through Kissinger 

equation, modified by Mittemeijer et al. [MIT 88, RIV 18] :  

𝐿𝑛 (
𝑇𝑝

2

𝑆
) =

𝑄

𝑅.𝑇𝑝
+ 𝐿𝑛 (

𝑄

𝑅.𝑘0
)     (I. 23) 

where 𝑇𝑝= peak temperature (K); S = heating rate (K/S); 𝑄 = effective activation energy for 

the process associated with the peak (J mol-1); R = gas constant; 𝑘0 = pre-exponential factor 

in the Arrhenius equation for the rate constant k: 

𝐾 = 𝑘0. 𝑒𝑥𝑝 [−
𝑄

𝑅.𝑇
]      (I. 24) 

Further details and results are presented with discussions on Chapter 3.  

6. Solution annealing heat treatment: 

To overcome the problem of intermetallic precipitation, the DSS are often supplied in the 

solution annealed condition. The aim of the this treatment is to dissolve the secondary phases 

that can precipitate during hot working or welding. 

The figure I.17 provides a typical thermal cycle of Solution annealing heat treatment, the 

cooling should normally be as fast as possible; air cooling is normally fast enough but water 

quenching can be necessary for certain grades. 
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Figure III.17: Example of a solution annealing cycle. The critical temperature ranges are 

strongly dependent on the steel grade [OUT 13]. 

7. Pitting corrosion properties 

One of the most common types of corrosion phenomenon in stainless steels is pitting 

corrosion, which is introduced in this section. In the presence of mechanical stresses, this 

form of damage has been observed to potentially lead to the development of stress corrosion 

cracks (SCC), thus degrading the structural properties of components [GHA 15]. 

Furthermore, it has been reported that almost 30% of cases of the corrosion failures in power 

stations is caused by localized corrosion including pitting and stress corrosion cracking 

(SCC).Once these damage processes initiate they will allow the material to deteriorate, 

leading to catastrophic structural failure, resulting in plant shutdown and economic losses 

[SAI 07].  
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Figure I.18: Schematic diagram of the role of pitting [SAI 07]. 

The more the stainless steel is resistant to pitting the better it is for long term applications as 

pitting aggravates both stress corrosion cracking (SCC) and corrosion fatigue (CF) cracking 

which leads to the failure of engineering equipment. 

Therefore, these failures are serious and important. 

7.1 Mechanism and Stages of Pitting Corrosion 

Stainless steels are protected from corrosion by a naturally formed passive film on the surface. 

In the presence of chloride ions, however, stainless steels are susceptible to localized 

corrosion such as pitting corrosion.  

The mechanism of pitting corrosion had been widely studied in the literature. Almost all pits 

initiate at some chemical or physical heterogeneity at the surface such as an inclusion, second 

phase particles, mechanical damage, solute-segregated grain boundary or dislocation. 

As the passive film or any another protective surface layer breaks down locally, pitting 

corrosion normally takes place. An anode forms where the film has broken, while the 

unbroken surface film acts as a cathode. In this case the localized attack will be accelerated 

and pits will develop at the anodic spot. The environment within the pit may become very 

aggressive which will further accelerate corrosion. A typical schematic for pitting corrosion 

process is presented by Figure I.19 [SAU 11]. 
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Figure I.19: typical schematic for pitting corrosion process [SAU 11]. 

 

The pitting corrosion process can be divided into two main stages : 

1. Pit initiation stage (passive film breakdown) and 

2. Pit propagation stage. 

Some typical morphologies of pitting corrosion of DSS samples are shown in Annex A. 

 

7.2 Pitting potential  

It is generally accepted that pitting initiates when the pitting potential reaches a critical value 

(𝐸𝑝 ), which depends on the chemical composition of the alloy and on the environment 

(temperature and chloride concentration). 𝐸𝑝 is often measured by potentiodynamic anodic 

polarization tests. In these measurements the onset of pitting corrosion is observed as an 

irreversible increase in current density (Figure I.20). The higher the 𝐸𝑝  value, the more 

resistant is the alloy to pitting corrosion in the environment considered [POH 08, CER 10]. 
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This value can be measured in the environment of interest for example in aqueous chloride, 

bromide, iodide and even in sulphuric acid solution. The values obtained depend on the 

composition and structure of the metal and the tests environment. Measuring the potentials 

when the pits tend to cause damage is useful for selecting materials for various applications 

[SAI 07]. 

The figure I.20 explains a lot of terms related to the pitting behavior of stainless steels. In the 

active anodic region, the measured current tends to increase with the applied potential and 

then starts to decrease at a potential called the primary passivation potential 𝐸𝑝𝑝 . The 

occurrence of this is known as the active-passive transition. Above this potential the current 

usually drops to a low value and becomes nearly stable with increase in applied potential 

called as passive current, 𝑖𝑝𝑎𝑠𝑠. The potential range over which the current remains at low 

value is called the passive potential range and it is a range where stainless steels remains 

passive and the corrosion rate is low. 

On increasing the applied potential towards positive direction, there exists a critical potential 

where the current tends to increase with the applied potential this potential is termed as pitting 

potential, 𝐸𝑝  or breakdown potential, 𝐸𝑏 . This particular potential value is defined by the 

combination of alloy and environment [SAI 07]. 
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Figure I.20: Schematic polarization curve for a stainless steel in a sulphuric acid  solution 

[SAI 07]. 

 

7.3 Relationship between 𝑬𝒑 and 𝑷𝑹𝑬𝑵  

Although that the 𝑃𝑅𝐸𝑁 is not an absolute as we already mentioned, some authors attempted 

to correlate between the 𝑃𝑅𝐸𝑁  and  𝐸𝑝 in some specific environments. Some of their findings 

are presented in this section. 

Truman [TRU 87] in his study mentioned the relationship between alloy content and pitting 

potential is not linear, involving a transition above a certain 𝑃𝑅𝐸𝑁 value, which is due to the 

addition of chromium, molybdenurn, and nitrogen individually or in a combination as shown 

in Figure I.21[SAI 07]. 
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Figure I.21: Relationship between 𝐸𝑝 & 𝑃𝑅𝐸𝑁 [55]. 

As shown in this figure the transition occurred around 𝑃𝑅𝐸𝑁 value of 32 which suggests that 

increase in alloying elements does increase the pitting resistance. But the increase in 𝑃𝑅𝐸𝑁 

is directly related to the increase in cost. So, it was not always a good idea to enhance the 

composition as it becomes very expensive product. Among the expensive compositional 

elements nickel tends to be at higher price so the stainless steel makers found an alternative 

solution by adding nitrogen and molybdenum. 

Lorenz and Medawar studied the effect of chromium and molybdenum on several alloys in 

artificial seawater and proposed a following relationship between pitting potential, and these 

alloying elements as [SAI 07]: 

 (1200 − 𝐸𝑝)
2

= 2.54.10−6 − 90.103. (%𝐶𝑟 + %𝑀𝑜)   (I. 25) 

Merello et a1 [MER 03], studied some duplex steel samples in NaCl solution at 25°C and 

found an exponential relationship between the pitting potential and the PREN as given 

below: 

𝐸𝑝 = 2.94. 𝑒𝑥𝑝[0.14. 𝑃𝑅𝐸𝑁]        (I. 26) 
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7.4 Effect of secondary phases on pitting potential 

The protectiveness of passive film depends greatly on the Cr, Mo and N contents. In particular, 

Cr and Mo in the passive film act synergistically in resisting the attack of chloride ions by 

rehealing damaged film. When secondary phase particles and chromium carbides are formed 

at the grain boundaries of DSSs, the boundaries adjacent to the precipitates are depleted of Cr 

and Mo. The Cr/Mo-depleted zone near the grain boundaries is much less corrosion resistant 

than the surrounding grains. Thus the film locally is less protective and the Cr/Mo depleted 

zone experiences active dissolution (act as the anode) and corrode upon exposure to corrosive 

environment, while the surrounding grains remain in the passive state (act as the cathode).  

Furthermore, the precipitation of secondary phase particles can cause compositional changes 

in the α- and γ-phases, resulting in selective pitting corrosion of a weak phase [KAI 14]. 

Domínguez-Aguilar and Newman studied the deleterious effects of secondary phase 

formation on the pitting behavior of a 25Cr duplex stainless steel exposed to a halide solutions 

(NaBr, NaCl) at different temperatures (20–50 °C) [DOM 06]. The steel was aged at 675–

825 °C for different periods to induce the formation of χ and σ phases. As mentioned above, 

Mo promotes the formation of χ- and σ-phases in DSSs in which the χ-phase nucleates in the 

early stage of aging. In both halide solutions the presence of intermetallics leads to pitting 

corrosion. The Cr/Mo depleted zones are preferred dissolution sites in halide solutions. The 

passive films formed on these zones are less protective because they are depleted of Cr and 

Mo. 

Hence, the correlation between pitting potential and σ-phase volume fraction has shown a 

shift of pitting potential to more active region as the σ-phase content increases[DOM 06, KAI 

14]. 

D.C. Dos Santos et al [SAN 16 ]investigated the correlation between the pitting potential and 

sigma phase volume fraction for isothermally aged DSS at 850°C for different aging time. 

The aged steel was analyzed through cyclic potentiodynamic polarization tests in 0.6 M 

sodium chloride (NaCl) solution. It was established that Both pitting and repassivation 

potentials decreased with an increase of sigma volume fraction and this was attributed to the 

increase of secondary chromium-depleted phases formed in consequence of sigma phase 

formation. 
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Other researchers [PAR 15, EBR 12, YOU 11, DEN 09] have correlated the influence of 

sigma phase on pitting resistance through the Critical Pitting Temperature (CPT). The CPT is 

the lowest temperature at which stable pit formation is initiated [PRA 15].  

For example, Park et al. carried out a study on effect of sigma phase precipitation on DSS in 

10% Fe3Cl·6H2O solution. They allowed sigma phase precipitation by different aging 

treatments and found that CPT value decreases with increase in σ-phase precipitation[PAR 05, 

PRA 15 ]. 

However, the numerical data relating sigma phase content to the pitting potential are limited. 

Furthermore, most of the available studies have been conducted using a various 

electrochemical tests in chloride containing solutions (NaCl, CaCl2,..). Additionally, there is 

no published studies examining the electrochemical behavior of sigmatized DSS when 

exposed to oil and gas field environment. There have been only a limited number of studies 

related to Super Duplex stainless steel (SDSS) materials tested in a simulated oil field 

environment [SAI 12].  

Hence, as part of the current study, the relationship between sigma phase content and pitting 

potential values have been investigated in Produced water solution. The details of experiment 

are described in next chapter. 
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Conclusion 

The literature review reported on this chapter served to highlight some of the technical 

aspects that need to be further investigated due to the limited available information on those 

topics.  

Therefore, among the interesting topics handled under the current research work, the 

following are listed: 

(1) Study sigma phase precipitation in DSS aged at 850°C and its effects on mechanical 

proprieties. 

(2) Apply the classical and modified JMA model to follow sigma phase precipitation 

process. 

(3) Investigate sigma effect on pitting corrosion in a “Real” oil field solution, which is 

Oily Produced Water solution. 

(4) Apply DSC technique to determine the activation energy “Q” related to the 475°C 

embrittlement (spinodal decomposition). 

 

 



                                                                                         Chapter II: Experimental Techniques 

52 

II 

EXPERIMENTAL TECHNIQUES 

 

1. Introduction: 

In this chapter we will present in a first step the investigated material in the current study, 

namely its chemical and mechanical characteristics, material shape and delivery conditions. A 

typical materials selection flow diagram for stainless steels for process piping is presented to 

give an overview on how oil and gas operators select DSS in petroleum industry. 

The other sections of this chapter are dedicated for the presentation of the experimental 

procedures, applied heat treatment to produce sigma phase, together with the characterization 

techniques and tests employed to achieve the objectives of this project. 

2. Material presentation: 

The investigated steel grade in this study is a duplex stainless steel (ASTM 790 UNS 31803) 

received in the solution treated condition, as a seamless pipe having a 3 inch diameter and 

5.5mm thickness. The pipe has been supplied by TUBACEX TUBOS INXIDABLES, S.A. to 

SONATRACH (Oil and gas Operator) in order to be installed in an oil and gas plant in south 

of Algeria). 

This material grade of this pipe has been selected by the engineering company providing the 

technical support to SONATRACH in order to be used for various process systems, where the 

temperature exceeds 60°C in chloride containing environments, like salt crude oil and oily 

produced water. 

The flow diagram used for this material selection is shown in figure II.1. 
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Figure II.1: Flow Diagram for Stainless Steel Materials Selection for Process Piping. 

 

2.1 Chemical composition 

The chemical composition of this pipe is given in Table II.1. 

Table II.1: Chemical composition of the studied Material. 

Elements C Si Mn P S Cr Mo Ni N 

wt. (%) 0.013 0.550 1.100 0.0260 0.0006 22.400 3.150 5.450 0.1850 

 

 



                                                                                         Chapter II: Experimental Techniques 

54 

2.2 Mechanical characteristics  

The mechanical characteristics are given in table II.2 below, where the parameters 𝑅𝑝02, Rm 

and A5 are as defined in the figure II.2. 

Table II.2: The mechanical characteristics of the investigated DSS. 

 

 

Figure II.2: Some definitions from the stress strain curve [OUT 13]. 

 

3. Heat Treatment (Aging) program: 

The aim of heat treatment in this study was to study sigma precipitation mechanism and to 

produce various level of sigma content in the investigated alloy, then study the effect of these 

various content on the corrosion and mechanical features. Therefore, Specimens of 

approximately 20 mm length and 10 mm wide were obtained. A number of samples were kept 

without any treatment as reference, and the rest of specimens were isothermally aged at 

850°C for different holding times ranged from 5 minutes to 360 minutes, in a tubular electric 

furnace equipped with a temperature controller. At the end of each treatment the specimen 

Test Temperature 

Yield Strength 

𝑅𝑝0.2(MPa) 
Tensile Strength 

Rm, (MPa) 

Elongation, A5 

(%) 
Hardness (HRC) 

20°C 487 568 44% 16 
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was immediately water quenched in order to interrupt the phase transformation process 

(Figure II.3). 

The aging temperature of 850°C was selected in this study as it presents the nose of sigma C 

curve for the UNS 31803 DSS[MAG 09, CHI 12]. 

 

Figure II.3: scheme of applied aging treatment. 

 

4. Metallographic examinations 

The specimens for metallography were prepared in the following manner: samples were 

mounted in acrylic moulding powder. Then all the specimens were ground on silicon carbide 

paper down to 1200 grit size and then polished with alumina powder. Finally, the specimens 

were thoroughly cleaned with running cold water and dried. 

Metallographic examinations have been carried out using electrolytic etching under the 

following conditions: 

• Solution : oxalic acid aqueux à 10 %  (weight), 

• Tension : 2 to 2.5 V, 

• Electrodes : Duplex SS, 

• Etching Period: 10 to 20 seconds [VIL 06]. 
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This procedure has the advantage to allow quantitative metallographic analysis of sigma 

phase. The electrolytic etching employed colors the phases as follows: ferrite-gray, austenite – 

white, and sigma phase - dark. 

Other alternative etching agents recommended for DSS are provided on Annex A for 

information purpose. 

The etching cell is illustrated in figure II.4. 

 

Figure II.4: Schematic for electrolytic etching cell. 

 

5. Microhardness Measurements 

The surfaces of the specimens were polished before measuring their hardness. 

A Vickers microhardness testing machine with a diamond indenter was used. Vickers 

microhardness measurements were performed using 0.3 kg load.  

At least fifteen readings were recorded for each specimen and an average value calculated. 

Figure II.5 shows Vickers microhardness principle, while figure II.6 shows the used 

apparatus. 
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Figure II.5: Vickers Microhardness test principle. 

 

 

Figure II.6: Microhardness apparatus. 
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6. X-ray diffraction analysis 

The presence of different phases in the specimens was also identified by X-ray diffraction 

analysis (XRD). 

X-ray diffraction is probably the most commonly used analytical technique for phase 

identification. The working principle is based on diffraction of X-rays (Figure II.7) as 

described by the Bragg’s law : 

𝑛𝜆 = 2. 𝑑. 𝑠𝑖𝑛(𝜃) 

 

Where 𝑛  is the diffraction order, 𝜆 is the wavelength of the X-ray source, 𝑑 is the diffraction 

interplanar distance and 𝜃 is the diffraction angle [MAI 18]. 

 

Figure II.7: Schematic illustration of Bragg condition and Bragg’s law [GLO 20]. 

 

Phase identification is performed by measuring the angles where constructive interference of 

X-rays is located and then converting into interplanar distance. Sets of diffracting planes are 

then matched with those from the standard database (Powder Diffraction Files from the 

International Centre for Diffraction Data). 

From sets of interplanar distances it is then possible to calculate the lattice constants, which 

for cubic systems is : 

1/𝑑2 = (ℎ2 + 𝑘2 + 𝑙2)/𝑎2 

 

Where ℎ𝑘𝑙 are the Miller indexes [MAI 18]. 
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X-ray diffraction analysis was carried out on a Bruker D8- Advanced diffractometer (Figure 

II.8) using monochromatic 𝐶𝑢𝐾𝛼 radiation (𝜆 =  1.54056 Å) with an accelerating voltage of 

40 kV and current 40 mA, angular range 40°-70°. 

 

 

 

Figure II.8: Bruker D8- Advanced diffractometer. 

 

7. Scanning electron microscopy (SEM) 

Complementary microstructural characterizations using scanning electron microscope (SEM) 

have been used for a number of aged samples for further confirmations purpose. 

Scanning electron microscopy (SEM) has been of paramount importance in materials science 

thanks to the small wavelength of the electron beam, which offers significantly higher spatial 

resolution compared with Light optical microscopy (LOM). In addition, backscattered 

electron imaging provides composition contrast on different phases present in the material 

without etching procedure. 

In SEM, electrons are generated by a source (tungsten, 𝐿𝑎𝐵6 or field emission gun) and 

accelerated through apertures at potential of several keV. The electron beam is then 
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collimated and focused by means of several electromagnetic lenses and is scanned on the 

specimen. High vacuum is necessary to increase electron mean free path, allowing high 

resolution [MAI 18]. 

The electron beam interacts with matter producing a number of signals that can be detected by 

different detectors. Secondary electrons are generated by ionization of the atoms composing 

the material. Having low kinetic energy, they can only escape from the depths in the order of 

~100 nm (Figure II.9), providing valuable information on the topography. Backscattered 

electrons, instead, result from the elastic scattering of the primary electron beam, being highly 

energetic. 

The information volume is therefore larger and corresponds to ~ 1 μm. The backscatter yield 

is dependent on the atomic number of the elements present in the material. Heavy elements 

backscatter electrons more strongly than light elements, therefore providing composition 

contrast [MAI 18]. 

In the current study, imaging was carried out in a JEOL microscope operated from 7.0 to 

30kV. 

 

Figure II.9 : Schematic diagram of major components of SEM [NAN 20]. 
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8. Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) is a method that is extensively used to measure heat 

and temperatures of various transitions and has been recognized as a very useful tool for the 

interpretation of thermal events. It has been widely used to research different phase 

transformations of steels and alloy materials by several authors [KAS 17, LON 18, REN 11]. 

A calorimeter measures the heat into or out of a sample. A differential calorimeter measures 

the heat of sample relative to a reference. A Differential Scanning Calorimeter does all of the 

above and heats the sample with a linear temperature ramp. DSC is a technique in which the 

difference in the amount of heat required to increase the temperature of a sample and 

reference are measured as function of temperature. Both the sample and reference are 

maintained at nearly the same temperature throughout the experiment. Generally, the 

temperature program for a DSC analysis is designed such that the sample holder temperature 

increases linearly as a function of time [KOD 14]. 

The heat flow signals measured by DSC can provide valuable kinetic information about the 

phase transformation and the phase precipitation and dissolution in the materials during a 

specific heating and cooling cycle. Moreover, DSC has two important advantages. First, it is 

an effective and rapid experimental tool to measure the onset temperature and the finish 

temperature with high precision during phase transformation in a well-defined small sample. 

Second, the energy absorbed (endothermic peaks) and energy released (exothermic peaks) 

during the specific heating and cooling cycle are directly correlated with the phase volume 

fraction of precipitates and the composition of materials [LON 18]. 

In practice, the heat is supplied to the sample contained in the pan, and similarly, to the 

reference in its pan. 

Two types of DSC are recognized [HAI 95]: 

1) Power-compensated DSC, where the sample and reference are heated by separate, 

individual heaters, and the temperature difference is kept close to zero, while the 

difference in electrical power needed to maintain equal temperatures ∆𝑝 = 𝑑(∆𝑄/

𝑑𝑡) is measured. 

Figure II.10 shows a simplified schematic diagram of the power compensated DSC cell.  
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Figure II.10 :Schematic illustration of power compensation DSC [KOD 14]. 

2) Heat-flux DSC, where the sample and reference are heated from the same source and 

the temperature difference a ∆𝑇 is measured. This signal is converted to a power 

difference a ∆𝑃 using the calorimetric sensitivity. 

Figure II.11 shows a simplified schematic diagram of the heat-flux DSC cell.  

 

 

Figure II.11 :Schematic illustration of heat-flux DSC cell. R and S refer to reference and 

sample pans [KAS 17]. 

 

A typical example of a DSC scan performed for a low alloy steel is shown in Figure II.12. 
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Figure II.12: Typical DSC signal for a Low Alloy Steel [LIN 20]. 

 

Figure II.13 shows the photo of the DSC apparatus (Q20) used in this study. 

 

Figure II.13: photograph of the DSC Q20 used in this study. 
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9. Corrosion Tests and pitting potential measurement: 

Localized corrosion (Pitting) tests were carried out to determine the susceptibility of stainless 

steels to pitting using polarization potentiodynamic technique. The main advantage of with 

this kind of testing is the opportunity to investigate corrosion phenomenon in the solution of 

interest. The parameters that was evaluated from these tests is the Pitting Potential. 

In fact, pitting potential is defined in several ways. In the current study, Pitting Potential (𝐸𝑝) 

is defined as the potential corresponding to an abrupt increase of the current above the passive 

current with increasing potential. This concept of a pitting potential or breakdown potential 

was proposed by Brennert in 1935 for alloy steels, which characterizes the behavior of 

passivable metals and alloys in chloride solutions [SAI 07]. 

Figure II.14 illustrate the method of determination of 𝐸𝑝 that we adopted in this work. 

 

Figure  II.14: Principle of determination of pitting Potential (𝐸𝑝) [OBE 17]. 

 

9.1 Potentiodynamic polarization: 

Potentiodynamic polarization technique has been in practice for long time and was known to 

be reliable and most useful approach to make current-potential measurements. This technique 
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only indicates the relative resistances to pit initiation but has the advantage of giving results in 

a reasonable time period.  

The polarization tests were carried out using a potentiostat VOLTALAB PGZ-301 consisting 

of three electrodes. Platinum was used as the counter electrode and saturated calomel 

electrode (SCE)) was employed as the reference electrode. The specimens acting as working 

electrode were embedded in epoxy resin with an approximate exposure area of 1cm². Before 

each test, the exposed surfaces of samples were polished up to 4000 grit finish then rinsed 

with distillated water and dried in air.  

Figure II.15 shows a schematic of polarization cell (potentiostat) used for corrosion test. 

Figure II.16 shows the polarization cell (VOLTALAB PGZ-301) potentiostat used in this 

study. 

 

 

 

Figure II. 15: Schematic of the electrochemical cell used for corrosion testing [BUC 12]. 
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Figure II. 16: The VOLTALAB PGZ-301 potentiostat. 

 

9.2 Scan rate: 

All the potentiodynamic tests can be conducted at different potential scan rates but how far 

these scan rates influence the pitting initiation is not yet clear [SAI 07].  

However, influence of scan rate has been summarized by Smialowska and was reported that 

scan rate does have influence on the pitting potentials for, high chromium and molybdenum 

steels, whereas in case of ferritic steels it did not show significant effect [SMI 86, SAI 07]. 

However, in this study scan rate was based on the most published works in same field of 

research. The potentiodynamic measurements were performed at a scan rate of 1mV/S until 

an anodic current of 100µA/cm2 was exceeded [MOU 08, DON 11, EBR 11, SAN 13].  

9.3 Test Solution: 

Two test solutions have been used in this study: Produced Water solution and 0.5 M NaCl 

solution simulating seawater chloride concentration. 

Tests solutions were exposed to laboratory air at room temperature (approximately 25 °C).  

Produced Water is the recovered water from crude oil production system after separation and 

filtration. Treated produced water is sent for reinjection into the oil reservoir to increase the 

oil recovery capacity. The chemical analysis of the produced water used as a test solution for 

this study is presented in Table II.3. 
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Table II.3: Chemical Analysis of  Produced Water 

Elements Cl- HCO3
- Na+ Ca++ K+ 

Concentration (mg/l) 28862 61 30765 97 418 

 

Simulated seawater solution was prepared to achieve a chloride level approaching to the 

chloride level (salinity) of seawater. The salt was weighed and was calculated to prepare 

required levels of chloride solution from NaCl, then it was mixed in demonized water. 

9.4 Sample identification 

Tested samples in simulated seawater were numbered from "0-SW" to "360-SW" whilst the 

tested samples in produced water were numbered from "0-PW" to "360-PW", where the 

numeric characters denote the aging time in minutes. Based on that, specimen identification 

adopted in this work are listed on Table II.4. After the polarization tests, the surface of the 

pitted samples were cleaned and analyzed using SEM observation to examine pit morphology 

and preferential location. 

 

Table II.4 Specimens identification 

Aging Time (min) Test solution Identification 

0 (Solution annealed condition) Simulated Seawater 0-SW 

5  5-SW 

30  30-SW 

60  60-SW 

360  360-SW 

0 (Solution annealed condition) Produced Water 0-PW 

5  5-PW 

30  30-PW 

60  60-PW 

360  360-PW 

 

9.5 Pitting potential determination method 

As shown in Figure. II.12, the pitting potential (Epit) or breakdown potentials were measured 

from the polarization curve to assess the relative performance of the various steels 

investigated in the present study. The pitting potential was measured when the abrupt increase 

in the current density was noticed during the polarization scan and was recorded digitally 

using VOLTALAB software. All the values were recorded against saturated calomel electrode 

(SCE) unless stated.  
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III 

RESULTS AND DISCUSSIONS 

1. Introduction 

Chapter III is devoted to the presentation and the interpretation of the experimental results 

obtained during the current research work. The presented discussions covers both the 

scientific and industrial aspects.  

The obtained results are examined from a metallurgical and physical point of views in order to 

ensure a better understanding of the mechanical and corrosion behavior at the microscopic 

scale.  Where possible, our results are compared to the previous works available in the open 

source literature with a critical review. The observed morphologies of the investigated 

samples at the different metallurgical conditions have been analyzed and interpreted basing on 

the best published scientific data presented on Annex A. 

The resulting conclusions can then be extended and transposed to the scale of the structure 

and contribute to enhance the current understanding of mechanical and corrosion behavior of 

DSS in oil and gas filed industry. 
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2. Characterization of the investigated material at the as 

received condition 

2.1 Metallographic examination 

The microstructure of the studied material in the as received condition is shown in Figure 

III.1.It contains solely austenite and ferrite. The white -etched grains in the micrograph are 

austenite and the gray etched matrix is ferrite. The average grain sizes are 35 μm and 50 μm 

for austenite and ferrite, respectively. 

 

 

 

 

 

 

 

Figure III. 1: Micrograph of the investigated metal at the as received state. 

On the other hand, the previous micrograph does not show the presence of any secondary 

phase or precipitate, this finding has been confirmed by other complementary analysis as 

presented in next sections. 

2.2 Estimation of phase fraction 

Phase volume fractions for austenite and ferrite have been determined using image analysis 

technique. Therefore, austenite content was estimated to be 52% and ferrite content is 48%. 

2.3 XRD analysis of solution treated DSS sample 

The presence of these phases was confirmed by X-ray diffraction analysis as shown in Figure 

III.2, no other phases or precipitates have been detected in the investigated DSS at the as 

received state. Table III.1 shows the summary of detected peaks following XRD analysis. 

 

50 µm 

𝜹 

𝜸
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Figure III. 2: X-Ray diffraction pattern of the studied material in the as received condition. 

 

 

Table III.1 : summary of detected peaks in solution treated DSS sample. 

Phase 𝒉𝒌𝒍 
𝟐𝜽

(deg.) 
𝒅 

(Å) 

Austenite (FCC) 
111 11.98 1.980 

200 13.84 1.715 

Ferrite (BCC) 110 11.64 2.037 

 

The absence of precipitates in the matrix could be explained by the fact that the investigated 

material was successfully solution treated as required by the manufacturing standard 

governing the DSS used in this study (ASTM A789 and API 938-C).  

Furthermore, the determined phase fraction falls within the optimum phase balance of modern 

DSS products which varies between 45% and 60% austenite [GUN 03]. 

 

3. Aging treatments at 850°C and Sigma (σ) phase 

characterization 

The primary objective of carrying out aging treatments at 850°C is to produce varied levels of 

sigma phase in order to study their effects on the mechanical and corrosion proprieties. To 
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achieve this target, the following investigations handled under this section was introduced for 

a better understanding of the mechanisms and kinetics of sigma formation process. Obviously,  

the resulted effects are expected to be  strongly influenced by these aspects.  

3.1 Sigma phase formation process 

Figure III. 3 shows the microstructure of the aged specimen at 850°C for 5 minutes holding 

time.  

 

 

 

 

 

 

 

 

 

    

Figure III.3: Optical microstructure corresponding to the aged specimen at 850°C for 5 min. 

 

It is well noted that the precipitation of (σ) sigma phase has been taken place in this treated 

specimen. Sigma (σ) phase appears in dark color at the δ / boundaries. 

It should be noted that  phase precipitates are also present in the matrix of this aged 

specimen. However, the volume fraction of   was small in comparison with σ phase and it 

had a far less influence on DSS than σ phase did [DEN 09].  

According to Weng et al. [WEN 03], the evidence from transmission electron microscopy also 

suggests that   phase is much more unstable than σ phase and would eventually transform to 

σ phase .These findings and assumptions are also applicable for the other aged specimens in 

this work; therefore   phase precipitation was not taken in charge in the present study.  

In fact, when the studied duplex stainless steel specimens were exposed to heat treatment at 

850°C, the original austenite / ferrite balance was disturbed, causing the material to search for 

50 µm 

𝝈

𝜹 𝜸
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a more stable thermodynamic state through the precipitation of sigma phase. The precipitation 

of sigma phase proceeds according to the following eutectoid mechanism:   

 

 𝛿 →  𝛾ଶ ൅  𝜎 , where 𝛾ଶ is the so-called secondary austenite [WIL 94]. 

 

According to Figure III.3, sigma (σ) phase nucleates preferentially at the δ/γ interfaces and 

grows through the adjacent ferrite grain; this feature is more visible on the aged specimens for 

longer periods as presented in next sections, which deals with sigma phase morphology using 

SEM observations. 

This is a typical feature for sigma phase precipitation in DSS, and it is due to the high 

interface energy of the δ/γ interphase boundary, and as many defects concentrate there, it is a 

beneficial site for the heterogeneous nucleation of the σ phase [VIL 06, MIC 06, MAG 09]. 

When the σ phase nucleates at the δ/γ interphase boundary, some defects disappear, which 

releases the free energy of the materials [CHI 12].  The noticeable fastest and the high 

susceptibility of sigma precipitation at 850°C in the investigated material reported in this 

study is in good agreement with previous ones, especially the research work conducted by 

Palmer et al [PAL 05] using a synchrotron based in situ X-ray diffraction technique. It was 

pointed out that sigma σ phase was first observed approximately 40 seconds after the start of 

the aging treatment at 850°C. The high susceptibility of the duplex stainless steels to the 

sigma phase formation is frequently attributed to the ferrite composition, richer in the sigma 

forming elements (Cr, Mo and Si) and poorer in the elements that are less soluble in sigma (C, 

N and Ni) than in austenite [VIL 06].  

 

3.2 SEM observations of Sigma phase  

The figures III.4 and III.5 show secondary electron (SE) images of scanning electron 

micrograph obtained from the specimen aged at 850°C. 

Sigma σ phase precipitates is distributed in the original ferrite matrix .The formation of 

𝜎 phase is intimately associated with the 𝛿/𝛾 interface of duplex structure. The region of 

𝛿 ferrite with a lower level indicates that the 𝛿 ferrite is more sensitive to the electrolytical 

etching than the 𝛾  grain[CHE 01]. Similar morphologies have been observed by other 

research groups as provided on Annex A.  
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As we know that the differential distribution of the alloying elements in the ferritic and 

austenitic phase involving a richness of Cr and Mo in ferrite leads to the preferential 

precipitation of σ-phase from ferrite. Meanwhile, the higher diffusion rate of alloying 

elements in the ferritic phase, about 100 times faster than in austenite, is also in favor of σ -

phase growing into the ferrite. Owing to the depletion in Cr and Mo and enrichment in Ni of 

the ferrite close to σ -phase region accompanying with σ-phase precipitation, this ferrite 

becomes unstable and transforms into a new austenite (γ2)  [ZOU 11], which can be clearly 

observed under SEM (Figures III.4 and III.5).  

 

 

Figure III.4: SEM micrograph corresponding to the aged specimen at 850 ◦C for 360 min. 
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Figure  III.5: SEM micrograph corresponding to the aged specimen at 850 ◦C for 360 min, 
Morphology  of secondary austenite (γ2) and sigma phase.  

 

3.3 Effect of holding time on sigma (σ) evolution 

3.3.1 Metallography of aged samples 

Figure III.6 presents the microstructures of the aged specimens at 850°C for different holding 

periods. Sigma phase appears in dark color. It can be clearly seen that increasing the holding 

time at 850°C has the effect to increase the amount of σ phase. It leads also to the coarsening 

increase of the σ phase in an irregular shape.  

 

𝝈
𝜸𝟐 
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Figure III. 6: Optical micrographs showing the aged specimens at 850°C for (a) 5 min, (b) 
60min and (c) 360min. 

 

3.3.2 Quantitative analysis of sigma phase  

The estimated volume fraction of sigma phase by image analysis techniques in function of 

holding time was plotted in Figure III.7.  

As it can been seen from Figure III.7, the volume fraction of sigma phase start from ~1% for a 

holding time of 5 min to reach ~11% after 360 min holding time. 
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Figure III. 7: Variation of the volume fraction of sigma phase in UNS S31803 

as a function of aging time at 850 ◦C. 
 
 

3.3.3 Application of the classical Johnson-Mehl-Avrami (JMA) Analysis for sigma 

phase 

Theoretical analysis of sigma phase formation was carried out employing the classical form of 

Johnson-Mehl-Avrami (JMA) equation. For this analysis the results obtained from optical 

microscopy (OM) were used. 

As already outlined, the kinetics of sigma phase formation can be described by the following 

equations: 

𝑦 ൌ
௏

௏೐೜
ൌ 1 െ 𝑒𝑥𝑝ሾെ𝑘𝑡௡ሿ    ሺIII. 1ሻ 

Where, 𝑉 is the fraction transformed at time 𝑡, 𝑦 is the fraction of sigma phase formed (0 < 𝑦 

< 1), Vୣ୯ is the equilibrium amount of transformed phase at temperature 𝑇, 𝑘 is an overall rate 

constant related to the activation energy to sigma phase formation and 𝑛  is the Avrami 

exponent [MAG 09, FER 17]. 

The Equation (III.1) was re-arranged, leading to Equation (III.2) : 

(
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𝑙𝑛 ቂ𝑙𝑛 ቀ
ଵ

ଵ
െ 𝑦ቁቃ ൌ 𝑙𝑛ሺ𝐾ሻ ൅ 𝑛. 𝑙𝑛ሺ𝑡ሻ   ሺIII. 2ሻ 

 

The plot of 𝑙𝑛 ቂln ቀ
ଵ

ଵ
െ 𝑦ቁቃ as a function of 𝑙𝑛ሺ𝑡ሻ gives a straight line (Avrami plot) shown on 

Figure III.8; so the 𝑛 exponent and 𝑘 factor of JMA equation 𝑦 can be determined. 

 

Figure III. 8: Application of the classical JMA model for sigma phase formation mechanism 

in at 850 °C. 

 

From the plot presented in Figure III.8 it can be observed that the experimental data leads to 

two different slopes. This trend suggests that there is a change on the main mechanism of 

sigma phase formation with increasing of aging time, and, consequently, with the increase of 

sigma volume fraction, as previously mentioned by other authors [ELM 07,MAG 09, SAN 

13]. 

The parameters 𝑘 and 𝑛 obtained from JMA plots are presented in Table III.2. Even though 

the determination of JMA parameters cannot specify precisely the mechanisms of sigma 

formation, it can indicate what kind of nucleation or growth conditions are occurring. 
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Table III.2:  Values of n and k Parameter from J-M-A Calculations. 

Parameter First Slope Second Slope 

𝑛 0.97 0.643 

𝑘 0.0013 0.0025 

 

According to Christian[CHR 75], the 𝑛 exponent of JMA equation may be related to the 

nucleation on grain boundaries (1.0), or nucleation in triple points (2.0) if the process is 

related to discontinuous precipitation; and the growth from small dimensions with decreasing 

nucleation rate (1.5 to 2.5), if the process is controlled by diffusion [SAN 13]. 

For the current study, the first slope was close to 1.0 (0.97) which indicates that the sigma 

phase formation mechanism may be associated to discontinuous precipitation, considering 

grain boundary nucleation after saturation. 

Furthermore, as indicated in this section by microstructural analysis, the sigma phase 

formation preferably occurs on ferrite/austenite interfaces; therefore, it seems valid to 

consider the occurrence of nucleation and growth after saturation. Nevertheless, the 

possibility of the beginning of sigma growth in the first section of aging cannot be ruled out 

[MAG 09].  

In the second slope of the plot presented in Figure III.8,  the JMA exponent value of ~0.65 

was determined. 

Considering this value close to 0.5, and according to Christian [CHR 75], this slope can be 

related to sigma growth by plates thickening, which is confirmed by sigma coarsening as 

observed in previous figures (SEM micrographs). 

The stage governed by nucleation of sigma, characteristic of the first slope, is replaced by the 

diffusion-controlled growth-coarsening governed stage, characterized by the second slope. It 

can be then stated that there is a transition of the kinetic mechanism of sigma formation [SAN 

16]. 

Table III.3 shows some of the previous works investigating the Avarmi exponent (𝑛ሻ and its 

correlation with the precipitation mechanism of sigma phase in aged DSS. 
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Table III.3: value of Avarmi exponent (𝑛ሻ obtained in previous works. 

Steel Grade First slope Second slop Reference 

DSS 2205 1.57 0.67 SANTOS et al., [SAN 13] 

DSS 2205 0.915 ± 0.144 - MAGNABOSCO et al., [MAG 09] 

DSS 2205 0.9449 ~ 3.9329 0.2236 ~ 0.4599 SANTOS et al., [SAN 16] 

DSS 2205 7 0.75 ELMER et al., [ELM 06] 

  

As it can be noticed from this table, the value of 𝑛 obtained in this work is not consistent with 

some previous works. Notably, Elmer et al.[ELM 06] have found 𝑛 ൌ  7 for the first stages of 

sigma formation and 𝑛 ൌ  0.75 for the final stages. In addition, Magnabosco [MAG 09] in a 

previous work found a different kinetic behavior showing just one slope in JMA plots (n = 

0.915 ± 0.144). The differences found may be related to the solution-treatment conditions 

used in each work: a treatment of 2.5 hours at 1065°C was applied in the work of Elmer et 

al.[ELM 06] while a treatment of 30 minutes at 1120 °C was applied in the work of  

Magnabosco [MAG 09]. This assumption can be also supported by the study of  Badji and his 

coworkers, who have indicated various kinetic slopes depending on the solution-treatment 

conditions [BAD 08]. 

In fact, different solution treatment conditions leads to different ferrite and austenite fractions 

and chemical compositions, and different grain sizes, generating different conditions for 

heterogeneous nucleation and growth of the intermetallic phases [SAN 16]. 

 

3.3.4 Comparison of experimental data and the classical JMA analysis for sigma 

volume fraction  

The maximum value for the transformed sigma volume fraction (y ൌ  1) is established in the 

aging time (t) correspondent to the absence of ferrite, because from this time, sigma volume 

fraction tends to stabilization [SAN 13]. The investigated steel in this study contains 48% of 

ferrite as already stated. 

Therefore, to compare between the experimental data and the predicted data through the 

classical JMA analysis, the following equation has been adopted : 
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%𝑉ఙ ൌ %𝑉ఙ
௘௤. ሾ1 െ 𝑒𝑥𝑝ሺെ𝑘𝑡௡ሻሿ   ሺIII. 3ሻ 

 

In this equation, the sigma equilibrium volume fraction (%𝑉ఙ
௘௤) is considered equal to 48% 

(initial value of ferrite content). 

The comparison between the classical JMA estimated sigma content and experimental results 

is presented in Figure III.9. In this figure, the calculated data through JMA analysis have been 

established considering only the first slope. Therefore it shows a good agreement between 

experimental values and calculated ones for the first period of aging. 

 

 

Figure III. 9: Comparison between experimental data and the classical JMA analysis of 
sigma volume fraction during aging at 850°C. 

 

3.3.5 Application of the modified JMA analysis model 

As pointed before in Chapter I, some authors have found a better interpolation of the 

experimental results is obtained by using a modified JMA model. This Model was introduced 

in order to take into account the complex competing effects which may occur during 

precipitation of 𝜎 phase [BAD 08, FER 17]. These effects are incorporated in the modified 

JMA model through an impingement exponent. 
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According to Lee et al [LEE 90], the transformation rate of a solid state transformation 

obeying the modified JMA type kinetic function is written in the form: 

 

ௗ௬

ௗ௧
ൌ 𝑘ሺ𝑇ሻ. 𝑓ሺ𝑦ሻ ൌ 𝑘଴. 𝑒𝑥𝑝 ቀെ

ொ

ோ்
ቁ . 𝑓ሺ𝑦ሻ   ሺIII. 4ሻ 

 

Then the Equation (III.4) can be rearranged as follows: 

ௗ௬

ௗ௧
ൌ 𝑛𝐾௡. 𝑡௡ିଵ. ሺ1 െ 𝑦ሻଵା௖     ሺIII. 5ሻ 

Where: 

 𝑦 ൌ ௏

௏೘ೌೣ
 is the fraction of initial phase transformed at time 𝑡  normalized by the 

maximum amount of phase formed at the end of transformation (𝑉௠௔௫ሻ, 

 𝑐 is the so-called impingement exponent.  

Integration of this equation gives: 

𝑦 ൌ 1 െ ቂ
ଵ

ଵା௖.ሺ௄.௧ሻ೙ቃ
భ
೎ , 𝑤𝑖𝑡ℎ 𝑐 ് 0    ሺIII. 6ሻ 

 

The above equation can be rearranged as follows [BAD 08, FER 12] : 

ሺ𝐾. 𝑡ሻ௡ ൌ
ሺଵି௬ሻష೎ିଵ

௖
    

and then: 

𝑛. 𝑙𝑛ሺ𝐾ሻ ൅ 𝑛. 𝑙𝑛 ሺ𝑡ሻ ൌ 𝑙𝑛 ቂ
ሺଵି௬ሻష೎ିଵ

௖
ቃ     ሺIII. 7ሻ 

 

There are now 3 fitting parameters, n, K and c. When a suitable value of c is adopted, a plot of 

Ln ቂ
ሺଵି௬ሻష೎ିଵ

௖
ቃ   vs. 𝐿𝑛 ሺ𝑡ሻ can result in a straight line. Then, the value of n and K can be 

obtained from the slope and the intercept [BAD 08]. 
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Figure III. 10: Application of the modified JMA model to the sigma phase precipitation  

during aging at 850 ◦C. 

 

The figure III.10, shows the plot of Ln ቂ
ሺଵି௬ሻష೎ିଵ

௖
ቃ    vs. 𝐿𝑛 ሺ𝑡ሻ . Accordingly, the fittings 

parameters of the modified JMA model have been determined and reported on Table III.4. 

 

Table III.4 : Kinetic parameters of the modified JMA model. 

Parameter 𝑛 𝑘 𝑐 

Value 0.6509 0.00037 0.4 

 

The best correlation between the experimental and calculated sigma-phase evolution is 

obtained for an impingement factor c ൌ 0.4. 

The comparison between the experimental results and the estimated sigma content (%)  via 

the modified JMA model is presented in Figure III.11. It can be noticed that this model shows 

a good agreement between experimental values and calculated ones, with only one kinetic 

slope (𝑛 ൌ 0.6509), indicating that this model is probably more advantageous for sigma 

phase kinetic prediction in aged DSS grades, because it incorporates more free fitting 

parameters. 
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Figure III. 11: Comparison between experimental data and the modified JMA analysis of 
sigma volume fraction during aging at 850°C. 

 

Up to date, the published works studding the kinetic of sigma phase through the modified 

JMA model involving the impingement factor (fitting parameter 𝑐) are still limited (Table 

III.5).  

Therefore the amount of available information do not allow to provide a satisfactory 

explanation or to make a firm conclusion on that parameter. Hence more scientific efforts are 

needed for a better understanding of the physical mechanisms behind this impingement factor 

and its typical values.     

Table III.5: Previous works using the modified JMA model for sigma precipitation kinetic. 

Investigated steel grade Impingement Factor (𝒄ሻ Reference 

DSS 2205 0.4 BADJI et al. [BAD 08] 

Super DSS UNS S32760 1.9 FERRO et al. [FER 12] 
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3.3.6 XRD analysis of aged samples 

X-Ray diffraction patterns of aged samples is shown in figure III.12. 

The observed peaks have been analyzed and indexed as summarized in the table III.6. 

 

 

 Figure III. 12: X-Ray diffraction patterns of samples aged at 850°C. 

 

Table III.6: Summary of calculated diffraction peaks. 

Phase 𝒉𝒌𝒍 
𝟐𝜽

(deg.) 
𝒅 

(Å) 

Austenite 

(FCC) 

111 11.98 1.980 

200 13.84 1.715 

Ferrite (BCC) 110 11.64 2.037 

Sigma 

(tetragonal) 

212 11.91 1.992 

411 12.16 1.952 

331 12.45 1.906 
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X-Ray Diffraction analysis has also confirmed the effect of holding time on the volume 

fraction of precipitated sigma phase. 

As previously stated, the X-ray diffraction pattern of the solution treated specimen shows 

ferrite and austenite phase peaks only and does not show any peak corresponding to other 

phases, however small peaks corresponding to sigma phase have been observed on the aged 

specimens at 850°C, these peaks are more detectable in the aged sample for 360 min holding 

time as reported in Figure III.12.  

With increasing holding time, the intensity of sigma peaks increases and the peak intensity of 

the ferrite phase compared to the austenite phase decreases, this is directly linked with the 

decomposition process of  ferrite into sigma phase and secondary austenite.  

Furthermore, the XRD pattern did not show the σ phase signals in the specimens aged for 30 

and 15 min, although there was evidence of its occurrence. This could be explained by the 

low fraction of the σ phase [DEN 09]. Consequently, it can be concluded that all the obtained 

diffraction peaks are in good agreement with the changes in σ phase ratio during the 

isothermal treatments. 

 

4. DSC analysis Results 

4.1 Study of "475 °C Embrittlement" by DSC analysis 

The apparatus used for DSC analysis is limited to 600°C; therefore we were only able to 

detect the occurrence of the precipitate that take place below this temperature.  

The DSC analysis have carried out on the solution heat treated samples.  

Figure III. 13 shows the Deferential Scanning Calorimetry (DSC) curve obtained following a 

heating measurement from 50 to 600 °C with 30°C/ min heating rate. The measured DSC 

heating curve goes very well with the reported measurements performed on previous works 

for a similar duplex stainless steel grade [LIP 16, STE12 ]. 
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Figure III.13: DSC curve of heating measurement duplex stainless steel. Heating rate 
30°C/min. 

 

The curve is characterized by the presence of a negative (endothermic) peak  in the 

temperature range 465°C and 560°C.According to technical literature, this endothermic peak 

involving a 𝑇௢௡௦௘௧ at about 465°C, 𝑇௘௡ௗ at about 560° C and 𝑇௣௘௔k about 525°C represents the 

dissolving of α’-chromium-rich phase.  

In fact, according to Chung [CHU 92] and Herny [HER 06] the only transformation that 

occurs during heating from 200°C to 550°C is the redissolution of the iron and chromium 

atoms. During a temperature rise ramp, the target temperature is higher than the solvus of the 

miscibility gap (Figure III.14) , the chromium and iron atoms are redissolved to reform a 

homogeneous matrix. 
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Figure III.14: Fe–Cr binary phase diagram [MAE 14]. 

 

According to Courtier [COU 14], the DSC technique provides an "Indirect" measurement of 

the unmixing process. The integral of the heat flow peak associated with this reaction is a 

thermodynamic characteristic that informs about the “stability” of the composition 

fluctuations. It is therefore rather close to the amplitude corresponding to the spinodal 

decomposition. Based on this argument, Courtier [COU 14] established an empirical law 

which correlates the evolution of the redissoultion Enthalpy with the aging time at a given 

aging temperature:      

 

𝐻ሺ𝑡, 𝑇ሻ ൌ 𝐻଴ ൅ ቀ𝑘ு଴. 𝑒𝑥𝑝 ቀെ
ொಹ

ோ.்
ቁ . 𝑡ቁ

௔ಹ
    ሺIII. 8ሻ 

 

Where, 𝑄ு is the activation energy of the embrittlement process. 

Following the same reasoning, the apparent activation energy related to the redissoulution 

process has been determined in Section 4.2, and has been assumed to be as same as the 

activation energy corresponding to the spinodal decomposition of ferrite phase. 
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4.2 Activation Energy calculation 

Figure III. 15 shows Deferential scanning calorimetry curves of heating measurement from 50 

to 600 °C obtained with different heating rate 30, 40 and 60°C/ min. 

The shape of the obtained curves is in good agreement with theory. In fact, faster scan rates 

result in increased values of heat flow giving increased accuracy of measurement, and this 

also minimizes the time of the run and potential drift of the analyzer. It has been reported that 

fast scan rates used by fast scan DSC can give extremely accurate data. This feature is well 

indicated on the following fundamental equation of DSC [GAB 07]:  

 

𝐷𝑆𝐶 𝑠𝑖𝑔𝑛𝑎𝑙ሺ𝑊/𝑔ሻ ൌ 𝐻𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ሺ𝐽/𝑘𝑔ሻ. 𝑠𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒ሺ°𝐾/𝑠ሻ           ሺIII. 9ሻ 

 

As known in literature [SMI 98, RIV 18], the Kissinger method can be used for deriving 

activation energies from temperature scanned experiments. It is based on the fact that the 

observed temperature of a peak ( 𝑇௣ ) depends on the scan rate ( 𝑆 ൌ  𝑑𝑇/𝑑𝑡 ) of the 

experiments. The method has been generalized and justified for solid-state reactions by 

Mittemeijer et al.  

The Kissinger expression, as modified by Mittemeijer et al., relates T୮ to S as follows [MIT 

88, RIV 18]: 

𝑙𝑛 ቀ ೛்
మ

ௌ
ቁ ൌ

ொ

ோ. ೛்
൅ 𝑙𝑛 ቀ

ொ

ோ.௞బ
ቁ               ሺIII.10ሻ  

  

where 𝑇௣ = peak temperature (°K); 𝑆 = heating rate (°K/s); 𝑄  = effective activation energy 

for the process associated with the peak (J /mol); 𝑅 = gas constant (8.314 J/ mol/ K); 𝑘଴ = pre-

exponential factor in the Arrhenius equation for the rate constant 𝑘: 

𝐾 ൌ 𝑘଴. 𝑒𝑥𝑝 ቂെ ொ

ோ.்
ቃ         (III. 11) 
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Figure III.15: DSC curves of heating measurement duplex stainless steel. Heating rate 30, 40 
and 60°C/min. 

 

The activation energy governing the transformation can be determined from the slope of the 

straight line obtained by plotting 𝑙𝑛ሺ𝑇௣
ଶ/𝑆ሻ vs. 1/𝑇௣ , as shown in figure III.16. 
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Figure III.16: Plot of 𝑙𝑛ሺ𝑇௣

ଶ/𝑆ሻ as function of 1/𝑇௣. 
 

Following Kissinger method, the rate constant (𝑘଴) has been also determined. the obtained 

results are summarized in table III.7 below: 

 

Table III.7 : Activation energies and 𝑘଴ values characterizing the phase transformation 

processes of the DSS grade in the temperature range 300 and 525°C. 

Peak Tempertaure 
Tp (°C) 525 535 550 

Tp (K) 798 808 823 

Heating rate 
S (°C/min) 30 40 60 

S (°C/S) 0,5 0,67 1 

Activation Energy 𝑸(kJ /mol) 138    

Rate constant  𝒌𝟎  13,60 x106     

 

It should be noted that the determined activation energy in the current investigation is not 

close to the typical value of 250kJ/mole corresponding to the activation energy of chromium 

diffusion in 𝛼-iron (~230𝑘𝐽/𝑚𝑜𝑙𝑒ሻ, as indicated by Brown et al. [BRO 91] and Leax et al. 

[LEA 92].  

However, the value of 𝑄 ൌ 138 𝑘𝐽/𝑚𝑜𝑙𝑒  we obtained is in a good agreement with other 

previous works that we summarized in Table III.8. In particular, a value of  𝑄 ൌ 147 kJ/mole  

was indicated by Trucker et al. for an aged DSS grade very similar to the one investigated in 



                                                                                                       Chapter III: Results and Discussions 

91 
 

this work, through a series of isothermal aging between 260°C and 538°C for times ranged 

from 1 and 10,000 hour. It is also very close to the activation energy found by Couturier using 

DSC measurements in a precipitation hardenable stainless steel grade (15-5PH SS) [COU 14]. 

 

Table III.8 : Activation Energy of separation process as measured during previous works. 

Studied alloy  Investigated parameters  Activation Energy  Reference 

Fe‐26%Cr‐X%Ni  Vickers Hardness  225‐304kJ/mol  (BROWN et al., 1991), [BRO 91]

Ferrite of DSS  Amplitude  260kJ/mol  (LEAX et al., 1992), [LEA 92] 

PH 13‐8 Mo SS  Rockwell  Hardness  139 kJ/mole  (ROBINO et al., 1994), [ROB 94]

2205 DSS  Vickers Hardness  147 kJ/mole  (TUCKER et al, 2015), [TUC 15] 

15‐5PH SS  Redissolution Enthalpy‐ by DSC  155 kJ/mole  (COUTURIER, 2014), [COU 14] 

15‐5PH SS  Vickers Hardness  106kJ/mole  (COUTURIER, 2014), [COU 14] 

 

The fact that the determined activation energy is well below the expected typical value 

(~250𝑘𝐽/𝑚𝑜𝑙𝑒ሻ, implies that embrittlement process is not only governed by the diffusion of 

chromium, but also the driving force of the unmixing process. Meyer et al [MEY 11] showed 

that the activation energy is influenced by chemical composition of the aged steel as per the 

following empirical law: 

𝑸 ൌ  െ𝟔𝟒 െ  𝟐%𝑪𝒓 െ  𝟒𝟗%𝑺𝒊 െ  𝟓%𝑴𝒐 െ  𝟏𝟏%𝑪𝒖 ൅  𝟑𝟑%𝑵𝒊 ൅  𝟔𝟒%𝑴𝒏 ൅  𝟒𝟏𝟐𝟑%𝑵             

Chung pointed out that the activation energy of aging embrittlement is also strongly 

influenced by the fabrication process and thermomechanical history [CHU 90]. 

According to our literature survey, it appears that there is no consensus among investigators 

on the understanding of the activation energy of aging. While there remains some uncertainty 

regarding the correct value, it is important to use a conservative estimate of the activation 

energy when determining an accelerated aging treatment to simulate end of life conditions 

[PUM 90]. 

As already outlined in the literature review chapter, the activation energy is characteristic of 

the embrittlement process. It is an important parameter to assess and predict the thermal 
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stability of DSS when subjected to thermal aging at intermediate temperatures, as we will 

demonstrate on Section.4.3. 

4.3 Kinetic of embrittlement and End of life prediction 

The main objective of studding the kinetic of embrittlement of DSS is to predict the end of 

life of DSS components when operated at high temperature, particularly for some critical 

engineering components in nuclear power plants and hydrocarbon units. It aims to follow and 

anticipate the evolution of mechanical properties of DSS components and to correlate these 

properties to the decomposition of the ferrite.  

In practice, realistic aging of the components for end of life or life extension conditions at the 

actual service temperature (280-330°C) cannot be produced, therefore it is usual to simulate 

the metallurgical structure by accelerated aging at higher temperature (~400°C) [CHU 90]. 

One of the major issues in studding the embrittlement mechanisms is attributed to the 

difficulty of characterizing the microstructural evolution of the aged materials in which 

several different phases appear to precipitate simultaneously on a very fine scale (nanometric 

scale). Earlier investigations using transmission electron microscopy (TEM) failed to identify 

the 𝛼ᇱ precipitation at the lower aging temperature [CHU 90]. According to many sources it is 

reported that the field ion atom probe technique (FlAP) appears to be the best suitable 

technique for microstructural characterization of spinodal decomposition [MIL 95, DAN 00, 

SAH 09, MEY 11, COU 14].  

However, several authors succeed to follow the embrittlement kinetics through indirect 

observations such as changes in certain mechanical properties like hardness [MIL 96], impact 

energy [SAH 09] or saturation of certain microscopic features [WEN 04]. Additional 

information on the previous works has been reported on Table III.5. 

Knowing that the change in microhardness is correlated to the embrittlement of the alloy due 

to α-α' phase separation, several authors have used KJMA model to predict the embrittlement 

of aged DSS. 

This model describes the microhardness as a function of isothermal aging time and 

temperature, allowing for long time extrapolations at temperature to simulate component 

lifetimes. 

The KJMA expression is used to describe a variety of phase transformations and related 

phenomena, and has the following general form: 
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𝑆ሺ𝑡, 𝑇ሻ ൌ 1 െ 𝑒𝑥𝑝െሺ𝐾ሺ𝑇ሻ𝑡ሻ௡      ሺIII. 12ሻ 

 

where 𝑆ሺ𝑡, 𝑇ሻ is a progress variable in terms of aging time 𝑡 and temperature 𝑇, which varies 

continuously from 0 to 1 as the transformation proceeds from start to completion [TUC 15]. 

The time exponent 𝑛 is known as the Avrami exponent, and typically relates to the nucleation 

and growth mechanism and the geometry of the newly growing phase. This parameter often 

assumes an integer value, though this is not always the case [SUN 95]. The term 𝑘ሺ𝑇ሻ is a 

kinetic coefficient, which is typically described by an Arrhenius form: 

 

𝑘ሺ𝑇ሻ ൌ 𝑘଴𝑒𝑥𝑝ሺെ𝑄/𝑅𝑇ሻ       ሺIII. 13ሻ 

 

In the above equation 𝑘଴ is the pre-exponential factor, 𝑄 is the effective activation energy for 

the phase transformation, and 𝑅 is the universal gas constant (8.314 J /mol/K). 

The KJMA model is scaled by the maximum change in microhardness in order to relate the 

measured value to the phase transformation. This model assumes that the change in hardness 

is linearly related to the phase fraction transformed. The microhardness at any time and 

temperature can be described by the following Equation: 

 

𝐻𝑣ሺ𝑡, 𝑇ሻ ൌ 𝐻𝑣ெ௔௫ െ ሺ𝐻𝑣ெ௔௫ െ 𝐻𝑣଴ሻ. 𝑒𝑥𝑝െሺ𝑘ሺ𝑇ሻ𝑡ሻ௡   ሺIII. 14ሻ 

 

The model described by the above equation contains four fitting parameters, namely the initial 

microhardness prior to isothermal exposure (𝐻𝑣଴), the final saturation microhardness that 

would be obtained after infinite exposure (𝐻𝑣௠௔௫), the power describing the time dependence 

of hardening (𝑛), and the activation energy. 

Also, it can be seen from this equation that at time, 𝑡 ൌ  0, 𝐻𝑣ሺ𝑡, 𝑇ሻ ൌ 𝐻𝑣଴, and in the limit 

as t approaches ൅∞, 𝐻𝑣ሺ𝑡, 𝑇ሻ approaches 𝐻𝑣௠௔௫.  

The Equation (III.14) can be rearranged as follows: 

𝐻𝑣ሺ𝑡, 𝑇ሻ ൌ 𝐻𝑣𝑀𝑎𝑥 െ ሺ𝐻𝑣𝑀𝑎𝑥 െ 𝐻𝑣0ሻ. 𝑒𝑥𝑝 ቀെ𝑒𝑥𝑝 ቂ𝑛. ൬𝑙𝑛ሺ𝑘0ሻ െ
𝑄

𝑅.𝑇
൅ 𝑙𝑛ሺ𝑡ሻ൰ቃቁ  ሺIII. 15ሻ 
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Note that, in the above Equation, the activation energy (𝑄) is in units of 𝐽/mol, time 𝑡 is in 

hours, and temperature 𝑇 is in kelvin. 

The saturation microhardness of ferrite phase (𝐻𝑣௠௔௫) was investigated by other research 

groups following a series of  thermal aging between 260°C and 538°C up to 10 000 hours and 

it was found equal to 477 ± 15 HV [GUO 16, TUC 15, TUC 11].  

Knowing that the initial microhardness (𝐻𝑣଴) of ferrite phase of our steel grade is 246 HV, 

and assuming that 𝑛 ൎ 2/3 according to Robino et al [ROB 94], then all the parameters of 

Equation (III.15) are identified, as summarized in the Table III. 9. 

 

Table III.9: KJMA parameters for hardness prediction during embrittlement. 

Parameter Value Notes 

𝐻𝑣଴(HV) 246  - 

𝐻𝑣௠௔௫(HV) 477 ± 15  - 

𝑄(kJ/mol) 138 From DSC analysis 

𝑘଴  13,60 x106 From DSC analysis 

𝑛 ൎ 2/3 ROBINO et al. 

 

The plot of  𝐻𝑣ሺ𝑡, 𝑇ሻ in function of time and temperature is given in Figure III.17.  
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Figure III.17: Predicted Microhardness surface for aged 2205 DSS grade. 

 

In practice, this plot can be used to make end-of-life hardness predictions for DSS 

components when operated at a specific aging temperature. 

We have previously presented in Chapter 1 the maximum allowable service temperature 

specified by some industrial codes and standards for duplex stainless steels. The ASME Boiler 

and Pressure Vessel Code currently places an upper temperature limit of 315 °C for the use of 

DSS 2205 grade, while the TüV German code considers 280°C as an upper limit of use. They 

do not mention the maximum service lifetime. 

The Table III.10 shows the predicted hardness at 280°C and 315°C, for a periods of times 

ranging from 5 to 25 years.  A period of 25 years  is usually considered as a design life in the 

engineering of hydrocarbon units.  

Table  III.10: Hardness prediction at 280°C and 315°C during service life. 

Hardness prediction (HV) 

Time (Years)  280°C  315°C 

5  281  343 

10  299  380 

15  313  403 

20  325  419 

25  335  430 
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At 280°C for 25 years this analysis predicts that DSS 2205 would have a change in 

microhardness of approximately 89 HV, whereas at 315°C the DSS 2205 would have a 

change of approximately 184 HV indicating a significant embrittlement of the alloy via α-α' 

phase separation. This finding indicates that the upper operating limit fixed by the ASME 

Boiler and Pressure Vessel Code (315°C) may not be appropriate for components that would 

operate at this temperature for extended times. 

In this context, Tucker and his coworkers have preformed a similar analysis on the alloy 2205, 

and they have concluded that this alloy may be viable for use up to 230 °C in nuclear power 

applications for 80-year service lifetimes based on a microhardness criteria corresponding to 

300HV [TUC 15]. 

As noted previously a higher hardness is a sign of material embrittlement leading to material 

failure when combined with other operating favorable factors. For that reason, it is usually to 

limit the hardness of DSS components to a reasonable threshold. To give an example, the API 

938C (Technical Report for the Use of Duplex Stainless Steels in the Oil Refining Industry) 

requires that the hardness shall not be above 320 HV for weld procedure qualification to avoid 

premature DSS failure by the mechanism of  SCC (Stress Corrosion Cracking) [API 15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                       Chapter III: Results and Discussions 

97 
 

5. Corrosion Tests 

This part of work is aimed to cover the resistance of aged (sigmatized) samples to pitting 

corrosion. As we demonstrated  in Chapter I, several important field failures have been caused 

by this form of attack. 

To achieve this objective, the pitting potential values of the investigated samples have been 

determined in the  simulated sea water and the oily produced water solutions. In fact, there 

have been only a limited number of studies examining the behavior of sigma phase in DSS 

materials tested in a simulated oil field environment [SAI 12], indicating that there is a need 

to carry out further research works with oil field solutions.   

Additionally, knowing that most of Oil and gas companies base their materials selection on 

field experience data coupled with laboratory tests, therefore the use of the oily produced 

water as a test solution in this study is meant to contribute to enhance the understanding of 

sigmatized DSS corrosion behavior in oil field environments.  

 

5.1 Potentiodynamic polarization results of solution treated sample 

(in the as received condition)  

5.1.1 Simulated seawater solution 

Potentiodynamic polarization tests were conducted to evaluate the pitting susceptibility of 

DSS samples at the as received condition (solution treated). Figure III.18 presents the 

polarization curve conducted in 0.5 M NaCl solution. 

Basing on the definition of pitting potential provided previously in chapter I, the pitting 

potential of the investigated sample has been determined. Therefore 𝐸௣ ൌ 1120𝑚𝑉/𝑆𝐶𝐸.  
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Figure III. 18: Potentiodynamic polarization curves for the solution treated sample in 
simulated seawater solution. 

 

5.1.2 Produced water solution 

Figure III.19 shows Potentiodynamic polarization curve for solution treated sample tested in 

produced water. 

 

Figure III. 19: Potentiodynamic polarization curves for the solution treated sample in 
Produced water solution. 
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The pitting potential of the sample has been determined in produced water solution. Therefore 

𝐸௣=1024 mV/SCE.  

5.2 Potentiodynamic polarization results of aged sample  

To investigate the effect of sigma phase on pitting potential of aged samples, the 

Potentiodynamic polarization curves have been established in both test solutions as presented 

hereafter. 

5.2.1 Simulated seawater solution: 

Figure III.20 presents typical polarization curves conducted in 0.5 M NaCl solution.  

 

 

Figure III.20: Potentiodynamic polarization curves for the aged samples at 850°C in for 
different times in simulated seawater solution. 

 

Basing on the analysis of the polarization curves the pitting potential 𝐸௣  values of the 

different tested samples were determined. The obtained values are shown in the Table III.11. 

 

Table III.11: Pitting potentials for the tested samples in Simulated seawater. 

Sample identification 0-SW 5-SW 30-SW 60-SW 360-SW 

Aging time (min) 0 5 30 60 360 

𝐸௣ (mV/SCE) 1120 980 910 790 560 
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It can be seen from Table III.11 that the pitting potentials of tested samples decrease markedly 

with increasing of aging time from 1120 mV (SCE) of the solution treated sample to 560mV 

(SCE) of the aged for 360 min. It was previously established in this research work that the 

increase of the aging time has the effect to increase the sigma phase ratio. So it's clear that the 

decrease of pitting corrosion resistance in the aged DSS samples is directly attributed to the 

formation of sigma phase and its volume fraction. Even about 3.3 % of sigma phase 

corresponding to the aged sample for 30 min can affect dramatically the pitting resistance of 

the alloy. On the other hand, the un-aged sample show the highest pitting potential value, 

supporting the standard recommendation of using DSS in the solution treated condition with 

no sigma phase content [JOH 13].  

This restriction implies a careful control of the whole manufacturing process, since a reliable 

and relatively cheap metallographic procedure is not simple to achieve, especially for the 

quantitative determination of very small (1-2%) dangerous phase contents[CAL 13]. 

Actually, it is well documented in the literature that the resistance of this material to localized 

corrosion is mainly due to the higher content of chromium and molybdenum which protect the 

DSS by forming and stabilizing the passive film. The decrease in pitting potential as a result 

of sigma phase formation has been explained by many authors, and it was related to 

chromium and molybdenum depletion in the zones surrounding sigma phase [EZU 06, DEN 

09, MAG 05, SAN 13]. During the formation of sigma phase, Cr and Mo diffused from the 

ferrite phase to the growing sigma phase, thus causing localized depletion areas in Cr and Mo 

around the sigma phase. These areas containing lower concentration of Cr and Mo and higher 

amount of Ni became unstable and transformed into secondary austenite [DEN 09]. These Cr- 

and Mo-depleted areas  surrounding sigma phase become susceptible to pitting attack and thus 

a reduction on pitting potential is registered.  

The lower molybdenum and chromium content is not the only factor for being prone to 

corrosion. The neighborhood of the more noble phases will enhance the anodic dissolution of 

the new formed secondary austenite [POH 07]. 

This behavior of decrease in corrosion resistance due to the increase in aging time was also 

established in the tested samples in Produced Water as outlined hereafter. 

5.2.2 Produced water solution 

The polarization curves for the tested specimens in produced water solution are presented in 

Figure III.21.  
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Following the same methodology adopted previously for the tested specimens in simulated 

seawater solution, the pitting potential values have been determined and listed in the Table 

III.12. The presented data suggest that the pitting potential of the various tested samples show 

a clear dependence on the aging time. As expected, for high aging time, and consequently 

high sigma volume fraction, low pitting potential is registered. However, it is well noted that 

for same aging time a lower pitting potential is found for tested sample in produced water 

solution.  

 

 

Figure III.21: Potentiodynamic polarization curves for the aged samples at 850°C in for 
different times in Produced Water solution. 

 

The lower corrosion resistance of aged DSS in produced water solution can be explained by 

the higher chloride content in this solution.  

The other chemical species of the produced water solution shown in Table II.3 do not appear 

to have a significant impact on the pitting corrosion behavior. In fact the chloride 

concentration in the simulated seawater solution (0.5M NaCl solution) is about 17725 ppm 

while in the produced water solution is about 28862 ppm. This confirms that the pitting 

potential depends on both sigma phase content and the chloride concentration. For chloride, 

three different models are frequently quoted to explain its effects on pitting: adsorption 
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leading to local film dissolution, penetration of anions in the film leading to weakening of the 

oxide bonds, and rupture of film at defects, such as cracks and dislocations [DON 11]. 

Table III.12: Pitting potentials for the tested samples in Produced Water. 

Sample identification 0-PW 5-PW 30-PW 60-PW 360-PW 

Aging time (min) 0 5 30 60 360 

𝑬𝒑 (mV/SCE) 1024 950 720 570 450 

 

On the other hand the obtained results suggest that the un-aged sample demonstrate an 

acceptable pitting resistance when exposed to produced water test solution, confirming the 

indication that this material grade when successfully heat treated is highly suitable for use for 

produced water process fluids, even at a high level of chloride concentration. Therefore, 

caution is needed by DSS manufacturers and users to ensure a high quality of DSS products 

during processing, machining, heat treatments and welding to avoid sigma phase formation. 

To summarize the effect of sigma phase on the corrosion resistance of aged DSS, the pitting 

potential values obtained in both test solutions have been plotted as function of sigma content 

as provided in figure III.22.  

 

 

Figure III.22 : 𝐸௣ as a function of sigma volume fraction (%). 

 

 



                                                                                                       Chapter III: Results and Discussions 

103 
 

5.3 Engineering significance of pitting potentials in the aged samples 

In this section we will discuss the pitting potential values on the light of the concept of pitting 

engineering diagrams. The idea of Engineering diagrams based on pitting potential (E୮ሻ 

measurements was introduced by Fielder and Johns in 1989 [FIE 89, MAM 19] and it is used 

to define limiting conditions for pitting corrosion. When used in combination with knowledge 

of the corrosion potential in a system containing various oxidizing species such diagrams can 

be used to assess the corrosion risk [MAM 19]. 

These diagrams are obtained by mapping the regions in which pitting occurs at different given 

critical potentials, usually ranging from 300 to 700 mV vs SCE. The critical potential used for 

defining the boundary is equal to the maximum corrosion potential corresponding to the 

maximum open circuit potential (E୓େ୔୫ୟ୶) in the test solution. The  E୓େ୔୫ୟ୶  is defined as the 

highest corrosion potential in a system containing various oxidizing species such as chlorine 

[RUI 89, VEN 89, BAR 93, MAM 19]. To give some examples, the E୓େ୔୫ୟ୶   was reported to 

be  typically in the range 190-220 mV vs SCE for a drinking water system and about 300 mV 

vs SCE for a water heater system [FIE 89, MIK 09]. BARDAL et al [BAR 93] indicated that, 

the maximum potential measured on passive stainless steel in natural seawater after long term 

exposure at temperature below 30-40°C is about 400 mV(SCE) and in chlorinated seawater 

about 500-700mV(SCE) depending on the chlorination level. Therefore, a potential of 700 

mV(SCE) has been found suitable for most stainless steels for the determination of CPT 

(Critical Pitting Temperature) as per ASTM G150 standard testing method [AST  18].  

On the other hand, it was reported that pitting is unlikely to occur if the maximum corrosion 

potential of the environment is lower than the pitting potential [GOO 87, RUI 89, VEN 89, 

LU 91, MAM 19]. 

Based on the above facts, the engineering pitting diagrams are used to predict the risk for 

pitting in a given system by comparing with the corrosion potential (E୓େ୔୫ୟ୶ ), as discussed 

in other works [FIE 89, CAR 94, JOH 14]. A typical engineering diagrams for a lean Duplex 

SS grade (LX 2101) is shown on figure III.23. These diagrams show the risk areas for pitting 

in terms of chloride concentration and temperature. The solid points indicated that E୮ is lower 

than the selected potential and open points indicate that it is higher or equal. 

If the E୓େ୔୫ୟ୶  is lower than the E୮, pitting is not expected, whereas pitting corrosion will 

take place when E୓େ୔୫ୟ୶   higher than E୮୧୲. If E୓େ୔୫ୟ୶   is close to E୮ pitting corrosion may 

occur, since even slight changes in the oxidizing concentration may raise the E୓େ୔୫ୟ୶  to 
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E୮  .The difference between the E୮  and E୓େ୔୫ୟ୶  , can be considered as a margin of safety 

and used as an indicator of the susceptibility to pitting corrosion [MAM 19].  

 

Figure III.23: Potential diagram for Lean Duplex SS (LDX 2101) at the different selected potentials 

[MAM 14]. 

 

As it can be noticed, the construction of such potential diagrams requires the determination of 

pitting potential at different temperatures.  

However, in the current study the pitting potential measurements were performed at a fixed 

temperature (~25°C). Therefore an alternative approach based on the concept of engineering 

potential diagram has been adopted to analyze the obtained results.  

The alternative approach consist to present the pitting potential values of the different aged 

samples tested in both testing solutions.  A critical potential of 700 mV(SCE)  was defined as 

a boundary limit.  

Similarly to the engineering diagrams, the obtained pitting potentials are mapped on the 

matrix provided on table III.13. The green cells indicate that E୮ is lower than the selected 

potential and red cells indicate that it is higher or equal. 
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Table III.13: Matrix of acceptable and unacceptable pitting potentials at 25°C based on the 
concept of Engineering diagrams. 

Aging time (min) 0 5 30 60 360 

Sigma (%) 0 0,6% 3,3% 3,9% 11,1% 

Seawater  Solution  

Produced Water  

 

As it can be seen from this matrix, a sigma content of ~3% will not be acceptable for 

produced water system operating at 25°C, basing on the previous criterion. 

Also, it is important to highlight that this matrix is only valid for systems operating at a 

service temperature lower than 25°C ,  as a decrease in the pitting potential is expected to be 

found at higher temperatures as confirmed by many research works [ SED 86, WAN 88, QVA 

89, FIE 89, MAM 19].  

5.4 Pitting  morphology and its relation to sigma phase 

To understand the effect of aging on pits morphologies and the relation between sigma phase 

and pitting nucleation sites, the pitted samples have been analyzed using SEM observations 

with secondary electron image (SEI) and backscattered electron image (BEI). Figure III.24 

displays the typical SEM images of pitied samples after polarization tests in simulated 

seawater solution.  
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Figure III.24: SEM images of pitted samples (a) and (b) solution treated sample, (c) and (d) 

aged samples for 60 min at 850°C. 

Small size isolated pits are observed in the solution treated sample while sever pitting 

corrosion is registered in the aged sample for 60 min with a larger size pits compared to the 

solution treated sample. In particular Figure III.24(d) presents a “lacy pattern pit morphology”, 

similar to the observations made by other research groups [MAG 05, SAN 13, SAN 14] (see 

Annex A). It is well observed also that pits initiated close to sigma phase regions which is an 

indication that pits nucleate preferentially at sigma phase interfaces.  This finding can be 

explained by the fact that sigma phase precipitation could lead to the development of Cr- and 

Mo-depleted zones around the sigma phase, formed by secondary ferrite and by secondary 

austenite.  Thus pit growth occurs as selective corrosion of the metallic matrix surrounding 

the sigma phase, which is explained by the presence of Cr- and Mo-depleted ferrite or 
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austenite phases surrounding the sigma, as a consequence of the lower corrosion resistance of 

those secondary phases [MAG 05].  

6. Impact of sigma phase on hardness  

The results of the hardness measurement of the treated samples are plotted on Figure III.25. 

The general trend observed in this figure stipulates that when the holding time is increased the 

hardness is increased consequently; this is due to sigma phase volume ratio present in the 

matrix of the aged samples. The higher sigma phase amount, the higher hardness value. In 

fact, the hardness of the σ phase is significantly greater than that for the χ phase; ferrite or 

austenite [AKI 12], therefore the increase in the hardness is attributed to the increasing in 

concentration of the σ phase.  

 

 

Figure III. 25: Microhardness evolution as a function of aging time at 850°C for the studied 
DSS (UNS S31803). 

However, it was noted that short-term aging at 850°C results in little decrease in hardness, 

compared to the hardness of the base material (276 Hv). This slight reduction in hardness for 

short-term aged samples is probably associated to reduction in solute contain of ferrite to 

nucleate sigma phase, particularly reduction in chromium and molybdenum content [MAG 

03]. But generally speaking it is well established that the hardness is not a sensitive measure 

for low sigma content as indicated by Nilsson et al [NIL 00]. 
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General Conclusions and Future Works 

In this work the sigma phase precipitation in UNS 31803 DSS during isothermal aging at 

850C° has been investigated. The effect of sigma phase on pitting corrosion resistance and 

hardness behavior was also studied. It constitutes a good background for understanding the 

quantitative correlation between sigma phase amount and corrosion resistance. The kinetic of 

embrittlement process associated with α-α' phase separation was also investigated in the 

current study using DSC technique coupled with Kissinger analysis  

The principal conclusions that can be drawn from this work are the followings: 

• The microstructure evolution of the aged material has been interpreted in terms of (σ) 

sigma phase precipitation on the basis of image analysis and XRD. The obtained 

diffraction peaks are in good agreement with the analysis of metallographic images of 

aged DSS samples. The results show that the duplex stainless steel UNS31803 is very 

sensitive to the formation of sigma phase at 850°C. 

• The evidence shows that short-term aging at 850°C of UNS S31803 DSS leads to 

sigma phase precipitation following a preferential nucleation at ferrite / austenite 

interfaces.  

• Increasing the holding time at 850°C has the effect to increase the volume fraction and 

particle size of (σ) sigma phase. The higher holding time, the higher amount of (σ) 

sigma phase. 

• The kinetics of sigma phase formation study by the JMA model confirmed the change 

on the mechanism of sigma phase formation from nucleation and growth from ferrite 

to a diffusion-controlled growth-coarsening stage as observed in the optical and SEM 

micrographs. 

• The application of the modified JMA model shows a good agreement between the 

experimental values and calculated ones,  with only one kinetic slope and an 

impingement factor (𝑐 = 0.4), indicating that this model is probably more 

advantageous for sigma phase kinetic prediction in aged DSS grades, because it 

incorporates more free fitting parameters. However, more scientific efforts are needed 
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for a better understanding of the physical mechanisms behind the impingement factor 

and its typical values.     

• The peaks associated with the redissolution of α’-chromium-rich phase in the 

investigated DSS has been successfully detected by Differential Scanning Calorimetry 

(DSC) technique.  

• The DSC technique has allowed the determination of activation Energy related to DSS 

embrittlement at 475°C. The determined activation energy (138 kJ/mol) was close the 

value found by other research groups.  

• Solution treated DSS samples show a high pitting corrosion resistance in both test 

solutions, simulated sea water and produced water, making this material grade highly 

suitable for use in chloride containing environments. However, serious deterioration of 

corrosion properties occurs in presence of sigma phase which may be introduced into 

the DSS microstructure in most cases as a result of inappropriate heat treatment. The 

results show that even about 3.3 % of sigma volume fraction is sufficient to cause a 

significant reduction on the pitting corrosion resistance of the UNS 31803 DSS. 

• It was concluded that both sigma phase amount and chloride concentration worsen the 

pitting potential. The higher sigma content, the lower pitting potential and the higher 

chloride concentration, the lower pitting potential. 

• Pitting nucleates preferentially at sigma phase interfaces for the aged specimens due to 

the development of Cr- and Mo-depleted zones around the sigma phase, formed by 

secondary ferrite and by secondary austenite.  

• Hardness is not a sensitive parameter for low amounts of sigma phase. Hardness is 

significantly affected by higher sigma phase content. 

 

Future work 

Further experiments can be carried out to provide better understanding of the corrosion 

performance of the aged DSS in other oil and gas solutions.  

Also below are some proposed future works: 
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• Perform more studies on the kinetic of sigma phase using the modified JMA model on 

various DSS grades to understand the physical mechanisms behind the impingement 

factor and to establish its typical values.    

• Using differential Scanning Calomerty technique (DSC) to follow the kinetic of sigma 

phase precipitation at 850°C.  

• Establish empirical formulation between the sigma phase volume fraction and the 

pitting potential in deferent test solutions. 

• The present work can be extended to investigate other Duplex stainless steel grades, 

namely the lean duplex grade which are less prone to sigma precipitation in similar 

environments of this study. 

• Investigate the repassivation potential of aged DSS in  similar environments of this 

study. 

• The present work can be extended to study other forms of corrosion in oil and gas 

environment namely the corrosion stress cracking (CSC) phenomena. 
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Annex A 

Miscellaneous information on the metallography of DSS 

This informative annex contains some alternative etching reagents commonly used to 

characterize the microstructure of duplex stainless steel.   

It is aimed also to show some typical micrographs and SEM images of DSS microstructures at 

different metallurgical conditions before and after corrosion tests from the best previous 

research works. Such micrographs can be considered  as a good reference for a better 

understanding and analysis of the obtained results according to the observed morphologies. 

A.1. Alternative recommended etching reagents used for Duplex stainless steel and their 

applications:  

Table A.1: Recommended etchants for duplex stainless steels and their applications [VAR 18, 

MIC 06].   

Etchant Content Application 
Beraha  

 

85 mL water 15 mL HCl 1g K2S2O5  Colors ferrite but not austenite  

Carpenter  
 

85 mL ethanol 15 mL HCl  
 

To reveal grain and phase 
boundaries  
 

Electrochemical NaOH  
 

100 mL water 10 g NaOH  
 

Distinguish between chi and 
sigma phase  
 

Grosbeck  
 

100 mL water 4 g NaOH 4g KMnO4  
 

To reveal sigma phase and 
nitrides  
 

Inhibited ferric chloride  
 

100 mL water 5g FeCl3 1g NaNO3  
 

Detrimental phases in lean 
duplex steels  
 

Murakami  
 

100 mL water 10g NaOH 10g 
K3Fe(CN)6  
 

Colors ferrite and sigma phase  
 

Sodium Hydroxide  
 

100 mL water 40g NaOH  
 

Detrimental phases in duplex  
 

Villela 5 ml HCl, 1g picric acid, 
100 ml methanol 
(95%) or ethanol (95%) 

Reveals ferrite, σ phase and 
carbides 
 
 

Electrochemical KOH  
 

10 N KOH  Reveals ferrite and σ phase 
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A.2. Typical metallography of DSS at different conditions:  

 

Figure A.1: Optical micrograph of DSS at solution treated condition, after electrochemical 

etching is with a 32 N KOH [BAD 14]. 

 

 Figure A.2: Optical micrograph corresponding to a longitudinal section of aged DSS 

at 850°C for 2h, electrolytically etched in 30% KOH solutions [DEN09]. 
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Figure A.3: Micro-section showing sigma phase precipitates in a super DSS fitting. 

(electrolytically etched in oxalic acid then KOH; X500) [ROG 12]. 

 

 

Figure A.4: Scanning electron micrographs showing σ phase located at the  𝛿/𝛾 interface, 
(a) SE and (b) BS images (electrolytically etched in 10 NNaOH solution)  [CHE 01]. 
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 Figure A.5: SEM micrographs of the DSS after aging at  750 °C for 1 h. Etching: 

V2A-Beize [ESC 09]. 

 

 Figure A.6: SEM micrograph of  HAZ solution treated at 1150 ◦C for 1 h then aged at 

850 ◦C for 3 h [BAD 08]. 
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A.3. Typical pitting morphologies of DSS after corrosion test: 

 

Figure A.7: Typical pitting morphologies of UNS S31803 DSS after polarization at 0.6M 

NaCl solution, aged for 6h@750°C [SAN 14]. 

 

 Figure A.8: Pit morphology of DSS 2205 after corrosion test in 0.1 M NaCl + 0.01 M 

MoO4 
-2  at 80 °C [EGH 11]. 



 ملخص

العالية ، وقابلية  تلف القطاعات الصناعية بسبب قوتهعلى نطاق واسع في مخ (DSS) المقاوم للصدأفولاذ التم استخدام 

ة مثل ومع ذلك ، فإن تكوين أطوار معدنية بينية خطير .اللحام الأفضل ، والمقاومة العالية للتآكل الناتج عن الإجهاد والحفر

الحراري عند درجات حرارة  درجة مئوية والتقصف 1000-600بين والتي تحدث في درجات حرارة تتراوح  (σ) سيغما

عديد من في ال  DSS  ـتحد من درجات حرارة الخدمة العليا ل' α-α عبر فصل الطور) درجة مئوية 475~ (متوسطة 

 .التطبيقات

 عند تعريضه (DSS) ولاذ المقاوم للصدأ للفالغرض الرئيسي من هذا العمل هو التحقيق في سلوك التآكل الذي يحدث 

تم استخدام الفحوصات المعدنية جنبا إلى . البحر ومحلول الماء المنتج لماء محاكي محلول: لبيئتين مختلفتين من الكلوريد

المعالج بمحلول يظهر مقاومة عالية  DSS لقد ثبت أن. الأشعة السينية لمتابعة تطور البنية المجهرية جنب مع تقنية حيود

لقد تم التوصل إلى . سيغما طور، في حين يحدث تدهور خطير في خصائص التآكل في وجود  المحلولينللتآكل في كلا حل ا

حدث يتآكل الأن  SEM أظهرت مراقبة. اقم احتمال الحفر أن كلاً من مقدار طور سيغما وتركيز الكلوريد يؤديان إلى تف

تم التأكد أيضًا . ليبدانموالكروم والتي استنفد فيها عنصري ال طور سيغما بسبب تطور المناطق  انحاءبشكل تفضيلي في 

 .التي تم تعريضها لمعالجة حرارية لفترات طويلةعلى أن سلوك الصلابة يتأثر فقط بالعينات 

 DSC أيضًا في الدراسة الحالية باستخدام تقنية α-α تمت دراسة حركية عملية التقصف الحراري المرتبطة بفصل طور

لتقدير نهاية  JMA تم استخدام طاقة التنشيط التي تحكم عملية التقصف كأداة للتنبؤ من خلال نموذج .مقترنة بتحليل كيسنجر
 .متوسطةالتي تعمل في درجات حرارة  DSS عمر مكونات

 .الماء المنتج ،البحر لماء محاكي محلول،سيغما، الصدأ، (DSS) ولاذ المقاوم للصدأ لفا :ةكلمات مفتاحي

 

 



Abstract 

The Duplex Stainless steels (DSS) have been widely used in various industrial sectors due to 

their higher strength, better weldability, and higher resistance to stress corrosion and pitting. 

However, the formation of  dangerous intermetallic phases such as sigma (σ) which occurs  at 

temperatures between 600-1000°C and the thermal embrittlement at intermediate 

temperatures (~475°C) via α-α' phase separation limit the upper service temperatures of DSS 

for many applications. 

The main purpose of this work is to investigate the pitting corrosion behavior of sigmatized 

duplex stainless steel (DSS) exposed to two different chloride environments: simulated 

seawater solution and produced water solution. . The sigmatized samples were obtained by 

aging treatment at 850°C during various holding times to introduce varied levels of sigma 

phase. The microstructural evolutions after ageing were examined and the kinetic of sigma 

phase has been studied through the simplified and the modified JMA model.  

It was established that solution treated DSS shows a high pitting corrosion resistance in both 

test solutions, while serious deterioration of corrosion properties occurs in presence of sigma 

phase. It was concluded that both sigma phase amount and chloride concentration worsen the 

pitting potential, the higher sigma content, the lower pitting potential and the higher chloride 

concentration, the lower pitting potential. SEM observation showed that pitting nucleation 

occurs preferentially at sigma phase interfaces due to the development of Cr- and Mo-

depleted regions around sigma phase. It was also confirmed that the hardness behavior is only 

affected for long term aged samples. 

The kinetic of thermal embrittlement process associated with α-α' phase separation was also 

investigated in the current study using DSC technique coupled with Kissinger analysis. The 

activation energy governing the embrittlement  process has been used as "Prediction Tool" 

trough the JMA model to estimate the end of life of DSS components operating at 

intermediate temperatures.  

Key words: Duplex Stainless Steels (DSS), Sigma, Pitting Corrosion, Simulated Seawater, 

Produced Water.  

 

 

 



Résumé: 

Les aciers inoxydables duplex (DSS) ont été largement utilisés dans des divers secteurs 

industriels en raison de leur résistance supérieure, de leur meilleure soudabilité et de leur 

résistance à la corrosion sous contrainte et aux piqûres. Cependant, la formation de phases 

intermétalliques dangereuses telles que sigma (σ) qui se produit à des températures comprises 

entre 600 et 1000 ° C et la fragilisation thermique à des températures intermédiaires (~ 475 ° 

C) via la démixtion de phases α-α' limitent les températures maximales de service des DSS 

dans de nombreuses applications. 

L'objectif principal de ce travail est d'étudier le comportement à la corrosion par piqûre de 

l'acier inoxydable duplex (DSS) vieillis exposé aux deux environnements de chlorure 

différents: une solution d'eau de mer simulée et une solution de l'eau produite. Les 

échantillons sigmatisés ont été obtenus par traitement de vieillissement à 850 ° C pendant 

divers temps de maintien pour introduire des taux variés de phase sigma. Les évolutions 

microstructurales après vieillissement ont été examinées et la cinétique de la phase sigma a 

été étudiée à travers le modèle de JMA simplifié et JMA modifié. 

 Il a été établi que le DSS hypertrempé présente une résistance élevée à la corrosion par piqûre 

dans les deux solutions d’essai, alors que les propriétés de corrosion se détériorent 

sérieusement en présence de la phase sigma. Il a été conclu que plus la teneur en sigma plus 

élevée, plus que le potentiel de piqûre est plus faible et de même pour la concentration en 

chlorure. Les observations par le MEB ont montré que la nucléation des piqûres se produisent 

préférentiellement aux interfaces de la phase sigma en raison du développement de régions 

appauvries en Cr et Mo autour de la phase sigma. Il a également été confirmé que la dureté 

n'est affectée que pour les échantillons vieillis à long terme. 

La cinétique du processus de fragilisation thermique associée à la séparation des phases α-α' a 

été également examinée dans la présente étude en utilisant la technique DSC couplée avec 

l'analyse de Kissinger. L'énergie d'activation régissant le processus de fragilisation a été 

utilisée comme «outil de prédiction» à travers le modèle JMA pour estimer la durée de vie des 

composants DSS fonctionnant à des températures intermédiaires. 

Mots clés: Acier inoxydable duplex (DSS), sigma, corrosion par piqure, l'eau de mère 

simulée, l'eau produite. 
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