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Abstract: 
 

Detoxification enzymes play an important role in cleaning the body from the toxins. These 

ones represent a hindrance to some drugs to fulfill their tasks, especially active compounds like 

anti-cancer drugs. These latter are considered to have a high degree of toxicity in the body, which 

makes them targeted by the previous enzymes. 

We refer in this study to GSTp1-1, which is included in the detoxification enzymes class II 

targeted by NBD derivatives. It has dual defense feature, namely: inhibition GSTp1-1 and prevent 

the formation of each of the following complexes JNK1-GSTp1-1 and theTRAF2-GSTp1-1, that 

causes prolonged stopping of the cell cycle and facilitates apoptosis of damaged cells. 

This is what made us in this study shed light on the modeling similar compounds, and to 

achieve this goal, we applied a set of methods adopted in the modeling of active materials of high 

biological quality. Among them, the QSAR Two-dimensional (2D-QSAR) coupled with a virtual 

examination, by using a technique similarity search. In addition, we concretized a three - 

dimensional stereo (3D-QSAR) which contains effective biological properties (Pharmacophore). 

This application resulted to determine a quantity of compounds bearing the same previously 

identified characteristics. Therefore, we put limits, selectivity features extracted from specialized 

references, to reduce and identify biologically the best. We make sure of the validity and safety of 

extracted models mentioned above by using several ways, namely:  LOO-CV, external test set 

validation, fisher randomization, and cost analysis. 

As a final result of this research, we identified 28 new derivatives of NBD From both 

studies, at different inhibitory concentrations, micromolar unit (µM); the value of the half-maximal 

inhibitory concentration of a compound is 6.531 µM.  
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حيث تمثل عائقا . يف الجسم من السموم المتعرض لهادورا هاما في تنظ ،تلعب انزيمات ازالة السمية

تعتبر هذه نجد المضادات السرطانية.  (المركبات الفعالة) من بين هذه الادوية ،لبعض الادوية في تادية مهامها

 من قبل الانزيمات المشار اليها سابقا. ما يجعلها مستهدفة، رة ذات درجة سمية عالية في الجسمالاخي

، التي تندرج ضمن انزيمات ازالة السمية من الدرجة الثانية GSTp1-1الى  ،نشير في هذه الدراسة

منع و GSTp1-1المتمثلة في تثبيط  ع،ية الثنائية للدفاذات الخاص -NBDالتي تستهدف من طرف مشتقات و

التي تتسبب في توقيف دورة الخلية  TRAF2-GSTp1-1و JNK1-GSTp1-1 :تشكل كل من المعقدات التالية

 لفترات طويلة وتسهيل استماتة الخلايا التالفة.

 منه، جولتحقيق الهدف المر ته الدراسة نسلط الضوء على نمذجة اشباه هذه المركبات.اهذا ماجعلنا في ه

 ـتقنية ال، جودة بيولوجية عالية. نذكر منها لة ذاتفي نمذجة مواد فعا ،قمنا بتطبيق مجموعة من المناهج المعتمدة

QSAR ثنائية الابعاد(2D-QSAR)  باستخدام تقنية  ،مقرونة بالفحص الظاهريsimilarity search اضافة .

بيولوجية ذات قيمة  (ميزات) يحوي خصائص.  (3D-QSAR)يد مجسم ثلاثي الابعادجسنا بتالى ذلك قم

 ،المحددة سابقا لميزاتهذا التطبيق عل تحديد كم من المركبات الحاملة لنفس ا . اسفر (pharmacophore)فعالة

لتقليل وتحديد الاحسن من الناحية ، -تقائية مستخلصة من مراجع متخصصةمعايير ان- ض الحدودعماجعلنا نضع ب

م عدة طرق نذكر باستخدا ،وسلامة النماذج المستخرجة والمذكورة اعلاه مصداقيةالتاكد من بالبيولوجية. قمنا 

 .LOO-CV, external test set validation, fisher randomization, cost analysisمنها 

ة تمن كلا البحثين بتراكيز تثبيطية متفاو، NBD لـ دايمشتقا جد 28حددناكنتيجة نهائية لهذا البحث 

  .ميكروومولار 6.531تالمركبا ىالنصفي لإحد طبلغت قيمة التثبي حيث ؛ (µM)بوحدة الميكرومولار
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Chapter I: 

Introduction 

Since the 20th century, the increase of life expectancy has been associated to the increase in 

exposure to carcinogenic elements, particularly those in tobacco smoke, as: azo dyes, aflatoxins, 

asbestos, benzene and radon, as well as ionizing radiation. These causes have been well 

documented as leading to a wide range of human cancers. Therefore, this disease has become the 

second most common cause of death around the world  [1].  Nevertheless, there is a way to fight 

against cancer. These often-complementary therapies are used individually or in conjunction, 

depending on the type, position and stage of the cancer. There are mainly three kind of treatment 

such as: Chemotherapy, radiotherapy and surgery [2].  

Chemotherapy occupies an important place in the clinical treatment of cancer. It uses such 

medications to destroy cancer cells or stop them from developing and spreading to other areas of 

the body. Many drugs are used in the treatment of cancer diseases; sometimes, however, they 

cannot play their role due to the detoxifying enzymes, like glutathione S-transferases (GSTs), 

which attacks these drugs and reduce their therapeutic effect. GSTs are a family of massive, 

distributed phase II detoxifying enzymes, which catalyze the recombination of reactive 
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electrophiles to the nucleophilic sulfur of the main intracellular thiol. GSTs’ inhibitors have been 

shown to decrease drug resistance by improving anti-cancer drug action in tumor cells [3, 4]. 

Several synthesized compounds have been used to suppress detoxifying enzymes, including 

Nitrobenzoxadiazole (NBD) compounds (Scheme 1) and their derivatives, which gained a 

significant attention due to their unique mode of action: at the cellular level, they induce the 

dissociation of the JNK1- GSTP1-1 and TRAF2-GSTP1-1 complexes (GSTP1-1 for glutathioneS-

transferase), leading to prolonged cell cycle arrest and apoptosis [5, 6]. 

Figure I. 1: The basic skeleton of Nitrobenzoxadiazole. 

Drug discovery is a long and complex process [7], both in terms of time and money invested  

[8]. The field of "drug design" can be explored through molecular modeling, using computer tools 

to design of new molecules  [9]. It essentially boils down to identify new compounds (natural or 

synthetic molecules) which will ideally evolve into drugs acting on specific biological targets 

responsible for dysfunctions. The identification of therapeutic targets is linked to knowledge of 

molecular functioning, metabolic pathways and generally biological systems, and the cause of 

disease [10]. 

The world of pharmaceutical research is constantly optimizing all stages of its drug 

discovery and development process. Chemoinformatics is a tool of choice for reducing the time 

and cost of developing a drug. This discipline can intervene at different levels of the drug discovery 

process. Among the chemoinformatics techniques, we can cite the screening of chemical libraries 

(QSAR, docking and pharmacophores techniques). Chemoinformatics is present today in all stages 

of drug development [11]. 

N
O

N

NO2

S
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By analogy with the expressions in vivo and in vitro, the term “in silico” has been 

introduced to qualify the numerical methods used to treat such systems. By its name, this term 

refers to silicon, the main material found in all computers’ chips. The in silico field brings together 

a very large set of numerical methods based on the laws of physics and chemistry which, using 

mathematical approaches, make it possible to simulate or model a biological phenomenon using 

the computer tool. Virtual screening is the most widely used in-silico strategy for the identification 

of compounds in the context of new drug research [12]. 

The advantage of virtual screening "in-silico" is therefore to provide a small list of 

molecules to be experimentally tested, thus reducing costs and saving time. We can also quickly 

explore many molecules and then focus, at the experimental level, on the most interesting 

molecules [13]. 

I.1. Contributions: 

The objective of our work is to use virtual screening methods in the search for new bioactive 

molecules and to study their interactions with the enzyme glutathione-S-transferase. 

Our main contributions are summed in these essential points, namely: 

 Multiple Linear Regressions (MLR) and Artificial Neural Network (ANN) were applied 

for modeling of the studied molecules. 

  Developed ANN models have reasonably predicted the GSTP1-1 inhibitory activities of 

23 hits. 

 Generation of a pharmacophore model based on ligands. 

  Virtual screening procedure has been applied to large chemical compound database. 

 Hits obtained have good predictive activities. 

 Molecular docking of molecules resulting from virtual screening. 

 I.2. Organization of the dissertation: 

To achieve our goal, we have organized our thesis into three chapters:  

1. Part I- Background on cancer disease and drug discovery: In the chapter II we Will 

introduce the fundamental principle, the possess of development and discovery of drugs. In 

addition, it contains a description of the cancer diseases, their pathogenesis and their 

treatment.  
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2. Part II-Computer-Aided Drug Design and Discovery: this chapter consists of two parts: 

Ligand-based drug design (LBDD) and Structure-Based Drug Design (SBDD), which 

describe principle formulation, theories of the methods used during this research and the 

principle equations for each method. 

3.  Part III- Contributions and result: we will be mainly dedicated in this part to 

interpretations of the results obtained, which were divided into two parts. The first one, a 

Quantitative structure-activity relationship (QSAR) models were generated using Multiple 

Linear Regression (MLR) and Artificial Neural Network (ANN). These technics aim to 

determine the best molecular descriptors to be used in conjunction to identify the best 

candidates for GSTP1-1 inhibition. At last, the obtained QSAR models were employed to 

define biological activities of potentially novel active compounds by means of in silico 

screening processes. As to the second part, Ligand-based pharmacophore modeling was 

used to identify the chemical features responsible also for inhibiting GST p1-1. The 

identified features used to screen the database contain more than 200000 compounds. The 

last point consists of a molecular docking analysis, which recognizes that leads are possible 

toward the GST p1-1 enzyme and reveals the lowest energy and good associations with 

reduced active site of the GST. These ligands can then form stable complexes. 
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“God has created all diseases, and he also has created an agent or a drug for every 

disease. They can be found everywhere in nature, because nature is the universal 

pharmacy. God is the highest ranking pharmacist.” the Swiss-Austrian medical doctor 

and natural scientist Paracelsus 
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Chapter II: 

Background on cancer disease 
and drugs discovery 
 

 

 

II.1. Life cycle of a drug: 

Throughout history, there was an almost continuous need for clinical action in the 

treatment of illness. There was no possibility to understand the biological origin of these 

diseases. The notion that treating diseases or alleviating effects might be done by smoking, 

consuming or adding morphine, ephedra, hemp, tobacco, salicylic acid, digitalis, coca, quinine, 

and a number of other medications, still in use, for a long time [1, 2]. The identification of new 

drugs was primarily done by changing the molecular structure of an existing drug or by 

serendipity. Whereas this process was a slow trial, it gives results with many errors. The 

techniques used to discover medicinal agents have evolved significantly over the course of 

human history. Now, a computer can display the molecular structure of any drug from a list of 

thousands in a database [3]. Computer Aided Drug Design (CADD) is expressed by in silico 

term; as an analogy to the Latin phrases in situ, in vitro and in vivo. This means the logical 

design from which medications are formulated or found using computational methods. The 

main aim of in silico Aided Drug Design is to identify the best chemical compound to 

experimental testing by reducing late stage attrition and costs [4]. 
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The word "lifecycle" refers to the sequence of modifications that a substance, process, 

activity, … etc has experienced over its lifetime. A drug’s lifecycle includes two major steps, 

namely: research and development (R&D) that brings a new drug from discovery to launch, 

and the marketing and sales of medications [5]. In this part, we aim to describe the four major 

disciplines which have completely revolutionized the search for new drugs and resulted in the 

processes currently used in the early stages of research and development (R&D).  

 The drug discovery R&D processes are highly costly, time consuming and technology 

intensive. They bring together all the steps leading to the marketing of the new drug. According 

to published studies, it is expected that only one in ten of the compounds entering clinical 

development is successful, with an overall cost of USD 500-800 million and a standard time 

scale of 10-15 years from pre-clinical development to regulatory approval. Usually, the whole 

process is divided into "Discovery," "Development" and "Registration" stages (Figure II.1) 

[6, 7].   

 

 

Figure II.1. Overview of the process of drug discovery and development.   
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Drug analysis can be divided into a variety of smaller tasks and roles. The mechanism 

can be systematically separated into two different parts at the highest level, namely: discovery 

and development [8]. Drug discovery is a lengthy arduous method. It is broadly packaged with 

biological target recognition and associated disease, target validity, high throughput 

identification of hits and leads, lead optimization, and preclinical and clinical analysis [9]. Each 

step of drug development should aim to create a scientific connection between a biological 

target (e.g.: enzyme, ion channel, G-protein-coupled receptor, etc.) and a disease-state model 

designed to simulate human disease. Drug development aims to evaluate the safety/toxicity and 

efficacy of new drug substances. The key aim of drug production is to create a research database 

that confirms the potency and safety profile of the drug and its dose regiment(s) for marketing 

purposes [8]. 

Early stages in drug discovery are the initial process of target identification and progress 

to the later phase of lead optimization. Many resources, including the private market, clinical 

work and academic research, assist in identifying the best disease target. The selected target is 

then used by the pharmaceutical industry and more recently by several research centers to select 

molecules for the production of suitable drugs. The process requires a numerous early stages 

[10]. 

We will describe the four principal stages drug research: (i) target determination, (ii) 

model establishment, (iii) discovery of lead compounds, and (iv) optimization of the lead 

compounds. 

II. 1. 1. Target identification and Validation 

Target identification and validation are the starting point of new drug R&D process 

where the method of selecting a potential drug candidate starts, with the determination of a 

disease state that can be solved or changed by the use of effective chemotherapeutic action [11, 

12]. Once the disease has been defined, the next step is to identify a potential biological target. 

A good target needs to be active, safe, meet clinical and business needs and, most importantly, 

be ‘druggable’. A 'druggable' target is accessible to a putative drug substance, i.e. a small 

molecule or larger biologics and, upon binding, generates a biological response that can be 

measured both in vitro and in vivo [13]. Following identification of the drug target, a systematic 

validation should show that a molecular target is directly involved in a disease process, and that 

modulation of the target is likely to have a therapeutic effect [10]. Good target selection and 

verification encourages improved confidence in the interaction between target and disease, and 
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enables them to explore where target modulation can contribute to mechanism-based side 

effects [13]. 

II. 1. 2. Hit identification: 

Following the process of target identification, hit identification aims to identify where 

the small molecule Hits suitable for use in a medical environment. Of course, this comparatively 

simple statement is actually a representation of an extremely complex and multi-faceted 

problem. To identify the small molecule (hits), there are some variety of screening paradigms 

exist that have been developed in order to provide some guidance as to look for biologically 

useful molecules. Among these paradigms, we mention: firstly, High Throughput Screening. 

The primary role of HTS is to detect lead compounds and supply directions by testing, in an 

automated fashion, for activity as inhibitors (antagonists) or activators (agonists) of a particular 

biological target. Secondly, Virtual Screening [14-16]. Virtual screening or VS is an alternative 

method to the computational screening of large chemical libraries. It is a modern technique 

attracts an increasing degree of interest in the pharmaceutical industry as a productive and cost-

effective technology in the quest for novel lead chemicals substances [17, 18]. 

In view of their activity, but also of additional criteria such as their originality or their 

stability, the compounds to become drugs are most likely selected as hits and then optimized 

[17, 18]. 

II. 1. 3. Lead generator and optimization: 

 The goal of this stage of the work is to change each hit list in order to try to produce 

more potent and selective compounds by iterative synthesis and to analyze their efficacy in any 

available in vivo models (Figure II.2). In each step of the "lead optimization" process, new data 

are created as adjustments in the molecular structure of the "lead". These details are used to 

develop the next generation of compounds. This step of generating Structure-Activity 

Relationship data persists until appropriate chemicals substances have been developed for 

clinical assessment [1]. All these chemical modifications around a common scaffold aimed to 

elucidate SAR, to establish consistent correlations of structural features, or groups, with the 

biological activity of compounds in a given biological assay. This SAR aimed to maximize 

efficacy and potency while keeping adequate ADMET properties and selectivity profile [19]. 
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Figure II. 2. The lead optimization phase start with the detection of the lead structure ('hit') in the 

relevant biological assay. New analogs with surface changes are prepared and tested in the bioassay. If 

the outcomes of the assay increase, the modifications are retained and the cycle is repeated. If the 

modifications are negative, the modifications are eliminated and the cycle is repeated. This method 

proceeds until a potential substance with the desired properties has been identified [1]. 

 

II. 1. 4. Preclinical studies: 

Following a series of in vitro and in vivo experiments to find out the best drug candidate 

and before clinical trials, preclinical studies try to provide information on the preparation 

process, protection, dosage, acute and chronic toxicity, allergic reactions, formulation and 

components, pharmacokinetics, stability, effectiveness, mutagenicity and local irritation tests, 

hemolytic, reproductive toxicity, and so on and so forth [2]. Preclinical studies must comply 

with the guidelines, laid down by Good Laboratory Practice to ensure consistent results and 

required by authorities, such as the FDA, before submitting an IND approval [21]. 

The clinical phases I, II, III, and IV studies consist to evaluate drug safety for human 

beings, with a small and a large group of participants, and identify the dose range and side 

effects (Table II.1). 
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Table II.1. The clinical and preclinical trials in drug development [21] 

 

II. 2. Cancer: 

The human body is made up of over than 60000 billion cells. These are the units which make 

up tissues and then our organs, including heart, liver and lungs. If the body wants, our cells are 

doubled to destroy any cells that are damaged or their lifetime is ended. This makes it possible 

for our tissues to retain their shape and function with the flow of time. Therefore every cell is 

conditioned to multiply and die. This organized but complex program is regulated by the center 

of the cell, the nucleus, which includes chromosomes containing several genes made up of 

DNA. At times, few any of these genes are modified. The nucleus gives out irregular orders, 

and the cell goes incorrect. It multiplies abnormally, taking on a life of its own; each new cell 

generated contains the same error. Cells proliferate chaotically to form a tumor. This period 

may be short, but it is always 10 to 30 years long and may distinguish the birth of the first 

irregular cell from the creation of a tumor of around one cubic centimeter in which several 

blood vessels are formed to survive, which will supply the tumor with oxygen and nutrients, 

allowing it to survive and developed. That's what we call the concept of angiogenesis. However 

the tumor is only really risky when cancer cells start to invade the surrounding regions through 

the vessels and spread to the surrounding organs. These cells can then invade other parts of the 

body to multiply and generate new cancer cells. Metastasis is the word used for this process of 

spread. But why does a cell become cancerous? In addition, is there a treatment for it? 

II. 2. 1. Cancer, a major health issue:  

 Cancer is a vast family of diseases caused by irregular cell formation, growth rate and 

capacity to invade other organs [22]. Every sixth death in the world is due to cancer, making it 

the second leading cause of mortality worldwide. World health organization estimated that 42 
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million people around the world suffered from different types of cancer cells. This percentage 

has more increased since 1990, when an estimated 19 million patients had cancer, with an 

approximate 9.6 million patients dying from cancer during 2017 (Figure II.  3). Thus, cancer is 

a significant issue impacting the welfare of all human cultures [23, 24]. Unfortunately, it is a 

form of disease at the stage of the tissues and this variation is a significant problem for its 

particular diagnosis, followed by the effectiveness of the medication [25, 26]. Cancers as a 

whole accounted for 30.0 per cent of man deaths and 24.8 per cent of woman deaths in 2015. 

When viewed independently, 4 of the 10 leading causes of death of both sexes were cancers. 

Lung, colorectal cancer, leukemia and lymphomas are among top leading causes of mortality 

for both genders. Breast cancer is the most common type of cancer among female accounting 

for about 30% of all woman cancers [27]. Over the last 10 years, the incidence of breast cancer 

has increased by 1.5 per cent per year. Mortality, however, does not rise. Prostate cancer 

accounts for approximately 35% of all male cancers. The occurrence has risen by an average of 

4% annually over the last 10 years, primarily due to early detection. However, the increase in 

prevalence is not followed by an increase in mortality [28, 29]. 

 

 

Figure II. 3 improvement in three cancer survival measures, World, 1990 to 2017. This graph measures 

the mortality rate of cancer, the mortality rate of cancer and the age-standardized mortality rate. 
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Recently, scientists summarized the ten biological hallmarks of cancer (Figure II. 4) as 

sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling 

replicative immortality, inducing angiogenesis, activating invasion and metastasis, avoiding 

immune destruction, tumor promoting inflammation, deregulating cellular energetic, genome 

instability and mutation [30].  

 

 

Figure II. 4 Preventive targeting of cancer hallmarks [30]. 

Medications, which interact with acquired ability required for cancer cells growth and 

development, have been developed, incorporated in clinical trials or, in certain cases, licensed 

for clinical use in the treatment of some types of human cancer. In contrast, the investigational 

medicines are designed to target one of the enabling characteristics and evolving features shown 

in Figure II. 4, which still retain promise as cancer treatment. Drugs mentioned are just 

illustrative examples; for each of these hallmarks, there is a deep pipeline of candidate drugs 

with various molecular targets and modes of production action [30].  
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II. 2. 2. Pathogenesis of cancer: 

Cancer has been developed for many years and has several causes. These ones can exist 

in varying degrees, both inside and outside of the body, to contribute to the development of 

cancer [31]. Knowing the causes of cancer offers a basis for recognizing the potential for cancer 

prevention. If a reason is known, it is much easier to know whether it can or cannot be easily 

avoided [32]. Scientists typically divide these factors into two categories: those inside the body 

and those outside the body; environmental factors. It is estimated, however, that only 5-10 per 

cent of cancer is caused by inherited traits and the remaining 90-95 per cent is either caused or 

sustained by environmental factors Figure II. 5 [33]. 

 

Figure II. 5 The effect of genes and the environment on cancer growth. (a) The percentage 

contribution of genetic and environmental causes to cancer. (b) The figure reflect family risk ratios-the 

age-adjusted risk ratio for first-degree cases compared to the general population. (c) The number of 

cancer deaths due to the stated environmental risk factor. 
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II. 2. 2. 1. Outside Body Factors (Environmental Factors): 

Exposure to a wide range of natural and man-made chemical compounds in the 

environment accounts for at least two thirds of all cancer cases worldwide. These external 

factors involve lifestyle habits, such as: unhealthy diet, excessive alcohol intake, cigarette 

smoking, excessive exposure to sunlight, lack of exercise, and increased exposure to some 

viruses. Other considerations include exposure to certain pharmaceutical products, viruses, 

radiation, hormones, bacteria and environmental contaminants that may be present in the air, 

water, food and the workplace. Analysis of occupational groups with greater exposures to these 

chemicals compared to the general population has identified the cancer dangers related with 

certain environmental chemical agents [31]. 

II.2.2.2. Inside Body Factors: 

Many conditions inside the body make certain individuals more likely to develop cancer 

than others. For example, certain individuals either inherit or develop the following conditions: 

changed genes in the cells of the body, increased hormone levels in the bloodstream, e.g. 

estrogens, which are supposed to contribute to human breast cancer, and testosterone and its 

metabolites are the cause of human prostate cancer or compromised immune systems, e.g. in 

the case of Severe Combined Immune Deficiency (SCID). Some of these factors can make 

some people more susceptible to cancer disease [31].  

II.2.3. Treatment of cancer: 

There are however means to combat cancer disease. These complementary therapies are 

sometimes used on their own or in conjunction, depending on the type of cancer and its status. 

The purpose of these therapies is to make possible to remove the tumor and heal a patient with 

early stage cancer or like a chronic disease in order to monitor its growth. Common and newer 

forms of medication (surgery, radiation therapy, chemotherapy, targeted therapy, and 

immunotherapy) are predominantly associated with adverse outcomes which have a detrimental 

impact on quality of life. Thus, the battle for more successful, more tolerable anti-cancer 

therapy continues [34]. 

Chemotherapy is known to be the most effective and commonly used modality in most 

forms of cancer. Tumor cells have an improved capacity to divide and the standard of 

immortality because they are not controlled by apoptosis. Cell proliferation to cell death ratio 

is therefore high. Chemotherapy prevents tumor growth by killing off their ability to divide and 
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enforce apoptosis. The two branches of the chemotherapeutic drugs are also cytostatic 

(biological drugs) and cytotoxic [35]. 

II. 2. 3. 1. Glutathione-S-Transferase (GST): 

 Living organisms are constantly exposed to exogenous and endogenous toxic chemical 

species, which can cause harmful and often lethal effects. The ability of living organisms to 

survive the danger posed by such compounds is a fundamental biological adaptation for 

survival. Cells have implemented various methods to combat the effects of toxic substances and 

their metabolites. In this context, special enzymatic and non-enzymatic mechanisms are in place 

to protect cells from the destructive effects of toxic chemical species. Detoxification enzymes 

have a crucial function to play; making them less biologically active, more water-soluble and 

more easily removed from the body. Among others, the GST target was chosen for our analysis. 

Figure II.6 reflects the GST detoxification mechanism [36, 37]. 

Figure II. 6 Overview of xenobiotic enzymatic biotransformation. Harmful molecules can migrate 

through the plasma membrane and, within the cells, may be attacked by the enzymes of the so-called 

Step I metabolism. The major ones belong to the Cytochrome P450 family, consisting of many enzymes 

that catalyze various reactions, including hydroxylation— the main reaction involved—oxidation and 

reduction. GSTs that catalyze the conjugation of phase I-modified xenobiotics to endogenous GSH play 

a key role in the resulting phase II metabolism. The conjugate obtained is then actively transported out 

of the cell by various transmembrane efflux pumps (Phase III). Any compounds can join the metabolism 

of phase II directly [37]. 

GSTs have many biological functions to play. They were defined as the most important 

enzymes involved in the metabolism of electrophilic compounds. They are classified as a family 

of phase II detoxification enzymes that metabolize a broad range of xenobiotic and end-of-
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obiotic toxic compounds, which were classically defined as catalyzing the conjugation of 

glutathione (GSH) to electrophilic compounds through thio-ether linkages [38, 39]. 

 GSTs are 50 000 Da, they are proteins formed by homodimers or heterodimers, each 

monomer has an active center consisting of 210 amino acids and two binding sites: A G-site in 

which glutathione (GSH) is bound and an H-site for an electrophilic substrate [40]. The GST 

detoxification reaction occurs by the following mechanism (Figure II. 7). In eukaryotes, there 

are three distinct families of GSTs separated by their cellular location: cytosolic, mitochondrial 

and microsomal (also known as membrane-associated proteins in eicosanoid and glutathione 

metabolism or MAPEG) [41]. Cytosolic GSTs are the most complex and closely related to the 

development of human diseases and are distributed and categorized into seven subtypes on the 

basis of their chemical, physical and structural properties. These subtypes are α, π, μ, θ, ω, σ, 

and δ. The cytosolic α, π, and μ classes are abundant and the most widely studied GST classes 

[37]. 

 

Figure II. 7 (A) GST detoxification process. (B) (left) GSH identification GST. (right) The molecular 

architecture of the GST covalent inhibitor [42]. 
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II. 2. 3. 2. GST P1-1: 

II. 2. 3. 2. 1. GST P1-1 physiological function (Role in cancer diseases): 

The resistance of various human tumors to anti-cancer agents has been specifically 

associated with the conjugation of GST enzymes to GSH and the over expression of these 

enzymes. GSTs are implicated in resistance to many anticancer drugs in a wide spectrum of 

cancers. GST Pi (GSTP1-1) is the most prevalent, widely studied and highly expressed in 

several types of cancer cells (especially pancreatic, non-small cell lung, colon, liver, ovarian, 

breast, and lymphoma). Over expression of GSTπ can contribute to the defense of cancer cells 

against an attack by anticancer drugs. In which, tumor cells use GSTπ to form a GSH – X 

complex between antitumor drugs and GSH; the complex is excreted by Pgp and MRP out the 

cell. Synergistic interactions between GSTs and Pgp or MRPs are guiding the production of 

multidrug resistance in tumor cells [37, 43].  

Recent literature has established GSH and other associated metabolic enzymes as 

essential to the cells safety from ROS via oxidation and redox mechanisms [46, 47]. Its 

enzymatic function is based on two aspects: the catalytic activity of Cys47 and Cys10, and the 

auto-S-glutathionylation of Cys47 and Cys10, both of which disrupt the subsequent interaction 

with C-Jun NH2-terminal kinase (JNK), causing the formation of a GSTπ multimer. Other 

members of the GSH-redox system, such as glutamate cysteine ligase, glutathione peroxidase 

and glutathione reductase, also play a significant role in this phase [46, 47]. 

In addition to metabolite detoxification, the first GSTπ described was initially defined 

as ligand binding properties due to its ability to interact covalently and non-covalently with 

different compounds, resulting in inhibition of conjugation activity [48]. GSTπ can induce 

cellular apoptosis by activating MAPK, MKK4, downstream JNK-signal components and p38 

kinase, in the setting of cellular stress. Normal cells have low basal JNK activity to maintain 

optimum cell growth conditions. However, in the presence of oxidative or nitrosative stress, 

GSTπ  can form homodimers to alter the reduced state of cysteine residues in its structure, 

resulting in JNK dissociation from the hetero-GSTπ  – JNK complex and ensuing the 

subsequent activation of the c-Jun protein. These sequences of reactions will ultimately cause 

apoptotic pathways (Figure II. 8) [49, 50]. Further research suggests that GSTπ can affect the 

MAPK direction through both JNK and TRAF2 modulations [51]. 
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Figure II. 8 Ligand-binding features of JNK and TRAF2.  

Notes: During physiological conditions, cells have low JNK activity. JNK is sequestered in the shape of 

a GSTπ–JNK protein complex. GSTπ is disassociated from the GSTπ–JNK complex due to oxidative 

stress caused by the administration of medications, resulting in the aggregation of GST oligomers. This 

results in c-Jun phosphorylation and/or ATF2 activation, and this progress also affects downstream 

activities as well. Meanwhile, the recruitment of TRAF2 to the plasma membrane promotes the 

development of ROS. Subsequent oxidation of the previously inactive ASK1–Trx complex causes 

dissociation of the molecule ASK1. TRAF2 then binds to ASK1 to activate the ASK1–JNK signal 

cascade. However, owing to high expression in tumor cells, GSTπ serves as an endogenous negative 

regulatory switch by forming JNK complexes, preventing TRAF2–ASK1 interactions, and eventually 

inhibiting tumor cell apoptosis and proliferation [42]. 

II.2.4.2.2. GSTπ inhibitors: 

A great deal of effort has been made in recent years to find tight inhibitors of these 

enzymes to reduce their protective function in vivo. GSTπ inhibitors may increase the 

sensitivity of cancer cells to antitumor drugs and may therefore be used for a variety of 

therapeutic applications. For such a reason, a remarkable number of inhibitors for GSTπ have 

been synthesized (Table II.2) as well as Ethacrynic acid (EA) and its analogs [52, 53]. It is the 

first clinical use of GSTπ inhibitors. Previously, it has been commonly used as a diuretic in 

clinical research for decades. In addition, various natural inhibitors present in plants have also 

been discovered and investigated. The newer TLK117 / TLK199 and NBDHEX inhibitors can 

prove more promising [42, 55].  
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Table II.2 Antitumor agents targeting GSTπ in background [42] 

Drugs Selected examples Functional significance 

GSTπ 

inhibitors 

 

 

 

GSTπ 

prodrugs 

EA and is analogs 

 

TLK117/TLK199 

NBDHEX and its 

analogs 

GSH or GSH 

derivatives (TLK286) 

NO prodrugs (JS-K) 

Inhibiting the detoxification activity. Usually by binding to GSTπ substrate-

binding sites 

Promoting tumor-cell apoptosis by activating the MAPK pathway 

and  blocking the combination of JNK and GSTπ  

Catalyzed by GSTπto release nitrogen mustard segment to induce tumor-

cell apoptosis 

Catalyzed cy GSTπ to release high-concentration NO to kill tumor cells 

directly   

Abbreviations: GST, glutathione S-transferase; EA, ethacrynic acid; NO, nitric oxide. 

 

As already reported, GSTP1-1 is over expressed in several cancers where it protects 

cells from cell death by blocking the effects of JNK or its upstream activation. Indeed, the 

formation of both GSTP1-JNK and GSTP1-1-TRAF2 complexes has been identified in vivo 

[58]. NBDHEX (6-[7-nitro-2, 1, 3-benzoxadiazol-4-ylthio] hexanol) is designed as a 

"mechanism-based inhibitor" which has a potent effect on GSTπ. A number of compounds 

identified by ROTILI et al., containing NBD scaffolds which are not GSH peptidomimetics, 

are capable of inhibiting GSTP1-1 with a specific mechanism of action compared to other GST 

inhibitors [56].  

NBDHEX binds the GSTP1-1 H-site and forms a GSH complex to inactivate the 

enzyme (Figure II. 9). Importantly, NBDHEX is also able to isolate GSTP1-1 from its JNK and 

TRAF2 complexes, thus allowing their activation. Drug combination studies have shown that 

NBDHEX is significantly active in cisplatin-resistant human osteosarcoma cells [57]. 
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Figure II. 9 GSTP1-1 function in the JNK signaling pathway.  

Monomeric GSTP1 prevents tumor cells from apoptosis by inhibiting the JNK signaling pathway via 

the development of a GSTP1-JNK-cJun complex that inhibits c-Jun phosphorilation. Under conditions 

of stress, GSTP1 can disassociate and dimerize from the complex, allowing JNK to phosphorilate c-Jun. 

This event can also be caused by a GST inhibitor NBDHEX that binds GSTP1 and induces its release 

from the complex [37]. 
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"Knowledge always win in the end, but not unless and until it is known." – Professor John 

McMurtry 
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Chapter 3:  
 
Computer-Aided Drug Design 
and Discovery 
 

 

 

 

 

III.1. Generality:  

As mentioned in chapter II (Section.1), medical chemists have often struggled with the 

difficult problem of determining which compounds to synthesize. There are several ways to classify 

hits, which can then be used as a starting point for hit to lead optimization. Computer Aided Drug 

Design (CADD) techniques provide a time-consuming and economical tool for the discovery of 

novel active compounds. It is a theoretical methodology that uses computer-based techniques. This 

strategy has become the most commonly used technique to substantially reduce the number of 

compounds to be synthesized and tested in vitro by predicting which would be inactive and active. 

CADD methods can be divided into two main strategies, in which the drug target or known 

active compounds are used to find novel compounds having likely the desired effect (Figure III.1), 
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namely: (a) ligand-based methods which depend on the similarity of compounds of interest to 

active compounds, and (b) receptor-based methods which focus on the complementarity of the 

compounds of interest with the binding site of the target protein [1]. 

The computational chemist has the laudable aim of developing these two different forms of 

CADD approaches by using some kind of computer program capable of automatically evaluating 

very large compound libraries. However, the combination of different structural and ligand-based 

design techniques in drug discovery efforts has been established to be more successful than any 

single strategy, as both approaches are capable of complementing their strengths and weaknesses 

[2]. 

CADD approaches are currently very popular, trying to identify new hits in the R&D 

process for new drugs. They streamline the discovery process of new compounds, when data are 

available on one or more reference ligands, or a 3D-structure of protein–ligand complex. It is 

possible to cite numerous successful examples of these approaches, which are contributed in 

particular to the marketing of an anti-cancer drug, gefitinib (Iressa®), and LY-517717 compound, 

a factor Xa inhibitor from a virtual structure-based screening, which reaches phase II of clinical 

trials [3]. 
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Figure III.1.  Workflow of ligand -based drug design (LBDD) and structure -based drug design (SBDD). 
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III.2. Ligand-based drug design (LBDD): 

III.2.1. QSAR analysis:  

Quantitative Structure–Activity Relationship (QSAR) Analysis is one of the commonly 

used methods in ligand-based drug design processes to explain the quantitative relationship 

between structural molecular properties (descriptors) and their functions, e.g. biological activities, 

physicochemical properties, toxicity, or other kinds of activities on their molecular characteristics 

[4]. 

The structure of any chemical compound is determined by its properties. The main concept 

of QSAR is that identical or more precisely similar molecules have similar properties. In other 

words, a "small" change in the chemical structure of any compound leads to a change in their 

biological activities [5]. QSAR proposes that if a group of chemical compounds shows the same 

mechanism of action against the target, the modification of biological activity often changes 

chemical, structural and physical properties [6]. 

The basic formalism of the QSAR method will result from statistical analyses. The simple 

mathematical relationship is defined as follows (Eq III.1) [7]: 

Function = f (structural molecular or fragment properties)                Eq III.1 

During the QSAR analysis, the creation of models follows a general workflow, starting 

with dataset collection and the generation of chemical descriptors to be used as independent 

variables. After the removal of descriptors, which value varies little or not, across all molecules, 

the Multivariate study finally conducts a statistical validation of the model(s) to ensure its reliability 

(Figure III.2) [8]. 
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Figure III.2. Flowchart of the methodology used in QSAR study. 

Currently there are more than 5000 descriptors that can be used in QSAR studies. They 

may be classified into various groups that can be derived from the chemical structure or from the 

use of suitable software, based on the various dimensions of the molecular descriptor; this could 

be divided into 2D-QSAR, 3DQSAR, 4D-QSAR, and so on. It can also generally be categorized 

as QSAR receptor-independent (RI) and QSAR receptor-dependent (RD), based on the availability 

of target receptors in the model construction process. So, this division decides the form or the 

medical modalities [9]. 

III.2.2. Object of QSAR study: 

The main objective of the QSAR study is the rational creation of a mathematical model, 

followed by an examination of the involved chemical information, in order to gain insight into the 

mechanism and behavior of the system to be studied [10].  

It is also useful in identifying alternative modes of action, in selecting useful structural 

features, in preparing new design methodologies, in developing new drugs and in helping to 

formulate new hypotheses for future research studies. As a result, QSAR reduces costs, time and 
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human capital to make the pharmaceutical product available to patients. QSAR models are also 

used in anticipation of pharmacokinetic and pharmacodynamics properties. QSAR also predicts 

properties, such as: permeability, and solubility. In this thesis, the objective of the QSAR model is 

to enable the estimation of the biological activities of unknown or novel chemicals compounds to 

provide insight into the specific and consistent chemical properties or descriptors (2D/3D) 

describing the biological activity [11]. 

III.2.3. Steps involved in QSAR study: 

The production of a good quality QSAR model depends on several factors, such as: the 

quality of biological data, the selection of descriptors and the used statistical analysis. Given the 

technical advancements and the wider availability of different statistical methods and types of 

descriptors, it is now relatively easy and straightforward to create a statistically accurate model 

[12]. 

III.2.3.1. Data collection and selection of training set: 

The process of identifying accurate, initial, meaningful and potentially useful data 

arrangement is called data mining. This can include data collection, data cleaning, data engineering, 

algorithm engineering, algorithm running, result assessment, and information utilization . At the 

time of data collection, the same test procedure must be followed to bypass inter-laboratory shifts. 

[13- 15]. In order to retrieve a good collection of QSAR data, the following steps should be 

considered, namely: 

 The number of chemical substances required should be appropriate. 

 The biological activity of the chemical substances should be evenly distributed. 

 The activity spectrum of action should be spread between the least active and extreme 

active chemical substances. 

 The list of data set should have a diversity dose response relationship [16]. 

It is critically important for any QSAR model that the training set chosen to calibrate the 

model shows a well-balanced distribution and contains representative compounds. This calibration 

can be accomplished by a systematic collection of the training set, where the key structural features 

are systematically and simultaneously varied. In addition, there should be a proper ratio between 

the number of chemical substances in the training and the test set lists. The statistical molecular 
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design, self-organizing map, clustering, selection of Kennard-Stone, exclusion of spheres, and so 

on are few of the different techniques available to divide the data into training and test sets [17]. 

III.2.3.2. Molecular Descriptors used in QSAR: 

Molecular descriptors are concepts defining the specific information of the chemical 

substances being studied. They are the result of a logical and mathematical process, which 

translates chemical information encoded within the symbolic representation of a substance into a 

useful number. The useful number should therefore be correlated with different physical properties, 

chemical reactivity or biological activity. This mathematical representation must be invariant with 

the size of the molecule and the number of atoms in order to allow modeling using statistical 

methods [18].  

There are generally different types of descriptors being used during QSAR. Descriptors 

may be classified in a number of ways, including: constitutional, topological, geometric, quantum 

chemical and physicochemical one. Therefore, the majority of QSAR scientists prefer to classify 

the types of descriptors in terms of their dimensions. In view of this element, Table III.1 offers a 

valuable example of largely used molecular descriptors depending on dimensions [5].The key 

advantage of calculating theoretical descriptors using sophisticated software is that they can be 

produced even for those compounds which are not yet synthesized [19]. Table III.1 shows 

molecular descriptors widely used depending on various dimensions. 

Table III.1. Popularly known molecular descriptors dependent on various dimensions [20]. 

Dimension of 

descriptors 

Parameters 

0D Constitutional indices, molecular property, atom, and bond count. 

1D Fragment counts, fingerprints. 

2D Topological, structural, physicochemical parameters including thermodynamic descriptors. 

3D Electronic, spatial parameters, MSA parameters, MFA parameters, RSA parameters. 

4D Volsurf, GRID, Raptor, etc. derived descriptors. 

5D 
 

 

These descriptors consider induced-fit parameters and aim to establish a ligand-based virtual or 

pseudoreceptor model. These can be explained as 4D-QSAR 1 explicit representation of different 

induced-fit models. Example: flexible-protein docking. 

6D These are derived using the representation of various solvation circumstances along with the 

information obtained from 5D descriptors. They can be explained as 5D-QSAR 1 simultaneous 

consideration of different solvation models. Example: Quasar. 

7D They comprise real receptor or target-based receptor model data. 
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III.2.3.3. Variable selection methods: 

The performance of QSAR thus depends not only on the consistency of the initial collection 

of active/inactive compounds, but also on the choice of descriptors and the capacity to produce an 

acceptable mathematical relationship [21]. 

However, a single molecule can be represented in several ways by computing thousands 

computational descriptors using many algorithms and sophisticated software. Several of these 

descriptors catch the same details at times and are directly linked to each other. Therefore, the 

selection of descriptors requires a great deal of expertise for the QSAR modeler to choose the right 

ones for model creation [22]. Models can be constructed, using all the measured descriptors, but 

there may be several explanations to choose only a subset of them, such as: 

 Prediction of model accuracy can be enhanced by eliminating obsolete and unnecessary 

descriptors. 

 The QSAR model to be developed is also easier and theoretically quicker when fewer input 

descriptors are used and the interpretability of the correlation between the descriptors and 

the observable activity may be improved. 

 If the number of selected descriptors is high relative to the number of chemical substances 

of interest, the effective number of degrees of freedom could be too large to determine the 

accurate calculation of the parameters of the QSAR model. 

 Several machine learning approaches are more time-consuming than linear in the number 

of chemical substances and/or the number of descriptors, which prevents the study of data 

sets of several hundred descriptors [23]. 

For this purpose, specializing in the QSAR modeler; descriptors with a constant value for 

all observations and descriptors with a very low variance may be omitted. Just one descriptor for 

those exhibiting a strong degree of reciprocal correlation should be maintained. Descriptors which 

display a very poor connection with the biological activity can also be omitted in order to thin the 

descriptor pool. In certain situations, an effective scaling of the descriptors might also be necessary 

[24, 19].    
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III.2.3.4. Development of QSAR model:   

After the elimination of correlated and obsolete descriptors, the next step is to pick the 

descriptors to be used in the created model. In general, methods for designing the QSAR model 

could be divided into two groups: (i) Classical variable selection and (ii) Variable selection by 

artificial intelligence algorithms [25]. The first group focuses on linear methods by considering a 

linear interaction between independent variables (descriptors) and dependent variables (biological 

activity). However, in the case of artificial intelligence methods, non-linear techniques are used to 

pick independent variables (descriptors) and help to solve some of the shortcomings of classical 

methods. The selection methods are grouped into two categories as showing in the follow section 

[26]. 

III. 2. 3. 4. 1. Linear regression: 

a. Multiple linear regression (MLR):  

MLR is one of the most common and basic methods used to create QSAR models, making 

it easy to understand the features used in model creation. In the MLR method, a linear relationship 

is formed between the compounds (activity/property/toxicity), Y, and the number of independent 

variables, X, typically molecular descriptors [27]. The simplified expression (Eq III. 2) of the MLR 

equation will be as follows: 

𝑌 = 𝑎0 + 𝑎1 × 𝑋1 + 𝑎2 × 𝑋2 + 𝑎3 × 𝑋3 + ⋯ + 𝑎𝑛 × 𝑋𝑛                         Eq III. 2 

Where X1, X2... Xn are independent variables or molecular descriptors present in the model 

with the associated regression coefficients a1, a2..., an (for molecular descriptors 1 to n) and a0 is 

the constant term of the model [28]. 

The primary drawback of MLR is that it can require collinear descriptors, which may refer 

to a regression model with incorrect regression coefficients. In contrast, the number of features 

chosen does not exceed the number of observations used for model development [29]. 

b. Partial least squares regression (PLS): 

PLS is the simplest method of quantitative multivariate modeling. It implies a linear 

relationship between two data matrices, X (dependent variables) and Y (independent variables) 

(target variable).  In comparison to MLR, PLS provides advantages such as it can be useful in the 
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study of data with highly collinear, noisy and several X variables, as well as in the simultaneous 

simulation of several target variables Y [30]. PLS is based on the premise that the analyzed system 

relies on the latent variables.  

PLS eliminates the difficulty of collinear features by removing these latent factors from a 

wide collection of descriptors, which provide the critical information needed to model the target 

(response variable). The latent variables T (known as X-score) and U (Y-score) are derived from 

the large collection of descriptors and the responses (biological activity). The obtained latent 

variable T (X-score) is used to predict the U (Y-score) and, then, the U (Y-score) is used to predict 

the response (biological activity) [31]. 

The number of latent factors used in PLS is an key factor for QSAR modeling and is 

typically accomplished by the use of cross-validation approaches, such as: n-fold cross-validation 

and leave-one-out methods, where a portion of the samples is used as a training set, while the other 

portion is set aside as a test set to verify the model which was developed from the training set [32]. 

III. 2. 3. 4. 2. Non-linear regression: 

Artificial neural networks (ANN):  

ANN are the most common and widely studied soft computing techniques. They are a 

family of mathematical models being focused on the workings of the human brain. However, in 

addition to some neurological understanding, it has been shown to be an important method for 

solving nonlinear problems in much scientific research, ranging from technology to biological 

applications [33]. To each of these entries (inputs) is associated a weight (Wi), representative of 

the forces of the connection. Each elementary processor has a unique output, which then branches 

out to supply a variable number of downstream neurons [34]. The network consists of several basic 

units called neurons, grouped in a certain topology, and connected to each other. Neurons have 

been arranged into layers. Based on their location, there are three layers so-called input layers, 

hidden layers and output layers. Each of them has separate relations and functions, namely the 

transfer function, the learning rule and the connection formula [35].  

Four procedures (Figure III.3) are done in a computer neuron. The first one is the input and 

output process, which compares the input signals from the former layer neurons, decides the 

strength of each input and transmits the output signal toward the next layer neurons. The next one 
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is the sum function, which measures the number of the cumulative input signals according to 

equation III.3 [36]: 

𝑖𝑗 = ∑ 𝑤𝑖𝑗 × 𝑜𝑖                                          Eq III.3 

 

Figure III.3. Graphical view of an artificial neural network with one input layer (comprising three 

descriptors) attached to the hidden layer with the necessary weights and the output layer. 

 

Where ij is the net entry in node j (of, say, layer λ), while oi is the output of node I in the 

previous layer (λ-1); and wji is the weight associated with nodes i and j. The third one is the 

activation function, which causes outputs to change from time to time. The overview result is 

transferred to this function before the conversion function is entered. The final factor is the transfer 

function that maps the summed input to the output value. There are many possible forms for the 

transfer function, which are threshold functions, sigmoid functions and linear functions (figure III. 

4). The sigmoid logistic function is the most used, because it represents a good compromise 

between the threshold and linear functions [37], and incorporates the nonlinearity feature in the 

mapping process: 
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Figure III.4. Activation functions generally used for neural networks study. 

An ANN will contain a variety of hidden layers. These units are composed of a regression 

equation that transforms input information into non-linear output data. 

 In order to promote the development of alternative approaches, the OECD (Organization 

for Economic Cooperation and Development) has recently developed rules for the validation of 

QSAR/QSPR models [18, 19]. The assessment of each of the five concepts is an essential step for 

presenting models relevant to the experimental plan, which was the purpose of this study. 

 Principle 1—A defined endpoint 

 Principle 2—An unambiguous algorithm 

 Principle 3—A defined domain of applicability 

 Principle 4—Appropriate measures of goodness-of-fit, robustness and predictivity 

 Principle 5—A mechanistic interpretation, if possible [38]. 

III. 2. 3. 5. Validation of QSAR model: 

The next progress, following the development of the QSAR model, is to verify the 

acceptability and reliability of the QSAR model predictions. The evaluation of QSAR regression 

model success in fitting, robustness and external prediction is crucially important [39]. The 

requisite condition for the validity of the regression model is that the multiple correlation 

coefficients R2 is as close as possible to one and the standard error of the estimation is small; 

although the former is not essentially a very good predictor of fitness. Apart from the use of fitness 

parameters, the validation of the QSAR models consists of four major parameters [40 (1) Internal 

validation. (2) Validation by data division in training and testing samples. (3)External validation 
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applying the model to outside data. (4) Data randomization. Table III.2. Demonstrate Validation 

parameters and their threshold values. 

Table III.2. Mathematical equation of statistical validation metrics used in QSAR studies [41]. 

 

parameter Formula Threshold 

R2 

1 −
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙)2

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑡𝑟𝑎𝑛 ̅̅ ̅̅ ̅̅ ̅̅ ̅)2⁄  

PRESS = ∑(𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒𝑑),  𝑆𝑆𝑌 = ∑(𝑌𝑜𝑏𝑠 − 𝑌𝑡𝑟𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ )2 

Ytran  is the mean observed activity of the training set compounds 

R2>0.6 

R2
adj 

{(𝑛 − 1)𝑅} − 𝑃
𝑛 − 𝑝 − 1⁄  

 

N est le nombre des observations (les molécules) ; est le nombre de 

variables indépendantes (les descripteurs) ; est le coefficient de 

détermination du modèle. 

R2
adj>0.6 

Q2
LOO 

1 −
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒𝑑)2

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑡𝑟𝑎𝑖 ̅̅ ̅̅ ̅̅ ̅̅ )2⁄  

 

Yobs is the observed response, Ypred is the calculated response, n defines 

the total number of compounds and predictor variables is denoted as p. 

Q2
LOO>0.6 

F 

∑(𝑌𝑐𝑎𝑙 − �̅�)2

𝑝
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙)2

𝑛 − 𝑝 − 1

⁄  

 

Yobs is the observed response, Ycalc is the calculated response, n defines 

the total number of compounds and predictor variables is denoted as p. 

F > F of fisher table 

SE 

√∑(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙)2

𝑛 − 𝑝 − 1⁄  

 

Yobs and Ycalc are the observed (experimental) and estimated scores 

respectively, while n is the number of compounds and p is the number 

of descriptors 

SE should be low for a 

good model 

R2
pred 1 −

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙)2

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑡𝑟𝑎𝑛 ̅̅ ̅̅ ̅̅ ̅̅ ̅)2⁄  R2
pred>0.6 

Q2
F1 

1 −
∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑐𝑎𝑙(𝑡𝑒𝑠𝑡))2

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑡𝑟𝑎𝑛 ̅̅ ̅̅ ̅̅ ̅̅ ̅)2⁄  

 

Q2
F1>0.5 

Q2
F2 

1 −
∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑐𝑎𝑙(𝑡𝑒𝑠𝑡))2

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅)2⁄  

 

Q2
F2>0.5 

Q2
F3 

𝟏 −

[∑(𝒀𝒐𝒃𝒔(𝒕𝒆𝒔𝒕) − 𝒀𝒑𝒓𝒆𝒅(𝒕𝒆𝒔𝒕))
𝟐

]
𝒏𝒕𝒆𝒔𝒕

⁄

[∑(𝒀𝒐𝒃𝒔(𝒕𝒓𝒂𝒏) − 𝒀𝒕𝒓𝒂𝒏)
𝟐

]
𝒏𝒕𝒓𝒂𝒊𝒏

⁄

 

 

ntrain and ntest denote the number of training set and test set compounds, 

respectively 

Q2
F3>0.5 
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CCC 
2 ∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − ȳ)𝑛

𝑖=1

∑ (𝑥𝑖 − 𝑥)2 + ∑ (𝑦𝑖 − ȳ)2 + 𝑛(𝑥 − ȳ)𝑛
𝑖=1

𝑛
𝑖=1

 CCC< 1 

 

𝑄𝑡𝑟𝑎𝑛
2 > 0.5 

𝑅𝑡𝑒𝑠𝑡
2 > 0.6 

𝑟2 − 𝑟0
2

𝑟2
< 0.1 𝑎𝑛𝑑 0.85 ≤ 𝑘 ≤ 1.15 𝑜𝑟 

𝑟2 − 𝑟0
′2

𝑟2
< 0.1 𝑎𝑛𝑑 

0.85 ≤ 𝑘′ ≤ 1.15 

|𝑟0
2 − 𝑟0

′2| < 0.3 

 

rm2 metric 

𝑟𝑚
2 =

(𝑟𝑚
2 + 𝑟𝑚

′2)
2

⁄  and ∆𝑟𝑚
2 = |𝑟𝑚

2 − 𝑟𝑚
′2| 

Where 𝑟𝑚
2 =  𝑟2 × (1 − √𝑟2 − 𝑟0

2) 

𝑟𝑚
′2 =  𝑟2 × (1 − √𝑟2 − 𝑟0

′2) 

The parametre r2 and r0
2 are defined as folows: 

𝑟0
2 = 1 −

∑( 𝑌𝑜𝑏𝑠−𝑘×𝑌𝑝𝑟𝑒𝑑)2

∑( 𝑌𝑜𝑏𝑠−𝑌𝑜𝑏𝑠)2  & 𝑟0
′2 = 1 −

∑( 𝑌𝑝𝑟𝑒𝑑−𝑘′×𝑌𝑜𝑏𝑠)2

∑( 𝑌𝑝𝑟𝑒𝑑−𝑌𝑝𝑟𝑒𝑑)2  

The term k and k' are defined as: 

𝑘 =
∑(𝑌𝑜𝑏𝑠×𝑌𝑝𝑟𝑒𝑑)

∑(𝑌𝑝𝑟𝑒𝑑)2 & 𝑘′ =
∑(𝑌𝑜𝑏𝑠×𝑌𝑝𝑟𝑒𝑑)

∑(𝑌𝑜𝑏𝑠)2  

The Yobs and Ypred values have been scaled at the beginning using the 

following formula: 

𝑌𝑖(𝑠𝑐𝑎𝑙𝑒𝑑) =
𝑌𝑖 − 𝑌min (𝑜𝑏𝑠)

𝑌max (𝑜𝑏𝑠) − 𝑌min (𝑜𝑏𝑠)
 

 

rand r0
2 are the squared correlation coefficients between the observed 

and (leave-one-out) predicted values of the compounds with and 

without intercept respectively. 

∆rm
2<0.2 

r2
m>0.5 

rm
2

(rank) 𝑟(rank)
2 × (1 − √𝑟(rank)

2 − 𝑟0 (rank)
2 )  

𝑹𝒓̅̅ ̅̅  An average of the correlation coefficient for randomized data 𝑅𝑟̅̅̅̅ <0.5 

𝑹𝒓̅̅ ̅̅ 𝟐 An average of determination coefficient for randomized data 𝑅𝑟̅̅̅̅ 2<0.5 

𝑸𝒓̅̅ ̅̅ 𝟐 
An average of leave one out cross-validated determination coefficient 

for randomized data 
𝑄𝑟̅̅̅̅ 2<0.5 

C Rp
2 

𝑅2 × (1 − √|𝑅2 − 𝑅𝑟̅̅̅̅ 2|) 
C Rp

2>0.6 

MAE 
1

n
× ∑|Yobs − Ypred| 

 Good predictions: 

MAE  0.1  training 

set range, AND MAE 

3   0.2 training 

set range    

 Bad prediction: 

MAE  0.15  training 

set range; OR MAE 

training set rang MAE 

3  >0.25 training 

set range e 
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III. 2. 3. 6. Applicability domain (AD): 

 The application of every QSAR model to new compounds is indirectly limited by the fact 

that the model is derived from a certain finite set of molecules: the training set. Therefore the 

prediction of a modeled response using QSAR is only valid if the compound being predicted falls 

beyond the model AD, since it is hard to anticipate the entire universe of compounds using a 

specific QSAR model [42]. The general description of the applicability domain (AD) was coined 

by Netzeva and colleagues [43]: "The applicability domain of the QSAR model is the response and 

chemical structure space in which the model makes predictions with certain reliability". The AD is 

a valuable tool for the accurate implementation of QSAR models, while the characterization of the 

interpolation space is relevant in the definition of the AD. AD (Figure III. 5. a) is an area in the 

chemical space containing physicochemical, electronic or biological knowledge on which the 

model training set is developed [44]. Various methods are in place to assess the AD of QSAR 

models. From the QSAR publications of the last decade, the most widely used method for 

estimating interpolation regions is the leverage approach (Williams plot Figure III. 5. b). A 

compound would be found outside the applicability domain if the leverage value is greater than the 

critical value of 3p/n, where p is the number of model variables plus 1 and n is the number of 

objects used to construct the model [45].  

 

Figure III. 5. a) Schematic overview of the application domain. Every ringed dot is a single data point used 

for model training. New Chemical structures (solid dots) that fall into the inner, darker field are close enough 

to the training set and the model can be used confidently. The latest substances that fall in the white region 

are so far from the training collection that the formula can no longer be used. b) Williams' plot for the 

applicability domain of QSAR model [46].  
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III.2.2. Chemical similarity analysis 

The quest for molecular similarities is a key concept for the drug discovery based in Ligand. 

Its aim is to identify and discovery new chemical substances with identical structures and 

bioactivity to query compounds. Chemical similarity is based on the idea that two identical 

molecules are likely to share similar bioactivity and physical properties. This search strategy was 

used to narrow large datasets of chemical substances to a smaller number by measuring and 

comparing the similarity coefficients between the known active compound and the compounds 

being screened. Molecular similarity has also been used to optimize the efficacy and 

pharmacokinetic properties of lead compounds, based on their structure–activity relationship [33]. 

A number of computational chemical similarity search algorithms have been developed. Chemical 

substructure fingerprints, Non-hashed structural fingerprints, such as: MACCS keys or Obabel FP3 

are the most widely used methods [48]. 

Some forms of molecular representations have been used in similarity searches, including 

physiochemical properties, topological indices, molecular diagrams, pharmacophore 

characteristics, molecular shapes, molecular fields, and so on. When the molecular descriptors for 

the molecules of interest have been determined and the compounds translated to suitable data 

representations, the next step is to measure the chemical similarity using a distance metric. These 

metrics can be measured using one of the different methods. However, in the case of binary 

chemical fingerprints, the most common is the Dice coefficient, the Cosine coefficient, and the 

easiest and most straightforward distance calculation is the Tanimoto coefficient [49]. The 

coefficients are so-called "association" when they take, each one, their value in the interval [0; 1], 

thus making it possible, by simple subtraction, to convert a distance metric into a similarity metric 

and vice versa [50]. 

Focused on structural representation, molecular similarity techniques can be mainly divided 

as 2D or 3D similarity techniques. 2D similarity methods rely only on 2D structural knowledge 

and are among the easiest, most effective and most common similarity search methods. In order to 

overcome shortcomings associated with 2D similarity techniques, several techniques have been 

developed that account for 3D molecular conformation when performing similarity searches [51]. 

These techniques include form similarity, 3D fingerprints, field-based molecular methods and 

pharmacophore modeling, which were considered to be the most commonly used tool. A 

description of the pharmacophore modeling is included in the next section. 
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III.2.3. Ligand_ Based Pharmacophore:   

Pharmacophore simulation is another important and effective approach used today in 

CADD. This method allows researchers to conduct simulated screening on vast ligand databases 

and to accomplish the key goals of the CADD, which are meant to identify and/or design new drug 

candidates for use as new medicines or to design new drugs that are supposed to be superior to 

current treatments [52]. 

The definition of a pharmacophore was previously proposed by Pual Ehrlich in 1909. It is 

known as "a molecular framework which carries (phoros) the essential features responsible for a 

drug's (pharmacon's) biological activity" [17] This description has been revised by Peter Gund after 

a century of creation: "a set of structural features in a molecule that is recognized at a receptor site 

and is responsible for that molecule's biological activity" [18]. According to the very recent 

description of the IUPAC [2], there is a pharmacophore model "an ensemble of steric and electronic 

features that is necessary to ensure the optimal supramolecular interactions with a specific 

biological target and to trigger (or block) its biological response" [15, 39]. One which explains it 

more easily: a pharmacophore is a spatial arrangement of functional groups important for biological 

activity; a pattern arising from a collection of molecules having biological activity. As a result: 

 The pharmacophore identifies the basic, electronic and steric function identifying points 

required for an optimum relationship with the related pharmacological objective. 

 A pharmacophore is not a real combination of functional groups nor a particular compound, 

but a purely abstract term which represents for the common compounds a potential 

interaction of a group of compounds against their binding site [53]. 

Focused on the superposition of a series of inactive and active compounds, either a ligand-

based pharmacophore model may be created. The goal of these methods can be summarized as the 

recognition of important features to be found in active compounds and, therefore, not found in 

inactive compounds. In a structure-based approach, by exploring potential contact sites between 

the biological active site and the molecules, Pharmacophore methods have been widely utilized in 
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scaffold hopping, 3D database search, VS, ligand profiling, fragment modeling, pose filtering and 

pharmacological predictive activities Figure III. 6 [54]. 

Figure III.6. General framework of pharmacophore methods. 

Ligand-based pharmacophore simulation is an efficient strategy to promote drug 

development and discovery where the target structure is unknown, indicating potential 

pharmacophore queries based on a collection of aligned active chemical structures, in which the 

choice of these ligands has a high effect on the subsequent pharmacophore model. Therefore, these 

recognized ligands are compared in the next step, and the typical chemical features of their 3D 

structures are removed, reflecting the critical interaction between the compounds and the 

macromolecular structure. This technique can be used to produce a pharmacophore model from a 

variety of ligands (training set chemical structures) and typically includes the following key steps: 

(i) A collection of suitable conformers have been created for each ligand in the training set list to 

reflect conformational versatility within the DS Diverse conformation generation module, using 
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the conformational analysis, conformational algorithm, and (ii) alignment of multiple ligands in 

the training set and generation of the ligand-based pharmacophore model [21, 55] . 

 There are two different kinds of techniques which are documented in the published works 

to define the important common chemical characteristics for the design of pharmacophore models. 

Similar Features Pharmacophore Modeling [56] uses similar chemical features is found on the most 

active chemical structure; 3D QSAR Pharmacophore Modeling [57] is determined by the chemical 

properties of the most active and inactive chemical structures and their subsequent biological 

action. The 3D-QSAR technique differs from the Common Feature Pharmacophore method, since 

there is no restriction on the number of training chemical structures set and the technique does not 

need empirical biological activity measures in comparable bioassay conditions [58]. 

(iii) The final stages are the evaluation of the pharmacophore model by: Fischer's 

randomization test, cost analysis and the estimation of biological activity of the test set list. The 

performance of the model is defined in terms of fixed costs, total costs and null costs. The fixed 

cost is the simplest model which suits the data perfectly [59]. 
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III.3. Structure-based drug design (SBDD): 

III. 3. 1. Molecular Docking:  

Many enzymes or proteins are targets for essential bioactive chemical agents in the treating 

of plant, animal and human related diseases. The interaction between biologically important small 

chemical compounds (so-called ligands) and protein or enzyme targets provides an important role 

in the maintenance of protein functions. Molecular docking is an analysis of how two or even more 

molecular structures (e.g. drugs and enzyme or proteins) interacting together [60]. Molecular 

docking is among the most widely used techniques in SBDD once 3D-target protein and binding 

site are available. This methodology is able of predicting and defining, with a high level of 

precision, the conformation and low-energy binding mode of small-molecule ligands within the 

required protein or enzyme target binding site. 

Fischer suggested first ever docking strategy for binding ligand receptor research (Figure 

III. 7) demonstrates the "lock-and-key model"[3], which corresponds to a rigid docking. Ligand 

moves into the bending site of the target as a key, and the target acts as a lock to detriment the 

perfect position for the "key" to unlock the "lock". This model underlines the significance of 

geometric complementarity [61]. Therefore, the actual docking mechanism is so fluid that targets 

and ligands need to modify their orientation to match each other well. So, computer-simulated 

ligand binding attempts to determine the current best ligand binding mode for a proteins partner. It 

consists of producing a variety of potential conformations/orientations, i.e. ligand poses, and within 

the macromolecule binding site (here just proteins are considered). The existence of the three-

dimensional structure of the protein is therefore a sufficient condition. For reliable docking 

analysis, an experimental structure (e.g. X-ray crystallography or NMR) or a structure extracted 

through computational methods (e.g. homology modeling) with high resolution is needed [62]. 

A chemical substance or ligand which is strongly joined by hydrogen bonds, van der Waal 

bonds or any potential electrostatic attractions connected with the receptor or protein target of the 

disease can block the role and then behave as a drug. Hydrogen bonds are localized electrostatic 

connections between atoms that contribute an important role in the detection of ligand binding to 

the protein. Calculation of correct protein-ligand interactions is the main concept behind structural 

drug development [63].  
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Figure III.7. Enzyme Activity Model Lock-and-Key [64]. 

III.3.1.1. Theory of docking: 

Basically, the determination of the most possible binding orientations consists primarily of 

two parts: firstly, the use of a search algorithm to determine ligand orientations at the active site of 

the macromolecule, and, secondly, the scoring function, which correlates the score for each 

orientation (figure III.8). Preferably, search algorithms must be able to achieve the experimental 

interaction mode, and the score function will also be the best of all the generated orientations [65]. 

These tasks are performed by the software of this approach in a cyclical process. 
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Figure III.8. Schematic explains the techniques used for protein ligand docking. 

III.3.1.2. Search algorithm: 

The algorithm can establish an optimal number of orientations where the structural 

properties of the compounds, such as torsional (dihedral), translational and rotational degrees of 

freedom, are adjusted progressively. A range of algorithms used for docking study could make the 

treatment of ligand flexible, and can be categorized into three essential categories: systematic 

methods (incremental construction, conformational search, databases); random or stochastic 

methods (Monte Carlo, genetic algorithms, tabu search); and simulation methods (molecular 

dynamics, energy minimization). The degrees of flexibility of the molecules involved in the 

calculation control the classification of molecular docking methods [66]. 

 The goal of these algorithms is to discover all the degrees of freedom in a ligand by rotating 

it from 0 to 360 ° for all single bonds using a picked incremental step. All the degrees of 

freedom of each coordinate are discussed in a combinatorial manner. As a consequence, the 

number of potential molecular conformations is measured by Eq III.4: 

Molecular 
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𝑁conformations = ∏ ∏
360

Ө𝑖,𝑗

𝑛𝑖𝑛𝑐
𝑗=1

𝑁
𝑖=1                      Eq III.4 

After multiple cycles of search and assessment, the minimal energy solution 

referring to the most probable binding mode will converge (Figure III.9.b). Despite the 

good quality of this system, it can converge to a local minimum instead of a global 

minimum. This downside can be solved by running simultaneous searches beginning from 

various points of the energy landscape (i.e., distinct conformations). These strategies are 

divided up into: Exhaustive Scan, conformational Ensemble, fragmentation [67]. 

 Stochastic algorithms: Adjust the values of the degrees of freedom randomly instead of 

systematically. The benefit of these strategies is speed, so they might theoretically find an 

optimal solution quickly. As a downside, they do not guarantee that the conformational 

space is fully checked, meaning that the real solution can be lost. The absence of 

convergence is partially overcome by increasing the number of iterations of the algorithm 

[62].  

Stochastic algorithms work by creating random improvements to a specific ligand or a 

ligand group. For this purpose, the algorithm produces a series of molecular orientations 

and occupies a wide variety of energy landscapes (Figure III.9.c). This approach removes 

trapping the final solution at a minimum of local energy and raises the chance of a global 

minimum. As the algorithm supports wide coverage of the energy environment, the expense 

of processing associated with this technique is a significant constraint [33, 35]. The benefit 

of these strategies is efficiency, so they might theoretically find an optimal solution quickly. 

The most popular stochastic algorithms in the world are: Tabu search, Swarm optimization, 

Evolutionary Algorithms (EA), and Monte Carlo (MC) [67].  

 Simulation methods: Molecular Dynamics are the most popular simulation technique, a 

process that explains the evolution of the system over time. This method is accomplished 

by changing each atom independently in the region of the rest of atoms, whereas the MD 

simulation reflects the versatility of both ligand and macromolecule more accurately than 

other algorithms. A wider explanation will be given in section III.3.2. 
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Figure III.9. Small-molecule conformational search methods. (A) A molecule containing two bulky groups 

(green and purple spheres) has its conformation defined by two internal dihedrals Φ1 and Φ2; (B) 

Considering Φ2 as a frozen dihedral, the energy variation due to rotation of Φ1 is plotted in a 1D energy 

landscape. The initial structure (grey spheres) is modified by changing Φ1, leading to a decrease in energy. 

The systematic search algorithm changes all structural parameters until a local (blue spheres) or global (red 

sphere) energy minimum is reached; (C) The stochastic search explores the conformational space by 

randomly generating distinct conformations, populating a broad range of the energy landscape. This 

procedure increases the probability of finding a global energy minimum [67]. 

III.3.1.3. Scoring: 

After the creation of thousands of ligand configurations, the scoring functions are another 

significant feature that needs to be discussed since they have an important role in the choice of 

poses. It is used to distinguish putative correct poses from incorrect poses produced by the sampling 

engine or binders from inactive compounds in a fair computational period. The goal of any scoring 

method is to measure the free energy change of the creation of the ligand-receptor complex pose 

[60]. This could be described by the fundamental thermodynamics (Eq III.5) given by the binding 

constant (Kd) and the free energy of Gibbs (ΔGL). 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆                              Eq III.5 

Where ΔH is the enthalpy change, T is the temperature of the system in Kelvin and ΔS is the 

entropy change [68]. 
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Free-energy simulation methodologies have been improved for the computational modeling 

of protein-ligand interactions and the estimation of binding affinity. However, these costly 

measurements remain inefficient for the measurement of large quantities of protein-ligand 

complexes and are not always reliable. Scoring functions introduced in molecular docking 

programs make numerous assumptions and simplifications in the evaluation of modeled complexes 

and do not adequately account for a variety of physical processes that determine molecular 

recognition, e.g. entropic effects [68]. The conventional classification proposed by Wang et al. 

(2002) is classified into three major groups: force field-based, knowledge-based and empiric. In 

2015, Liu and Wang suggest a new classification as following: physics-based, empirical, 

knowledge-based and machine learning-based. For that study of Jin li et al. indicates that the 

conventional classification is more general and is capable of categorizing the functions of score 

according to the major development plan embraced. 

 Force field based scoring functions:  It measures binding energy by integrating energy 

concepts from the classical force field of the bond (angle bending, dihedral variation and 

bond stretching) and non-bonded terms (electrostatic and van der Waals force) using 

equations of molecular mechanics [69]. It calculates both ligand internal energy and 

protein-ligand interaction energy by the electrostatic interactions described in the Coulomb 

function and van der Waals energy described in the Lennard Jones potential, where a 

distance-dependent dielectric can be added to mimic the solvent effect. Drawbacks include 

overestimation of binding affinity and arbitrary collection of non-bonded cutoff names, and 

the benefits of force field-based score functions include solvent accounting [70]. 

 Empirical scoring functions: are designed to replicate experimental affinity data; they are 

a separate type of assessment techniques. These operations are the sum of different empiric 

energy concepts, such as apolar interactions, ionic and hydrogen bonding, as well as 

entropic effects and desolvation, etc. For a first stage in the creation of an empiric function, 

a sequence of protein-ligand aggregates with defined binding affinities are used as a training 

set list to run a multiple linear regression study. The weight constants produced by the 

statistical model are then used as coefficients to modify the terms of the equation [71]. 

 Knowledge-based scoring functions: are other techniques used to test ligand-receptor 

binding energy. These approaches use mathematical analysis of interactive atom pairs from 

protein-ligand complex structure with accessible three-dimensional structures. These 
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potentials are built by considering the frequency where two separate atoms are observed 

over a specified distance in the structural data source. The various types of interactions found 

in the dataset are categorized and weighted by their frequency of occurrence. The total score 

value is the sum of these individual interactions. As knowledge-based functions do not rely 

on reproducing linking affinities (empirical methods) or ab initio measurements (force-field 

methods), they have an adequate balance between precision and speed [72]. 

 

Table III. 3. Examples of Scoring Function Formulae [66]. 

 

 

 

Scoring function formulate 

𝑽 = 𝑾𝒗𝒅𝒘 ∑(
𝑨𝒊𝒋

𝒓𝒊𝒋
𝟏𝟐

𝒊,𝒋

−
𝑩𝒊𝒋

𝒓𝒊𝒋
𝟔

) + 𝑾𝒉𝒃𝒐𝒏𝒅 ∑(
𝑪𝒊𝒋

𝒓𝒊𝒋
𝟏𝟐

𝒊,𝒋

−
𝑫𝒊𝒋

𝒓𝒊𝒋
𝟏𝟎

)

+ 𝑾𝒆𝒍𝒆𝒄 ∑
𝒒𝒊𝒒𝒋

𝜺(𝒓𝒊𝒋)𝒓𝒊𝒋

+ 𝑾𝒔𝒐𝒍𝒗 ∑(𝑺𝒊𝑽𝒋 + 𝑺𝒋𝑽𝒊)𝒆(−𝒓𝒊𝒋
𝟐 𝟐𝝈𝟐)⁄

𝒊,𝒋𝒊,𝒋

 

Extended force-field-based scoring function from AutoDock. 

For two atoms i, j, the pair-wise atomic energy is evaluated by the sum of van der Waals, hydrogen 

bond, coulomb energy and desolvation. W are weight factor to calibrate the empirical free energy. 

∆𝑮 = ∆𝑮𝟎 + ∆𝑮𝒓𝒐𝒕 × 𝑵𝒓𝒐𝒕

+ ∆𝑮𝒉𝒃 ∑ 𝒇(∆𝑹, ∆𝜶) + ∆𝑮𝒊𝒐

𝒏𝒆𝒖𝒕𝒓𝒂𝒍 𝑯−𝒃𝒐𝒏𝒅

∑ 𝒇(∆𝑹, ∆𝜶)

𝒊𝒐𝒏 𝒊𝒏𝒊𝒕

+ ∆𝑮𝒂𝒓𝒐 ∑ 𝒇(∆𝑹, ∆𝜶) + ∆𝑮𝒍𝒊𝒑𝒐 ∑ 𝒇∗(∆𝑹)

𝒍𝒊𝒑𝒐 𝒄𝒐𝒏𝒕𝒂𝒓𝒐 𝒊𝒏𝒕

 

Empirical scoring function from FlexX. 

ΔG is the estimated free energy of binding; ΔG0 is the regression constant; ΔGrot , ΔGhb , ΔGio , ΔGaro 

and ΔGlipo are regression coefficients for each corresponding free energy term; 𝒇(∆𝑹, ∆𝜶) is scaling 

function penalizing deviations from the ideal geometry; Nrot is the number of free rotate bonds that are 

immobilized in the complex. 

𝑷𝑴𝑭𝒔𝒄𝒐𝒓𝒆 = ∑ 𝑨𝒊𝒋(𝒓)
𝑲𝑰 

𝒓<𝒓𝒄𝒖𝒕−𝒐𝒇𝒇
𝒊𝒋

                             𝑨𝒊𝒋(𝒓) = −𝒌𝑩𝑻𝒍𝒏[𝒇𝑽𝒐𝒍−𝒄𝒐𝒓𝒓
𝒋 (𝒓)

𝝆𝒔𝒆𝒈
𝒊𝒋 (𝒓)

𝝆𝒃𝒖𝒍𝒌
𝒊𝒋

 ] 

Knowledge-based scoring functions PMF. 

kB is the Boltzmann constant; T is the absolute temperature; r is the atom pair distance. 𝒇𝑽𝒐𝒍−𝒄𝒐𝒓𝒓
𝒋

(𝒓) is 

the ligand volume correction factor; 

𝝆𝒔𝒆𝒈
𝒊𝒋

(𝒓)

𝝆𝒃𝒖𝒍𝒌
𝒊𝒋  designates the radial distribution function of a protein atom of type i and a ligand atom of type j. 
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III.3.1.4. Molecular docking types: 

 Rigid docking: This approach considers both ligand and protein to be like rigid structures, 

for that the search space is very small and limited. It includes only three translational and 

three rotational degrees of freedom during the searching process. This approximation is 

close to the "lock-key" binding model and is mostly used for docking protein where there 

are many orientation degrees of freedom too large to be looked for [46]. Throughout this 

case, ligand mobility may be handled with the use of a pre-computed range of ligand 

orientations or by allowing a degree of atom-atom overlap between the ligand and protein. 

In the general case of this technique, the binding site and the ligand are approximated by 

"hot" dots in these approaches and the overlap of the matching point is evaluated. 

Computations for rigid docking are easier to complete and do not reflect correct poses or 

global minimum orientation [73]. 

 Semi-flexible docking: In comparison to the previous approach, the flexibility of the ligand 

is reacquired where the orientation is changed; unlike the protein is solid entity. This type 

of docking is ideal for docking small molecules and macromolecules such as proteins or 

nucleic acids and small ligand compounds [74]. These approaches presume that the 

unaltered conformation of the protein may correspond to the one capable of recognizing the 

ligands to be docked. This hypothesis, as already stated, is not always confirmed. Since 

1980s, various docking algorithms have been developed (table III.3) [75].  

 Flexible Docking Its principle idea based on, during binding, a protein is not a passive solid 

agent and it considers ligand and protein to be flexible equivalents. During this method, the 

docking method allowed the orientation of the docking process (receptor and ligand) to be 

easily changed. In view of the fact that receptor and ligand variables rise in accordance with 

the number of atoms, multiple additional factors considerations need to be addressed. The 

fact is that the measurement is significant and that the docking procedure is too complex. 

Flexible docking is commonly used to reliably analyze the relationship (interaction) 

between compounds (generally ligand-receptor) accurately [76]. 

III.3.2. General on molecular dynamic: 

Molecular dynamics (MD) methods play a key role in understanding and forecasting the 

function, structure and properties of molecular systems. They are a crucial method for predictive 

molecular design. They were suggested in the being by Alder and Wainwright in the last of 1950s 
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to model the interactions of hard spheres. Nowadays, however, MD strategies are used to research 

almost any form of nucleic acids, macromolecule—proteins, carbohydrates—of biological or 

medicinal importance. In short, the MD approach is based on Newton's second law or the motion 

equation (Eq III.5) for a group of atoms [77, 75].  

𝑚𝑖 
𝛿𝑟𝑟𝑖

𝛿𝑡2
= 𝐹𝑖                        Eq III.5 

Where, Fi is the component of the net force acting on the ith atom with a mass, mi, and  ri 

denotes the position of the atom at time t. The force can then be computed as (Eq III.6): 

𝐹𝑖 = −
𝛿𝑈(𝑟1,𝑟2,….,𝑟𝑛)

𝛿𝑟𝑖
                  Eq III.6 

Where, U (ri, r2, . . ., rn) is the potential energy function of the specific conformation and 

can be described by using the concept of a force field with predefined parameters [78].  

The concept "force field" is a statistical method used to incorporate the mathematical 

formula and the related parameters. There are complicated equations, but they are easy to 

determine. It consists of an empirical form of the interatomic potential energy U, and a series of 

parameters used to characterize the energy of the protein as a function of its atomic coordinates 

[77]. The product of the MD simulation is a series of snapshots or orientations named the trajectory 

of the system after a certain period of time; typically tens to a few hundred nanoseconds. These 

snapshots can be used to explain device dynamics and to measure macroscopic properties using 

statistical mechanics principles, some of which can be directly related to experimental results [77]. 

We carry out computer simulations in the hope of understanding the properties of compounds 

assemblies in terms of their structure and the microscopic interactions between them. The key 

benefit of the MD method is its ability to simulate the laboratory conditions in which a conventional 

biological issue is answered [79]. 

In this formalism, the atoms of the system are modeled as points with a given mass and 

charge. Charges are used to measure the electrostatic force field by which the force of each atom 

in the system can be measured. The force is then used to update the position of each atom using 

classical mechanics. This method is then iterated to adjust the configuration of the system. This 

approach enables us to acquire knowledge not only on the conformations explored by protein 

systems, but also on their dynamics Figure III.10 [80].  
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Figure III.10. Molecular dynamics basic algorithm. Notes: The simulation output, the trajectory, is an 

ordered list of 3N atom coordinates for each simulation time (or snapshot). Abbreviations: Epot , potential 

energy; t, simulation time; dt, iteration time; For each spatial coordinate of the N simulated atoms (i): x, 

atom coordinate; F, forces component; a, acceleration; m, atom mass; v, velocity [80].  
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IV. 1.  QSAR investigations and Ligand-based virtual screening on a series of 

nitrobenzoxadiazole derivatives targeting human glutathione-S-transferases 

 

 

Figure IV. 1. The workflow used in QSAR-based virtual screening study  
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IV. 1. 1. Introduction  

For the rational design of novel GSTP1-1 inhibitors, the quantitative structure-activity 

relationship (QSAR) [1-5] has considered to be an important method for estimating the biological 

activities of molecular structure compounds and experimental data [6]. Thanks to QSAR, the 

biological properties and activities can be easily estimated in silico without any experimental effort 

for the synthesis and evaluation of potentially novel compounds [7, 8]. The secret to success in this 

type of research is the proper choice of molecular descriptors related to the biological behavior, the 

chosen statistical models and the consistency and availability of biological data [9]. Common 

QSAR approaches include partial least squares (PLS) [11], multiple linear regression (MLR) [10], 

artificial neural network (ANN) [13], genetic algorithms (GA) [12], and support vector machine 

(SVM) learning method [14]. 

The objective of this study (Figure IV. 1) is to validate an efficient strategy for the accurate 

prediction of molecular geometries and electronic properties of potentially active compounds and 

to identify the best molecular descriptors to be used in combination with the linear (MLR) and 

nonlinear (ANN) QSAR models to identify the best GSTP1 inhibition candidates. Towards this 

reason, the biological data used in this study concerned cytotoxic agents targeting human 

glutathione-S-transferases as defined by Caccuri and co-workers. [15, 16]. These authors 

researched, examined, synthesized and tested a series of 38 nitrobenzoxadiazole derivatives for 

their in vitro GSTP1-1 inhibitory activity. Their chemical compositions are shown in Table IV. 1. 

They correspond to the substituted thiol group fixed in para-position with respect to the group nitro 

of nitrobenzoxadiazole. This family of thiol-activated anticancer drugs is promising for cancer 

treatment. However, most of them are either in pre-clinical creation or clinical trial phases [17]. In-

depth studies of these compounds are therefore required. 

We began our analysis by optimizing the composition geometry of interest derivatives of 

nitrobenzoxadiazole. These optimizations are carried out at the theoretical stage of B3LYP/6-311 

++ G (d, p). Subsequently, the validation of the accuracy and reliability of the QSAR models 

adopted was carried out using the LOOCV, Y-randomization and external test set validation 

techniques. The QSAR models obtained were finally used to classify the biological activities of 

potentially novel active compounds by means of in silico screening procedures. 
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Table IV. 1. Observed and predictive activities (and their differences) of the set of nitrobenzoxadiazole 

derivatives [15, 16]. * denotes the external test set for GSTP1-1. 

 

No. Compound structure 
pIC50 

(µM) 

Pred. 

(MLR) 
ΔMLR 

Pred. 

(ANN) 
ΔANN 

1 

N

NO
S

N+
-O

O

OH

 

6.097 5.880 -0.217 6.178 0.081 

2 

N

NO

N+
-O

O

S

 

6.222 6.330 0.108 6.499 0.277 

3 N

NO

N+
-O

O

S

 

6.000 6.470 0.47 6.565 0.565 

4 

N

NO

N+
-O

O

S

 
 

6.699 6.630 -0.069 6.616 -0.083 

5 

N

NO

N+
-O

O

S

O

OH

 

5.509 5.640 0.131 5.799 0.29 
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6 

N

NO

N+
-O

O

S

O

OH

 

5.854 5.650 -0.204 5.816 -0.038 

7 

N

NO

N+
-O

O

S

O

OH

 

5.770 5.630 -0.14 5.773 0.003 

8 

N

NO

N+
-O

O

S

O

O

 

5.745 6.130 0.385 5.935 0.19 

9 

N

NO

N+
-O

O

S

O

HN OH

 
 

5.921 6.030 0.109 5.880 -0.041 

10 

N

NO

N+
-O

O

S

O

N

 

6.222 6.130 -0.092 5.935 -0.287 
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11 

N

NO

N+
-O

O

S

O

HN O

 

6.301 5.940 -0.361 6.305 0.004 

12 

N

NO

N+
-O

O

S

O

HN O

O

 

5.921 5.940 0.019 5.789 -0.132 

13 

N

NO

N+
-O

O

S

O

HN

OH

 

5.678 5.870 0.192 5.717 0.039 

14 

N

NO

N+
-O

O

S

O

HN

N

 

6.000 5.960 -0.04 6.049 0.049 

15 

N

NO

N+
-O

O

S

OH

O

 

6.155 5.930 -0.225 6.207 0.052 

16 N

N

O

S

O

OH

N+

–O O  
 

 

5.796 5.780 -0.016 5.985 0.189 
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17 
N

N

O

S

O

O

N+

–O O  

6.155 6.300 0.145 6.182 0.027 

18 

N N

O

N+

O-

O

NHO

O S

 

6.699 6.780 0.081 6.727 0.028 

19 

N

N
O

N+ O-

O

S

HN

O  

5.745 5.500 -0.245 5.733 -0.012 

20 

N

N
O

N+

O-

O

S

NH

HO

O

 

5.161 5.300 0.139 5.202 0.041 

21 
N

N
O

N+ O-

O

S
N

O

 

5.319 5.230 -0.089 5.309 -0.01 
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22 

N

N
O

N+ O-

O

S

N

O

O  

5.187 5.450 0.263 5.328 0.141 

23 

N

N
O

N+ O-

O

S

HN

O

O

O

O

 

6.398 6.020 -0.378 6.184 -0.214 

24 
N

N
O

N+ O-

O

S

 

6.523 6.060 -0.463 6.290 -0.233 

25 

N

N
O

N+ O-

O

S

HO OH  

5.131 5.360 0.229 5.399 0.268 
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26 

N

N
O

N+ O-

O

S

HO  

6.301 6.150 -0.151 6.354 0.053 

27 

N

N
O

N+ O-

O

S

HO

O

 

4.852 5.340 0.488 5.388 0.536 

28 

N

N
O

N+ O-

O

S

HO

O

O

 

5.046 4.960 -0.086 5.074 0.028 

29* 

N

NO

N+
-O

O

S

 

6.301 6.770 0.469 6.647 0.346 

30* 

N

NO

N+
-O

O

S

O

NH2

 

6.097 5.710 -0.387 5.933 -0.164 
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31* 

N

NO

N+

O-

O

O

N
H

S

O

 
 

7.000 7.050 0.05 6.756 -0.244 

32* 
N

N
O

N+ O-

O

S

O

O

 

5.770 5.420 -0.35 5.367 -0.403 

33* 

N

N
O

N+ O-

O

S

HN

O

O

O

O

 

6.222 5.700 -0.522 5.834 -0.388 

34* 

N

N
O

N+ O-

O

S

HO  

5.854 5.620 -0.234 5.892 0.038 

35* 

N

N

O

N+

O-O

S

O

OH

 

5.244 5.070 -0.174 5.277 0.033 



 
 

Chapter IV: Contributions and results  DR.ALMI Imane 

 

72 

36* 

N

N

O

N+

O-O

N

N

S

 

5.201 5.170 -0.031 5.314 0.113 

37* 

N

NO

N+
-O

O

S

O

HO

 

6.398 5.860 -0.538 6.148 -0.25 

38* 

N

N
O

N+ O-

O

S

 

6.523 6.470 -0.053 6.566 0.043 

 

IV. 1. 2. Methodologies:  

IV. 1. 2. 1. Equilibrium structure optimizations: 

Accurate molecular geometry predictions are subject to the choice of the electronic structure 

method and the atomic basis set used for the classification of the atoms. We began our investigations 

by selecting the necessary methods to be used to evaluate the equilibrium structures of the 

derivatives of nitrobenzoxadiazole under analysis. Our approach is to conduct benchmark 

computations on the subunit of the series. We have shown that this technique ensures a reasonable 

balance between accuracy and computational resources to describe the properties of the 

nitrobenzoxadiazole derivatives considered. In Refs,  [18, 19] benchmarks for the 2,1,3-

benzoxadiazole subunit, using semi-empirical AM1 and PM3 methods, Hartree-Fock and 

MollerPlesset (MP2) ab initio techniques, and BLYP and B3LYP DFTs, in combination with 

different base sets, are applied. When compared to experimental structural parameters, it turns out 

that B3LYP/6-311G(d, p) is accurate enough to predict a 2,1,3-benzoxadiazole balance structure. 

From this, we conclude that B3LYP, in conjunction with the 6-311++G (d, p) base set, is suitable 



 
 

Chapter IV: Contributions and results  DR.ALMI Imane 

 

73 

for the analysis of 2,1,3-benzoxadiazole derivatives. Thus, this stage of theory will be used for the 

estimation of the balance geometry of interest derivatives of nitrobenzoxadiazole. Geometries of 

all molecules were initially pre-optimized by molecular mechanics (MM) approach. The minimized 

structures were further optimized using the semi-empirical Austin Model 1 (AM1) method as 

implemented in HyperChem (version 7.0) [20], which was used for these calculations. In the 

optimization of geometry, an RMS gradient of 0.01 kcal Å-1 mol-1 was adopted as a convergence 

threshold. These structures were further refined, without restrictions, by using the DFT B3LYP/6-

311++G(d, p) method, which was also used to measure some theoretical descriptors, as 

implemented in Gaussian 09 [21]. The MarvinSketch [22] software was used to measure other 

molecular descriptors, such as topological ones. 

IV. 1. 2. 2. Molecular descriptors generation: 

In order to obtain reliable QSAR models, various molecular descriptors, encoding different 

molecular size, hydrophilicity [23], electronic and topological properties, were computed from 

three separate programs: MarvinSketch[22], HyperChem[20], and Gaussian[21]. The various 

molecular descriptors selected for the 2D QSAR are shown in Table IV. 2 along with their symbols 

and descriptions. The 2D and 3D MESP maps of 2,1,3-benzoxadiazole are given in Ref. [19]. Areas 

which characterized with low electrostatic potential are found around nitrogen and oxygen atoms. 

They relate to the excess of electronic charges favoring electrophilic attacks on these sites. Whereas 

the areas characterized with high potential are situated around the four hydrogen atoms of the six-

member aromatic ring (Figure IV.2). They are characteristic of an electron deficiency where 

nucleophilic attacks may occur. 

Figure IV.2. Structure of 4-Nitro-2, 1, 3-Benzoxadiazole. 
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Table IV. 2. Symbols and description of all calculated molecular descriptors 

Notation Description  Notation Description  

V Volume  nrot Number of Rotatable Bonds 

MW Molecular weight Wiener  Wiener indexes  

S Surface  nC=O Number of carbonyl fragments  

Log P Partition Coefficient Qmax The highest positive partial charge on the molecule 

HE Hydration energy  Qmin The lowest negative charge on the molecule 

SAS Solvent accessible surface  HOMO The energy of the highest occupied Molecular Orbital 

Pol Polarizability  LUMO The energy of the Lowest Unoccupied Molecular Orbital 

PSA Polar Surface Area qS Charge of the Sulfur atom 

HBD Hydrogen Bond Donor µ Dipole moment  

HBA Hydrogen Bond Acceptor  E-Sol Solvation Energy  

a_hyd Number of hydrophobic atoms HF Heat of formation  

 

IV. 1. 2. 3. Model development: 

The first pre-selection of the most appropriate set of descriptors for the anti-cancer model 

operation was performed using the hierarchical cluster analysis (HCA) [24]. Within this process, a 

dendrogram is created by an iterative coupling procedure in which clusters are developed on the 

basis of similarity and grouping criteria [25]. The Pearson coefficient R was used to test the 

association between molecular descriptors and biological responses. These coefficients were used 

to evaluate the representative descriptors of each cluster, where only one with the highest 

correlation with the negative Log of the half-maximum inhibitory concentration (pIC50) was 

chosen. 

Table IV. 3. Correlation matrix for the four selected descriptors with pIC50. See Table IV. 2 for the 

definition of these descriptors. 

  
HBA HBD Qmax a_hyd VIF 

HBA 1 
   

1.677 

HBD 0.586 1 
  

1.973 

Qmax -0.441 -0.580 1 
 

1.558 

a_hyd 0.115 -0.148 0.133 1 1.103 

pIC50 -0.509 -0.313 0.484 0.579 
 

 

We used a forward selection method to produce a subset of specific low-intercorrelation 

descriptors [26]. Then, as implemented in IBM SPSS Statistics 21[28], we used the MLR [27] 

method to construct linear QSAR models. The objective of this part was to determine the optimum 

collection of descriptors which generate the most significant QSAR models linking and interpreting 

the chemical structure of small molecules with their functional activity [25]. The correlation matrix 
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for defined descriptors could be seen in Table IV. 3. The quality of the MLR approach was 

compared to that of the ANN approche, another accurate and predictive QSAR model that was well 

suited for the treatment of non-linear relations between descriptors and activity[29,30], especially 

for highly non-linear cases[31]. In particular, back propagation (BP) is the ANN algorithm used in 

this analysis [32]. All ANN analyzes were carried out with MATLAB [33]. For the validation of 

our model, we used cross-validation and validation leave-one-out (LOO) via an external test set and 

Y-randomization procedures Table IV. 4 [34–36]. Information of the validation parameters 

computed for the model are shown in Table IV. 5. 

IV. 1. 2. 4. Virtual screening: 

Thanks to developments in computational technology over the last decade, virtual screening 

has now become a useful tool for drug development, enabling rapid and accurate detection of large 

numbers of possible hit structures. Thus, by focusing only on a small number of target substances, 

the high cost of experimental research is substantially reduced [37, 38]. Molecular similarity is a 

key concept in drug modeling and medicinal chemistry [39]. This was done by implementing the 

extended connectivity fingerprints (ECFPs) scheme in this research. The molecules are represented 

in this method as binary vectors, where a molecular fragment is represented by bit. "1"and "0" 

indicate the presence or absence of a given fragment, respectively. Therefore it is possible to infer 

the similarity between two molecules by comparing the number of common bits between their 

structures via the Dice coefficient [40, 41]. 

IV. 1. 3. Results and discussion:  

IV. 1. 3. 1. Equilibrium structure of the nitrobenzoxadiazole derivatives:  

At the B3LYP/6-311++G(d,p) stage of the theory, the balance structures of the set of 

nitrobenzoxadiazole derivatives (Table IV. 1) were obtained. The comparison between these 

structures shows that the part of benzoxadiazole closely resembles the isolated part of 2,1,3-

benzoxadiazole [18,19]. 

For instance, this specific skeleton's distances and angles are O1-N2~1.355 Å; N9-

C8~1.315 Å; C8-C7~1.439 Å; C7-C6~1.38 Å; C5-C6~1.420 Å; C5-C4~1.37 Å; C4-C3~1.429 Å; 

C3- N2~1.318 Å; O1-N9~1.37 Å and O1-N9-C8~104.6°; N9-C3-C8~108.4°; N9-C8-C7~133.1°. 

In the sequence, the nitro group attached to this subunit also has the same structural characteristics. 
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The heterocyclic nitrobenzoxadiazole is thus just marginally affected by the replacement of the 

sulfur atom. 

IV. 1. 3. 2. Quantitative structure activity relationships (QSAR) study:  

 The QSAR study was done by evaluating the values of pIC50 = - Log(IC50) for the 38 

selected compounds Table IV.  2, established for their capacity to inhibit human S-transferase 

glutathione[15, 16]. As shown in Figure IV. 3, the application of hierarchical cluster analysis to the 

set of chemical descriptors has led to seven main clusters. 

 

Figure IV.3. Hierarchical cluster analysis of descriptors (dendrogram). See Table IV. 2 for the definition of 

these descriptors. The vertical red dashed line corresponds to the clipping limit that takes into account the 

minimum number of descriptor groups without losing any information necessary for the model.  

When we used HCA, descriptors were grouped according to their pair descriptors, which 

form a specific cluster and have a high correlation between each other. We have therefore chosen 

one descriptor as a representation of each cluster to prevent duplication. The representative 

descriptors were chosen so that to reduce their coefficient of correlation with descriptors 

representing other groups. Finally, these representative descriptors have been selected: a hyd, HBD, 
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HBA, Qmin, HOMO, Qmax, Log P and E-sol. This is compatible with the docking study [15], 

which proposed choosing at least the descriptors of HBD, HBA and a hyd. The data set was 

randomly split into two subsets after choosing the independent descriptors and the dependent 

variable (pIC50). The training and test data sets consist, respectively, of 28 and 10 molecular 

compounds. Multiple linear regression enables the structural descriptors to be related to the activity 

of each of the 28 compounds in order to measure quantitatively the impact of their substituents. The 

following MLR model was developed by applying the FS-SWR (Forward Selection Step Wise 

Regression): 

𝑝𝐼𝐶50 = 6.627 − (0.389 × 𝐻𝐵𝐴) + (0.258 × 𝐻𝐵𝐷) + (1.393 × 𝑄𝑚𝑎𝑥) + (0.140 ×

𝑎_ℎ𝑦𝑑)                               Eq IV.1 

Where Qmax (the highest positive partial charge on the molecule), a_hyd (number of 

hydrophobic atoms) have a positive impact, while HBD (the number of hydrogen bond donor), and 

HBA (the number of hydrogen bond acceptor) has a negative impact on the activity. 

The model was developed to estimate activity values for both training and test data sets. 

Table IV. 1 reports the observed and theoretical activities of the pIC50, as well as their variations. 

The plot of the calculated versus observed activity (Figure IV.4) shows a linear relationship, 

indicating a satisfactory internal predictability of the produced model, regardless of the method 

used (MLR or ANN). In addition, the plot of the measured residuals against the observed activity 

values in Figure IV.4 shows that the residuals are uniformly distributed along the zero axis, thereby 

confirming the absence of systematic errors in the model.  
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a) 

 

c) 

 
b) 

 
 

d) 

 

Figure IV. 4. Experimental versus calculated pIC50 values (MLR in a) and ANN in c)), and 

residuals (MLR in b) and ANN in d)). 

Multi-collinearity was observed by the measurement of the inflation variance factors (VIF) 

for the selected descriptors [42]. The corresponding VIF values and correlation matrix for each 

descriptor are shown in Table IV. 3. From this table, it can be shown that the chosen descriptors are 

practically independent, because their R coefficients are less than 0.6. Also all variables have a VIF 

value of less than 5 and demonstrate that the model does not contain any multi-collinearity and has 

a simple statistical significance. 

Table IV.4.  Random MLR Model Parameters. 

 

Average R 0.374 

Average R2 0.156 

Average Q2 -0.268 

cRp
2 0.685 
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Further validation of the model was done by the implementation of the Y-randomization 

test. Several random shuffles of the Y vector were performed and small mean values of 0.156 for 

R2 and-0.268 for Q2 were obtained after 1,000 randomized trials, thus showing that the successful 

results (Table IV.4) of our original model were not due to a chance association or structural 

dependence of the training set. As a second step, the presence of a non-linear relationship seen 

between pIC50 and the four descriptors chosen was investigated. For this reason, a BP artificial 

neural network was built using the identified MLR descriptors as inputs. Parameter 2n+1 was used 

to calculate the number of hidden layers, where n represents the number of input layers that play a 

key role in deciding the best artificial neural network architecture [43]. After optimization, the 

architecture of the selected ANN model was 4-3-1, i.e. 4 descriptors in the first layer three neurons 

in the hidden layer, and one neurons in the output layer for the pIC50 results. The three-layer ANN 

was trained using the Levenberg–Marquardt training algorithm.  

Table IV.5. Statistical results of MLR and ANN models. 

 

 

 

 

 

 

 

The ANN model, built with the same descriptors as the MLR model, given the evaluation 

metrics shown in Table IV. 5. This table below lists the evaluation metrics of both models, including 

their correlation coefficient (R2), variance ratio (F), standard error (SE), root-mean-square error 

(RMSE), adjusted R2 (R2
adj), leave-one cross-validated Q2

LOO, and r2m for external validation. A 

detailed overview of r2
m is available in the literature [44]. A comparative analysis between the 

values in Table IV.5 and those extracted from the MLR method confirms the enhanced performance 

of ANN over MLR, suggesting the presence of a non-linear relationship between the four selected 

descriptors and the pIC50 of the studied compounds. The higher values of R2 and R2
adj and the 

smaller root-mean-square error (RMSE) suggest that the proposed model is predictive and accurate. 

F-test values with p just under 0.005 (see Table IV.5) indicate that the model is statistically 

important. The larger Q2
LOO and R2pred and the smaller RMSEext values also show the strong 

predictive capabilities of the ANN model and demonstrate its robustness. Values of r2 greater than 

 
Parameter MLR ANN  Parameter MLR ANN 
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 𝑅2 0.758 0.812 

T
es
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se

t 

𝑅𝑝𝑟𝑒𝑑
2  0.795 0.828 

 𝑅𝑎𝑑𝑗
2  0.716 0.779 𝑅𝑀𝑆𝐸𝑒𝑥𝑡 0.338 0.258 

SE 0.265 0.244 𝑟𝑚
2  0.530 0.788 

F 18.019 24.835 𝑟2 − 𝑟′2 𝑟2⁄  0.007 0.020 

RMSE 0.240 0.221 𝐾′ 0.971 0.975 

𝑄𝐿𝑂𝑂
2  0.654 0.689 |𝑟0

2 − 𝑟0
′2| 0.105 0.015 
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0.5 and values of 𝑟2 − 𝑟′2 𝑟2⁄ and |𝑟0
2 − 𝑟0

′2| smaller than 0.1 and 0.3, respectively indicate the strong 

predictive efficiency of the model. 

IV. 1. 3. 3. Applicability domain of the model:  

The Applicability Domain (AD) is an area within the chemical space involving 

physicochemical, electronic or biological information on which the model training set is built. The 

molecular AD have a fundamental role in estimating the uncertainty in the similarity test between 

the substance and those used to create the model [45]. The common definition of the AD is based 

on the Eq IV.2 following to leverage values.  

ℎ𝑖 = 𝑥𝑖
𝑇(𝑋𝑇𝑋)−1           𝑥𝑖(𝑖 = 1, 2, … , 𝑛)                     Eq IV.2 

For each structure, where I is the descriptor row vector of the query compound, and X is the 

matrix of k model descriptor values for n training chemical structure [46]. Substances with h >h* 

(h* being a threshold value equal to 3p/n, where p is the number of model descriptors plus one and 

n is the number of compounds included in the training set) may be considered to be chemically 

different from the training set compounds and thus outside the AD [47]. 

Figure IV.5. Applicability domain plot for the ANN model. Horizontal lines represent ±3σ and the vertical 

dashed line represents the warning leverage (h* = 0.536). 

To view the AD of the QSAR model, William's plot is mapped (Figure IV.5). In this map, 

the AD is defined within a squared area within the standard deviation ±x (in this study x = 3; "three 
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sigma rule" [44]). Molecules with uniform residues three times larger than the standard deviation 

of the model are marked outliers.  Careful analysis of Figure IV. 5 shows that all chemicals 

compounds in the data set fall within the AD of the proposed ANN (warning leverage) model. 

Neither of the compounds have leverage values greater than the h* alert value and none of them 

have standardized residues greater than the threshold. As a result, the model shows the best 

statistical parameters and strong predictive properties and can be used with a high degree of 

confidence in this AD. 

IV. 1. 3. 4. Importance of descriptors within different QSAR models: 

A randomization technique was used to evaluate the relative value of each descriptor used 

to create the MLR and ANN models. This also helps the best molecular descriptors to be identified. 

After the models were constructed, the first column corresponding to the first descriptor used in the 

model was deleted, leaving the remaining descriptor matrix and the Y-column identical. The mean 

absolute deviations (Δmi) between the experimental and the calculated activities for all compounds 

were defined for the four descriptors. The contribution of each descriptor (Ci%) is given by the 

following Eq IV. 3 [49]. 

𝐶𝑖% =
∆𝑚𝑖

∑ ∆𝑚𝑗
4
𝑗=1

 ∙ 100                                                Eq IV. 3 

 Where the sum runs over the four descriptors (HBA, HBD, Qmax, a_hyd). 

Figure IV.6. Comparison of descriptors contribution in the ANN and MLR models. 

The increase in the use of scrambled descriptor values is a measure of the significance of 

the descriptor in the model, where larger increments refer to higher importance. This method has 
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been extended to all four descriptors and the findings are shown in Figure IV. 6. It follows from 

this diagram that the hydrogen bond acceptors (HBA) and the number of hydrophobic atoms (a 

hyd) descriptors are of particular importance in the MLR and ANN models. These results are 

corroborated by the association between these descriptors and the behavior (see Table IV. 3), 

suggesting that steric interactions are the prevailing forces in ligand-protein complex creation. 

IV. 1. 3 .5. Virtual Screening Application: 

 
Table IV.6. Proposed structural compounds and predicted activities. 

No. Compound 

structure & ID 

pIC50 Leverage 

(<0.536) 

No. Compound 

structure& ID 

pIC50 Leverage 
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In order to determine GSTP1-1 inhibitors, the CHEMBL database [50] was searched for 

substances with more than 70% similarity to the most active compound in the study data set  

(Compound 31, Table IV.6). The biological activity of some compounds identified in the literature 

[59] was also estimated (Compound 58-61). These molecules have a significant degree of similarity, 

as they have the identical basic skeleton as Compound 31. In a previous docking study [15], the 

successful inhibitory potency of Compound 31 against GSTP1-1 was attributed to additional 

hydrogen bond interactions between the carbonyl moiety of Compound 31 and Gln39 residues of 

GSTP1-1, and to hydrophobic interactions with its amino acids Phe8, Val35, and Gly205, which 

help to stabilize the complex. We apply the Lipinski, Veber, Ghose, and Golden Triangle rules [19] 

to get drug-like substances. Then for all compounds, molecular descriptors were produced. The 

best-performing model, ANN, was used to estimate the inhibition activity of GSTP1-1 of the 

45 
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compounds considered. The results of the predictions were acknowledged only when the compound 

was contained inside the AD. Table IV.6 shows that all the compounds contained are h<h*, (h* = 

0.536, Figure IV.6), and the structures and activities of these compounds are stated in Table IV. 6. 

These compounds mainly lead to the para-substituted thio-nitrobenzoxadiazole discovered earlier 

by Caccuri and co-workers [15, 16]. We have also identified such compounds where thiol is in 

ortho position with respect to the nitrobenzoxadiazole nitro group and compounds where the 

nitrobenzoxadiazole six-member aromatic ring is replaced by an amine or etheroxy organic role in 

para with respect to the nitro group. Most of these compounds have a pIC50 closest to that of 

compound 31. 
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IV.2. Combined 3D-QSAR based Virtual Screening and Molecular Docking study of cytotoxic 

agents targeting human glutathione-s transferases 

 

  

Figure IV. 7.  Schematic representation of the virtual screening process implemented in the identification 

of Top inhibitors.  

 

Filter by Lipinski’s rule of five and Veber’s rule 

Smart Filtration & ADMET Descriptor Filter 

 

Filter by Estimated activity ≤ 0.1 µM 

 

Molecular Docking  
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IV. 2. 1. Introduction:  

Virtual screening and modeling based on pharmacophore has reached maturity and has been 

extensively reviewed in past literature, and is very well recognized in the Medicinal Chemistry 

Laboratory [52, 53]. Pharmacophores are classified as part of a molecular structure that represents 

a collection of steric and electronic features responsible for a specific biological or pharmacological 

interaction with a specific target structure and for inhibiting its biological response [54]. 

Recently, Docking tools show promising applications for hit discovery, lead optimization 

and target-based library design [55]. The state of the art molecular docking is a computational 

technique that aims to predict the non-covalent binding of a macromolecule (Receptor) obtained 

from data banks or MD simulations, etc. with a small molecule (Ligand) as a lead for further drug 

development [56]. These lead candidates can be found using a docking algorithm that attempts to 

classify the optimal binding mode of a small molecule to an active biological target site [57]. 

Molecular docking can be used to predict affinity, bound conformation and binding energy [55]. 

The aim of drug discovery is therefore to extract drugs that bind more strongly than the natural 

substrate to a given protein target [15].   

In the present investigation (Figure IV. 7), we have produced 3D QSAR-Pharmacophore 

models, beginning with a series of cytotoxic agents targeting human Glutathione-S-Transferase. 

The best pharmacophore model was validated using three different methods and then used in the 

virtual screening of the NCI chemical library data-base containing more than 200 thousand 

compounds. In addition, in order to maximize the balance of drug-like properties of selected 

molecules, several filters have been used, such as Lipinski’s rule of five and Veber’s rule, Smart 

Filtration & ADMET Descriptor, and Filter by Estimated activity ≤ 0.1 µM. Afterwards, we 

expanded our research by applying Docking-Based Virtual Screening by studying the Ligand-

receptor binding affinity to inhibit the functioning of the GST enzyme. Results such as 

Pharmacophore hypothesis, scoring, docking study, binding mode, and so on, have been determined 

and discussed in the present section. 

IV. 2. 2.   Data collection and preparation:  

Computational drug design includes ligand-based and structure-based drug design. 

Pharmacophore model has become an excellent computational tool for searching of novel Hit/Lead 

compounds in various disease areas. The 3D-QSAR method is considered as one of important 
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ligand-based pharmacophore-modeling approaches [58]. In this study, 3D-QSAR pharmacophore 

model was generated while basing on data set of 45 published compounds, which were extracted 

from European Bioinformatics Institute database CHEMBL and the literatures [15, 16, 59]. These 

compounds were tested with similar bioassay protocol to allow proper QSAR correlation. The in 

vitro bioactivity of the inhibitors collected was expressed as the concentration of the test compound 

required for 50% inhibition of GSTP1-1 enzyme, i.e., IC50. Among the 45 compounds, 16 different 

inhibitors were selected for training from 0.1 to 14 μM (table IV. 1). The remaining inhibitors have 

been taken as a test set. The selection of the two data sets of training and testing carried out in 

accordance with the following rules: 1- same binding mode and structural diversity of molecules; 

2- both data sets most cover a wide range of activities; 3- the highest active compounds are included 

in the training set, because they provide crucial information for generating pharmacophores.  

The molecular structures of all compounds have been sketched and constructed using 

Accelrys Discovery Studio 4.1 [60] from their smile format. The optimization of these structures 

were done using the steepest descent algorithm with a convergence gradient value of 0.001 kcal / 

mol and a group of representative orientations were generated by fast conformational analysis 

methods using polling minimize algorithm [61] and CHARMM force field parameters [62]. A large 

number of orientations for each compound were generated within an energy threshold of 20.0 kcal 

/ mol above the global energy minimum. 

IV. 2. 3. Results and discussion:  

IV. 2 .3 .1. Generation of pharmacophore models: 

Two types of ligand-based pharmacophore modeling are reported in literature, one of which 

is a common feature of pharmacophore modeling and the other is 3D-QSAR based pharmacophore 

modeling, which differs from the first approaches as there is a limitation of the number of training 

compounds and a requirement for experimental biological activity values predicted in similar 

bioassay conditions [63]. 

The HypoGen algorithm in Discovery Studio 4.1 (DS) from Accelrys [69] was used to 

produce a 3D-QSAR pharmacophore model, quantitatively predicting the biological activity (IC50) 

of the compounds studied against GSTP1-1. The behaviors of the study compounds ranging from 

0.1 to 14 μM in the training set were used to produce the pharmacophore models (Table IV.7). The 

resulting conformations (255 for each compound) were used to generate pharmacophoric 
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hypotheses. In order to classify the important pharmacophore features of the training set, the DS 

feature mapping was carried out, resulting in hydrogen bond donor (HBD), hydrogen bond acceptor 

feature (HBA), hydrophobic (HYD) and ring aromatic (RA) features. The HypoGen algorithm 

gives the product of the training set, their pharmacophore features, table IV. 7 display the statistical 

parameters of the 10 top-score, hypothetical pharmacophore models developed.  

Table IV.7. Statistical results of the top 10 pharmacophore hypotheses generated by HypoGen algorithm. 

 

Hypo. 

No. 

Total 

cost 

Cost 

difference 

RMSD R training Max fit Features R test 

1 67.40 95.31 1.05 0.96 9.83 HBA, 3HYD, RA 0.51 

2 73.00 89.71 1.35 0.94 10.19 HBA, 3HYD, RA 0.41 

3 79.29 83.43 1.60 0.91 11.33 2HBA, 3HYD 0.76 

4 79.87 82.84 1.63 0.90 9.00 HBA, 3HYD, RA 0.64 

5 80.58 82.13 1.66 0.90 9.27 HBA, 3HYD, RA 0.65 

6 81.26 81.45 1.69 0.90 9.70 HBA, 3HYD, RA 0.68 

7 81.43 81.28 1.69 0.90 9.92 HBA, 3HYD, RA 0.67 

8 81.68 81.04 0.89 1.70 9.74 HBA, 3HYD, RA 0.67 

9 81.88 80.83 1.67 0.90 7.81 HBA, 3HYD, RA 0.44 

10 81.92 80.79 1.67 0.90 7.70 2HBA, 3HYD 0.45 

Null cost = 162.712, Fixed cost = 58.5. 

 

Over these 10 models, we must pick one of them as a relevant model, with the lowest total 

score, the highest cost difference, the low RMSD value and the high correlation coefficient [7]. The 

product of the table IV. 8 Among the 10 pharmacophore models produced, the first model (Hypo1) 

had the highest cost difference of 95.31 bits and the total cost value was much closer to the fixed 

cost compared to other models. The highest cost difference value of Hypo1 means that it can 

estimate the experimental IC50 value of training compounds with a statistical significance of > 90 

per cent (figure IV.8). This model has also shown that it has the highest correlation coefficient value 

of 0.9609 and the lowest RMSD variance of 1.054, which means that it has a better ability to predict 

the experimental behavior of training compounds. 
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Table IV.8. Experimental and estimated activity of individual training set compounds. 

 

Compound NO. IC50 value (μM) Errors Fit value Activity scale 

Experimental Estimated Experimental Estimated 
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Figure IV. 8. The best HypoGen pharmacophore model, Hypo1. 

IV. 2. 3. 2. Validation of the pharmacophore model: 

The Pharmacophore model could be evaluated using different validation methods; in this 

part we perform three different validation methods: a) cost analysis, b) test set analysis, and c) 

Fischer randomization test. 
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IV. 2. 3. 2. 1. Cost analysis: 

The cost parameter produced by HypoGen algorithm in DS such as total cost, fixed cost, 

and null cost Table IV. 7.  Hypo1 (figure IV. 8) model has the cost difference 95.31; correlation 

coefficient value 0.96 and the RMSD value 1.05 bits (Table IV. 7). 

IV. 2. 3. 2. 2. Test set analysis: 

 Following the selection of the pharmacophore model (Hypo 1), which gives positive results 

in the cost analysis, this model was validated using 29 test-set compounds, which are different from 

the training-set compounds (table IV. 8). Using the same training set preparation protocol, the test 

set was prepared and used to assess if the hypothesis was capable of predicting active compounds 

other than the training set molecules. The obtained correlation coefficient value for the test 

compounds set is 0.511 and for the training compounds set is 0.961 (Figure IV. 9). 

Figure IV. 9. Correlation graph between experimental and estimated activities in logarithmic scale for 

training and test set compounds based on Hypo1. 
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IV. 2. 3. 2. 3. Fischer Randomization Method: 

 The Fisher randomization test used to testify and evaluate Hypo 1. This approach suggests 

that the pharmacophore model did not produce a random association between the behaviors studied 

and the training structures of the data set. In order to demonstrate that the Hypo1 model was not 

created by chance at a 95 % confidence level, out of a total of 19 hypotheses generated by the 14 

scramble run, there were no valid hypotheses. This was also immediately omitted from the data 

tables. None of the five remaining randomly generated hypotheses had a lower total cost than that 

of Hypo1 (figure IV. 10). This Fischer randomization result indicates clearly that Hypo1 is 

statistically robust and not randomly generated because Hypo1 represented a true correlation in the 

training set.   

 

Figure IV.10. The difference in costs between the HypoGen runs and scrambled runs. The 95% confidence 

level was selected.  

IV. 2. 3. 3. Virtual screening: 

In this part, we have successfully used virtual screening to classify novel compounds that 

enhance the function of GSTp1-1 enzymes with their ability to inhibit the formulation of chemically 

induced cancer. For this reason, we download NCI Database SDF files containing 268667 

compounds, including both chemical and natural products [67]. These compounds were primarily 
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filtered on the basis of the Lipinski rule of five [67], the SMARTS properties of filtration and the 

ADMET properties predicted by the ADMET Descriptors of the DS [69, 70]. The best conformer 

generation method was used to produce conformers for each molecule in the NCI database, allowing 

a maximum energy of 10 kcal/mol over that of the most stable conformation. The 3D query model 

validated in the section was used to screen the dataset. The Ligand Pharmacophore Mapping option, 

which is coupled with the best/flexible search method, was used for the screening of the database 

in order to find novel hit compounds that match all the pharmacophore features. Finally, the 

collected compounds were further filtered by the criterion that the compounds had an estimated 

activity value of less than 0.1 μM.  

IV. 2. 3. 4. Molecular Docking: 

In this section, molecular docking was carried out to identify compounds that were able to 

fit well into the binding site of GST p1-1 enzyme. As well as molecular docking generates a score 

for each compound based on the binding affinities of protein-ligand complexes. The Libdock 

algorithm [70] in DS was used to perform this study. Co-crystalized structure complex of GSTp1-

1 with NBD obtained at 1.53Å was downloaded from the protein data bank (PDB ID: 3GUS) [72]. 

The active site was defined, based on the co-crystallized inhibitor, N11211. The most active 

compound structure was docked on the same active site of the GSTp1-1 protein.  The PMF 04 score 

and docking interaction of NBD were enlisted in the Table IV. 9. The score (PMF 04) of this 

compound was 31.4. The NBD inhibitor (most active compound) was able to form 5 hydrogen 

bounds with Gln 51, Gln 64, Ser 65 and Tyr108, and tree hydrophobic interaction ILE 104, ARG 

13 and PRO 53, which is shown in Figure IV. 11. The molecules which showed better PMF 04 

score than that of NBD were considered as the potential ‘hit’ GST p 1-1 poison. Overall, 41 

compounds were found to satisfy all of the parameters selected. Meticulous visual inspection and 

examination of the bindings showed 4 compounds with a better overall docking profile compared 

to the reset list of NCI. The predicted activity of the 4 lead selected molecules NCI 767370, NCI 

750299, NCI 749387 and NCI 750300 were 0.060364 μM, 0.062314 μM, 0.063227 μM and 

0.06983 μM respectively. 
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Figure IV. 11. 2D Binding interaction representation of NBD most active compound with active site of 

GSTp 1-1. 

Table IV. 9. Docking interaction of NDB (Most active compound) and virtually screened hit compounds. 

Compound name 

Hydrophobic 

interacting 

groups 

H-bond monitoring 
H-bond distance 

(Å) 

PMF_04 

score 

Most active 

compound 

Ile 104, Arg 13, 

Pro 53 

Gln 51:HE22-O1 

Gln 64: HN-O16  

1.5336 

1.736 
31.4 

NCI 767370 Tyr 108, Arg 13 

Ser 65:HN-O4 

Ser 65:HG-O4 

Leu 52:O-H28 

1.67312 

2.05418 

1.57378  

30.68 

NCI 750299 Tyr 108, Ile 104 

Ser 65:HN -O28 

Ser 65:HG-O28 

Gln 64:OE1-H49 

1.80941 

2.1301 

2.331 

15.45 

NCI 749387 Tyr 108 
Ser 65:HN-O1 

Ser 65:HG-O1 

1.79903 

1.5007  
26.33 

NCI 750300 Tyr 49 Ser 65:HN-O26 2.12504  20.61 
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Chapter V: 

Conclusion 

 

Multidrug resistance to chemotherapy drugs represents an obstacle in human 

cancer treatment. It encouraged extensive research into the discovery of new and novel 

mechanisms that could overcome this obstacle. Many recent researches have mentioned the 

importance role of GST in diverse cellular processes as well as in conferring resistance to 

chemotherapy. For that purpose, we implemented elaborate ligand-based and structure-based 

computational workflows to explore the structural features necessary for potent inhibition of GSTp 

1-1 using 45 different inhibitors. 

In this work, the QSAR analyses were carried out using MLR and ANN methodologies. 

We have identified four critical descriptors which successfully predict the GSTP1-1 inhibitory 

activity. The results of validation indicate the accuracy and robustness of the proposed QSAR 

model. Based on the proposed QSAR model coupled with similarity search technique, we have 

identified a series of potential novel compounds. This series has been used as a primary step for 
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predicting the GSTP1-1 inhibitory activity. It is ought to test the reliability of these predictions in 

vitro. 

The next part, provided development of ligand-based pharmacophore model by 3D-QSAR 

Pharmacophore Generation protocol. The best quantitative pharmacophore (Hypo1) was chosen 

among 10 other pharmacophores. The Hypo1 model was used as a 3D query for the virtual 

screening of 268667 drug-like molecules from NCI database. By applying selective parameters 

number of molecules funnel down to 3805 hits, docked at the active sites of GSTp1-1 (PDB ID: 

3GUS) by LibDock protocol on DS. Finally, four hits were selected based on the molecular 

interaction, structure and scoring. 

In this work, we focused more on the use of computer Ligand-Based drug design. For that 

and as future work we aim to use Molecular Dynamic, one of the techniques of computer Strucrure-

Based drug design, to confirm the quality of our extracted compounds; then we will be able to test 

their activity in vitro and in vivo. 
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Appendix A: table of calculated descriptors. 

comp pIC50 HE Pol HBA HBD PSA nrot N(C=O) q(s) µ HOMO LUMO wiener Qmin Qmax AM1_HF Pol a_hyd E_sol logP(o/w) V MW ASA

1 6.097 -17.57 28.84 5 1 102.29 8 0 -0.156 8.364 -0.257 -0.135 943 0.862 -0.724 43.503 40.530 14 -13.369 2.971 307.077 297.335 527.195

2 6.222 -14.63 26.86 4 0 82.06 3 0 -0.182 9.143 -0.259 -0.134 702 0.911 -0.496 154.486 34.394 14 -10.894 3.551 293.449 273.272 486.633

3 6 -14.07 28.69 4 0 82.06 4 0 -0.102 9.175 -0.258 -0.134 851 0.894 -0.496 148.287 37.487 15 -8.211 3.685 301.693 287.299 521.864

4 6.699 -14.19 30.53 4 0 82.06 5 0 -0.182 8.995 -0.258 -0.135 1020 0.861 -0.485 143.245 40.581 16 -13.211 3.773 321.707 301.326 531.716

5 6.301 -13.77 32.36 4 0 82.06 6 0 -0.179 9.141 -0.254 -0.132 1210 0.861 -0.483 141.057 43.674 17 -13.662 4.215 319.575 315.353 545.500

6 5.509 -17.77 29.42 6 1 119.36 4 1 -0.153 10.717 -0.255 -0.13 1035 0.89 -0.622 213.810 37.758 14 -20.162 3.226 306.052 317.281 546.316

7 5.854 -19.77 29.42 6 1 119.36 4 1 -0.168 9.417 -0.263 -0.137 1074 0.876 -0.616 67.158 37.758 14 -16.425 3.265 287.020 317.281 496.255

8 5.77 -19.52 29.42 6 1 119.36 4 1 -0.177 7.742 -0.265 -0.138 1113 0.884 -0.631 68.651 37.758 14 -14.860 3.228 284.716 317.281 496.688

9 5.745 -14.33 33.09 5 0 108.36 6 1 -0.177 8.914 -0.262 -0.136 1470 0.891 -0.562 69.307 43.945 16 -9.601 3.833 354.675 345.335 594.345

10 6.097 -19.07 30.13 5 1 125.15 4 1 -0.183 9.289 -0.263 -0.137 1113 0.899 -0.85 118.278 38.722 14 -18.192 2.494 309.326 316.297 520.857

11 5.921 -27.47 30.77 6 2 131.39 4 1 -0.168 5.599 -0.267 -0.141 1280 0.884 -0.525 115.295 39.524 14 -20.003 2.549 329.861 332.296 574.577

12 6.222 -13.44 33.8 5 0 102.37 4 1 -0.164 7.996 -0.262 -0.137 1449 0.892 -0.562 130.267 44.910 16 -17.223 3.047 329.933 344.351 557.249

13 6.301 -20.61 32.6 6 1 120.39 5 1 -0.168 7.774 -0.265 -0.138 1470 0.878 -0.504 115.223 42.618 15 -18.655 2.992 341.250 346.323 576.164

14 5.921 -18.82 39.81 7 1 129.62 6 1 -0.186 11.014 -0.262 -0.136 2654 0.862 -0.525 71.233 54.461 18 -24.517 4.082 414.963 416.414 678.978

15 6 -20.45 42.26 6 1 120.39 7 1 -0.175 8.203 -0.263 -0.138 2997 0.88 -0.528 151.489 55.845 21 -26.090 4.780 404.869 422.421 667.128

16 5.678 -22.57 34.44 6 2 131.39 6 1 -0.181 8.31 -0.263 -0.137 1684 0.895 -0.841 73.148 45.712 16 -28.447 2.156 344.086 360.350 578.221

17 6 -15.03 38.82 6 1 114.4 7 1 -0.172 8.552 -0.233 -0.137 2164 0.892 -0.792 125.241 52.863 18 -15.201 2.727 390.059 387.420 637.308

18 6.398 -21.48 31.25 6 1 119.36 5 1 -0.161 7.314 -0.268 -0.141 1298 0.883 -0.566 72.943 40.851 15 -27.148 3.316 356.958 331.308 595.967

19 6.155 -20.98 33.09 6 1 119.36 6 1 -0.173 5.09 -0.262 -0.138 1506 0.888 -0.61 49.430 43.945 16 -15.638 3.404 319.921 345.335 556.227

20 7 -20.52 45.93 6 1 120.39 9 1 -0.186 7.978 -0.259 -0.135 3794 0.907 -0.513 133.960 62.032 23 -13.829 4.956 450.175 450.475 734.730

21 5.796 -19.21 31.25 6 1 119.36 5 1 -0.101 7.652 -0.263 -0.138 1318 0.879 -0.623 59.593 40.851 15 -23.080 3.362 329.101 331.308 553.827

22 6.155 -15.23 34.92 5 0 108.36 7 1 -0.107 5.002 -0.264 -0.139 1716 0.883 -0.539 62.282 47.038 17 -17.045 3.967 361.441 359.362 629.708

23 6.699 -18.93 44.1 6 1 120.39 8 1 -0.154 6.639 -0.257 -0.139 3384 0.881 -0.601 143.939 58.939 22 -24.159 4.914 448.109 436.448 735.218

24 7 -19.37 36.27 6 1 120.39 7 1 -0.169 6.96 -0.261 -0.138 1987 0.868 -0.598 113.083 48.805 17 -15.319 3.214 365.299 374.377 602.257

25 5.77 -14.62 25.26 5 0 108.36 6 1 -0.17 8.727 -0.261 -0.137 758 0.868 -0.571 33.328 33.811 11 -11.255 1.754 264.362 283.264 474.574

26 5.745 -14.73 25.97 5 1 111.16 5 1 -0.141 8.418 -0.261 -0.137 772 0.86 -0.701 82.146 34.776 11 -25.028 1.150 306.268 282.280 535.557

27 5.161 -21.72 28.45 6 2 131.39 7 1 -0.161 9.758 -0.256 -0.138 1058 0.89 -0.852 27.793 38.672 12 -23.332 0.418 302.324 312.306 524.474

28 5.319 -12.76 30.71 6 0 102.37 5 1 -0.168 7.408 -0.252 -0.139 1180 0.865 -0.728 93.697 42.723 14 -11.051 1.153 311.738 322.345 537.035

29 5.187 -13.36 32.63 6 0 119.44 5 2 -0.173 6.461 -0.262 -0.138 1518 0.87 -0.572 48.988 45.285 14 -21.856 0.688 357.362 350.355 593.184

30 6.222 -15.97 36.51 6 1 146.69 9 2 -0.177 9.359 -0.255 -0.132 1980 0.988 -0.674 -46.980 51.316 15 -12.332 2.536 395.410 398.396 653.170

31 6.398 -18.8 40.67 6 1 146.69 10 2 -0.161 12.838 -0.254 -0.129 2778 1.044 -0.747 -3.100 55.263 18 -21.174 3.114 443.567 432.413 737.162

32 6.523 -11.03 29.27 4 0 82.06 4 0 -0.157 9.587 -0.255 -0.133 851 0.888 -0.495 97.082 41.488 15 -8.928 4.042 317.507 293.347 523.099

33 6.523 -11.16 24.54 4 0 82.06 3 0 -0.268 9.427 -0.255 -0.132 494 0.87 -0.491 94.436 33.541 12 -13.105 3.623 287.975 253.282 476.996

34 5.131 -22.54 23.98 6 2 122.52 5 0 -0.148 11.361 -0.253 -0.13 624 0.879 -0.703 19.728 32.051 11 -18.039 0.630 249.266 271.253 441.841

35 5.854 -18.41 25.17 5 1 102.29 6 0 -0.179 9.273 -0.258 -0.134 652 0.881 -0.715 56.911 34.343 12 -14.088 2.087 264.200 269.281 474.861

36 6.301 -16.95 32.51 5 1 102.29 10 0 -0.184 9.51 -0.257 -0.134 1314 0.879 -0.734 32.825 46.717 16 -10.382 3.855 359.550 325.389 617.329

37 4.852 -18.39 26.41 6 1 119.36 8 0 0.254 5.46 -0.268 -0.152 1034 0.882 -0.732 13.792 41.332 13 -16.763 0.984 325.755 313.334 565.666

38 5.046 -18.9 26.98 7 1 136.43 8 0 1.14 3.55 -0.288 -0.16 1127 1.14 -0.728 -6.841 42.134 13 -29.038 1.577 342.215 329.333 573.884
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Appendix B: Computer aided drug design software. 


