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Academic year : 2020 – 2021



i

Abstract

Today, With the development of information technology, the concept of smart

healthcare became a trending research area. Smart healthcare uses a new generation

of information technologies such as big data, cloud computing, and artificial intelligence

(AI). These new techniques helps to transform the traditional medical system to be

more intelligent, efficient, convenient, and personalized.

Computer-aided diagnosis (CAD) has become one of the major research subjects

in medical computing and clinical diagnosis. However, how to efficiently and effectively

make accurate diagnosis remains a challenging problem in data-driven models.

In this thesis, we are interested in improving the performance of computer-aided

diagnostic systems in the medical field by increasing the quality of medical data and

the analytical techniques. To this end, several contributions have been proposed. First,

we proposed an extension of Prognostic and Health Management (PHM) approaches

in order to exploit its potential by adapting advanced industrial diagnostic models

to medical diagnostics. Secondly, we focused on improving computer-assisted diagno-

sis, particularly in the dermatology field, using AI techniques as well as those of Big

data. The proposed methods and the results obtained were validated by an extensive

comparative analysis using benchmarks and private medical data.

Keywords: Computer Aided Diagnosis (CAD),Medical PHM, Big data, Derma-

tology, Machine learning, Deep learning.
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Résumé

De nos jours et grâce à l’évolution rapide des technologies de l’information et de la

communication, le concept de la santé intelligente devient de plus en plus un domaine

de recherche très attractif. Ce concept se base principalement sur les techniques de

l’intelligence artificielle et les technologies du Cloud Computing et du Big data et cela

dans le but de transformer la médecine traditionnelle en médecine digitale à la fois

intelligente et personnalisée.

L’un des principaux sujets de recherche en Informatique Médicale et en diagnostic

clinique est le diagnostic assisté par ordinateur (CAD). Cependant, effectuer un diag-

nostic exact de manière efficace demeure une problématique importante notamment

dans les modèles guidés par les données.

Dans cette thèse, nous nous sommes intéressés à l’amélioration des performances

des systèmes de diagnostic assisté par ordinateur dans le domaine médical, en augmen-

tant la qualité des données médicales et en améliorant les techniques analytiques.

A cette issue, plusieurs contributions ont été proposées. Dans un premier temps,

nous avons proposé une extension des approches du Prognostic and Health Manage-

ment (PHM) afin d’exploiter ses potentialités en adaptant les modèles de diagnostic

industriels avancés au diagnostic médical. Dans un second temps, nous nous sommes

focalisés sur l’amélioration du diagnostic assisté par ordinateur en particulier dans le

domaine de la dermatologie en utilisant les techniques de l’lA ainsi que ceux du Big

data. Les méthodes proposées et les résultats obtenus ont été validés par une analyse

comparative approfondie en utilisant des benchmarks et des données médicales privées.

Mots clés: Diagnostic assisté par ordinateur (CAD),PHM médical, Dermatology,

Big data, Apprentissage automatique, Deep learning.
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Chapter I

General introduction

1 Context

Modern smart technologies such as cloud computing, Big Data, Internet of Things

(IoT), and 5G technologies gave birth to the fourth revolution of industry. Industry

4.0 can autonomously exchange information, make actions, and control without human

intervention [1]. In this context, Health 4.0 is a term that has emerged recently and

has been growing as a vital strategic concept for the health domain [2]. Today, the

healthcare sector has a big transformation from paper-based records to electronic health

records (EHRs). This digitalization is coupled with a wide range of digital technologies

that support Health 4.0 to deliver more effective and efficient healthcare services [3].

Prognostics and health management (PHM) discipline was initially developed in

the engineering field. Many works piloted in PHM research focus on automatic de-

tection, diagnostic, and prognostic for assessing components health state to support

decision making [4, 5]. This success of PHM process in the engineering (industry 4.0)

motivates researchers to think about implementing this process in the medical field

(health 4.0). Medical PHM (M-PHM) uses diagnostic analytics to diagnose the disease

by identifying the type, stage, and causes. Predictive analytics used to predict patients’

survival, also predict whether a patient is at a high risk of having a disease based on

the risk factor, or predict the disease’s recurrence. Prescriptive analytics relate to find-

ing the best course of actions by providing decision support for specific scenarios or

1



Chapter I: Introduction

situation. The application of this process helps to improve the quality of care delivery,

move towards personalized medicine, sharing of real-time decisions in diagnosis, and

prediction of treatment outcomes at earlier stages [6].

Recently, diagnosis step in M-PHM has been an active area in computer science

field. Various medical domains attract researches, more precisely oncology and chronic

diseases. The main requirements to apply computer aided diagnosis (CAD) is the

availability of digital dataset (data) and appropriate data analysis techniques (artificial

intelligence).

For the data side in CAD development, medical data are generated massively in

various types ( numbers, images, text, videos). This large amount of data is emerging

from various medical sources such as patient information, biomarkers (e.g., genomic,

proteomic, metabolomic), diagnosis results (e.g., radiology, blood test), as well as phar-

macies (e.g., prescriptions, medications), administrative (cost and claims data, popu-

lation and public health data) and behaviour data (e.g., those from mobile apps, social

media, sensors, wearable devices, and fitness monitors) [7]. With the fast growth, in-

creased complexity, heterogeneity and size of these accumulated data, the big challenge

now is how to collect, store, analyze and manage these Big Data in healthcare systems.

On the other side, artificial intelligence tools including machine learning and deep

learning have been used to apply diagnosis analysis. They involve a set of tools and

techniques such as classification, clustering, regression and association. Each technique

serves a distinct purpose depending on the modelling objective. Often, choosing the

right technique depends on the problem at hand and how the data is represented and

stored. Deep learning (DL) is the newest iteration of machine-learning methodologies.

DL is now performing at state-of-the-art levels in previously difficult tasks includ-

ing image analysis, language processing, information retrieval, and forecasting. Deep

learning is well suited for medical data as it can identify patterns in sparse, noisy data

and requires little input-feature engineering [8]. Current successes of DL have shown

performance that outperforms physicians and experts to diagnose patient’s diseases.

However, the performance still needs improvement to make an accurate diagnosis. This

thesis deals with some problems encountered with the improvement of computer-aided

diagnosis systems, more specifically those related to data quality. These problems are
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addressed in the following section.

2 Problem statements

In this thesis, we tackled the problem of developing an accurate computer aided

diagnosis to assist physicians during the diagnosis process. First of all, we want to

reduce the gap between industry and medical filed, by exchanging the applied tech-

niques and benefit from the advancement in industry PHM. However, the complexity

of biological system which is not predictable and the sensitivity of working on human

lives makes us doubt the validity of this adaptation. Therefore, two research question

addressed in this part are:

• RQ1: what is the difference between industry PHM and medical PHM?

• RQ2: Models applied for machine’s health diagnosis could be applicable for hu-

man’s health diagnosis?

In the second part of this thesis, we direct our research toward dermatology do-

main. Skin cancer is one of the most widespread types of cancer, and melanoma is the

most severe form and causes most skin cancer deaths[9]. The mortality rate of this dis-

ease is expected to rise in the next decade, especially for cases diagnosed in later stages.

Many computer-aided diagnosis (CAD) methods have been developed based on several

research approaches, such as detection, segmentation, and classification using machine

learning and deep learning. However this developed CADs still have many challenges

that need improvements. Especially when we work with dermoscopic images.

The automatic classification of different skin lesions from dermoscopic images is

challenging due to the high similarity in visual features among various lesion types

in terms of size, shape, texture, and color. Other problems include artefacts in der-

moscopic images, lack of data, and training of deep architectures requiring millions of

parameters, which usually lead to overfitting and weak generalization. Thus, many

research questions are addressed in this part:

• RQ3: What is the impact of data quality on the performance of dermatology

computer-aided diagnosis?
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• RQ4:How can we deal with lack of dermatology data, mainly with rare lesions?

• RQ5: What about combining clinical features and dermoscopic images for im-

proved performance?

• RQ6: What is the impact of hyperparameters selection on the CAD performance?

3 Contributions

Dealing with the aforementioned problems, three contributions are proposed:

• Retargeting PHM tools from industrial to medical field: The first con-

tribution is to apply an adaptation of a PHM model from fault diagnosis of an

aircraft engine to diagnosis human heart disease. To this end, public UCI heart

disease dataset is used[10]. The proposed scheme consists of (a) the pre-processing

step to improve data quality (missing data imputation and scaling dataset); (b)

the feature selection step to improve classification performance (based on embed-

ded method); and (c) the diagnosis phase to identify the absence or the presence

of heart disease (using Dragging Regularized ELM (ID-RLM)). The performance

of the proposed scheme is compared with previous work.

• Computer Aided Diagnosis to classify spitzoid lesions based on clinical

features: The second contribution focuses on classifying a challenging type of

skin lesions called spitz nevus. This classification will be done using private data

set contain clinical, histological, and immunohistochemical features to differen-

tiate Atypical Spitz Tumors from regular Spitz nevus. The primary goals and

contributions for this work include: (a) an effort to specify the exact type of a

Spitz lesion, which is extremely difficult and challenging. Also, in the best of

our knowledge, no one has used AI to classify spitzoid lesions before. (b) An

attempt to extend past research results on the steps needed for the development

of an automatic diagnostic system for Spitzoid lesion classification. (c) A move

towards integrating clinical, histological, and immunohistochemical features to

make an accurate diagnosis in distinguishing between SN vS AST. In addition,

finding out the impact of these features on the classification.
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A proposed three-phase approach is being implemented. In Phase I, collected data

are preprocessed with an effective Synthetic Minority Oversampling TEchnique (

SMOTE) which being implemented to treat the imbalanced data problem. Then,

a feature selection mechanism using genetic algorithm (GA) is applied in Phase

II. Finally, in Phase III, a ten-fold cross-validation method is used to compare the

performance of seven machine-learning algorithms for classification. Experiments

results will shed light on the impact of data quality on performance and the best

features distinguishing between classical Spitz nevus and atypical Spitz tumors.

• Computer Aided Diagnosis for skin lesions classification based on der-

moscopic imaging: The third contribution aims to develop a computer-aided

diagnosis (CAD) that can accurately classify eight skin lesions using dermoscopic

images from a public ISIC 2019 challenge dataset [11] and a private dataset.

Three main tasks are proposed and implemented. Task 1 is data quality improve-

ment by solving the imbalanced class problem, missing values, and dermoscopic

multi-resolution. Task 2 is CAD development via a pretrained Noisy Student

(EfficientNet-L2) architecture as a feature extractor using transfer learning. We

incorporate additional metadata using a dense neural network concatenated with

the CNN output. Then, the classifier follows with eight units representing skin

lesion classes. Task 3 concerns the development of automatic hyperparameter

selection (CNN-AHPS) using big data tools (MapReduce). Experiments results

will shed light on the impact of hyperparameters selection, also the impact of

combining metadata with dermoscopic images.

4 Dissertation plan

The rest of this thesis is organised as follows:

Chapter II presents a state of the art that briefly introduces three main domains

related to this thesis by clarifying the basic concepts: Big data, Machine learning, and

M-PHM.

Chapter III introduces the first contribution, which consists of applying an

adaptation of a PHM model from fault diagnosis of an aircraft engine to diagnosis

human heart disease in order to reduce the gap between them. We give first during
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the presentation of our approach a quick overview of this adaptation. Then we detail

each method steps: data description, pre-processing, feature selection, and classifica-

tion. After that, experimental results to demonstrate the effectiveness of our system is

provided. Finally, a conclusion and future works are presented.

Chapter IV presents our second contribution, which aims to test several artificial

intelligence techniques to build a computer-aided diagnosis system to classify Spitzoid

lesions. We present first an overview of spitzoid lesions, then a motivation for our

contribution. The next Section is offering a detailed description of the proposed method

used in three phases: preprocessing phase, feature selection phase, classification phase.

next section highlights the key indicators, including performance measures, as well as

the experimental findings. Finally, results obtained and discussion is presented.

Chapter V presents our main contribution, which aims to develop a computer-

aided diagnosis (CAD) to classify accurately different skin lesions using dermoscopic

images and metadata. In this chapter, We present first an overview of skin lesion

classification and its challenges. Then, highlights previous work and presents our con-

tribution. The next section presents the proposed method involves data preprocess-

ing, data augmentation, data classification, and automatic hyperparameters selection

(CNN-AHPS) technique for the training step. Then we show experimental results and a

comparative analysis with state of the art. The last section discusses our observations,

findings, and some limitations.

Finally, in Chapter VI we conclude the thesis with a summary of contributions

and open perspectives.
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Chapter II

Preliminaries and Basic Concepts

This chapter introduces briefly three main domains related to our work by clar-

ifying some basic concepts. In Section 1, we introduce big data by defining its 5Vs

characteristics. We emphasised on Big Health Data process from the collection step

until the decision-making. In addition, we define tools and technologies which have

been used to store and process big health data as the Hadoop ecosystem. In Section 2,

we present a brief overview of Machine Learning and Deep Learning. Also in the same

section we present the machine learning process from data processing until evaluation

of model by focusing on supervised learning and more precisely classification task. In

Section 3, we present the inspired Medical PHM (M-PHM) by comparing industrial

PHM and Medical PHM, and finishing by defining the four health analysis types.

1 Big data

The term Big data founded for massive data sets having a large, complex and

varied structures. Big data is generated from images, audios, emails, online transac-

tions, clickstreams, posts, logs, search queries, social networking interactions, health

records, science data, sensors and mobile phones and their applications [12]. These big

datasets grow massively and become difficult to store, capture, form, manage, analyze,

visualize, and share by traditional Information Technology (IT) and hardware/software

tools within a sustainable time [13].
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1.1 Features of Big Data

Big Data is primarily characterized by three Vs: volume, variety and velocity as

presented in Figure II.1. Recent statistics declared that data is growing at a rate of 59%

every year [6]. The growth of the data can be described regarding the following five Vs:

1.1.1 Volume

Big data volume refers to the size of data being created from all the sources including

text, audio, video, social networking, research studies, medical data, space images,

crime reports, weather forecasting and natural disasters [12]. Nowadays, a large amount

of data is generated every day. In 2016 the whole amount of data is estimated to be

6.2 exabytes, and now in 2020, we exceeded 80000 exabytes of data [14].

Due to the fast generation of big data in massive sets, organisations and companies

that want to join big data into their business strategies are starting to replace tradi-

tional methods and tools with business intelligence and analytics systems and software

[13]. These advanced techniques allow them to effectively collect, store, process and

visualise all of that data in real-time.

1.1.2 Velocity

Velocity defines the speed of generating, capturing, and sharing the dataset. As the

flow of data nowadays is massive and continuous, the speed at which data can be ac-

cessed directly impacts the decision-making process. Most of the traditional approach

face problems associated with data, which keeps adding up but can not be processed

quickly. They generally take batch processing or manual processing that takes several

hours or days for analysis [15]. The main objective is to collect, process and visualize

data closer to real-time to extract information and insights that will lead to better

business results.
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Figure II.1: Main features of Big data

1.1.3 Variety

The data is generated from different sources and forms such as structured, unstruc-

tured, and semi-structured.

• Structured data generally is well organized and it can be simply analyzed by

humans and machines because it has a defined length and format.

• Semi-structured data is a mix between unstructured and structured data, there-

fore some components can be easily analyzed and organized, while other parts

need a machine to organize it.

• Unstructured data is unorganized data that can be defined as chaotic data, and

most of real data in nature is unstructured such as: videos, mobile data, texts,

pictures [16].

In addition to these three main characteristics of big data, there are two additional

features: Value and Veracity [17]. The veracity refers to the truthfulness of sources

that influence accuracy, such as missing data, inconsistencies, ambiguities, duplication,

spam, deception, fraud, and latency. Finally, the value represents cost-benefit to the
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decision-making through the ability to take meaningful action based on insights derived

from data [18]. Figure II.2 illustrates the difference between traditional data and big

data according to five features.

Figure II.2: Ordinary data VS Big data

1.2 Big data process in healthcare

Healthcare has a big transformation from a paper-based system to Electronic

Health Records (EHR). This digitalization due to a massive amount of heterogeneous

data, Which include patient medical information; biomarkers (genomic, proteomic,

metabolomic); diagnosis results (radiology, blood test); pharmacy data( prescriptions,

medications); administrative data (cost and claims data, population and public health

data); Also behaviour data that comes from social media, sensors, wearable devices,

and fitness monitors. [18].

Such big health data characterized by its complexity, heterogeneity, fast growth,

and size, so the big challenge in healthcare systems is how to collect, store, analyze
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and manage this data to improve the healthcare quality by understanding new diseases

and therapies, predict outcomes at earlier stages, make real-time decisions, as well as

personalized medicine. In this section, we will introduce the process of big data in

healthcare from the collection of the raw data until the decision making. which can

be generally divided into four phases: data generation, data acquisition, data storage,

and data analysis (see Figure II.3).

1.2.1 Big data generation

Data generation is the first step of big data. Specifically, it is large-scale, highly

diverse, and complex datasets generated through. In healthcare, data heterogeneity

and variety of structured, semi-structured and unstructured data comes from diverse

biomedical data sources .Healthcare Big Data includes data on physiological, behav-

ioral, molecular, clinical, environmental exposure, medical imaging, disease manage-

ment, medication prescription history, nutrition, or exercise parameters [18].

There is a several ways of classifying Sources of big data in the literature. Accord-

ing to [19] data sources divide on two classes:

1. Administrative (Government, National surveys (Medical Expenditure Panel Sur-

vey), commercial vendors (health plans, PBMs)).

2. Clinical (Hospital, Physician, Integrated delivery network, Clinical database).

On the other hand [20] categorized Big Health Data sources into:

1. Providers: medical data (EHRs).

2. Payers: claims and cost data.

3. Researchers: academic, independent.

4. Consumers and Marketers: patient behavior and sentiment data.

5. Government: population and public health data.

6. Developers: pharmacy and medical device.

We conclude that healthcare data comes from two types of sources, internal sources
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Figure II.4: Sources of big data in healthcare

such as EMRs, CPOE (computerized provider orders entry), imaging data, RD labo-

ratories, pharmacy. In addition, external data sources such as government, insurance

(claims billing), researches and social media. Based on previous classifications, we have

inspired our health data classification, it shows type, source, and contents illustrated

in Figure II.4.

1.2.2 Big data storage

Data storage refers to the management and the storage of large-scale datasets by

achieving availability and reliability. A data storage system involves two parts: in-

frastructure and data storage mechanisms or methods. The hardware infrastructure
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includes massive shared Information Communication Technology (ICT) resources used

to feedback instant demands of tasks, and such ICT resources are organized flexibly

[12]. The hardware infrastructure should provide elasticity and dynamic reconfigura-

tion to adapt to diverse application environments. On the other hand, data storage

methods are deployed on the top of hardware infrastructure to support large-scale

datasets. Storage systems should be equipped with many interfaces, rapid query, and

other programming models to analyze or interact with stored data. Figure II.5 illus-

trates storage tools for big data, and the following sections explain the techniques and

technologies used to store and trait big data in details.

Figure II.5: Big data storage tools

Database Technology: Database technologies have been evolved these last years,

and various database systems are developed to handle datasets at different scales and

support various applications. This advancement allows us to avoid the limits of tra-

ditional relational databases that cannot meet the challenges on categories and scales

brought by big data. NoSQL databases (nontraditional relational databases) are be-

coming more popular for big data storage. They provide a flexible model, simple API,

support for simple and easy copy, eventual consistency, and extensive volume data sup-

port [12]. NoSQL databases are becoming the core technology for big data. We will

examine the following three main NoSQL databases in the next sections: Key-value

databases, column-oriented databases, and document-oriented databases.
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Key-Value Databases: Key-value databases are developed by a simple data model,

where data is stored corresponding to key-values. Every key is unique and users may

input queried values according to the keys. Such databases provide a simple structure

and the modern key-value databases are characterized with high expandability and

smaller query response time higher than those of relational databases.

Column-Oriented Databases: The column-oriented databases store and process

data according to columns other than rows. Columns and rows are segmented in multi-

ple nodes to realize expandability. The column-oriented databases are mainly inspired

by Google’s BigTable which is a distributed, structured data storage system designed

to process the large-scale data among thousands commercial servers [21].

Document Databases: Compared with key-value storage, document storage can

support more complex data forms. Since documents do not follow strict modes, there

is no need to conduct mode migration. Besides, key-value pairs can still be saved. There

are three essential representatives of document storage systems, MongoDB, SimpleDB,

and CouchDB (see Table II.1).

Database Programming Model: The massive datasets of big data are gener-

ally stored in hundreds and even thousands of commercial servers. The traditional

parallel models such as Message Passing Interface (MPI) and Open Multi-Processing

(OpenMP) may not be adequate to support such large-scale parallel programs. Some

parallel programming modes have been proposed for specific fields. These models ef-

fectively improve the performance of NoSQL and reduce the performance gap between

relational databases. Therefore, these models have become the cornerstone for the

analysis of massive data.

MapReduce: MapReduce [30] model for large-scale computing using a large num-

ber of commercial PCs clusters to achieve automatic parallel processing and distribu-

tion. In MapReduce, the computational workload is caused by inputting key-value pair

sets and generating key-value pair sets. The computing model only has two functions,
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Big data platforms
Platform role

Store type

Cassandra [22] Apache Cassandra is an open-source distributed NoSQL
database management system designed to handle large Column oriented data stores
amounts of data across many commodity servers, offers
robust support for clusters spanning multiple
datacenters [23]

MongoDB [24] MongoDB is an open source distributed document-oriented
database. Classified as a NoSQL database program, .It uses document data stores
JSON-like documents to store the data. Semi-structured
data such as texts, time-stamped log, geo-info or even
arrays and nested hash tables can be stored in MongoDB

DynamoDB [25] Dynamo is a highly available and expandable distributed
key-value data storage system. It is used to manage store Key-value stores
status of some core services in the Amazon. It’s a set of
techniques that when taken together can form a highly
available key-value structured storage system [12]

Hadoop [26] HDFS is a popular type of cluster file system which is /
Distributed designed for reliably storing large amount of data across
File System machines in a large scale cluster [27].
(HDFS)
OrientDB [28] OrientDB is an open source NoSQL database management Graph oriented data stores

supporting graph, document, key/value, and object models
but the relationships are managed as in graph
databases with direct connections between records.

HBase [29] HBase is a column-oriented database management system
that sits on top of HDFS. It uses a non-SQL approach [29] Column oriented data stores

Table II.1: Big data platforms with storage type.

i.e., Map and Reduce, both of which are programmed by users. The Map function

processes input and generates intermediate key-value pairs. Then, MapReduce will

combine all the intermediate values related to the same key and transmit them to

the Reduce function. Next, the Reduce function receives the intermediate key and its

value set, merges them, and generates a smaller value set. MapReduce has the ad-

vantage that it avoids the complicated steps for developing parallel applications, e.g.,

data scheduling, fault-tolerance, and inter-node communications. The user only needs

to program the two functions to develop a parallel application.

Dryad: Dryad [31] is a general-purpose distributed execution engine for process-

ing parallel applications of coarse-grained data. The operational structure of Dryad

is a directed acyclic graph, in which vertexes represent programs and edges represent

data channels. Dryad executes operations on the vertexes in computer clusters and

transmits data via data channels, including documents, TCP connections, and shared-

memory FIFO. During operation, resources in a logic operation graph are automatically

mapped to physical resources. The operation structure of Dryad is coordinated by a

central program called job manager, which can be executed in clusters or workstations
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of users. The user workstations can access clusters through the network. Besides,

Dryad allows vertexes to use any amount of input and output data, while MapReduce

supports limited computing, with only one input set and generating only one output set.

All-Pairs: All-Pairs [32] is a system specially designed for biometrics, bioinformatics,

and data mining applications. It focuses on comparing element pairs in two datasets

by a given function. The All-Pairs problem may be expressed as a three-tuples (Set

A, Set B, and Function F), in which Function F is utilized to compare all elements in

Set A and Set B. The comparison result is an output matrix M. It is also called the

Cartesian product or cross join of Set A and Set B. All-Pairs is implemented in four

phases: system modeling, input data distribution, batch job management, and result

collection.

Pregel: The Pregel [33] system of Google facilitates the processing of large-sized

graphs, e.g., analysis of network graphs and social networking services. A computa-

tional task is expressed by a directed graph constituted by vertexes and directed edges,

in which every vertex is related to a modifiable and user-defined value. Directed edges

are related to their source vertexes and every edge is constituted by a modifiable and

user-defined value and an identifier of a target vertex. After the graph is built, the

program conducts iterative calculations called supersteps among which global synchro-

nization points are set until algorithm completion and output completion. In every

superstep, vertex computations are parallel and every vertex executes the same user-

defined function to express a given algorithm logic.

1.2.3 Big data analysis:

Data analysis is the final and the most important phase in the value chain of big

data, with the purpose of extracting useful values, providing suggestions or decisions.

Different levels of potential values can be generated through the analysis of datasets in

different fields [34]. Big data analytics is often a complicated process of analyzing big

data to reveal hidden patterns, correlations that can help organizations make the right

decisions. Big data analytics is a form of advanced analytics, which involve complex

applications with elements such as :
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• Data mining: which sift through data sets in search of patterns and relationships;

• Predictive analytics: which build models to forecast customer behaviour and

other future developments;

• Machine learning: which taps algorithms to analyze large data sets;

• Deep learning: a more advanced offshoot of machine learning.
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2 Machine learning and Deep learning

Machine learning is part of artificial intelligence focused on constructing algorithms

that make predictions based on data without programming it to perform the task. ML

aims to identify a function f:X→Y that maps the input X into output Y [35]. Functions

f are chosen from different function classes, dependent on the type of learning algorithm

used. Machine learning algorithms can be classified mainly into three categories by the

type of datasets used as experience.

2.1 Machine learning categories

Machine learning categories involve supervised learning, unsupervised learning and

reinforcement learning. Other learning systems combine two categories, such as semi-

supervised learning that use labelled and unlabeled data. More details in the followings

sections.

2.1.1 Supervised learning

Supervised learning systems make use of labeled datasets, where x represents a data

point and y the corresponding true prediction for x. This training set of input-output

pairs is used to find a deterministic function that maps any input to an output, predict-

ing future input-output observations while minimizing errors as much as possible [36].

Supervised learning problems can be further grouped into regression and classification

problems:

• Classification: a classification problem is when the output variable is a category,

such as “disease” and “no disease”.Classes can be called as targets/labels or

categories (See Figure II.6).

• Regression: a regression problem is when the output variable is a real value, such

as “dollars” or “weight”.

Some popular examples of supervised learning algorithms are:

– Linear regression
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– Random forest

– Support vector machines

– Decision Tree

– Neural network (Multiple layer perceptron)

– K-Nearest Neighbours

– Näıve Bayes

Figure II.6: Supervised learning.

2.1.2 Unsupervised learning

Unsupervised learning systems use unlabeled datasets to train the system. The

objective of unsupervised learning is to derive structure from unlabeled data by inves-

tigating the similarity between pairs of objects, and is usually associated with density

estimation or data clustering [16]. Unsupervised learning problems can be further

grouped into clustering and association problems (See Figure II.7).

• Clustering: is a way of grouping the data points into different clusters, consisting

of similar data points. The objects with the possible similarities remain in a group

that has less or no similarities with another group. It does it by finding some
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similar patterns in the unlabelled dataset such as shape, size, color, behavior,

etc., and divides them as per the presence and absence of those similar patterns.

• Association: checks for the dependency of one data item on another data item

and maps accordingly so that it can be more profitable [37]. It tries to find some

interesting relations or associations among the variables of dataset. It is based

on different rules to discover the interesting relations between variables in the

database.

Some popular examples of unsupervised learning algorithms are:

– k-means for clustering problems.

– Apriori algorithm for association rule learning problems.

Figure II.7: Unsupervised learning.

2.1.3 Reinforcement learning

Reinforcement learning systems do not experience a fixed dataset, but a feedback

loop between the system and its experiences [38]. As shown in Figure II.8, state-

action-reward triples are observed as the data. The objective of reinforcement learning

is mapping situations to actions with the goal of maximizing rewards .
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Figure II.8: Reinforcement learning.

2.2 Deep learning

Deep learning is a sub-field of machine learning dealing with algorithms inspired by

the structure and function of the brain called artificial neural networks. In other words,

It mirrors the functioning of our brains and how nervous system structured where each

neuron connected each other and passing information [39].

Convolutional neural networks is currently one of the most prominent algorithms

for deep learning with image data. Whereas for traditional machine learning relevant

features have to be extracted manually. deep learning uses raw images as input to learn

certain features [40]. CNNs consist of an input and output layer, and several hidden

layers between the input and output. Examples of in between layers are convolutional

layers, max-pooling layers and fully connected layers explained in the following items

and Figure II.9.

• Convolutional Layer (CONV): Convolutional filters are used to derive an activa-

tion map from the input data.

• Pooling Layer (POOL): Performs nonlinear down-sampling and cuts down the

amount of parameters for a simpler output.

• Fully Connected Layer (FC): Computes the class probability scores by outputting

of C dimensions, with C being the number of classes. All neurons are connected
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to this layer.

• Activation function layer: the common used is ReLU (Rectified Linear Unit)

which applies the non-saturating activation function f ( x ) = max ( 0 , x )[55].

It effectively removes negative values from an activation map by setting them to

zero .[66] It increases the nonlinear properties of the decision function and of the

overall network without affecting the receptive fields of the convolution layer.

There are various CNNs architectures which have been developed in literature

such as: VGGNet, GoogLeNet, ResNet, MobileNet, and the recent one Efficient-

Net.

Figure II.9: Example of CNN architecture.

2.3 Transfer learning

Transfer learning is a machine learning method where a model developed for a task

is reused as the starting point for a model on a second task. in other word, Transfer

learning is an approach in deep learning and machine learning where knowledge is

transferred from one model to another [41]. In this method, pre-trained models are

used as the starting point on computer vision instead of developing models from the

very beginning. This allows us to handle the challenge of the large amount of computing

and storage resources required to develop Deep Learning models. However, it should

also be noted that transfer learning only works in deep learning if the model features

learned from the first task are general [42].

Transfer learning is becoming the go-to way of working with deep learning models.

The reasons are explained below:
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• Lack of data : Deep learning models require a LOT of data for solving a task

effectively. However, it is not often the case that so much data is available. In

that case, a specific target task can be solved using a pre-trained model for a

similar source task.

• Speed: Transfer learning cuts a large percentage of training time and allows for

building various solutions instantly. In addition, it prevents from setting up a

complex and costly Cloud GPU/TPU.

Figure II.10: Fine tuning strategies for pre-trained models.

As shown in Figure II.10 Transfer learning can be applied through several different

strategies by fine-tuning the model according to one of three strategies:

1. Train the entire model: In this case, we use the architecture of the pre-trained

model and train it according to our dataset. in other word, we are learning the

model from scratch, so we’ll need a large dataset and a lot of computational

power.

2. Train some layers and leave the others frozen: lower layers refer to general features

(problem independent), while higher layers refer to specific features (problem

dependent). Here, we play with that dichotomy by choosing how much we want

to adjust the weights of the network (a frozen layer does not change during

training). Usually, if we have a small dataset and a large number of parameters,
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we’ll leave more layers frozen to avoid overfitting. By contrast, if the dataset

is large and the number of parameters is small, we can improve the model by

training more layers to the new task since overfitting is not an issue.

3. Freeze the convolutional base: This case corresponds to an extreme situation of

the train/freeze trade-off. The main idea is to keep the convolutional base in

its original form and then use its outputs to feed the classifier. we’re using the

pre-trained model as a fixed feature extraction mechanism, which can be useful

if we’re short on computational power, your dataset is small, and/or pre-trained

model solves a problem very similar to the one we want to solve.

2.4 Machine learning process

Machine Learning is a data-driven process that starts by pre-processing the col-

lected data until the model construction spits out predictions and insights. The method

of performing machine learning usually requires many steps that are explained in the

following sections:

2.4.1 Data preprocessing

Data preprocessing is the first and crucial step while creating a machine learning

model. It is a process of preparing the raw data and making it suitable for a machine

learning model. A typical healthcare data preprocessing procedure usually includes

the following steps depending on the source and format of the data :

Data cleaning: Data cleaning is the method of detecting, correcting or removing

wrong or inaccurate records from images, table, or database and identifying incorrect,

incomplete, irrelevant or inaccurate parts of the data and then replacing, modifying,

or deleting the row data [43].

Missing value interpolation: In health analytics, missing data may be unavoid-

able due to a variety of reasons, for example,faulty equipment, and/or imprecise or

lost measurements; moreover,the errors of the caregivers,for instance, physicians or
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nurses who forget and/or improperly record the information may also lead to miss-

ing information. Yet,the most serious problems of missing values are the resulting

consequences, thereby effectively slowing down the analytic processing due to lower

efficiencies, and/or the potential to compromise the information extracted from the

data, there by leading to faulty conclusions.

Essentially, three strategies may be applied to deal with missing data. The first

is missing data ignoring techniques that simply delete the cases that comprise the

missing data [44]. In cases where the size of the data is small (as with the current

study), deleting any information is not ideal.The second approach would be to de-

ploy missing data modeling techniques. The strategy here is to define a model from

the existing data and then generate inferences based on the distribution of the data

[44]. The third strategy is to employ the missing data imputation techniques. These

techniques complete the missing data in the dataset with a potential value [45]. Ex-

amples of such techniques include: Mean regression, K-NNs, and multiple imputations.

Data synchronization: Data synchronization ensures secure, accurate, compliant

data. It assures harmony between each source of data and its different endpoints. As

data comes in, it is cleaned, checked for errors, consistency and duplication before

being used [46]. Data must always be consistent throughout the data record. If data

is modified in any way, changes must upgrade through every system in real-time to

avoid mistakes, prevent privacy breaches, and ensure that the most up-to-date data

is the only information available. Data synchronization ensures that all records are

consistent, all the time.

Data normalization: This step is usually needed to adapt to differences in the data

recording process. For example, a daily heart rate may represent a daily average heart

rate or a measurement during a specific time range. Moreover, a normalization step

is usually performed to transform the original feature into a similar format by adopt-

ing and mapping standardized terminologies and code sets. A normalization process

should sometimes be carried out to convert the original numerical values to nominal

ones for a specific algorithm [47]. It is deserving of mentioning that the discretization
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process may cause information loss and impact data quality.

Imbalanced data problem: Imbalanced data typically refers to a problem with

classification problems where the classes are not represented equally. The imbalance of

medical data, as characterized by the non-uniformity of the class distribution among

the classes, seriously affects the accuracy of medical diagnosis classification. Data im-

balance exists widely in real-world datasets, especially those in the medical field. To

resolve this challenge, a widely implemented technique for dealing with highly unbal-

anced datasets is resampling:

1. Under-sampling: is resampling consists of eliminating samples from the majority

class which can cause wast of information.

2. Over-sampling is to duplicate random samples from the minority class, which can

affect over-fitting [48].

3. Generate synthetic samples: is to sample the attributes from instances in the

minority class randomly. We could sample them empirically within a dataset or

use a method like Naive Bayes to sample each attribute independently when run

in reverse. If data is different and no linear relationships between the attributes

may not be preserved.

There are systematic algorithms that generate synthetic samples. The most popular

of such algorithms is called SMOTE or the Synthetic Minority Over-sampling Tech-

nique [49]. As its name suggests, SMOTE is an oversampling method. It works by

creating synthetic samples from the minor class instead of creating copies. The algo-

rithm selects two or more similar instances (using a distance measure) and perturbing

an instance one attribute at a time by a random amount within the difference to the

neighbouring instances.

2.4.2 Feature selection

Appropriate feature identification has become an essential task to apply data min-

ing algorithms effectively in real-world scenarios. Therefore, many feature selection
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methods have been proposed to obtain the relevant features or feature subsets in the

literature to achieve their classification and clustering objectives. There are three main

approaches for feature selection:

Filter methods: The filter approach incorporates an independent measure for evalu-

ating features subsets without involving a learning algorithm. This approach is efficient

and fast to compute (computationally efficient). However, filter methods can miss fea-

tures that are not useful by themselves but can be very useful when combined with

others. Some existed techniques for filter methods are presented in Table II.2.

Wrapper methods: The filter and wrapper approaches can only be distinguished

by the evaluation criteria. Different wrapper algorithms can be generated by varying

the subset generation and subset evaluation measure (using dependent criterion). The

wrapper approach selects an optimal subset that is best suited to a learning algorithm.

Therefore, the performance of the wrapper approach is usually better (see Table II.2).

Embedded methods: This approach combines with the learning algorithm at a

lower computational cost than the wrapper approach. It also captures feature depen-

dencies. It considers relations between one input features and the output feature and

searches locally for features that allow better local discrimination. It uses the inde-

pendent criteria to decide the optimal subsets for a known cardinality. The learning

algorithm is used to select the optimal subset among the optimal subsets across differ-

ent cardinality.

2.4.3 Choosing a model

There are various existing models developed by data scientists which can be used

for different purposes. These models are designed with different goals in mind. For

instance, some models are more suited to dealing with texts, while another model may

be better provided to handle images. We need to make the choice that meets our

expected outcome. The options for machine learning models can be explored across

three broad categories shown in Figure II.11 .
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Figure II.11: Machine learning techniques.

2.4.4 Model evaluation

Evaluating a model is a crucial step throughout the development of the model. Eval-

uation metrics have a correlation with machine learning tasks. Figure II.12 illustrates

various evaluation metrics based on the type of tasks(classification, regression, etc.)

all have different metrics. In this section, we are going to shed light on the evaluation

metrics used for classification.
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Figure II.12: Evaluation metrics.

• Accuracy refers to the whole number of instances that may be classified correctly.

It is given by

Accuracy =
TP + TN

TN + TP + FP + FN
(II.1)

Where:

– TP= True positive;

– TN= True negative;

– FP= False positive;

– FN= False Negative.

• Sensitivity measures the quantity of TP instances, which are correctly identified

by the classifier. It is given by

Sensitivity =
TP

TP + FN
(II.2)

• Specificity measures the quantity of TN instances, which are correctly identified
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by the classifier. It is given by

Specificity =
TN

TN + FP
(II.3)

• Precision measures the amount of predicted TP that is truly related to the TP

class. It is given by

Precision =
TP

TP + FP
(II.4)

• F1-measure is a combination of precision and sensitivity. Therefore, a high value

of F-measure shows a high value of both precision and sensitivity [50]. It is given

by

F1-measure = 2
Precision ∗ Sensitivity
Precision + Sensitivity

(II.5)

• The Receiver Operating Characteristics (ROC) curve is a graphical plot used to

compare the performance of a binary classifier. Area Under Curve (AUC)

• AUC is calculated for assessing performance of the classifier and provides an

examination of the classifier stability and consistency.
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3 Medical PHM

Prognostics and Health Management (PHM) approach, and theoretical models have

had great success for industrial systems. Therefore, this accomplishment motivates us

to think about potential extension of the PHM approach in such area as the medicine.

Many researchers from various engineering fields have been focused on PHM tools,

in order to decrease the maintenance cost of industrial resources and enhance system

safety, availability, and reliability [51].

PHM has seven pillars: data generation, data acquisition, state detection, diag-

nosis, prognosis, decision-making, and human machine interface. The main duties of

PHM expertise are to identify incipient system fault or component; implement failure

diagnostics, failure prognostics, and health management [51]. All of those objectives

are needed in the medical filed as well. In other words, we look for detect body or organ

fault (disease), perform disease diagnosis, disease prognostics, and health management.

the inspired process of Medical PHM (M-PHM) is shown in Figure II.13.

Figure II.13: General process of Medical PHM.

3.1 Engineering PHM VS medical PHM

Table II.3 presents the similarities and differences between machine and human

body in PHM view. We may infer that an adaptation of PHM can be applied in the
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medical filed with two key points being taken into account:

• Working on human body is more complicated, this is due to the complexity

of organs and the interactions between them are sometimes unknown and less

predictable. Furthermore, the sensibility of working on human lives, any mistake

leads to critical consequences.

• The data generation and sharing in medical filed still hard to achieve, also we

have to take in consideration the privacy of patients.

Industrial system Human body
Complexity Interactions between More complicated interactions.

components and failure Biological failure modes
modes may be well-defined of a human body or organs

could be less predictable
Risk factors Component aging, Concepts on natural

damage accumulation history, clinical course,
and fault progression diseases progression,

lifestyle, and environment
Data generation Sensors data is the most Various types of data:

type used in industry wearable sensors
(Vibration, temperature, (Blood pressure, heart rate,
humidity, etc.) Fasting blood sugar, etc.),

images (MRI,CT, ultrasounds
, WSI, etc.), reports and
prescriptions text, clinico-
histological features, etc.

Diagnosis Identify the system Disease detection by identifying
degradation behavior the type, and the cause based

on clinico-histological data, etc.
Prognostics Predict the component RUL Predict getting the disease

based on risk factors
Predict the recurrence of disease

Decision-making Determine optimal Select optimal treatment,
maintenance policies and prevention policies

Table II.3: Industrial system vs. human body contrast in PHM view.

3.2 M-PHM analytics

M-PHM analytics are steps that utilises various techniques including modelling,

data mining, and statistics, as well as artificial intelligence (AI) such as machine learn-

ing and deep learning to evaluate historical and real-time data and make predictions

about the future [52].

Figure II.14 illustrates the four health analysis models by showing the role and
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difficulty of each one. Both descriptive analytics and diagnostic analytics look to the

past to explain what happened and why it happened. Predictive analytics and pre-

scriptive analytics use historical data to forecast what will happen in the future and

what actions you can take to affect those outcomes. More details for each level are

explained below:

Figure II.14: Four types of M-PHM analytics.

3.2.1 Computer Aided Detection (Descriptive analysis)

Descriptive analytics is used to explain what was happening in a given situation

[53]. This class of analytics can be used in healthcare to detect anomalies in a given

dataset. for example:

• Screening mammography for the early detection of breast cancer.

• Detection of colorectal polyps in the colon in CT colonography.

• Identify subjects with Alzheimer’s and mild cognitive impairment from normal

elder controls
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• Pathological brain detection (PBD)

• Automatic detection of significant coronary artery disease in coronary CT an-

giography

3.2.2 Computer Aided Diagnosis (Diagnostic analysis)

Diagnostic analytics takes descriptive data a step further and provides a more in-

depth analysis to answer why this happened? This includes using processes such as data

discovery, data mining, and drill down and drill through [54]. In the healthcare example

mentioned earlier, diagnostic analytics would explore the data and make correlations

for example :

• Diagnose the type and stage of disease

• Identify patterns of care and discover associations from massive healthcare records

• Interpretation of medical images such as X-ray, MRI, and ultrasound diagnostics

precisely and in a short time.

3.2.3 Computer Aided Prognostic (Predictive analysis)

Predictive analytics can be described as a branch of advanced analytics utilized to

make predictions about unknown future events or activities that lead to decisions [55].

For example:

• Predict whether a patient is at a high risk to have a disease based on risk factors.

• Predict the recurrence of breast cancer

• Predict the survival of patients

• Which patient is likely to be readmitted after surgery

• Whether a patient will stay longer than the average after surgery.

For this reason, predictive analytics in healthcare settings has received a significant

amount of interest over the past few years. The knowledge gained through applying

predictive analytics in health and medicine will change how medicine is practised while

enhancing our ability to prevent and treat significant diseases and illnesses.
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3.2.4 Computer Aided Decision making (prescriptive analysis)

Prescriptive analytics is an area of data analytics that focuses on prescribing possible

actions and solutions for a problem. It uses modelling, data mining, and artificial

intelligence to evaluate historical data and real-time data to make right decisions [56].

It gives the healthcare companies multiple ‘what if’ options to compare to find the best

possible solution for the patient for example :

• Empowers healthcare providers with the capability to do something about it,

helping them take the best action to mitigate or avoid a negative consequence.

• Determine the maximum dosage of the drug that is effective to maximize treat-

ment outcome.

• Personalized medicine and evidence-based medicine are both supported by pre-

scriptive analytics

• Allows health care providers to consider recommended actions for each of those

predicted outcomes.

• Lower the cost of healthcare from patient bills to the cost of running hospital

departments. In other words, it helps in making sound financial and operational

decisions, providing short-term and long-term solutions to administrative and

financial challenges.

• Provides enormous scope and depth as developers improve technologies in the

future. It is making significant advances concerning patient care quality and

timeliness and is reducing clinical and financial risks.

4 Conclusion

This chapter introduced the principal axes of our thesis: Big Data, Machine learning

& deep learning, and M-PHM. Digitalization of the medical sector has led to a massive

growth of data (Big Data) which come from various sources. The healthcare industry

needs to work on detection, diagnosis, prediction, and prevention (M-PHM) to improve

outcomes. To achieve this, we use artificial intelligence techniques (Machine Learning

& Deep Learning) which examines such large data sets and uncovers hidden information
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and patterns to discover knowledge from the data, as well as personalized medicine, all

in real-time.

The following chapter aims to present the first contribution of this thesis, which

aims to reduce the gap between industrial PHM and medical PHM. This work is a

retargeting PHM model from fault diagnosis of an aircraft engine to diagnosis human

heart disease.
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Retargeting PHM tools: from

industrial to medical field

This chapter presents the first contribution in this thesis which consists of applying

an adaptation of a PHM model from fault diagnosis of aircraft engine to diagnosis hu-

man heart disease. For that adaptation, an algorithm for retargeting extreme learning

machine (ID-RELM) is applied. We give first during the presentation of our approach

a quick overview on this adaptation in section 1. Then we detail each of the method

steps in the sections 2. In Section 3, experimental results to demonstrate the effective-

ness of our system is provided. Finally, a conclusion and future works are presented in

Section 4.

1 Motivation

Many researchers from various engineering fields have been focused on Prognostics

and Health Management (PHM) tools, in order to decrease the maintenance cost of

industrial resources and enhance system safety, availability, and reliability [51]. Recall

that PHM has seven pillars: data generation, data acquisition, state detection, diagno-

sis, prognosis, decision-making and human machine interface. Works piloted in PHM

research concentrate on developing accurate and robust models to evaluate the health

state of systems by making diagnosis, prognostic, and support decision making.

Automatic diagnosis and prognostic in medical domain has been an active area
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in computer science field in last decades. Various medical domains attract researches,

more precisely oncology and chronic diseases. In this work, we are interesting in car-

diology field.

Heart disease is the major cause of death in the universal and the number of

patients with heart disease is growing each year [57]. According to World Health

Organization (WHO) reported data, around 17300000 persons died worldwide from

cardiovascular diseases (CVDs). This statistics shows the need of having computer

aided diagnosis (CAD) system that is able to give a preliminary assessment of a patient

based on simple medical tests that are accessible to everyone [58]. CAD for heart

disease was widely developed using data mining and machine learning [59], however

the performance still needs improvement to make accurate classification.

The aim of this contribution is to apply an adaptation of a PHM model from

fault diagnosis of aircraft engine [60] to diagnosis human heart disease. This PHM

model is based on a new strategy by retargeting extreme learning machine (ELM)

algorithm. ELM is a single feedforward neural network; its structure involves a single

layer of hidden nodes, where the weights between inputs and hidden nodes assigned

randomly, and remain constant during training and testing phases. On the other

hand, the weights that connect hidden nodes to outputs can be trained very fast.

The idea behind retargeting ELM is to avoid limits of the original one regarding the

random hidden nodes generation by retargeting its label vectors. The proposed method

need less hidden nodes to achieve the same classification performance, which means

improving the processing real time.

In order to develop a CAD for heart disease, a new scheme is proposed based on

PHM adaptation using UCI heart disease dataset [10]. The proposed scheme consists

of: (a) the pre-processing step to improve data quality (missing data imputation and

scaling dataset), (b) the feature selection step to improve classification performance

(based on embedded method), (c) the diagnosis phase to identify the absence or the

presence of heart disease (using Dragging Regularized ELM (ID-RLM)).
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2 Adapted PHM tool

We here present the adaptation process of the proposed PHM tool for aircraft engine

[60] to heart disease diagnosis. Figure III.1 shows the general schematic diagram of

our proposed tool adapted from [60] to diagnose heart disease. The details of each

processing stage are described in the subsequent sections.

Figure III.1: A general scheme of our CAD of heart disease.

2.1 Data description

The Cleveland dataset [10] used in this study was created by the University of

California Irvine (UCI) Machine Learning Repository heart disease dataset, including

four independent databases funded by four independent medical institutions. The

Cleveland dataset contains 303 cases of patient data, involving some missing values.

Table III.1 shows the Cleveland dataset attributes with their definitions and type.

2.2 Data preprocessing

In order to achieve more accurate results, data pre-processing is an important step

in changing raw heart disease dataset into a clean and understandable format for anal-

ysis. The following sub-sections discuss techniques applied to improve the quality of

our dataset.
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Feature Input type Input range
age Age in years Numeric [29, 77]
sex Sex Binary 0 = female

1 = male
cp Chest pain type Nominal 1 = typical angina

2 = atypical angina
3 = non-anginal pain
4 = asymptomatic

trestbps Resting blood Numeric [94, 200]
pressure on admission
to the hospital in mm Hg

chol Serum cholestoral in mg/d Numeric [126, 564]
fbs Fasting blood sugar Binary 0 = false

is greater than
120 mg/dl or not 1 = true

restecg Resting electro Nominal 0 = normal
cardiographic results 1 = having ST-T wave abnormality

2 = left ventricular hypertrophy
thalach Maximum heart Numeric [71, 202]

rate achieved
exang Exercise induced Binary 0= no

angina 1=yes
oldpeak ST depression Numeric [0,6.2]

induced by exercise
relative to rest

slope The slope of the Nominal 1 = upsloping
peak exercise ST segment 2 = flat

3 = downsloping
ca Number of major vessels Nominal 0-3

(0-3) colored by flourosopy
thal The heart status Nominal 3 = normal

6 = fixed defect
7 = reversable defect

num Diagnosis of heart disease 0 = less then 50%
diameter narrowing (normal)
1 = greater then 50%
diameter narrowing (patient)

Table III.1: UCI heart disease dataset description.

2.2.1 Missing data

In this contribution, we are going to apply the KNN techniques, which is an al-

gorithm that is useful for matching a point with its closest k neighbors in a multi-

dimensional space [61]. It can be used for data that are ordinal, continuous, categori-
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cal, and discrete which makes it particularly useful for dealing with all types of missing

values.

2.2.2 Scaling data

In this step, data columns are re-scaled to a range of [0−1] for two causes. The first

is one is to simplify the complexity of digital computing. The second one is to get rid

of attributes in the largest numeric range while controlling attributes in the smallest

numeric range [62].

2.2.3 Feature selection

Feature selection process is very significant to find most relevant attributes to the

classification and then to the diagnosis. It has many advantages: (1) To make the

model simpler to interpret. (2) To decrease the variance of the model, and therefore

over-fitting. (3) To decrease the computational time and cost. (4) And finally, the

most important one, is to increase the performance of the model [63].

In the literature, there is three main types of feature selection: filter, wrapper, and

embedded methods. In this contribution we will choose the third one, which combine

the qualities of filter and wrapper methods as implemented by algorithms that have

their own built-in feature selection methods. Random Forests (RF) are often used as

embedded feature selection in data science. The reason is tree-based strategies used

by RF can logically orders by how well they improve the clarity of the node [64]. at

the start of the trees, we find nodes with the highest decrease in impurity, while nodes

with the minimum decrease in impurity occur at the end of trees. Thus, by pruning

trees below a particular node, we can create a subset of the most important features.

Figure III.2 shows the features selected by RF with their score, where x-axis is the

feature indexes and y axis is the feature importance.

2.3 Diagnosis

Extreme learning machine (ELM), proposed and implemented by [65] as a single

hidden layer feedforward network, which has expanded applications in many machine
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Figure III.2: Features selected by RF algorithm on UCI dataset and their score.

learning tasks, such as classification, regression, etc. The reason behind this success

is efficiency and effectiveness of the model based on two main advantages: (1) ELM

generates randomly hidden layer biases and the input weights, and fixes them with-

out tuning by iterations the process of determining the output weights, Unlike the

traditional neural network, as error backpropagation; (2) ELM searches to minimize

both training errors and the norm of output weights, based on Bartlett’s theory which

benefits the generalization on the unseen data.

Despite the evidence of the drawback of ELM, it has a weak point presented in the

generation of extra hidden nodes to reach the same generalization performance as the

traditional neural networks. A large size network leads to more computational time

in the testing phase, which is not suitable for testing time view. Therefore, a lot of

proposed algorithms lean to compact the ELM architecture. The traditional methods

overcome this disadvantage by optimizing the network structure. However, a data

structure viewpoint is proposed by [60], which is different from the previous viewpoint

of network structure.

They care about the margin instead of the reference points, so a flexible dragging

strategy is developed. We here apply the improved version (ID-RELM) for diagnosis,

which abandons the reference points and can improve the classification performance by
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retargeting the ELM label vector. In this way, one can obtain a higher classification

performance with a lesser network size and processing time. This seems to be beneficial

for a real time application for heart disease diagnosis.

3 Experimentation

This experiment is compiled and run in google colab environment with python

language using scikit-learn bibliography, and the default values of functions are used

for all parameter values that are not explicitly stated. The used model is evaluated

using the below metrics.

Let TP be the true positive means number of patient who don’t have heart disease

(Healthy) which are predicted correctly; TN the true negative means number of patient

with heart disease (Not healthy) which are predicted correctly; FP the false positive

means number of normal which are predicted as patient and FN the false negative

means number of patient which are predicted as normal. The performance metrics

used in this study are defined in chapter II section II.6.4.

Before experiments, we firstly prepared our dataset through the imputation of

missing values using KNN technique. We have implemented KNN with K = 4. Sec-

ondly, a re-scaling method have been applied to re-scale continuous features into the

range [−1, 1]. Then, we have splitted randomly UCI heart disease dataset into training

set 70% and the testing set 30%. For the diagnosis step, we started by applying tra-

ditional ELM architecture to compare its performance with ID-RELM algorithm, We

then applied RF for feature selection.

Table III.2 shows the performance of the three methods on UCI heart disease

dataset without retargeted technique (ELM), with retargeted technique (ID-RELM),

and RF based feature selection combined to ID-RELM (ID-RELM & RF). The ap-

plication of the simple ELM classifier gives a modest results with 0.81 accuracy, 0.89

sensitivity of healthy patient and 0.74 sensitivity of not healthy patient. It also gener-

ates too much hidden nodes for this performance (153 hidden nodes), which are not as

good as for the real time processing. We can observe that the classifier performance

has been improved after using ID-RELM. We notice a higher accuracy 0.88, sensitivity
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ELM ID-RELM ID-RELM & RF

Accuracy 0.81 0.88 0.94

Sensitivity 0.89 0.98 0.98
Healthy

Sensitivity 0.74 0.79 0.93
Not healthy

Specificity 0.78 0.82 0.93
Healthy

Specificity 0.88 0.97 0.98
Not healthy

F1-measure 0.83 0.89 0.95
Healthy

F1-measure 0.80 0.87 0.95
Not healthy

Number of hidden nodes 153 42 40

Table III.2: Experimental performance metrics.

and specificity. This is obtained for only 42 hidden nodes (see Table III.2). ID-RELM

method seems to be a good technique to classify UCI heart disease dataset with lower

testing processing time.

Figure III.3 shows the same results using ROC curve. One can notice an im-

provement when ID-RELM technique is applied (from AUC = 0.81 to AUC = 0.89).

By combining RF features selection with ID-RELM, the highest classification perfor-

mances are achieved as we can remark in Table III.2 (the accuracy increases to 0.94

and AUC is about 0.95).

We now come to compare the obtained diagnosis results from the adapted PHM

tool using ID-RELM & RF to several methods recently proposed to contribute in

developing the decision support system for heart disease diagnosis (see Table III.3).

It can be observed that ID-RELM & RF improves the performance of CAD for heart

disease (accuracy = 0.94). The proposed method do not only improve the accuracy of

the system, but it also reduces the processing time (see Table III.4). This indicator is

a very important factor for real time applications.
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Figure III.3: ROC curve of our proposed method.

Previous work Classifier Feature selection Accuracy

[66] NB SVM- RFE/10 F 0.84
RF SVM-RFE/8F 0.84

[67] NB 0.83
SVM 0.84
SVM+MLP 0.84
KNN (k=9) 0.83
DT 0.77
MLP 0.82

[68] RF 0.91

[68] Majority vote-based model 0.82
(NB,DT,SVM)

[69] FAMD+RF 0.93

[70] Bagging with decision tree 0.81

[71] NB 0.86
ANN 0.85
DT 0.89

[58] Hard Voting Ensemble Method 0.90

[72] LR reflif 0.89
NB mRMR 0.84
SVM LASSO 0.88

Our approach ID-RELM RF 0.94

Table III.3: Performance comparison of our proposed method along with previous work
on UCI heart disease Cleveland dataset.
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Model used Processing time (s)
Logistic regression 2.159
K-nearest neighbor 0.144
Artificial neural network 30.802
SVM (kernel=RBF) 60.589
SVM (kernel=linear) 0.179
Naive Bayes 1.596
Decision tree 1.831
Random Forest 2.220
ID-RELM & RF 0. 07

Table III.4: Processing time comparison of our proposed method and existed work.

4 Conclusion

The framework of this paper is to transfer the PHM approach from industrial

to medical field. This work could be considered as a first step to reduce the gap

between industry and medical filed, by exchanging the applied techniques, and proving

that models applied for machine’s health diagnosis could be applicable for human’s

health diagnosis. The suggested system accomplished higher classification accuracy

rate, by improving the data quality, decreasing the number of attributes and obtained

higher performance rate, with reduced processing time. The ID-RELM & RF model

can be used as a medical decision support system for cardiologists to make accurate

classification with lower time, cost, and effort.

In the following chapter, we will direct our work on dermatology domain. For this

end, we have proposed a computer-aided diagnosis to classify a type of skin lesions in

order to assist dermatologists in distinguishing between these challenging lesions called

spitz nevus. This CAD system based on machine learning techniques and genetic

algorithm-based feature selection.
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Chapter IV

Computer Aided Diagnosis for

Spitzoid lesions classification using

Artificial Intelligence techniques

In this chapter, we present our second contribution which aims test several artificial

intelligence techniques so as to build a computer aided diagnosis system. We present

first an overview on spitzoid lesions in section 1 then a motivation of our contribution

in section 2. Section 3 offering detailed description on the proposed method used in

three phases: (a) the preprocessing phase; (b) the feature selection phase; and (c)

the classification phase. Section 4 highlights the key indicators, including performance

measure(s), accuracy, sensitivity, specificity, G-mean, F-measure, ROC curve, and area

under the ROC curve (AUC) as well as overviews the experimental findings. Finally,

Section 5 show results obtained and discussion.

1 Medical overview

Spitz nevus, a rare form of skin mole, tends to affect mostly young people and

children with some 2016 statistics claiming that about 7 out of every 100,000 individuals

may be inflicted [73]. Typically, patients diagnosed with Spitz nevus are under 21

years old [74]. Historically, such tumors had been treated as a melanoma, identifying
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with the name, Benign juvenile melanoma; later on, Dr Sophie Spitz, a pathologist,

characterized a new class of melanocytic tumor, which has now been popularized as

Spitz nevus [75]. According to Harms, et al. [76], these Spitzoid melanocytic lesions

may be clustered into three main types: (a) Spitz nevi; (b)Atypical Spitz Tumors; and

(c) Spitzoid Melanomas (SM).

Figure IV.1 shows two dermoscopic images with Figure IV.1 A exhibiting Spitz

nevus (SN), and Figure IV.1 B depicting Atypical Spitz tumor (AST). Although clin-

ically indistinguishable, these lesions share some dermoscopic and histologic features

(see Table IV.1). Arguably, the exact clinico-pathologic definition of AST is still in-

credibly challenging for dermatopathologists. However, the debate concerning AST

prognosis is of highest priority, as their comportment cannot be easily predicted. SN

displays a definite benign behavior, where as SM is malignant and particularly aggres-

sive [77]. Consequently, Spitzoid lesions, a subset of melanocytic skin lesions, are not

only difficult to diagnose from a clinical viewpoint but from both histological and/or

dermoscopic perspectives as well.

Figure IV.1: Example dermoscopic images of Spitz Nevus (1A), and Atypical Spitz
Tumors (1B) Source: Rubegni et al. (2016)

Blum,et al. [78] argue that SN is diagnosed typically by dermatologists conducting

visual inspections of a mole using clinical assessment tools such as ABCDE(Asymmetry,

Border, Color, Diameter, and Evolution). Even so, a biopsy laboratory examination

is often ordered to remove all or part of the mole to support the diagnosis. Indeed, a

skilled and trained pathologist must be engaged to diagnose a sample, differentiating
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it between SN v.a more severe melanoma.

Spitz nevus Atypical Spitz tumor Malignant Spitz tumor
Mean and median Can occur at any age, Can occur at any age
age 21 years more common in (often > 40 years)e
(range 2-69 years) younger patients
(< 40 years)
Most commonly Occur in extremities, Occur in extremities,
affects extremities trunk trunk, asymmetrical
Pink or reddish Plaque or nodule Enlarged Plaque
plaque, papule, or Color variegation or nodule
nodule Color variegation

Changing lesion
< 5 to 6 mm Often > 5 to 10 mm > 5 mm, Often > 10 mm
Symmetrical Symmetrical or Often Asymmetrical

Asymmetrical
Well circumscribed Well or poorly Often poorly

circumscribed circumscribed
Epidermal Ulceration possible Ulceration
hyperplasia
Vertically oriented Irregular nesting Irregular and
nests with clefting confluent nesting
Central focal Increased cellularity pagetoid spread
pagetoid spread may be extensive
Often wedge-shaped Greater pagetoid Ulceration

spread than in SN
Maturation of Deeper dermal Effacement of epidermis
dermal component than in SN Lack of maturation

Maturation may be
partial or absent
26 dermal Often > 6 dermal
mitoses /mm² mitoses /mm²
Deep mitoses Deep / marginal or
Possible necrosis atypical mitoses

Necrosis

Table IV.1: Spitz nevus (SN) VS Atypical Spitz tumors (ASTs) vS Spitz
melanoma(SM) Source: Adapted from World Health Organization (2018).

2 Motivation

Considering the similarities of spitzoid lesions and the dependency on the dermatol-

ogist’s skill level and/or pathologist to inform the diagnostic process, accurate diagnosis

remains a problem. Data mining (DM) techniques have been successfully applied to
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situations where such complexity exists, and the availability of advanced artificial in-

telligence (AI) techniques and data pre-processing techniques to build computer-aided

diagnostic (CAD) system can be combined to provide effective solutions for the analysis

of Spitzoid lesions.

In recent years, computer scientists have diverted attention to skin lesion analysis.

A great majority of the proposed methodologies in the extant literature aim to develop a

CAD to assist dermatopathologists in making an accurate diagnosis, thereby achieving

a proper decision. Specifically, In Al-Masni et al. [79] suggest a segmentation method

on dermoscopic images using full resolution convolutional networks (FrCN). They also

argue that the proposed technique can generate full spatial resolution features for each

pixel of the input dermoscopy images.

In contrast, a 3D skin lesion reconstruction technique using the estimated depth

obtained from regular dermoscopic images, and the adaptive snake technique in the

segmentation phase have been proposed by Satheesha, et al. [80]. Here, by fitting the

depth map estimated to the underlying 2D surface, a 3D reconstruction can be achieved.

This is then followed by a feature extraction (Color, texture and 2D shape)and feature

selection to study decision-making features. Finally, AdaBoost and SVM classifiers can

be applied in the classification phase.

In Jain,et al. [81], a CAD for the diagnosis of Melanoma Skin Cancer ondermo-

scopicImage Processing is presented. In Roffman, et al. [82], a multi-parameterized

artificial neural network (ANN) using available personal health dermoscopic images

for early detection of non-melanoma skin cancer with high sensitivity and specificity

has been developed. Finally, in Xie,et al. [83], a novel method for the classification of

melanocytic tumors as benign v.malignant using is proposed. Digital dermoscopy im-

ages have been advanced; precisely, in the feature extraction and reduction phase. The

Principal Component Analysis (PCA) technique is used. In the classification phase, the

ANN meta-ensemble model is applied by combining fuzzy NNs with Back Propagation

NNs and evaluating the proposed method’s performance using fuzzy NNs, RFs, Gentle

Adaboost, k-NN, two SVM methods, and two systems using the Bag-of-Features (BoF)

classification model.

Notably, most of the proposed methodologies in the CAD literature for differenti-
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ating among skin lesions have been based chiefly on dermoscopic vision. It often fails

to consider the clinical, genetic, molecular, and immunohistochemical information in

making a holistic diagnosis. The primary goals and contributions for this work include:

• Develop an automatic diagnostic system for Spitzoid lesion classification to assist

dermatologist during diagnosis process

• Specify the exact type of a Spitz lesion, which is extremely difficult and chal-

lenging, and to the best of our knowledge, no one has used AI to classify them

before.

• Integrate clinical, histological, and immunohistochemical features to make an ac-

curate diagnosis in distinguishing between SN v. AST and determine the impact

of these features on the classification.

Broadly, this study evaluates various AI methods to classify Spitz lesions. Spe-

cific methods include Decision Tree (DT), Support Vector Machine (SVM), Random

Forest (RF), k-Nearest Neighbors (kNN), Näıve Bayes (NB), Logistic Regression (LR),

and Multi-Layer Perceptron (MLP), all of which have been commonly used in medical

classification problems. Additionally, advanced pre-processing techniques and feature

selection methods will be applied to improve the data quality and solve the imbalanced

data problem, which will not only lead to a sizable improvement of the prediction time

and classification accuracy but will also cleverly inform on the impact of histological

and immunohistochemistry features on the classification.

3 Proposed method

Figure IV.2 shows the general schematic diagram of the proposed study technique.

The details of each processing stage are now described in the subsequent sections.

3.1 Data description

A retrospective study of 54 Spitz lesions diagnosis from 2000 to 2018 has been

conducted in the pathology department of Nord Franche Comte hospital (France).

The cohort comprises 47 SN and 7 AST performed by five pathologists. The dataset

contains 29 attributes computed from clinical, histological and immunohistochemical
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data, details of which are shown in Table IV.2.

Feature Input type Input
range

Details

Gender Binary 0 or 1 Man : 0 Women: 1
Localization quinary 1 or 2 or 3

or 4 or 5
1:Trunk, 2:Lower extrem-
ity, 3:Upper extremities,
4:abdo5:Face and neck

Age Continuous From 2 to
54

Majority of them are under 20
years old

Format Ternary 1or2 or 3 1: junctional, 2: wholly dermal.3:
compound

Size of spitz Continuous From 0.3
to 1.4

only 5 patients more than 1 cm ,
the rest under 1 cm

Thickness Continuous From 0.1
to 6

Majority ¡ 2,5 mm

Mitotic index From 0 to
2.2

Majority ¡ 0,5 per mm square

Cytonuclear Atypia Binary 0 or 1 0: no 1: yes
deep mitosis Binary 0 or 1 0: no 1: yes
Atypical Mitosis Binary 0 or 1 0: no 1: yes
Infiltration of the hy-
podermis

Binary 0 or 1 0: no 1: yes

Asymmetry Binary 0 or 1 0: no 1: yes
Blurred boundaries Binary 0 or 1 0: no 1: yes
Pagetoid spread Binary 0 or 1 0: no 1: yes
Density of lympho-
cytic infiltrate

Binary 0 or 1 0: no 1: yes

Hypercellularity Binary 0 or 1 0: no 1: yes
Ulceration Binary 0 or 1 0: no 1: yes
Kamino’s body Binary 0 or 1 0: no 1: yes
desmoplastic cells Binary 0 or 1 0: no 1: yes
epidermal alteration Binary 0 or 1 0: no 1: yes
grenz zone infiltration Binary 0 or 1 0: no 1: yes
irregular nests Binary 0 or 1 0: no 1: yes
lack of maturation Binary 0 or 1 0: no 1: yes
P16 100% no loss
KI 67 Continuous From 0 to

18
most of them ¡ 5

BRAF Binary 0 or 1 0: mute, 1: not mute
ALK IH Binary 0 or 1 0: negatif, 1: positif
ALK Fish Nul Nul Nul
Melanin pigmentation quaternary 0 or 1 or 2

or 3

Table IV.2: Spitz nevus dataset details.
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3.2 Pre-Processing Phase

In order to achieve more accurate results, data pre-processing entails a critical step

in transforming raw SN data into a clean and understandable format for analysis. The

following sub-sections discuss techniques applied to improve the quality of our dataset.

Categorical data: First, the majority of features in our dataset is categorical (Table

IV.2). As machine-learning models are based on mathematical equations, we would

only use numbers in the equations, which will then be converted into numerical values.

Missing values: In the current work, we apply the Mean imputation, one of the

most commonly used methods, by replacing the missing value with the total sample

mean. Accordingly, this strategy is simple and easy to implement.

Imbalance data: The imbalance of medical data, as characterized by the non-

uniformity of the class distribution among the classes, seriously affects the accuracy of

medical diagnosis classification. Data imbalance exists widely in real-world datasets,

especially those in the medical field. The study dataset is found to be highly unbal-

anced, comprising 47 cases of classical SN v. only 7 cases of ASTs.

To resolve this challenge, a widely implemented technique for dealing with highly

unbalanced datasets is resampling. Resampling consists of eliminating samples from

the majority class (under-sampling) and/or adding more examples from the minority

class (over-sampling). The simplest implementation of over-sampling is to duplicate

random samples from the minority class, affecting over-fitting. In under-sampling [48],

the simplest technique is to randomly remove samples from the majority class, which

can cause wastage of information.

SMOTE (Synthetic Minority Oversampling TEchnique) consists of synthesizing

elements for the minority class, based on those that have already existed [49]. It works

by randomly picking “k,” a point from the minority class, and computing the k-NNs

for this point. Synthetic points are then added between the chosen point and its

neighbors. Other techniques discussed in the extant literature include SVMSMOTE
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[84], or borderline-SMOTE [85], where only the minority examples near the borderline

are over-sampled. Adaptive synthetic sampling (AdaSyn), as presented in [86], they

include both minority and majority classes in processing and adds extra synthetic

samples to the minority class.

Scaling data: In this work, the data columns are rescaled to a range of [0-1] for

two reasons: (a) Simplify the numerical computational complexities; (b) Get rid of

attributes in the bigger numeric range while controlling attributes in the lesser [87].

3.3 The Feature Selection Phase

Feature selection is a critical step in the SN diagnosis process. As the study dataset

typically consists of several features, a critical goal is to identify the most relevant

features to the problem at hand. Other advantages of feature selection include cost

reduction, increasing classification accuracy, decreasing the complexity of the model,

and reducing the learning time [63].

With far too many attributes specific to the current study dataset, this feature

selection process is clearly non-trivial. Indeed, identifying those attributes that are the

most relevant to the classification is complicated. To this end, our strategy is to apply

a mix of three feature selection methods: filter, wrapper and embedded methods. The

filter methods measure the significance of identifiable features by their association with

the dependent variable. In contrast, the embedded methods combine the qualities of

filter and wrapper methods as implemented by algorithms that have their own built-in

feature selection methods. Finally, the wrapper methods measure the effectiveness of

a subset of features by actually training a model on the two differing wrapper types:

deterministic v. randomize. Herein, we apply the randomize wrapper method via the

genetic algorithm, which is discussed next.

Genetic Algorithm(GA): To date, GAs have gained increasing popularity. Char-

acterized by a heuristic and general adaptive optimization search methodology, these

algorithms are inspired by Darwin’s theory of evolution. Initially presented by Bledsoe

[88], and mathematically formalized by Holland [89]. These GAs operate with diverse

populations, with the dominant solution frequently achieved only after a sequence of
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iterative steps. These GAs also develop sequential populations of periodic solutions

presented by a chromosome until adequate results have been reached [87].

A predefined fitness function evaluates these chromosomes. Two major operators,

which impact on the fitness value, are the crossover and mutation functions. For

the next generation, chromosomes that obtained the higher fitness value will have

the corresponding higher probability to be selected using either the roulette wheel or

the tournament strategy [90]. In mutation step, genes may be changed randomly by

pressing the probability.The parameter settings for the GA applied herein as feature

selection are presented in Table IV.3.

Parameter Value
Population size 100
Number of generation 50
Rate of crossover 0.8
Rate of mutation 0.1
Fitness evaluation Accuracy of classifier
Size of chromosome 27
Coding Binary 0: not selected

1: selected

Table IV.3: Parameter settings of our genetic algorithm based feature selection.

Different individual entities are assigned randomly in the initial population stage,

with binary coding where 1 presents the selected feature and 0 not selected. All indi-

vidual entities have a unique size (27 genes in each chromosome). The chromosomes

characterizing the population represent a set of probable optimal features. At each

generation, each potential solution’s fitness value is derived from using a tenfold cross-

validation method to calculate the accuracy of classifier and then intelligently applied

to select the population for the next generation by roulette wheel selection method.

To stop the solution set falling into a local optimal, crossover and mutation are used

to generate populations that represented new sets of solutions. The basic process of

the applied GA may be summarized as follows:

1. Initial population: The initial population size is 100 - several different numbers

of generations in the experiment are tried and tested, before deciding to use 50

generations, which yields the highest accuracy as depicted in Figure 3.

2. Evaluation: Each population’s fitness value determines if the population will
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survive in future generations. Herein, the accuracy of the classifier serves as the

fitness function.

3. Selection: The population with the better fitness value has a greater probability

to be selected to the next generation; herein, a roulette wheel mechanism is

deployed to choose the population sets for the next generation.

4. Crossover: Crossover is the process of generating a new individual entity from

two parents by exchanging and reordering their parts. By crossing, the search

power of the GA is dramatically increased. Crossover in the study is implemented

using a single-point crossover operator is chosen with a rate of 0.8.

5. Mutation: Mutation is the process of changing some gene values of individual

sequences to increase the population variety; herein, the mutation with a rate of

0.1 is applied.

3.4 The Classification Phase

The various methods applied for evaluation in classification phase are briefly high-

lighted at this point. These include:

Support Vector Machine (SVM): SVM is based on statistical learning theory and

the structural risk minimization principle, and it has been used for classification and

regression [91]. The main SVM concept applied here is to map the input data from the

N-dimensional input space, through some non-linear mapping. Then, to classify our

data, we should determine the optimal hyperplane that maximizes class boundaries’

margins.
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Figure IV.3: The impact of number of generations on accuracy of classifier

Decision Tree (DT): DT a popular and the most powerful supervised learning

methods for classification where each internal node signifies a check on an attribute

is applied herein. Each branch of the DT represents a result of the check, and each

leaf node contains a class label. A DT algorithm is implemented by generating a DT

with terminal nodes as the class label (Classical Spitz Nevus, Atypical Spitz Tumors).

Additionally, sets of if-then conditions are employed to classify novel samples.

Logistic Regression (LR): The LR model originates as a result of modeling the

posterior probability of K classes via linear functions in x while ensuring that the

probabilities sum to one and remain in the range [0, 1]. The denominator selection is

random in that the estimates are equally distributed under this choice [87]. When K

= 2, as would be in our case (SN, AST), the model is straightforward as there is just

a single linear function.

Näıve Bayes (NB): Bayesian Network describing sets of local conditional proba-

bilities together with a set of conditional independence assumptions is applied herein

to clarify the joint probability distribution for a set of variables. In the NB network,

each node shows variable in the joint space; two types of information are detailed for
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all variables. First, the variable is independent of its non-descendants, given its instant

predecessors in the network. Second, a conditional probability table is given for each

variable, indicating the probability distribution of this variable assuming the values of

its immediate antecedents [92].

K-Nearest Neighbor (KNN): The basic concept of kNN is to compute the mini-

mum distance between the stored feature vectors and the new feature vectors. Firstly,

we compute the distances between all samples that have already been classified into

clusters; then, we find the k samples with the smallest distance values; and finally, we

approve the new data. A new sample will be classified into the largest cluster among

the selected k samples [93]. We tried the values of k from 1 to 10 and found that k =

3 offers the best results with this classifier as illustrated in Figure IV.4.

Figure IV.4: Change of Accuracy in terms of nearest neighbor’s k value

Multilayer Perceptron (MLP): The MLP classifier applied herein has a three-

layer structure. The input layer’s size is equal to the number of the selected features

(1 < N < 27). In contrast, the output layer contains one node for a possibility of only

two classes to be classified (SN v. AST). Additionally, having selected and trained

several potential combinations of the selected number of neurons in the hidden layer,

we found the optimized number to be 50. We also added an activation function to

make our MLP flexible vis-a-vis the non-linear decision boundaries’ learning. Several

kinds of activation function are discussed in the extant literature; herein, we used the

Rectified Linear Units (ReLu), which applies the non-saturating activation function f
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( x ) = max ( 0 , x )[55].The function returns 0 if it receives any negative input, but

for any positive value x, it returns that value back. Thus it gives an output that has

a range from 0 to infinity.

Random Forest (RF): RF is defined as “combination of tree predictors such that

each tree depends on the values of a random vector sampled independently and with

the same distribution for all trees in the forest” [94]. Herein, when RF is used to per-

form the classification task, a class vote from each tree is generated, and the majority

vote is then used to perform the classification task.

4 Performance metrics and experimentation

In this section, the various performance metrics applicable for evaluating and inter-

preting multiple experimental results are first highlighted prior to discussing the study

findings and their interpretations. Notably, we conduct the experiments in the python

language environment, and when no parameter values are given, the default values of

these functions will apply.

4.1 Performance Metrics

A ten fold cross-validation scheme is performed to evaluate and compare the per-

formance of all of the aforementioned classification methods being applied. One of

the major issues when dealing with unbalanced datasets relates to the metrics used

to evaluate the model’s performance, for example, using simple metrics like accuracy

score alone can be relatively misleading. Accordingly, a range of different performance

metrics is adopted for studying and comparing the various classification models differ-

entiating SN v. AST samples. These metrics entail accuracy, sensitivity, specificity,

precision, F-measure, G-mean, ROC and AUC with measures based on the correct and

wrong prediction of the classifier. For the respective metrics, the below formulae are

computed with:

• TP= True positive means number of SN which are predicted as SN;

• TN= True negative means number of AST which are predicted as AST;

• FP= False positive means number of SN which are predicted as AST;
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• FN= False Negative means number of AST which are predicted as SN.

4.2 Data Sampling Results

In the first test, four different over-sampling methods have been applied with the

unbalanced dataset so that their performance may be appropriately compared. Table

IV.4 details the performance of the different machine learning (ML) classifiers on our

dataset with and without oversampling methods.

All classifier’s accuracy is high in the case of classifiers without oversampling

methods, that is, between 0.72 - 0.87. Thus, each classifier’s performance on other

performance measures has to be investigated beyond just accuracy. Among the other

measures, the sensitivity, specificity, and F-measure show a significant difference be-

tween SN (majority - very high) v. AST (minority - very low) classes. Especially with

LR, KNN, MLP, and SVM the sensitivity and specificity of AST class is 0.00, which

means these classifiers over-fits and the model predicts all cases as SN.

As shown in Figure IV.5, DT and RF get higher AUC scores than the other

classifiers.

63



Chapter IV: CAD for Spitzoid lesions classification using AI techniques

Accuracy
Sensitivity Specificity F1-measure

G-mean
AST SN AST SN AST SN

Without
Over-
sampling
methods

DT 0.83 0.43 0.87 0.33 0.91 0.38 0.89 0.65
RF 0.85 0.14 0.96 0.33 0.88 0.20 0.92 0.85

SVM 0.87 0.00 1.00 0.00 0.87 0.00 0.93 0.50
NB 0.72 0.43 0.77 0.21 0.90 0.29 0.83 0.59
LR 0.87 0.00 1.00 0.00 0.87 0.00 0.93 0.50

KNN 0.87 0.00 1.00 0.00 0.87 0.00 0.87 0.50
MLP 0.85 0.00 0.98 0.00 0.87 0.00 0.92 0.48

SMOTE
k=6

DT 0.95 0.98 0.94 0.94 0.98 0.96 0.96 0.95
RF 0.97 1.00 0.96 0.96 1.00 0.98 0.98 0.97

SVM 0.94 0.98 0.91 0.92 0.98 0.95 0.95 0.94
NB 0.90 1.00 0.81 0.84 1.00 0.91 0.89 0.90
LR 0.93 1.00 0.87 0.89 1.00 0.94 0.93 0.93

KNN 0.94 1.00 0.89 0.90 1.00 0.95 0.94 0.94
MLP 0.98 1.00 0.98 0.98 1.00 0.95 0.99 0.98

Borderline
SMOTE

DT 0.95 0.98 0.94 0.94 0.98 0.96 0.96 0.95
RF 0.97 1.00 0.96 0.96 1.00 0.98 0.98 0.97

SVM 0.94 0.98 0.91 0.92 0.98 0.95 0.95 0.94
NB 0.90 1.00 0.81 0.84 1.00 0.91 0.89 0.90
LR 0.93 1.00 0.87 0.89 1.00 0.94 0.93 0.93

KNN 0.94 1.00 0.89 0.90 1.00 0.95 0.94 0.94
MLP 0.98 1.00 0.98 0.98 1.00 0.95 0.99 0.98

ADASYN

DT 0.95 0.98 0.94 0.94 0.98 0.96 0.96 0.95
RF 0.97 1.00 0.96 0.96 1.00 0.98 0.98 0.97

SVM 0.94 0.98 0.91 0.92 0.98 0.95 0.95 0.94
NB 0.90 1.00 0.81 0.84 1.00 0.91 0.89 0.90
LR 0.93 1.00 0.87 0.89 1.00 0.94 0.93 0.93

KNN 0.94 1.00 0.89 0.90 1.00 0.95 0.94 0.94
MLP 0.98 1.00 0.98 0.98 1.00 0.95 0.99 0.98

SVM-
SMOTE

DT 0.95 0.98 0.94 0.94 0.98 0.96 0.96 0.95
RF 0.97 1.00 0.96 0.96 1.00 0.98 0.98 0.97

SVM 0.94 0.98 0.91 0.92 0.98 0.95 0.95 0.94
NB 0.90 1.00 0.81 0.84 1.00 0.91 0.89 0.90
LR 0.93 1.00 0.87 0.89 1.00 0.94 0.93 0.93

KNN 0.94 1.00 0.89 0.90 1.00 0.95 0.94 0.94
MLP 0.98 1.00 0.98 0.98 1.00 0.95 0.99 0.98

Table IV.4: Experimental performance on our dataset without /with existing over-
sampling methods.

To verify the efficiency of the SMOTE method in handling the problem of the

unbalanced dataset in the study, we have applied other existing methods as summarized

in Table IV.4 to compare their performance. The input that needed to be determined
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in SMOTE method is the number of nearest neighbors “k”. We tried several different k

values in the experiment, finally deciding on using k = 6, which yields the best accuracy

(see Figure IV.6).

Figure IV.5: ROC curve of classifiers without oversampling.

Figure IV.6: Impact of several different SMOTE’s k values on the accuracy

We now summarize performance of the four oversampling methods: SMOTE, Bor-
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derlineSMOTE, ADASYN, SVMSMOTE. The results are relatively similar,where we

see a balance in sensitivity, specificity, and F-measure of both SN and ASN class. Even

so, SMOTE gives the highest accuracy 0.95 and G-mean 0.95 among all oversampling

methods with random forest classifier. Figure IV.7 depicts the distribution of our data

after applying SMOTE.

Figure IV.7: Distribution of our data with/ without SMOTE technique

Figure IV.8: ROC curve of classifiers with SMOTE technique

4.3 Feature Selection Results

In the second test, we first used GA-based feature selection to select the best

attributes; then, we used the same ML classifiers as in the first test. Table IV.5

shows the performance of the different ML classifiers on our dataset with and without
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GA-based feature selection. Experimental results show that the highest classification

performances are achieved when GA is used as feature selection with all classifiers.

Notwithstanding, the MPL classifier does a good performance in predicting the AST

instances correctly.

Accuracy
Sensitivity Specificity F1-measure

G-mean
AST SN AST SN AST SN

Smote
Without
GA

DT 0.94 0.94 0.85 0.82 0.95 0.88 0.90 0.89
RF 0.95 0.94 0.94 0.98 0.98 0.96 0.96 0.95

SVM 0.87 0.85 0.89 0.89 0.86 0.87 0.88 0.87
NB 0.88 1.00 0.77 0.81 1.00 0.90 0.87 0.88
LR 0.94 1.00 0.89 0.90 1.00 0.95 0.94 0.94

KNN 0.70 0.87 0.81 0.65 0.53 0.75 0.64 0.70
MLP 0.93 1.00 0.87 0.89 1.00 0.94 0.93 0.93

Smote
With
GA

DT 0.95 0.98 0.94 0.94 0.98 0.96 0.96 0.95
RF 0.97 1.00 0.96 0.96 1.00 0.98 0.98 0.97

SVM 0.94 0.98 0.91 0.92 0.98 0.95 0.95 0.94
NB 0.90 1.00 0.81 0.84 1.00 0.91 0.89 0.90
LR 0.93 1.00 0.87 0.89 1.00 0.94 0.93 0.93

KNN 0.94 1.00 0.89 0.90 1.00 0.95 0.94 0.94
MLP 0.98 1.00 0.98 0.98 1.00 0.95 0.99 0.98

Table IV.5: Experimental performance on our data without / with genetic algorithm
based feature selection.

As shown in Table IV.5, highest accuracy of 0.98, F-measure of 0.99, and G-mean

of 0.98 with 14 selected features are attained with the MPL. Here, AUC = 98 as shown

in Figure IV.9. Next is RF method with 16 selected features, an accuracy of 0.97,

F-measure of 0.98, AUC of 0.98, and G-mean of 0.97. Then, DT comes with accuracy

of 0.95, F-measure of 0.94, AUC = 0.95, and G-mean of 0.95. Lastly, LR and NB

provide the lowest accuracy of 0.93 and 0.90, respectively.
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Figure IV.9: ROC curve of classifiers with GA based feature selection

Figure IV.10 and Table IV.6 highlights the most selected features with existing

classifiers combined with GA as a feature selection method. Overall, for clinical fea-

tures (colored in red), it is noted that localization is the most important as evidenced

by its selection via five classifiers. Gender comes next, whereas only two classifiers

have selected “age”. For histology features (colored in blue), it is clear that Cytonu-

clear Atypia is a most significant feature as selected by all classifiers. Finally, among

immunohistochemistry features (colored in green), ki67 marker is the most significant.

Figure IV.10: Most selected features with existing classifiers as fitness evaluation
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GA-DT GA-SVM GA-LR GA-NB GA-KNN GA-MLP GA-RF
Gender 5 5 5

Localization 5 5

Age 5 5 5 5 5

Format 5 5 5 5

Diameter 5 5 5

diameter> 1 5 5 5 5 5

Thickness 5 5 5 5 5

Mitotic index 5 5 5 5 5

Cytonuclear
Atypia
mitoses pro-
faned

5 5

Infiltration of
the hypoder-
mis

5 5 5

Asymmetry 5 5

Blurred
boundaries

5 5 5 5

Pagetoide mi-
gration

5 5 5 5

hyperCELL 5 5 5

Kamino’s
body

5 5 5 5

Desmo 5 5 5 5 5

Modif epid 5 5

Grenz 5 5 5 5

Th irreg 5 5 5 5

No grad 5 5 5

KI 67 5 5 5 5

Ki67> 1% 5

BRAF 5 5 5 5

ALK IH 5 5 5 5

Ly 5 5 5 5

Pig mél 5 5 5 5 5

Table IV.6: Feature selection results obtained by different classifiers as fitness evalua-
tion.

Figure IV.11 shows the performance of the different ML classifiers on our dataset

with the number of selected features by GA. Experimental results show that when

we used Näıve Bayes (NB) as the classifier with GA, it gave us the highest number of

selected feature (17), and lowest accuracy (0.90), which means NB is the worst classifier

applied. In contrast, DT offers the lowest number of selected features (8) with higher
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accuracy (0.95). Notwithstanding, MLP provides the best classification accuracy (0.98)

with 14 features; for this reason, we have chosen MLP as fitness evaluation and the

classifier of choice in our model.

Figure IV.11: Number of selected features by GA and accuracy of classifiers

5 Discussion

The motivation for this research is to explore ways to improve the classification

performance of different ML algorithms to identify Spitz nevus lesions accurately. The

research presented here go about the exploration by first removing class-imbalance in

a real-world dataset and refitting then for analysis via the various methods of best fea-

tures selection. Different class-imbalance techniques consisting of SMOTE, Borderline

SMOTE, ADASYN, and SVMSMOTE were applied. All four class-imbalance tech-

niques have been found to improve the classification results. This is consistent with

previous research findings as provided in the cumulated literature [95, 85, 20]. However,

in our case, the SMOTE method outperformed the other techniques. It uses k-nearest

neighbors and generates excellent prediction results. Furthermore, the features, which

are most appropriate for Spitzoid lesions classification, must be utilized as the inputs

of the model. For this reason, it is found that GA has improved the performance for

classifying the Spitzoid lesions data to achieve an accurate diagnosis.

Implications of the Findings As noted, we evaluated the scaled hospital

dataset with seven (7) types of classifiers: K-NN, LR, DT, MLP, NB, RF and SVM.

Where GA was applied, MLP achieves the highest accuracy at 0.98. Three key obser-

vations and implications may be drawn from the results: (1) GA can correctly rank
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significant attributes since selected GA performs well in terms of classification per-

formance; (2) SMOTE over-sampling method can correctly solve the problem of our

imbalanced data and overcome the bias towards majority classes; and (3) MLP outper-

formed all other linear and nonlinear classification methods with respect to accuracy

performance indicators. Therefore, the model proposed for similar type SN v. AST

analysis will be a model where SMOTE is used for solving class imbalance problem, GA

is used for feature selection phase and MLP to be applied for the classification phase.

The proposed SMOTE-GA-MLP structure has previously been provided in Figure 2.

In summary, the suggested system accomplished higher classification accuracy

rate, by improving the data quality, solving class-imbalance problem, decreasing the

number of attributes and obtaining higher performance rate, while identifying the most

critical features that can influence the classification. Results obtained in this study

prove that the SMOTE-GA-MLP CAD system is valuable in aiding the dermatologists

to identify ASTs, and to make the correct diagnosis. Accordingly, extending beyond

this work may demonstrate a huge capacity in the area of medical decisions making in

skin lesion analysis.

Study Limitations & Future Works This study has several limitations, mostly

related to the data. First, the rarity of this disease and the lack of data in the hospitals

about this type of lesions especially for the ASN case were an obstacle for us to collect

enough data. We could use automatic data generation methods but we preferred to

use only the real data to get realistic results. In our future work we aim to collect

more real data and apply data generation methods to create new data from our real

sampled data, and then we will compare results. Second, the nature of real-world skin

lesion hospital datasets is not only imbalanced, but also heterogeneous and contains a

lot of missing values and errors which can affect the analysis results.

In our future work we will concentrate on improving the data quality by applying

various existing techniques in literature for data preprocessing and find out the one

more suitable to our data. Also we aim to add the third class of Spitzoid lesions which

is: Spitz melanomas. It is a malignant melanoma that is histologically similar to a

benign skin lesion which makes the classification more challenging. Concerning the an-
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alytical side, our future work will involve comparing and integrating the very promising

approaches for classification, such as the ensemble techniques, by integrating multiple

simple classifiers based on bagging, boosting, and stacking methods to improve the

classification accuracy of Spitzoid lesions.

6 Conclusion

This chapter presented our first contribution that attempts to analyze Spitzoid

lesions related to clinical, histological, and immunohistochemical features using AI

techniques. Seven (7) classifiers: K-NN, LR, DT, MLP, NB, RF, and SVM have been

applied for the analytic procedures. The hybrid technique of SMOTE-GA-MLP yields

the highest performance overall.

The aided value of this research in the area of skin lesion classification is now sum-

marized. First, it specifies the exact type of Spitz lesion, which is extremely difficult

and challenging in real life. Second, it combines previous works on the steps needed

to develop an automatic CAD system for Spitzoid lesion classification to assist der-

matopathologists during the diagnosis process. Third, our work makes a classification

based on various testes and types of data: clinical, histological, and immunohisto-

chemical data. Contrary to previous literature work that only concentrates on the

microscopic vision which cannot accurately classify them. Finally, the analysis for dif-

ferentiating major classes of these lesions, namely SN (Spitz nevus) v. AST, is based on

several features, including the immunohistochemical markers. Specifically, the findings

indicate that localization of lesions, cytonuclear atypia, and Ki67 proliferative index

are the most weighted features to differentiate AST from SN.

Based on the limitations of this chapter, we will propose in the next chapter a new

CAD technique for skin lesion that eliminates the intervention of the dermatologist to

extract the features from dermoscopic image. We will propose CAD technique that

classifies skin lesions directly from dermoscopic images. The evaluation of the model

will be done using public and private datasets.
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Toward efficient Automatic

Hyperparameters selection using

Big Data tools to improve Skin

Lesions classification

This chapter presents the last and the main contribution, which aims to develop a

computer-aided diagnosis (CAD) that can classify accurately different skin lesions using

dermoscopic images and metadata. In this research. We present first an overview on

skin lesion classification and its challenges in section 1. Then, section 2 analyzes previ-

ous work and presents our contribution. The proposed method is presented in section3

involves data preprocessing, data augmentation, data classification, and CNN-AHPS

technique for the training step. Section 4 shows experimental results and a compara-

tive analysis with state of the art. Section 5 discusses our observations, findings, and

some limitations.

1 Motivation

One of the most widespread types of cancer is skin cancer, with 5 million cases

reported each year, and more than two persons die of skin cancer every hour in the
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United States [96]. Melanoma is the most serious form and causes most of skin cancer

deaths[9]. Since 2018, 178,560 new cases of melanoma are recorded in the US involving

87,290 cases of noninvasive and 91,270 invasive [97]. The mortality rate of this disease

is expected to rise in the next decade, especially if diagnosed in later stages. However,

if the skin cancer is diagnosed at primary stages, the survival rate is approximately

97% [98].

Traditional ways to diagnose skin cancer by dermatologists habitually follow three

main steps: the first one is the observation of suspected lesion by the naked eye, then

dermoscopy which is an imaging modality that shows more details. Finally, the biopsy

step to extract histological characteristics [99]. The limits of this process is would

consume time and the patient may advance to later stages. Furthermore, accurate

diagnosis is depending on the expertise of the dermatologist, and the availability of

skilled dermatologists is limited in public healthcare [100]. In order to solve some

of these problems, there are many research solutions by developing computer-aided

diagnosis(CAD) system based on several approaches such as: detection, segmentation,

and classification using machine learning and image processing. These techniques could

potentially help dermatologists and diagnose skin cancer accurately at the earliest

stage, without the need for an invasive biopsy [101].

Deep learning (DL) algorithms have shown great performance on image classi-

fication and outperformed humans in many applications [9]. However, the applica-

tion of DL techniques in medicine is still challenging and requires a large training

dataset. Various Convectional Neural Network (CNN) architectures are applied in

skin cancer classification literature such as: DenseNet [102], ResNet [103], MobileNet

[104],GoogleNet[105], VGG19 and AlexNet [101] etc. To solve the lack of dataset prob-

lem, the majority of cited work have used transfer learning (TL). The Principe of TL

is to take a model trained on a certain source task and reuses it for a targeted task.

Since 2012 many CNN architectures are proposed for image classification in the

ImageNet challenge dataset[106]. As models become more complex, the performance

has increased. However, the majority are weak in terms of computing load. EfficientNet

model[107], proved its effectiveness with 66 million parameters achieved 84.4% accuracy

in the ImageNet classification problem. The idea behind EfficientNet is scaling width,
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depth, and resolution while scaling down the model equivalently. On the other hand,

EfficientNet and previous works on supervised learning need billions of labeled data

to enhance ImageNet models. Noisy Student method [108] confirmed the potential to

use unlabeled images to improve both robustness and accuracy of previous ImageNet

models. They concluded that self-training is an effective and simple algorithm to ben-

efit from unlabeled data on a large scale. Their experiments showed that self-training

with EfficientNet and noisy Student achieved an accuracy of 88.4%, which is 2.9%

greater than without Noisy Student. These results motivate us to apply the combina-

tion of these robust techniques to develop accurate CAD system to classify skin lesions.

2 Related work

Automatic classification of different skin lesions from dermoscopic images is an

actual challenging task due to: (1) high similarity in visual features among various

lesions types in terms of size, shape, texture, and color. (2) Existence of artifacts in

dermoscopic images [109]. (3) Lack of data (4) class imbalance problem and much

variety in dermoscopic image resolutions.

CNN architectures have recently been introduced to address these challenging

dermoscopy image analysis problems. As shown in TableV.1, many contributions are

proposed in this area using various architectures and datasets. In this section, we are

going to analyze them by focusing on three main points that can improve CAD per-

formance.

2.1 Architecture selection

Various CNN architectures are applied to truckle dermoscopic images classification,

and each time researchers try to make proposed architectures deeper for better capa-

bility to classify these challenging lesions such as: Inception v3 [9, 103], DenseNet 201

[103],GoogleNet [105], MobileNet [104], EfficientNet [110],etc (see Table V.1). Train a

whole CNN architecture from scratch takes time and needs a huge dataset. So, this

problem can be fixed by using the power of transfer learning (TL) with fine-tuning

pretrained models. The majority of cited works have applied pertained on ImageNet

75



Chapter V: Toward efficient Skin Lesions classification

challenge using transfer learning to solve the lack of skin data problem.

2.2 Data preparation

As shown in Table V.1, many public available datasets for skin lesion classifica-

tion are used : ISIC 2016 [111], ISIC 2017 [111], HAM10000 [112], ISIC 2018 [113],

ISIC 2019[11]. The largest one is ISIC 2019 contains more than 25,0000 images and

clinical features for eight classes of skin lesions. ISIC2019 dataset contain many qual-

ity problems that should be addressed : 1. Missing data in metadata 2. Imbalance

class problem 3. Multi resolutions for images: this is due to the variety of sources

(HAM1000, BCN 20000 MSK dataset).

2.3 Model’s hyperparameter optimization

In previous works cited in table V.1, hyperparameters selection for CNN archi-

tectures are based on trial-and-error approach or using sequential ways (grid search,

random search, Bayesian optimization). It is typically used to search through a subset

of a learning algorithm’s hyperparameters. They are a simple tool for optimizing ma-

chine learning algorithms’ efficiency. As DL architectures become more complex and

datasets been larger, the training phase became more expensive and takes days or even

weeks to train a model [114].

To evaluate each hyperparameter combination, we must train the model. We can

imagine the difficulty in this context, and we can not wait for years to find a suitable

configuration of hyperparameters. For this reason, the selection of sequential hyperpa-

rameters does not work in our case. We aim to design an automatic hyperparameter

selection that can provide a parallel execution. This aim looks unimportant because

random search and grid search could provide a parallel execution too. However, they

often stack in the application, and they are limited in the context of hyperparame-

ters choice, and the number of parallel resources. Therefore, we aim to develop our

algorithm compatible with our needs and our CNN architecture via big data tools

(MapReduce). Our contribution is clearer after this synthesis and we may summarise

it as follows:
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• We will fine-tune pretrained Noisy student(EfficientNet-L2) architecture that

achieved top 1 accuracy in ImageNet challenge in our CAD as a feature extractor.

• We will improve data quality by solving its problems ( missing data, class im-

balance, image multi resolutions) and add metadata to our model to study its

impact on our model

• We will develop the an Automatic Hyperparameters Selection (CNN-AHPS) im-

plementation on Apache Hadoop. This latter is more aimed towards data locality,

fault tolerance, commodity hardware, and simple programming with a strong link

to Python.

• We will evaluate our work with results obtained in the last challenge for skin

lesion classification ISIC2019.

3 Proposed method

Figure V.1 displays the overall scheme of our proposed system to classify skin lesions.

The following sections describe the dataset, tools, and experimental configuration used

for developing and testing our CAD for skin lesions.

3.1 Data description

This section describes the public ISIC2019 and private dataset used to train and

test our proposed method. ISIC is an abbreviation of (International Skin Imaging

Collaboration), sponsored by ISDIS (International Society for Digital Imaging of the

Skin). Figure V.2 shows some examples of dermoscopic images in The last challenge

ISIC2019 used in this work [11]. Another private dataset is used too for testing. This

data collected from a dermatology office in Besançon, France. All the information

about both datasets are listed in Table V.2.

3.2 Data preparation

Data preprocessing is a key step in transforming the raw skin lesion dataset into a

clean and understandable format for analysis, And consequently enhance the efficiency

of CAD system for skin lesions. par
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Concerning metadata, as machine learning models are based on mathematical

equations, encoding categorical features is needed [117]. For the gender and anatomical

site, we have applied label encoding. The anatomical site is represented by numbers

from 1 to 8, the same applied to sex (1, 2), and missing values are encoded as 0.

Data contents Public dataset Private dataset
- Melanoma (MEL) 5

- Melanocytic nevus (NV) 5

- Vascular lesion (VASC) 5

- Actinic keratosis (AK)
- Squamous cell carcinoma (SCC)
- Dermatofibroma (DF) 5

- Basal cell carcinoma (BCC)
- Benign keratosis (BK) (so-
lar lentigo/seborrheic keratosis/
lichen planus-like keratosis)

5

- Unknown class (UNK) 5

- Dermoscopic images
- Meta data (age, gender,
anatomical site)
- Macroscopic images 5

Training set 25,331 instances /
Testing set 8,238 instances 45 instances

Table V.2: Description of public and private dataset.

Missing values: In health analytics, missing data can be evident. Many methods

are available in the literature to deal with this problem. We are going to impute missing

values in this work using the technique of K-nearest neighbors (KNN). The Principe of

KNN is connecting a point with its closest k neighbors [118]. It may be used for contin-

uous, ordinary, discrete, and categorical data. Therefore, it’s useful for dealing with all

types of missing values. In our work, we have implemented KNN algorithm with K= 6.

80



Chapter V: Toward efficient Skin Lesions classification

Figure V.2: Dermoscopic images’ example in ISIC 2019

Image resolutions downscaled Dermoscopic images in the dataset have multi reso-

lutions and sizes. This is due to multi-sources: a part of the dataset is from HAM10000

dataset, which contains images of size 600 × 450. the second source is the BCN 20000

dataset, which involves images of size 1024 × 1024, and MSK dataset contains images

of various sizes. We have downscaled them to 255 x 255 pixel resolutions to uniform

the images and make them compatible with our architecture NS-EfficientNet-L2.

3.3 Data augmentation

As shown in Figure V.3, the ISIC 2019 dataset has an unbalance distribution of images

among the eight classes. To rebalance these classes, data augmentation is applied to

increase minority classes: dermatofibroma, Melanoma, Basal Cell Carcinoma, Benign

Keratosis, Actinic Keratosis, vascular. Data augmentation generated around 6000

images in each class to be the total of images in the training dataset is 38,569 images.

parameters used for data augmentation of the images are:

• Horizontal flip = True

• Vertical flip = True

• Rotation range = 1000
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• Width shift range = 0.1

• Fill mode = 0.9

• Height shift range = 0.1

• Zoom range = 0.1

Figure V.3: Distribution of dermoscopic images per class in ISIC2019 dataset

3.4 Data analysis

In this section, we are going to present techniques used to construct our CAD

system. This later contains three main components presented below:

Feature extractor For feature extraction, we are going to use pretrained EfficientNet-

L2 trained with the Noisy Student method (NS-EfficientNet-L2) [107]. This technique

achieved an accuracy of 88.4%, which is 2.9% higher than EfficientNet-L2 without

Noisy Student, and outperformed the best methods proposed to classify the ImageNet

challenge with 2.0%.

EfficientNet group involves eight models between B0 and B7 [107], and although

the number of models grows, the number of calculated parameters does not increase

considerably, while accuracy improves noticeably. Instead of the Rectifier Linear Unit
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(ReLU) activation function used by most CNN architectures, EfficientNet uses the new

Swish activation function [119]. EfficientNet-L2 is deeper and wider than EfficientNet-

B7 but uses a lower resolution with more parameters to fit a huge quantity of unlabeled

files[107]. This later is needed for the noisy student method, which has four key steps:

1. Use labeled images to train a teacher model

1
n

∑n
i=1 l(yi, f

noised(xi, θ
t))

where:

xi: Labeled images

yi: Labels

θt: Teacher model

n: Number of labeled images

2. Generate pseudo labels on unlabeled images using the teacher model

ỹi = f(x̃i, θ
t
∗),∀i = 1, ...,m

where:

ỹi: Unlabeled images

ỹi: Pseudo labels

m: Number of unlabeled images

3. Use of labeled images and pseudo labeled images to train a student model with

noise added (dropout, data augmentation, stochastic depth) .

1
n

∑n
i=1 l(yi, f

noised(xi, θ
s)) + 1

m

∑m
i=1 l(ỹi, f

noised(x̃i, θ
s))

where:

θs: Student model

4. Repeat this algorithm a few times by switching the student as a teacher train

a new student and relabel the unlabeled data. This is schematically shown in

Figure V.4.
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Metadata architecture: For metadata architecture, two dense layers of Neural Net-

work are constructed. Each layer contains 256 neurons, batch normalization, dropout

= 0.3, and a ReLU activation. The output of the Metadata network is concatenated

with the dermoscopic feature extractor output.

Classifier: In the classification level, a global average pooling2D layer has been ap-

plied to avoid overfitting by reducing the total number of parameters. Then we added

another layer with batch normalization, dropout, and ReLU activation. Then it fol-

lowed by one dense layer which contains eight output units for the classification, with

Softmax activation function (see figure V.1).

3.5 Model’s Hyper parameters optimization

For the training step, our combined architecture will be trained on two levels. We

start training the feature extractor architecture with its hyperparameters. Then, we

will freeze it to start training the second part( two metadata dense layers, the dense

layer after concatenation, and dense layer for classification ). In this section, we are

going to explain our CNN-AHPS method by showing the tools and algorithms used for

the implementation.

3.5.1 Tools

Hadoop [26] is a distributed computation and storage tool that supports the MapRe-

duce programming model. Hadoop is more popular among other big data framworks

like Apache Storm [120] or Apache Spark [121], and it is used frequently in medium-

sized data science research. This success due to its advantages: easy and quick to use

and set up, moreover its compatibility on heterogeneous infrastructures [12].

Hadoop involves two main components. The first is a distributed data storage

system called Hadoop Distributed File System (HDFS) [122], that manages the storage

of extremely large files in a distributed, reliable, and fault-tolerant manner. The second

component is the MapReduce model for distributed data processing[123]. We have used

MapReduce in our work because it fits our requirements and simple to use[124]. It splits

large jobs into two stages, called Map and Reduce. As shown in Figure V.5, we have
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applied “Map” stage to separate a set of hyperparameters combinations into multiple

parts, to be further treated in parallel, and each produces a final result, which is the

value of the F1-score metric. The “Reduce” stage finds out the best configuration to

our architecture as a final job result according to max F1-score value.

3.5.2 Implementation

The following list summaries all chronological phases for executing a distributed

hyperparameter tuning via MapReduce presented in Algorithm 1.

1. An input file contains all the potential combinations of hyperparameters (Epochs,

optimizer, Batch size, Learning rate) is created (one combination per line). This

file generated automatically based on parameter ranges specified as following:

(a) Optimizer: SGD, Adam, and RMSprop are most used in image classifica-

tion literature. in our work, we have added AdaMax, AMSGrad, Nadam,

Adadelta Mini-Batch, and GD Momentum to test as much as possible opti-

mizers

(b) Learning rate: min= 10−2, max = 10−8 , step = 10−1.

(c) Batch size: min= 30, max= 330, step = 30.

(d) Epochs: min= 20, max= 200, step= 40. After the file generation, it will

upload to the HDFS, where it serves as the input file of the Hadoop job.

2. The Hadoop job begins by dividing the workload into N Map tasks, where N is

the total number of lines as shown in Algorithm 2 in the file. Each task executes

a setup function (only once per Map task) that contains the following steps (see

Algorithm 2):

(a) Split the data into a training set and a testing set.

(b) Load the combination of hyperparameter for each task
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(c) Model training: Build the classifier using the current combination of hyper-

parameters and the training set.

(d) Model testing: classify each instance of the testing set using the previously

built classifier model.

(e) Get the value of F1-score of each combination

Recall =
∑k

i=1
TPi

TPi+FNi

K

Precision =
∑k

i=1
TPi

TPi+FPi

k

F1-score = 2∗Precision∗Recall
Precision+Recall

(f) Save constructed model with its hyperparameters and its F1score value

3. for Reduce task, we apply a search process to find out the highest F1-score

achieved in all Map output, then return it and delete the other architectures (see

Algorithm 3). max[L.F1− Score]

Algorithm 1: CNN-AHPS algorithm

Input:
C: a hyper-parameters Combination
N: number of combination in the file
M: untrained model
D: Data set

Result: Lbest
generateInput();
startJob();
for all task N do

LoadData();
L < N,M ′, F1score >.add( Map (C,N,M,D))

end
Lbest = Reduce(L);
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Algorithm 2: Map algorithm

Input:
C: a hyperparameters Combination
N: number of combination in the file
M: untrained model
D: Data set

Result: (N, M’,F1-score)
D-train , D-test = splitData(D);
M’= Train (M, C , D-train); // Train model M on training data set

using hyperparameters combination C

F1-Score = Test(M’,D-test);
// test trained model M’ on testing data set and return

F1-score value

Algorithm 3: Reduce algorithm

Input:

L: list of vectors obtained by mapper tasks that contain :

N: number of combination in file

M’: trained model on Cn combination

F1-score: Evaluation metric for each training task

Result: <LBest.N, LBest.M’, Lbest.F1-score>

while L.hasNext() do

if L.F1-score >max then

max = L.F1-score;

LBest =L;

end

end

Delete (L);

4 Experimental Results

Experiments presented in this section are compiled and run on Hadoop framework

with Python language using Scikit-learn bibliography. Characterises of hardware are:

CPU : Intel (R) Core (TM) i7-7500U @ 4.00GHz, and 12GB RAM. In each experi-

ment,Values represent the mean results (standard deviations) and evaluated using the

standard metrics that introduced in chapter 2 section 2.6.4. In addition, Balanced

Multi-class Accuracy is the arithmetic mean over the skin lesion classes. This metric
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is used to evaluate ISIC2019 participants. Besides, the Area Under Curve (AUC) of

the Receiver Operation Characteristic (ROC) curve has been plotted to compare the

performance of each experiment[125].

• Balanced multiclass accuracy =
∑k

i=1 TPi∑k
i=1(TPi+FNi)

where :

K= number of classes

TP = True positive means the number of truly predicted class.

TN = True Negative means the number of non classi that are truly classified non

classi.

FP = the number of non− classi that are misclassified as classi

FN=False negative means the number of the lost classi objects.

4.1 Results with /without metadata

Two experiments are presented in this section to evaluate the impact of metadata

on our model. The first experiment is to classify skin lesions only with dermoscopic

images. We have used NS-EfficientNet-L2 as a feature extractor adding two dense

layers for classification. The second experiment is to add metadata to our model.

At this point, we have concatenated our feature extractor with metadata architecture

illustrated in figure V.1.

Architecture’s hyperparameters are chosen manually by the Error-And-Trial method

in both experiments. Table V.3 shows the performance of our CAD without and with

metadata. Experimental results showed that the performance is slightly improved when

metadata is used across all metrics except the sensitivity. Compared to Test 1, we can

clearly observe the low sensitivity with the Unknown class and melanoma. This de-

crease in sensitivity in the Unknown class can be explained by the lack of metadata in

this class. The results for the melanoma class remain without a logical explanation.
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4.2 Results with Automatic hyperparameters Selection (CNN-

AHPS)

In the second experiment, we have applied our automatic hyperparameter selection

algorithm. Table V.4 shows the hyperparameters that we have selected manually. The

second columns represent hyperparameters selected by CNN-AHPS.

A significant performance improvement is achieved when CNN-AHPS is applied

presented in Table V.5. we can observe a high sensitivity and F1-score compared with

the first and second experiments. Figure V.6 shows the ROC curve and AUC of our

model with CNN-AHPS. According to the results in the figure VASC class gets higher

AUC scores than the other classes. We can also notice an improvement in MEL and

UNK classes.

The bar chart in FigureV.7 shows the difference in the performance of all three

experiments presented in this study across all evaluation metrics. Overall, we notice a

significant performance improvement is achieved when CNN-AHPS is applied.

Table V.6 show results obtained when proposed CAD applied on private data set.

we can notice that the system achieved results much better then on public data set,

this is due to the absence of unknown class, also the size of data plays a role here with

only 45 cases.

hyperparameters Manually Automatically using CNN-AHPS
Optimizer Adam RMSPROP
Learning rate 0.01 0.05
Batch size 30 35
Epochs 150 250

Table V.4: Hyperparameters selected manually VS automatically.
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Balanced
Sensitivity Specificity AUC F1-Score Accuracy Multiclass

Accuracy

With
CNN-
AHPS

SCC 86.3 98.5 90.3 91.9
VASC 82.6 99.7 95.1 89.85
DF 89.9 95.1 94.6 92.5
BKL 78.9 97.5 83.9 87.3
AK 90.1 97.7 93.2 93.7
BCC 88.0 90.5 92.9 89.2
NV 91.7 97.2 91.0 94.3
MEL 86.7 99.7 94.8 92.7
UNK 24.5 89.5 60.9 39.2
Mean 79.8 97.5 85.5 87.7 91.2 69.4

Table V.5: Results obtained by applying CNN-AHPS.

Figure V.6: ROC cure of our CAD system with metadata and AHPS.
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Figure V.7: Performance comparison of three applied experiments.

Balanced
Sensitivity Specificity AUC F1-Score Accuracy Multiclass

Accuracy
BCC 87.6 99.1 98.3 97.2
AK 90.7 99.2 99.1 98.5
SCC 97.9 94.2 98.6 98.5
Mean 92.0 97.5 98.6 98.0 97.8 89.7

Table V.6: Results of our CAD system on Private dataset.

We now come to compare the obtained diagnosis results from our proposed model

with two main published works that have used the same data for the same objective.

We can notice that our model outperformed Nils Gessert et al.[96] who achieved Top1

Balanced Multi-Class Accuracy in the ISIC2019 challenge. Our work outperformed M.

A. Kassem et al. [105] which have recently contributed to developing a CAD system

for skin lesions (see Table V.7).
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Balanced
Accuracy Sensitivity Specificity AUC F1-Score Multiclass

Accuracy
Nils Gessert et
al.2019 [96]

92.6 50.7 97.7 85.1 51.5 63.6

M. A. Kassem et
al.2020 [105]

81 74 84 / / /

Our approach 91.2 79.8 97.5 85.5 87.7 69.4

Table V.7: Comparative study with previous work.

5 Discussion

The primary goal of this study was to develop a computer-aided diagnosis to clas-

sify skin lesions and evaluate the model using public and private datasets. These

datasets contain dermoscopic images of skin lesions and clinical information (age, gen-

der, anatomical site). We have applied three experiments to evaluate the impact of

adding metadata and our developed AHPS. The best results are achieved when meta-

data and AHPS are applied on our CAD with Accuracy = 94.3%, F1-score= 91.8%,

AUC= 91.8%, and Balanced Multiclass accuracy = 96.7% in ISIC 2019 dataset and out-

performed previous work. besides, Accuracy = 94.3%, F1-score= 91.8%, AUC= 91.8%

and Balanced Multiclass accuracy = 96.7% on private data set. This model is based

on a pretrained NS-EfficientNet-L2 as a feature extractor, concatenated with metadata

architecture. Then, a classifier follows with eight neurons and Softmax function.

Three major observations can be concluded from the experimental results. First

of all, the great performance achieved and outperform previous work that confirms the

effectiveness of NS-EfficientNet-L2 to classify skin lesions. Second, speedup achieved

128 times less by applying AHPS using MapReduce, and improvement that validate the

important role of hyperparameters on performance. In the last observation concerning

the unknown class in the testing dataset, the performance of the unknown class is

noticeably lower than the other classes. This could explain the large difference between

tests on the private dataset and the results on the official test set.

There are three major limitations in this study that could be addressed in future

research. First, the study focused only on automatic hyperparameters selection for
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training, and not for model construction like the number of layers, nodes, dropout

percentage, activation functions, etc. Second, Since deep learning methods are data-

driven, their main limitations also come from the data itself. For metadata existed

in the skin lesions’ pubic data set contains only sex, gender, and anatomical site.

Whereas many clinical features can be added to improve the diagnosis like: the history

of sunburns, personal or family history of skin cancer, Some common medications, and

drugs( antibiotics) can make the skin more sensitive to sunlight. Besides dermoscopic

images, adding macroscopic images can also help for a more accurate diagnosis. The

last limitation concerning the validation of the model in the real application, we have

developed a desktop application that provides simple user interfaces for a dermatologist

to apply real-time diagnosis with our developed CAD, and we will validate results

obtained by histological examination.

Future work will consist of extending CNN-AHPS to model construction hyperpa-

rameters and fine-tuning pretrained models. Moreover, studying the impact of adding

macroscopic images and other metadata on the classification of skin lesions. We believe

that our model can improve the classification of other medical images as well. To this

end, we aim to test this model in other medical datasets.

6 Conclusion

In this chapter, we have presented our main contribution that consist of developing a

CAD system to assist dermatologists to classify skin lesions. This work is based on three

main points: (1) Data quality: we have preprocessed the data in this phase by imputing

missing values, solving images’ multi resolutions problem, solving imbalanced classes

problem, and adding metadata to the model. (2) Appropriate architecture and learning

strategy: this is done using a pretrained NS-EfficientNet-L2 architecture that achieved

Top1 accuracy in image classification literature. (3) Appropriate hyperparameters for

CNN architecture: to this end, we have developed CNN-AHPS based on big data

tools (MapReduce). This method gave us the best configuration of hyperparameters

to our architecture in reduced time. Results from ISIC2019 confirmed that our model

improved the classification for all of the specificity, sensitivity, AUC, and F1–score.
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General conclusion

This chapter summarizes the contributions of this thesis and presents several re-

search directions that require further investigations in the future.

1 Summary

This thesis integrates three trending concepts: Big Data, PHM and Artificial In-

telligence in the medical field. The research work presented in this thesis emphasizes

computer-aided diagnosis systems to assist physicians in making an accurate diagnosis

generally, and data-driven models in dermatology domain precisely.

The problems treated in this thesis gave birth to three main contributions that

answer the questions presented in the introduction. These contributions can be sum-

marised as follows:

• We proposed an adaptation of a PHM model from fault diagnosis of an aircraft

engine to diagnosis human heart disease. This PHM model is based on a new

strategy by retargeting extreme learning machine (ELM) algorithm. The main

objective of this study is to transfer the PHM approach from the industrial to

the medical field. This work could be considered a first step to reduce the gap

between industry and medical filed, by exchanging the applied techniques, and

proving that models applied for a machine’s health diagnosis could be applicable

for human health diagnosis. The suggested system accomplished a higher classi-

fication accuracy rate, by improving the data quality, decreasing the number of
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attributes and obtained a higher performance rate, with reduced processing time.

The ID-RELM & RF model can be used as a medical decision support system

for cardiologists to make accurate classification with lower time, cost, and effort.

• Second contribution attempts to analyze Spitzoid lesions related to clinical, histo-

logical, and immunohistochemical features using AI techniques. Seven (7) classi-

fiers: K-NN, LR, DT, MLP, NB, RF, and SVM have been applied for the analytic

procedures. The hybrid technique of SMOTE-GA-MLP yields the highest per-

formance overall.

The added value of this research in the area of skin lesion classification are now

summarized. First, it specifies the exact type of Spitz lesion, which is extremely

difficult and challenging in real life. Second, it combines previous works on the

steps needed to develop an automatic CAD system for Spitzoid lesion classifica-

tion to assist dermatopathologists during the diagnosis process. Third, our work

makes a classification based on various testes and types of data: clinical, his-

tological, and immunohistochemical data. Contrary to previous literature work

that only concentrates on the microscopic vision, which cannot accurately clas-

sify them. Finally, the analysis for differentiating major classes of these lesions,

namely SN (Spitz nevus) v. AST, is based on several features, including the im-

munohistochemical markers. Specifically, the findings indicate that localization

of lesions, cytonuclear atypia, and Ki67 proliferative index are the most weighted

features to differentiate AST from SN.

• Based on the limitations of the second contribution, we have proposed a new

computer-aided diagnosis for skin lesion that eliminates the dermatologist’s in-

tervention to extract features by developing a CAD system that classifies skin

lesions directly from dermoscopic images. This contribution is based on three

main points: (1) Data quality: we have preprocessed the data in this phase by

imputing missing values, solve images’ multi resolutions problem, solve imbal-

anced classes problem, and add metadata to the model. (2) Appropriate archi-

tecture and learning strategy: this is done using a pretrained NS-EfficientNet-

L2 architecture that achieved Top1 accuracy in image classification literature.
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(3)Appropriate hyperparameters for CNN architecture: to this end, we have de-

veloped CNN-AHPS based on big data tools (MapReduce). This method gave

us the best configuration of hyperparameters to our architecture in reduced time.

Results from ISIC2019 confirmed that our model improved the classification for

all of the specificity, sensitivity, AUC, and F1–score.

2 Perspectives

Several improvements could be made to the work done in this thesis, and research

directions that require further investigations in the future. We listed some of them in

the items below:

• The developed CAD systems in this thesis are data-driven, their main limitations

also come from the data itself. In future work we intend to study the impact

of adding macroscopic images and more metadata on skin lesions classification.

Used public data set in the current work contains only age, sex, and anatomical

site. Many clinical features can be added to improve the diagnosis, such as a

history of sunburns, personal or family history of skin cancer, and some common

medications and drugs (antibiotics) that can make the skin more sensitive to

sunlight. In addition to dermoscopic images, the support of macroscopic images

could also help achieve a more accurate diagnosis.

• We intend to test the model in real applications. To this end, we will collaborate

with experts in dermatology for better understanding their needs and capitalize

their expertise by developing a desktop application that provides simple user in-

terfaces for a dermatologist. This application will facilitate applying real-time

diagnosis with our developed CAD. Finally, results obtained will be more vali-

dated by histological examination.

• We intend to extend our work on the whole M-PHM process by using results ob-

tained from the diagnosis phase to make predictions and support decision making.

For example, predict skin lesion growth, predict the spread and tumour stage if

the lesion diagnosed as cancerous. Furthermore, based on these predictions, we

will support the decision making concerning the treatment should be taking.

• We believe that our model can be relevant to the classification of other medical

99



Chapter V: Toward efficient Skin Lesions classification

images as well. To this end, we aim to test this model in other medical datasets

such as brain tumors on MRI images, breast cancer tumors on mammography or

whole slide imaging.

• We will focus on the healthcare situation in Algeria. To this end, a partnership

with the Algerian medical community is needed. This collaboration can help to

understand their needs, identify their challenges. Thus we can design and propose

suitable solutions based on our developed CAD systems.
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