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ABSTRACT 

Firstly, the effects of several functionals in the prediction of the geometrical parameters of four 

diastereomeric half-sandwich Ru (II) cationic complexes containing amino amide ligands were 

investigated. Four Ruthenium complexes were used to evaluate the performance of fifteen 

density functionals. The standard 6-31G (d,p) basis set was used for all light elements, while 

pseudo potential LANL2DZ was used for the Ruthenium atom. The best bond lengths, bond 

angles and bond dihedrals were obtained using (PBE-GD3BJ), (TPSS-GD3BJ) and (BP86-

GD3BJ) functionals respectively. The energy difference of the two diastereomeric half-

sandwich Ru (II) cationic complexes  (Ru(S)) and  (Ru(R)) containing the phenyl alanine amide 

ligand has been calculated using the fifteen density functionals in other side the 

enantioselectivity in ATH of acetophenone catalyzed by Ru(II) complexes containing amino 

amide ligands were also investigated by defferents functionals,The best overall performance is 

observed for (PBE-GD3BJ) , because this functional gives good results both for the geometry 

and the energetics and is not too costly in terms of computation time. For the solvent system, 

we have chosen PCM. 

Secondly The origin of enantioselectivity in the reaction  of  chiral Ru amino amide complexes 

in asymmetric transfer hydrogenation of acetophenone was investigated with DFT calculation. 

The roles of the  chirality of the ruthenium in Ru amino amide complexes  was analyzed by 

considering foor  tested cases: 1) Ru(S)C(S) phenyl alanine amide , 2) Ru(R)C(S) phenyl alanine 

amide, 3) Ru(S)C(S) proline amide and, 4) Ru(R)C(S) proline amide. We succeeded in 

reproducing the experimentally observed enantioselectivity for the foor studied Ru amino 

amide complexes, For each of these, the full free energy profile for the reaction is calculated 

according to the concerted hydrogen transfer mechanism. Our results indicated that high 

enantioselectivity explained by stabilizing CH–π interaction exists between the phenyl group 

of acetophenone and the cymene ring of the catalyst. This is in line with the explanations 

provided by Noyori et al. Hence, ours results show that rotation of p-cymene play a significant 

role in selectivity. finaly our results showed that important insights can be obtained with such 

a theoretical approach, particularly the origin of the reaction asymmetry. This can help 

experimentalists to design new catalysts that will ensure good enantioselectivity. 

Finally a proline amide/amine derived amino acid has been experimentally employed as an 

effective chiral catalytic precursor in the ruthenium-mediated asymmetric reduction of prochiral 

ketones in water to produce the corresponding secondary alcohols, which provides the products 

in 80% ee. We show that transition state modeling according to the outer-spher reaction 
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mechanism at the PBE-GD3BJ/LANL2DZ/6-31G (d,p) level of theory can accurately model 

enantioselectivity for various proline-catalyzed asymmetric transfer hydrogenation in water. 
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RESUME 

Tout d'abord, nous avons étudié les effets de plusieurs fonctionnelles dans la prédiction des 

paramètres géométriques de quatre diastéréoisomère demi-sandwich de complexes de Ru (II) 

ligandé avec l’amino amide. Quatre complexes de ruthénium ont été utilisés pour évaluer la 

performance de quinze fonctionnelles de densité. La base standard  6-31G (d, p)  a été utilisé 

pour tous les éléments légers, tandis que le pseudo potentiel LANL2DZ a été utilisé pour l'atome 

de ruthénium. Les meilleures longueurs de liaison, angles de liaison et dièdres ont été obtenus 

en utilisant les fonctionnelles (PBE-GD3BJ), (TPSS-GD3BJ) et (BP86-GD3BJ) 

respectivement. La différence d'énergie des deux diastéréoisomère demi-sandwich de 

complexes de Ru (II) (Ru (S)) et (Ru (R))  ligandé avec l’amino amide a été calculé en utilisant 

les quinze fonctionnelles de densité, finalement l'énantiosélectivité dans l’ATH de 

l'acétophénone catalysée par le complexe de Ru (II) ligandé avec l’amino amide ont également 

été étudiés par defferents fonctionnels, la meilleure performance globale est observée pour 

(PBE-GD3BJ), parce que cette fonction donne de bons résultats à la fois pour la géométrie et 

de l'énergétique et ne soit pas trop coûteuse en termes de temps de calcul. Pour le système de 

solvant, nous avons choisi PCM. 

L'origine de l'énantiosélectivité dans la réaction de transfert asymétrique d’hydrogène (ATH)   de 

l'acétophénone catalysé par des complexes chiraux de Ruthénium ligandé par des amino-amides 

a été étudiée à l’aide de calculs DFT en utilisant la fonctionnelle PBE avec la dispersion GD3BJ 

et la base LANL2DZ pour le Ruthénium et 6-31G (d,p) pour les autre éléments . Le rôle de la 

chiralité du ruthénium dans les complexes de Ru-amino amide a été analysé en considérant quatre 

cas testés: 1) Ru(S) C(S) phényl alanine amide, 2) Ru(R) C(S) phényl alanine amide , 3) Ru(S) C(S) 

proline amide et 4) Ru(R) C(S) proline amide. Nous avons réussi à reproduire l'énantiosélectivité 

observée expérimentalement pour ces quatre complexes pour lesquels le profil de l'énergie libre 

totale de la réaction a été calculé. Nos résultats ont montré que l'énantiosélectivité élevée est due 

à l’interaction (CH-π) qui existe entre le groupe phényle de l'acétophénone et le cymène du 

catalyseur. Ceci est en accord avec les explications fournies par Noyori et collaborateur. Par 

conséquent, on peut conclure que la rotation de p-cymène joue un rôle important dans la 

sélectivité. Nos résultats ont montré les progrès importants de cette approche théorique, en 

particulier pour déterminer l'origine de l'asymétrie de la réaction, ce qui peut aider les 

expérimentateurs à synthétiser de nouveaux catalyseurs qui assureront une bonne 

énantiosélectivité. 

Finalement, un dérivé de l'acide aminé proline (amide / amine) a été expérimentalement employé 
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comme catalyseur chiral efficace dans la réduction asymétrique de cétones prochirales catalysée 

par le complexe de ruthénium dans l'eau pour produire les alcools secondaires correspondants, 

qui fournit les produits avec 80% d’excès enantiomérique. Nous montrons que la modélisation 

moleculaire de l'état de transition à l’aide de la fonctionnel de densité, selon le mécanisme 

concerté au niveau de calcule PBE-GD3BJ / LANL2DZ / 6-31G (d, p) peut prédire 

l’énantiosélectivité expérimentale pour le transfert d’hydrogène asymétrique catalysée par 

diverses  proline (amide/amine). 
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 ملخص

المتساندة مع الاميد  uR(IIقمنا بدراسة تأثير عدة طرق نظرية للتنبؤ بالبنية الفراغية لأربعة معقدات الروتينيوم )‚ في البداية

لجميع العناصر  p، d( G13- 6استعملنا القاعدة ) نظرية،استعملنا الأربع معقدات لتقييم أداء خمسة عشرة طريقة  الاميني.

للروتينيوم أحسن النتائج بالنسبة لطول الروابط و الزوايا تحصلنا عليها  LANL2DZ م القاعدةالخفيفة في حين تم استخدا

 .علي التوالي  (TPSS-GD3BJ) ( ,BP86-GD3BJ,) (PBE-GD3BJ) باستعمال الطرق النظرية

حسب بواسطة الخمسة عشرة طريقة نظرية , و أخيرا قمنا  uR( Rو) uR (,S )uR(IIفرق الطاقة بين معقدي الروتينيوم )

بحساب الانتقائية في تفاعل الإرجاع للكيتونات المحفز بمعقدات الروتينيوم المتساندة مع الاميد الاميني , لوحظت نتائج جيدة 

لحساب البعد الفراغي أو الطاقة و ليست مكلفة من حيث الوقت في الحساب , بالنسبة  سواءا(PBE-GD3BJ)مع الطريقة 

 .MCPلنظام المذيبات اخترنا 

درست  لاميني قداأصل الانتقائية في تفاعل الإرجاع للكيتون الحلقي المحفز عن طريق معقدات الروتينيوم المتساندة مع الاميد 

بالنسبة لبقية  p، d( G13-6و )بالنسبة للريتنيوم  LANL2DZ والقاعدة  GD3BJ ونظرية التداخل PBEبواسطة نظرية 

 الخفيفة.العناصر 

( S) C (S)Ru  ,2( فينيل الأنين أميد )1قمنا أيضا بدراسة اللاتناظر لعنصر الروتينيوم حيث قمنا بتجربة أربع احتمالات و 

، نجحنا في إيجاد  S) C (R )uR( برولين أميد )S) C (S )uR , 4( برولين أميد )C (R )uR , 3 (Sالأنين أميد ) لفيني

جنا بينت ان نتائ .الملاحظة تجريبيا عن طريق الحساب النظري و قمنا بحساب الانطالبي الحرة لكل مراحل التفاعل الانتقائية

و حلقة المحفز، كما قام بتفسيرها العالم نويوري ،من جهة أخرى  حلقة الكيتون التجاذب بينناتجة عن  الانتقائية المرتفعة

دوران حلقة المحفز تلعب دورا هاما في الانتقائية، نتائجنا بينت اهمية الطرق النظرية لتفسير انتقائية  بإمكاننا استنتاج أن 

 التفاعلات الكيميائية و بذلك يمكنها مساعدة التجريبيين لاصطناع محفزات جديدة .

ات في في الإرجاع اللامتناظر للكيتون استعمل تجريبياالمتساند مع برولين أميد أو برولين أمين  معقد الروتينيومأخيرا، و 

اعلية التف، أثبتنا أن محاكاة الحالة الانتقالية وفقا للآلية %80وسط مائي للحصول على الكحولات المرافقة مع انتقائية تصل إلى 

 ٠يمكنها التنبؤ بالانتقائية التجريبيةp، d( G13-6 / LANL2DZ / (PBE-GD3BJ))ساب بواسطة مستوى الح الحلقية
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Figure 6.3. Optimized geometries of the PBE-GD3BJ level of transition states with 
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Figure 6.5. Optimized geometries of the PBE-GD3BJ level of transition states with 
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Figure 6.6. Optimized geometries of the PBE-GD3BJ level of transition states with  
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1.1 Introduction  

Most of the molecules that make up plants and animals are chiral, and usually only one form of 

the chiral molecule occurs in a given species. All but one of the 20 amino acids that make up 

naturally occurring proteins are chiral, and all of them are classified as being left handed. Chiral 

molecules can show their different handedness in many ways, including the way they affect 

human beings. One enantiomeric form of a compound called limonene is primarily responsible 

for the odor of oranges, and the other enantiomer, for the odor of lemons (Figure 1.1). 

 

Figure 1.1. Enantiomeric forms of limonene 

The activity of drugs containing stereocenters can similarly vary between enantiomers, 

sometimes with serious or even tragic consequences. For several years before 1963 the drug 

thalidomide was used to alleviate the symptoms of morning sickness in pregnant women. In 

1963 it was discovered that thalidomide was the cause of horrible birth defects in many children 

born subsequent to the use of the drug. Even later, evidence began to appear indicating that 

whereas one of the thalidomide enantiomers (the right-handed molecule) has the intended effect 

of curing morning sickness, the other enantiomer, which was also present in the drug (in an 

equal amount), may be the cause of the birth defects. (Figure 1.2). 

 

Figure 1.2. Enantiomeric forms of thalidomide 
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In 1992, the U. S. Food and drug administration (FDA) released long-awaited guidelines for 

the marketing of chiral drugs. The decision about whether to sell a chiral drug in the racemic 

mixture of the enantiomerically pure form has been left to the drug's manufacturer, although is 

subject to FDA approval. with the regulations in place,drug companies have been faced with 

major scientific, technical, and economic choices.they must decide whether to market a drug as 

an easier-to-synthesize racemic mixture or to tackle the more costly and difficult synthesis of 

the pure active enantiomer.which will give them the competitive edge?  

Enormous effort has been devoted to the development of methods that are enantioselective in 

contrast to classical organic synthesis in which racemic mixtures are obtained. With an 

increasing demand for enantiomerically pure compounds, asymmetric synthesis has today 

become an important field of organic chemistry. 

Enantiomerically pure compounds can be obtained in three different ways: 

i) By derivatization of a chiral natural product, such as amino acids, hydroxyl acids, terpenes, 

sugars and alkaloids [1]. 

ii) By resolution of a racemate with a chiral resolving agent [2]. 

iii) Or by asymmetric synthesis, in which an achiral substance is converted into a chiral one. 

Asymmetric synthesis involves the conversion of a prochiral starting material, in a chiral 

environment, in such a way that the reaction product contains unequal amounts of the two 

enantiomers or diastereomers. The chirality is introduced by using a chiral reagent, chiral 

auxiliary or by asymmetric catalysis. The aim of asymmetric synthesis is to find efficient and 

cheap methods that selectively produce one of the two enantiomers. 

QM methods like density functional theory (DFT) [3], have been used as a powerful tool in the 

study of reaction mechanisms [4,5].These methods have been successfully used to study and to 

clarify the mechanism of several metal-catalyzed reactions used in organic synthesis like σ-

bond activation [6], hydrogenation of carbon dioxide [7], olefin polymerization [8], 

isomerization of double and triple C-C bonds [9], oxygen transfer reactions [10], 

benzannulation [11] and coupling reactions (Heck [12], Suzuki [13] and Stille [14] reactions).  

The work in this thesis is based on experiment findings and uses computational techniques to 

firstly investigate the asymmetric transfer hydrogenation of ketones catalysed by ruthenium (II) 

amino amide complexes, the step controlling the stereochemical outcome of the reaction is 
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identified. The value of ∆G‡ for this step is then computed with a QM method considering the 

real system and the origin of enantioselectivity is rationalized. This strategy has been 

successfully applied in the study of several catalytic systems used in asymmetric hydrogenation 

[15, 16], olefin dihydroxylation [17, 18], hydroformylation [19, 20] and hydrosylylation [21]. 

1.2 Structure of the thesis 

The manuscript of this thesis is divided into two parts: The first part entitled bibliography 

contains two chapters: 

The chapter 2 delineates the experimental and computational background relevant to the field 

(asymmetric transfer hydrogenation ATH). 

The third chapter is devoted to the computational theories and methodology. 

The second part contains three chapters (three applications): 

In The chapter 4, we investigated The effects of several functionals in the prediction of the 

geometrical parameters and energetics of four diastereomeric half-sandwich Ru (II) cationic 

complexes containing amino amide ligands, the enantioselectivity in ATH of acetophenone 

catalyzed by Ru (II) complexes containing amino amide ligands were also investigated by 

defferents functional, In order to adopt the best method of calculation for this thesis. 

Chapter 5 presents the Theoretical Study of Asymmetric Transfer Hydrogenation of Ketones 

Catalyzed by phenylalanine amide or proline amide Ruthenium Complexes. 

Finally an efficient computational method has been identified which uses Density Functional 

Theory to predict the enantioselectivity showed in Asymmetric transfer hydrogenation reaction 

of prochiral ketones in water promoted by chiral proline (amide/amine) ruthenium (II) 

complexes. This application published in "Journal of Pharmaceutical Research, Biological 

and Chemical Sciences (RJPBCS)" 

These are followed in Chapter 7 by general conclusions. 

 

'' Cotrary to what is sometimes supposed, the theoretical chemist is not a mathematician, 

thinking mathematically, but a chemist, thinking chemically'' 

C. A Coulson, valence (Oxford University. Press, 1952), preface, on v. 
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2.1. Catalysis 

Catalysis is generally defined as a process by which a small amount of material, e.g. the catalyst, 

increases the rate of a chemical reaction without being consumed it self [1]. Catalysts can be 

divided into three types: 

i) Heterogeneous, the catalyst (usually a solid) and the reactants are in separate phases. 

ii) Homogeneous, the catalyst exists in solution with the reaction mixture. 

iii) Enzymatic, has features of both homogenous and heterogeneous catalysis. 

Heterogeneous catalysts are commonly used for the production of chemicals such as acetic acid, 

ammonia, gasoline and methanol. These catalysts can be used at high temperature with high 

turn over numbers and frequencies. The product and the catalyst can easily be separated [2]. 

Enzymes are ideal catalysts, optimized by nature over several generations. These 

macromolecules can promote highly chemo- and enantioselective organic reactions and the 

diversity of transformations being discovered is rapidly increasing [3]. Homogenous catalysts 

are associated with high selectivities, mild reaction conditions, easier modification of the 

reaction parameters and the possibility for mechanistic studies. Product separation and 

recycling of the catalyst may be problematic. 

Transition metals have been explored extensively as catalysts due to their unique ability to 

enable chemical transformations [4]. An important breakthrough for homogenous catalysis was 

published by Wilkinson in 1965 when he discovered a catalyst, RhCl(PPh3)3, that reduced 

alkenes, alkynes and other unsaturated molecules at 25 oC with a hydrogen pressure of 1 bar. 

Mechanistic studies by Wilkinson, Halpern’s group and others, revealed that RhCl(PPh3)2 was 

the actual catalyst and a catalytic cycle could be proposed [5]. 

 

2.2. Asymmetric catalysis 

The discovery of Wilkinson’s catalyst provoked an increasing awareness of the possibility to 

hydrogenate unsaturated hydrocarbons under mild conditions and in particular opened up the 

field of asymmetric catalysis. Replacement of the two coordinated phosphines with a chiral 

diphoshine creates an asymmetric catalyst that might be able to selectively catalyze the 

hydrogenation of a prochiral unsaturated substrate to give only one of the two enantiomers. 

Contributions by Kagan and Dang [6]. in 1972 and Knowles [7]. The same year, showed that 

chiral bidentate phosphines coordinated to rhodium could reduce Z-N-acetamidocinnamic acids 

enantioselectively. These compounds serve as precursors for amino acid derivatives. Knowles 

at Monsanto introduced the first commercial application of asymmetric transition metal 
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catalysis in 1974; the enantioselective production of L-DOPA promoted by a chiral rhodium 

based catalyst [8]. As shown in Scheme 1, the hydrogenation can be performed with a substrate 

to catalyst molar ratio of  20000:1 with 3 bar of hydrogen pressure at 50 oC and yields the 

product in 95% ee and 90% yield. The product is then recrystallized to 100% ee. The catalyst 

can be recycled and it has been stated that 0.5 kg of catalyst yields 1000 kg of L-DOPA.  

 

 

OMe

AcO

CO2H

NHCOCH3

OH

HO

CO2H

NH2H

i) H2, RhDiPAMP

ii) H3O+

95% ee

:P

Ph

P:

Ph

MeO

OMe
(R, R)-DiPAMP

 

 

Scheme 2.1. Knowles catalytic asymmetric synthesis of L-DOPA 

 

In the last decades, a great number of new catalytic asymmetric reactions have been discovered. 

A good example is the Sharpless epoxidation of allylic alcohols that was published at the 

beginning of the 80’s (Scheme 2.2) [9]. 

 

R' R"

R

OH

+      tert-BuOOH

(-) DET

Ti(Oi-Pr)4

OH

EtO2C

HO

CO2Et

(-) DET

R' R"

R

OH

O

>90% ee

 

Scheme 2.2. Sharpless asymmetric epoxidation of allylic alcohols 
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The reaction has a wide scope and is characterized by simplicity, high selectivity and versatility. 

The obtained epoxides are useful intermediates in asymmetric synthesis. 

Another important work is Noyori’s enantioselective hydrogenation of unsaturated carbon-

carbon bonds and ketones [10]. A ruthenium catalyst constructed of a chiral diamine and a 

chiral diphosphine, [RuCl2((S)-xylbinap)((S)-daipen)] and t-BuOK as co-catalyst, reduces 

acetophenone with a substrate to catalyst molar ratio of 100 000:1 under 8 atmosphere of 

hydrogen gas in 99% enantiomeric excess as shown in Scheme 2.3. 

 

O

CH3

OH

CH3
H2, catalyst

S/C 100 000

97%yield, 99% ee

catalyst

Ru

Cl

ClP

Xyl

OMe

OMe

N
H

H
N

P

Xyl

 
 
 

Scheme 2.3. Noyori’s asymmetric hydrogenation of aromatic ketones 

  

These and other discoveries have shown the synthetic value of enantioselective catalysis [11]. 

and have contributed to an ever-increasing list of applications in fine chemical production [12]. 

In 2001, K. Barry Sharpless, Ryoji Noyori and William Knowles shared the Nobel Prize in 

chemistry for their pioneering work in asymmetric catalysis and for the important commercial 

applications derived from their work. 
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2.3. Transition Metal Catalysed Asymmetric Transfer Hydrogenation of 

Ketones 

2.3.1. A Short History of Asymmetric Transfer Hydrogenation 

The asymmetric transfer hydrogenation (ATH) of ketones is one of the most convenient and 

extensively studied transformations in organic chemistry. The benefits, including excellent 

selectivity, operationally simplicity and wide substrate scopes, have led to their broad 

applications to the synthesis of secondary chiral alcohols and related natural products. 

To date, several categories of substrate, including aromatic/aliphatic ketones, imines and 

compounds with activated C=C bonds such as α,β-unsaturated ketones, cyanoolefins and 

dicyanoolefins have all been found to be active substrates for ATH reactions [12]. 

Different types of catalyst complexes have been prepared and screened (Scheme 2.4). At first, 

chiral diphosphine ligands, and bipyridine based ligands, were developed and applied to transfer 

hydrogenation in 2-propanol at elevated temperatures. However, only poor enantioselectivities 

and reactivities were found. 

When complex 3-[HRu(CO)2] was used the reaction had to be carried out at 120 °C; after 111 

h the resulting (S)-1-phenylethanol (S)-2 was obtained with only 35% yield and 4% ee [13]. 

When 4-[RuBr2] complex was applied the same product chiral 1-phenylethanol 2 was formed 

in 80% yield and 52% ee [14]. 

No success was achieved when a bipyridine based ligand 5 was used in ATH of acetophenone 

1 [15]. Instead of bipyridine ligand, improvement was achieved by using a chiral bioxazole 

ligand. Plaftz reported by using 6-[Ir(cod)Cl2] complex, in which case the enantioselectivity of 

formation of chiral 1-phenylethanol reached 58% ee and it was isolated in good yield (89%) 

[16]. 

Diphosphine-diamine 7 and diphosphine-diimine 8 ligands were combined with the same metal 

core; [Ru(DMSO)Cl2], to form catalytic complexes by the Noyori group. Interestingly, when 

the two complexes were tested under the same reaction conditions the results were totally 

different. The enantioselectivity and reactivity of the diphosphinediamine [Ru(DMSO)Cl2] (7-

[Ru(DMSO)Cl2]) complex was remarkable. The reduction of acetophenone 1 proceeded from 

room temperature to 45 °C with only 0.5 mol% of [Ru(DMSO)Cl2] and both excellent yield 

(80%) and ee (52%) were achieved. When a 8-[Ru(DMSO)Cl2] catalyst was tested there was 

almost no conversion and also the ee was poor (18%). The authors claimed that catalyst 8-

[Ru(DMSO)Cl2] is less effective because of the lack of NH functionality [17]. 
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Scheme 2.4. ATH with different ligands 

 

2.3.2. Ligands with NH Functionality 

Ligands that incorporate NH functionality have attracted significant attention. In 1995, 

Noyori’s group reported a ruthenium catalyst [RuCl2(mesitylene)]-(S,S)-TsDPEN 9 for 

asymmetric transfer hydrogenation of prochiral aromatic ketones at low catalyst loadings 

(S/C=200-500). This reduction could be carried out at room temperature in 2-propanol in a very 

efficient manner. Excellent ee values (up to 98%) and yields (up to 98%) were obtained by this 

catalyst. The authors also elaborated the reason why they used [RuCl2(arene)]2 to form the 

catalyst complex. The special function of the arene which is coordinated with Ru are as follows: 

(1) arene ligands automatically occupy three adjacent coordination sites of Ru in an octahedral 

coordination environment, leaving three sites with a fac relationship for other functions; (2) 

arene ligands are relatively weak electron donors which may provide a unique reactivity on the 

metallic centre; (3) ready modification of the substitutions of the arene is possible. 
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Scheme 2.5. ATH by TsDPEN ligand 

 

After extensive investigation the conclusions were: (1) high enantioselectivity was obtained 

only when an appropriate arene and chiral ligand were combined; (2) the presence of a primary 

or secondary amine end in the amino alcohols/diamine ligands is crucial for the catalytic 

activity[18].  

In addition to TsDPEN 10, other amine ligands such as TsDACH 11 and β-amino alcohols 12-

14 (Scheme 2.6) have been combined with [RuCl2(arene)]2 (usually the arenes are benzene, p-

cymene, mesitylene and hexamethylbenzene) and excellent results were achieved in the transfer 

hydrogenation of aromatic ketones [19]. 

 

 

Ph NHTs

NH2Ph

NHTs

NH2

Ph OH

NHMeMe

Ph OH

NH2R

OH

NH2

10                                   11                                          12                                   13                                    14  

  
Scheme 2.6. Different structures of ligands with NH functionality 

 

2.4 Prediction of enantiomeric excess (ee) 

Figure 2.1 shows the reaction coordinate diagram of an asymmetric reaction generating equal 

amounts of (R)- and (S)- configurations in products that are racemate with an ee of 0%. Figure 

2.2 shows the reaction coordinate diagram of an asymmetric reaction generating different 

amounts of (R)- and (S)-configurations of enantiomers, in which the activation energy favours 
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the (S)-product. Enantioselectivity is the preferential formation of molecules of one chirality 

(enantiomer) over the other and is usually measured as the enantiomeric excess (ee): 

 

𝑒𝑒 =
|𝑅| − |𝑆|

|𝑅| − |𝑆|
%     2.1 

 

where R and S are stereochemical descriptors defined in the Cahn-Ingold-Prelog (CIP) system 

[20]. [R] denotes the number of moles of one enantiomer and [S] indicates that of the other 

enantiomer. Enantioselective reactions are usually under kinetic control at a certain temperature 

and and therefore the final [S]/[R] ratio is given as follows: 

 

[𝑆]

[𝑅]
= 𝑒−∆∆𝐺𝑆−𝑅/𝑁𝐴𝑘𝐵𝑇      2.2 

 

where ΔΔG is the difference in free energies of activation for the (S)- and (R)-products 

respectively; NA is the Avogadro constant; kB is. the Boltzmann constant. 

The Curtin-Hammett principle [21]. Postulates that in a reaction having a pair of reactive 

intermediates which interconvert rapidly, with each going irreversibly to a different 

 

 

 

Figure 2.1. A typical asymmetric reaction generating (R)- and (S)- configuration of products racemic 

mixture [22]. 



Chapter 2: Asymmetric Transfer Hydrogenation (ATH) of ketones 

 

15 
 

 

 
 

Figure 2.2. A typical asymmetric reaction generating (R)- and (S)- configuration of 

products ― non-racemic mixture [22]. 

product, the product ratio will depend only on the difference in the free energy of the transition 

state associated with each product, and will be independent of the difference in the free energy 

of the intermediates. Thus, once we have obtained the free energy, we can predict the value of 

the ee based as follows:  

 

%𝑒𝑒𝑡ℎ𝑒𝑜𝑟𝑦(∆∆𝐺) =
1 − 𝑒

−∆∆𝐺𝑆−𝑅
𝑁𝐴𝑘𝐵𝑇

1 + 𝑒
−∆∆𝐺𝑆−𝑅

𝑁𝐴𝑘𝐵𝑇

× 100     2.3 

 

2.5. Computational studies 

2.5.1 Introduction 

A large number of catalytic methods involving Ru-based catalysts have been successfully 

developed to achieve selectivity and efficiency in the hydrogenation of a large family of organic 

substrates. One of the most important transformations in synthetic organic chemistry is the 

enantioselective reduction of C=O [23-26]. The design of chiral Ru (II) complexes has become 

amajor area of research because of their ability to promote the formation of alcohols with high 

enantiomeric purity starting from prochiral ketones [27–30]. Many cases have been extensively 

investigated using both experimental and computational methods in order to cast light on the 
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mechanistic details of the hydrogen transfer. Most of the computational investigations were 

aimed at identifying the preferred pathway among several possibilities [31–33]. Particular 

attention has been dedicated to the rationalization of the chemo- and stereoselective outcome 

induced by chiral catalysts [34–36]. The Ru-catalyzed hydrogenation reaction thus represents 

an excellent example of cooperation between experimental and theoretical investigations. 

For many years, the preferred mechanism has been the center of debate, mainly because of the 

large number of parameters affecting the pathway. Moreover, these parameters show a 

synergistic influence on the mechanism and stereoselectivity, and in many cases, it was possible 

to distinguish the major contributions only by employing a computational approach. In 

particular, metal-catalyzed transfer hydrogenations are described by three different activation 

modes (Fig. 2.3): 

 

M

RN

H

O

CHR2

H
CR2O

M

O CR2

H CHR2

H

M

a                                          b                                       c  

Figure 2.3. General activation modes for carbonyl hydrogenations 

 

(a) direct transfer of a hydrogen involving both donor and acceptor covalently interacting with 

the metal (the metal hydride complex is not involved in this mechanism), (b) migratory insertion 

of a π-coordinated substrate into a metal–hydrogen bond, and (c) an outer sphere mechanism 

(OSM) where both donor and acceptor never interact directly with the metal but only through 

hydrogen bonds (the catalyst provides both the proton and the hydride). 

the most relevant investigations employing different computational approaches including DFT-

based methods are reviewed. During the past 20 years, these methods have been extensively 

employed to address which mechanism(s) reported in Fig. 2.3 is (are) correct for the Ru-

catalyzed hydrogen transfer by comparing calculated PESs for representative models. Such 

models were selected on the basis of experimental evidence, unclear catalytic behaviors, and 

computational time. Computational approaches have seen progressive improvements, because 

more complex and realistic models have been considered thanks to more efficient technology, 

and also because earlier studies highlighted new factors which play important roles in these 

reactions. A significant example is the role that the solvent plays in the hydrogen transfer. 
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2.5.2 Hydrogenation of a Carbonyl Group 

The reduction of the C=O functional group has been extensively investigated with 

computational tools. It is important to highlight that in the case of a mild hydrogen such as a 

primary or secondary alcohol, the thermodynamic balance is very close to thermoneutral, 

limiting the intermediates that need to be considered along the reaction pathway. Consequently, 

earlier computational investigations performed by attention to the extremely stable 

intermediates that could be classified as catalyst reservoirs of Ru (II). For some Ru (II) catalysts, 

which do not involve arene ligands as stabilizers, the suggested mechanism for the carbonyl 

reduction is a migratory insertion of the C=O into the Ru–H bond, as depicted in Fig. 2.3, mode 

b [23]. Although direct hydrogen transfer as depicted in mode a (Fig. 2.3) could not be excluded, 

the generally accepted mechanism for this catalyst is shown in Scheme 2.7. The key to this 

mechanism is the ability of Ru (or other metals) to form an alkoxide complex, rearrange to form 

the metal hydride, and complex the ketone. One of the principle factors studied for the inner 

sphere mechanism (ISM) is the kinetics of the reaction with respect to the base concentration. 

In this mechanistic view, the base is believed to increase the concentration of the alkoxide, 

facilitating the overall reaction. 

Ru X

(CH3)2CHO-

-X-

CH3

O CH3

H

Ru

CH3

O CH3

Ru H

CH3

O CH3

Ru H

R1

O R2

R1

O R2

Ru H

CH3

HO CH3

R1

HO R2

H

H

15

16

17

18  

Scheme 2.7. Proposed catalytic cycle for ruthenium-catalyzed transfer hydrogenation 
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In the case where ɳ6 coordinated arenes stabilize the Ru catalyst with primary or secondary 

amine ligands, the experimental observations stimulated the investigation of a new mechanism. 

Alonso and coworkers [31] performed a computational investigation using the B3PW91 

functional and different basis sets in order to compare the direct insertion (Scheme 2.8), the 

migratory insertion (Scheme 2.9), and the concerted hydrogen transfer (Scheme 2.10) 

mechanism for the reduction of the C=O bond. The Ru catalyst has been modeled and simplified 

with the small 2-aminoethanol ligand and benzene as the arene. The authors were not able to 

describe the entire PES for all three proposed mechanisms, but they obtained a well-defined 

energetic picture which highlights a preferred pathway. 
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Scheme 2.8. Direct insertion mechanism for Ru (II)-catalyzed hydrogenation 
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In the direct transfer mechanism, precursor 19 undergoes elimination of HCl, forming the 

16e_complex 20 (Scheme 2.8). The preformed alkoxide reacts with 20 generating stable 

alkoxide complex 21. The ketone substrate interacts via π-coordination, leading to complex 22 

after partial decoordination of the arene ligand. Complex 22 is in equilibrium with the 

analogous 23 through TS22–23 via hydride transfer. The concerted mechanism (Scheme 2.9) 

is described by the formation of precursor 20 which is transformed into active catalyst 24 via 

an outer sphere interaction with the hydrogen donor. Hydride 24 reduces the incoming ketone, 

which interacts with the catalyst via the outer sphere as well.  

Ru
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ClO



Ru



O NH

19
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Ru
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24

OH

O

O

R2

R1

OH

R2

R1

*

 

Scheme 2.9. Concerted hydrogen transfer mechanism for Ru (II)-catalyzed hydrogenation 
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Finally, the “migratory insertion” shares the same intermediates seen in the direct transfer until 

the generation of complex 21 (Scheme 2.10). Partial slippage of the arene ligand ensures the 

nucleophilic interaction between the forming hydride and the Ru in complex 25. At this stage, 

the first hydrogen transfer takes place via an ISM generating hydride complex 26. TS25–26 is 

characterized by a four-membered ring including Ru–H–C–O. Complex 26 is in equilibrium 

with active catalyst 24 via decoordination of the  ketone formed from the hydrogen donor and 

coordination of the arene back to the ɳ6 configuration. The incoming ketone interacts with the 

catalyst via π-coordination, and the second hydrogen transfer takes place through the similar 

TS27–28. 
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Scheme 2.10 Migratory insertion mechanism for Ru (II) catalyzed hydrogenation 
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The transition states optimized at the B3PW91/LANL2DZ ECP level of theory and relative 

energies calculated at the B3PW91/6-311 + G** level for all atoms except for Ru where a SDD 

basis set augmented by f polarization functions have been used to show that TS20–24 is lower 

in energy by 7.1 kcal/mol with respect to TS25–26 and 17.9 kcal/mol with respect to TS22–23. 

This mechanism, initially proposed by Noyori [91], is also referred to as the OSM as neither 

the ketone nor the alcohol interacts directly with Ru during the process. TS20–24 is 

characterized by a synchronous transfer of a proton from the nitrogen and a hydride from the 

Ru. The presence of a NH or NH2 group in the ligand is crucial for the catalytic activity as 

reported by Noyori and coworkers. These computational results support this finding.  

2.5.3 Conclusions 

The main contributions of computational chemistry to the understanding of the mechanisms of 

ruthenium-catalyzed hydrogenation reactions of ketones are summarized. These studies 

provided atomistic-level detail into the rate- and stereoselectivity-determining steps for a class 

of reactions that is widely used in organic synthesis at both the laboratory and the industrial 

scale. 
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By fusing chemical, physical and mathematical principles, computational modelling is capable 

of characterising, interpreting and predicting the structures and properties of molecules and 

materials at the atomic level, and has become an important and commonly used tool in 

contemporary scientific research. In this thesis, density functional theory (DFT) has been 

applied in order to understand the mechanisms of organometallic hydrogenations catalysed by 

ruthenium (II). In this chapter, basic electronic structure theory is summarised briefly before 

introducing DFT, exchange-correlation functionals, pseudopotential methods, techniques for 

geometry optimisation and locating transition state structures. 

 

3.1. Electronic structure theory 

Electronic structure theory describes electrons in atoms and molecules in terms of quantum 

mechanics, which postulates that the physical and chemical properties of a system may be 

obtained by solving the Schrödinger equation. Quantum mechanics explains the wave-particle 

duality of matter; solution of the Schrödinger equation yields the wavefunction of a system, Ψ. 

The particle probability density is given by  Ψ∗( x⃗  )Ψ ( x⃗ ⃗⃗  )  at coordinate 𝑥 . The time-dependent 

Schrödinger equation iℏ
∂Ψ

∂r
= ĤΨ gives the time evolution behaviour of the wavefunction. 

Ignoring relativistic effects, the theory is exact. In most applications, including those in the 

thesis, the time-independent Schrödinger equation is used: 

 

Ĥ𝛹 =  𝐸𝛹     3.1    

                            

where Ĥ is the Hamiltonian operator corresponding to the kinetic and potential energies,and E 

is the total energy of the system.For a polyatomic system constituting Nn nuclei and Ne 

electrons, the many-body time-independent Schrödinger equation in the non-relativistic regime 

can be written as: 

 

Ĥ𝛹(𝑟 1, 𝑟 2, … , 𝑟 𝑁𝑒 , �⃗� 1, �⃗� 2, … , �⃗� 𝑁𝑛)  =  𝐸𝛹(𝑟 1, 𝑟 2, … , 𝑟 𝑁𝑒 , �⃗� 1, �⃗� 2, … , �⃗� 𝑁𝑛)     3.2 

 

Where 𝑟𝑖⃗⃗  stands for the coordinate of the ith electron and 𝑅𝑖
⃗⃗  ⃗ stands for that of the ith nucleus. 

The non-relativistic Hamiltonian operator is the sum of the kinetic and potential operators of 

all the particles in the system and can be expressed as follows: 
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Ĥ = −∑
ℏ2

2𝑚𝑒
 𝛻𝑟 𝑖

2 +
1

2
 ∑

1

4Π𝜀0
𝑖1≠ 𝑖2=1 

 
𝑒2

|𝑟 𝑖1 − 𝑟 𝑖2|

𝑁

𝑖=1

 

− ∑  

𝑀

𝑘=1

ℏ2

2𝑀𝑘
 ∇

�⃗� 𝑘

2 +
1

2
 ∑

1

4Π𝜀0
𝑘1≠ 𝑘2=1 

 
𝑍𝑘1𝑍𝑘2𝑒

2

|�⃗� 𝑘1 − �⃗� 𝑘2|
− ∑ ∑

1

4𝛱𝜀0

𝑁

𝑖=1

 
𝑍𝑘𝑒

2

|�⃗� 𝑘 − 𝑟 𝑖|

𝑀

𝑘=1

 

 

                    =  𝑇𝑒  (𝑟 ) + 𝑉𝑒𝑒  (𝑟 ) + 𝑇𝑛 (�⃗� ) + 𝑉𝑛𝑛 (�⃗� ) + 𝑉𝑒𝑛 (𝑟  , �⃗�  )     3.3   

 

The first two terms correspond to the electronic kinetic energy and potential energy operators 

for electron-electron repulsion. The third and fourth terms represent the same physical 

quantities for the nuclei. The fifth term is the potential energy operator for the electron-nuclear 

attraction, which couples the dynamics of the nuclear and electronic systems. However, the 

Schrödinger equation can only be solved exactly for hydrogen atoms and other one-electron 

systems, while for larger systems, approximations are needed. 

 

3.1.1. The Born-Oppenheimer approximation 

The Born-Oppenheimer approximation exploits the fact that the mass of a nucleus is ca. 103 

times larger than that of an electron, which allows us to address the dynamics of the electronic 

system separately from that of the nuclear system by viewing the latter as static. As a result, 

electrons adjust to positions of nuclei instantaneously after any change in nuclear positions. The 

Hamiltonian for the system composed of both nuclei and electrons is thus simplified as below: 

 

Ĥ𝑒 = −∑
ℏ2

2𝑚𝑒
 𝛻𝑟 𝑖

2 +
1

2
 ∑

1

4Π𝜀0
𝑖1≠ 𝑖2=1 

 
𝑒2

|𝑟 𝑖1 − 𝑟 𝑖2|

𝑁

𝑖=1

 

− ∑ ∑
1

4𝛱𝜀0

𝑁

𝑖=1

 
𝑍𝑘𝑒

2

|�⃗� 𝑘 − 𝑟 𝑖|

𝑀

𝑘=1

 

 

 =  𝑇𝑒  (𝑟 ) + 𝑉𝑒𝑒  (𝑟 ) + 𝑉𝑒𝑛 (𝑟 , �⃗� )     3.4 
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This gives an electronic Schrödinger equation: 

 

Ĥ𝑒  (�⃗� ) Ψ𝑒  (𝑟  , �⃗� ) =  𝐸𝑒  (�⃗� ) 𝛹𝑒 (𝑟  , �⃗� )     3.5 

 

Where  �⃗�  and 𝑟   are the coordinates of the nucleus and electron respectively. Ee is the electronic 

energy in the field of the nuclei and Ψe is the corresponding electronic wave function. 

The above equation shows that both the motion and the energy of the electrons depend on the 

nuclear coordinates. In determining the lowest energy conformation of the system, the 

differential of the energy with respect to nuclei coordinates (the force) is used to propagate the 

nuclei to their new positions. The nuclei are fixed and the electronic problem solved again. This 

optimisation is carried out iteratively until certain convergence thresholds are reached. As 

discussed later, second derivatives may also be used in the optimisation process. 

Although the Born-Oppenheimer approximation reduces the complexity of the Schrödinger 

equation, the electron-electron interaction term is complicated. As noted, for most electron 

systems, there are no analytic solutions. Moreover, the motion of electrons is correlated. 

According to the Pauli exclusion principle, electrons with parallel spin repel each other more 

than can be accounted for by Coulomb repulsion. The Hartree-Fock approach seeks to simplify 

this by introducing a mean field approximation where an external field replaces the effects of 

all the other electrons. DFT also reduces the dimensionality of the problem by treating the 

many-body problem in terms of the electron density. 

 

3.2. The Hartree and Hartree-Fock Approximations 

In the Hartree equation, the Hamiltonian of a system constituting N particles is the sum of one-

particle Hamiltonians and the total wavefunction is the product of the wavefunctions of all 

particles [1]: 

 

�̂� = ∑ℎ̂

𝑁

𝑖

 (𝑖)     3.6 

𝛹(𝑟 1 𝑆1, 𝑟 2𝑆2, … , 𝑟 𝑁𝑆𝑁)  = 𝛹(𝑟 1 𝑆1) Ψ(𝑟 2𝑆2),… ,Ψ(𝑟 𝑁𝑆𝑁)     3.7 
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Where ℎ̂ is the one-particle Hamiltonian and si is the spin of the ith electron. Hence, the 

Schrödinger equation for one particle can be written as below: 

 

(− 
1

2
 ∇2 + 𝑉𝑟 )𝛹(𝑟 ⃗⃗  𝑆) = 𝐸Ψ(𝑟  𝑆)     3.8 

 

The Hartree approximation has a major shortcoming - the many-particle wavefunction of the 

electrons does not obey the Pauli principle, which prohibits two electrons from occupying the 

same quantum state. By ignoring this principle, the Hartree approximation in general 

underestimates the average distance between electrons whilst overestimating the average 

repulsion between them, thus overestimating the total energy. 

To obey the Pauli principle, the many-particle wavefunction must be antisymmetric with 

respect to the exchange of electrons with the same spin; this can be formulated using the Slater 

Determinant. This approach was proposed by V. Fock, and is known as the Hartree-Fock 

approximation [2]. 

As noted, the electron-electron interaction is described using a mean field theory. 

The Hartree-Fock theory provides an inadequate treatment of the correlation between the 

motions of the electrons within a molecular system, particularly interactions arising between 

electrons of opposite spin. The major correlation effects arise from pairs of electrons with the 

same spin, which is termed the exchange interaction, but the motion of electrons of opposite 

spin remains uncorrelated under the Hartree-Fock theory. Any method which goes beyond the 

Hartree-Fock theory in attempting to treat this phenomenon properly is known as an electron 

correlation method or a post-Hartree-Fock method, e.g., the Møller-Plesset (MP) perturbation 

theory [3]. 

 

3.3. Density functional theory (DFT) 

3.3.1. Thomas-Fermi theory 

DFT is a method based on the concept of using electron density instead of the wavefunction to 

determine properties of the system. In the late 1920s [4], the Hartree approximation was 

reformulated in terms of electron density, proposed independently by Thomas and Fermi, and 

named Thomas-Fermi theory [5,6], which was the first primitive quantum mechanical approach 

applied to many-body electronic structure calculations of molecular and condensed matter 
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systems. In this theory, the kinetic energy is locally approximated by that of a non-interacting 

homogeneous electron gas with the same density. 

Later, using the same approximation, Dirac introduced the exchange term into this model [7]. 

However, a breakthrough was made by P. Hohenberg and W. Kohn in 1964 [8], who showed 

that the ground-state energy and all other ground-state electronic properties were uniquely 

defined by the electron density. Basing the energy on the total electron density means that there 

are fewer degrees of freedom to consider in the DFT method. This approach has become popular 

because of the favourable compromise between accuracy and computational cost, allowing the 

treatment of large many-electron systems. 

 

3.3.2. Hohenberg-Kohn theorems 

In 1964, Hohenberg and Kohn proposed two theorems that used the density as the basic variable 

in determining the total energy of an interacting many-body system [9]. The first theorem 

demonstrated a one-to-one correspondence between the many-body wavefunction 𝛹(𝑟 ) in the 

ground state and the electron density 𝜌(𝑟 ) in the ground state. The total energy of a system can 

be written as a functional of electron density, 𝜌(𝑟 ) 

 

 

𝐸[ 𝜌(𝑟 )] = ∫𝑉𝑒𝑥𝑡(𝑟 )𝑑𝑟 + 𝐹[𝜌(𝑟 )]      3.9 

 

The first term, 𝑉𝑒𝑥𝑡(𝑟 )𝑑𝑟, arises from the interaction of the electrons with an external potential. 

In the Born-Oppenheimer approximation, 𝑉𝑒𝑥𝑡(𝑟 ) represents the Coulomb interaction between 

the electrons and nuclei. The second term, 𝐹[𝜌(𝑟 )], is the sum of the kinetic energy of the 

electrons and the potential energy of the electron-electron interactions. However, the exact form 

is unknown. Because the expression for the Hartree energy as a functional of the density is 

known, 𝐹[𝜌(𝑟 )] then could be written as: 

 

𝐹[ 𝜌(𝑟 )] = 𝐸𝐻[ 𝜌(𝑟 )] + 𝐸𝑢𝑛𝑘𝑛𝑜𝑤𝑛[ 𝜌(𝑟 )]     3.10 

 

Where 𝐸𝐻[ 𝜌(𝑟 )]is the Hartree energy and 𝐸𝑢𝑛𝑘𝑛𝑜𝑤𝑛[ 𝜌(𝑟 )] is an unknown universal function 

of the density independent of the external potential. The total energy can be re-written as: 
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𝐸[ 𝜌(𝑟 )] = ∫𝑉𝑒𝑥𝑡(𝑟 )𝜌(𝑟 )𝑑𝑟 + 𝐸𝐻[ 𝜌(𝑟 )] + 𝐸𝑢𝑛𝑘𝑛𝑜𝑤𝑛[ 𝜌(𝑟 )]      3.11 

 

The second Hohenberg-Kohn theorem proved that the exact ground-state energy of the 

electronic system corresponds to the global minimum of 𝐸[ 𝜌(𝑟 )], and the electron density 𝜌(𝑟 ) 

which minimises this functional is the exact ground-state electron density 𝜌0(𝑟 ) . 

 

3.3.3. Kohn-Sham equations 

The second landmark in the development of DFT was by W. Kohn and L. J. Sham (1965) [10], 

who suggested a practical method to obtain the ground-state electron density.Kohn and Sham 

suggested that 𝐹[ 𝜌(𝑟 )]can be recast as the sum of the three terms: 

 

𝐹[ 𝜌(𝑟 )] = 𝐸𝐾𝐸[ 𝜌(𝑟 )] + 𝐸𝐻[ 𝜌(𝑟 )] + 𝐸𝑋𝐶[ 𝜌(𝑟 )]     3.12 

 

where 𝐸𝐾𝐸[ 𝜌(𝑟 )]is the kinetic energy, 𝐸𝐻[ 𝜌(𝑟 )] is the electron-electron Coulomb energy and 

𝐸𝑋𝐶[ 𝜌(𝑟 )] is the sum of the contributions from the exchange and correlation interactions. The 

ground-state electron density 𝜌(𝑟 ) is given by: 

 

𝜌(𝑟 ) = ∑𝑛𝑖

𝑛

𝑖=1

|𝜑𝑖(𝑟 )|
2     3.13 

 

where ni is the occupation number of the ith state and |𝜑𝑖(𝑟 )|is a Kohn-Sham orbital. 

The first term in equation 3.12, 𝐸𝐾𝐸[ 𝜌(𝑟 )] , is defined as the kinetic energy of a system of non 

interacting electrons with the same density as the real system: 

 

𝐸𝐾𝐸[ 𝜌(𝑟 )] = ∑∫ψ𝑖(𝑟 ) (−
𝜈 2

2
)ψ𝑖(𝑟 )𝑑𝑟    3.14

𝑁

𝑖=𝑙

 

 

 

Where 𝜈 𝑖is the velocity of the ith electron. 
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The second term, 𝐸𝐻[ 𝜌(𝑟 )] , is the Hartree energy. In the Hartree approach, this electronic 

energy arises from the classical interactions between two charge densities when summed over 

all possible pairwise interactions, giving: 

𝐸𝐻[ 𝜌(𝑟 )] =
1

2
∬

𝜌(𝑟1⃗⃗⃗  )𝜌(𝑟2⃗⃗  ⃗)

|𝑟1⃗⃗⃗  − 𝑟2⃗⃗  ⃗|
 𝑑𝑟1𝑑𝑟2     3.15 

 

The last term𝐸𝑋𝐶[ 𝜌(𝑟 )] has contributions from not only exchange and correlation, but also 

from the difference between the true kinetic energy of the interacting system and the kinetic 

energy of the non-interacting system. The following section will introduce some commonly 

used exchange-correlation functionals. 

 

3.4. Exchange-correlation functionals 

In the earlier section we introduced the Kohn-Sham equations which in principle allow an exact 

treatment of the total electronic energy of an atomic or molecular system. 

Our ignorance of the exact exchange and correlation contributions is expressed in the exchange-

correlation term, 𝐸𝑋𝐶[ 𝜌(𝑟 )]. Appropriate approximations for 𝐸𝑋𝐶[ 𝜌(𝑟 )] have been the subject 

of intense study and development. Indeed, there are now many different types of functionals 

available that are more or less appropriate for particular systems. In this thesis, we discuss the 

local density approximation (LDA), the generalised gradient approximation (GGA) and hybrid 

exchange correlation functionals. 

 

3.4.1. Local Density Approximation (LDA) 

The LDA is based on the known exchange-correlation energy of a uniform electron gas. The 

LDA functional is dependent only on the value of the densityρ 𝜌(𝑟 ) at a specific point in space 

𝑟 , emphasising the local nature of this approach. In the LDA, the exchange-correlation potential 

Vxc can be separated into exchange and correlation parts. The exchange contribution to εX can 

be obtained analytically [11], giving: 

 

 

𝜀𝑋(ρ) =
3

4
(
3n

π
)

1
3
     3.16 
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while the correlation contribution is obtained through analytic interpolation of accurate values 

obtained using quantum Monte Carlo calculations by Ceperley and Alder in 1980. The 

correlation term of the LDA functionals used at the present depends on the parameterisation of 

these results, one of the most commonly-used of which was proposed by Perdew and Zunger in 

1981. 

The LDA is strictly applicable to the homogeneous electron gas, but may be useful in solid 

systems, although the LDA functional usually leads to the underestimation of bond lengths and 

results in a significant error in the cohesive energy under most circumstances. To improve the 

accuracy for inhomogeneous systems we consider the gradient of the electron density at each 

point as well as the density; this approach is called the generalized gradient approximation 

(GGA). 

 

3.4.2. Generalised Gradient Approximation (GGA) 

As noted, the GGA adds a dependence on the gradient of the density. The exchange-correlation 

energy is now written as: 

 

𝐸𝑋𝐶
𝐺𝐺𝐴 [ 𝜌(𝑟 )] = ∫𝜌(𝑟 )𝜀𝑋𝐶[𝜌(𝑟 ), ∇𝜌(𝑟 )]𝑑𝑟     3.17  

 

One of the most commonly-used non-empirical GGA functionals is the PBE (Perdew-Burke-

Ernzerhof) functional. When using the GGA, many computed properties are improved 

compared with LDA, such as geometries and the ground-state energy of molecules [12, 13]. 

 

3.4.3. Hybrid Functionals 

Hybrid functionals include a proportion of exact exchange from the Hartree-Fock theory. The 

exact exchange energy functional is expressed in terms of the Kohn-Sham orbitals instead of 

the electron density. Two of the most commonly-used hybrid functionals are B3LYP (Becke, 

3-parameter, Lee-Yang-Parr) and PBE0. 

The B3LYP hybrid exchange-correlation functional is shown below: 

 

𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 = 𝐸𝑋𝐶

𝐿𝐷𝐴 + 𝑎0(𝐸𝑋
𝐻𝐹 − 𝐸𝑋

𝐿𝐷𝐴) + 𝑎𝑥(𝐸𝑋
𝐺𝐺𝐴 − 𝐸𝑋

𝐿𝐷𝐴)

+ 𝑎𝑐(𝐸𝐶
𝐺𝐺𝐴 − 𝐸𝐶

𝐿𝐷𝐴)     3.18 
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Where the three empirical parameters a0=0.20, ax=0.72 and ac =0.81 are determined by fitting 

to a set of measured atomisation energies. 𝐸𝑋
𝐻𝐹 is the Hartree-Fock exact exchange energy. 

𝐸𝑋
𝐺𝐺𝐴 and 𝐸𝐶

𝐺𝐺𝐴are the exchange functional of Becke 88 and the correlation functional of Lee, 

Yang and Parr respectively. 𝐸𝐶
𝐿𝐷𝐴is the correlation functional of the VWN local-density 

approximation. 

In 1996, Adamo modified the pure Perdew-Burke-Ernzerhof functional with 25% Hartree-Fock 

exchange and 75% PBE exchange, which is known as PBE0, given below: 

 

𝐸𝑋𝐶
𝑃𝐵𝐸0 = 𝐸𝑋𝐶

𝐺𝐺𝐴 +
1

4
(𝐸𝑋

𝐻𝐹 − 𝐸𝑋
𝐺𝐺𝐴)     3.19 

 

PBE0 affords good accuracy for molecular structures and properties as well as energies [14]. 

 

3.5. Dispersion in density functional theory (DFT-D) 

None of the functionals considered so far incorporates dispersions physics, Thus, it should not 

be surprising that no conventional DFT can mode dispersion-bound complexes with even 

qualitative accuracy. This demonstrates a fundamental principle of functional development- a 

DFT model can only yield meaningful results if the correct physics is built into the model at the 

outset. 

To our knowledge only two attempts have been described in the literature to develop a unified 

DFT model including the physics of dispersion. One of these is the approach of Sato, Tsuneda, 

and Hirao, which extends the dispersion model of Andersson , Langreth, and Lundqvist (ALL). 

The ALL method is based on the dispersion interaction energy between two separated uniform-

electron-gas-like regions. For an intermolecular complex, the total dispersion energy has the 

form                     

𝐸𝑑𝑖𝑠𝑝 = − 
6

(4𝜋)
3
2

∫
𝑉1

𝑑𝑟1∫𝑉2
𝑑𝑟2

𝜌
1
2(𝑟1) 𝜌

1
2(𝑟2)

𝜌
1
2(𝑟1) + 𝜌

1
2(𝑟2)

 
1

𝑟12
6      3.20 

 

V1 and V2 correspond to the volumes of the constituent monomers. Remarkably, while based on 

electron-gas physics, the ALL model gives atomic C6’s in fairly good agreement with 

experiment, with a mean absolute percent error (MAPE) of 15.5% for a set of 45 noble-gas and 

alkali-atom pairs. 
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To compute potential-energy-surfaces, the dispersion energy is decomposed into a sum over 

atomic pair terms for atoms A and B in V1 and V2.   

 

𝐸𝑑𝑖𝑠𝑝 = ∑ ∑ 𝐸𝐴𝐵     3.21
𝐵∈𝑉2𝐴∈𝑉1

 

With 

𝐸𝐴𝐵 = − 
6

(4𝜋)
3
2

∫
𝐴
𝑑𝑟1∫𝐵

𝑑𝑟2
𝜌

1
2(𝑟1) 𝜌

1
2(𝑟2)

𝜌
1
2(𝑟1) + 𝜌

1
2(𝑟2)

 
1

𝑟12
6  𝑓𝑑𝑎𝑚𝑝(𝑟12)     3.22 

 

And where the A and B integrations  are performed on numerical atom-centered grids. 

The damping function, 

 

𝑓𝑑𝑎𝑚𝑝(𝑟12) = exp[−(
𝑎𝐴𝐵

𝑟12
)6]      3.23 

 

Prevents unphysical behavior at small r12. The parameter aAB  is linearly related to  The sum of 

atomic van der waals radii, Rm, as follows:R 

𝑎𝐴𝐵 = 𝐶1𝑅𝑚 + 𝐶2     3.24 

The constante c1=0.4290 and c2=1.8949 au are universal parameters fit to accurate potential-

energy curves of noble-gas dimers. 

This model has been applied to noble-gas pairs and noble-gas – diatomic complexes, and later 

to the bezene dimer, but has not been systematically benchmarked. More importantly, since the 

system must be divided into separated monomers, the ALL dispersion model is not applicable 

to intramolecular dispersion interactions. 

 

3.6. Basis sets 

Although there is no exact analytical solution to the time-independent Schrödinger (equation 

3.2) for systems containing more than one electron, approximate solutions can be obtained 

using standard numerical techniques ― building the total wavefunction from a basis set of 

mathematical functions capable of reproducing critical properties of the system. 

An individual molecular orbital can be expressed as: 
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Φ𝑖 = ∑𝐶𝜇𝑖𝜒𝜇

𝜇

 

 

Where 𝜒𝜇 (r) are the basis functions and the 𝐶𝜇𝑖 are the molecular orbital coefficients. Molecular 

orbitals are therefore expressed as linear combinations of a pre-defined set of one-electron 

functions commonly centred on the atomic nuclei so they bear some resemblance to atomic 

orbitals. The basis set can be interpreted as restricting each electron to a particular region of 

space. Larger basis sets impose fewer restrictions on electrons and more accurately approximate 

exact molecular orbitals, but more computational resources are required. 

 

3.7. Pseudopotentials 

Pseudopotentials, as used in the Hartree-Fock and Kohn-Sham methods, are effective potentials 

which act upon the valence electrons, and are constructed to represent the potential of the core 

electrons and nuclei. The idea is derived from the fact that only the valence electrons are 

involved in the chemical bonding of a system. We are therefore able to simplify the description 

of the system: the contributions from the nucleus and the core electrons are replaced with an 

angular dependent pseudopotential formed from the free atom of the corresponding element68, 

meaning that only the valence states are considered explicitly, reducing computing costs 

significantly. Inside the core region, the pseudopotential is designed to be much softer than the 

ionic one. Outside the core region, it is required that the corresponding pseudo wavefunction is 

close to its all-electron counterpart to maintain the correct behaviour over a broad range of 

chemical environments. 

 

3.7.1. Pseudopotentials applied in this thesis 

LANL (Los Alamos National Laboratory) ECPs: This type of pseudopotential is 

available for a variety of elements together with the appropriate double zeta valence basis set. 

The combination of ECP and a valence basis set is thus referred to as LANL2DZ basis. LANL2 

ECPs have not been defined for elements H – Ne; the all-electron valence double zeta basis sets 

developed by Dunning (D95V) are used for these elements instead. The ECP parameters for 

elements Na – Kr have been derived from atomic wavefunctions obtained in all-electron non-

relativistic Hartree-Fock calculations, while relativistic Hartree-Fock calculations have been 

used for the heavier elements Rb – Bi.  
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3.8. Optimisation 

3.8.1. Minimisation 

Optimisations of structures to their minimum energies are also called minimisations. These 

methods fall into two categories: (a) first-derivative methods such as the steepest descent, 

giving a quick but rough estimated result, and the conjugate gradients methods, which converge 

more rapidly than the former; (b) second- derivative methods such as the Newton-Raphson and 

the quasi-Newton approaches. In addition to the gradient, the curvature of the function is also 

considered. The second derivative is stored in the Hessian matrix. These methods are generally 

used when the potential energy surface is harmonic close to the extrema; thus the minimum will 

be located in a single step using a pure quadratic interpolating function; in more complicated 

real systems, more steps are required. Both the Newton-Raphson and quasi-Newton approaches 

require the inverse of the Hessian matrix. The quasi-Newton approach builds up the inverse 

Hessian in successive geometry steps whereas the Newton-Raphson approach requires the 

inverse Hessian at every point in a geometry search and therefore consumes more computing 

time.  

 

3.8.2. Methods of locating transition state structures 

3.8.2.1. Constrained optimisation (CO) method 

The constrained optimisation (CO) is one of the simplest and most widely-used methods to 

search for transition states. Reaction pathways and transition states are located with a 

constrained minimisation technique. We select a pseudo reaction coordinate and fix the distance 

between the two reactants and minimise the total energy with respect to all remaining degrees 

of freedom. Through a series of such constrained structure optimisations, with a different 

reactant separation in each case, we obtain a reaction coordinate diagram. Since the only 

constraint is the distance between the reactants, the reactants are free to rotate and translate 

subject to the above constraint. The transition state is identified when the forces on the atoms 

vanish and the energy is a maximum along the reaction coordinate but a minimum with respect 

to all remaining degrees of freedom. 

 

3.8.2.2. Synchronous transit-guided quasi-Newton (STQN) method 

When searching for transition states, a very accurate estimate of the inverse Hessian is 

necessary at each step because the potential energy surface around the transition state is usually 

flatter than it is around a minimum. The synchronous transit-guided quasi-Newton (STQN) 
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method uses a linear (LST) or quadratic synchronous transit (QST) approach to locate the 

quadratic region of the transition states and then uses a quasi-Newton or eigenvalue-following 

algorithm to complete the optimisation. For the LST approach, the highest point is located by 

drawing a line between the reactant and product minima on the potential energy surface. The 

QST approach refines this method by starting at the LST maximum and minimising the energy 

perpendicular to the LST line. In Gaussian, using the QST2 option, we require one optimised 

reactant and one optimised product, followed by the generation of a guess for the transition 

state which is midway between the reactant and product in terms of redundant internal 

coordinates. For more complicated systems, one would provide the reactant, the product and a 

guess for the transition state and use the QST3 option to perform a transition state optimisation. 

 

3.9. Modelling Solvation 

Modelling solvation is one of the most challenging issues in computational chemistry. There 

are several methods currently used; in this thesis we use the PCM (polarisable continuum 

model). For the asymmetric hydrogenation of ketones, 2-propanol is used as the solvent . 

 

3.9.1. The Polarisable Continuum Model (PCM) 

The PCM, proposed by Tomasi et al., is one of the most widely used models to compute a 

system in a non-aqueous solution, and belongs to the class of self-consistent reaction field 

(SCRF) methods. These methods all model the solvent as a continuum of uniform dielectric 

constant ε. The PCM solvation model is available for calculating energies and gradients at the 

Hartree-Fock and DFT levels of theory. Solvation models based on polarisable continuum 

dielectrics have been demonstrated to be flexible and accurate, particularly when the solute is 

situated in a cavity of realistic molecular shape. 
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Table 3.1. Density functional applied in this thesis. 

 

Functional  Year Ref  Type a 

BP86 1986 [16,17] GGA 

B3LYP 1993 [18,19] global-hybrid GGA 

PBE 1996 [15] GGA 

TPSS 2003 [20] meta-GGA 

PBE0 1996 [13,14] global-hybrid GGA 

M06 2008 [24,25] global-hybrid meta-GGA 

M06L 2006 [23] meta-GGA 

WB97X 2008 [21] RS-hybrid GGA  

WB97XD 2008 [22] RS-hybrid GGA + MM 

BP86-GD3BJ 2011 [16,17] [26] GGA+ MM 

B3LYP-GD3BJ 2011 [18,19] [26] global-hybrid GGA+ MM 

PBE-GD3BJ 2011 [15] [26] GGA + MM 

TPSS-GD3BJ 2011 [20] [26] meta-GGA+ MM 

MP2 1934 [3] (MP) perturbation theory 

B2PLYP 2006 [27] doubly hybrid  

B2PLYPD 2006 [28] doubly hybrid + MM 

 

a “GGA” denotes generalized gradient approximation; “RS” denotes range-separated;  

“+ MM” denotes the addition of a post-SCF empirical molecular mechanics term. 
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4.1. Introduction 

Ruthenium complexes have been found to be highly efficient catalysts for asymmetric transfer 

hydrogenation, a process with important applications in organic and pharmaceutical chemistry [1-

4], Intensive theoretical studies have been applied for these complexes to get a better understanding 

of their catalytic properties [5-8]. 

Density Functional Theory (DFT) is one of the most widely used quantum chemical method for 

electronic structure calculations in inorganic and organometallic chemistry. [9–12].It is well known 

that the performance of the density functional theory depends mainly on the accuracy of the chosen 

functional. Therefore, the very important thing for a DFT investigation is to choose an appropriate 

functional for a specific system. The only way to be sure that a functional yield better results is to 

compare it to previous methods and some reference calculations, Di Tommaso et al showed that 

The choice of the functional is a critical step in establishing an accurate DFT based approach for 

computational kinetics [13]. In this work we have investigated the performance of several 

functionals in the prediction of the geometrical parameters of four diastereomeric half-sandwich 

Ru(II) cationic complexes containing amino amide ligands (Figure.4.1).   

The asymmetric transfer hydrogenation of acetophenone catalyzed by Ru (proline-amide) hydride 

complex is also computed against different functionals to understand the influence of the functional 

on the selectivity.  
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Figure. 4.1. Structures of the selected complexes. Complexes 1a, 1b, 2, and 3 are from Ref. [14] 

In this study, we focus on the geometry parameters that are closely related to the Ruthenium atom. 

Taking complex 1a for example, only the geometry parameters around the central Ru (II) are 

discussed, including 4 bond lengths, 6 bond angles involving the central Ru (II), and 4 dihedral 

angles (Figure. 4.2). 
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Figure. 4.2. The three-dimensional structure of complex 1a showing the bond lengths, bon angles and dihedral 

angles involved in the studies. Ru–X bond lengths: Ru–O, Ru–N, Ru–Cl, Ru–CM; X-Ru–X bond angles: ∠Cl-

Ru–O, ∠N-Ru–O, ∠N-Ru–Cl, ∠CM-Ru–Cl, ∠CM-Ru–O, ∠CM-Ru–N; X-Ru–C-C dihedral angles :Cl-Ru–

C(9)-C(13), N-Ru–C(9)-C(13), O-Ru–C(6)-C(12), O–C(16)-C(17)-N 

4.2. Experimental section 

4.2.1. Computational details 

All calculations have been carried out using Gaussian 09 D01 [15] package. Ground state 

geometries of all the complexes were fully optimized using the crystal structures as starting 

geometries with no symmetry or internal coordinate constrains. The set of functionals not including 

dispersion, namely the standard generalized gradient approximation (GGA) functionals PBE [16] 

and BP86 [17-18], the hybrid-GGA functional B3LYP [19-20] and the meta-GGA functional TPSS 

[21] were used. Secondly, to account for dispersion, two types of functionals were used. The first 

ones are constructed to account for dispersion, namely the hybrid meta-GGA functional wB97X 

[22] that includes long-range corrections and wB97XD [23] that contains empirical dispersion 

terms, and also long-range corrections. The meta-GGA M06L [24-25] and the hybrid functional 

M06 [26] account for noncovalent attractions and dispersion via an extensive parametrization using 

training sets including non-covalently bound complexes. The second type of functionals includes 

dispersion by addition of the D3 version of Grimme’s dispersion with Beck-Johnson Damping 

functions [27]  to the ones used previously [PBE-GD3BJ, TPSS-GD3BJ, BP86-GD3BJ, B3LYP-

GD3BJ]. The second-order Moller-Plesset [MP2] method [28] and the double hybrid functionals 

[B2PLYP [29], B2PLYPD [30]] were also used,The 6-31G (d,p) [31-32]  basis set was used for the 

C, N, O, Cl and H elements and the LANL2DZ pseudopotential for the ruthenium [33]. 
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4.3. Results and discussion 

4.3.1. Geometries 

The ground state geometries of the 4 diastereomeric half-sandwich Ru (II) cationic complexes 

containing amino amide ligands have been optimized using fifteen density functionals PBE, TPSS, 

BP86, B3LYP, M06, M06L, Wb97x, Wb97xD, PBE-GD3BJ, TPSS-GD3BJ, BP86-GD3BJ, 

B3LYP-GD3BJ, MP2, B2PLYP and B2PLYPD in combination with the LANL2DZ basis set for 

Ru(II) and 6-31G(d,p) for other atoms. 

The PBE/TZ, wB97XD/TZ, PBE-GD3BJ/TZ and MP2/TZ optimized geometry of the 4 

diastereomeric half-sandwich Ru (II) cationic complexes is depicted in figures (4.3- 4.18) and The 

details of the principal bond lengths, bond angles and dihedral angles together with the crystal 

structures are given in Tables (4.1- 4.16). 
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Table 4.1.principal bond lengths,angles and dihedrals of [Ru(R)(ƞ6-p-cymene) Phenyl alanine amide 

]Cl+complex, and related errors. 
 

 
Empirical bond length (A)                  Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      PBE        Error        TPSS          Error        BP86       Error        B3LYP       Error 

                                                             /TZ                            /TZ                            /TZ                            /TZ                                   

 
Ru-CM              1.64                           1.677       0.037       1.682            0.042      1.693      0.053        1.729         0.089 

Ru-Cl                 2.394                         2.401      0.007        2.406           0.012       2.408      0.014        2.417        0.023 

Ru-N                  2.130                         2.171      0.041        2.173           0.043       2.176      0.046        2.183        0.053 

Ru-O                  2.095                         2.164      0.069        2.148           0.053       2.156      0.061        2.151        0.056 

 

Empirical bond angle (˚)                   Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle (˚)         PBE         Error       TPSS          Error        BP86        Error       B3LYP        Error 

                                                            /TZ                            /TZ                             /TZ                           /TZ  

 

Cl-Ru-CM         129.8                        128.478    -1.322     128.202    -1.598     128.546      -1.254      128.030    -1.770           

N-Ru-CM          134.4                        135.469     1.069     135.750     1.35        135.589       1.189      135.894     1 .494 

O-Ru-CM          126.8                        129.779     2.979     129.722     2.922      129.386       2.258      129.779     2.979    

Cl-Ru-O               88.2                          86.922   -1.278       86.604    -1.596       86.474      -1.726         86.669   -1.531                 

O-Ru-N                76.5                          75.851   -0.649       75.935    -0.547       75.977      -0.523         75.585   -0.915 

Cl-Ru-N               82.9                          81.815   -1.085       81.573    -1.327       81.773      -1.127         81.783   -1.117             

 

Empirical bond dihedral (˚)              Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral ( ˚ )     PBE        Error        TPSS           Error       BP86        Error       B3LYP        Error 

                                                             /TZ                          /TZ                              /TZ                            /TZ 

 

N-C(16)-C(17)-O      19.7                   20.028     0.328      18.669         -1.031     18.262     -1.438      15.531        -4.161 

C(12)-C(9)-Ru-O        0                        9.288     9.288      10.518         10.518     18.741    18.741      17.111        17.111 

C(13)-C(6)-Ru-Cl      -34                   -29.120     4.880     -28.525        5.475      -20.497    13.503     -21.671        12.329 

C(13)-C(6)-Ru-N        52                     54.066     2.066      54.175        2.175       60.633      8.633      60.015          8.015 

 

 

 

Figure 4.3. The PBE/TZ optimized geometry of [Ru(R)(ƞ6-p-cymene)Phenyl alanine amide ]Cl+ 
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Table 4.2.principal bond lengths, angles and dihedrals of [Ru(S) (ƞ6-p-cymene) Phenyl alanine amide 

]Cl+complex, and related errors. 
 

 
Empirical bond length (A˚)               Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      PBE        Error        TPSS       Error       BP86       Error        B3LYP        Error 

                                                             /TZ                           /TZ                        /TZ                            /TZ                                   

 
Ru-CM              1.660                         1.680          0.02         1.685        0.025    1.695      0.035       1.731          0.071 

Ru-Cl                 2.406                         2.402        -0.004       2.405       -0.002    2.409      0.003       2.418          0.012      

Ru-N                  2.140                         2.176         0.036        2.175       0.035     2.178      0.038       2.181          0.041 

Ru-O                  2.146                         2.150         0.004        2.133      -0.013    2.139     -0.007       2.148          0.002       

 

Empirical bond angle (˚)                  Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle ( ˚ )         PBE         Error       TPSS       Error        BP86        Error       B3LYP        Error 

                                                            /TZ                           /TZ                          /TZ                            /TZ  

 

Cl-Ru-CM         127.6                        128.440     0.84        128.447      0.847     128.791     1.191    128.496        0.896 

N-Ru-CM          132.5                        135.079     2.579      135.595      3.095     135.771     3.271    136.887        4.387 

O-Ru-CM          132                           129.900    -2.1          130.080     -1.92       129.734    -2.266    130.595      -1.405 

Cl-Ru-O             86.6                            85.540   -1.06          85.152     -1.448       85.061    -1.539       84.622      -1.978 

O-Ru-N              76.4                            76.861    0.461         77.092      0.692       77.195     0.795       76.278      -0.122 

Cl-Ru-N             83.3                            81.945   -1.355         81.110     -2.19         80.849   -2.451       79.747      -3.553 

 

Empirical bond dihedral (˚)              Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)      PBE         Error       TPSS       Error       BP86        Error        B3LYP       Error 

                                                            /TZ                           /TZ                         /TZ                             /TZ 

 

N-C(16)-C(17)-O        0.6                   -3.774     -4.374      -1.636      -2.236     0.331     -0.262        25.181         24.581 

C(12)-C(6)-Ru-O        2                    -14.080     -16.08      -5.401      -7.401  -19.325   -21.325      -16.743        -18.743 

C(13)-C(9)-Ru-Cl       38                    26.022     -11.978   25.021    -12.979    21.126  -16.874        23.364        -14.663 

C(13)-C(9)-Ru-N       -48                  -56.608     -8.608    -56.507      -8.507  -59.370   -11.37        -56.698          -8.698 

 

 
 

 

 

 

 

Figure 4.4. The PBE/TZ optimized geometry of [Ru(S)(ƞ6-p-cymene)Phenyl alanine amide ]Cl+ 
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Table 4.3.principal bond lengths,angles and dihedrals of [Ru(ƞ6-indane) Phenyl alanine amide ]Cl+complex, and 

related errors. 
 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      PBE        Error        TPSS       Error        BP86      Error        B3LYP        Error 

                                                             /TZ                           /TZ                          /TZ                           /TZ                                   

 
Ru-CM              1.65                           1.679       0.029      1.682        0.032       1.651       0.001        1.731          0.08 

Ru-Cl                 2.423                         2.398     -0.025      2.408       -0.015       2.407      -0.016        2.411        -0.012       

Ru-N                  2.142                         2.178      0.036      2.173        0.031        2.173       0.031        2.182         0.04    

Ru-O                  2.109                         2.146      0.037      2.126        0.017        2.153       0.044        2.158         0.049 

 

Empirical bond angle (˚)                    Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle ( ˚ )         PBE        Error        TPSS       Error        BP86       Error       B3LYP        Error 

                                                             /TZ                          /TZ                           /TZ                           /TZ  

 

Cl-Ru-CM         130.0                         128.840   -1.16       129.130    -0.87        130.037  0.037       128.572     -1.428 

N-Ru-CM          132.8                         135.060    2.26       135.742     2.942       135.113  2.313       136.770      3.97 

O-Ru-CM          126.5                         129.707    3.207     130.110     3.61         126.526  0.026       130.970      4.47 

Cl-Ru-O               88.21                         85.310   -2.9           84.841    -3.369        85.528 -2.682         84.311     -3.899 

O-Ru-N                77.73                         76.664   -0.166       77.248    -0.482        76.498 -1.232         75.722     -2.008 

Cl-Ru-N               84.0                           82.099   -1.901       80.037    -3.963         79.111-4.889         80.089     -3.911 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral ( ˚ )    PBE         Error        TPSS       Error       BP86       Error        B3LYP        Error 

                                                            /TZ                            /TZ                         /TZ                            /TZ 

 

N-C(6)-C(7)-O             -20                -1.865       18.135     3.553       23.553     29.496     49.496     27.376         47.376    

C(20)-C(23)-Ru-O       -29              -22.437         6.563  -28.122         0.878    -13.760     15.24         4.411         33.411 

C(19)-C(21)-Ru-N        30                41.708       11.708   37.817         7.817      51.337     21.337     77.697        47.697 
 

 

 

 

 

 

 

Figure 4.5. The PBE/TZ optimized geometry of [Ru(ƞ6-indane)Phenyl alanine amide ]Cl+ 
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Table 4.4.principal bond lengths,angles and dihedrals of [Ru(ƞ6-indane) prolineamide]Cl+ complex, and related 

errors. 
 

 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      PBE            Error            TPSS       Error       BP86          Error         B3LYP      Error 

                                                            /TZ                                   /TZ                          /TZ                                /TZ                                   

 
Ru-CM              1.67                           1.681           0.011          1.686       0.016       1.694          0.024        1.732        0.062                                                         

Ru-Cl                 2.418                         2.404         -0.014          2.407      -0.011       2.408        -0.01           2.418       0.0 

Ru-N                  2.149                         2.187          0.038          2.186        0.037       2.188         0.039         2.196       0.047 

Ru-O                  2.092                         2.144          0.052          2.131        0.039       2.142         0.05           2.142       0.05 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle (˚)         PBE            Error            TPSS       Error        BP86          Error        B3LYP       Error 

                                                             /TZ                                  /TZ                           /TZ                              /TZ  

 

Cl-Ru-CM         130.0                        128.346      -1.654         128.216     -1.784      128.193      -1.807     127.748     -2.252                   

N-Ru-CM          134.1                        137.297       3.197         137.390       3.29        137.342       3.242     137.449      3.349 

O-Ru-CM          128.5                        129.001       0.501         129.361       0.861      129.105       0.605     129.369      0.869 

Cl-Ru-O               83.61                        85.701       2.091           85.054       1.444        85.758      2.148       85.894      2.284 

O-Ru-N                78.67                        77.334      -1.336           77.664     -1.006        77.405     -1.265       76.989     -1.681 

Cl-Ru-N               82.85                        79.691      -3.159           79.791     -3.059        79.603     -3.247       79.961     -2.889 

 

Empirical bond dihedral (˚)              Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral ( ˚ )     PBE            Error           TPSS        Error       BP86           Error        B3LYP       Error 

                                                             /TZ                                  /TZ                          /TZ                                /TZ 

 

N-C(6)-C(7)-O              0                    9.311        9.311             8.229       8.229       8.999            8.999        7.394         7.394 

C(17)-C(15)-Ru-O       -47               -35.414      11.586        -35.018     11.982    -35.473          11.527     -35.390       11.61 

C(19)-C(14)-Ru-Cl       20                 35.800      15.8             35.752     15.752      35.746          15.746      35.419       15.419 

 

 
 

 

 

 

 

 

Figure 4.6. The PBE/TZ optimized geometry of [Ru(ƞ6-indane)Proline amide ]Cl+ 
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Table 4.5.principal bond lengths,angles and dihedrals of [Ru(R)(ƞ6-p-cymene) Phenyl alanine amide 

]Cl+complex, and related errors. 
 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      M06        Error        M06L      Error       wB97X        Error       wB97XD         Error 

                                                            /TZ                           /TZ                             /TZ                               /TZ                                   

 
Ru-CM              1.64                           1.678       0.038      1.643        0.003        1.683        0.043           1.681            0.041                   

Ru-Cl                 2.394                         2.402      0.008       2.419       0.025         2.404        0.01             2.400           0.006 

Ru-N                  2.130                         2.191      0.061       2.208       0.017         2.178        0.048           2.164           0.034 

Ru-O                  2.095                         2.183      0.088       2.217       0.122         2.161        0.066           2.158           0.063 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle (˚)           M06        Error        M06L      Error       wB97X        Error       wB97XD        Error 

                                                            /TZ                           /TZ                             /TZ                              /TZ                                   

 
Cl-Ru-CM         129.8                        128.321    -1.479     128.203     -1.597    127.613      -2.187      128.015          -1.785           

N-Ru-CM          134.4                        136.019     1.619     135.326       0.926    135.980      1.58         134.448          0.048 

O-Ru-CM          126.8                        129.834     3.034     130.667       3.867    129.795      2.995       130.360          3.56 

Cl-Ru-O               88.2                          86.857   -1.343       87.582      -0.618      87.335     -0.865         87.120         -1.08           

O-Ru-N                76.5                          74.554   -1.946       73.365      -1.946      72.251     -4.249         75.124         -1.376 

Cl-Ru-N               82.9                          81.899   -1.001       82.202      -0.698      82.014     -0.886         82.959           0.059        

 

Empirical bond dihedral (˚) Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)      M06        Error        M06L      Error       wB97X        Error       wB97XD        Error 

                                                             /TZ                           /TZ                           /TZ                                /TZ                                   

 

N-C(16)-C(17)-O      19.7                  18.687      -1.013     24.102     4.402      19.320          -0.38       18.827         -0.873 

C(12)-C(9)-Ru-O        0                       8.559       8.559       -0.475   -0.475      13.061         13.061      -1.880         -1.88 

C(13)-C(6)-Ru-Cl      -34                  -29.894      4.106     -38.897   -4.897     -25.601           8.399     -41.692        -7.692 

C(13)-C(6)-Ru-N        52                    53.541      1.541      45.814   -6.186      56.622            4.622     44.457         -7.543 

 

 

 

 

 

 

Figure 4.7. The wB97XD/TZ optimized geometry of [Ru(R)(ƞ6-p-cymene)Phenyl alanine amide ]Cl+ 
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Table 4.6.principal bond lengths, angles and dihedrals of [Ru(S) (ƞ6-p-cymene) Phenyl alanine amide] 

Cl+complex, and related errors. 

 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      M06        Error        M06L      Error       wB97X        Error       wB97XD         Error 

                                                             /TZ                           /TZ                           /TZ                                /TZ                                   

 
Ru-CM              1.660                         1.676       0.016         1.644     -0.016     1.683           0.023       1.682               0.022 

Ru-Cl                 2.406                         2.397     -0.009         2.417      0.011      2.404         -0.002       2.399              -0.007     

Ru-N                  2.140                         2.199      0.059         2.210      0.07        2.178           0.038       2.168               0.028 

Ru-O                  2.146                         2.179      0.033         2.191      0.045      2.151           0.005       2 .149               0.003 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle (˚)            M06        Error        M06L      Error       wB97X        Error       wB97XD         Error 

                                                             /TZ                           /TZ                           /TZ                               /TZ                                   

 

Cl-Ru-CM         127.6                          127.804     0.204   129.167    1.567      127.643       0.043       127.521          -0.079                                                                             

N-Ru-CM          132.5                          134.963     2.463   135.055    2.555      135.305       3.015       133.713           1.213 

O-Ru-CM          132                             130.644    -1.356   131.515  -0.485      130.178      -1.822       130.983           1.017 

Cl-Ru-O             86.6                              85.698    -0.902     84.685  -1.942        86.313     -0.287         85.840          -0.76 

O-Ru-N              76.4                              75.041    -1.359     74.827  -1.573        76.316     -0.048         76.028          -0.372 

Cl-Ru-N             83.3                              83.617     0.317      81.355  -1.945        82.258    -1.042          84.308           1.008 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)      M06        Error        M06L      Error       wB97X        Error       wB97XD         Error 

                                                             /TZ                          /TZ                            /TZ                                /TZ                                   

 

N-C(16)-C(17)-O        0.6                   -3.874     -4.474        0.307     -0.293     -2.910         -3.51         -4.025             -4.625 

C(12)-C(6)-Ru-O        2                      -1.392     -3.392       -0.412     -2.412    -13.074      -15.074       -0.832             -2.832 

C(13)-C(9)-Ru-Cl       38                    39.103      1.103      39.612      1.612     26.404       -11.596      40.599              2.599 

C(13)-C(9)-Ru-N       -48                  -47.547      0.453     -44.678      3.222    -56.355        -8.355     -46.651              1.349 
 

 
 

 

 

Figure 4.8. The wB97XD /TZ optimized geometry of [Ru(S)(ƞ6-p-cymene)Phenyl alanine amide ]Cl+ 
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Table 4.7.principal bond lengths,angles and dihedrals of [Ru(ƞ6-indane) Phenyl alanine amide] Cl+ complex, 

and related errors. 
 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚)      M06        Error        M06L      Error       wB97X        Error       wB97XD         Error 

                                                           /TZ                            /TZ                           /TZ                               /TZ                                   

 
Ru-CM              1.65                           1.677       0.027         1.645     -0.005       1.680       0.03            1.678             0.028 

Ru-Cl                 2.423                         2.402     -0.021         2.422     -0.001       2.403      -0.02            2.401            -0.022                 

Ru-N                  2.142                         2.195      0.053         2.212       0.07         2.180       0.038          2.168             0.026              

Ru-O                  2.109                         2.161      0.052         2.176       0.067       2.144       0.035          2.139             0 .03 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle (˚)           M06       Error        M06L       Error       wB97X        Error       wB97XD         Error 

                                                             /TZ                          /TZ                            /TZ                               /TZ                                   

 

Cl-Ru-CM         130.0                          129.257  -0.743      130.451     0.451      128.662     -1.338    128.938           -1.062 

N-Ru-CM          132.8                          135.220   2.42        136.072     3.272      135.247       2.447    134.075            1.275 

O-Ru-CM          126.5                          129.193   2.693      129.850     3.35        129.534       3.034    129.192            2.692 

Cl-Ru-O               88.21                          86.128 -2.082         84.678   -3.532        86.325      -1.885      86.762           -1.448 

O-Ru-N                77.73                          75.803 -1.927         75.423   -2.307        76.366      -1.364      76.516           -1.214 

Cl-Ru-N               84.0                            81.929 -2.071         79.779   -4.221        81.683      -2.317      82.764           -1.236 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)      M06        Error        M06L      Error       wB97X        Error       wB97XD         Error 

                                                             /TZ                           /TZ                           /TZ                               /TZ     

 N-C(6)-C(7)-O             -20                -2.587     17.413      3.702        23.702     -0.680        19.32        -3.765            16.235 

C(20)-C(23)-Ru-O       -29               -27.395     1.605       -28.569        0.431   -30.350       -1.35        -33.570            -4.57 

C(19)-C(21)-Ru-N        30                 35.082     5.082        34.691        4.691     33.105        3.105       29.292            -0.708          

 

 

 
 

 

 

Figure 4.9. The wB97XD /TZ optimized geometry of [Ru(ƞ6-indane)Phenyl alanine amide ]Cl+ 
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Table 4.8.principal bond lengths,angles and dihedrals of [Ru(ƞ6-indane) proline amide] Cl+ complex, and related 

errors. 
 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚)      M06        Error        M06L      Error       wB97X        Error       wB97XD         Error 

                                                             /TZ                           /TZ                           /TZ                                /TZ                                   

 
Ru-CM              1.67                           1.680       0.01        1.647         -0.023     1.685         0.015        1.685              0.015 

Ru-Cl                 2.418                         2.403     -0.015      2.420          0.002      2.404         0.014        2.403            -0.015 

Ru-N                  2.149                         2.198      0.049      2.221          0.072      2.185         0.036        2 .173             0.024 

Ru-O                  2.092                         2.163      0.071      2.180          0.088      2.146         0.054        2.139             0.047 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle (˚)           M06        Error        M06L      Error       wB97X        Error        wB97XD        Error 

                                                             /TZ                           /TZ                            /TZ                                /TZ                                   

 

Cl-Ru-CM         130.0                         128.044   -1.956     128.760      -1.24      127.852      -2.148     128.072           -1.928                 

N-Ru-CM          134.1                         137.799     3.699    138.283       4.183     137.389       3.289     136.848            2.748 

O-Ru-CM          128.5                         129.512     1.012    129.611       1.111     129.584       1.048     129.451            0.951  

Cl-Ru-O               83.61                         85.236    1.626       84.118       0.508       85.385       1.775       85.562           1.952 

O-Ru-N                78.67                         76.053   -2.617       75.590      -3.08        76.746     -1.924        76.963          -1.707 

Cl-Ru-N               82.85                         80.312   -2.538       79.406      -3.444       80.325    -2.525        80.581          -2.269 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)      M06        Error        M06L      Error       wB97X        Error       wB97XD         Error 

                                                            /TZ                            /TZ                           /TZ                               /TZ  

N-C(6)-C(7)-O              0                      7.815    7.815          7.377      7.377         7.983       7.983         7.099             7.099                       

C(17)-C(15)-Ru-O       -47                 -33.203  13.797      -36.951     10.049     -37.778       9.222      -36.481           10.519 

C(19)-C(14)-Ru-Cl       20                   36.816  16.816       32.345     12.345       32.231     12.231       33.966           13.966 

 

 
 

 

 

 

 

 

 

Figure 4.10. The wB97XD /TZ optimized geometry of [Ru(ƞ6-indane)Phenyl alanine amide ]Cl+ 
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Table 4.9.principal bond lengths,angles and dihedrals of [Ru(R) (ƞ6-p-cymene) Phenyl alanine amide] 

Cl+complex, and related errors. 
 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚)       PBE-D3      Error       TPSS-D3     Error    BP86-D3        Error        B3LYP-D3  Error 

                                                               /TZ                               /TZ                         /TZ                                    /TZ                                   

 
Ru-CM              1.64                           1.668           0.028       1.671          0.031    1.676             0.036       1.709             0.069 

Ru-Cl                 2.394                         2.395          0.001        2.397         0.003    2.397              0.003       2.405             0.011 

Ru-N                  2.130                         2.160          0.03          2.158         0.028    2.153              0.023        2.162             0.032 

Ru-O                  2.095                         2.173          0.078        2.155         0.06      2.168              0.073        2.161             0.066 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle ( ˚ )         PBE-D3      Error       TPSS-D3      Error   BP86-D3         Error        B3LYP-D3 Error 

                                                               /TZ                              /TZ                          /TZ                                     /TZ  

 

Cl-Ru-CM         129.8                        128.208       -1.592      127.973      -1.826   127.933       -1.867         127.581      -2.219 

N-Ru-CM          134.4                        134.304       -0.096      134.474       0.074   134.166       -0.234         134.636       0.236 

O-Ru-CM          126.8                        130.003         3.203     130.257       3.457   130.124         3.324         130.452       3.652 

Cl-Ru-O               88.2                          87.137       -1.063       86.964      -1.236     87.261       -0.939           87.298      -0.902 

O-Ru-N                76.5                          75.616       -0.884       75.838      -0.662     75.980       -0.52             75.598      -0.902 

Cl-Ru-N               82.9                          82.860       -0.004       82.647      -0.253     82.824       -0.076           82.658      -0.242 

 

Empirical bond dihedral (˚) Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)      PBE-D3      Error       TPSS-D3      Error   BP86-D3         Error       B3LYP-D3  Error 

                                                               /TZ                               /TZ                         /TZ                                     /TZ  

 

N-C(16)-C(17)-O      19.7                   22.792        3.092      22.077          2.377    23.271            3.571       20.096          0.396 

C(12)-C(9)-Ru-O        0                        0.592        0.592        1.226          1.226      1.392            1.392       0.891            0.891 

C(13)-C(6)-Ru-Cl      -34                   -39.034      -5.034     -38.884        -4.884   -38.406           -4.406    -39.046          -5.046 

C(13)-C(6)-Ru-N        52                     46.488      -5.512      46.316        -5.684    46.846           -5.154      46.332          -5.668 

 
 

 

 

Figure 4.11. The PBE/GD3BJ/TZ optimized geometry of [Ru(R)(ƞ6-p-cymene)Phenyl alanine amide ]Cl+ 
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Table 4.10.principal bond lengths, angles and dihedrals of [Ru(S) (ƞ6-p-cymene) Phenyl alanine amide] 

Cl+complex, and related errors. 

 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚)     PBE-D3       Error       TPSS-D3         Error    BP86-D3      Error       B3LYP-D3  Error 

                                                              /TZ                                /TZ                             /TZ                           /TZ                                   

 
Ru-CM              1.660                         1.669            0.009        1.672           0.012     1.679          0.019       1.710           0.05 

Ru-Cl                 2.406                         2.390          -0.016        2.394          -0.012     2.391         -0.015       2.405          0.015 

Ru-N                  2.140                         2.165           0.025        2.160            0.02       2.157          0.017       2.165          0.025 

Ru-O                  2.146                         2.158           0.012        2.137           -0.009     2.148          0.002       2.148          0.002 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle ( ˚ )        PBE-D3       Error       TPSS-D3       Error      BP86-D3     Error       B3LYP-D3  Error 

                                                              /TZ                                /TZ                               /TZ                                /TZ  

 

Cl-Ru-CM         127.6                          128.163        0.563      128.403       0.803        128.169     0.569        127.332     -0.268 

N-Ru-CM          132.5                          133.975        1.475      134.181       1.681        133.659     1.159        134.230      1.73 

O-Ru-CM          132                             130.263       -1.737      130.636     -1.364         130.578   -1.422        130.573     -1.427 

Cl-Ru-O             86.6                             85.660        -0.94          85.012     -1.588           85.241   -1.359          86.061     -0.539 

O-Ru-N              76.4                             76.581         0.181        77.049      0.649            77.052    0.652          76.471      0.071 

Cl-Ru-N             83.3                             83.559         0.259        82.608     -0.692            83.501    0.201          83.799      0.499 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)      PBE-D3       Error       TPSS-D3       Error      BP86-D3     Error       B3LYP-D3  Error 

                                                              /TZ                                /TZ                               /TZ                                /TZ  

 

N-C(16)-C(17)-O        0.6                   -4.420         -5.02        -1.802           -2.402    -3.420         -4.02        -4.035         -4.635 

C(12)-C(6)-Ru-O        2                      -3.327         -5.327      -2.828           -4.828    -2.371         -4.371      -8.617        -10.617 

C(13)-C(9)-Ru-Cl       38                    37.326         -0.674     38.651            0.651    39.184          1.184      32.427         -5.573 

C(13)-C(9)-Ru-N       -48                  -48.823         -0.823    -46.708            1.292   -47.096          0.904     -53.071        -5.071 
 

 
 

 

 

 

Figure 4.12. The PBE/GD3BJ/TZ optimized geometry of [Ru(S)(ƞ6-p-cymene)Phenyl alanine amide ]Cl+ 
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Table 4.11.principal bond lengths,angles and dihedrals of [Ru(ƞ6-indane) Phenyl alanine amide ]Cl+complex, 

and related errors. 
 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )     PBE-D3       Error       TPSS-D3         Error    BP86-D3         Error       B3LYP-D3  Error 

                                                             /TZ                                /TZ                              /TZ                                    /TZ                                   

 
Ru-CM              1.65                           1.670           0.02        1.671               0.021   1.676               0.026       1.711           0.061 

Ru-Cl                 2.423                         2.395         -0.028      2.399              -0.024   2.397             -0.026       2.404          -0.019   

Ru-N                  2.142                         2.164          0.022      2.159                0.017   2.156              0.014       2.166           0.024 

Ru-O                  2.109                         2.140          0.031      2.125                0.016   2.135              0.026       2.135           0.026 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle ( ˚ )         PBE-D3      Error       TPSS-D3          Error   BP86-D3         Error       B3LYP-D3  Error 

                                                               /TZ                              /TZ                               /TZ                                    /TZ  

 

Cl-Ru-CM         130.0                          129.043       -0.957        129.193       -0.807   129.093        -0.907       128.572   -1.428 

N-Ru-CM          132.8                          134.089        1.289        134.383        1.583    133.750         0.95         136.770     3.97 

O-Ru-CM          126.5                          129.372        2.872        129.651        3.151    129.427         2.927       130.970     4.47 

Cl-Ru-O               88.21                          85.751      -2.459           85.238      -2.972      85.553       -2.657          84.311   -3.899 

O-Ru-N                77.73                          77.072      -0.658           77.468      -0.262      77.482        -0.248         75.722   -2.008 

Cl-Ru-N               84.0                            82.744      -1.256           81.867      -2.133       82.941       -1.059         80.089   -3.911 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)       PBE-D3      Error       TPSS-D3          Error   BP86-D3         Error       B3LYP-D3  Error 

                                                               /TZ                              /TZ                               /TZ                                    /TZ  

 

N-C(6)-C(7)-O             -20                 -3.271         16.729      -1.398             18.602   -3.419            16.581    -4.272         15.728 

Ru-C(20)-C(23)- O       -29              -29.943        -0.943      -30.198             -1.198  -31.418          -2.418    -29.093          -0.093 

Ru-C(19)-C(21)- N        30                34.094         4.094       34.482               4.482   32.780           2.78        33.675           3.675 

 
 

 

 

 

 

 

Figure 4.13. The PBE/GD3BJ/TZ optimized geometry of [Ru(ƞ6-indane)Phenyl alanine amide ]Cl+ 
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Table 4.12.principal bond lengths,angles and dihedrals of [Ru(ƞ6-indane)proline amide]Cl+ complex, and 

related errors. 
 

 
        Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )     PBE-D3       Error       TPSS-D3         Error    BP86-D3         Error       B3LYP-D3  Error 

                                                             /TZ                                /TZ                              /TZ                                    /TZ                                  

 
Ru-CM              1.67                           1.674           0.004       1.676              0.006       1.683           0.013       1.716          0.046 

Ru-Cl                 2.418                         2.398         -0.02         2.400             -0.018       2.398         -0.02         2.407         -0.011 

Ru-N                  2.149                         2.174          0.025       2.170               0.021       2.167          0.018       2.173          0.024 

Ru-O                  2.092                         2.139          0.047       2.125               0.033       2.133          0.041       2.134          0.042 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle ( ˚ )         PBE-D3      Error       TPSS-D3          Error   BP86-D3         Error       B3LYP-D3  Error 

                                                               /TZ                              /TZ                               /TZ                                    /TZ  

 
Cl-Ru-CM         130.0                         128. 387   -1.613      128.297           -1.703      128.213        -1.787      127.796     -2.204 

N-Ru-CM          134.1                         137.127      3.027     137.138             3.038      137.079         2.979      137.130      3.03 

O-Ru-CM          128.5                         128.913      0.413     129.332             0.832      128.976         0.476      129.340      0.84 

Cl-Ru-O               83.61                         85.531     1.921        85.054            1.444         85.338        1.728         85.420      1.81 

O-Ru-N                78.67                         77.595    -1.075        77.664          -1.006         77.856       -0.814         77.385     -1.285 

Cl-Ru-N               82.85                         79.875    -2.975        79.791          -3.059          80.016       -2.834        80.403     -2.447 

 

Empirical bond dihedral (˚) Calculated bond dihedral (˚) (methods/error) 

 
Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)       PBE-D3      Error       TPSS-D3          Error   BP86-D3         Error       B3LYP-D3  Error 

                                                               /TZ                              /TZ                               /TZ                                    /TZ  

 

N-C(6)-C(7)-O              0                    8.877          8.877          7.003            7.003       7.709          7.709       6.176           6.176    

Ru-C(17)-C(15)- O       -47              -35.550        11.45        -36.039          10.961    -36.405        10.595    -37.011           9.989 

Ru-C(19)-C(14)- Cl       20               35.065        15.065        33.793          13.793      33.578        13.578     32.590         12.590 

 
 
 

Figure 4.14. The PBE/GD3BJ/TZ optimized geometry of [Ru(ƞ6-indane)Phenyl alanine amide ]Cl+ 
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Table 4.13.principal bond lengths,angles and dihedrals of [Ru(R)(ƞ6-p-cymene) Phenyl alanine amide] Cl+ 

complex, and related errors. 
 

 

    Empirical bond length (A˚)             Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚)       MP2            Error           B2PLYP          Error            B2PLYPD          Error     

                                                             /TZ                                     /TZ                                         /TZ                                                                  

 
Ru-CM              1.64                           1.677            0.037         1.693                0.053           1.729                   0.089 

Ru-Cl                 2.394                         2.401            0.007         2.408               0.014            2.417                  0.023 

Ru-N                  2.130                         2.171            0.041         2.176               0.046            2.183                  0.053 

Ru-O                  2.095                         2.164            0.069         2.156               0.061            2.151                  0.056 

  

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle (˚)           MP2            Error            B2PLYP         Error            B2PLYPD          Error     

                                                            /TZ                                     /TZ                                        /TZ                                  

Cl-Ru-CM         129.8                        128.478        -1.322         128.546         -1.254           128.030              -1.77     

N-Ru-CM          134.4                        135.469         1.069         135.589           1.189           135.894               1.494 

O-Ru-CM          126.8                        129.779         2.979         129.386           2.586           129.779               2.979 

Cl-Ru-O               88.2                          86.922       -1.278           86.474          -1.726             86.669              -1.531       

O-Ru-N                76.5                          75.851       -0.649           75.977          -0.523             75.585              -0.915 

Cl-Ru-N               82.9                          81.815       -1.127           81.773          -1.127             81.783              -1.117 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)     MP2           Error            B2PLYP          Error           B2PLYPD           Error     

                                                             /TZ                                    /TZ                                       /TZ                                 

N-C(16)-C(17)-O      19.7                   20.028        0.328           18.262            -1.438           15.531                -4.497 

C(12)-C(9)-Ru-O        0                        9.288        9.288           18.741            18.741           17.111               17.111 

C(13)-C(6)-Ru-Cl      -34                   -29.120       4.88            -20.497            13.503          -21.671               12.329 

C(13)-C(6)-Ru-N        52                     54.066       2.066           60.633              8.633           60.015                 8.015  
 

 

 

 

 

 

 

Figure 4.15. The MP2/TZ optimized geometry of [Ru(R)(ƞ6-p-cymene)Phenyl alanine amide ]Cl+ 
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Table 4.14.principal bond lengths, angles and dihedrals of [Ru(S) (ƞ6-p-cymene) Phenyl alanine amide] 

Cl+complex, and related errors. 
 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      MP2            Error           B2PLYP          Error           B2PLYPD           Error  

                                                             /TZ                                     /TZ                                      /TZ                                                                   

 
Ru-CM              1.660                         1.607         -0.053           1.687                0.027          1.676                  0.016 

Ru-Cl                 2.406                         2.375         -0.031           2.407                0.001          2.399                -0.007 

Ru-N                  2.140                         2.144          0.004           2.179                0.039          2.166                  0.007 

Ru-O                  2.146                         2.143         -0.003           2.148                0.002          2.153                  0.026 

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle (˚)           MP2            Error            B2PLYP         Error            B2PLYPD          Error  

                                                             /TZ                                     /TZ                                         /TZ                                 

Cl-Ru-CM         127.6                          128.451      0.851          128.172           0.572           127.738               0.138 

N-Ru-CM          132.5                          134.297      1.797          135.363           2.863           134.173               1.673 

O-Ru-CM          132                             129.936     -2.064          129.852         -2.148           130.354              -1.646 

Cl-Ru-O             86.6                             84.938      -1.662            85.748         -0.852             85.880              -0.72 

O-Ru-N              76.4                             77.146       0.746            76.600           0.2                 76.463               0.063 

Cl-Ru-N             83.3                             83.310       0.01              82.078         -1.222              83.753               0.453 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral ( ˚ )     MP2           Error            B2PLYP          Error           B2PLYPD               Error 

                                                             /TZ                                    /TZ                                       /TZ     

N-C(16)-C(17)-O        0.6                  -3.018          -3.618         -2.827              -3.427         -4.146                    -4.746 

C(12)-C(6)-Ru-O        2                   -10.920        -12.92         -13.920            -15.920         -7.119                    -9.119 

C(13)-C(9)-Ru-Cl       38                   31.086          -6.914        26.286            -11.714        34.125                    -3.875 

C(13)-C(9)-Ru-N       -48                 -53.398            5.398      -56.491                8.491       -51.577                   -3.577 

 

 
 

 

 

 

 

 

 

 

Figure 4.16. The MP2/TZ optimized geometry of [Ru(S)(ƞ6-p-cymene)Phenyl alanine amide ]Cl+ 
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Table 4.15.principal bond lengths,angles and dihedrals of [Ru(ƞ6-indane) Phenyl alanine amide ]Cl+complex, 

and related errors. 
 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      MP2            Error           B2PLYP          Error           B2PLYPD           Error  

                                                             /TZ                                    /TZ                                       /TZ                                                                  

 
Ru-CM              1.65                           1.606           -0.044          1.686              0.036           1.676                   0.026 

Ru-Cl                 2.423                         2.377           -0.046          2.405            -0.018           2.400                  -0.023                

Ru-N                  2.142                         2.145            0.003          2.181              0.039           2.167                   0.025            

Ru-O                  2.109                         2.132            0.023          2.144              0.035           2.140                   0.031          

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle ( ˚ )         MP2            Error           B2PLYP          Error            B2PLYPD          Error  

                                                             /TZ                                    /TZ                                         /TZ                                  

Cl-Ru-CM         130.0                          129.421       -0.579        128.556          -1.444           128.909               -1.091            

N-Ru-CM          132.8                          134.206         1.406       135.301            2.501           134.235                1.435 

O-Ru-CM          126.5                          129.066         2.566       129.651            3.151           129.176                2.676 

Cl-Ru-O               88.21                          85.323       -2.887         85.706           -2.504             86.109               -2.101 

O-Ru-N                77.73                          77.309       -0.421         76.459           -1.271             76.808               -0.922 

Cl-Ru-N               84.0                            82.586       -1.414         82.063           -1.937             82.975               -1.025     

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral (˚)     MP2          Error           B2PLYP          Error           B2PLYPD           Error 

                                                           /TZ                                  /TZ                                        /TZ     

N-C(6)-C(7)-O             -20                  -0.683    19.317        -1.140               18.86           -3.401                  16.599 

C(20)-C(23)-Ru-O       -29                -28.090      0.91        -22.164                 6.836       -27.877                    1.123 

C(19)-C(21)-Ru-N        30                  36.631      6.631       41.427               11.427         35.237                   5.237 
 

 
 

 

 

 

 

 

Figure 4.17. The MP2/TZ optimized geometry of [Ru(ƞ6-indane)Phenyl alanine amide ]Cl+ 
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Table 4.16.principal bond lengths,angles and dihedrals of [Ru(ƞ6-indane)proline amide]Cl+ complex, and 

related errors. 

 

 
    Empirical bond length (A˚)            Calculated bond length (A˚) (methods/error) 

 
nomenclature    Bond length (A˚ )      MP2            Error           B2PLYP          Error           B2PLYPD           Error 

                                                             /TZ                                    /TZ                                        /TZ                                                                   

 
Ru-CM              1.67                           1.610           -0.060         1.690                0.020           1.681                  0.011         

Ru-Cl                 2.418                         2.378           -0.040         2.409              -0.009           2.403                 -0.015        

Ru-N                  2.149                         2.153            0.004         2.187                0.038           2.173                  0.024     

Ru-O                  2.092                         2.130            0.038         2.143                0.051           2.138                  0.046  

 

Empirical bond angle (˚)                     Calculated bond angle (˚) (methods/error) 

 
nomenclature    Bond angle ( ˚ )         MP2            Error            B2PLYP         Error            B2PLYPD          Error 

                                                             /TZ                                     /TZ                                       /TZ                                    

Cl-Ru-CM         130.0                        128.473      -1.527           128.023          -1.977          128.064              -1.936       

N-Ru-CM          134.1                        136.990       2.890           137.311            3.211          137.185               3.085 

O-Ru-CM          128.5                        129.017       0.517           129.381            0.881          129.268               0.768  

Cl-Ru-O               83.61                        84.732       1.122             85.433           1.823            85.156               1.546 

O-Ru-N                78.67                        77.543      -0.127             77.019         -1.651            77.305              -1.365 

Cl-Ru-N               82.85                        80.505      -2.345             80.093         -2.757            80.352              -2.498 

 

Empirical bond dihedral (˚)                Calculated bond dihedral (˚) (methods/error) 

 
nomenclature    Bond dihedral ( ˚ )     MP2            Error           B2PLYP          Error           B2PLYPD           Error 

                                                             /TZ                                    /TZ                                        /TZ     

N-C(6)-C(7)-O              0                   5.331             5.331          6.771              6.771             5.643                 5.643           

C(17)-C(15)-Ru-O       -47              -34.254           12.746      -36.147            10.853          -35.943               11.057           

C(19)-C(14)-Ru-Cl       20                36.145           16.145       34.589            14.589            33.968               13.968             
 

 
 

 

 

 

 

 

 

Figure 4.18. The MP2/TZ optimized geometry of [Ru(ƞ6-indane)Phenyl alanine amide ]Cl+ 
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Figures (4.19– 4.21) present the error values of bond lengths, bond angles and dihedral angles for 

the considered functionals. The errors have been represented as the mean signed error (MSE) Eq. 

(4.1) and the mean unsigned error (MUE) Eq. (4.2). 

 

              MSE=
∑ (yDFT-yexp)

n
     4.1                      

 

               MUE= |
∑ (yDFT-yexp)

n
|      4.2                    

  

yDFT are the DFT calculated values, yexp are obtained from structures reported in Ref [14]. and 

n is the number of values.  

4.3.1.1. Bond distances 

We examine the performance of the various DFT methods in reproducing the coordination center 

geometry. The results of this analysis are presented in Figure. 4.19. The most striking about these 

results is the extent to which B3LYP stands out as inferior to the rest of the functionals, with a clear 

tendency to overestimation of the metal–ligand distances (MSE and MUE equal to 0.041 Å and 

0.043 Å, respectively, in Figure.4.19). On average M06L, M06, and B3LYP-GD3BJ overestimate 

also the bond distances (MSE and MUE equal to 0.034, 0.032, 0.029 Å and 0.039, 0.038, 0.033 Å, 

respectively, in Figure. 4.19). The other functionals perform rather similarly, the highest accuracy, 

as judged from the MSE/MUE, being obtained for PBE (MSE/MUE = 0.023 Å/0.028 Å), TPSS 

(MSE/MUE = 0.021 Å/0.026 Å) and BP86 (MSE/MUE = 0.025 Å/0.02 Å), closely followed by 

the dispersion-including wB97XD and wB97X. Finally, addition of the D3 version of Grimme’s 

dispersion improves significantly the accuracy of PBE, BP86 and TPSS, decreasing the MSE/MUE 

by 0.007/0.004 Å (PBE-GD3BJ), 0.008/0.005 Å (TPSS-GD3BJ) and 0.009/0.006 Å (BP86-

GD3BJ) (Figure.4.19). 



 

Chapter 4: Application I 

62 

 

 

Figure. 4.19. Mean unsigned error (MUE) and mean signed error (MSE) for the bonded distances involving 

ruthenium of the DFT-optimized catalyst precursors relative to the corresponding X-ray structures. 

4.3.1.2. Bond angles 

Bond angles of the 4 diastereomeric half-sandwich Ru (II) cationic complexes containing amino 

amide ligands were investigated using the previous different functionals. Proposed angles were 

∠Cl-Ru–O,∠ N-Ru–O, ∠N-Ru–Cl, ∠CM-Ru–Cl, ∠CM-Ru–O, and∠CM-Ru–N (Figure. 4.20). The 

bond angles show small dependency on the choice of the functional with a clear tendancy of 

overestimation, except M06 that, in opposite, shows an underestimation of the bond angles (MSE 

equal to -1.17°) in (Figure. 4.20). A very small discrepancy between all the functionals is observed. 

Results obtained for B2PLYPD and TPSS-GD3BJ are very similar and the results for MP2, 

WB97X, PBE-GD3BJ and BP86-GD3BJ are exactly equivalent. 

 

 

Figure. 4.20. Mean unsigned error (MUE) and mean signed error (MSE) for the bond angles involving 

ruthenium of the DFT-optimized catalyst precursors relative to the corresponding X-ray structures 

 

4.3.1.3. Dihedral angles 

For dihedral angles there is a very small discrepancy between all the functionals constructed to 

account dispersion and the density functionals with addition of the D3 version of Grimme’s 
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dispersion. With the functionals not including dispersion, the highest accuracy, only a little worse 

that with the previous functionals, is obtained for PBE (MSE/MUE = 3.47°/9.33°) and TPSS 

(MSE/MUE =3.87°/8.46°), BP86 and B3LYP show the lowest accuracy in predicting the dihedral 

angles. 

In summary, from a geometrical point of view, the best functionals seem to be the ones using the 

D3 Grimme's dispersion (PBE-GD3BJ, TPSS- GD3BJ, and BP86- GD3BJ).(Figure.4.21) 

 
 

 

Figure.4.21. Mean unsigned error (MUE) and mean signed error (MSE) for the dihedral angles involving 

ruthenium of the DFT-optimized catalyst precursors relative to the corresponding X-ray structures 

  

4.3.2. Energetics 

4.3.2.1. Diastereoisomer energy difference 

The energy difference of the two diastereomeric half-sandwich Ru (II) cationic complexes 1a 

(Ru(S)) and 1b (Ru(R)) containing the phenyl alanine amide ligand has been calculated using the 

fifteen density functionals and the basis set mentioned above. 

The results are shown in Figure.4.22. PBE, B3LYP, TPSS, BP86 and B2PLYP lead to a small 

energy difference, the three latter not giving the same preferred isomer as all the other functionals. 

Besides, there is no significant difference between WB97XD, MP2 and B2PLYP on one hand and 

PBE-GD3BJ and TPSS-GD3BJ on the other hand, standard DFT (not including dispersion) is 

inferior to other methods accounting for dispersion in the predictions of energies. 

 

 

0

5

10

15

20

25

MSE

MUE



 

Chapter 4: Application I 

64 

 

 

Figure.4.22. Difference of the energies in (kcal/mol) of the two diastereomeric half-sandwich Ru (II) cationic 

complexes 1a (Ru(S)) and 1b (Ru(R)) containing the phenyl alanine amide ligand 

 

4.3.2.2. Activation energies  

We have then tested the ability of the various functionals in predicting the enantioselectivity of a 

given ATH reaction. We have chosen the asymmetric transfer hydrogenation of acetophenone 

catalyzed by the Ru(p-cymene)(proline-amide) hydride complex. Experimentally, this reaction 

yields phenyl-ethanol with a conversion of 59% and an enantiomeric excess of 74%, as shown in 

Figure 4.23. 

 

OOH

N
O

H

NH2

(S)

[Ru(p-cymene)Cl2]2

KPF6,KOH/i-PrOH

ee=74% (R)
C=59%  

Figure. 4.23. Ru-catalyzed ATH of ketones with [Ru(p-cymene)Cl2]2 and (L) proline amide 

 

Firstly, two different mechanistic pathways were evaluated with the hybrid PBE0 functional: a 

concerted mechanism and a two-step mechanism through a ruthenium alkoxide intermediate . The 

optimized structures of the reactant, reaction intermediates, and transition states are collected in 

Figure 4.24. 
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1c (-7.8) (-5) 

 

2c(TS) (-3.1) (1) 

 

3c  (-3.6) (0.01) 

 

4c(TS) (-3.62) (0.3) 

 

5c (-10.38) (-8) 

 

6c (28) (30) 
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7c(TS) (31) (33) 

 

8c (26) (29) 

 

TS3S (6.8) (7) 

 

18e(S) (-0.34) (2.4) 

  

Figure 4.24. The optimized structures of the reactants, reaction intermediates, and transition states for the 

two proposed mechanism energies in gas phase are in Kcal/mol-1 and relative to the separate reactants (16e+2-

propanol). energies in gas phase in red, energies in 2-propanol in dark. 

 

The energy profiles of the two mechanisms are depicted in Figure 4.25 .The two-step mechanism 

shows an energy barrier that is much higher than the concerted mechanism. Hence for the 

comparison of the functionals we have considered only the concerted mechanism. 
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Figure 4.25. Overall energy  profiles for The two-step mechanism and concerted mechanism in asymmetric 

hydrogenation reaction of acetophenone with S diastereoisomer of {(ɳ6-arene)Ru[(Ϗ2N,N) proline 

amide]Cl+}PF6. Energies are in Kcal mol-1 and relative to the separate active catalyst (16e) and (+2-propanol)). 

 

Hence, for the comparison of the functionals we have considered only the concerted mechanism. 

The enantiomeric excess (ee) is given by 

𝑒𝑒 =
𝑘favored−𝑘𝑑𝑖𝑠𝑓𝑎𝑣𝑜𝑟𝑒𝑑

𝑘𝑓𝑎𝑣𝑜𝑟𝑒𝑑+𝑘𝑑𝑖𝑠𝑓𝑎𝑣𝑜𝑟𝑒𝑑
     4.3                          

Where kfavored and kdisfavored are the rate constants leading to the transition states for the favored and 

disfavored enantiomer, respectively. The rate constants k is then given by 

k = A(T)e−∆G
+
+/RT     4.4                              

Where A (T) is the pre-exponential factor, assumed to be identical for both enantiomeric pathways, 

ΔG++is the Gibbs free energy of activation, R is the gas constant, and T is the temperature. 

From eqs 4.3 and 4.4 we have 

𝑒𝑒 =
𝑒−𝛿Δ𝐺

+
+/𝑅𝑇 −1

𝑒−𝛿Δ𝐺
+
+/𝑅𝑇 +1

     4.5       
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Where δΔG is given by : 

𝛿Δ𝐺
+
+ = ΔG

𝑓𝑎𝑣𝑜𝑟𝑒𝑑

+
+ − ΔG

𝑑𝑖𝑠𝑓𝑎𝑣𝑜𝑟𝑒𝑑

+
+      4.6                            

As the starting materials leading to the two different enantiomers are identical, and therefore also 

have identical free energy, we can write the difference in Gibbs free activation energy, δΔG, just 

as the difference in transition state free energies, ΔGTS. 

 𝛿Δ𝐺
+
+ = ΔGTS = Gfavored 

TS − Gdisfavored 
TS      4.7  

Combining eqs 4.5 and 4.7 gives 

Δ𝐺𝑇𝑆 = 𝑅𝑇𝑙𝑛 (
1+𝑒𝑒

1−𝑒𝑒
)     4.8                          

In this reaction, experimental enantioselectivity equal 74 %,the stereo determining step is TS2 

ΔGTS experimental =1.987*303*ln (1+74/1-74) =1.14 kcal  

Finally, the test set included 9 functionals PBE, TPSS, BP86, B3LYP, M06, PBE-GD3BJ, TPSS-

GD3BJ, BP86-GD3BJ, and B3LYP-GD3BJ and three solvent models PCM [37], CPCM [38] and 

SMD [39]. The calculated free energy barriers for the stereo-determining step TS2 are collected in 

Figure. 4.26 The best overall performance is observed for (PBE-GD3BJ)/PCM. 

 

 

Figure. 4.26 free energy barriers for the stereo-determining step TS2 in Kcal/mol-1 
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4.4. Conclusion 

We have tested the performance of four popular density functional not including dispersion, PBE 

, BP86, B3LYP TPSS and four have been constructed to account for dispersion (wB97X, wB97XD, 

M06, and M06L) and foor functionals includes dispersion by addition of the D3 version of 

Grimme’s dispersion with Beck-Johnson Damping functions [PBE-GD3BJ, TPSS-GD3BJ, BP86-

GD3BJ, B3LYP-GD3BJ]. The second-order Moller-Plesset [MP2] method and the double hybrid 

functionals [B2PLYP, B2PLYPD] were also used in predicting the geometries of ruthenium(II) 

complexes. It is revealed that [PBE-GD3BJ, TPSS-GD3BJ, BP86-GD3BJ perform much better 

than the rest of functional.PBE-GD3BJ) functional gives good results both for the geometry and 

the energetics and is not too costly in terms of computation time. For the solvent system, we chosen 

PCM. 
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5.1. Introduction 

The asymmetric hydrogenation of ketones by hydrogen transfer (ATH) is one of the largest 

applications of catalysis in synthetic and pharmaceutical industry [1] .Much effort has been 

devoted to design asymmetric transition-metal catalysts, able to yield high stereoselectivities 

[2] , For example, Noyori’s ruthenium complexes containing arene and N-(p-toluenesulfonyl)-

1,2-diphenylethylenediamine (TsDPEN) ligands are efficient catalysts for the asymmetric 

hydrogenation of ketones by H transfer [3]. Established catalytic systems for asymmetric 

hydrogenation are typically based on expensive chiral ligands such as diamines or amino 

alcohols. The replacement of these ligands with cheaper amino acids  and their derivatives is 

an ongoing quest in academia and industry. T. Ohta et al. have reported the hydrogenation of 

ketones by H transfer catalyzed by Ru (II) coordinated with various aminoacids,The best 

enantiomeric excess was obtained using proline and the selectivity was explained by the high 

geometric constraint imposed onto the Ru–N–C– C(O)–N chelation ring [4]. In 2001, the group 

of Faller reported an in situ generated (p-Cymene) Ru(L-prolineamide)Cl2 catalyst that gave 

excellent yields, 70-90% but with moderate enantiocontrol, 68-93%, in the hydrogenation of a 

variety of ketones at -24 C° [5]. These investigations have also shown that the enantiomeric 

purity of the product can be affected by electronic as well as steric effects of the substituents 

on the ketone substrate. However, the precatalyst formed from prolineamide and (p-

CymeneRuCl2)2 appears to be a single diastereoisomer. At the same time, Chung described the 

first water-soluble ruthenium (II) catalyst coordinated by amides derived from (S)-proline that 

was active in reduction of aromatic ketones in an aqueous solution, with enantiomeric excesses 

up to 95.3 % [6]. Moreover, several groups reported the ATH reaction catalyzed by amide 

ligands, for which excellent enantioselectivities (95.5%) were reached with in situ formed Ru-

precatalysts [7]. Recently, Çetinkaya et al. compared the proline amine ligands with amide 

analogues and also investigated the steric effect of aryl ring in the enantioselectivity. They 

found that the bulkiness of the aryl substituents on the ligand increased the enantioselectivity 

[8]. In 2009, A. Bacchi et al. reported that the phenylalanine amide (ligand 1), and the Proline 

amide (ligand 2) generate pre-catalysts with Ru (p-cymene) Cl2 for the transfer hydrogenation 

of acetophenone in basic isopropanol [9] (see Figure 5.1). They evidenced a strong impact of 

the choice of the ligand on the conversation and the enantiomeric excess, the less active catalyst 

being the more selective one (ligand 1). In this article, we aim at rationalizing the impact of the 

ligand on the activity and the enantiomeric excess based on a Density Functional Theory (DFT) 

based study of the reaction mechanism [10]. 



Chapter 5: Application II 

 

75 
 

 

OOH OH

N
O

H

NH2

NH2
O

NH2

(S)

(S)

[Ru(p-cymene)Cl2]2 [Ru(p-cymene)Cl2]2

KPF6,KOH/i-PrOH KPF6,KOH/i-PrOH

ee=74% (R)
C=59%

ee=30% (R)
C=97%

1 2

 

 

Figure 5.1. Ru-catalyzed ATH of ketones with [Ru (p-cymene)Cl2]2 and (L) proline amide or (L) phenyl 

alanine. ee is the enantiomeric excess and C the conversion obtained . 

 

In previous works, we  have shown that DFT calculations are a very useful tool for explaining 

mechanisms. Our results showed that important insights can be obtained with such a theoretical 

approach, particularly the origin of the reaction asymmetry. This can help experimentalists to 

design new catalysts that will ensure good enantioselectivity [11]. Several DFT studies have 

been already reported in the literature related to the hydrogenation of ketone and enamine 

catalyzed by homogeneous catalysts and demonstrated the potential impact of this approach 

[12]. R. Abbel et al. studied theoretically the hydrogenation of acetophenone by  several 

Ru(H)2(PPh3)2(diamine) complexes [13].  They showed that the relative position of the hydrides 

and of the phosphines is important, the trans hydrides-cis phosphines giving the highest 

selectivity. The very active and selective Noyori-type catalysts for the asymmetric 

hydrogenation of ketones contain a chelating, enantiopure diphosphine ligand and thus, 

necessarily have phosphorus donors that are mutually cis. Recently, F. Himo et al. employed 

DFT calculations to rationalize the enantioselectivity observed experimentally in ATH of aryl 

alkyl ketones with [RhCp*Cl2] and hydroxamic acid-functionalized L-valine or hydroxamic 

acid-functionalized derived from the amino acid L-phenylalanine. 

The plausible mechanism for the transfer hydrogenation of ketones promoted by amino amide 

based Ru catalysts was studied experimentally by the group of P. Pelagatti [14]. The high-

resolution MS (ESI) experiments of precatalytic solutions, indicates that the catalytic process 

is governed by a bifunctional mechanism, analogous to that proposed by Noyori [15] and al  

and shown in Figure 5.2. The deprotonation of the pre-catalyst by two equivalent of a strong 

base such as KOH leads to a 16-electron intermediate where the amino-amido ligand is 
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deprotonated both on the amino and the amido function. Then, a ruthenium hydride (Ru-H) is 

formed together with the reprotonation of the amine (N-H), via TSa the reaction of this 16-

electrons intermediate with the hydrogen donor (isopropanol). The key step is the simultaneous 

transfer of the hydritic  H (Ru–H) and the protic H (N–H) to the C=O functional group via a 

six-membered transition state TSb (Figure 5.2). Last, the active 16-electrons intermediate is 

regenerated with the liberation of the chiral alcohol, closing the catalytic cycle. 
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Figure 5.2. Plausible mechanism for transfer hydrogenation of acetophenone catalyzed by Ru (II) 

complexes containing amino amide ligands. 
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We based our approach on this plausible mechanism and compared the reaction profiles of the 

full cycle for both catalysts (ligand 1 and ligand 2 in Figure 5.1) by the means of DFT 

calculations.In particular, we aim at explaining the low selectivity in favor of the R isomer 

(ee=30%) obtained with ligand 2 (Phenylalanine amide) and the high conversion C=97% while 

the selectivity is higher (ee=74%) with ligand 1 (proline amide) affording also the R isomer but 

the conversion is low C =59% (Figure 5.2). 

5.2. Computational Methods 

All the calculations presented herein were carried out by means of density functional theory 

(DFT).  After an extensive study of several functionals (see chapter 4), the PBE functional [16]  

was chosen, with addition of the D3 version of Grimme’s dispersion with Beck-Johnson 

damping functions [17] . For the geometry optimization, the 6-31G (d,p)  basis set was used for 

the C, N, O, and H elements [18] and the LANL2DZ [19] pseudopotential and basis set for 

ruthenium .The solvation energies were calculated as single-point corrections on the optimized 

structures using the polarizable continuum model method [20] , with dielectric constant 

e=19.264 for 2-propanol. We confirmed that all reactants and intermediates have no imaginary 

frequencies, and that each transition structure has one, and only one, imaginary frequency. 

Intrinsic reaction coordinate (IRC) calculations, at the same level of theory, were performed to 

ensure that the transition structures led to the expected reactants and products. All free energies 

were calculated at 298.15K and include  the solvation free energies. All the calculations were 

performed by using the Gaussian 09 D01 program package [21]. 

5.3. Results and Discussion 

The mechanistic discussion is divided into three sections following the three major steps of the 

reaction mechanism represented in Figure 2.To start with, we focus on the formation of the 

active catalysts Then, we discuss the results concerning the formation of the bifunctional 

ruthenium complex. Finally,we presents the results for the ATH and provides an explanation 

for the enantioselectivity observed in the catalytic system. 

In this study, no simplification was made in any of the reactant molecules selected for the 

computational study. ATH of acetophenone was chosen for the theoretical calculations, 

employing [{RuCl2 (para-cymene)}2], proline amide or phenyl alanine amide as the ligand, and 

isopropyl alcohol (IPA) as the solvent and hydrogen source.  
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A. Bacchi et al. isolated the crystal structure of{ Ru[ (ɳ6-p-cymene)phenyl alanine amide]Cl}+. 

This complex presents two independent diastereoisomeric cations with opposite absolute 

configuration on the metal. On the other hand, the  {Ru[(ɳ6- p-cymene) proline amide]Cl}+ .is 

isolated as a  pure Ru (S)- C(S) enantiomer in the solid state.In this study we undertaken the 

calculations with the Ru(S)-C(S) isomer of {Ru[(ɳ6- arene) proline amide]Cl}+ and the two 

diastereoisomeric cations  Ru(S)-C(S) and Ru(R)-C(S) of  {(ɳ6-arene)Ru[(Ϗ2N,N) phenyl 

alanine amide]Cl}+. 

5.3.1. Formation of the active catalyst 

By treatment of the precatalyst {(ɳ6-arene)Ru[(Ϗ2O,N)LH2]Cl}+ with excess of KOH, the 

deprotonation of the amide function leads to the formation of the active catalyst {(ɳ6-

arene)Ru[(Ϗ2N,N)L]}. The optimized structures of the precatalyst and the resulting  active 

catalyst (16e) for the three complexes are collected in Figure 5.3. In order to have a more 

complete picture about the geometrie in M1 and M4 of (16e phenylalanine) see figure 5.4.   

   
 

1-[Ru(S)(ɳ6-pcymene)(Ϗ2N,O)PhalaCl]+ 

 

2-[Ru(R)(ɳ6-p-cymene)(Ϗ2N,O)PhalaCl]+ 

 

3-[Ru(S)(ɳ6-p cymene)(Ϗ2N,O)ProlineCl]+ 

 

 

 

1-[Ru(ɳ6-p-cymene)(Ϗ2N,N)Phala]=M1  2-[Ru(ɳ6-p-cymene)(Ϗ2N,N)Phala]=M4                             3-[Ru(ɳ6-p-cymene)(Ϗ2N,N)Proline]=M5 

 

Figure 5.3. Optimized geometries at PBE-GD3BJ level. Top: starting complexes; bottom: active catalyst 

(16e). The main  distances are indicated in Å. 
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            1-[Ru(ɳ6-p-cymene)(Ϗ2N,N)Phala]=M4                              2-[Ru(ɳ6-p-cymene)(Ϗ2N,N)Phala]=M1 

     E= 0 Kcal                                              E= 0.36 Kcal 

Figure 5.4. (16e phenylalanine) 

Since there is a small energy difference between the two conformer M4 and M1 (0.36 kcalmol-

1), the less stable diasteroisomer M4  could only be ruled out as a relevant participant in the 

reaction if the barrier for the rearrangement process M1 ↔ M4 was high. We search a barrier 

for this rearrangement (rotation of p-cymene), which is depicted in figure 5.5. 

 

 

Figure 5.5. Relative barrier for rearrangement M1 ↔M4 
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by a low relative barrier In this rearrangement. Since the thermodynamic energy gap between 

M1 and M4 is just 0.36 kcalmol-1 , and the rotation of cymene process has a relatively low 

energy barrier, M1 could not be discarded and the participation of both isomers of [Ru(ɳ6-p-

cymene)(Ϗ2N,N)Phala] in the ATH mechanism was studied. In other hand, we search a barrier 

of the rearrangement (rotation of p-cymene) in proline ligand this rearrangement is depicted in 

figure 5.6. 

 

Figure 5.6. Relative barrier for rearrangement in proline ligand 

By a low relative barrier In this rearrangement. Since the thermodynamic energy gap between 

the two isomer of active catalyst (proline 16e) M5 and M7 is just 0.03 kcalmol-1 , and the 

rotation of cymene process has a relatively low energy barrier, the other isomer could not be 

discarded and the participation of both isomers of [Ru(ɳ6-p-cymene)(Ϗ2N,N)Proline] in the 

ATH mechanism was unfortunately  studied (see Appendix for the other isomer). 

 

5.3.2. Formation of the bi-functional ruthenium complex  

Our calculations showed that the H transfer from iso-propanol (IPA) through a B-hydride 

elimination step has an energy barrier that is much higher than the one obtained for the 

concerted hydrogen transfer mechanism (see chapter 4). This is consistent with the literature 
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[22]. Hence, the reaction takes place through a concerted six-membered cyclic transition state.  

In each complex, the active catalyst is able to dehydrogenate IPA from two different sides (Si 

and Re faces) to afford metal hydride diastereomers with Ru(R) and Ru(S) configurations and 

acetone, leading to a total of six .transition states and  six hydrogenated catalysts (18e). The 

corresponding structures are collected in Figure 5.7 together with the corresponding activation 

free energies. 

 

5.3.2.1. With the (N, N) Phenylalanine 

Precatalyst S diastereoisomer of {(ɳ6-arene) Ru [(Ϗ2N, N) phenyl alanine 

amide] Cl+ PF6}  

TSa1(S) results from the approach of IPA to the Re face of the catalyst M1 (16e) and leads to 

hydrogenated catalyst (18e) (S) (Fig. 5.7). In TSa1(S), the free energy of TSa1(S) is calculated 

to lie 5.5 kcal/mol above that of the separate reactants (catalyst (16e) +2-propanol). TSa1(R) 

results from the approach of IPA to the Si face of the catalyst M1 (16e), and lies 6.2 kcal/mol 

above the free energy of the reactants and leads to the other configuration hydrogenated catalyst 

(18e) (R) (Fig. 5.7).  

The reason for this preference is that  

- In transition state TSa1(S) a stabilizing NH–p interaction between the phenyl group of the 

catalyst and the NH2 unit of the catalyst. 

- And in TSa1(R) the clashes of the methyl groups of IPA with the cymene ring of the catalyst; 

this is not present in the TSa1(S). 

The free energy of the hydrogenated catalyst (18e) with R and S configuration lies -4.5 and -6.5 

kcal/mol, respectively, below the free energy of separate reactants (catalyst (16e) +2-propanol). 

The hydrogenated catalyst (18e) R suffers from interactions between the Ru-N-C-C(O)-N 

chelation ring and the isopropyl group of cymene ring. The reaction is exergonic. 

Precatalyst R diastereoisomer of {(ɳ6-arene) Ru [(Ϗ2N, N) phenylalanine 

amide] Cl+} PF6  

TSa2(S) results from the approach of IPA to the Re face of the catalyst M4 (16e) and leads to 

the hydrogenated catalyst (18e) (S) (Fig. 5.7). In TSa2(S), the free energy of TSa2(S) is 
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calculated to lie 7.1 kcal/mol above that of the separate reactants (catalyst (16e) +2-propanol). 

TSa2(R) results from the approach of IPA to the Si face of the catalyst M4 (16e), and lies 6.2 

kcal/mol above the free energy of the reactants and leads to the other configuration 

hydrogenated catalyst (18e) (R) (Fig. 5.7). The reason for this preference is the presence in 

TSa2(S) of repulsive interactions between the methyl groups of IPA and the isopropyl group of 

cymene ring of the catalyst; they are not present in the TSa2(R). 

The free energy of the hydrogenated catalyst (18e) R and S configuration lies -5.1 and -5.75 

kcal/mol, respectively, below the free energy of separate reactants (catalyst (16e) +2-propanol). 

The hydrogenated catalyst (18e) R suffers from interactions between the isopropyl group of 

cymene ring and the aryl ring. The reaction is exergonic. 

5.3.2.2. With the (N, N) proline amide  

precatalyst S diastereoisomer of {Ru[(ɳ6- arene) proline amide]Cl}PF6  

TSa3(S) results from the approach of IPA to the Re face of the catalyst M5 (16e) and leads to 

hydrogenated catalyst (18e) (S) (Fig. 5.7).The free energy of TSa3(S) is calculated to lie 8.3 

kcal/mol above that of the separate reactants (catalyst(16e)+2-propanol). TSa3(R) results from 

the approach of IPA to the Si face of the catalyst M5 (16e), and lies 12.3 kcal/mol above the 

free energy of the reactants and leads to the other configuration hydrogenated catalyst (18e) (R) 

(Fig. 5.7). The reason for this preference is that the approach of IPA in TSa3(R) pushes the 

cymene ring towards the proline cycle, which induces steric repulsions. This is not the case in 

TSa3(S). 

The free energy of the hydrogenated catalyst (18e) with R and S configuration lies +0.25 and -

5.1 kcal/mol, respectively, below the free energy of separate reactants (catalyst (16e) +2-

propanol). The hydrogenated catalyst (18e) R suffers from interactions between the isopropyl 

group of cymene ring and the Ru-N-C-C(O)-N chelation ring. The reaction is exergonic for S 

but endergonic for R. 
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TSa1(S)  (5.5) TSa2(S)  (7.1) TSa3(S)  (8.3) 

 
  

TSa1(R)  (6.2) TSa2(R)  (6.2) TSa3(R)  (12.3) 

 
  

1-[Ru(S)(ɳ6-p-cymene)(Ϗ2N,N)PhalaH] (-6.5) 2-[Ru(S)(ɳ6-p-cymene)(Ϗ2N,N)PhalaH] (-5.7) 3-[Ru(S)(ɳ6-p-cymene)(Ϗ2N,N)ProlH] (-5.1) 

 
  

1-[Ru(R)(ɳ6-p-cymene)(Ϗ2N,N)PhalaH] (-4.5) 2-[Ru(R)(ɳ6-p-cymene)(Ϗ2N,N)PhalaH] (-5.1) 3-[Ru(R)(ɳ6-p-cymene)(Ϗ2N,N)ProlH] (0.25) 

 

 

Figure 5.7. Optimized geometries of the PBE-GD3BJ level of transition states and of the hydrogenated 

catalyst (18e) for the concerted H-transfer from IPA to the 16e complex. 
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5.3.3. Asymmetric transfer hydrogenation of acetophenone 

For each diastereoisomeric hydrogenated catalyst (18e) (R or S), the transfer of the metal 

hydride and of the amine proton can occur via two different pathways, which gives two 

diastereotopic transition state structures. The first pathway corresponds to the attack of the 

metal hydride at the Re face of acetophenone while the other pathway involves attack at the Si 

face of the ketone. This results in a total of four transition states TSbRR, TSbRS, TSbSR, and 

TSbSS for each precatalyst.. The optimized structures of these transition states for the three 

complexes are collected in Figure 5.8.  

The complete energetic profiles for each case are represented in Figure 5.9, 5.10 and 5.11. 

Precatalyst S diastereoisomer of {(ɳ6-arene)Ru[(Ϗ2N,N) phenylalanine 

amide]Cl+}PF6 

The hydrogenated catalyst (18e) S (-6.5) kcal/mol below reactants interacts with the C=O 

double bond of  the prochiral acetophenone . The simultaneous transfer of the amine proton and 

the hydride to the ketone leads to the formation of R-phenylethanol or S-phenylethanol via the 

TSb1SR or TSb1SS that lie 4.9 and 6.1 kcal/mol respectively above the reactants. The 

hydrogenated catalyst (18e) R (-4.5 kcal/mol) interacts with the C=O double bond of 

acetophenone. The simultaneous transfer of the amine proton and hydride ligand to the ketone 

leads to the formation of R-phenylethanol or S-phenylethanol and takes place via TSb1RR and 

TSb1RS which lie 7.1 and 6.9 kcal/mol, respectively, above reactants.   

The overall energy profiles of the asymmetric transfer hydrogenation of acetophenone 

catalyzed by the active catalyst derived from the Ru(S) C(R) phenyl alanine are displayed in 

Figure 5.9. As we have seen in the previous part, the intermediate 18e is more stable under its 

Ru(S) form that under its Ru(R ) form. In addition, looking at the energy levels of the TS for 

the second step, we can see that those corresponding to hydrogenated catalyst (18e) R are 

higher, which suggests that the (18e) S is the main reactive channel.  This channel gives 

preferentially the R isomer of phenylethanol via TSbSR with a difference in the barriers of 1.2 

kcal/mol. The reason for this preference is that, in the transition state TSb1SR a stabilizing CH–

p interaction exists between the phenyl group of acetophenone and the cymene ring of the 

catalyst. This is in line with the explanations provided by Noyori et al. for the ruthenium 

catalysts [23].  
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And a stabilizing NH–p interaction between the phenyl group of the catalyst and the NH2 unit 

of the catalyst 

Precatalyst R diastereoisomer of {(ɳ6-arene) Ru [(Ϗ2N, N) phenyl alanine 

amide] Cl+} PF6 

The hydrogenated catalyst (18e) S (-5.7 kcal/mol) interacts with the C=O double bond of 

acetophenone. The simultaneous transfer of the amine proton and hydride ligand to the ketone 

leads to the formation of R-phenylethanol or S-phenylethanol and takes place via TSb2SR and 

TSb2SS which lies 6.2 and 8.2 kcal/mol, respectively, above the reactants. The hydrogenated 

catalyst (18e) R (-5.1 kcal/mol) interacts with the C=O double bond of the acetophenone. The 

simultaneous transfer of the amine proton and hydride ligand to the ketone leads to the 

formation of R-phenylethanol or S-phenylethanol and takes place via TSb2RR and TS2bRS 

which lies 7.2 and 5.3 kcal/mol, respectively, above reactants.  

The energy profiles of the asymmetric transfer hydrogenation of acetophenone catalyzed by the 

hydrogenated catalyst (18e) S and R are displayed in Figure 5.10. If we look at the energy levels 

of the TS, we can see that the lowest S product is formed from the hydrogenated catalyst (18e) 

R while the lowest R product is formed from the hydrogenated catalyst (18e) S.the lowest 

barrier is obtained for the formation of the S product,which is only 0.9 Kcal mol-1  

Experimentally, both diastereoisomers, Ru(R) C(S) and Ru(S) C(S), crystallize together and are 

probably present in the catalytic solutions and the low barriers in the rotation of cymene. Since 

they lead to the opposite 1-phenylethanol enantiomers, we need to consider both 

diastereoisomers together to compare our results with the experimental ones. By comparing 

Figures 5.9 and 5.10, the lowest  TS leading to the R phenyl ethanol  at 4.9 kcal/mol ,whereas  

the lowest  TS leading to the S phenyl ethanol lies 5.3 kcal/mol , our calculations correctly 

reproduce the fact that the ligand phenylalanine affords modest ee values in favor of the R 

isomer. The energy difference between TSb1SR and TSb2RS (0.4 kcal/mol) leads to a 

preference of 30% for the latter, which can be related to the experimental value of ee (30%). 
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TSb1(RR)  (7.1) TSb2(RR)  (7.2) TSb3(RR)  (12.9) 

 
  

TSb1(RS)  (6.9) TSb2(RS)  (5.3) TSb3(RS)  (12.3) 

 
  

TSb1(SR)  (4.9) TSb2(SR)  (6.2) TSb3(SR)  (7.9) 

 
  

TSb1(SS)  (6.1) TSb2(SS)  (8.2) TSb3(SS)  (8.7) 

 

Figure 5.8. Optimized geometries of the PBE-GD3BJ level of transition states for the concerted H-transfer 

from 18e complex to acetophenone. 
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Figure 5.9. Overall free eneergy profiles for the asymmetric hydrogenation reaction of acetophenone with 

S diastereoisomer of {(ɳ6-arene)Ru[(Ϗ2N,N) phenyl alanine amide]Cl+}PF6. Free energies are in Kcal mol-

1 and relative to the separate active catalyst (16e) and reactants (+2-propanol and acetophenone). 

 

 

Figure 5.10. Overall free energy profiles for the asymmetric hydrogenation reaction of acetophenone with 

R diastereoisomer of {(ɳ6-arene)Ru[(Ϗ2N,N) phenyl alanine amide]Cl+}PF6. Free energies are in kcal mol-1 

and relative to the separate reactants (16e+2-propanol). 
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Precatalyst S diasterisomer of {(ɳ6-arene) Ru [(Ϗ2N, N) proline amide] Cl+} 

PF6  

The hydrogenated catalyst (18e) S (-5.1 kcal/mol) interacts with the C=O double bond of 

acetophenone. The simultaneous transfer of the amine proton and hydride ligand to the ketone 

leads to the formation of R-phenylethanol or S-phenylethanol and takes place via TSb3SR and 

TSb3SS which lies 7.9 and 8.7 kcal/mol, respectivly, above reactants. The hydrogenated 

catalyst (18e) R (0.25 kcal/mol) interacts with the C=O double bond of acetophenone. The 

simultaneous transfer of the amine proton and hydride ligand to the ketone leads to the 

formation of R-phenylethanol or S-phenylethanol and takes place via TSb3RR and TSb3RS, 

which lies 12.9 and 12.3 kcal/mol respectively above reactants. The energy profiles of 

asymmetric transfer hydrogenation of acetophenone catalyzed by S diastereoisomer of  {(ɳ6-

arene)Ru[(Ϗ2N,N) proline amide]Cl}+ PF6 is displayed in Figure 5.11. 

If we look at the energy levels of TSb3SS and TSb3SR, we can see that TSb3SR lies 0.8 kcal/mol 

higher in energy than TSb3SS, which suggests that the H transfer leads to the R isomer of phenyl 

ethanol with a high selectivity. Like previously, this is due to the stabilizing CH–p interaction 

between the phenyl group of acetophenone and the cymene ring of the catalyst. 

 

Figure 5.11. Overall free energy curves for the asymmetric hydrogenation reaction of acetophenone with S 

diasteromer of {(ɳ6-arene)Ru[(Ϗ2N,N) Proline amide]Cl+}PF6. Free energies are in kcal mol-1 and relative 

to the separate reactants (16e+2-propanol) 
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We need to consider both Precatalyst S and R diasterisomer of {(ɳ6-arene) Ru [(Ϗ2N, N) proline 

amide] Cl+} PF6 together to compare our results with the experimental ones. By comparing 

Figures 5.11 and 5.13 ( see Appendix), the lowest  TS leading to the R phenyl ethanol  at 7.9 

kcal/mol ,whereas  the lowest  TS leading to the S phenyl ethanol lies 8.7 kcal/mol ,These 

calculations correctly reproduce the fact that the ligand proline affords the R-phenylethanol 

with a high selectivity (experimentally ee=75%). 

5.4. Conclusion  

In the present study, the ruthenium-catalyzed asymmetric reduction of acetophenone was 

investigated by means of DFT calculations. Two amino acid-based ligands were considered. 

For the first one, ligand 1 (phenyl alanine amide), the full catalytic cycle was studied according 

to the well-established outer-sphere reaction mechanism. For the other ligand 2 (proline amide), 

which was shown experimentally to yield the high enantioselectivity. The DFT calculations 

reproduce the experimental selectivities for both ligands and also provide rationalization to the 

observations. For each ligand, a number of plausible configuration of the metal were considered 

and it was shown that both R and S configuration are energetically accessible and must be 

considered for the overall catalytic process. 

The first step of the reaction, the hydrogenation of the metal center by 2-propanol, is possible 

from two sides of the catalyst metal–ligand chelate ring, resulting in the formation of two metal 

hydride diastereomers, with Ru(R) or Ru(S) configurations. In the second step, a stabilizing 

CH–p interaction between a cymene of the catalyst and the phenyl ring of the substrate exists 

on hydrogenation from either the Re or the Si face of the substrate with both ligands 1 and 2, 

which contributes to stereoselectivity. The balance between these two factors, that is, the energy 

difference between the metal hydride diastereomers, and the CH–p interaction, will ultimately 

determine the stereochemical outcome of the reaction. 
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6.1. Introduction 

 
Asymmetric transfer hydrogenation of ketones is an important transformation in the production 

of many fine chemical compounds at both laboratory and industrial level [1-2].Therefore, many 

studies have been undertaken to develop new highly selective catalyst [3-4]. Noyori et al [5-6]. 

Showed that a ruthenium complex containing monotosylated 1, 2-diamines could serve as 

efficient catalyst for the ATH of ketones. 

Amino acids are inexpensive chiral materials that have been used for the synthesis of optically 

active transition metal complexes [7-9]. In 2001, the group of Faller reported a in situ generated 

(p-cymene) Ru (L-proline amide) Cl2 catalyst that gave excellent yields, 70-90%, with moderate 

enantiocontrol, 68-93%, in hydrogenations of a variety of ketones at -24 C° [10]. In the same 

year, Chung reported the first example of the asymmetric hydrogen-transfer reductions of 

aromatic ketones in an aqueous solution, with enantiomeric excesses up to 95.3 % using an 

functionalized proline amide as ligand [11]. Zeror and others, have constructed active and 

selective ATH-catalysts based on the use of proline amides [12-14]. 

Based on literature reports [15-17], a plausible mechanism for the ATH of ketones in aqueous 

media can follow an outer-sphere pathway analogous to that proposed by Noyori and al [18-

19] figure 6.1. 

Percatalyst Ru-proline amide is generated in situ from [Ru (p-cymene) cl2]2 and proline amide 

in water and then it reacts with HCOOHNa forming formato complex 2 the reduction prooceeds 

via the formato intermediate 2, followed by decarboxylation to give Ru-hydride intermediate 

3, The key step is the simultaneous transfer of the hydritic H (Ru–H) and the protic H (N–H) to 

the C=O functional group via a six-membered transition state 4 TS. Last, the active intermediate 

5 is regenerated with the liberation of the chiral alcohol, closing the catalytic cycle. 

Recently, Serpil Denizaltı et al [20]. Compared the proline amine ligands with amide analogues 

in asymmetric transfer hydrogenation reaction of prochiral ketones in water  figure 6.2, in this 

work we have rationalize the enantioselectivity observed experimentally using Density 

functional theory. 
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Figure 6.1. Plausible mechanism for transfer hydrogenation of acetophenone catalyzed by Ru (II) 

complexes containing amino amide ligands in aqueous media. 

O OH

L1,2,3,4 (5% mol)

[RuCl2(p-cymene)]2 (2.5% mol)

H2O

yield :50-99%

ee : 5-90%

L1 :

N
H

O

HN CH2C6H5

L3 :
N
H

O

HN 2,4,6-(CH3)3-C6H2

L2:

N
H

HN CH2C6H5

L4:
N
H

HN 2,4,6-(CH3)3-C6H2 

Figure 6.2. Ru-catalyzed ATH of ketones with [Ru (p-cymene)Cl2]2 and (L1,3) proline amide or (L2,4) 

proline amine. ee is the enantiomeric excess. 
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6.2. Experimental section 

 

6.2.1. Computational Details 

 
All calculations were performed at the density functional theory (DFT) level, using the PBE 

[21] functional by addition of the D3 version of Grimme’s dispersion with Beck-Johnson 

Damping functions [22] as implemented in the Gaussian 09 D01 software package [23]. For all 

atoms except ruthenium, the 6-31G (d,p) basis set was used [24-25]; ruthenium was treated with 

the LANL2DZ basis set and effective core potential (ECP) [26].geometries for the transition 

state were located either by QST2 or by QST3 procedures, or by the guess based on the structure 

of the previously found TS.Vibrational frequency calculations were then performed at the 

optimized geometry of transition structure. We confirmed that all transition structure has one, 

and only one, imaginary frequency. The intrinsic reaction coordinate (IRC) calculations, at the 

same level of theory, were performed to ensure that the transition structures led to the expected 

reactants and products.The reported energies are Gibbs free energies, which include zero-point 

vibrational corrections, thermal corrections at 298 K and solvation free energies. The solvation 

energies were calculated as single point corrections on the optimized structures using the 

conductor-like polarizable continuum model method [27], with dielectric constant ε=78.3553  

for water. 

 

6.3. Results and discussion: 

 
In acetophenone hydrogenation catalyzed by chiral proline (amide/amine) ruthenium (II) 

complexes, the hydride transfer can occur via two different pathways, each having a 

diastereotopic transition state. One pathway corresponds to the attack of the hydride at the Re 

face of acetophenone while the other pathway involves an attack at the Si face. 

According to eqn (1) and the Arrhenius equation, we could obtain eqn (2) to calculate the ee 

values (ee Calculated). 

𝑒𝑒 =
𝑅−𝑆

𝑅+𝑆
     6.1                                                                                  

 

𝑒𝑒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =
𝑒∆∆𝐺𝑎/𝑅𝑇−1

𝑒∆∆𝐺𝑎/𝑅𝑇+1
     6.2                                    
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6.3.1. Stereoselectivity with Ligand 1, 2 (proline amide/amine)  

TS1(S) results from the approach of Ru-hydride intermediate to the Re face of the acetophenone 

and leads to (active catalyst + phenylethanol). In TS1(S), the free energy of TS1(S) is calculated 

to lie +8.4 kcal/mol above that of the separate reactants (Ru-hydride + acetophenone). TS1(R) 

results from the approach of Ru-hydride intermediate to the Si face of the acetophenone, and 

lies +7.9 kcal/mol above the free energy of the reactants and leads to the other configuration of 

phenylethanol + active catalyst. The optimized structures of these transition states are collected 

in Figure 6.3.  

 

 

                                      TS1(R)                                                              TS1(S) 

                                       +7,9                                                                    +8,4 

ee experimental= 28% 

ee calculated= 35% 

 
Figure 6.3. Optimized geometries of the PBE-GD3BJ level of transition states with ligand 1. free energies 

are in kcal mol-1 and relative to the separate reactants. 
 

The reason for this preference is that  
 

- In transition state TS1(R) a stabilizing NH–p interaction between the phenyl group of the 

catalyst and the cymene of the catalyst. 

- And in TS1(S) the clashes of the methyl groups of cymene with the phenyl ring of the 

acetophenone; this is not present in the TS1(R). 
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Optimized structures of transition states with ligand 2 (proline amine) are collected in Figure 

6.4. 

 

 

                                      TS2(R)                                                              TS2(S) 

                                       +8.5                                                                   +8,75 

                                                                ee experimental= 14% 

                 ee calculated= 18% 

 
Figure 6.4. Optimized geometries of the PBE-GD3BJ level of transition states with ligand 2. free energies 

are in kcal mol-1 and relative to the separate reactants. 

 

The calculations correctly reproduce the fact that this ligand affords the R form of the product. 

TS2(R) 

Is 0.25 kcal mol-1 lower than TS2(S) wich corresponds quite well with the experimental 

findings. Both of these transition states have the advantageous stabilizing CH–p electrostatic 

interaction between the Cymene of the catalyst and the phenyl ring of the catalyst. However, in 

the case of TS1(R) there is an additional similar attractive interaction between the oxygen and 

the hydrogen of the acetophenone (see Figure 3), which causes the energy of this TS to be lower 

and, thus, determines the selectivity. These results, in particular the fact that the calculations 

reproduce and rationalize the stereoselectivity of ligand 1 and 2. 
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6.3.2. Stereoselectivity with Ligand 3, 4 (proline amide/amine)  

TS3(S) results from the approach of Ru-hydride intermediate to the Re face of the acetophenone 

and leads to (active catalyst + phenylethanol). In TS3(S), the free energy of TS3(S) is calculated 

to lie +8.3 kcal/mol above that of the separate reactants (Ru-hydride + acetophenone). TS3(R) 

results from the approach of Ru-hydride intermediate to the Si face of the acetophenone, and 

lies +7.9 kcal/mol above the free energy of the reactants and leads to the other configuration of 

phenylethanol+ active catalyst. The optimized structures of these transition states are collected 

in Figure 6.5. 

 

 

TS3(R)                                                              TS3(S) 

                                       +9,6                                                                 +11,3 

ee experimental= 80% 

ee calculated= 89% 

 
Figure 6.5. Optimized geometries of the PBE-GD3BJ level of transition states with ligand 1. free energies 

are in kcal mol-1 and relative to the separate reactants. 

 

The reason for this preference is that  
 

- In transition state TS3(R) a stabilizing interaction between the oxygen of the catalyst and the 

hydrogen of the acetophenone. 

- And in TS3(S) the clashes of the methyl groups of acetophenone with the phenyl ring of the 

catalyst; this is not present in the TS3(R). 
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Optimized structures of transition states with ligand 4 (proline amine) are collected in Figure 

6.6. 

  

                                

TS4(R)                                                            TS4(S) 

                                        +9,2                                                                +10,5 

                                                         ee experimental= 71% 

ee calculated= 74% 

 
Figure 6.6. Optimized geometries of the PBE-GD3BJ level of transition states with ligand 2. free energies 

are in kcal mol-1 and relative to the separate reactants. 

 

Concerning the pro-(R) pathways, free energy barrier for the H transfer, TS4(S), is 10.5 kcalmol-

1. This value is the one corresponding to the approach of Ru-hydride intermediate to the Re face 

of the acetophenone. On the other hand, free energy barrier for the pro-(S) pathways, TS4(R), 

is 9.2 kcalmol-1 and corresponds to the approach of Ru-hydride intermediate to the Re face of 

the acetophenone. Since the difference between these free energy barrier values is 1.6 kcalmol-

1, the theoretical calculations predict a 71% ee of the (R)-product, which is consistent with the 

experimental results.Therefore, our theoretical model seems to be appropriate for explaining 

the stereoselectivity of this transfer-hydrogenation process.  

 

6.4. Conclusion 

A theoretical investigation of the factors that affect the enantioselective outcome of ruthenium 

(II) proline (amide/amine) catalysed transfer hydrogenation allowed the determination of a 

ligand structure-enantioselectivity relationship. It was shown that the chiral proline amide 

ligands gave better enantiomeric excess as compared with the corresponding amine derivatives 
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and the bulk of the aryl substituents on the ligand increased the enantioselectivity, all the 

synthetically useful high selectivities are successfully predicted. In addition, our results showed 

that important insights can be obtained with such a theoretical approach, particularly the origin 

of enantioselectivity. This can help experimentalists to design new active catalysts. 
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6.1. General Conclusion 

During the thesis work, We have tested the performance of four popular density functional not 

including dispersion, PBE , BP86, B3LYP TPSS and four have been constructed to account for 

dispersion (wB97X, wB97XD, M06, and M06L) and foor functionals includes dispersion by 

addition of the D3 version of Grimme’s dispersion with Beck-Johnson Damping functions 

[PBE-GD3BJ, TPSS-GD3BJ, BP86-GD3BJ, B3LYP-GD3BJ]. The second-order Moller-

Plesset [MP2] method and the double hybrid functionals [B2PLYP, B2PLYPD] were also used 

in predicting the geometries of ruthenium (II) complexes. It is revealed that [PBE-GD3BJ, 

TPSS-GD3BJ, BP86-GD3BJ] perform much better than the rest of functional.(PBE-GD3BJ) 

functional gives good results both for the geometry and the energetics and is not too costly in 

terms of computation time. For the solvent system, we chosen PCM. 

Then, the ruthenium-catalyzed asymmetric reduction of acetophenone was investigated by 

means of DFT calculations. Two amino acid-based ligands were considered. For the first one, 

ligand 1 (phenyl alanine amide), the full catalytic cycle was studied according to the well-

established outer-sphere reaction mechanism. For the other ligand 2 (proline amide), which was 

shown experimentally to yield the high enantioselectivity. The DFT calculations reproduce the 

experimental selectivities for both ligands and also provide rationalization to the observations. 

For each ligand, a number of plausible configuration of the metal were considered and it was 

shown that both R and S configuration are energetically accessible and must be considered for 

the overall catalytic process. 

The first step of the reaction, the hydrogenation of the metal center by 2-propanol, is possible 

from two sides of the catalyst metal–ligand chelate ring, resulting in the formation of two metal 

hydride diastereomers, with Ru(R) or Ru(S) configurations. In the second step, a stabilizing 

CH–π interaction between a cymene of the catalyst and the phenyl ring of the substrate exists 

on hydrogenation from either the Re or the Si face of the substrate with both ligands 1 and 2, 

which contributes to stereoselectivity. The balance between these two factors, that is, the energy 

difference between the metal hydride diastereomers, and the CH–π interaction, will ultimately 

determine the stereochemical outcome of the reaction. 

A theoretical investigation of the factors that affect the enantioselective outcome of ruthenium 

(II) proline (amide/amine) catalysed transfer hydrogenation allowed the determination of a 

ligand structure-enantioselectivity relationship. It was shown that the chiral proline amide 

ligands gave better enantiomeric excess as compared with the corresponding amine derivatives 

and the bulk of the aryl substituents on the ligand increased the enantioselectivity, all the 
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synthetically useful high selectivities are successfully predicted. In addition, our results showed 

that important insights can be obtained with such a theoretical approach, particularly the origin 

of enantioselectivity. This can help experimentalists to design new active catalysts. 
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The other isomers of [Ru (ɳ6-p-cymene) (Ϗ2N, N) Proline]: 

   

4-[Ru(ɳ6-p-cymene)(Ϗ2N,N)Proline]=M7 TSa4(S)  (11.2) TSa4(R)  (14.3) 

   

4-[Ru(R)(ɳ6-p-cymene)(Ϗ2N,N)ProlH] (0.7)            4-[Ru(S)(ɳ6-p-cymene)(Ϗ2N,N)ProlH] (-2.2) TSb4(RR)  (15) 

   

TSb4(RS)  (14.6) TSb4(SS)  (12) TSb4(SR)  (10.4) 

 

Figure 5.12. Optimized geometries of the PBE-GD3BJ of reactants ,products and transition states of the 

other isomer of [Ru(ɳ6-p-cymene)(Ϗ2N,N)Proline]. 
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Figure 5.13 Overall free energy curves for the asymmetric hydrogenation reaction of acetophenone with 

other isomer of  [Ru(R)(ɳ6-p-cymene)(Ϗ2N,N)Proline]. Free energies are in kcal mol-1 and relative to the 

separate reactants (16e+2-propanol) 
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that transition state modeling according to the outer-sphere reaction mechanism at the PBE-
GD3BJ/LANL2DZ/6-31G (d,p) level of theory can accurately model enantioselectivity for various proline-
catalyzed asymmetric transfer hydrogenation. 
Keywords: asymmetric transfer hydrogenation, ruthenium, DFT, Dispersion, enantioselectivity. 
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INTRODUCTION 
 

Asymmetric transfer hydrogenation of ketones is an important transformation in the production of 
many fine chemical compounds at both laboratory and industrial level [1-2].Therefore, many studies have been 
undertaken to develop new highly selective catalyst [3-4]. Noyori et al [5-6] Showed that a ruthenium complex 
containing monotosylated 1, 2-diamines could serve as efficient catalyst for the ATH of ketones. 

 
Amino acids are inexpensive chiral materials that have been used for the synthesis of optically active 

transition metal complexes [7-9]. In 2001, the group of Faller reported a in situ generated (p-cymene) Ru (L-
proline amide) Cl2 catalyst that gave excellent yields, 70-90%, with moderate enantiocontrol, 68-93%, in 
hydrogenations of a variety of ketones at -24 C° [10]. In the same year, Chung reported the first example of the 
asymmetric hydrogen-transfer reductions of aromatic ketones in an aqueous solution, with enantiomeric 
excesses up to 95.3 % using a functionalized proline amide as ligand [11]. Zeror and others have constructed 
active and selective ATH-catalysts based on the use of proline amides [12-14]. 
 

Based on literature reports [15-17], a plausible mechanism for the ATH of ketones in aqueous media 
can follow an outer-sphere pathway analogous to that proposed by Noyori and al [18-19] fig1. 
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Figure 1: Plausible mechanism for transfer hydrogenation of acetophenone catalyzed by Ru (II) complexes containing 
amino amide ligands in aqueous media. 

 
Percatalyst Ru-proline amide is generated in situ from [Ru (p-cymene) cl2]2 and proline amide in water 

and then it reacts with HCOOHNa forming formato complex 2 the reduction prooceeds via the formato 
intermediate 2, followed by decarboxylation to give Ru-hydride intermediate 3, The key step is the 
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simultaneous transfer of the hydritic H (Ru–H) and the protic H (N–H) to the C=O functional group via a six-
membered transition state 4 TS. Last, the active intermediate 5 is regenerated with the liberation of the chiral 
alcohol, closing the catalytic cycle. 

 
Recently, Serpil Denizaltı et al. [20] compared the proline amine ligands with amide analogues in 

asymmetric transfer hydrogenation reaction of prochiral ketones in water (figure 2). In this work we have 
rationalized the enantioselectivity observed experimentally using Density functional theory. 
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Figure 2: Ru-catalyzed ATH of ketones with [Ru (p-cymene)Cl2]2 and (L1,3) proline amide or (L2,4) proline amine. ee is the 

enantiomeric excess. 

 
EXPERIMENTAL SECTION 

 
Computational details 
 

All calculations were performed at the density functional theory (DFT) level, using the PBE [21] 
functional by addition of the D3 version of Grimme’s dispersion with Beck-Johnson Damping functions [22] as 
implemented in the Gaussian 09 D01 software package [23]. For all atoms except ruthenium, the 6-31G (d,p) 
basis set was used [24-25]; ruthenium was treated with the LANL2DZ basis set and effective core potential 
(ECP) [26].geometries for the transition state were located either by QST2 or by QST3 procedures, or by the 
guess based on the structure of the previously found TS. Vibrational frequency calculations were then 
performed at the optimized geometry of transition structure. We confirmed that all transition structures have 
one, and only one, imaginary frequency. The intrinsic reaction coordinate (IRC) calculations, at the same level 
of theory, were performed to ensure that the transition structures led to the expected reactants and products. 
The reported energies are Gibbs free energies, which include zero-point vibrational corrections, thermal 
corrections at 298 K and solvation free energies. The solvation energies were calculated as single point 
corrections on the optimized structures using the conductor-like polarizable continuum model method [27], 
with dielectric constant ε=78.3553  for water. 
 

RESULTS AND DISCUSSION 
 

In acetophenone hydrogenation catalyzed by chiral proline (amide/amine) ruthenium (II) complexes, 
the hydride transfer can occur via two different pathways, each having a diastereotopic transition state. One 
pathway corresponds to the attack of the hydride at the Re face of acetophenone while the other pathway 
involves an attack at the Si face. 

 
According to eqn (1) and the Arrhenius equation, we could obtain eqn (2) to calculate the ee values 

(ee Calculated). 
 

𝑒𝑒 =
𝑅−𝑆

𝑅+𝑆
                                                   (1) 

eecalculated=
𝑒∆∆𝐺𝑎/𝑅𝑇−1

𝑒∆∆𝐺𝑎/𝑅𝑇+1
                                  (2) 
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Stereoselectivity with Ligand 1, 2 (proline amide/amine) 
  

TS1(S) results from the approach of Ru-hydride intermediate to the Re face of the acetophenone and 
leads to (active catalyst + phenylethanol). In TS1(S), the free energy of TS1(S) is calculated to lie +8.4 kcal/mol 
above that of the separate reactants (Ru-hydride + acetophenone). TS1(R) results from the approach of Ru-
hydride intermediate to the Si face of the acetophenone and lies +7.9 kcal/mol above the free energy of the 
reactants and leads to the other configuration of phenylethanol + active catalyst. The optimized structures of 
these transition states are collected in Figure 3.   

 

 
TS1(R)                                                              TS1(S) 
+7,9                                                                    +8,4 

ee experimental= 28% 
ee calculated= 35% 

Figure 3: Optimized geometries of the PBE-GD3BJ level of transition states with ligand 1. free energies are in kcal mol
-1

 
and relative to the separate reactants. 

 
The reason for this preference is that  
 

 In transition state TS1(R) a stabilizing NH–p interaction between the phenyl group of the catalyst and 
the cymene of the catalyst. 

 And in TS1(S) the clashes of the methyl groups of cymene with the phenyl ring of the acetophenone; 
this is not present in the TS1(R). 

 
Optimized structures of transition states with ligand 2 (proline amine) are collected in Figure 4. 

 

 
TS2(R)                                                              TS2(S) 
+8.5                                                                   +8,75 

ee experimental= 14% 
ee calculated= 18% 

Figure 4: Optimized geometries of the PBE-GD3BJ level of transition states with ligand 2. free energies are in kcal mol
-1

 
and relative to the separate reactants. 

 
The calculations correctly reproduce the fact that this ligand affords the R form of the product. TS2(R) 
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Is 0.25 kcal mol
-1

 lower than TS2(S) wich corresponds quite well with the experimental findings. Both of these 
transition states have the advantageous stabilizing CH–p electrostatic interaction between the Cymene of the 
catalyst and the phenyl ring of the catalyst. However, in the case of TS1(R) there is an additional similar 
attractive interaction between the oxygen and the hydrogen of the acetophenone (see Figure 3), which causes 
the energy of this TS to be lower and, thus, determines the selectivity. These results, in particular the fact that 
the calculations reproduce and rationalize the stereoselectivity of ligand 1 and 2. 
 
Stereoselectivity with Ligand 3, 4 (proline amide/amine) 
 

TS3(S) results from the approach of Ru-hydride intermediate to the Re face of the acetophenone and 
leads to (active catalyst + phenylethanol). In TS3(S), the free energy of TS3(S) is calculated to lie +11.3 kcal/mol 
above that of the separate reactants (Ru-hydride + acetophenone). TS3(R) results from the approach of Ru-
hydride intermediate to the Si face of the acetophenone, and lies +9.6 kcal/mol above the free energy of the 
reactants and leads to the other configuration of phenylethanol+ active catalyst. The optimized structures of 
these transition states are collected in Figure 5. 

 

 
TS3(R)                                                              TS3(S) 
+9,6                                                                 +11,3 

ee experimental= 80% 
ee calculated= 89% 

Figure 5: Optimized geometries of the PBE-GD3BJ level of transition states with ligand 1. free energies are in kcal mol
-1

 
and relative to the separate reactants. 

 
The reason for this preference is that  
 

 In transition state TS3(R) a stabilizing interaction between the oxygen of the catalyst and the hydrogen 
of the acetophenone. 

 And in TS3(S) the clashes of the methyl groups of acetophenone with the phenyl ring of the catalyst; 
this is not present in the TS3(R). 

 
Optimized structures of transition states with ligand 4 (proline amine) are collected in Figure 6. 

 
Concerning the pro-(R) pathways, free energy barrier for the H transfer, TS4(S), is 10.9 kcalmol

-1
. This 

value is the one corresponding to the approach of Ru-hydride intermediate to the Re face of the 
acetophenone. On the other hand, free energy barrier for the pro-(S) pathways, TS4(R), is 9.2 kcalmol

-1
 and 

corresponds to the approach of Ru-hydride intermediate to the Re face of the acetophenone. Since the 
difference between these free energy barrier values is 1.7 kcalmol

-1
, the theoretical calculations predict a 74% 

ee of the (R)-product, which is consistent with the experimental results.Therefore, our theoretical model seems 
to be appropriate for explaining the stereoselectivity of this transfer-hydrogenation process.  
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TS4(R)                                                            TS4(S) 

+9,2                                                                +10,9 
ee experimental= 71% 

ee calculated= 74% 
Figure 6: Optimized geometries of the PBE-GD3BJ level of transition states with ligand 2. free energies are in kcal mol-1 

and relative to the separate reactants. 

 
CONCLUSION 

 
A theoretical investigation of the factors that affect the enantioselective outcome of ruthenium (II) 

proline (amide/amine) catalysed transfer hydrogenation allowed the determination of a ligand structure-
enantioselectivity relationship. It was shown that the chiral proline amide ligands gave better enantiomeric 
excess as compared with the corresponding amine derivatives and the bulk of the aryl substituents on the 
ligand increased the enantioselectivity, all the synthetically useful high selectivities are successfully predicted. 
In addition, our results showed that important insights can be obtained with such a theoretical approach, 
particularly the origin of enantioselectivity. This can help experimentalists to design new active catalysts. 
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