Université Mohamed Khider de Biskra

Faculté de Sciences Exactes et Sciences de la Nature et de la Vie

Département des Mathématiques

THÈSE

Présentée par

Dalila KENDRI

Pour obtenir le grade de Docteur en sciences

Spécialité : Mathématiques Appliquées

Méthodes Multiéchelles et la Meilleure Approximation

Soutenue publiquement le 10 juin 2021 devant le Jury :

Zohir MOKHTARI	Professeur	Université de Biskra	Président
Khaled MELKEMI	Professeur	Université de Batna II	Rapporteur
Djebrane YAHIA	Professeur	Université de Biskra	Examinateur
El-Amir DJEFFAL	Maitre de Conférences A	Université de Batna II	Examinateur

A mes parents

Remerciements

Je tiens à remercier le Professeur Khaled Melkemi qui a dirigé cette thèse et qui m'a fait partagé ses idées et ses intuitions. Il a toujours été là pour me soutenir et me conseiller au cours de l'élaboration de cette thèse.

Qu'il soit aussi remercié pour sa gentillesse, sa disponibilité permanente et pour ses nombreux encouragements.

Je tiens à remercier Monsieur Zouhir Mokhtari , professeur à l'université de Biskra, pour avoir accepté de présider le jury de cette thèse.

Je remercie également Monsieur Djebrane Yahia professeur à l'université de Biskra et Monsieur El Amir Djeffal maître de conférences classe A à l'université de Batna 2 pour l'honneur qu'ils m'ont fait d'être dans mon jury de thèse.

Je tiens à remercier particulièrement tout le personnel du département de Mathématiques à l'université de Biskra ainsi que tout mes collègues au département de Mathématiques de l'université de Batna qui m'ont accompagné avec leurs conseils et encouragements.

Il m'est impossible d'oublier toute ma famille pour son aide précieuse et ses encouragements.

Résumé

Dans ce travail, une étude de certaines méthodes multiéchelles basées sur la théorie des espaces de Chebyshev est présentée. Notre approche consiste à décrire une méthode pour le choix optimal de l'espace de Chebyshev adapté à l'approximation une classe de fonctions donnée. Une application spécifique a été présentée, en détails, dans le cadre de la méthode de quadrature généralisée. Les résultats théoriques et les expérimentations numériques prouvent l'efficacité de notre approche. Enfin, nous présentons une application pour la résolution numérique des équations différentielles ordinaires.

Mots clés : Méthodes multiéchelles, Analyse multirésolution, Splines, Espaces de Chebyshev, Quadrature généralisée.

Abstract

In this work, a study of some multiscale methods based on the theory of Chebyshev spaces is presented. We describe a method for the optimal choice of the Chebyshev space suitable to approximate a given class of functions. A specific application has been presented, in detail, within the framework of the generalized quadrature method. Theoretical results and numerical experiments prove the effectiveness of our approach. Finally, we present an application for the numerical resolution of ordinary differential equations.

Keywords : Multiscale methods, Multiresolution analysis, Splines, Chebyshev space, Generalized Quadrature.

Table des matières

In	trodu	iction	1
1	Espaces et splines de Chebyshev		
	1.1	Espaces et systèmes de Chebyshev	5
	1.2	Splines de Chebyshev	10
	1.3	Multirésolution et ondelettes non stationnaires	17
2	Approximations multi-échelles		
	2.1	Approximation par ondelettes de Chebychev	24
	2.2	Approximation optimale et espaces de Chebyshev	29
3	Sélection de la meilleure quadrature		
	3.1	Rappel sur la quadrature de Gauss classique	36
	3.2	Limitation de la méthode classique	39
	3.3	Quadrature généralisée	41
		3.3.1 Analyse de l'erreur	43
		3.3.2 Applications et exemples	46
4	App	proximation des solutions des EDO	55

4.1	Nouvelle approche pour les EDO		56
	4.1.1	Différences finies classiques	57
	4.1.2	Méthode des différences finies modifiée	58
4.2 Exemples et Applications		oles et Applications	61
	4.2.1	Discussions des résultats	73
Conclusion		74	
Bibliographie		76	

Introduction

Les méthodes multi-échelles sont des outils très importants pour résoudre de nombreux problèmes dans des domaines variés. Nous citons, à titre d'exemple, la compression d'images, le débruitage, le calcul scientifique et la résolution numérique des EDP. C'est pour cela, la théorie d'approximation regroupe de nombreuses techniques et algorithmes développés durant ces dernières décennies pour approcher des fonctions d'une manière efficace, rapide et stable. Dans ce contexte, les splines polynomiales, les éléments finis, la théorie des d'ondelettes sont des outils modernes pour l'approximation multi-échelles. Le point commun entre ces méthodes c'est d'obtenir une estimation d'erreur acceptable en fonction de l'échelle qui permet d'assurer une bonne approximation et une convergence rapide. Pour des fonctions suffisamment régulières, la vitesse de convergence est contrôlée par l'ordre de la méthode qui est la dimension de l'espace polynomial pour lequel l'opérateur d'approximation est stable.

Dans ce travail, nous étudions des généralisations de ces méthodes multi-échelles pour quelques problèmes de calcul scientifique.

Notre approche consiste à remplacer les espaces de polynômes par un noyau d'un polynôme différentiel linéaire, ou plus précisément, un espace de Chebyshev. Ces espaces possèdent des caractéristiques similaires à celles des espaces des polynômes. Pour cette raison, ils sont à l'origine de généralisation de plusieurs problèmes d'approximation, design géométrique et calcul numérique des intégrales (voir [39], [28], et [2].

Dans ce travail nous proposons des méthodes adaptatives pour l'approximation des fonctions. Nous explorons les estimations de l'erreur, et par suite, nous déterminons le meilleur espace de Chebyshev en minimisant un critère lié à cette erreur. Une étude détaillée est donnée dans le cas des méthodes de quadratures généralisées et le calcul numérique des intégrales. Une autre application est présentée pour la résolution de certains EDO avec des expérimentation numériques qui montrent l'efficacité de notre approche.

Le Manuscrit est organisé comme suit :

Dans le premier chapitre, nous allons exposer les principaux définitions et propriétés concernant les espaces de Chebyshev et les espaces invariants par translation. Ensuite, nous donnons un rappel sur les splines de Chebychev et leurs propriétés. Nous achevons le chapitre par quelques définitions et résultats concernant l'analyse multirésolution et les onde-lettes non stationnaires.

Le deuxième chapitre concerne l'objectif essentiel de notre travail, nous commençons tout d'abord par la présentation de l'approximation linéaire et non linéaire basée sur les splines de Chebyshev et les ondelettes non stationnaires ainsi que l'analyse de l'erreur dans les deux cas. Ensuite nous proposons un critère pour sélectionner la meilleure approximation : dans le sens que l'erreur soit minimale en norme L^2 . En effet, nous démontrons un résultat d'existence et d'unicité de certains paramètres qui nous permettent de choisir l'espace de Chebyshev pour lequel l'approximation est optimale.

Dans le troisième chapitre, on se penche sur l'application du résultat précédent dans le cas du calcul numérique des intégrales. Nous commençons par présenter des généralités sur les méthodes de quadratures numériques et leur limitation, ensuite les méthodes de quadratures généralisées basées sur les espaces de Chebyshev. Grâce au résultat du deuxième chapitre, nous proposons un critère de sélection de la méthode quadrature adaptée pour une certaine classe de fonctions. Les expérimentations numériques illustrent l'efficacité de cette méthode.

Le dernier chapitre, concerne une application pour la résolution numérique des équations différentielles. Nous présentons de nombreux expérimentations numériques qui démontrent l'efficacité de notre méthode. Bien que ces résultats sont préliminaires, elles ouvrent de nombreuses perspectives de recherches dans cette direction.

Chapitre 1

Espaces et splines de Chebyshev

Les espaces de Chebyshev sont des espaces de fonctions possédant des caractéristiques similaires à celles des espaces des polynômes. Pour cette raison, ils sont très intéressants pour généraliser quelques problèmes d'approximation. Pour des raisons pratiques, on utilise les espaces de Chebyshev invariant par translations dans nombreuses applications. En effet, ces espaces nous offrent des paramètres flexibles à choisir d'une manière adaptée au problème étudié. A titre d'exemple, le design géométrique où ces paramètres ont une influence sur la forme des courbes et surfaces.

De plus l'invariance par translation offre une "simplicité" de calcul et des algorithmes rapides dans l'approximation multi-échelles par des fonctions splines et pour la construction et l'utilisation des bases d'ondelettes non stationnaires.

Dans tout ce qui suit, on notera un espace de Chebyshev par C-espace qui revient à la notation en anglais (C-space : Chebyshev Spaces) et un espace de Chebyshev généralisé par EC (EC-space : extended Chebyshev spaces). Dans ce chapitre nous allons exposer les principales définitions et propriétés concernant les espaces de Chebyshev. En particulier, les espaces de Chebyshev invariant par translation qui sont le noyau d'un opérateur différentiel à coefficients constant. Ensuite, nous collecterons les différentes propriétés des splines de Chebyshev et nous achevons par l'exposition de quelques résultats concernant l'analyse multi-résolution.

1.1 Espaces et systèmes de Chebyshev

Définition 1 (Espace de Chebyshev C-espace). Soit $I = [a, b] \subset \mathbb{R}$ un intervalle, un sous espace $\mathcal{G}_n \subset C^n(I)$ est dit espace de Chebyshev si et seulement si; pour tous réels distincts $t_1, ..., t_n \in I$ et tous réels $\alpha_1, \alpha_2, ..., \alpha_n$, il existe une unique fonction H qui vérifie :

$$H(t_i) = \alpha_i, \qquad 1 \le i \le n. \tag{1.1}$$

Définition 2 (Espace de Chebyshev généralisé : EC). Soit $I = [a, b] \subset \mathbb{R}$ un intervalle, un sous espace $\mathcal{G}_n \subset I$ est dit espace de Chebyshev généralisé si et seulement si; pour tout $r \ge 1$, pour tout entiers positifs $\mu_1, \mu_2, ..., \mu_r$, dont la somme vaut n, et pour tous points $\alpha_1, ..., \alpha_r \in I$ deux à deux distincts, il existe une unique fonction $H \in \mathcal{G}_n$ de classe C^n qui vérifie :

$$H^{j}(t_{i}) = \alpha_{i,j}, \qquad 1 \le i \le r, \qquad 0 \le j \le \mu_{i} - 1.$$

En faite, dans cet espace, chaque fonction est déterminée de manière unique en sachant *n* informations obtenues des valeurs de cette fonctions ou bien de ses dérivées en un certain nombre de points pris dans l'intervalle. Plus précisément :

- 1) G_n est un espace de Chebyshev sur I si et seulement si tout problème d'interpolations de Lagrange à (n + 1) données possède une solution unique dans G_n .
- 2) \mathcal{G}_n est un espace de Chebyshev généralisé sur *I* si et seulement si tout problème d'interpolations de Hermite à (n+1) données possède une solution unique dans \mathcal{G}_n .

Définition 3 (Système de Chebyshev). Soit $h_1, ..., h_n$, $n \in \mathbb{N}^*$ des fonctions dans $\in C^{\infty}(I)$ où I est

un intervalle $I \subset \mathbb{R}$ d'intérieur non vide, et soit la suite de points $t_1 < < t_n$ in I. Introduisons la notation :

$$M = \begin{bmatrix} t_1, & \dots, & t_n \\ h_1, & \dots & h_n \end{bmatrix} = (h_i(t_j)), i, j=1\dots n$$

Cette matrice s'appelle matrice de collocation (de la littérature anglo-saxonne collocation matrix). et posons

$$W(M) = det \begin{bmatrix} t_1, & \dots, & t_n \\ h_1, & \dots, & h_n \end{bmatrix}.$$

Le système $(h_1, h_1, ..., h_n)$ est dit système de Chebyshev et on le note (C-system), si nous avons, pour tout suite $t_1 < < t_n$ dans I,

$$W(M) \neq 0$$

Donc un sous espace D de $C^{\infty}(I)$ est un espace de Chebyshev sur I si toute base $(h_1, ..., h_n)$ de D est un système de Chebyshev.

Exemples

- 1) L'espace des polynômes \mathbb{P}^n de degré inférieur ou égale à *n* est un espace de Chebyshev sur \mathbb{R} .
- 2) L'espace engendré par la base $(1, t, t^2, ..., t^{n-2}, \cos(t), \sin(t))$ est un espace de Chebychev appelé espace trigonométrique sur tout intervalle de type [a, a + l] avec $\ell < \pi, a \in \mathbb{R}$.
- L'espace engendré par la base (1, t, t², ..., t^{n−2}, cosh(t), sinh(t)) est un espace de Chebychev appelé espace hyperbolique sur ℝ.

Espaces invariant par translation :

Soit *E* un sous espace non vide de $C^{\infty}(\mathbb{R})$.

Définition 4 (Espace invariant par translation). L'espace E est dit invariant par translation si

pour toute fonction $u \in \mathcal{E}$ et pour tout réel $a \in \mathbb{R}$ la fonction v définie par :

$$\forall x \in \mathbb{R} : v(x+a) = u(x)$$

est aussi dans E.

Un des résultats importants concernant les espaces invariant par translation est le suivant :

Proposition 1. Soit \mathcal{E} un espace invariant par translation et supposons qu'il existe un intervalle $I \neq \emptyset$ tel que $\mathcal{E}_{|I}$ la restriction de \mathcal{E} sur I soit un EC espace de dimension n. Alors il existe un opérateur différentiel L d'ordre n à coefficients constants tel que :

$$\ker(L) = \mathcal{E}.$$

Pour la démonstration nous renvoyons à [39].

On considère dans le suite l'opérateur différentiel linéaire à coefficients réels constants :

$$L = D^n + \sum_{k=0}^{n-1} a_k D^k,$$

où $a_k \in \mathbb{R}$ et D^k est l'opérateur de dérivation d'ordre k.

Cet opérateur peut s'écrire

$$L = \prod_{k=1}^{n} (D - \lambda_k I), \qquad (1.2)$$

où $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{C}^n$ et les λ_k , $k = \overline{1, n}$ sont les racines du polynôme caractéristique de L :

$$p(x) = \sum_{k=0}^{n} a_k x^k$$

Il est alors convenable de noter *L* par L_{λ} .

Le résultat suivant montre que sous certaines conditions, le noyau d'un opérateur différentiel est bien un EC-espace :

Théorème 1. (K. Melkemi [39] Soit L_{λ} un opérateur différentiel linéaire à coefficients constants et réels d'ordre n définie par;

$$L_{\lambda} = \prod_{k=1}^{n} (D - \lambda_k I), \tag{1.3}$$

où $\lambda_1, ..., \lambda_n \in \mathbb{C}$, D est l'opérateur de dérivation et I est l'identité. Notons $\mathcal{E} = \ker L_{\lambda}$, alors :

- 1. Si $\lambda_1, ..., \lambda_n \in \mathbb{R}$, alors \mathcal{E} est un ECC espace sur \mathbb{R} .
- 2. Sinon, E est un ECC sur tout intervalle inclue dans l'intervalle du type

$$\left[a, a + \frac{\pi}{\max_{j \in J_n} |Im(\lambda_j)|}\right],$$

avec $a \in \mathbb{R}$ et J_n est l'ensemble des indices j pour lesquels $\lambda_j \notin \mathbb{R}$.

Rappelons que la fonction de Green d'un opérateur différentiel L_{λ} est définie par :

$$L_{\lambda}g_{\lambda} = \delta$$
,

où δ est la distribution de de Dirac.

La fonction de Green associée à l'opérateur $D - \lambda_k I$ est

$$g_{\lambda_k}(x) = e^{\lambda_k x} \chi_{[0,+\infty[}(x).$$

Pour $m \in \mathbb{N}^*$; $\lambda = (\lambda_1, \lambda_2, ..., \lambda_m) \in \mathbb{R}^m$ et $m \ge 2$, la fonction de Green peut être calculée par la

relation de récurrence suivante :

$$g_{(\lambda_1,\lambda_2,\dots,\lambda_k)}(x) = \begin{cases} \int_0^x e^{\lambda_k t} g_{(\lambda_1,\lambda_2,\dots,\lambda_{k-1})}(x-t) dt & \text{si } x \in [0,+\infty[\\0 & \text{sinon} \end{cases}$$
(1.4)

qui s'exprime en utilisant l'opérateur de convolution "*" comme suit

$$g_{(\lambda_1,\lambda_2,\ldots,\lambda_k)} = g_{\lambda_k} * g_{(\lambda_1,\lambda_2,\ldots,\lambda_{k-1})}.$$

Le cas polynômial correspond au $\lambda_k = 0$, $\forall k = \overline{1, m}$ et $L_0 = D^n$ car tout les $\lambda_k = 0$ et

$$g_0(x) = \frac{x_+^{n-1}}{(n-1)!}, \qquad \forall x \in \mathbb{R},$$

où $x_{+} = \max\{x, 0\}.$

Le théorème suivant généralise la formule de Taylor [46]

Théorème 2 (Formule de Taylor généralisée). *Pour une fonction f dans* $C^{n}[a,b]$ *on a :*

$$\forall x \in [a, b]: \quad f(x) = f(a) + \sum_{k=1}^{n-1} L_k f(a) g_k(x-a) + \int_a^x L_{\lambda_n} f(t) g_\lambda(x-t) dt, \quad (1.5)$$

оù

$$L_{\lambda}^{0} = I$$
, $L_{k} = \prod_{s=1}^{k} (D - \lambda_{s}I)$; pour $k = 1, \dots, n-1$.

et g_k est la fonction de Green associée à l'opérateur L_k .

Notons que sur l'intervalle [a, b], il existe une constante C > 0 tel que

$$\forall x \in [a, b]: \qquad g_{\lambda}(x-a) \le C \frac{(x-a)^n}{n!}. \tag{1.6}$$

1.2 Splines de Chebyshev

Dans cette section, nous présentons les propriétés des splines de Chebyshev généralisant les splines polynomiales classiques. On se limite ici au cas des espaces de Chebyshev invariants par translations.

Soit $a = t_0 \le t_1 \dots \le t_n \le t_{n+1} = b$ une subdivision de l'intervalle [a, b], rappelons d'abord qu'une spline polynômiale est un élément de $\mathbb{P}_{n|[t_i, t_{i+1}]}$ et que le principe d'approximation d'une fonction f sur [a, b] par une famille de splines est de la remplacer par la spline la plus proche sur chaque morceau $[t_i, t_{i+1}]$ avec conditions de continuité et dérivabilité (smouthness conditions).

Suivant le même principe, on va construire les splines de Chebychev :

Reprenons l'opérateur différentiel L_{λ} avec $\lambda_1, ..., \lambda_m \in \mathbb{R}$, définit dans le paragraphe précédent et notons :

$$\mathcal{B}_{\lambda} = \ker L_{\lambda}.$$

D'après le théorème (1), \mathcal{B}_{λ} est un EC sur \mathbb{R} .

Nous nous intéressons ici aux splines uniformes, c'est à dire $t_{i+1} - t_i = h$. Sans perte de généralités, nous considérons $t_i = i$.

Définition 5 (Splines de Chebychev). On appelle espace de splines de Chebychev associé à l'opérateur L_{λ} le sous espace fonctionnel de C^{n-2} définie par

$$S_{(\lambda,h)} = \left\{ f \in C^{m-2}(\mathbb{R}) \cap L^2(\mathbb{R}) : f_{|[hk,h(k+1)[} \in \mathcal{B}_{|[hk,h(k+1)[}, \forall k \in \mathbb{Z}] \right\}.$$
(1.7)

Les éléments de l'espace $S_{(\lambda,h)}$ s'appellent les splines d'ordre m associées à l'opérateur L_{λ} .

On note $S_{\lambda} = S_{(\lambda,1)}$. Nous étudions les propriétés de S_{λ} . Celles de l'espace $S_{(\lambda,h)}$ s'obtiennent par un simple changement d'échelle. Considérons l'exemple le plus simple : m = 1 et $\lambda \in \mathbb{R}$.

Il est facile d'établir que ker $L_{\lambda} = textrmspan[e^{\lambda x}]$, donc la B-spline d'ordre 1 associée à l'opérateur $L_{\lambda} = (D - I\lambda)$ est la fonction

$$B^{1}_{\lambda}(x) = e^{\lambda x} \chi_{[0,1[}(x); \quad \forall x \in \mathbb{R}.$$

$$(1.8)$$

De la définition de l'espace S_{λ} , on peut écrire :

$$\forall S \in S_{\lambda} \quad S(x) = a_k e^{\lambda x}, \quad \forall x \in [k, k+1], \quad k \in \mathbb{Z}.$$

Puisque S_{λ} est invariant par translation, on a :

$$\forall S \in S_{\lambda} \quad S(x) = \sum_{k \in \mathbb{Z}} c_k B_{\lambda}^1(x-k), \quad \forall x \in \mathbb{R},$$
(1.9)

où $c_k = a_k e^{\lambda k}$, pour tout $k \in \mathbb{Z}$.

La B-spline peut s'exprimer par la fonction de Green associée à L_{λ} comme suit

$$B_{\lambda}^{1}(x) = g_{\lambda} - e^{\lambda}g_{\lambda}(x-1), \qquad x \in \mathbb{R}.$$
(1.10)

Définition 6 (l'opérateur aux différences). Soit $m \in \mathbb{N}$ et $\lambda = (\lambda_1, ..., \lambda_m) \in \mathbb{R}^n$, l'opérateur définie par :

$$\Delta_{\lambda}^{m} := \Delta_{\lambda_{m}}^{1} \circ \Delta_{\lambda_{1},\dots,\lambda_{m-1}}^{m-1}, \qquad (1.11)$$

où pour toute fonction réelle f

$$\Delta_{\alpha}^{1} f(x) = f(x) - e^{\alpha} f(x-1)$$

est appelé opérateur aux différences généralisé d'ordre m associé à λ .

L'opérateur aux différences classique correspond au cas $\lambda_1 = \cdots = \lambda_n = 0$. Dans ce cas

nous savons que toute différence d'ordre m d'un polynôme de degré q < m est nulle, le résultat suivante généralise cette propriété.

Proposition 2. Soient $m \in \mathbb{N}^*$ et $(\lambda_1, ..., \lambda_m) \in \mathbb{R}^m$, alors on a :

$$\Delta_{\lambda}^{m} u = 0; \qquad \forall u \in \mathcal{B}_{\lambda}. \tag{1.12}$$

La définition de l'opérateur aux différences permet de généraliser la formule (1.10) comme suit :

Définition 7. Soient $m \in \mathbb{N}^*$ et $(\lambda_1, \dots, \lambda_m) \in \mathbb{R}$, la fonction :

$$B_{\lambda}^{m} = \Delta_{\lambda}^{m} g_{\lambda} \tag{1.13}$$

est un élément de l'espace S_{λ}^m associé a l'espace ker L_{λ} .

Le théorème suivant résume les propriétés des B-splines de Chebyshev :

Théorème 3. Soient $m \in \mathbb{N}^*$ et $(\lambda_1, \dots, \lambda_m) \in \mathbb{R}^m$, alors on a :

- 1) Toute B-spline d'ordre m; $m \in \mathbb{N}^*$ a pour support l'intervalle [0, m] et elle y est positive.
- 2) la B-spline d'ordre m est la convolution des m B-splines $B^1_{\lambda_k}$ d'ordre 1 pour k = 1, ..., m:

$$B_{\lambda}^{m} = B_{\lambda_{1}}^{1} \ast \cdots \ast B_{\lambda_{m}}^{1}, \qquad (1.14)$$

et pour m \geq 2 *on peut écrire*

$$B_{\lambda}^{m} = \int_{0}^{1} e^{\lambda_{m} t} B_{(\lambda_{1}, \cdots, \lambda_{m-1})}^{m-1}(x-t) dt.$$
(1.15)

1.2 Splines de Chebyshev

3) Si les λ_i sont deux à deux distincts alors, pour tout $k = 1, \dots, m$, on a :

$$\sum_{j\in\mathbb{Z}}e^{-\lambda_k(x-j)}B^m_\lambda(x-j) = \int_{-\infty}^{+\infty}e^{-\lambda_k t}B^m_\lambda(t)dt.$$
(1.16)

4) En cas de multiplicité, c'est à dire $\lambda = (\ell^{[\mu_1]}, \dots, \ell^{[\mu_r]})$, avec $\mu_1 + \mu_2 + \dots + \mu_r = m$, alors pour tout $k = 1, \dots, r$ et $p = 0, \dots, \mu_r - 1$, on a :

$$\sum_{j\in\mathbb{Z}} (x-j)^p e^{-\ell_k(x-j)} B^m_\lambda(x-j) = \int_{-\infty}^{+\infty} x^p e^{-\ell_k t} B^m_\lambda(t) dt.$$
(1.17)

Pour la démonstration de ces dernière proposions, nous renvoyons à [39].

Pour simplifier les notations et quand il n'est pas sujet de confusion, on note $B_{\lambda} = B_{\lambda}^{m}$.çç

Une conséquence de (1.15) est le calcul de la B-spline par la relation de récurrence suivante :

$$\begin{cases} B_{\lambda_1}(x) = e^{\lambda_1 x} \chi_{[0,1]}(x), \\ B_{\lambda}(x) = B_{\lambda_m} * B_{(\lambda_1,\lambda_2,\dots,\lambda_{m-1})}(x). \end{cases}$$

Proposition 3. Pour $f \in C([a, b])$, la m^{ime} spline de Chebyshev B_m satisfait

$$\int_{-\infty}^{+\infty} f(x)B_m(x)dx = \int_0^1 \cdots \int_0^1 e^{\sum_{k=1}^m \lambda_k x_k} f(x_1 + x_2 + \dots + x_m)dx_1 \cdots dx_m.$$
(1.18)

Démonstration. Pour m = 1, puisque on $B_1(x) = e^{\lambda_1 x} \chi_{[0,1[}(x))$, la formule est évidente. Suppo-

sons que l'assertion est vérifiée jusqu'à (m-1); donc de la formule (1.15), on a

$$\begin{split} \int_{-\infty}^{+\infty} f(x) B_m(x) dx &= \int_{-\infty}^{+\infty} f(x) \left(\int_0^1 e^{\lambda_m t} B_{(\lambda_1, \dots, \lambda_{m-1})}^{m-1}(x-t) dt \right) dx \\ &= \int_0^1 e^{\lambda_m t} (\int_{-\infty}^{+\infty} f(x) B_{(\lambda_1, \dots, \lambda_{m-1})}^{m-1}(x-t) dx) dt \\ &= \int_0^1 e^{\lambda_m t} \left(\int_{-\infty}^{+\infty} f(y+t) B_{(\lambda_1, \dots, \lambda_{m-1})}^{m-1}(y) dy \right) dt \\ &= \int_0^1 e^{\lambda_m t} \int_0^1 \cdots \int_0^1 e^{\sum_{k=1}^{m-1} \lambda_k x_k} f(x_1 + x_2 + \dots + x_{m-1} + t) dx_1 \cdots dx_{m-1} dt \\ &= \int_0^1 \cdots \int_0^1 e^{\sum_{k=1}^m \lambda_k x_k} f(x_1 + x_2 + \dots + x_m) dx_1 \cdots dx_m. \end{split}$$

Rappelons que l'opérateur adjoint de l'opérateur L_λ qu'on note L^*_λ vérifie :

$$\int_{-\infty}^{+\infty} L_{\lambda}f(t)g(t)dt = \int_{-\infty}^{+\infty} f(t)L_{\lambda}^{*}g(t)dt \quad f,g \in L^{2}(\mathbb{R}),$$

donc sa formule est donnée par

$$L_{\lambda}^{*} = (-1)^{m} \prod_{k=1}^{m} (D + \lambda_{k} I) = (-1)^{m} L_{-\lambda}.$$

Alors B_{λ}^* , la B-spline associée à l'opérateur L_{λ}^* est la B-spline adjointe de la B-spline B_{λ} et elle vérifie :

$$B^*_{\lambda} = B_{-\lambda},$$

donc si $\lambda = -\lambda$, alors B_{λ} est symétrique :

$$B_{\lambda}(x) = B_{\lambda}(m-x), \quad m \in \mathbb{Z}.$$

Cette formule indique que la courbe de B_{λ} est symétrique par rapport à l'axe $x = \frac{m}{2}$. La propriété essentielle de la fonction B_{λ} est annoncé dans le théorème suivant [39] :

Théorème 4. Il existe une fonction $B_{\lambda} \in S_{\lambda}$; appelée la B-spline de Chebyshev telle que la famille

$$\{B_{\lambda}(x-k): \qquad k \in \mathbb{Z}\}$$

est une base de S_{λ} , donc pour tout $f \in S_{\lambda}$ on a :

$$f(x) = \sum_{k \in \mathbb{Z}} c_k B_\lambda(x-k).$$
(1.19)

Notons que la convergence de la somme est ponctuelle.

Dans l'espace $L^2(\mathbb{R})$, on a une convergence en norme L^2 si la suite $\{c_k\}_{k\in\mathbb{Z}} \in \ell^2(\mathbb{Z})$. En effet, on peut montrer que la famille $\{B_\lambda(x-k)\}_{k\in\mathbb{Z}}$ est une base de Riesz [19]. Rappelons la définition de la base de Riesz :

Définition 8. Soit H un espace hilbertien et $\{g(x - k)\}_{k \in \mathbb{Z}}$ une famille est une base de Riesz si et seulement s'il existe B > A > 0 tel que :

$$A\left(\sum_{k\in\mathbb{Z}}|c_{k}|^{2}\right)^{1/2} \leq \left\|\sum_{k\in\mathbb{Z}}c_{k}g(x-k)\right\|_{L^{2}} \leq B\left(\sum_{k\in\mathbb{Z}}|c_{k}|^{2}\right)^{1/2}.$$
(1.20)

On remarque que si A = B alors la famille $\{g(x - k)\}_{k \in \mathbb{Z}}$, est orthogonale et la cas orthonormée correspond à A = B = 1.

On note que si *V* est le sous espace vectoriel fermé de $L^2(\mathbb{R})$ engendré par la famille, on peut montrer l'existence d'une fonction $\phi \in V$ telle que $\{\phi(x-k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de *V*. En effet, la condition de Riesz (1.20) nous donne par la transformée de Fourier,

$$A^{2} \leq \sum_{k \in \mathbb{Z}} |\widehat{g}(\xi + 2k\pi)|^{2} \leq B^{2}, \qquad p.p. \ \xi \in \mathbb{R}.$$

On définit alors la fonction 2π -périodique

$$M(\xi) = \left(\frac{1}{\sum_{k \in \mathbb{Z}} |\widehat{g}(\xi + 2k\pi)|^2}\right)^{\frac{1}{2}}.$$

Par son développement en série de Fourier, il existe des coefficients $(a_k)_{k\in\mathbb{Z}}$ tels que

$$M(\xi) = \sum_{k \in \mathbb{Z}} a_k e^{ik\xi}.$$

Donc, la fonction ϕ définit par

$$\phi(x) = \sum_{k \in \mathbb{Z}} a_k g(x-k),$$

est orthogonale avec ses translatées entières et par conséquent la famille $\{\phi(x-k)\}_{k\in\mathbb{Z}}$ est une base orthogonale de V.

Pour plus de détails, nous renvoyons le lecteur à [24] et [34].

Exemples de splines. Dans le cas m = 2, on a

1) La spline polynomiale est définie par

$$B_{(0,0)}(x) = \begin{cases} x & \text{si } x \in [0,1], \\ (2-x) & \text{si } x \in [1,2] \end{cases}$$
(1.21)

2) Dans le cas où $\lambda_1 = -\lambda_2 = i\omega$, on a :

$$\ker L_{\lambda} = \operatorname{span} \left\{ \cos(\omega x), \sin(\omega x) \right\},$$

et la B-spline est définie par

$$B_{\lambda}(x) = \begin{cases} \frac{\sin(\omega x)}{\omega} & \text{si } x \in [0, 1], \\ \frac{\sin \omega (2 - x)}{\omega} & \text{si } x \in [1, 2] \end{cases}$$
(1.22)

Donc toute fonction f de l'espace

$$S_{\lambda} = \left\{ f \in L^2 \cap C^0(\mathbb{R}) : \quad f|_{[k,k+1]} \in \ker L_{\lambda} \right\}.$$

s'écrit :

$$f(x) = \sum_{k \in \mathbb{Z}} c_k B_\lambda(x - k)$$

3) Si $\lambda = \lambda_1 = -\lambda_2 \in \mathbb{R}$ alors

$$\ker L_{\lambda} = \operatorname{span} \left\{ \cosh \lambda x, \sinh \lambda x \right\},\,$$

et la B-spline est définie par

$$B_{\lambda}(x) = \begin{cases} \frac{\sinh(\lambda x)}{\lambda} & \text{si } x \in [0,1],\\ \frac{\sinh\lambda(2-x)}{\lambda} & \text{si } x \in [1,2] \end{cases}$$
(1.23)

1.3 Multirésolution et ondelettes non stationnaires

Dans cette section, nous présentons les notions et les propriétés d'analyse multirésolution et des bases d'ondelettes non stationnaires.

Définition 9. Soient $(V_j)_{j \in \mathbb{Z}}$ une suite de sous espaces vectoriels fermés de $L^2(\mathbb{R})$ tels que :

1) $V_j \subset V_{j+1}$, $\forall j \in \mathbb{Z}$, $\overline{\cup_{j \in \mathbb{Z}} V_j} = L^2(\mathbb{R}).$

- 2) $f(x) \in V_j \Leftrightarrow f(2x) \in V_{j+1}, \forall x \in \mathbb{R}, j \in \mathbb{Z}.$
- 3) Il existe une fonction φ_i ; appelée fonction d'échelle, telle que la famille

$$\left\{\varphi_{j,k}=2^{j/2}\varphi_j(2^jx-k),\qquad k\in\mathbb{Z}\right\}$$

est une base de Riesz de V_i .

La suite $(V_i)_{i \in \mathbb{Z}}$ *est appelée analyse multirésolution non stationnaire.*

Remarque 1. Dans le cas classique des analyses multirésoltion la condition (3) est remplacée par la conditions suivante

il existe $\varphi \in V_0$; telle que la famille

$$\{\varphi(x-k), k \in \mathbb{Z}\}$$

est une base de Riesz de V_0 . Donc la condition (2) permet de déduire que

$$\left\{\varphi_{j,k}=2^{j/2}\varphi(2^{j}x-k),\quad k\in\mathbb{Z}\right\}$$

est une base de Riesz de V_j . Ce cas est appelé analyse multirésolution stationnaire. Les exemples d'une analyse multirésolution stationnaire sont les splines polynômiales. Des ondelettes stationnaires plus générales ont été construites par I. Daubechies [16].

L'exemple le plus connu et le plus important des analyses multirésolutions non stationnaires est les splines de Chebyshev, et les espaces

$$V_j = S^m_{(\lambda, 2^{-j})}.$$

La condition (2) de la définition de l'analyse multirésolution au dessus est vérifiée et la

condition (3) est vérifiée en considérant la fonction d'échelle :

$$\varphi_j = B_{2^{-j}\lambda}^m.$$

Nous avons alors les résultats suivants :

Théorème 5. Il existe une fonction $\phi_j \in V_j$ telle que la famille $\{\phi_{j,k}, k \in \mathbb{Z}\}$ est une base orthonormée de V_j .

Comme $V_j \subset V_{j+1}$, il existe une suite $(h_{j,k})_{k \in \mathbb{Z}}$ telle que

$$\varphi_{j,0}(x) = 2^{j/2} \varphi_j(2^j x) = \sum_{k \in \mathbb{Z}} h_{j,k} \varphi_{j+1,k}(x).$$
(1.24)

Donc la transformée de Fourier de (1.24) donne :

$$\widehat{\varphi}_j(\xi) = H_j(\xi/2^{j+1})\widehat{\varphi}_{j+1}(\xi/2^{j+1}),$$

où H est le polynôme trigonométrique définie par

$$H_j(\xi) = \sqrt{2} \sum_{k \in \mathbb{Z}} h_{j,k} e^{-i\xi},$$

or que l'orthogonalité des $\left\{ \varphi_{j,k} \right\}$ permet de conclure que

$$|H_j(\xi)|^2 + |H_j(\xi + \pi)|^2 = 1.$$

Cas des spline de Chebyshev

Si l'on calcule la transformé de Fourier de B_{λ} , on obtient :

$$\widehat{B}_{\lambda}(\xi) = \prod_{k=1}^{n} \theta(\lambda_k - i\omega),$$

où θ est une fonction complexe définie par :

$$\theta(z) = \begin{cases} \frac{e^z - 1}{z} & z \neq 0\\ 1 & z = 0 \end{cases}$$

On peut montrer également que

$$\widehat{B}_{\lambda}(\xi) = H_{\lambda/2}(\xi/2)\widehat{B}_{\lambda/2}(\xi/2),$$

où *H* est le polynôme trigonométrique définie par :

$$H_{\lambda}(\xi) = \prod_{k=1}^{n} \left(\frac{e^{\lambda_k - i\xi} + 1}{2} \right).$$

Si l'on note $V_{j+1} = V_j \oplus W_j$, où W_j est le complément orthogonal de V_j dans V_{j+1} , on a Si l'on note $G_j(\xi) = e^{-i\xi} H_{J_{\xi+\pi}}$, alors la fonction

$$\widehat{\psi}_j(\xi) = G_j(\xi/2) \prod_{k \ge 2} H_k(\xi/2^k)$$

Théorème 6. Il existe une fonction $\psi_j \in W_j$ telle que la famille

$$\Big\{\psi_{j,k}(x)=2^{j/2}\psi_j(2^jx-k),\quad k\in\mathbb{Z}\Big\}.$$

est une base W_j et par conséquent, la famille $\{\psi_{j,k}(x) = 2^{j/2}\psi_j(2^jx - k), k \in \mathbb{Z}\}$ est aussi une base orthonormée de L^2 , ie :

$$f = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}$$

L'orthogonalité des espaces V_i et W_i nous donne la propriété suivante :

$$\int_{\mathbb{R}} u(t)\psi_{j,k}(t)dt = 0,$$

pour tout $u \in \mathcal{E} = \ker L_{\lambda}$. Il s'agit d'une généralisation de la propriété des moments nuls de l'ondelette stationnaire.

Remarque 2. ϕ_j est une spline de Chebyshev dans V_j mais son support est \mathbb{R} et elle est à décroissance rapide. ψ_j est également une spline de Chebyshev dans V_{j+1} et son support est \mathbb{R} .

Une autre approche de construction des ondelettes (non orthogonale) appelée pré-ondelette a été introduite par C de Boor [19] où les ondelettes préservent un support compact. La construction de classe d'ondelettes orthonormées basées sur les espaces de Chebyshev a été décrite dans [9] et [51].

Chapitre 2

Approximations multi-échelles

On se donne un espace de Hilbert H séparable et on considère $\mathfrak{B} = \{g_k\}_{k \in \mathbb{N}}$ une base orthonormée de H.

Toute fonction $f \in H$ se décompose sur la base \mathfrak{B} de façon unique comme suit :

$$f = \sum_{k=0}^{+\infty} \langle f, g_k \rangle g_k.$$
(2.1)

La projection orthogonale de f sur un espace V_n , $n \in \mathbb{N}$, engendré par $\{g_k\}_{0 \le k \le n}$ nous donne une approximation de f qui n'est que les n premiers termes dans la somme 2.1 :

$$f_n = \sum_{k=0}^{n-1} \langle f, g_k \rangle g_k.$$

Il est clair qu'il s'agit d'une approximation linéaire dont l'erreur est donnée par :

$$E_n(f) = ||f_n - f||^2 = \sum_{k=n}^{+\infty} |\langle f, g_k \rangle|^2.$$
(2.2)

Comme $||f||^2 = \sum_{k=0}^{+\infty} |\langle f, g_k \rangle|^2 < +\infty$, alors on a $\lim_{n \to +\infty} E_n(f) = 0$.

L'exemple le plus classique est l'approximation par des séries de Fourier.

Cependant dans ce cas l'erreur dépend de la régularité uniforme de f. Une amélioration est garantie si l'on choisit le sous-espace V_n de manière adaptative en fonction de f, c'est le principe de l'approximation non linéaire.

Considérons maintenant l'opérateur non linéaire P_n définie par :

$$\begin{split} P_n:H\longrightarrow H\\ P_nf&=\sum_{k=0}^{n-1}\langle f,g_{\sigma_k}\rangle g_{\sigma_k}, \end{split}$$

où $\sigma:\mathbb{N}\longrightarrow\mathbb{N}$ est une bijection (permutation) vérifiant :

$$\forall k \in \mathbb{N}: |\langle f, g_{\sigma_k} \rangle| \ge |\langle f, g_{\sigma_{k+1}} \rangle|.$$

Il s'en suit que $P_n f$ est la meilleure approximation non linéaire de f. En effet, $P_n f$ est la somme de n vecteurs en ne considérant que les n plus grand coefficients. Dans ce cas la formule de l'erreur est donnée par :

$$E_n(f) = ||P_n f - f||^2 = \sum_{k=n}^{+\infty} |\langle f, g_{\sigma_k} \rangle|^2.$$
(2.3)

Le résultat suivant donne une estimation plus précise de E_n .

Théorème 7. Supposons qu'il existe une constante C > 0 et $r \ge \frac{1}{2}$ tel que $|\langle f, g_{\sigma_k} \rangle| \le \frac{C}{k^r}$ alors :

$$E_n \le C^2 \frac{n^{1-2r}}{2r-1}.$$
(2.4)

Démonstration. On a

$$\begin{aligned} \|P_n f - f\|^2 &= \sum_{k=n}^{+\infty} |\langle f, g_{\sigma_k} \rangle|^2 \\ &\leq C^2 \sum_{k=n}^{+\infty} \frac{1}{k^{2r}}. \end{aligned}$$

Sachant que

$$\sum_{k=n}^{+\infty} \frac{1}{k^{2r}} \le \int_n^{+\infty} \frac{dx}{x^{2r}},$$

et que

$$\int_{n}^{+\infty} \frac{dx}{x^{2r}} = \frac{n^{1-2r}}{2r-1}$$

on aboutit au résultat.

En applications, on souhaite souvent minimiser l'erreur d'approximation avec un nombre relativement petits de "*n*" (compression d'images,réduction du temps de calcul, etc). Dans le cas où *n* est petit le rôle de la constante *C* peut devenir non négligeable. A titre d'exemple, dans le cas d'approximation par des bases (splines polynômiales et bases d'ondelettes, etc) cette constante dépend souvent de la quantité $||f^{(m)}||$ qui peut devenir très grande pour une certaine classe de fonctions.

Ce phénomène est examiné au troisième chapitre : le cas d'approximation en quadrature.

2.1 Approximation par ondelettes de Chebychev

Dans cette section nous nous intéressons à l'approximation par une spline de Chebychev uniforme et invariante par translation.

Il s'agit de définir un opérateur d'approximation

$$Q_h: L^2(\mathbb{R}) \longrightarrow S_{(\lambda,h)}$$

où

$$\forall f \in L^2(\mathbb{R}) : Q_h f = \sum_{k \in \mathbb{Z}} C_k(f) B_{\lambda},$$

de telle sorte que :

- 1) Q_h est local : c'est à dire les coefficients $C_k(f)$ dépend essentiellement des valeurs de fau voisinage du support de B_{λ} .
- 2) Q_h est exact sur \mathcal{B}_{λ} , c'est à dire, pour tout $u \in \mathcal{B}_{\lambda}$, on a :

$$Q_h u = u; \qquad u \in \mathcal{B}_{\lambda}.$$

Cette égalité exprime la reproduction de l'espace de Chebyshev.

Ce type d'opérateurs s'appelle en littérature le quasi-interpolant spline.

Un exemple d'un tel opérateur d'approximation a été présenté dans [39] dans un espace de Sobolev où $Q_h f$ est la meilleure approximation de f par une spline de Chebyshev par rapport à une norme pondérée de Sobolev. Dans l'espace $L^2(\mathbb{R})$ l'opérateur Q_h peut se calculer comme étant la projection sur $S_{(\lambda,h)}($ [46] page 393).

Si f est de classe C^m sur [a, b], grâce à la formule de Taylor (1.5) on écrit

$$f = u_f + R^m_\lambda(f),$$

où

$$R_{\lambda}^{m}(f) = \int_{a}^{x} L_{\lambda_{m}}f(t)g_{\lambda}(x-t)dt,$$

donc, on a

$$f - Q_h f = u_f + R^m_\lambda(f) - Q_h u_f - Q_h R^m_\lambda(f).$$

Comme $Q_h u_f = u_f$, alors on a :

$$\|f - Q_h f\| = \left\| (I - Q_h) \left(\int_a^x L_{\lambda_n} f(t) g_\lambda(x - t) dt \right) \right\|$$

De (1.6), nous déduisons l'existence d'une constante ${\cal C}_p$ tel que

$$||f - Q_h f||_p \le C_p ||L_\lambda f||_p h^m,$$
 (2.5)

ceci pour toute $f \in W^{m,p}[a,b]$. Pour plus de détails à ce propos, nous renvoyons à [34]. Donnons ici des exemples sur des quasi-interpolants dans le cas des spline d'ordre 2 et 3. **Exemples**. Reprenons les exemples présentés dans le premier chapitre :

1) Considérons la spline définie en (1.22) où $\lambda = (i\omega, -i\omega)$,

$$B_{\lambda}(x) = \begin{cases} \frac{\sin(\omega x)}{\omega} & \text{si } x \in [0, 1], \\ \frac{\sin \omega (2 - x)}{\omega} & \text{si } x \in [1, 2]. \end{cases}$$
(2.6)

Puisque $N_2(k) = \delta_{0,k} \frac{\sin \omega}{\omega}$ et $N_2(x) = B_\lambda(x+1)$, le quasi-interpolant s'écrit :

$$Qf(x) = \sum_{k \in \mathbb{Z}} \frac{\omega}{\sin \omega} f(k) N(x-k).$$

2) Pour la spline définie en (1.23)

$$B_{\lambda}(x) = \begin{cases} \frac{\sinh(\lambda x)}{\lambda} & \text{si } x \in [0, 1], \\ \frac{\sinh\lambda(2-x)}{\lambda} & \text{si } x \in [1, 2]. \end{cases}$$
(2.7)

On a $N(k) = \delta_{0,k} \frac{\sinh(\omega)}{\omega}$, donc le quasi-interpolant dans ce cas est un interpolant qui s'écrit :

$$Qf(x) = \sum_{k \in \mathbb{Z}} \frac{\omega}{\sinh \omega} f(k) B_{\omega}(x-k)$$

3) Considérons la spline d'ordre 4 associée à l'espace de Chebyshev

$$E = \operatorname{span} \{1, x, \cos \omega x, \sin \omega x\}.$$

Pour simplifier les calculs et les notations, prenons :

$$N(x) = B_{\lambda}(x+2)$$
, et $N_k(x) = N(x-k)$, $k \in \mathbb{Z}$.

Comme la B-spline B_{λ} est symétrique par rapport à l'axe x = 2, alors la fonction N est paire. D'après (1.17), nous avons les identités suivantes :

$$\sum_{k \in \mathbb{Z}} \frac{1}{M_0} N_4(x-k) = 1,$$
$$\sum_{k \in \mathbb{Z}} \frac{k}{M_0} N_4(x-k) = x,$$
$$\sum_{k \in \mathbb{Z}} \frac{\sin(\omega k)}{M_1} N_4(x-k) = \sin(\omega x),$$
$$\sum_{k \in \mathbb{Z}} \frac{\cos(\omega k)}{M_1} N_4(x-k) = \cos(\omega x).$$

où

$$(Qu)_k = \frac{1}{\omega^2} \left\{ \frac{D_{\omega}^2 u(k) + D_{\omega}^2 u'(k)}{M_0} - \frac{D^2 u(k)}{M_1} \right\}.$$

où les coefficients $(Qu)_k$ sont définies comme suit

$$M_0 = \int_{-\infty}^{+\infty} N_4(x) dx$$
 et $M_1 = \int_{-\infty}^{+\infty} \cos \omega x N_4(x) dx$.

Pour $u \in E$,

$$u(x) = \alpha_1 + \alpha_2 x + \beta_1 \cos \omega x + \beta_2 \sin \omega x$$

donc

$$u(x) = \sum_{k \in \mathbb{Z}} (Qu)_k(x) N_4(x-k);$$

On peut vérifier que Qu = u si $u \in E$. Pour simplifier les calculs, on peut définir un opérateur d'approximation Q^* via l'opérateur aux différences par les formules suivantes

$$Q^* f(x) = \sum_{k \in \mathbb{Z}} (Q^* f)_k N_4(x - k),$$
(2.8)

où

$$(Q^*u)_k = \frac{1}{\omega^2} \left(\frac{\Delta_{\omega}^2 u(k)}{M_0} - \frac{\Delta^2 u(k)}{M_1} \right).$$
(2.9)

On peut montrer que l'opérateur Q^* est un quasi interpolant local vérifiant $Q^*u = u$ pour tout $u \in E$.

Bien que les opérateurs Q et Q^* donnent une bonne approximation et une estimation qui assure la convergence de $Q_h f$ et $Q_h^* f$ vers f, ils n'expriment pas une meilleure approximation dans le sens qu'il ne minimisent pas une norme hilbertienne

$$\min_{s\in S_h} \|s-f\|$$

Cette meilleure approximation dans L^2 est difficile à calculer puisque la famille { $B_{\lambda}(x-k)$, $k \in \mathbb{Z}$ } n'est pas orthogonale.

Cependant, dans [39], on a montré qu'on peut trouver un espace de Sobolev pondéré dans lequel la famille { $B_{\lambda}(x-k)$, $k \in \mathbb{Z}$ } est orthogonale. Par conséquent, le projecteur orthogonal P_h donne l'estimation suivante [39] :

Théorème 8. Notons $H^m_{\infty}(\mathbb{R})$ l'espace des fonctions bornées ainsi que leurs dérivées successives jusqu'à l'ordre m. Alors, pour toute fonction f dans $H^m_{\infty}(\mathbb{R}) \cap H^{m-1}(\mathbb{R})$ et $k \in \{1, \dots, m-1\}$, il existe une constante C qui dépend seulement de m, k et λ telle que

$$||D^k(P_{\lambda,h}f - f)||_{\infty} \le Ch^{m-k} ||D^m F||_{\infty}$$

2.2 Approximation optimale et espaces de Chebyshev

Dans cette section nous proposons une méthode pour le choix d'un bon espace de Chebyshev pour une meilleure approximation.

Le critère proposé est de choisir l'opérateur L_{λ} qui minimise la norme $||L_{\lambda}f||_{L^2}$ pour une fonction f à approximer.

Dans cette section, on considère $\omega = (\omega_1, \dots, \omega_d) \in \mathbb{R}^d_+$ et on se limite aux opérateurs définis par :

$$L_{\omega}f = \frac{\partial^{r}}{\partial x^{r}} \prod_{k=1}^{d} \left(\frac{\partial^{2}}{\partial x^{2}} + \omega_{k}^{2} I \right), \qquad (2.10)$$

où r + 2d = n.

Le théorème suivant donne l'existence et l'unicité d'un opérateur du type ci-dessus minimisant la norme $||L_{\omega}f||_{L^2}$.

Théorème 9. Soit $f \in C^m[a, b]$, $m \in \mathbb{N}$, alors il existe un opérateur L_{ω^*} unique vérifiant :

$$\|L_{\omega^*}f\|_{L^2} = \min_{\omega \in \mathbb{R}^d_+} \|L_{\omega}f\|_{L^2}.$$
(2.11)

D'après la propriété d'isométrie de la transformée de Fourier on peut écrire :

$$\|\bar{L}_{\omega}f\|_{L^{2}} = \|L_{\omega}f\|_{L^{2}},$$

or que :

$$\|\widehat{L_{\omega}f}(\xi)\|_{L^{2}}^{2} = \int_{-\infty}^{+\infty} \xi^{2r} |\widehat{f}(\xi)| \left[\prod_{k=1}^{d} (\xi^{2} - \omega_{k})^{2} \right] d\xi.$$
(2.12)

Alors la valeur optimale de ω peut être calculer explicitement en minimisant la norme dans la dernière formule. Le problème revient à sélectionner ω qui minimise la fonction

$$F(\omega) = \int_{-\infty}^{+\infty} \xi^{2r} \left[\prod_{k=1}^{d} (\xi^2 - \omega_k)^2 \right] |\hat{f}(\xi)|^2 d\xi.$$

Dans un cadre plus général, Considérons la fonction définie par :

$$F(x) = \int_{-\infty}^{+\infty} \left[\prod_{k=1}^{n} (x_k - t)^2 \right] p(t) dt,$$

où $p : \mathbb{R} \to \mathbb{R}$ est une fonction positive vérifiant

$$\int_{-\infty}^{+\infty} p(t)t^k dt < +\infty; \qquad k = 1, \cdots, n.$$

La solution du problème (2.11) est une conséquence du théorème suivant :

Théorème 10. Sous les conditions énoncées au dessus, il existe un unique point $x^* \in \mathbb{R}^d$ tel que $x_1^* < x_2^* < \cdots < x_n^*$ et

$$F(x^*) = \min_{x \in \mathbb{R}^n} F(x).$$
(2.13)

Comme la fonction est symétrique, c'est à dire

$$F(x_1, \cdots, x_n) = F(x_{\sigma(1)}, \cdots, x_{\sigma(n)})$$

pour toute permutation dans $\{1, \dots, n\}$, on se limite à chercher la solution du problème sur l'ensemble :

$$\mathbb{D}_n = \{ x \in \mathbb{R}^n / x_1 \le x_2 \le \dots \le x_n \}.$$
La démonstration de ce théorème est une conséquence des deux lemmes suivants :

Lemme 1. Si $x \in \mathbb{D}_n$ est une solution de (2.13); alors nous avons

$$x_1 < x_2 < \dots < x_n.$$

Démonstration. Soit $x^* \in \mathbb{R}^n$ solution de (2.13). Nous allons montrer que :

$$x_i^* \neq x_j^*, \quad \forall i \neq j \quad i, j = 1, n.$$

Une condition nécessaire pour que x^{*} soit un minimum est

 $\nabla F(x^*) = 0,$

c'est à dire :

$$\frac{\partial F}{\partial x_i}(x^*) = 0, \qquad i = 1, \cdots, n.$$
(2.14)

Donc

$$\frac{\partial F}{\partial x_i} = 2 \int_{-\infty}^{+\infty} (x_i^* - t) \prod_{j \neq i}^n (x_j^* - t)^2 p(t) dt = 0.$$
(2.15)

D'autre part, le hessien

$$\nabla^2 F(x^*) = \left[a_{ij}\right]_{1 \le i,j \le n}$$

doit être une matrice définie positive. Les calculs nous donne d'une part

$$a_{ii} = 2 \int_{-\infty}^{+\infty} \prod_{k \neq i}^{n} (x_k^* - t)^2 p(t) dt \qquad i = 1, \cdots, n$$
(2.16)

et d'autre part,

$$a_{ij} = 4 \int_{-\infty}^{+\infty} (x_i^* - t) (x_j^* - t) \prod_{k \neq i,j}^n (x_k^* - t)^2 p(t) dt \qquad i, j = 1, \cdots, n, \qquad i \neq j.$$
(2.17)

On remarque que

$$\int_{-\infty}^{+\infty} (x_i^* - t)(x_j^* - t) \prod_{k \neq i,j}^n (x_k^* - t)^2 p(t) dt = \int_{-\infty}^{+\infty} \frac{1}{(x_j^* - t)(x_i^* - t)} \prod_{k=1}^n (x_k^* - t)^2 p(t) dt$$

Cependant, on a

$$\frac{1}{(x_j^* - t)(x_i^* - t)} = \frac{1}{x_j^* - x_i^*} \left[\frac{1}{(x_i^* - t)} - \frac{1}{(x_j^* - t)} \right].$$

Donc, si $x_i^* \neq x_j^*$ pour $i \neq j$, l'expression de a_{ij} dans (2.17) peut être simplifiée comme suit :

$$a_{ij} = \frac{4}{x_j^* - x_i^*} \left[\int_{\mathbb{R}} (x_i^* - t) \prod_{k \neq i}^n (x_k^* - t)^2 p(t) dt - \int_{\mathbb{R}} (x_j^* - t) \prod_{k \neq j}^n (x_k^* - t)^2 p(t) dt \right],$$
(2.18)

ce qui signifie que, pour $i \neq j$, on a

$$\frac{\partial^2 F}{\partial x_i \partial x_j}(x^*) = \frac{1}{x_j^* - x_i^*} \left[\frac{\partial F}{\partial x_i}(x^*) - \frac{\partial F}{\partial x_j}(x^*) \right],$$

et de (2.13), nous déduisons que $a_{ij} = 0$ si $i \neq j$; dans ce cas, la matrice $\nabla^2 F(x^*)$ est diagonale définie positive car :

$$a_{ii} = 2 \int_{\mathbb{R}} \prod_{k \neq i}^{n} (x_k^* - t)^2 p(t) dt > 0, \qquad \forall i = 1, \cdots, n.$$
(2.19)

Supposons maintenant qu'il existe, au moins, un *i* et *j* tels que $i \neq j$ et $x_i^* = x_j^*$. Les relations (2.16) et (2.17) nous indique que la matrice Hessienne $\nabla^2 F(x^*)$ contient en moins un bloc du

type :

 $\left(\begin{array}{rrr} 2 & 4 \\ 4 & 2 \end{array}\right).$

Sans perte de généralités, on suppose que i = 1 et j = 1 et que $x_1^* = x_2^*$, alors le Hessien $\nabla^2 F(x^*)$ s'écrit

2	4	*	*	
4	2	*		
÷	÷	۰.	÷	ŀ
*	*	*	*	

Si l'on prend le vecteur $y = (1, -1, 0, \dots, 0)^T \in \mathbb{R}^n$, alors on a :

$$y^T \nabla^2 F(x^*) y = -4 < 0.$$

On déduit alors que $\nabla^2 F(x^*)$ n'est pas définie positive et par voie conséquence, x^* n'est pas un minimum.

Lemme 2. Si $x \in \mathbb{D}_n$ est solution de (2.13), alors il est unique.

Démonstration. Supposons qu'il existe deux minimums x^* et y^* dans \mathbb{D}_n et définissons le sous ensemble de \mathbb{D}_n appelé segment par :

$$[x^*, y^*] = \{x \in \mathbb{D}_n : x = tx^* + (1-t)y^*, 0 \le t \le 1\}$$

qui est un ensemble convexe. Remarquons que F est dérivable sur \mathbb{D}_n , donc en appliquant le théorème des accroissements finis sur le segment $[x^*, y^*]$ nous obtenons :

$$\exists c^* \in [x^*, y^*]: \ \nabla F(c^*) = 0.$$

Mais d'après le lemme précédent z^* sera aussi un minimum de F. En ré-appliquant le même processus sur les deux segments $[x^*, c^*]$ et $[c^*, y^*]$, et ainsi de suite, nous déduisons que Fadmis une infinité de minimums sur D ce qui est absurde.

Chapitre 3

Sélection de la meilleure quadrature

La quadrature de Gauss est une méthode importante pour le calcul numérique des intégrales dans plusieurs champs de calculs scientifiques et elle est connue par son efficacité.

Quelques généralisations pour cette méthode ont été construites pour plusieurs classes de fonctions. On cite, à titre d'exemple, le travail de [41] pour les fonctions à ondes sphérique et le travail de [6] pour les fonctions exponentielles.

L'objectif de ce chapitre est d'introduire une généralisation de quadrature adaptée pour les fonctions avec des oscillations importante en utilisant en particulier les fonctions trigonométriques.

Dans un premier temps, on donne un rappel sur les méthodes classiques et on montre leur insuffisances pour certaines classes de fonctions en utilisant quelques exemples de fonctions oscillantes et dans un second temps, on présente une généralisation de la formule de quadrature : l'idée principale est de changer l'espace d'approximation (de polynômes orthogonaux) par les espaces de Chebychev. Une étude détaillée avec des expérimentations numétiques a été présenté pour les espaces de Chebyshev de dimension 4. Il est souvent le cas le plus utilisé en pratique.

3.1 Rappel sur la quadrature de Gauss classique

Soit *f* une fonction continue sur un intervalle [a, b] avec $a, b \in \mathbb{R}$ a < bOn s'intéresse à l'évaluation de l'intégrale

$$I(f) = \int_{a}^{b} w(x)f(x)dx,$$
(3.1)

où $w : [a, b] \to \mathbb{R}_+$: est une fonction positive appelée fonction poids qui intervient pour assurer l'intégrabilité de f, sans perte de généralité, on va considérer dans tout ce qui suit w(x) = 1.

Choisissons d'abord une subdivision de l'intervalle [*a*, *b*] :

$$a = a_0 < a_1 < \dots < a_\ell = b.$$

D'après la formule de Chasles nous avons

$$\int_{a}^{b} f(x)dx = \sum_{j=0}^{\ell-1} \int_{a_{j}}^{a_{j+1}} f(x)dx,$$

et donc le problème se ramène à l'évaluation de l'intégrale

$$\int_{a_j}^{a_{j+1}} f(x) dx.$$

Dans ce cas, les formules approchées sont appelées méthodes élémentaires. Une formule de quadrature est une expression d'approximation de l'intégrale au dessus qui s'écrit :

$$T_{n,j}(f) = \sum_{i=1}^{n} \lambda_{i,j} f(x_{i,j}),$$
(3.2)

tels que :

- $\lambda_{i,j}$, $\{i = 1, 2, ..., n\}$: sont les coefficients de la quadrature.
- x_{i,j}, {i = 1, 2, ..., n}: sont des points réels qui s'appellent les nœuds qui sont distincts et uniques.

La méthode de quadrature composée associée s'écrit :

$$T_n(f) = \sum_{j=1}^{\ell} T_{n,j}$$

La question classique qui se pose est : comment peut-on déterminer les poids $\lambda_{i,j}$ et les nœuds $x_{i,j}$ pour que la méthode soit de l'ordre le plus élevé possible?

Le théorème suivant montre comment obtenir la formule d'ordre maximale qu'on appelle formule gaussienne :

Théorème 11. [45] L'unique formule à n points d'ordre maximale est la formule par interpolation construite en prenant pour nœuds les zéros du n-ème polynôme orthogonal par rapport au poids w. Par convention, le n-ème polynômes orthogonal est de degré n, ce qui sous-entend qu'on commence à les numéroter à partir de 0.

La formule ainsi déterminée est exactement d'ordre 2n - 1, elle est dite formule gaussien.

Rappelons qu'une suite de polynômes $\{p_i\}_{i \in \mathbb{N}}$ est une suite de polynômes orthogonaux si et seulement si :

1. Le degré de p_i est i.

2.
$$\langle p_i, p_j \rangle_{L^2} = 0$$
 si $i \neq j$.

Estimation de l'erreur : Notons l'erreur de quadrature par

$$E_n(f) = |I(f) - T_n(f)|.$$
(3.3)

L'ordre d'exactitude de la formule de quadrature de Gauss est le degré le plus élevé de la famille des polynômes annulant E, donc elle est exacte pour tous les polynômes de degré inférieur ou égal à 2n - 1 avec n point pris sur le domaine d'intégration.

Alors les poids et les nœuds sont choisis dans le but d'obtenir des degrés d'exactitude les plus grands possibles.

Proposition 4. [La relation entre l'erreur et l'ordre de dérivée]

Soit f une fonction continue sur un intervalle [*a*, *b*], *alors l'erreur de quadrature est estimée comme suit :*

$$\forall x \in [a,b], \quad \exists \xi \in [a,b]: \quad E_n(f) = |I_n(f) - T_n(f)| \le \frac{|f^{n+1}(\xi)|}{(n+1)!} h^{n+1}. \tag{3.4}$$

Dans les différents type de la quadrature de Gauss le domaine de l'intégration est l'intervalle [-1,1].

Si on veut approximer l'intégrale d'une fonction sur un intervalle [a, b] quelconque, il est recommandé d'utiliser un changement de variables pour revenir à l'intervalle [-1, 1]. Soit $f \in C^0[a, b]$,on définie la fonction $\varphi(t)$ comme suit :

$$\begin{aligned} \varphi : [a,b] &\longrightarrow & \mathbb{R} \\ t &\longrightarrow & \varphi(t) = \alpha t + \beta, \end{aligned}$$
 (3.5)

alors, on a :

$$\alpha(b-a) = -2 \implies \alpha = \frac{b-a}{2}$$

et $\beta = \frac{a+b}{2}$, et $dx = \alpha dt$.

Donc :

— La valeur exacte est donnée comme suit :

$$I(f) = \int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}x + \frac{a+b}{2}\right)dx.$$
 (3.6)

— La valeur approchée est donnée comme suit :

$$T_n(f) = \frac{b-a}{2} \sum_{i=1}^n \lambda_i f\left(\frac{b-a}{2}x_i + \frac{a+b}{2}\right).$$
 (3.7)

3.2 Limitation de la méthode classique

Dans cette section, on va montrer par des contres exemples les inconvénients et les limites de la méthode quadrature classique. Considérons l'exemple suivant :

Exemple 1. Considérons [a,b] = [-1,+1] et n = 2. nous avons la formule de quadrature :

$$T_2(f) = \lambda_1 f(x_1) + \lambda_2 f(x_2).$$
(3.8)

Calculons les paramètres λ_1 , λ_2 , x_1 et x_2 . Comme la méthode est exacte pour tout polynôme de degré $n \leq 3$; (car dans ce cas l'ordre de la méthode est 4); on l'applique successivement pour les polynômes

$$p_1(x) = 1$$
, $p_2(x) = x$, $p_3(x) = x^2$ et $p_4(x) = x^3$.

On obtient alors le système suivant :

$$\lambda_{1} + \lambda_{2} = 2,$$

$$\lambda_{1}x_{1} + \lambda_{2}x_{2} = 0,$$

$$\lambda_{1}x_{1}^{2} + \lambda_{2}x_{2}^{2} = \frac{2}{3},$$

$$\lambda_{1}x_{1}^{3} + \lambda_{2}x_{2}^{3} = 0.$$

On trouve

$$\lambda_1 = \lambda_2 = 1$$
 et $x_1 = -x_2 = \frac{1}{\sqrt{3}}$

La question qui se pose est : Pour quelle classe de fonctions cette méthode est efficace? Compte tenue de la formule d'erreur (3.4), une réponse évidente est : Pour toute fonction $f \in C^4[a, b]$

Mais si l'on choisi [a, b] = [-1, 1] et $f(x) = \cos(\alpha x)$, $\alpha \in \mathbb{R}^*$; d'après la formule d'erreur (3.4), $E_n(f)$ dépendra de la valeur $|\alpha|^{n+1}$. Il est claire que plus la valeur de α est grande l'erreur est considérable. Le tableau suivant résume quelques testes pour bien montrer ce phénomène :

f(x)	I(f)	$T_2(f)$	$E_2(f)$
x ⁴ /12	0.0333333	0.018518	0.0148153
e ^x	2.350402	1.219928	1.13047
$\cos((\pi x)/20$	0.0349065	1.99999	1.9650835
$\cos(\pi x)$	0	1.998999	1.998999
$\cos(6\pi x)$	0	1.964030	1.964030
$\cos(10\pi x)$	0	1.900619	1.900619
$\cos(6\pi x) + \cos(10\pi x)$	0	3.864649	3.864649

Remarquons que les résultats sont très mauvais quand il s'agit des fonctions trigonométriques à haute fréquence. Pour la même méthode, si nous considérons le polynôme suivant

$$p(x) = (2x^2 - 1)(3x^2 - 1)(4x^2 - 1)(3x - 1)(3x^2 - 1),$$
(3.9)

nous trouverons que $E_2(p) = 3.7333$ qui est une erreur considérable. Donc même pour la famille des polynômes, la méthode devient insuffisante : ceci est due à l'oscillation du polynôme sur l'intervalle considéré d'une part et d'autre part car ses racines sont très proches des nœuds de la méthode.

En effet, si les racines de la fonction à traiter coïncident avec les nœuds de la méthode, on aura

$$T(f) = 0$$
, et $E(f) = |I(f)|$.

Dans ce cas la méthode du point milieu où

$$\int_{-1}^{1} f(x) dx \simeq 2f(0)$$

qui est d'ordre 1, donne une erreur inférieure à l'erreur de la méthode précédente.

3.3 Quadrature généralisée

Nous présentons une généralisation de la méthode de quadrature de Gauss par n points de telle sorte que la formule soit exacte pour les éléments d'un espace de Chebyshev de dimension m = 2n. La méthode est alors d'ordre m. Le cas classique exposé dans la section précédente correspond au cas d'un espace de polynôme de degré m - 1 = 2n - 1.

Définition 10. Soit

$$\Phi = \{\varphi_1, \cdots, \varphi_m\}, \qquad m \in \mathbb{N}$$

une famille libre de fonctions intégrables sur [a,b]. On dit que la formule de quadrature à n points (3.2) est Gaussienne par rapport au système Φ si et seulement si la formule est exacte pour toutes les fonctions de cette famille. Dans ce cas m est appelé d'ordre de la méthode.

Le résultat principale qui concerne la quadrature généralisée est le théorème suivant [28] :

Théorème 12 (Karlin-Studdent). Supposons que les fonctions $(\varphi_1, \dots, \varphi_m)$ forment un système de Chebyshev sur l'intervalle [a,b]. Alors il existe m uniques points $\alpha_1, \dots, \alpha_m$ tel que la quadrature (3.2) est Gaussienne par rapport aux fonctions $(\varphi_1, \dots, \varphi_m)$. On outre, tout les poids de la quadrature sont positifs.

Remarque 3. Dans la quadrature de Gauss classique on a

$$\Phi = \left\{1, x, \cdots, x^{2n-1}\right\}.$$

On peut considérer *m* points $\{x_1, \dots, x_n\}$ à choisir et m = 2n. Nous considérons le cas des espaces de Chebyshev invariants par translation, les fonctions $\{\varphi_k\}_{i=1,\dots,m}$ forment une base du noyau de l'opérateur différentiel à coefficients réels et constants défini par (2.10). Notons la valeur approchée de l'intégrale de *f* (3.1) par

$$T_{n,\omega}(f) = \sum_{i=1}^{n} \alpha_i f(x_i),$$
 (3.10)

Donc les nœuds $\{x_1, \dots, x_n\}$ et les poids $\{\alpha_1, \dots, \alpha_n\}$ seront déterminer pour obtenir :

$$T_{n,\omega}(\varphi_i) = I(\varphi_i); \quad i = 1, \cdots, m,$$
(3.11)

c'est à dire, en résolvant le système linéaire

$$\int_a^b \varphi_i(x) dx = \sum_{k=1}^n \varphi_i(x_k) \alpha_k, \qquad i = 1, \cdots, m.$$

3.3.1 Analyse de l'erreur

Soit $f \in C^m([a, b])$, l'erreur de cette quadrature appliquée à f est donnée par la formule :

$$E(f, \omega) = |I(f) - T_{n,\omega}(f)|$$

Proposition 5. Si $f \in C^m([a, b], alors$

$$E(f,\omega) = \left| \int_{a}^{b} L_{\omega}f(t)K_{\omega}(t)dt \right|, \qquad (3.12)$$

où la fonction K_{ω} définie sur [a,b] par :

$$K_{\omega}(t) = \int_{a}^{b} g_{\omega}(x-t) dx - \sum_{i=1}^{n} \alpha_{i} g_{\omega}(x_{i}-t)$$
(3.13)

est le noyau de Peano associé à la méthode.

Démonstration. D'après la formule de Taylor généralisée (1.5), nous avons :

$$\forall x \in [a,b]: \quad f(x) = Q_f(x) + \int_a^x L_\omega f(t) g_\omega(x-t) dt, \tag{3.14}$$

où Q_f est l'approximation de f par les éléments de $\ker L_\omega.$ Notons :

$$R_f(x) = \int_a^x L_\omega f(t) g_\omega(x-t) dt.$$

Donc :

$$I(f) = I(Q_f) + I(R_f)$$
(3.15)

et

$$T_{(n,\omega)}(f) = T_{(n,\omega)}(Q_f) + T_{(n,\omega)}(R_f).$$
(3.16)

Comme $I(Q_f) = T_{(n,\omega)}(Q_f)$, alors on a

$$I(f) - T_{(n,\omega)}(f) = I(R_f) - T_{n,\omega}(R_f)$$

= $\int_a^b \left[\int_a^x L_\omega f(t) g_\omega(x-t) dt \right] dx - \sum_{i=1}^n \alpha_i R_f(x_i)$
= $\int_a^b \left[\int_a^x L_\omega f(t) g_\omega(x-t) dt \right] dx - \sum_{i=1}^n \alpha_i \int_a^x L_\omega f(t) g_\omega(x_i-t) dt.$ (3.17)

De la définition de la fonction de Green (1.4), on a :

$$\int_{a}^{x} L_{\omega}f(t)g_{\omega}(x-t)dt = \int_{a}^{b} L_{\omega}f(t)g_{\omega}(x-t)dt.$$

D'après le théorème de Fubini, on obtient :

$$\int_{a}^{b} \left[\int_{a}^{x} L_{\omega} f(t) g_{\omega}(x-t) dt \right] dx = \int_{a}^{b} L_{\omega} f(t) \left[\int_{a}^{b} g_{\omega}(x-t) dx \right] dt.$$

De la même façon et en échangeant sommation et intégration on a :

$$\sum_{i=1}^{n} \alpha_i \int_a^x L_\omega f(t) g_\omega(x_i - t) dt = \int_a^b L_\omega f(t) \sum_{i=1}^{n} \alpha_i g_\omega(x_i - t) dt.$$

Donc la formule (3.17) se simplifie comme suit :

$$I(f) - T_{(n,\omega)}(f) = \int_{a}^{b} L_{\omega}f(t) \left[\int_{a}^{b} g_{\omega}(x-t)dx - \sum_{0}^{n} \lambda_{i}g_{\omega}(x_{i}-t) \right] dt,$$
(3.18)

et enfin on a

$$E(f,\omega) = \left| \int_{a}^{b} L_{\omega}f(t)K_{\omega}(t)dt \right|.$$
(3.19)

Remarque 4. 1) Le noyau de Peano de la quadrature n'est que l'erreur de la méthode appliquée à la fonction de Green; c'est à dire :

$$K_{\omega}(t) = E_{\omega}[g_{\omega}(\cdot - t)].$$

En effet, dans le cas polynômiale qui correspond à $\omega = 0$ *, l'expression du noyau est*

$$K(t) = \int_{a}^{b} g_{0}(x-t)dx - \sum_{i=1}^{n} g_{0}(x_{i}-t)dx$$

 $o\dot{u} g_0 = \frac{(x-t)_+^{n-1}}{(n-1)!}.$

Par exemple, la noyau de Peano de la méthode du point milieux qui est d'ordre 1, s'écrit :

$$K(t) = \int_{-1}^{1} (x - t)_{+} dx - 2f(0).$$

Un simple calcul nous donne

$$K(t) = \begin{cases} \frac{1}{2}(1-t)^2 & si \quad t \ge 0, \\ \frac{1}{2}(1+t)^2 & si \quad t \le 0. \end{cases}$$
(3.20)

Donc la formule de l'erreur est donnée par

$$E(f) = \frac{1}{2}f''(\xi); \qquad \xi \in [a,b].$$

2) Il est connue que la méthode composite est utilisée pour appliquer sur chaque sous intervalle la quadrature appropriée. Pour cette méthode que nous avons proposé, la méthode composite s'applique en choisissant sur chaque sous un intervalle $[a_j, a_{j+1}]$ le ω_j optimal.

3.3.2 Applications et exemples

Le cas le plus pratique est de prendre r = 2 et d = 1, donc l'opérateur L_{ω} s'écrit :

$$L_{\omega} = \left(\frac{\partial}{\partial x}\right)^2 \left[\frac{\partial^2}{\partial x^2} + \omega^2\right].$$

D'après le chapitre deux, la valeur optimale de ω est la valeur qui minimise la quantité :

$$\|\widehat{L_{\omega}f}(\xi)\|_{L^{2}} = \int_{-\infty}^{+\infty} \xi^{4} (\xi^{2} - \omega^{2})^{2} |\widehat{f}(\xi)|^{2} d\xi.$$

Posons $x = \omega^2$ dans la formule précédente et notons

$$F(x) = \int_{-\infty}^{+\infty} \xi^4 (\xi^2 - x)^2 |\hat{f}(\xi)|^2 d\xi.$$

Il s'ensuit que : $F'(x) = 2x \int_{-\infty}^{+\infty} \xi^4 |\hat{f}(\xi)|^2 d\xi - 2 \int_{-\infty}^{+\infty} \xi^6 |\hat{f}(\xi)|^2 d\xi$; donc le minimum de *F* est

$$x^{*} = \frac{\int_{-\infty}^{+\infty} \xi^{6} |\hat{f}(\xi)|^{2} d\xi}{\int_{-\infty}^{+\infty} \xi^{4} |\hat{f}(\xi)|^{2} d\xi}$$

Alors la valeur optimale de ω est donnée par l'expression explicite suivante :

$$\omega^* = \left(\frac{\int_{-\infty}^{+\infty} \xi^6 |\hat{f}(\xi)|^2 d\xi}{\int_{-\infty}^{+\infty} \xi^4 |\hat{f}(\xi)|^2 d\xi}\right)^{1/2}$$

La méthode sera construite sous la condition quelle soit exacte pour les éléments de l'espace suivant :

$$\ker L_{\omega^*} = \operatorname{span} \{1, x, \cos(\omega^* x), \sin(\omega^* x)\}.$$
(3.21)

Soit $a \ge 0$ et I = [-a, a]; a > 0; les nœuds x_1, x_2 et les coefficients α_1, α_2 vérifient :

$$\forall u \in \ker L_{\omega^*}: \quad \alpha_1 u(x_1) + \alpha_2 u(x_2) = \int_{-a}^{a} u(t) dt.$$
 (3.22)

Nous obtenons :

$$x_1 = \frac{1}{\omega^*} \arccos(\frac{\sin \omega^* a}{\omega^* a}), \qquad x_2 = -x_1 \quad \text{et} \quad \alpha_1 = \alpha_2 = 1.$$
 (3.23)

Remarque 5. On peut vérifier que si ω tend vers 0 la méthode coïncide avec la quadrature de Gauss classique; en effet on a :

$$\lim_{\omega \to 0} = \frac{1}{\omega} \arccos\left(\frac{\sin(\omega a)}{\omega a}\right) = \frac{a}{\sqrt{3}}$$

Remarque 6. *La base (3.21) peut être orthonormalisée par le procédé de Gramm-Schmit comme suit :*

- $\phi_1(x) = 1$.
- $\phi_2(x) = x$.
- $\phi_3(x) = \cos \omega x \frac{\sin a\omega}{a\omega}$ • $\phi_4(x) = \sin \omega x - x \left[\frac{3}{8} \left(\frac{1}{\omega^2} \sin(a\omega) \right) - \frac{2}{\omega} \cos a\omega \right].$

De plus, on peut vérifier que les nœuds x_1 et x_2 de la formule (3.23) sont les racines de la fonction $\phi_3(x)$.

Ce phénomène généralise exactement le cas polynomial où $\frac{1}{\sqrt{3}}$ *et* $-\frac{1}{\sqrt{3}}$ *sont les racines du troisième polynôme de Legendre.*

Analyse de l'erreur et noyau de Peano

Dans ce cas la fonction de Green associée à l'opérateur L_{ω} est

$$g_{\omega}(x) = \frac{x}{\omega^2} - \frac{\sin(\omega x)}{\omega^3}.$$

Supposons que $x_1 \ge 0$ et posons $x_1 = \alpha$, de la formule (5)

$$K_{\omega}(t) = \int_{-1}^{1} g_{\omega}(x-t)dx - (g_{\omega}(\alpha-t) + g_{\omega}(-\alpha-t)),$$

et d'après les propriétés de la fonction de Green, on a

$$\int_{-1}^{1} g_{\omega}(x-t)dx = \int_{t}^{1} g_{\omega}(x-t)dx$$
$$= \int_{t}^{1} \left(\frac{(x-t)}{\omega^{2}} - \frac{\sin(\omega(x-t))}{\omega^{3}}\right)dx$$
$$= \frac{(1-t)^{2}}{2\omega^{2}} + \frac{\cos(\omega(1-t)) - 1}{\omega^{4}}.$$

Pour le deuxième terme, on a

$$g_{\omega}(\alpha-t)+g_{\omega}(-\alpha-t)=\frac{(\alpha-t)_{+}}{\omega^{2}}-\frac{\sin(\omega(\alpha-t)_{+})}{\omega^{3}}+\frac{(-\alpha-t)_{+}}{\omega^{2}}-\frac{\sin(\omega(-\alpha-t)_{+})}{\omega^{3}}.$$

On distingue alors trois cas :

$$g_{\omega}(\alpha - t) + g_{\omega}(-\alpha - t) = \begin{cases} \frac{-2t}{\omega^2} + 2\frac{\sin(\omega t)\sin\omega}{\omega^4} & \text{si} \quad -1 \le t \le -\alpha, \\ \frac{(\alpha - t)}{\omega^2} - \frac{\sin(\omega(\alpha - t))}{\omega^3} & \text{si} \quad -\alpha \le t \le \alpha, \\ 0 & \text{si} \quad \alpha \le t \le 1, 1 \end{cases}$$
(3.24)

d'où l'expression du noyau de Peano :

$$K_{\omega}(t) = \begin{cases} \frac{(1+t)^{2}}{\omega^{2}} + \frac{\cos(\omega(1-t)t) - 1}{\omega^{4}} & \text{si} \quad -1 \le t \le -\alpha \\ \frac{(1-t)^{2}}{2\omega^{2}} + \frac{\cos(\omega(1-t)) - 1}{\omega^{4}} - \frac{(\alpha-t)}{\omega^{2}} + \frac{\sin(\omega(\alpha-t))}{\omega^{3}} & \text{si} \quad -\alpha \le t \le \alpha \\ \frac{(1-t)^{2}}{2\omega^{2}} + \frac{\cos(\omega(1-t)) - 1}{\omega^{4}} & \text{si} \quad \alpha \le t \le 1. \end{cases}$$
(3.25)

Les tableaux suivants regroupent les résultats de quelques testes pour comparer la méthode classique et la méthode proposée ainsi que le ω optimal minimisant l'erreur d'approximation.

$\int f(x)$	ω^*	$E(f, \omega^*)$	E(f,0)
$\cos(x)$	1	0	0.0071
$\cos(10x)$	3.65	0.0049	1.8546
$\cos(10\pi x)$	1.98	6.8968e - 04	1.5147
$\cos(\pi x/5)$	0.5	4.1848e - 04	0.0011
$\cos(\pi x/10)$	0.1	0	7.4045e – 07
$\cos(x^2)$	0.01	0.0809	0.0809
$\cos(x) + \cos(2x)$	1.83	2.4163e - 04	0.1080
$\cos(x^2) + \cos(\pi x)$	2.784	8.6286e – 05	0.4004
$\cos(6\pi x) + \cos(10x)$	4.84	2.1212e - 04	3.864649
$\sin^2(x) + \cos(x)$	2.79	1.4074e - 04	00433
$\sin((x+5)/\pi)$	0.32	1.4760e – 07	7.5723e – 05
$x\sin((x+5)/\pi)$	0.45	3.4097e - 08	1.9711e – 05
$x\sin(x^2+1)$	4.14	2.1925e – 06	0.0863
$\sin^2(x)$	2	4.0716e – 16	0.0925
• ()			0.4.60

TABLE 3.1 – Comparaison des méthodes pour quelques fonctions non trigonométriques.

Dans le tableau TABLE 3.1, les résultats numériques affirment que notre méthode généralisée est plus efficace que la quadrature classique pour une classe de fonctions trigonométriques et de fonctions à variations rapides.

On remarque que pour l'exemple $f(x) = \sin^2$, l'erreur est presque nulle pour $\omega = 2$, en effet $\sin^2 x = \frac{1}{2}(1 - \cos(2x))$ qui est une fonction qui appartienne à l'espace E_{ω} pour $\omega = 2$. L'erreur affichée est en fait l'erreur de la machine pour le calcul des formules trigonométriques.

Pour des fonctions lisses (sans oscillations rapides), la valeur optimale de ω^* est proche de zéro et les deux méthodes donnent les mêmes résultats TABLE3.2.

f(x)	ω^*	$E(f, \omega)$	$E_n(f)$
$x^4/16$	0.001	0.111	0.111
$x^2/(x+5)$	0.001	0.015	0.015
$x^2 e^{-(x+5)}$	0.001	6.8968e – 04	6.8968e – 04
$\log(x+2)$	0.001	0.0034	0.0034

TABLE 3.2 – Comparaison des méthodes pour quelques fonctions non trigonométriques.

En effet, dans le cas $\omega = 0$, l'espace de Chebyshev correspond à l'espace polynomial classique.

Par contre pour le polynôme p que nous avons défini dans (3.9), l'erreur minimale de cette méthode est $E_{\omega}(p) = 1.7334$ qui est obtenu pour $\omega \simeq 1800$.

Dans ce cas, on a $E_0(p) > E_\omega(p)$, mais on ne peut pas trouver une valeur de ω qui nous donne un bon résultat. Ceci est dû au fait que la méthode converge vers la méthode du point milieu quand ω tend vers l'infini. En effet, on remarque que les courbes suivantes de l'erreur $\omega \longrightarrow E(f, \omega)$ possèdent une limite asymptotique à la courbe de l'erreur de la méthode du point milieux c'est-à-dire associée à l'espace des polynômes de degré 1.

Contrairement au résultat obtenus dans le tableau TABLE3.2, les deux fonctions $f(x) = \frac{1}{1+x^2}$ et $g(x) = e^{-2x^2}$ font une exception (voir FIGURE.3 et FIGURE.4 dans la page suivante) car on a :

$$E_0(f) = 0.0451; E_{\omega}(f) = 1.4788e - 04$$
 pour $\omega = 2.7$,

et

$$E_0(g) = 0.1416; E_{\omega}(g) = 1.7342e - 04$$
 pour $\omega = 3.02$

Nous n'avons pas pour l'instant une explication théorique pour ces deux cas qui ne seront pas probablement les seuls.

Les Figures :

Nous présentons ici quelques courbes d'erreur $\omega \rightarrow E(\omega, f)$ pour quelques exemples utilisant la méthode de quadrature généralisée.

(a) la courbe d'erreur $E(f, \omega)$ pour $f(x) = e^{-2x^2}$

(b) la courbe d'erreur $E(f, \omega)$ pour $g(x) = \frac{1}{1+x^2}$

(a) la courbe d'erreur $E(f, \omega)$ pour $f(x) = \cos x$

(a) la courbe d'erreur $E(f, \omega)$ pour $f(x) = \sin^2 x$

(b) la courbe d'erreur $E(f, \omega)$ pour $f(x) = \cos x + \sin^2 x$

10

8 9

(a) la courbe d'erreur $E(f, \omega)$ pour $f(x) = \cos x \cos 10x$

(b) la courbe d'erreur $E(f, \omega)$ pour $f(x) = \cos(\pi x/10)$

(a) la courbe d'erreur $E(f, \omega)$ pour $f(x) = \cos x^2 + \cos \pi x$

(b) la courbe d'erreur $E(f, \omega)$ pour $f(x) = \sin^2 x + \cos x$

(a) la courbe d'erreur $E(f, \omega)$ pour $f(x) = sin((x+5)/\pi)$

(b) la courbe d'erreur $E(f, \omega)$ pour $f(x) = x \sin((x+5)/\pi)$

(a) la courbe d'erreur $E(f, \omega)$ pour $f(x) = \sin(x^2 + 1)$

Chapitre 4

Approximation des solutions des EDO

la méthode des différences finies (FDM) est une des méthodes les plus universelles et les plus efficaces pour la résolution des équations différentielles ordinaires ou partielles. Pour surmonter les difficultés de calculs rencontrées lors de l'application de cette méthode, de nouvelles généralisations sont apparues et évoluées dont la plus importante est la méthode des différence finies généralisée (GFDM) qui s'appelle aussi méthode des différences finies sans maillage introduite par Jensen [27]. Le principe de ces généralisations est de considérer un maillage arbitraire : les nœuds sont choisit d'une façon irrégulière adaptée à la nature du problème. Dans ce chapitre, nous adoptons une autre approche en généralisant l'opérateur aux différences par l'introduction d'un (ou de plusieurs) paramètres.

En effet, la dérivée seconde est approximer par un schéma dépendent d'un paramètre dans le but de la meilleure approximation de la solution.

Nous effectuons une application des résultats obtenus pour résoudre numériquement certaines EDO.

Il s'agit de calculer des approximations multi-échelles des solutions exactes.

Nous focalisons notre étude sur des algorithmes de calcul simples à mettre en œuvre tout en assurant leur stabilité.

4.1 Nouvelle approche pour les EDO

Dans le souci de simplifier la présentation, nous considérons l'équation différentielle

$$Lu = f \tag{4.1}$$

où L est un opérateur différentiel à coefficients constants et f est une fonction donnée intégrable.

Si l'on note g la fonction de Green associée à l'opérateur *L*, alors la solution de l'équation exacte est donnée par la formule suivante

$$u(x) = v(x) + g * f(x), \tag{4.2}$$

où $v \in \ker L$ est une fonction qui est souvent déterminer d'une manière unique par les conditions initiales. Notons que la fonction g est la solution homogène car $Lg = \delta$. On remarque que l'intégrale

$$\int_0^x g(x-t)f(t)dt$$

peut être calculer numériquement d'une manière efficace par la méthode décrite au chapitre 3. Il suffit alors, de déterminer les racines du polynôme caractéristique de L et sélectionner une méthode de quadrature adaptée à f et L.

Il s'agit de choisir un vecteur $\lambda = (\lambda_1, \dots, \lambda_n)$ minimisant la norme

$$\|L_{\lambda}(g*f)\|_{L^2}$$

Soit $(\tilde{\lambda_1}, \tilde{\lambda_2}, \dots, \tilde{\lambda_r})$ les racines du polynôme caractéristique de *L*, on peut alors écrire

$$L = L_{\tilde{\lambda}} = \prod_{k=1}^{r} (D - \tilde{\lambda_k}I)$$

si on prend $n \ge r$, on écrit

$$L_{\lambda} = L_{\tilde{\lambda}} \circ L_{\omega}$$

on obtient alors

$$\|L_{\lambda}(g * f)\|_{L^{2}}^{2} = \|L_{\omega}f\|_{L^{2}}^{2}$$

on peut alors décrire une méthode de quadrature optimale, au sens des résultats du chapitre 3, pour la résolution de l'équation de type 4.1.

Nous décrivons ici une méthode plus simple à mettre en œuvre pour la résolution numérique de ce type d'équations en utilisant des différences divisées généralisées et adaptatives.

4.1.1 Différences finies classiques

Rappelons le schéma des différences finis centrés classique

$$y''(x_i) = \frac{y(x_{i-1}) - 2y(x_i) + y(x_{i+1})}{h^2},$$
(4.3)

pour approcher la dérivée seconde d'une fonction

Théorème 13. Pour tout fonction $u \in C^4([a,b])$, pour tout $x_0 \in [a,b]$, $\exists C > 0$ tel que $\forall 0 < h < 1$, on a :

$$|u''(x_0) - \frac{u(x_0 - h) - 2u(x_0) + u(x_0 + h)}{h^2}| \le Ch^2$$
(4.4)

La constante C dépend de u et x_0 , mais pas de h, on remarque que l'erreur est divisée par 4 chaque fois que h est divisée par 2.

Or que pour certaines fonctions, la valeur l'efficacité de cette approximation (voir chapitre

3).

En effet, l'approximation (4.4) est adaptée aux fonctions "proches" des polynômes. Nous proposons ici une généralisation de cette approximation en se basant sur les résultats précédents.

4.1.2 Méthode des différences finies modifiée

Nous proposons ici d'approcher l'opérateur L_{λ} par l'opérateur aux différences Δ_{λ} définie dans le chapitre 1 (1.11) :

$$\Delta_{\lambda}^{n} := \Delta_{\lambda_{n}}^{1} \circ \Delta_{\lambda_{1},\dots,\lambda_{n-1}}^{n-1},$$

cette approximation est naturelle puisque

$$\ker \Delta_{\lambda}^{n} = \ker L_{\lambda}.$$

On se limite au cas n = 2, ce qui correspond à prendre r = 0 et d = 2, donc l'opérateur L_{ω} s'écrit :

$$L_{\omega} = D^2 + \omega^2 I,$$

et l'opérateur aux différences associé est

$$\Delta_{(\lambda_1,\lambda_2)}(f) = f(x) - e^{\lambda_1} + e^{\lambda_2} f(x-1) + e^{(\lambda_1+\lambda_2)} f(x-2).$$

Un simple calcul des racines du polynôme caractéristique, nous donne

$$\lambda_1 = -\lambda_2 = i\omega,$$

alors l'expression de $\Delta_{(\lambda_1,\lambda_2)}$ devient :

$$\Delta_{(\lambda_1,\lambda_2)}(f) = f(x) - 2\cos(\omega h)f(x-h) + f(x-2h).$$

L'équation différentielle Lu = f s'écrit :

$$y''(t) + \omega^2 y(t) = f(t)$$
 pour $t \in [a, b]$ et $\omega \in \mathbb{R}^*_+$. (4.5)

Remarque 7. Si l'on pose $D_{\omega}^2 = D^2 + \omega^2 I$, et des propriétés de Δ_{ω} définie au premier chapitre, on a au sens des distribution

$$D_{\omega}^2 N_2 = \Delta_{(i\omega, -i\omega)}^2 \delta. \tag{4.6}$$

Donc, si on multiplie l'équation (4.5), par N_2 dans S_h on a

$$\int_a^b D_\omega^2 y(t) N_2(t-k) dt = \int_a^b f(t) N_2(t-k) dt$$

encore des propriétés de Δ on a

$$\int_{a}^{b} y(t) D_{\omega}^{2} N_{2}(t-k) dt = \int_{a}^{b} f(t) N_{2}(t-k) dt$$

et de l'égalité (4.6) au dessus , on peut écrire

$$\int_{a}^{b} y(t) \Delta_{\omega}^{2} \delta(t-k) dt = \int_{a}^{b} f(t) N_{2}(t-k) dt$$

d'où, en déduit la formule d'une solution formelle comme suit

$$\Delta_{\omega}^2 y(k) = \int_a^b f(t) N(t-k) dt$$

On va chercher une solution approchée pour résoudre (4.5) numériquement en utilisant le schéma des différences finies basée sur l'opérateur aux différences défini au dessus, donc y" sera approchée comme suit

$$y''(x_i) = \frac{y(x_{i-1}) - 2\cos(\alpha h)y(x_i) + y(x_{i+1})}{h^2}, \quad 0 \le \alpha \le \omega$$
(4.7)

Remarque 8. 1) On remarque que si $\alpha = 0$, le schéma (4.7), correspond exactement au schéma des différences finies classique.

2) Si on veut appliquer cette idée pour une équation contenu un terme de la dérivée y', nous proposons l'approximation par

$$y' = \Delta_{\beta} y$$
,

où β est un paramètre à déterminer pour obtenir la meilleure approximation.

	140 11	Berreur quaur	auque moyenne p	our la methode	elassique
			la fe	onction	
	ω	0	<i>x</i> – 1	e^{-3x}	$x^2 e^{-3x}$
	3	0.0133	0.0146	0.0127	0.0133
	5	0.2112	0.2277	0.2007	0.2110
	8	54.970	55.571	54.379	54.9832
	10	0.0344	0.0347	0.0340	0.0344
EQM1	13	0.0395	0.0377	0.0390	0.0395
	15	0.0503	0.0505	0.0501	0.0503
	18	0.0519	0.0521	0.0517	0.0519
	20	2.0639	2.0684	2.0594	2.040
	23	1.001	1.0036	0.9997	1.0015

Tab 1 : L'erreur quadratique moyenne pour la méthode classique

4.2 **Exemples et Applications**

Considérons toujours le même problème que nous avons traité par la méthode classique : $\begin{cases}
y'' + \omega^2 y = f(x).....(I) \quad pour \quad \omega \in \mathbb{R}_+ \\
y(a) = \sigma \quad y(b) = \mu \\
\text{Alors, en utilisant l'approximation (4.7)on obtient :}
\end{cases}$

$$(I) \Leftrightarrow \begin{cases} \frac{1}{h^2} (y_{i-1} + (\omega^2 h^2 - 2\cos(\alpha h))y_i + y_{i+1}) = f(x_i) & i = 1, ..., n \\ y_0 = \sigma & y_{n+1} = \mu \end{cases}$$

- pour $i = 1 \implies \frac{(\omega^2 h^2 - 2\cos(\alpha h))y_1 + y_2}{h^2} = f_1 - \frac{\sigma}{h^2},$
- pour $i = 2 \implies \frac{y_1 + (\omega^2 h^2 - 2\cos(\alpha h))y_2 + y_3}{h^2} = f_2, .$
- pour $i = n \implies \frac{y_{n-1} + (\omega^2 h^2 - 2\cos(\alpha h))y_n}{h^2} = f_n - \frac{\mu}{h^2}.$

Ce qui correspond à la résolution d'un système linéaire qui s'écrit de la manière suivante :

$$Ay = B.$$

Avec la matrice

$$A = \frac{1}{h^2} \begin{pmatrix} (\omega^2 h^2 - 2\cos(\alpha h)) & 1 & 0 & \cdots & 0 \\ 1 & (\omega^2 h^2 - 2\cos(\alpha h)) & 1 & \cdots & 0 \\ 0 & 1 & (\omega^2 h^2 - 2\cos(\alpha h)) & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \vdots & \vdots & (\omega^2 h^2 - 2\cos(\alpha h)) \end{pmatrix},$$
(4.8)

et les vecteurs
$$B = \begin{pmatrix} f_1 - \frac{\sigma}{h^2} \\ f_2 \\ \vdots \\ f_{n-1} \\ f_n - \frac{\mu}{h^2} \end{pmatrix}$$
 et $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix}$

Remarque 9. *Rappelons d'abord les différents types des conditions aux limites qu'on va considérer.*

Définition 11. (Les condition aux limites)

Une condition aux limites est une contrainte sur les valeurs que prennent les solutions des équations aux dérivées ordinaires (EDO) et des équations aux dérivées partielles (EDP) sur une frontière.

Généralement si Ω est un domaine borné dans \mathbb{R}^2 , on distingue trois types des conditions aux limites :

1/ Condition de Dirichlet

$$u(x,y) = g(x,y)$$
 $(x,y) \in \partial \Omega$,

où la fonction u est connue sur la frontière de Ω

2/ Condition de Neumann

$$\frac{\partial u}{\partial n}(x,y) = g(x,y) \qquad (x,y) \in \partial\Omega,$$

où $\frac{\partial u}{\partial n}$ la dérivée normale de u est connue sur la frontière de Ω

3/ Condition de Robin (de Newton "dite aussi mixte")

$$A\frac{\partial u}{\partial n}(x,y) + Bu(x,y) = g(x,y) \qquad (x,y) \in \partial\Omega,$$

où $\frac{\partial u}{\partial n}$ est la dérivée normale et A,B sont des constantes tel que : $A^2 + B^2 \neq 0$

1/ Dans le même problème si on remplace la condition Dirichlet par la condition Neumann on trouve :

$$A = \frac{1}{h^2} \begin{pmatrix} (\omega^2 h^2 - 2\cos(\alpha h) + 1) & 1 & \dots & 0 \\ 1 & (\omega^2 h^2 - 2\cos(\alpha h)) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & (\omega^2 h^2 - 2\cos(\alpha h) + 1) \end{pmatrix}$$
$$B = \begin{pmatrix} f_1 + \frac{\sigma}{h} \\ f_2 \\ \cdot \\ \cdot \\ f_{n-1} \\ f_n - \frac{\mu}{h} \end{pmatrix} \qquad et \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ y_{n-1} \\ y_n \end{pmatrix}$$

2/ Dans le même problème si on remplace la condition Dirichlet par la condition mixte on trouve :

$$A = \frac{1}{h^2} \begin{pmatrix} (\omega^2 h^2 - 2\cos(\alpha h)) & 1 & \dots & 0 \\ 1 & (\omega^2 h^2 - 2\cos(\alpha h)) & \dots & 0 \\ 1 & (\omega^2 h^2 - 2\cos(\alpha h)) & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & (\omega^2 h^2 - 2\cos(\alpha h) + 1) \end{pmatrix}$$
$$B = \begin{pmatrix} f_1 - \frac{\sigma}{h^2} \\ f_2 \\ \vdots \\ f_2 \\ \vdots \\ f_{n-1} \\ f_{n-1} \\ f_{n-1} \\ f_{n} - \frac{\mu}{h} \end{pmatrix} \qquad et \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix}$$

Définition 12. L'erreur quadratique moyenne

Elle est parfois appelée aussi « risque quadratique ». L'erreur quadratique moyenne est définie par :

$$EQM = \frac{1}{n} \sqrt{\sum_{i=1}^{n} |y(t_i) - y_i|^2}$$

Où $y(t_i)$ est la solution analytique évaluée en $t = t_i$ et y_i la solution approximative en $t = t_i$ obtenue par une méthode numérique.

Nous avons réalisé quelques testes dans les cas suivants :

1)
$$f(x) = 0$$

$$2) \quad f(x) = x - 1$$

3)
$$f(x) = e^{-3x}$$

4)
$$f(x) = x^2 e^{-3x}$$

Les tableaux suivants résument et comparent entre les erreur; notons E l'erreur quadratique moyenne de la méthode de différences finies modifiée, donc le cas $\alpha = 0$ c'est l'erreur quadratique moyenne de la méthode différences finies classique.

				0					`			,	L	. ,	1 1			,	
α		0	0.5	5	1		1.	5	2		2.	5		3	3.	5	4		4.5
Ε	0.	1441	0.10	943	0.03	<u>08</u>	0.04	40	0.08	69	0.11	60	0.1	1363	0.1	522	0.16	77	0.1886
		Cas f	f(x) = x	<i>x</i> − 1	conc	litio	on mi	ixte	(n = 2)	20	ω = 5	, a	<i>α</i> = [0.5, a)] le j	pas	$\alpha = 0.$	5)	
α		0	0.5	5	1		1.5	5	2		2.5	5		3	3.	5	4		4.5
Ε	0.	1606	0.11	53	<u>0.032</u>	20	0.05	28	<u>0.10</u>	17	<u>0.13</u>	47	<u>0.1</u>	575	0.17	'48	0.19	07	0.2111
		Cas f	f(x) =	<i>e</i> ^{-3<i>x</i>}	cond	litio	on mi	xte	(<i>n</i> = 2	20 a	<i>ω</i> = 5	, α	e = [0.5 <i>,</i> ω] le p	oas d	$\alpha = 0.$	5)	
α		0	0.5	5	1		1.5	5	2		2.5	5		3	3.	5	4		4.5
Е	<i>E</i> 0.1336 0.0972 0.0298					<u>98</u>	0.03	90	0.078	80	0.10	48	0.1	237	0.13	88	0.15	39	0.1758
	(Cas f((x) = x	$e^{2}e^{-3}$	^x con	diti	on m	ixte	e (n =	20	$\omega = 5$	5,	α =	[0.5,	w] le	pas	$\alpha = 0$).5)	
α		0	0.5	5	1		1.5	5	2		2.5	5		3	3.	5	4		4.5
F	0	1/130	0.10	42	0.030	38	0.04	38	0.08	66	0.1156		0.1	.1359 0.13		.1518 0.1672		72	0.1882
L	0.	1437	0.10	12	0.000													_	
	0.	1437	Cas	$\frac{\mathbf{IZ}}{f(x)}$	= x -	1 cc	ondit	ion	Diric	hle	et (n =	= 20	ω =	=5,	<i>α</i> = [0,ω])		
	α	0	Cas	$\frac{12}{f(x)}$	= x -	1 co 1.5	ondit	2	Diric	2.5	et (<i>n</i> =	= 20	ω =	= 5 <i>,</i> 3.5	α = [0, ω 4])	4.5	
	α Ε	0 0.057	Cas	$\frac{12}{f(x)}$ 1 .056	= x -	1 cc 1.5 058	ondit	2	Diric 03 0.	2.5	et (<i>n</i> =	= 20 3 .217	ω = 74	= 5 , 3.5 0.819	$\alpha = [$	0, ω 4 .297]) 78 0	4.5	33
	α Ε	0 0.057	Cas 70 0 Cas	$\frac{12}{f(x)}$ $\frac{1}{0.056}$ $f(x)$	= x - $3 = 0.$	1 cc 1.5 058 1 co	ondit 6 0 ondit	ion 2 .07(ion	Diric 03 0. Neum	2.5 2.5 .100	et (n =	= 20 3 0.217 = 20	ω = 74 ω :	= 5 , 3.5 0.819 = 5 ,	$\alpha = [$ 99 1 $\alpha = [$	0, ω 4 .297]) 78 0])	4.5	33
α	α Ε	0 <u>0.057</u> 0	Cas 70 0 Cas) 0.5	$\frac{12}{f(x)}$ $\frac{1}{0.056}$ $f(x)$ 5	$= x - \frac{3}{2} = 0.$	1 cc 1.5 058 1 co	ondit	ion 2 .070 ion	Diric 03 0. Neum 2	2.5 2.5	t (n = 61 0) n (n = 2.5)	= 20 3 0.217 = 20 5	ω = 74 ω :	= 5 , 3.5 0.819 = 5 , 3	$\alpha = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0, ω 4 .297 0, ω]) 78 0]) 4	4.5	4.5
<i>α</i>	α Ε 0.	0 <u>0.057</u> 0 0070	Cas 70 0 Cas 0.5 0.00 0.00	$ \begin{array}{c} 1 \\ \hline f(x) \\ 1 \\ 056 \\ f(x) \\ 5 \\ 59 \\ \end{array} $	$= x - \frac{3}{2} 0.$ $= x - \frac{1}{2}$	1 cc 1.5 058 1 co	ondit 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ion 2 .070 ion 5 43	Diric 03 0. Neum 2 0.009	2.5 2.5 .106 nan	$\begin{array}{c c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	= 20 3 .217 = 20 5 64	$\omega =$ 74 $\omega =$ 0.0	= 5 , 3.5 0.819 = 5 , 3 0254	$\alpha = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0, ω 4 297 0, ω 5]) 78 0]) 4 0.13	4.5 .533 08	33 4.5 0.1874
<i>μ</i>	α Ε 0.	0 0.057 0 0070	Cas 70 0 Cas 0.5 0.00 0.00	$ \frac{12}{f(x)} \frac{1}{1} \frac{.056}{6} \frac{1}{59} f(x) $	$= x - \frac{3}{0.003}$ $= x - \frac{1}{0.003}$	1 co 1.5 058 1 co 35	ondit 6 0 0 0 0 0 0 0 1.5 0.00 ition	ion 2 .070 ion 5 43 de	Diric 03 0. Neum 2 0.009	2.5 .100 nan 96	et $(n = 51 \ 0 = 51 \ 0.01$ n $(n = 2.5 \ 0.01$ n $(n = 51 \ 0.01)$	= 20 3 0.217 = 20 5 64 = 20	$\omega =$ 74 $\omega =$ 0.0	= 5 , 3.5 0.819 = 5 , 3 0254 = 3 ,	$\alpha = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0, ω 4 .297 0, ω 5 29 0, ω]) 78 0]) 4 0.13])	4.5	4.5 0.1874
<i>μ μ μ μ μ μ μ μ μ μ</i>	α Ε 0.	0 0.057 0 0070	Cas 70 0 Cas 0.5 0.00 0.3		$= x - \frac{3}{2} = 0$ $= 0 cc$ 0.66	1 cc 1.5 058 1 co 35	ondit 6 0 0ndit 1.5 0.00 ition 0.9	ion 2 .07(0 ion 5 43 de 2	Diric 03 0. Neum 2 0.009 Neum 1.2	2.5 .100 nan 96	$\begin{array}{c c} $	= 20 3 .217 = 20 5 64 = 20 5	$\omega = \frac{\omega}{1}$	= 5 , 3.5 0.819 = 5 , 3 0254 = 3 , 8	$\alpha = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0, ω 4 297 0, ω 5 .29 0, ω 1]) 78 0]) 4 0.13]) 2.4	4.5	4.5 0.1874 2.7
μ	α Ε 0.	0 0.057 0 0070 0 0109	Cas 70 0 Cas 0.5 0.00 0.3 0.00 0.3	$\frac{12}{f(x)}$ $\frac{1}{1}$ $\frac{.056}{f(x)}$ $\frac{59}{f(x)}$ $\frac{1}{3}$ $\frac{49}{1}$	$= x - \frac{3}{2} = 0.003$ $= 0.003$ $= 0.003$ $= 0.003$	1 cc 1.5 058 1 co 35 0 ond	ondit 6 0 0 0 0 0 0 0 1.5 0.00 ition 0.9	ion 2 .07(ion 5 43 de 33	Diric Diric 03 0. Neum 2 0.009 Neum 1.2 0.022	2.5 .100 nan 96 nan 2	et $(n = 51 \ 0 \ n \ (n = 2.5 \ 0.01 \ n \ (n = 1.5 \ 0.03 \ 0.$	= 20 3 .217 = 20 5 64 = 20 5 64	$\omega = \frac{1}{2}$ $\omega = \frac{1}{2}$ $\omega = \frac{1}{2}$	= 5 , 3.5 0.819 = 5 , 3 0254 = 3 , 8 0519	$\alpha = [$ 99 1 $\alpha = $ 3 0.04 $\alpha = [$ 2. 0.06	0, <i>w</i> 4 297 0, <i>w</i> 5 29 0, <i>w</i> 1]) 78 0]) 4 0.13]) 2.4 0.08	4.5 .533 08	33 4.5 0.1874 2.7 0.1069
<i>α β β β β β β β β β β</i>	α Ε 0.	0 0.057 0 0070 0 0109 Ca	Cas 70 0 Cas j 0.5 0.5 0.00 0.3 0.00 0.3 0.00 0.3	$\frac{12}{f(x)} \\ \frac{1}{2} \\ $	$= x - \frac{3}{2} = 0 c c \frac{3}{2} = 0 c \frac{3}{2$	1 cc 1.5 058 1 co 35 0 ondi 91 3x co	ondit a6 0 a7 0 a7 0 a6 0 a7 0 a7 0 a7 0 a7 0	ion 2 .07(ion 5 43 de 2 33 33	Diric Diric 03 0. Neum 2 0.009 Neum 1.2 0.022 de Ne	2.5 .100 nan 96 nan 2 21	et $(n = 51 \ 0 = 51 \ 0.01$ n $(n = 2.5 \ 0.01$ n $(n = 1.5 \ 0.03$ n ann	= 20 3 2.217 = 20 5 64 = 20 5 67 (n = 1)	$\omega = \frac{\omega}{1}$	= 5 , 3.5 0.819 = 5 , 3 0254 = 3 , 8 0519 $\omega = 8$	$\alpha = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} 0, \omega \\ 4 \\297 \\ 0, \omega \\ 5 \\ .29 \\ 0, \omega \\ 1 \\ .77 \\ = [(\end{array} $]) 78 0]) 4 0.13]) 2.4 0.08 0.08	4.5 .533 08	4.5 0.1874 2.7 0.1069
$\begin{bmatrix} \alpha \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	α Ε 0.	0 0.057 0 0070 0 0109 Ca 0	$ \begin{array}{c c} \hline 0.10 \\ \hline Cas \\ \hline 70 \\ \hline 0 \\ \hline 0.2 \\ \hline 0.00 \\ \hline Cas \\ \hline 0.00 \\ \hline 0.3 \\ \hline 0.00 \\ \hline 1s f(x) \\ \hline 0.8 \\ \end{array} $	$ \begin{array}{c} 1 \\ \hline f(x) \\ f(x) \\ \hline f(x) \\ g \\ f(x) \\ g \\ f(x) \\ g \\ f(x) \\ $	$= x - \frac{3}{2} = 0.003$ $= x - \frac{1}{2} = 0.003$ $= 0.009$ $x^{2})e^{-3}$ $= 0.6$	1 cc 1.5 058 1 co 35 0 ondi 91 3x co 2	ondit 6 0 onditi 1.5 0.00 0.00 ition 0.9 0.01 0.01 ondit: 2.4	ion 2 .07(ion 5 43 de 33 ion	Diric Diric 03 0. Neum 2 0.009 Neum 1.2 0.022 de Ne 3.2	2.5 .106 nan 96 221 21	$ \begin{array}{c c} $	= 20 3 2.217 $= 20$ 5 64 $= 20$ 67 $(n = -1)$	$\omega =$ 74 0.0 $\omega =$ 1 0.0 $\omega =$ 20 4.8	= 5 , 3.5 0.819 = 5 , 3 0254 = 3 , .8 0519 $\omega = 8$	$\alpha = [$ 99 1 $\alpha = $ 3 0.04 $\alpha = [$ 2. 0.06 8 , α 5.6	$ \begin{array}{c} 0, \omega \\ 4 \end{array} $ $ \begin{array}{c} 0, \omega \\ 5 \end{array} $ $ \begin{array}{c} 0, \omega \\ 5 \end{array} $ $ \begin{array}{c} 0, \omega \\ 1 \end{array} $ $ \begin{array}{c} 1 \end{array} $ $ \begin{array}{c} = [0, \omega \\ 1 \end{array} $]) 78 0]) 4 0.13]) 2.4 0.08 0,ω]) 6.4	4.5 .533 08 49	4.5 0.1874 2.7 0.1069 7.2
<i>α α Ε α α Ε α α Ε</i>	α Ε 0.1 0.1 54	0 0.057 0 0070 0 0109 Ca 0 4.983	Cas 70 0 70 0 Cas 0.5 0.00 0.3 0.00 0.3 0.00 0.8 54 54	$ \begin{array}{c} 1 \\ \hline f(x) \\ f(x) \\ \hline f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ f(x) \\ $	$= x - \frac{3}{2} = 0 - \frac{3}{2} $	$ \frac{1 \text{ cc}}{1.5} \\ 058 \\ 1 \text{ co} \\ 35 \\ 0 \text{ ond} \\ \frac{35}{21} \\ \frac{91}{3^{3x} \text{ co}} \\ 2 \\ 0.1 $	ondit ondit ondit 06 0 ondit 1.5 0.000 ition 0.9 0.01 ondit 2.4 .815	ion 2 .07(0 ion 43 de 33 ion 2 .07(0) .07(0)	Diric Diric 0.009 Neum 1.2 0.002 0.022 de Ne 3.2 7955	2.5 .100 nan 96 nan 21 21 <u>1.0</u>	$ \mathbf{r} = \frac{1}{2} \mathbf{r} =$	= 20 3 2.217 $= 20$ 5 64 $= 20$ 5 67 $(n = 1.7)$	$\omega =$ 74 0.0 $\omega =$ 1 0.0 $\omega =$ 20 4.8 1439	$\begin{array}{c} = 5 , \\ 3.5 \\ 0.819 \\ = 5 , \\ 3 \\ 0.254 \\ = 3 , \\ .8 \\ 0.519 \\ \omega = 8 \\ \omega = 8 \\ 0.519 \\ \omega = 8 \\ 0.519 \\ \omega = 1 \\ 0.519 \\ $	$ \begin{array}{c} \alpha = [\\ 99 \\ 1 \\ \alpha = [\\ 3 \\ 0.04 \\ \alpha = [\\ 2 \\ 0.06 \\ 8 , \alpha \\ 5.6 \\ 2042 \\ \end{array} $	$\begin{array}{c} 0, \omega \\ 4 \\297 \\ 0, \omega \\ 5 \\ .29 \\ 0, \omega \\ 1 \\77 \\ = [0 \\ 1 \\ \\ 1 \\ \\ \\ 1 \\ \\ \\ 1 \\ $]) 78 0]) 4 0.13]) 2.4 0.08 (0,ω]) 6.4 2406	4.5 .533 08 49	33 4.5 0.1874 2.7 0.1069 7.2 2482

Cas homogène condition mixte $(n = 20 \ \omega = 5 \ , \ \alpha = [0.5, \omega] \ le \ pas \ \alpha = 0.5)$

Les Figures

Cas homogène f(x) = 0, $\omega = 5$, conditions de Dirichlet

-0.4 L 0

0.1

Cas homogène f(x) = 0, $\omega = 5$, conditions de Neumann

0.5 0.6 0.7

0.8

0.9

1

-0.4 L 0

0.1

0.2 0.3 0.4

(b) alpha=0.3

0.4

0.5 0.6

0.7

0.8 0.9

1

0.3

0.2

Cas f(x) = x - 1, $\omega = 5$, conditions mixtes

Cas f(x) = x - 1, $\omega = 5$, conditions de Neumann

(b) alpha=1

Cas $f(x) = e^{-3x}$, $\omega = 5$, conditions de Neumann

(b) alpha=2.4

Cas $f(x) = \sin x$, $\omega = 5$, conditions mixtes

4.2.1 Discussions des résultats

Les différentes expérimentations numériques montrent qu'il existe toujours un optimal α minimisant l'erreur entre la solution exacte et la solution approchée. Mais pour des valeurs très grandes, la méthode donne de mauvais résultats qui est naturel puisque cela correspond à réduire l'ordre d'approximation.

Ce même phénomène a été rencontré et analysé dans le chapitre 3 en cas de quadrature numérique.

Les résultats obtenus sont encourageants et ouvrent des perspectives plus vaste de recherches sur la faisabilité technique et analyse numérique de l'approche. En particulier les questions suivantes s'imposent

- 1) Comment concilier la minimisation de l'erreur entre f et l'opérateur L?
- 2) L'adaptativité avec un ordre d'approximation raisonnable.
- 3) Généraliser cette approche au cas d'opérateur non linéaire ou à coefficients variables.
- 4) Généraliser cette approche pour les EDP.

Conclusion

Dans ce travail, nous avons proposé une méthode pour améliorer l'approximation des fonctions basée sur la sélection du meilleur espace de Chebyshev qui minimise la norme de l'erreur d'approximation dans L^2 .

Comme application de ce résultat, nous avons construit une généralisation de la quadrature de Gauss basée sur les espaces de Chebyshev.

L'idée est de choisir les poids et les nœuds de sorte que la méthode soit exacte pour les éléments d'un certain système de Chebyshev : c'est le même principe que dans le cas polynomial. Nous avons considéré un exemple d'espace de Chebyshev dépendant d'un ensemble de paramètres. Ces paramètres sont déterminés d'une manière adaptative et optimale en minimisant un critère lié à l'erreur d'approximation. Nous avons illustré l'efficacité de cette approche par des exemples numériques et expérimentations.

Une autre application évidente et directe pour cette généralisation est de l'appliquer pour les EDO. Nous avons présenté une généralisation de la méthode des différences finies en perturbant le coefficient du schéma de discrétisation de la dérivée seconde. Nous avons appliqué ce nouveau schéma pour des équations différentielles ordinaires. Les testes effectués pour les différents cas de conditions initiales ont montré l'efficacité de ce nouveau schéma proposé.

Ce travail ouvre plusieurs perspectives de recherches et application en théorie d'approxi-

mation, analyse numérique et la résolution numériques des EDP.

Bibliographie

- Rachid AIT-HADDOU, Michael BARTOŇ et Victor Manuel CALO: Explicit gaussian quadrature rules for c¹ cubic splines with symmetrically stretched knot sequences. *Journal* of Computational and Applied Mathematics, 290:543–552, 2015.
- [2] Dan AMIR et Zvi ZIEGLER : Relative chebyshev centers in normed linear spaces, part ii. Journal of approximation theory, 38(4):293–311, 1983.
- [3] Priya BAZAD : Class of trigonometric transformation estimator. Journal of Statistics and Management Systems, 22(5):961–968, 2019.
- [4] JJ BENITO, F URENA, L GAVETE et B ALONSO : Application of the generalized finite difference method to improve the approximated solution of pdes. *Computer Modelling in Engineering & Sciences*, 38:39–58, 2009.
- [5] Juan José BENITO, Francisco UREÑA, Luis GAVETE, Eduardo SALETE et A MUELAS : A gfdm with pml for seismic wave equations in heterogeneous media. *Journal of computational* and applied mathematics, 252:40–51, 2013.
- [6] Gregory BEYLKIN et Lucas MONZON : On generalized gaussian quadratures for exponentials and their applications. *Applied and Computational Harmonic Analysis*, 12(3):332–373, 2002.

- [7] Peter BORWEIN et Tamás ERDÉLYI : *Polynomials and polynomial inequalities*, volume 161.Springer Science & Business Media, 2012.
- [8] Dietrich BRAESS : *Nonlinear approximation theory*, volume 7. Springer Science & Business Media, 2012.
- [9] Mahmoud BRAHIMI, Khaled MELKEMI et Abdelmalik BOUSSAAD : Design of nonstationary wavelets through the positive solution of bezout's equation. *Journal of Interdisciplinary Mathematics*, pages 1–13, 2020.
- [10] Martine BRILLEAUD : Utilisation des floraisons pour les processus de subdivision dans les espaces de Chebyshev. Thèse de doctorat, Université Grenoble Alpes, 2017.
- [11] Martine BRILLEAUD et Marie-Laurence MAZURE : Mixed hyperbolic/trigonometric spaces for design. *Computers & Mathematics with Applications*, 64(8):2459–2477, 2012.
- [12] Martine BRILLEAUD et Marie-Laurence MAZURE : Design with l-splines. *Numerical Algorithms*, 65(1):91–124, 2014.
- [13] Zhao Fang CHEN et Wen Han HUANG : Gm (1, 1) model predicting elevator spare parts based on trigonometric function of variable coefficient. *Journal of Discrete Mathematical Sciences and Cryptography*, 21(6):1183–1187, 2018.
- [14] Charles K CHUI: An introduction to wavelets. Elsevier, 2016.
- [15] Héctor Hugo CUENYA et Fabián Eduardo LEVIS : Nonlinear chebyshev approximation to set-valued functions. *Optimization*, 65(8):1519–1529, 2016.
- [16] Ingrid DAUBECHIES : Ten lectures on wavelets. CBMS Lecture Notes Series, SIAM, 1991.
- [17] Ingrid DAUBECHIES : Orthonormal bases of compactly supported wavelets ii. variations on a theme. SIAM Journal on Mathematical Analysis, 24(2):499–519, 1993.
- [18] Carl DE BOOR et Carl DE BOOR : A practical guide to splines, volume 27. springer-verlag New York, 1978.

- [19] Carl de BOOR, Ronald DEVORE et Amos RON : On the construction of multivariate (pre)wavelets. *Constructive Approximation*, 9:123–166, 1993.
- [20] J.P. DEMAILLY : Analyse numérique et équations différentielles 4ème Ed. GRENOBLE SCIENCES. EDP Sciences, 2016.
- [21] Gwynne A Evans et KC CHUNG : Some theoretical aspects of generalised quadrature methods. *Journal of Complexity*, 19(3):272–285, 2003.
- [22] Gwynne A Evans et KC CHUNG : Evaluating infinite range oscillatory integrals using generalised quadrature methods. *Applied numerical mathematics*, 57(1):73–79, 2007.
- [23] Chia-Ming FAN et Po-Wei LI: Generalized finite difference method for solving twodimensional burgers' equations. *Procedia Engineering*, 79:55–60, 2014.
- [24] Claude GASQUET et Patrick WITOMSKI : Fourier analysis and applications : filtering, numerical computation, wavelets, volume 30. Springer Science & Business Media, 2013.
- [25] Thomas Y Hou : Numerical approximations to multiscale solutions in partial differential equations. *Frontiers in numerical analysis*, pages 241–301, 2003.
- [26] Daan HUYBRECHS et Ronald COOLS : On generalized gaussian quadrature rules for singular and nearly singular integrals. SIAM journal on numerical analysis, 47(1):719–739, 2009.
- [27] Paul S JENSEN : Finite difference techniques for variable grids. Computers & Structures, 2(1-2):17–29, 1972.
- [28] Samuel KARLIN et William J STUDDEN : *Tchebycheff systems : With applications in analysis and statistics,* volume 15. Interscience Publishers, 1966.
- [29] Dalila KENDRI et Khaled MELKEMI: A new criterion for best quadrature method. *Journal* of Interdisciplinary Mathematics, 10.1080/09720502.2021:1–12.
- [30] Soon-Geol Kwon : Quadrature formulas for wavelet coefficients. Journal of the Korean Mathematical Society, 34(4):911–925, 1997.

- [31] Pierre-Jean LAURENT : Approximation et optimisation. Hermann, 1972.
- [32] J MA, V ROKHLIN et Stephen WANDZURA : Generalized gaussian quadrature rules for systems of arbitrary functions. SIAM Journal on Numerical Analysis, 33(3):971–996, 1996.
- [33] Esmeralda MAINAR et Juan Manuel PEÑA : Optimal bases for a class of mixed spaces and their associated spline spaces. *Computers & mathematics with applications*, 59(4):1509– 1523, 2010.
- [34] Stéphane MALLAT : A Wavelet tour of signal processing. Elsevier, 1999.
- [35] Marie-Laurence MAZURE : Chebyshev spaces and bernstein bases. *Constructive approximation*, 22(3):347–363, 2005.
- [36] Marie-Laurence MAZURE : Extended chebyshev piecewise spaces characterised via weight functions. *Journal of Approximation Theory*, 145(1):33–54, 2007.
- [37] Marie-Laurence MAZURE : Polynomial splines as examples of chebyshevian splines. Numerical Algorithms, 60(2):241–262, 2012.
- [38] Marie-Laurence MAZURE et Khaled Melkémi : Orthonormality of cardinal chebyshev b-spline bases in weighted sobolev spaces. *Constructive approximation*, 18(3), 2002.
- [39] Khaled MELKEMI : Orthogonalité des B-splines de Chebyshev cardinales dans un espace de Sobolev pondéré. Thèse de doctorat, Université Joseph-Fourier-Grenoble I, 1999.
- [40] Gradimir V MILOVANOVIĆ : Generalized quadrature formulae for analytic functions. Applied Mathematics and Computation, 218(17):8537–8551, 2012.
- [41] Gradimir V MILOVANOVIĆ, Aleksandar S СVЕТКОVIĆ et Marija P STANIĆ : Trigonometric orthogonal systems and quadrature formulae. Computers & Mathematics with Applications, 56(11):2915–2931, 2008.

- [42] Gradimir V MILOVANOVIĆ, Tomislav S IGIĆ et Dragana TURNIĆ : Generalized quadrature rules of gaussian type for numerical evaluation of singular integrals. *Journal of Computational and Applied Mathematics*, 278:306–325, 2015.
- [43] SE MOUSAVI, H XIAO et N SUKUMAR : Generalized gaussian quadrature rules on arbitrary polygons. International Journal for Numerical Methods in Engineering, 82(1):99– 113, 2010.
- [44] Paul SABLONNIÈRE : Quasi-interpolants splines : exemples et applications. In ESAIM : Proceedings, volume 20, pages 195–207. EDP Sciences, 2007.
- [45] Michelle Schatzman : Analyse numérique : une approche mathématique : cours et exercices. Dunod, 2001.
- [46] Larry SCHUMAKER : Spline functions : basic theory. Cambridge University Press, 2007.
- [47] Maryam Shams Solary : Converting a chebyshev polynomial to an ordinary polynomial with series of powers form. *Journal of Interdisciplinary Mathematics*, 21(7-8):1519–1532, 2018.
- [48] Josef Stoer et Roland Bulirsch : Topics in integration. In Introduction to Numerical Analysis, pages 125–166. Springer, 1993.
- [49] Henricus G ter MORSCHE : Interpolational and extremal properties of L-spline functions. Thèse de doctorat, Technische Hogeschool Eindhoven, 1982.
- [50] Nenad UJEVIC et AJ ROBERTS : A corrected quadrature formula and applications. AN-ZIAM journal, 45:E41–E56, 2003.
- [51] Michael UNSER et Thierry BLU : Cardinal exponential splines : Part I-theory and filtering algorithms. *IEEE Transactions on Signal Processing*, 53(4):1425–1438, 2005.
- [52] Hong XIAO, Vladimir Rokhlin et Norman Yarvin : Prolate spheroidal wavefunctions, quadrature and interpolation. *Inverse problems*, 17(4):805, 2001.