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Symbols

Symbols

Iy the identity operator

L(Y ) the set of continuous linear operators from Y into itself

‖Y ‖2 the Euclidean norm of Y ∈ Rn+1 such that ‖Y ‖2 =
√∑n+1

i=1 y
2
i

C[a, b] the space of continuous functions given on an interval [a, b]

‖γ‖∞ the uniform norm of γ ∈ C[a, b] such that ‖γ‖∞ =

supt∈[a,b] |γ(t)|

dG the derivative of a di�erentiable function G

‖.‖ a norm

det[M ] the determinant of a matrix M

P T the transpose of a vector P

M−1 the inverse of a matrix M

I the identity matrix

|.| the absolute value
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Abstract

Abstract

Abstract: This thesis is intended to solve Volterra integral equations. More precisely, it

focuses on the cases of a weakly singular kernel. These integral equations can be solvable when

we use the product integration method that plays an important role. For simplicity, we begin

this thesis by giving some elementary concepts and basic theories.

keywords: Volterra integral equation, product integration method, weakly singular ker-

nel.

Résumé: Cette thèse a pour but de résoudre les équations intégrales de Volterra, plus

précisément, elle s'intéresse aux cas du noyau faiblement singulier. Ces équations intégrales sont
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Abstract

possible à résoudre en utilisant la méthode d'intégration produit qui joue un rôle important.

Pour simpli�er, on commence cette thèse en donnant quelques concepts élémentaires et des

théories de base.

Mots-clés: Équation intégrale de Volterra, méthode d'intégration produit, noyau faible-

ment singulier.
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Introduction

Introduction

The challenge of our work is to treat the more general cases of linear and nonlinear weakly

singular Volterra integral equations, for z, τ ∈ [a, b],

x(z) = γ(z) +

∫ z

a

k(z, σ)x(σ)dσ, (1)

and

z(τ) = g(τ) +

∫ τ

a

ν(τ, σ)κ(τ, σ, z(σ))dσ, (2)

when their kernels are subject to certain conditions. More speci�cally, in [59], Nemer, Mokhtari

and Kaboul apply a product integration method to solve (2) which certainly represents the

nonlinear cases of Volterra intgral equations. This method enables us to cover general forms of

weakly singular Volterra integral equations and to obtain precise results. In addition, Nemer,

Kaboul and Mokhtari treat the linear Volterra integral equation (1) in [58] that is based on

the techniques of a product integration method to get best solutions. This re�ects the fact

that the application of a product integration method makes it possible to solve the former

integral equations. For both equations (1) and (2), we base on a piecewise linear approximation.

This leads to formulate linear and nonlinear systems of integral equations that are solved by

classical methods. Speci�cally, we use Broyden's method for nonlinear case. The convergence

of Broyden's method cannot be realized without satisfying speci�c conditions. One of these
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Introduction

conditions is an appropriate choice of an initial guess Y (0) and of an approximation of the

Jacobian matrix at a root Y ∗, see [40, 21, 83, 55] for more information. Indeed, the way

of analysing (1) and (2) is inspired by the paper [29] that investigates the Fredholm integral

equation of the form

x(s)−
∫ b

a

H(s, t)L(s, t)F (t, x(t))dt = y(s), s ∈ [a, b], (3)

see [39] for more details.

On the other hand, practical techniques of a product integration method help us to

skip insurmountable obstacles. This reveals the fact that a product integration method is of

importance in our work.

Over the years, several methods are used to solve di�erent types of integral equations.

As an example, a Legendre-collocation method emerged in [78] that is devoted to the Volterra

integral equation of the second kind

y(t) +

∫ t

0

R(t, s)y(s)ds = f(t), t ∈ [0, T ], (4)

where R and f are known. For some other methods, we can mention a Nyström type method

which is applied in [6] to the nonlinear Volterra integral equation

y(t) =

∫ t

0

h(t, s)f(s, y(s))ds+ g(t), t ∈ [0, T ], (5)

where h is weakly singular.

Indeed, we begin this thesis by reviewing various classes of Volterra integral equations,

see [5, 50, 65, 66, 26, 48]. We can see that this part pays attention to �rst-kind and second-

kind Volterra integral equations. To distinguish between them, it su�ces to observe their

5



Introduction

sides. For an overview of integral equations, Section 1.1 includes some examples as Volterra-

Hammerstein integral equations. We then proceed to discuss the convergence of Broyden's

method, and to study polynomial approximations that involve Hermite−Fejér interpolation

polynomials, piecewise linear interpolation and Bernstein polynomials. On the other hand, we

present a review of bounded linear operators to be able to deal with the operator equation of

the form

Hy = p. (6)

For a deeper understanding of bounded linear operators, we can resort to [4, 1, 44] which

enables us to get an exact knowledge about the existence and uniqueness of the solution of

(6). Moreover, we give some important theorems like the theorem of the convergence of the

Neumann series.

In the sequel, this thesis involves four chapters which are summarized as follows.

In Chapter 1, we present some elementary concepts and basic theories. Speci�cally, we

begin with a review of various classes of Volterra integral equations. We proceed to describe the

convergence of Broyden's method, and then we discuss polynomial approximations. In addition,

we give a review of bounded linear operators.

In Chapter 2, we study the application of a product integration method to nonlinear

weakly singular Volterra integral equations. More speci�cally, we begin with the solvability of

these integral equations and then show the techniques of a product integration method in detail.

Of course, we conclude Chapter 2 by discussing the convergence of approximate solutions.

We devote Chapter 3 to linear weakly singular Volterra integral equations which can be
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Introduction

solved by resorting to a product integration method that allows us to get an optimal solution.

To illustrate the convergence of approximate solutions, we need to show the numerical per-

formance of a product integration method. Chapter 4 provides numerical applications involving

some examples of weakly singular Volterra integral equations.

7



Chapter 1

Discussion of basic

theories for Volterra

integral equations

In this chapter, we present some elementary concepts related to Volterra integral equations.

This enables us to avoid complications that can happen in the later chapters. We also provide

fundamental theories which play an important role, and we try to cover all basic notions that

are required to get a complete work. Therefore, we can say that this chapter represents a

signi�cant guide to Volterra integral equations.

1.1 Review of various classes of Volterra

integral equations

This section gives a brief summary of various types of integral equations that involves Volterra

integral equations of the �rst and second kind, and we discuss linear and nonlinear cases. This
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1. Discussion of basic theories for Volterra integral equations

illustrates the di�erences between these integral equations. To acquire an elementary knowledge

about the types of weakly singular Volterra integral equations, we review several examples like

Abel-Volterra integral equations.

1.1.1 First−kind Volterra integral equations

To study integral equations, it is possible to begin with the linear Volterra integral equation of

the following form

0 = γ(z) + Υx(z), (1.1)

where Υx, the so-called Volterra integral operator, is determined by

Υx(z) = −
∫ z

a

k(z, σ)x(σ)dσ, z > a, (1.2)

such that the functions k and γ are known ( See [50, 5, 65, 66] ). Moreover, one can seek

an approximate solution for the former integral equation by employing various methods, for

example a product integration method. In other words, a product integration method represents

one of the best methods that produces an optimal approximation to the exact solution x.

On the other hand, it is important to recall Abel-Volterra integral equations of the �rst

kind. This class of integral equations is given by

0 = γ(z)−
∫ z

0

k(z, σ)x(σ)dσ, z > 0, (1.3)

where the part k is de�ned as, for a smooth function ϕ,

k(z, σ) = (z` − σ`)−αϕ(z, σ), (1.4)

9



1. Discussion of basic theories for Volterra integral equations

such that the value of ` is strictly positive (` > 0) and α ∈ (0, 1), for details see [5]. To conclude

this subsequent section, we must de�ne nonlinear Volterra integral equations of the �rst kind.

For this, it su�ces to take the equation (1.1), but Υx now represents the integral operator of

the form

Υx(z) = −
∫ z

a

k(z, σ, x(σ))dσ, z > a. (1.5)

1.1.2 Second−kind Volterra integral equations

In what follows, we provide a rather comprehensive account of second-kind Volterra integral

equations that involves linear and nonlinear cases. We then talk about smooth and weakly

singular kernels. More precisely, we start with the general form of the nonlinear Volterra

integral equation

x(z) = γ(z) + Υx(z), (1.6)

where

Υx(z) = −
∫ z

a

k(z, σ, x(σ))dσ, z > a, (1.7)

with x denotes the unknown function.

In Chapter 2, we deal with the nonlinear weakly singular Volterra integral equation of

the form

z(τ) = g(τ) +

∫ τ

a

ν(τ, σ)κ(τ, σ, z(σ))dσ, τ ∈ [a, b], (1.8)

where κ and g are su�ciently smooth functions. Concerning the weakly singular kernel ν, it is

enough to claim that

sup
τ∈[a,b]

∫
[a,b]

|ν(τ, σ)| dσ < +∞, (1.9)

10



1. Discussion of basic theories for Volterra integral equations

which is also employed in [28, 29] for the convergence proofs.

We proceed to the linear Volterra integral equation that can be expressed by

x(z) = γ(z)−
∫ z

a

φ(z, σ)x(σ)dσ, z ∈ [a, b], (1.10)

for given functions φ and γ. Comparing (1.10) with (1.6), the di�erence between them appears

in the right-hand sides of these equations. More precisely, we can note that the function k of

the equation (1.6) is turned into

k(z, σ, x(σ)) = φ(z, σ)x(σ), (1.11)

which leads to get linear Volterra integral equations. The third chapter is devoted to the

treatment of the linear weakly singular Volterra integral equation of the expression

x(z) = γ(z) +

∫ z

a

k(z, σ)x(σ)dσ, z ∈ [a, b], (1.12)

the kernel k can be rewritten in the following form

k(z, σ) = ψ(z, σ)ϕ(z, σ), a 6 σ 6 z 6 b, (1.13)

while ψ is a singular function. This means that we have, for su�ciently smooth functions γ and

ϕ,

x(z) = γ(z) +

∫ z

a

ψ(z, σ)ϕ(z, σ)x(σ)dσ, z ∈ [a, b]. (1.14)

To deal with the former integral equation, we need to assume that

11



1. Discussion of basic theories for Volterra integral equations

1) sup
z∈[a,b]

∫
[a,b]

|ψ(z, σ)| dσ < +∞,

2) lim
δ→0

sup
z,z′∈[a,b],|z−z′|≤δ

∫
[a,b]

|ψ(z, σ)− ψ(z′, σ)| dσ = 0,

which represent the principal assumptions for analysing Fredholm integral equations in

[28, 29].

As a particular case, in (1.6), if the function k is given by

k(z, σ, x(σ)) = −(z − σ)−αϕ(z, σ)p(σ, x(σ)), α ∈ (0, 1), (1.15)

or

k(z, σ, x(σ)) = − log(z − σ)ϕ(z, σ)p(σ, x(σ)), (1.16)

for 0 6 σ 6 z 6 b, then the equation (1.6) becomes the so-called weakly singular Volterra-

Hammerstein integral equation, as shown in [13].

1.2 Convergence of Broyden's method

To solve the nonlinear system of the form

G(Y ) = 0, Y ∈ Dn+1, (1.17)

it su�ces to apply Broyden's method which makes it possible to �nd n + 1 roots, see [40, 21,

83, 55]. More speci�cally, the algorithm of this method is de�ned by

Y (k+1) = Y (k) −BkG(Y (k)), k = 0, 1, . . . (1.18)

12



1. Discussion of basic theories for Volterra integral equations

where

Bk+1 = Bk +
(δk −Bkθk)δTk Bk

δTk Bk θk
, (1.19)

for

θk = G(Y (k+1))−G(Y (k)) and δk = Y (k+1) − Y (k). (1.20)

Before discussing the convergence of Broyden's method, we give some information concerning

vector spaces.

De�nition 1.2.1 [16]

We say that a mapping ‖·‖ : Y → R is a norm on Y , where Y denotes a vector space over

K = R or C, if for all y, z ∈ Y and all α ∈ K we have

• ‖y‖ = 0 iff y = 0,

• ‖y‖ > 0,

• ‖αy‖ = |α| ‖y‖ ,

• ‖y + z‖ 6 ‖y‖+ ‖z‖ .

Remark 1.2.1 ( see [16, 24] for details )

1. The pair of a vector space Y and a norm ‖·‖ constructs a normed vector space (Y, ‖·‖).

2. Let Y = C[a, b], where a and b belong to R, and claim that, for γ ∈ Y ,

‖γ‖ = max
t∈[a,b]

|γ(t)|. (1.21)

13



1. Discussion of basic theories for Volterra integral equations

Then a pair (Y, ‖·‖) is said to be a normed vector space.

De�nition 1.2.2 ( [24] A convex subset )

Assume that D is a subset of a vector space Y and take y, z ∈ D. If we let ty + (1 − t)z ∈ D,

for t ∈ [0, 1], then we call D a convex subset.

Theorem 1.2.1 [57]

Assume that

(a) D is an open convex set.

(b) For `, i, j = 1, · · · , n+ 1, and for Y ∈ Dn+1,

∣∣∂2`jGi(Y )
∣∣ 6 K, K > 0. (1.22)

(c) For Y ∈ Dn+1, the Jacobian matrix, denoted by JG(Y ), is continuously di�erentiable.

Then we can say that the Jacobian matrix of the mapping G : Dn+1 ⊂ Rn+1 → Rn+1 is Lipschitz

continuous on Dn+1.

Under certain assumptions on the nonlinear mapping G, we can obtain n + 1 optimal

roots. In other words, when G is subject to some conditions that are mentioned in the follow-

ing theorem, we can say that we have n + 1 precise roots. Indeed, this leads to achieve the

convergence of Broyden's method.

Theorem 1.2.2 [21, 55]

Assume that, for an open convex set D,

14



1. Discussion of basic theories for Volterra integral equations

(1) the function G : Dn+1 ⊂ Rn+1 → Rn+1 is continuously di�erentiable,

(2) ∃Y ∗ ∈ Dn+1 : G(Y ∗) = 0,

(3) the Jacobian matrix JG satis�es

JG ∈ Lipχ(Y ∗), (1.23)

(4) the inverse of the Jacobian matrix JG exists at Y ∗,

and choose the approximation of the Jacobian matrix at Y ∗ and the initial guess, denoted re-

spectively by, B−10 and Y (0), satisfying

(i) ∃ ε > 0 : ‖B−10 − JG(Y (∗))‖ < ε.

(ii) ∃ ρ > 0 : ‖Y (0) − Y ∗‖ < ρ.

Then Broyden's method converges to the root of the function G, denoted by Y ∗.

1.3 Polynomial approximations

This section is intended to review certain interpolation polynomials that represent some of the

few best approximations. More precisely, we focus on Hermite-Fejér interpolation polynomials

which are followed by piecewise linear interpolation. We also present a detailed description of

Bernstein polynomials. To complete this section, we add some important theorems which play

a role in the convergence proofs of the second and third chapters.

15



1. Discussion of basic theories for Volterra integral equations

1.3.1 Hermite−Fejér interpolation polynomials

Let γ be a given function on an interval [−1, 1]. The Chebyshev polynomial of the �rst kind is

de�ned as

Tn+1(s) = cos ((n+ 1) arccos s) , s ∈ [−1, 1], (1.24)

and the zeros of the Chebyshev polynomial of the �rst kind Tn+1 are given by

ti = cos

(
π

2(n+ 1)
(2i− 1)

)
, for i = 1, . . . , n+ 1. (1.25)

The Hermite-Fejér interpolation polynomial of γ is written as

Hn+1(γ, s) =

n+1∑
i=1

γ(ti)(1− sti)h2n+1(s), (1.26)

where

hn+1(s) =
Tn+1(s)

(n+ 1)(s− ti)
, (1.27)

while the degree of Hn+1 is m with m 6 2n+ 1.

Theorem 1.3.1 [27, 54]

Suppose that γ, de�ned on [−1, 1], is a continuous function, and let Hn+1(γ) be the Hermite-

Fejér interpolation polynomials (1.26). Then we can get

lim
n→+∞

‖γ −Hn+1(γ)‖∞ = 0.

16



1. Discussion of basic theories for Volterra integral equations

1.3.2 Piecewise linear interpolation

Firstly, we begin by setting

Fn := {ti, 1 6 i 6 n+ 1} ,

which represents the set of a mesh on the interval [a, b] such that

a = t1 < t2 < · · · < tn+1 = b.

To get a uniform mesh, it su�ces to put

ti = a+ (i− 1)hn, i = 1, . . . , n+ 1, (1.28)

where

hn =
b− a
n

. (1.29)

As mentioned in [8], the piecewise linear interpolation of a function γ, de�ned on [a, b], is written

as, ∀t ∈ [ti, ti+1],

[γ(t)]n =
ti+1 − t
ti+1 − ti

γ(ti) +
t− ti
ti+1 − ti

γ(ti+1), for i = 1, . . . , n+ 1. (1.30)

Lemma 1.3.1 If Fn := {ti, 1 6 i 6 n+ 1} is the set of a uniform mesh on [a, b], and if [v(s, t)]n

represents the piecewise linear interpolation of a continuous function v(s, t). Then

∣∣∣[v(s, t)]n − v(s, t)
∣∣∣ ≤ w2(v, hn),

where

w2(v, hn) = sup
s∈[a,b]

w(v(s, ·), hn),

17



1. Discussion of basic theories for Volterra integral equations

and

w(v(s, ·), hn) = sup
s∈[a,b],|· −t|≤hn

|v(s, ·)− v(s, t)|,

and where, for t ∈ [ti, ti+1],

[v(s, t)]n =
1

hn
[(ti+1 − t)v(s, ti) + (t− ti)v(s, ti+1)] , i = 1, . . . , n+ 1.

Proof : See [28]

1.3.3 Bernstein polynomials

In what follows, we take the set of a uniform mesh, denoted by Sn, which is determined by

Sn := {ti = (i− 1)hn, 1 6 i 6 n+ 1} ,

such that

0 = t1 < t2 < · · · < tn+1 = 1,

while the formula of hn is given by

hn =
1

n
, for n = 1, 2, . . . .

Let γ be a continuous function de�ned on [0, 1], the expression of Bernstein polynomials is

(Bnγ)(s) =

n+1∑
i=1

li,n+1(s)γ(ti), for s ∈ [0, 1], (1.31)

where

li,n+1(s) =
n!

(i− 1)!(n− i+ 1)!
si−1(1− s)n−i+1, i = 1, . . . , n+ 1. (1.32)

18



1. Discussion of basic theories for Volterra integral equations

The following theorem, the so-called Bernstein's theorem, is given and proved in detail in

[16, 64, 72].

Theorem 1.3.2 The function γ is continuous on [0, 1] and Bnγ is the Bernstein polynomial,

given by (1.31) and (1.32). Then, the uniform norm of the di�erence γ −Bnγ satis�es

‖γ −Bnγ‖∞ −→ 0 as n −→ +∞.

1.4 Review of bounded linear operators

We devote this section to bounded linear operators. We present some interesting de�nitions and

theorems. In particular, we show the theorem of the convergence of the Neumann series. This

theorem gives us information on the existence and uniqueness of the solution of the equation of

the second kind

y −Qy = p, (1.33)

which can also be written as

(Iy −Q)y = p, (1.34)

where Iy denotes the identity operator.

De�nition 1.4.1 [11]

Let Y and Z be Banach spaces, and let Q be a mapping from Y to Z.

1. Assume that

19



1. Discussion of basic theories for Volterra integral equations

(a) Q(y1 + y2) = Qy1 +Qy2, for y1 y2 ∈ Y ,

(b) Q(αy1) = αQy1, for α ∈ R.

Then, we can say that Q is a linear operator.

2. Claim that the assumptions (a)− (b) hold, and Q satis�es, ∀y1 ∈ Y ,

‖Qy1‖Z 6 χ ‖y1‖Y .

Then, Q is a bounded linear operator.

3. For y1 ∈ Y and {yn} ⊂ Y , if we have, as n −→ +∞,

‖yn − y1‖Y −→ 0 =⇒ ‖Qyn −Qy1‖Z −→ 0.

Then, the linear operator Q becomes continuous.

The norm of the bounded linear operator Q is de�ned as

‖Q‖ = sup
‖y1‖Y =1

‖Qy1‖Z .

Theorem 1.4.1 [32]

Let Y and Z be normed spaces, and let Q : Y −→ Z be a bounded linear operator. Then, for

the case Y 6= 0,

‖Q‖ = sup
‖y‖61

‖Qy‖ = sup
y 6=0

‖Qy‖
‖y‖

= sup
‖y‖=1

‖Qy‖ .
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1. Discussion of basic theories for Volterra integral equations

Theorem 1.4.2 ( [16] Convergence of the Neumann series )

Suppose that

(i) (Y, ‖.‖) is a Banach space,

(ii) Q ∈ L(Y ),

(iii) the norm of Q satis�es ‖Q‖ < 1.

Then, we have that (Iy −Q) is bijective and that (Iy −Q)−1 ∈ L(Y ) with

∥∥(Iy −Q)−1
∥∥ 6

1

1− ‖Q‖
,

where

(Iy −Q)−1 =

∞∑
k=0

Qk.

Subsequently, we investigate the operator equation of the form

Hy = p, (1.35)

where H is a mapping from Y to Z such that Y and Z are Banach spaces. To solve the former

operator equation, it su�ces to resort to

Hnyn = p, (1.36)

which certainly represents an approximation of (1.35) ( see [44, 5] ). The following theorem

proves the existence of H−1n , in the case where Hn = λ−Qn and Z = Y , and the convergence

of yn to y as n −→ +∞.
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1. Discussion of basic theories for Volterra integral equations

Theorem 1.4.3 If Q is a bounded linear operator,

‖Q−Qn‖ −→ 0 as n −→ +∞,

where Qn is a sequence of bounded linear operators and if λ − Q : Y
1−1−−→
onto

Y . Then, for n > N ,

λ−Qn are invertible with

∥∥(λ−Qn)−1
∥∥ 6

∥∥(λ−Q)−1
∥∥

1− ‖(λ−Q)−1‖ ‖Q−Qn‖
,

and the error between the solutions of (1.35) and (1.36) satis�es, for H = λ−Q,

‖y − yn‖ 6
∥∥(λ−Qn)−1

∥∥ ‖Qy −Qny‖ .

Proof : See [5]
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Chapter 2

Numerical analysis of

integral equations

In this chapter, the focus is on the numerical study of nonlinear Volterra integral equations. We

begin this study by investigating the solvability of these integral equations. More speci�cally,

we try to cover the Volterra integral equations when their kernels are weakly singular. We then

discuss the techniques of a product integration method in detail. We conclude this chapter by

presenting the convergence of the product integration method.

2.1 Solvability of nonlinear Volterra inte-

gral equations

The nonlinear weakly singular Volterra integral equation is, for τ ∈ [a, b],

∀a, b ∈ R : z(τ) = g(τ) +

∫ τ

a

ν(τ, σ)κ(τ, σ, z(σ)) dσ, (2.1)
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2. Numerical analysis of integral equations

while the functions κ and g are known and ν is a weakly singular kernel. More speci�cally, we

study (2.1) in the case where, see [13, 46],

κ(τ, σ, z(σ)) = φ(τ, σ) p(σ, z(σ)). (2.2)

In addition, the functions ν and p are supposed to be subject to the following two conditions

that are also given in [45, 29, 28, 30] :

1) The weakly singular kernel ν satis�es

sup
τ∈[a,b]

∫
[a,b]

|ν(τ, σ)| dσ < +∞. (2.3)

2) For an open convex set D in R, we assume that R : D → R is two times continuously

di�erentiable where, for x ∈ D,

R(x) = p(σ, x), σ ∈ [a, τ ]. (2.4)

For the existence and uniqueness of a continuous solution, it is necessary that κ and g are

su�ciently smooth (see [63, 62, 13, 6] ). Before advancing further, we need to get an equivalent

equation de�ned on an interval [−1, 1]. As in [7], we use the following substitutions

τ =
b

2
(s+ 1)− a

2
(s− 1), s ∈ [−1, 1], (2.5)

and

σ =
b

2
(t+ 1)− a

2
(t− 1), t ∈ [−1, s]. (2.6)
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2. Numerical analysis of integral equations

Thus, the nonlinear Volterra integral equation

z(τ) = g(τ) + Υz(τ), τ ∈ [a, b], (2.7)

where the integral operator Υz is de�ned as

Υz(τ) =

∫ τ

a

ν(τ, σ)φ(τ, σ) p(σ, z(σ)) dσ, (2.8)

is transformed into

y(s) = f(s) + Γy(s), s ∈ [−1, 1], (2.9)

where Γy represents the integral operator given by

Γy(s) =
b− a

2

∫ s

−1
υ(s, t)ω(s, t) q(t, y(t)) dt. (2.10)

More precisely, the functions q, υ, and ω are

q(t, y(t)) = p
(b(t+ 1)

2
− a(t− 1)

2
, z(

b(t+ 1)

2
− a(t− 1)

2
)
)
, (2.11)

υ(s, t) = ν
(b(s+ 1)

2
− a(s− 1)

2
,
b(t+ 1)

2
− a(t− 1)

2

)
, (2.12)

and

ω(s, t) = φ
(b(s+ 1)

2
− a(s− 1)

2
,
b(t+ 1)

2
− a(t− 1)

2

)
. (2.13)

From (2.3), we can deduce that

sup
s∈[−1,1]

b− a
2

∫ 1

−1
|υ(s, t)| dt < +∞. (2.14)
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2. Numerical analysis of integral equations

Clearly, the functions q, ω, y and f are continuous from the properties of the composition of

continuous functions. The functions f and y are determined, respectively, by

f(s) = g

(
b

2
(s+ 1)− a

2
(s− 1)

)
, (2.15)

and

y(s) = z

(
b

2
(s+ 1)− a

2
(s− 1)

)
. (2.16)

From [8], the piecewise linear approximation is de�ned by, for i = 1, · · · , n+ 1,

[y(t)]n =
ti+1 − t
ti+1 − ti

y(ti) +
t− ti
ti+1 − ti

y(ti+1), for t ∈ [ti, ti+1], (2.17)

which is employed to approximate ω(s, t) q(t, y(t)) in the same way as in [29]. As we will see

later, we need to support the convergence proof of the product integration method by adding

some numerical examples which present comparison results by using mean absolute and mean

squared errors that are de�ned in [10]. To solve integral equations, it is possible to apply

di�erent methods, see for example [5, 46, 22, 79, 15, 78, 7]. For more details of our work, we

can check the series of references [60, 3, 35, 41, 17, 74, 49, 51].

2.2 Techniques of a product integration

method

In this section, we investigate the nonlinear system, for an open convex set D,

G(Y ) = 0, Y ∈ Dn+1, (2.18)
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2. Numerical analysis of integral equations

which arises from the application of a product integration method to nonlinear weakly singular

Volterra integral equations. In order to be able to solve (2.18), we need to employ Broyden's

method ( see [40, 21, 83, 55]). The nonlinear mapping G formed by the product integration

method is de�ned as

G(Y ) = Y − F − b− a
2

EQ(Y ), (2.19)

where, for i, j = 1, · · · , n+ 1,

Eij :=



1
t2−t1

[ ∫ t2
t1
υ(ti, t)(t2 − t)dt

]
ω(ti, t1) j = 1, 2 6 i 6 n+ 1,

1
ti−ti−1

[ ∫ ti
ti−1

υ(ti, t)(t− ti−1)dt
]
ω(ti, ti) j = i, 2 6 i 6 n+ 1,

[ηij + µij ]ω(ti, tj) 2 6 j 6 i− 1 6 n,

0 otherwise,

such that

ηij =
1

tj − tj−1

∫ tj

tj−1

υ(ti, t)(t− tj−1)dt,

µij =
1

tj+1 − tj

∫ tj+1

tj

υ(ti, t)(tj+1 − t)dt,

and the vector F is de�ned by F =
[
f(t1), f(t2), · · · , f(tn+1)

]T
. Also, the vectors Q(Y ) and Y

are given, respectively, by

Q(Y ) =



q(t1, y(t1))

q(t2, y(t2))

...

q(tn+1, y(tn+1))


,
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2. Numerical analysis of integral equations

and

Y =



y(t1)

y(t2)

...

y(tn+1)


,

where, for i = 1, · · · , n+ 1,

ti = cos

(
π

2(n+ 1)
(2i− 1)

)
, (2.20)

which represent the zeros of a Chebyshev polynomial, see [54, 27]. As in [29], the nonlinear

system (2.18) is obtained by approximating Γy by the piecewise linear interpolation. This leads

to

Γ̃y(ti) =
b− a

2

∫ ti

−1
υ(ti, t)[ω(ti, t) q(t, y(t))]ndt

=
b− a

2

i−1∑
j=1

∫ tj+1

tj

υ(ti, t)[ω(ti, t) q(t, y(t))]ndt

=
b− a

2

i−1∑
j=1

Eij q (tj+1, y(tj+1))

where

[ω(ti, t)q(t, y(t))]n =
tj+1 − t
tj+1 − tj

ω(ti, tj) q(tj , y(tj)) +
t− tj

tj+1 − tj
ω(ti, tj+1) q(tj+1, y(tj+1)), (2.21)

and Γ̃y(ti) represents the approximation of the integral operator Γy at the zeros of a Chebyshev

polynomial. On the other hand, the Jacobian matrix of the nonlinear mapping G is given by

JG(Y ) = I − b− a
2

E L, (2.22)
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2. Numerical analysis of integral equations

where L represents the diagonal matrix with the entries, for i = 1, · · · , n+ 1,

Lii = ∂iQi(Y ). (2.23)

More precisely, we have

JG(Y ) =



1 0 · · · · · · 0

ϕ2,1 ϕ2,2 · · · · · · 0

ϕ3,1 ϕ3,2 ϕ3,3 · · · 0

...
...

. . . . . .
...

ϕn+1,1 ϕn+1,2 · · · ϕn+1,n ϕn+1,n+1


,

where

ϕij :=


1− b−a

2 Eii ∂iQi(Y ) j = i, 2 6 i 6 n+ 1,

− b−a
2 Eij ∂jQj(Y ) 1 6 j 6 i− 1 6 n.

2.3 Convergence details of the product in-

tegration method

This section is devoted to the convergence proof of the product integration method. More

speci�cally, we present some de�nitions and some theorems that illustrate the convergence of

approximate solutions.

De�nition 2.3.1 ( [47] Di�erentiability )

Let G be a given function on an open set Dn ⊆ Rn, let Y ∈ Dn and assume that

lim
‖H‖2→0

‖G(Y +H)−G(Y )− dG(Y )H‖2
‖H‖2

= 0
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2. Numerical analysis of integral equations

Then, we can say that the function G : Dn −→ Rn is di�erentiable at Y .

Theorem 2.3.1 Let D be an open convex set, and let G : Dn+1 ⊂ Rn+1 → Rn+1 be a nonlinear

mapping de�ned by

G(Y ) = Y − F − b− a
2

EQ(Y ), Y ∈ Dn+1. (2.24)

Then G is continuously di�erentiable.

Proof : Using the Leibniz integral rule (see [67]), we obtain

dG(Y ) = I − b− a
2

E dQ(Y ). (2.25)

From the de�nition and properties of di�erentiability (see [47, 56, 85]), we de�ne, choosing H

small enough and Y ∈ Dn+1,

AG(H) = ‖G(Y +H)−G(Y )− dG(Y )H‖ / ‖H‖ , Y +H ∈ Dn+1. (2.26)

Then, we have, for Z =
[
z(σ1), z(σ2), · · · , z(σn+1)

]T
and for P (Z) =[

p(σ1, z(σ1)), p(σ2, z(σ2)), · · · , p(σn+1, z(σn+1))
]T

with σi = b
2(ti+1)− a

2 (ti−1), i = 1, · · · , n+1,

AG(H) =

∥∥∥∥−(b− a2

)
E
[
Q(Y +H)−Q(Y )− dQ(Y )H

]∥∥∥∥ / ‖H‖
=

∥∥∥∥−(b− a2

)
E
[
P (Z +H)− P (Z)− dP (Z)H

]∥∥∥∥ / ‖H‖ .
Now, we need to prove the di�erentiability of Gi for i = 1, · · · , n+ 1. This leads to

AiG(H) =

∣∣∣∣∣∣−
(
b− a

2

) n+1∑
j=1

Eij

(
Pj(Z +H)− Pj(Z)−

n+1∑
`=1

∂`Pj(Z)H`

)∣∣∣∣∣∣ / ‖H‖
6

b− a
2

n+1∑
j=1

|Eij |AjP (H).
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2. Numerical analysis of integral equations

From the di�erentiability of each component of P (Z), we can have, for j = 1, · · · , n+ 1,

lim
‖H‖→0

AjP (H) = 0. (2.27)

Thus

lim
‖H‖→0

AiG(H) = 0. (2.28)

Then, we deduce that G is di�erentiable. Clearly, ∂jGi is continuous for each i, j = 1, · · · , n+1.

We can �nally say that G is continuously di�erentiable.

De�nition 2.3.2 ( [57] Lipschitz-continuity )

Suppose that a matrix function J : Dn ⊂ Rn −→ Rn×n satis�es, for each Y,Z ∈ Dn,

‖J(Y )− J(Z)‖ 6 χ ‖Y − Z‖ , with χ > 0.

Then, the matrix function J is Lipschitz continuous.

Theorem 2.3.2 Let G be a nonlinear mapping de�ned on an open convex set Dn+1, where

G(Y ) = Y − F − b− a
2

EQ(Y ), Y ∈ Dn+1. (2.29)

Then, for `, i, j = 1, · · · , n+ 1,

∣∣∂2`jGi(Y )
∣∣ 6 K, K > 0. (2.30)

Proof : De�ne Sυ and SP , respectively, by

Sυ = sup
s∈[−1,1]

b− a
2

∫ 1

−1
|υ(s, t)| dt, (2.31)
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2. Numerical analysis of integral equations

SP = sup
Z∈Dn+1

∣∣∣∣∣∂2Pj∂Z2
j

(Z)

∣∣∣∣∣ , (2.32)

and let

Mω = max
s,t∈[−1,1]

|ω(s, t)| . (2.33)

If 2 6 j 6 i− 1 6 n and ` = j :

|ηij | =

∣∣∣∣∣ 1

tj − tj−1

∫ tj

tj−1

υ(ti, t)(t− tj−1)dt

∣∣∣∣∣
6

1

|tj − tj−1|

∫ tj

tj−1

|υ(ti, t)| |t− tj−1| dt

6
∫ tj

tj−1

|υ(ti, t)| dt

6 sup
s∈[−1,1]

∫ 1

−1
|υ(s, t)| dt

6
2

b− a
Sυ

and |µij | 6 2
b−aSυ can be proved in the same way. This leads to

∣∣∂2`jGi(Y )
∣∣ =

∣∣∣∣∣−(b− a2

)
Eij

∂2Qj

∂Y 2
j

(Y )

∣∣∣∣∣
=

∣∣∣∣∣−(b− a2

)
[ηij + µij ]ω(ti, tj)

∂2Pj
∂Z2

j

(Z)

∣∣∣∣∣
6

b− a
2

(
|ηij |+ |µij |

)
|ω(ti, tj)|

∣∣∣∣∣∂2Pj∂Z2
j

(Z)

∣∣∣∣∣
6 2 SυMωSP .

If j = 1 or j = i for 2 6 i 6 n+ 1 such that ` = j :

∣∣∂2`jGi(Y )
∣∣ =

∣∣∣∣∣−(b− a2

)
Eij

∂2Qj

∂Y 2
j

(Y )

∣∣∣∣∣
6

b− a
2
|Eij |

∣∣∣∣∣∂2Pj∂Z2
j

(Z)

∣∣∣∣∣
6 SυMωSP .
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Clearly, the boundedness of ∂2`jGi(Y ) = 0 is satis�ed in the remaining cases. Then we can say

that, for `, i, j = 1, · · · , n+ 1, ∣∣∂2`jGi(Y )
∣∣ 6 K, K > 0. (2.34)

Theorem 2.3.3 Consider the Jacobian matrix of G

JG(Y ) = I − b− a
2

E L, Y ∈ Dn+1, (2.35)

such that L denotes the diagonal matrix with the entries, for i = 1, · · · , n+ 1,

Lii = ∂iQi(Y ). (2.36)

Then JG is continuously di�erentiable.

Proof : By resorting to the de�nition and properties of the di�erentiability of matrices ( see

[57, 47, 80, 42] ), we have, for i, j = 1, · · · , n+ 1,

AijJG(H) =

∣∣∣∣∣∂jGi(Y +H)− ∂jGi(Y )−
n+1∑
`=1

∂2`jGi(Y )H`

∣∣∣∣∣ / ‖H‖ , Y ∈ Dn+1, (2.37)

in the cases where 2 6 j = i 6 n+ 1 and 1 6 j 6 i− 1 6 n, we can get

AijJG(H) =

∣∣∣∣∣∂jGi(Y +H)− ∂jGi(Y )−

(
−b− a

2
Eij

∂2Qj

∂Y 2
j

(Y )

)
Hj

∣∣∣∣∣ / ‖H‖
=

b− a
2
|Eij |

∣∣∣∣∣∂jQj(Y +H)− ∂jQj(Y )− ∂2Qj

∂Y 2
j

(Y )Hj

∣∣∣∣∣ / ‖H‖
=

b− a
2
|Eij |

∣∣∣∣∣∂jPj(Z +H)− ∂jPj(Z)− ∂2Pj
∂Z2

j

(Z)Hj

∣∣∣∣∣ / ‖H‖ .
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Then, we obtain

lim
‖H‖→0

AijJG(H) = 0, (2.38)

because each component of P (Z) is two times continuously di�erentiable. In the other cases,

we have

∂2`jGi(Y ) = 0, (2.39)

since ∂jGi(Y ) are constants, the di�erentiability of JG is clear. Clearly, we deduce that, for

`, i, j = 1, · · · , n + 1, ∂2`jGi(Y ) are continuous. This re�ects the fact that JG is continuously

di�erentiable.

Remark 2.3.1 For the existence of J−1G at the root Y ∗, it is enough to take

b− a
2

Eii ∂iQi(Y ) 6= 1, (2.40)

for i = 2, · · · , n+ 1.
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Chapter 3

Application of the

product integration

method

To be able to treat weakly singular Volterra integral equations, we can resort to the product

integration method studied in this chapter. In other words, this chapter analyses Volterra

integral equations by employing the product integration method that is needed to formulate

a linear system. Before this, we �rst investigate the solvability of the linear Volterra integral

equations. On the other hand, we conclude this chapter by stating the convergence of the

product integration method.
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3. Application of the product integration method

3.1 Solvability of linear Volterra integral

equations

In fact, several numerical methods are applied in analysing di�erent types of integral equa-

tions ( for example a Legendre-collocation method, a Chebyshev-collocation method, a Jacobi-

collocation spectral method and a product integration method, see [78, 14, 15, 22, 8, 62, 38,

29, 28, 7]. Here, the focus is on the product integration method which is used to deal with the

weakly singular Volterra integral equations of the form

∀a, b ∈ R : x(z) = γ(z) +

∫ z

a

k(z, σ)x(σ) dσ, z ∈ [a, b], (3.1)

where the functions γ and k are given, more precisely, the function k represents a weakly

singular kernel. For the existence and uniqueness of a continuous solution, we can take that γ

is su�ciently smooth (see [3, 62, 13] ). By applying a product integration method, we can solve

the former integral equation. Before this, we recast (3.1) in the form, for z ∈ [a, b],

x(z) = γ(z) +

∫ z

a

ψ(z, σ)ϕ(z, σ)x(σ) dσ, (3.2)

where ψ is a singular function and ϕ is su�ciently smooth (see [46, page 472]). To be able to

deal with (3.2), we can take the following assumptions from [28, 29, 5]

sup
z∈[a,b]

∫
[a,b]

|ψ(z, σ)| dσ < +∞, (3.3)

and

lim
δ→0

sup
z,z′∈[a,b],|z−z′|≤δ

∫
[a,b]

|ψ(z, σ)− ψ(z′, σ)| dσ = 0. (3.4)
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3. Application of the product integration method

In this chapter, the main idea of the product integration method is to transform (3.2)

into a linear system by applying the linear interpolation in the same way as in [28, 29]. This

can be achieved after a change of the variables of (3.2). This means that we take, see [75, 37],

z = bs− a(s− 1), s ∈ [0, 1], (3.5)

and

σ = bt− a(t− 1), t ∈ [0, s]. (3.6)

This change enables us to get the equivalent equation of the form, for s ∈ [0, 1],

y(s) = p(s) +

∫ s

0

u(s, t)v(s, t)y(t) dt. (3.7)

From (3.3) and (3.4), we can deduce that

sup
s∈[0,1]

∫
[0,1]

|u(s, t)| dt < +∞, (3.8)

and

lim
δ→0

sup
s,s′∈[0,1],|s−s′|≤δ

∫
[0,1]

|u(s, t)− u(s′, t)| dσ = 0. (3.9)

Also, we can conclude from the continuity properties mentioned in [17, 18, 56](see also [60, 53, 23]

for more details ) that y, p and v are continuous functions.

3.2 Linear systems formed by the product

integration method

The linear system formed by applying the product integration method is given by

HnYn = Pn, (3.10)
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where

Hn = I − (1/hn)Mn, (3.11)

which represents a lower triangular matrix, while Yn and Pn are column vectors. The solution

of (3.10) is well known by

Yn = H−1n Pn, (3.12)

in the case where det[Hn] 6= 0, for the remaining details see [57, 74]. More precisely, the matrix

Mn is given by

Mn =



0 0 · · · · · · 0

β2,1 β2,2 · · · · · · 0

β3,1 β3,2 β3,3 · · · 0

...
...

. . . . . .
...

βn+1,1 βn+1,2 · · · βn+1,n βn+1,n+1


,

and the column vectors Pn and Yn are de�ned respectively by

Pn =


p(t1)

...

p(tn+1)

 ,

Yn =


y(t1)

...

y(tn+1)

 .
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Moreover, we get the former linear system after using the linear interpolation which is also

employed in [28, 29, 30] such that, for i = 2, · · · , n+ 1,

βi1 =
[ ∫ t2

t1

u(ti, t)(t2 − t)dt
]
v(ti, t1),

βii =
[ ∫ ti

ti−1

u(ti, t)(t− ti−1)dt
]
v(ti, ti),

βij =
[ ∫ tj+1

tj

u(ti, t)(tj+1 − t)dt+

∫ tj

tj−1

u(ti, t)(t− tj−1)dt
]
v(ti, tj), 2 ≤ j ≤ n+ 1,

where, for i = 1, · · · , n+ 1,

ti = (i− 1)hn, (3.13)

and where

hn = 1/n. (3.14)

From [28, page 775], the linear interpolation that is used to approximate v(s, t)y(t) is written

in the following form

[v(s, t)y(t)]n :=
1

hn

[
(ti+1 − t)v(s, ti)y(ti) + (t− ti)v(s, ti+1)y(ti+1)

]
, for t ∈ [ti, ti+1]. (3.15)

As an example of some other interpolation polynomials, there is the Lagrange interpolation (

see [36, 52, 9, 73]). On the other hand, we can resort to Cramer's rule to deal with (3.10), see

[57, 77, 2]. For more information about our work, we have to see the references [31, 19, 76, 71,

82, 61, 12, 70, 20, 69, 68, 43, 81, 25].
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3.3 Convergence analysis

This section comprises some basic theorems that are used to show the convergence analysis

of the product integration method. One of these theorems is the Cauchy criterion that plays

a signi�cant role in this section, more precisely, in the proof of Theorem 3.3.3. This proof is

presented to demonstrate the continuity of the operator Qy which is given by

Qy(s) =

∫ s

0

u(s, t)v(s, t)y(t)dt, (3.16)

where v and y are continuous for 0 6 t 6 s 6 1.

Theorem 3.3.1 Assume that

(i) sup
s∈[0,1]

∫
[0,1] |u(s, t)| dt < +∞,

(ii) η(δ) = sup
s,s′∈[0,1],|s−s′|≤δ

∫
[0,1] |u(s, t)− u(s′, t)| dt,

with

lim
δ→0

η(δ) = 0. (3.17)

Then we can get

lim
n→+∞

max
1≤i≤n+1

|Q̃y(ti)−Qy(ti)| = 0. (3.18)

where

Q̃y(ti) =
1

hn

i−1∑
j=1

βijy(tj). (3.19)
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3. Application of the product integration method

Proof : Let

S = sup
s∈[0,1]

∫
[0,1]

|u(s, t)| dt. (3.20)

On the other hand, we have from [28, 30] that

lim
hn→0

w2(v, hn) = 0, for v ∈ C([0, 1]2).

From the continuity properties of the product of continuous functions (see [56, 17, 34]), we can

obtain

lim
n→+∞

w2(vy, hn) = 0. (3.21)

Now, we can proceed to prove (3.18). Then, we have

|Q̃y(ti)−Qy(ti)| =
∣∣∣ ∫ ti

0

u(ti, t)[v(ti, t)y(t)]n dt−
∫ ti

0

u(ti, t)v(ti, t)y(t) dt
∣∣∣

=
∣∣∣ ∫ ti

0

u(ti, t){[v(ti, t)y(t)]n − v(ti, t)y(t)} dt
∣∣∣

=

i−1∑
j=1

∫ tj+1

tj

u(ti, t){[v(ti, t)y(t)]n − v(ti, t)y(t)} dt

≤ w(v(s, ·)y(·), hn)
i−1∑
j=1

∫ tj+1

tj

u(ti, t) dt

≤ w2(vy, hn)
i−1∑
j=1

∫ tj+1

tj

|u(ti, t)| dt

≤ w2(vy, hn)S.

Then, we can deduce that

lim
n→+∞

max
1≤i≤n+1

|Q̃y(ti)−Qy(ti)| = 0. (3.22)
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Theorem 3.3.2 ([33] The Cauchy criterion )

If a function γ is de�ned on an interval [a, b) for −∞ < a < b 6 +∞, and if γ is Riemann

integrable on [a, c], where c ∈ (a, b), then the following statements are equivalent.

(i)
∫ b
a γ(y)dy is convergent.

(ii) There are η ∈ (a, b) and ε > 0 such that

|
∫ η′′

η′
γ(y)dy| < ε, (3.23)

for η < η′ < b and η < η′′ < b.

The proof of the following theorem is largely based on the proof of [15, Lemma 3.5] and

on, of course, some other references.

Theorem 3.3.3 Consider the operator, for s ∈ [0, 1] and for y ∈ C([0, 1]),

Qy(s) =

∫ s

0

u(s, t)v(s, t)y(t)dt. (3.24)

Suppose that

sup
s∈[0,1]

∫
[0,1]

|u(s, t)| dt < +∞, (3.25)

and that

η(δ) = sup
s,s′∈[0,1],|s−s′|≤δ

∫
[0,1]

|u(s, t)− u(s′, t)| dt, (3.26)

with

lim
δ→0

η(δ) = 0. (3.27)
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3. Application of the product integration method

Then the operator Qy satis�es, for a continuous function v,

Qy ∈ C([0, 1]). (3.28)

Proof : We take

φ(δ) = sup
s,s′,t∈[0,1],|s−s′|≤δ

|v(s, t)− v(s′, t)| , (3.29)

such that

lim
δ→0

φ(δ) = 0, (3.30)

and de�ne

S = sup
s∈[0,1]

∫
[0,1]

|u(s, t)| dt. (3.31)

Choose s ≤ s′, and let

Tv = max
s,t∈[0,1]

|v(s, t)| and Ty = max
s∈[0,1]

|y(s)|. (3.32)

We have that |Qy(s)−Qy(s′)| satis�es, for s, s′ ∈ [0, 1],

|Qy(s)−Qy(s′)| =
∣∣∣ ∫ s

0

u(s, t)v(s, t)y(t) dt−
∫ s′

0

u(s′, t)v(s′, t)y(t) dt
∣∣∣

=
∣∣∣ ∫ s

0

u(s, t)(v(s, t)− v(s′, t))y(t) dt−
∫ s′

0

u(s′, t)v(s′, t)y(t) dt

+

∫ s

0

u(s, t)v(s′, t)y(t) dt
∣∣∣

=
∣∣∣ ∫ s

0

u(s, t)(v(s, t)− v(s′, t))y(t) dt+

∫ s

0

(u(s, t)

−u(s′, t))v(s′, t)y(t) dt−
∫ s′

s

u(s′, t)v(s′, t)y(t) dt
∣∣∣

≤ Ty

(
Sφ(δ) + Tvη(δ) + Tvµ(δ)

)
,
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3. Application of the product integration method

where

µ(δ) = sup
s,s′∈[0,1],|s−s′|≤δ

∫ s′

s

|u(s′, t)| dt. (3.33)

By resorting to the Cauchy criterion (see [33, 84]), we can get

lim
δ→0

µ(δ) = 0. (3.34)

Then, we deduce that

lim
δ→0

sup
s,s′∈[0,1],|s−s′|≤δ

|Qy(s)−Qy(s′)| = 0. (3.35)

Finally, we can say that

Qy ∈ C([0, 1]). (3.36)
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Chapter 4

Numerical applications

This chapter is intended to present several numerical examples that are solved by applying the

techniques of the product integration method which are described in detail in Chapter 2 and

3. For the sake of comparison, we try to cover two cases of weakly singular Volterra integral

equations i.e., linear and nonlinear cases. By dealing with these two cases, we can show the

fact that the product integration method is one of the e�cient methods.

4.1 Examples of nonlinear Volterra inte-

gral equations

It is possible to solve many complicated models of nonlinear weakly singular Volterra integral

equations by applying the product integration method which is studied extensively in Chapter

2. Although we prove the convergence of this method, it is advantageous to add some numerical

examples. These examples provide us more information about the approximate solutions.

Before proving the accuracy of the product integration method, we need to de�ne the expressions
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4. Numerical applications

of the mean absolute error, denoted by E1, and of the mean squared error, denoted by E2, which

are used to compare between the approximate and the exact solutions. Then, we have

E1 =
1

n+ 1

n+1∑
i=1

∣∣∣y(ti)− y(k+1)(ti)
∣∣∣ , (4.1)

and

E2 =
1

m+ 1

m+1∑
i=1

(
y(ti)−Hn+1(y

(k+1), ti)
)2
, for m > n. (4.2)

It remains to give some numerical examples. For this, we can take the following examples.

Example 4.1.1 Consider the integral equation

z(τ) = | − 1

5τ
+ 0.75|+ Υz(τ), for τ ∈ [2.25, 2.5], (4.3)

where the integral operator Υz is de�ned by

Υz(τ) =
1

280

∫ τ

2.25

ln |τ − σ|
(
z(σ)− |3.75− 1

σ
|
)
dσ. (4.4)

Here, the exact solution of (4.3) is written in the following form

z(τ) = |0.75− 1

5τ
|. (4.5)

Example 4.1.2 Suppose that the function g is equal to

g(τ) = −τ + exp(−4τ + 10), τ ∈ [2, 3], (4.6)

and that the nonlinear Volterra integral equation is given by, for α ∈ (0, 1),

z(τ) = g(τ) +

∫ τ

2

|τ − σ|−α (σ − 1)2 (σ + z(σ)− exp(−4σ + 10)) dσ. (4.7)
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Then, we have

z(τ) = −τ + exp(10− 4τ). (4.8)

Example 4.1.3 We claim that

z(τ) = 1/4τ + Υz(τ), τ ∈ [3, 3.25], (4.9)

where

Υz(τ) =
1

23

∫ τ

3

σ1/6√
|τ − σ|

(−1/8σ + 0.5z(σ)) dσ. (4.10)

The exact solution z can then be determined by

z(τ) =
1

4
τ. (4.11)

After calculating the mean absolute and the mean squared errors, we can compare between

the exact and the approximate solutions. In the �rst example, we can get the following table

which involves the results of the mean absolute error E1, in the case where y(0)(ti) = 0.75 and

where B0 is the diagonal matrix with the entries Bii
0 = 0.9 for i = 1, · · · , n+ 1,

k n = 14

2 2.6792 e-06

4 5.6173 e-10

5 8.5873 e-13

7 8.8818 e-17

Table 1: Mean absolute errors E1 for (4.3).
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We now want to study, in Example 4.1.1, the convergence of the Hermite-Fejér interpolation

polynomial. To do this, we can compute the mean squared error E2. This leads to

n k = 7 and m = 39

9 4.9451 e-08

12 2.9261 e-08

15 1.9317 e-08

25 7.3153 e-09

Table 2: Mean squared errors E2 for (4.3) .

In what follows, we want to present the results of E1, in the second example. By choosing

y(0)(ti) = −7 + exp(2), Bii
0 = exp(−0.15) for i = 1, · · · , n+ 1, and α = 0.27, we can have

k α = 0.27

6 5.6931e-04

8 1.6381e-05

11 6.0413e-08

14 1.5430e-10

16 1.6128e-12

19 1.9384e-15

21 8.8818e-18

Table 3: Mean absolute errors E1 for (4.7), in the case where n = 24.

If we take α = 0.47, then we obtain
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k α = 0.47

10 1.9296e-04

14 7.1872e-07

16 3.7506e-08

19 1.9363e-10

21 1.4792e-12

24 8.5221e-15

27 0

Table 4: Mean absolute errors E1 for (4.7), in the case where n = 24.
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From the two preceding tables, we can see that the values of the error are decreased. To

support the results of Tables 3 and 4, we present the following graph

Figure 4.1: Approximate solutions where n = 24 and where k = 27
with α = 0.47.

For more information about the convergence of the Hermite-Fejér interpolation polyno-

mial, in Example 4.1.2 , it remains to discuss the results of the mean squared error E2. Of

course, we have two cases i.e., α = 0.27 and α = 0.47
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n α = 0.27

24 0.0092

27 0.0073

30 0.0060

33 0.0050

Table 5: Mean squared errors E2 for (4.7), in the case where k = 16 and where m = 39.

n α = 0.47

22 0.0108

25 0.0085

28 0.0068

31 0.0056

Table 6: Mean squared errors E2 for (4.7), in the case where k = 16 and where m = 39.

In the last example, we can obtain the next two tables after computing the mean absolute error

E1 and the mean squared error E2, in the case where y(0)(ti) = 0.75 and where Bii
0 = 0.9 for

i = 1, · · · , n+ 1,
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k n = 14

2 3.2307 e-06

4 2.2471 e-09

5 1.0940 e-11

7 4.2040 e-15

Table 7: Mean absolute errors E1 for (4.9).

n k = 7 and m = 39

9 2.4414 e-06

12 1.4446 e-06

15 9.5367 e-07

25 3.6115 e-07

Table 8: Mean squared errors E2 for (4.9).

4.2 Examples of linear Volterra integral

equations

To be able to solve linear weakly singular Volterra integral equations, we can use the product

integration method, as shown in Chapter 3. This provides the best approximate solutions

of di�erent forms of integral equations. This re�ects the fact that we can deal with many

di�cult problems by resorting to the product integration method. To state that the approximate
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4. Numerical applications

solutions converge to the exact solutions, we can perform the following calculations, for the

di�erence between the exact and the approximate solutions ei at the points ti, i = 1, · · · , n+ 1,

EMA =

∑n+1
i=1 |ei(ti)|
n+ 1

, (4.12)

and

ERMS =

√∑n+1
i=1 e

2
i (ti)

n+ 1
, (4.13)

where EMA and ERMS denote, respectively, the mean absolute error and the root mean squared

error ( see [10] ). Moreover, we need to computeR, for Zm = [(Bny)(t1), (Bny)(t2), ..., (Bny)(tm+1)]
T

and ‖Pm‖1 =
∑m+1

i=1 |p(ti)|,

R =
‖(I − (1/hm)Mm)Zm − Pm‖1

‖Pm‖1
, (4.14)

while m is su�ciently bigger than n and R denotes the relative residual. In what follows, we

take some Volterra integral equations as examples.

Example 4.2.1 Assume that, for α ∈ (0, 1),

x(z) =
z

3 |z + 1/7|
− z2−α

(1− α)(2− α)
+

∫ z

0

k(z, σ)x(σ) dσ, (4.15)

and that

k(z, σ) = (z − σ)−α |3σ + 3/7| , z ∈ [0, 1]. (4.16)

Then the exact solution of the former integral equation is determined by

x(z) =
7z

|3 + 21z|
. (4.17)
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Example 4.2.2 Let, for z ∈ [1, 1.5],

x(z) = γ(z) +

∫ z

1

log (z − σ)
1

99
(z − σ)l x(σ) dσ, (4.18)

be the linear Volterra integral equations and let γ and ϕ be the functions which are de�ned by

γ(z) =
1

3
(1− q (z)) , (4.19)

where

q(z) =
1

99(l + 1)
(z − 1)l+1

(
log (z − 1)− 1

l + 1

)
, l ∈ N∗, (4.20)

and

ϕ(z, σ) =
1

99
(z − σ)l . (4.21)

Then, in this example, the expression of the exact solution x is

x(z) =
1

3
. (4.22)

Example 4.2.3 If we have, for α ∈ (0, 1),

x(z) = γ(z) +

∫ z

3

(z − σ)−αϕ(z, σ)x(σ) dσ, (4.23)

where, for z ∈ [3, 4],

γ(z) = exp(z)− exp(1)
(z − 3)1−α

1− α
, (4.24)

and

ϕ(z, σ) = exp(1− σ), (4.25)

then

x(z) = exp(z). (4.26)
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The following tables show some important results that are obtained after computing

ERMS , EMA and R. More speci�cally, Table 9 presents the numerical results of Example 4.2.1,

and involves the root mean squared errors, in the case where α = 0.27,

n α = 0.27

4 2.3313 e-14

5 2.4390 e-15

10 4.2974 e-16

11 1.1160 e-16

Table 9: Root mean squared errors ERMS for (4.15).

In Example 4.2.3, the results of ERMS are given in the following table, for α = 4/9,

n α = 4/9

5 5.0243 e-15

18 4.3892 e-15

27 3.5527 e-15

Table 10: Root mean squared errors ERMS for (4.23).

When we change the value of α in Examples 4.2.1 and 4.2.3, we can get the next two tables

that present the results of the root mean squared error
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n α = 0.89

4 9.6148 e-17

5 8.8499 e-17

10 1.0782 e-16

11 7.7683 e-17

Table 11: Root mean squared errors ERMS for (4.15).

n α = 8/9

5 1.9242 e-14

18 3.0046 e-14

27 2.8334 e-14

Table 12: Root mean squared errors ERMS for (4.23).

In view of the results of Tables 9, 10, 11 and 12, it is clear that the product integration

method plays an important role in our work.

In Example 4.2.3, we compute the relative residualR. This leads to construct the following

table, in the case where α = 4/9 and where m = 80,
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n α = 4/9 and m = 80

23 0.0035

37 0.0022

43 0.0019

57 0.0014

63 0.0013

Table 13: Relative residuals R for (4.23).

If we take α = 8/9, and if we claim that m is of the same value as in the former table, then we

can obtain

n α = 8/9 and m = 80

23 0.0033

37 0.0021

43 0.0018

57 0.0013

63 0.0012

Table 14: Relative residuals R for (4.23).

In the sequel of this section, the next three tables show some results of the mean absolute error

EMA for (4.18), for di�erent values of l,
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n l = 8

3 8.2560 e-07

5 4.8209 e-07

8 3.4407 e-07

11 2.9448 e-07

Table 15: Mean absolute errors EMA for (4.18).

n l = 14

3 1.2892 e-08

5 6.2709 e-09

8 3.6720 e-09

11 2.8100 e-09

Table 16: Mean absolute errors EMA for (4.18).

n l = 23

3 2.5995 e-11

5 1.1859 e-11

8 5.9143 e-12

11 3.9772 e-12

Table 17: Mean absolute errors EMA for (4.18).
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By observing the results of the last three tables, we can deduce that we have the appropriate

solutions.

59



Conclusion

Conclusion

We conclude this thesis by recalling the most important advantages of the application

of the product integration method, and by giving some basic results that are related to this

method. Before discussing these advantages and these results, we start with a brief summary

of this thesis. More precisely, we �rst present some elementary concepts and basic theories,

and then treat linear and nonlinear weakly singular Volterra integral equations. At the end of

this thesis, we give several numerical examples that illustrate and state the importance of the

product integration method. Now, we proceed to talk about the principal merits of our work.

In this thesis, the focus is on the solvability of the weakly singular Volterra integral equations

for any choice of their kernels. To solve these integral equations, the techniques of the product

integration method represents one of the fastest ways which can achieves best numerical results.
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