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Abstract

This thesis deals with soft biometrics. Soft biometrics refers to the physical, behavioral

or adhered human characteristics like age, gender, ethnicity etc. These characteristics

can be much easier to extract (especially from distance) than traditional biometric

traits (like fingerprints and iris) yet they can be very useful in many applications.

The thesis gives an extensive analysis of the state of the art in the field of soft

biometrics by discussing the existing methods, the reported results and the public

databases. Importantly, the thesis describes a number of novel contributions including

new methods for age estimation from face images. Extensive experimental results are

reported. Some open issues and future directions are also highlighted.

Keywords: Age estimation, Demographic classification, Gender classification,

Race classification, Features extraction, Face analysis.
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Chapter 1. Introduction 1.1. Background and motivation

1.1 Background and motivation

Biometric systems recognize users based on their physiological and behavioral

characteristics [1]. Unimodal biometric systems make use of a single biometric trait

for user recognition. It is difficult to achieve very high recognition rates using only

unimodal systems due to factors like noisy sensor data and non-universality and/or

lack of distinctiveness of the chosen biometric traits. Multimodal biometric systems

address some of these problems by combining evidence obtained from multiple sources

[2]. A multimodal biometric system that utilizes a number of different biometric

identifiers like face, fingerprint, hand-geometry, and iris can be more robust to noise

and alleviate the problem of non-universality and lack of distinctiveness. Hence,

such a system can achieve a higher recognition accuracy than unimodal systems.

However, a multimodal system will require a longer verification time thereby causing

inconvenience to the users.

Another alternative to improve the performance of biometric systems is to use

soft biometric traits. It is indeed possible to improve the recognition performance of

a biometric system without compromising on user-friendliness by utilizing ancillary

information about the user like height, weight, age, gender, ethnicity, and eye color.

We refer to these traits as soft biometric traits because they provide some information

about the individual, but lack the distinctiveness and permanence to sufficiently

differentiate any two individuals (see Figure 1 for examples of soft biometric traits).

The soft biometric traits can either be continuous or discrete. Traits such as gender,

eye color, and ethnicity are discrete.

Primary biometric traits such as face, fingerprints, and iris can suffer from

noisy sensor data, non-universality, and lack of distinctiveness. Further, in certain

applications, these traits may fail to achieve high recognition rates. Multimodal

biometric systems (Ross et al., 2006) can solve these problems by combining multiple
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Chapter 1. Introduction 1.2. Problematic

biometric traits, resulting in a biometric signature that is robust and more distinctive.

Multimodal systems offer improved performance, but the time taken to verify users

can drastically increase thereby causing inconvenience to the subjects and reducing

the throughput of the system. Soft biometric traits have been investigated to solve

this problem (Jain et al., 2004b).

1.2 Problematic

Extracting soft biometrics in controlled conditions is relatively easy but the task

becomes very challenging when facing real-word conditions (i.e. in the wild). All the

factors (illumination changes, pose, low quality images etc.) affecting general object

recognition can be also be encountered in extracting soft biometrics. Very recently,

when people are wearing masks due to Covid-19 pandemic, this situation makes the

extraction of some soft biometrics traits even more challenging. There are also many

open questions regarding the extraction and the use of soft biometrics. This includes:

• What soft biometrics trait can be extracted in a given situation?

• How to efficiently extract different soft biometrics in the wild?

• How to efficiently combine different soft biometrics trait?

• What is the relationship between different soft biometrics? For instance, how

gender affects age estimation?

• How soft biometrics can be optimally used in real world applications?

• How the recent progress in deep learning can benefit the extraction of soft

biometrics?

3



Chapter 1. Introduction 1.3. Contributions of the thesis

1.3 Contributions of the thesis

The thesis answers some of the above mentioned problems by proposing a new

methodology for extracting soft biometrics in the wild. The main focus is on

estimating human age from facial images. The thesis also gives an extensive analysis

of the state of the art in the field of soft biometrics by discussing the existing

methods, the reported results and the public databases. Extensive experimental

results are reported on public databases. Some open issues and future directions

are also highlighted.

1.4 Outline of the thesis

The thesis is organized as follows. Chapter 2 gives definitions and general overview

of soft biometrics including the existing databases. Chapter 3 focuses on facial

soft biometrics and presents the state of the art in extracting facial soft biometrics

including deep learning methods. Chapter 4 presents the experimental analysis on

age prediction from faces. Chapter 5 summarizes the thesis and highlights open issues

and future directions.

4



Chapter 2

Overview on Soft Biometrics
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Chapter 2. Overview on Soft Biometrics 2.1. Introduction

2.1 Introduction

Soft biometrics are defined by Jain et al. [76] as “characteristics that provide

some information about the individual, but lack the distinctiveness and permanence

to sufficiently differentiate any two individuals”. In other words, soft biometrics

are physical, behavioral or adhered human characteristics, classifiable in predefined

human compliant categories. The aim of these characteristics is to distinguish between

different individuals [27]. The history of soft biometrics dates back to 1896 when

a French police officer Alphonse Bertillon [68] created the personal identification

system (bertillonage) based on the anthropometric determinations and morphological

characteristics of the person (See Fig 2.1).

Figure 2.1: An example of a real French police card of a criminal which was created as
a part of bertillonage personal identification system. Bertillonage is often given as a
first example of large collection of the soft biometrics data (Source: Google Images).

These characteristics have also been referred to as semantics [131], in reference to

their semantic interpretation (e.g., describing a human face as “young male”). One

6



Chapter 2. Overview on Soft Biometrics 2.2. Soft biometric attributes

advantage of soft biometric with respect to “primary” biometric systems (the goal of

which is to identify a person) is that the former provides only a partial description of

an individual preserving his/her privacy. This allows for the use of soft biometrics to

collect anonymous statistics. For example, human age, gender and race, are particular

cases of soft biometrics attributes which are often called demographics, because they

are commonly used for population analysis [27].

In this chapter we give an overview of the benefits and characteristics of soft

biometrics, their classifications, and the related advantages and limitations. In

addition, we analyze the work already done on soft biometric attributes or systems

that integrate soft biometric attributes.

2.2 Soft biometric attributes

Soft biometric attributes can be classified based on the modalities of face, body and

accessory (see Table 2.1). Recognition and synthesis of facial attributes (gender, age,

race, beard etc.) are an active research area involving the studies with various data

modalities such as voice [109], iris [121], body [130], hand [135] and others.

However, among all soft biometric modalities, the face is the richest source that

provides information about a person [75](see Fig 2.2). In addition, the development

of social networks has dramatically increased the amount of face images (especially

of celebrities) which are publicly uploaded in the Internet. Not only does it underpin

the practical interest of creating automatic systems of face analysis, but it also offers

an opportunity to train complex machine learning models (for example, deep CNNs),

which was not possible even a decade ago. In the next subsections, We discuss soft

biometric attributes based on the aforesaid classification of soft biometrics. We discuss

facial soft biometrics attributes (Subsection 2.2.1), and body soft biometrics attributes

(Subsection 2.2.2) and finally in the subsection 2.2.3, we discuss accessory attributes.
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Soft biometric
attribute

Face, Body,
Accessory

Nature of value Permanence Distinctiveness
Subjective
perception

Age Face/Body Continuous Low/Medium Medium Medium
Skin color Face Continuous Medium Low Medium
Hair color Face Continuous Medium Medium Medium
Eye color Face Continuous High Medium Medium

Beard Face Binary Low/Medium Low Medium
Mustache Face Binary Low/Medium Low Medium

Facial measures Face Continuous High Medium Medium/High
Make–up Face Discrete Low Low Medium

Race Face Discrete High Medium Medium
Gender Face/Body Binary High Low Low

Gait Body Continuous Medium Medium High
Weight Body Continuous Low/Medium Medium Medium
Height Body Continuous Medium/High Medium Medium
Glasses Accessory Binary Low/Medium Low Low

Clothes color Accessory. Discrete Low Medium Medium

Table 2.1: Table of soft biometric attributes

2.2.1 Facial soft biometrics

Doubtless, an important number of soft biometric attributes can be extracted from

face images and facial movements. This generally includes gender recognition (i.e.

male vs. female), age categorization (e.g. child, youth, adult, middle age and elderly)

and race 1 classification (e.g. Asian, Caucasian and African). These are often referred

to as demographic attributes and are very useful for more affective human computer

interaction (HCI) and smart environments in which the systems should adapt to the

users whose behaviors and preferences are not only different at different ages but also

specific to a given race and/or gender. Automatic demographic attributes extraction is

also useful in many other applications such as content based image and video retrieval,

1In general English the term “race” and “ethnicity” are often used as though they were
synonymous. However, they are related to biological and sociological factors respectively. Generally,
race refers to a person’s physical appearance or characteristics, while ethnicity is more viewed as a
culture concept, relating to nationality, rituals and cultural heritages, or even ideology. Since there
are over 5,000 ethnic groups all over the world [13], the idea of “ethnicity recognition” seems to be
both questionable and impractical from current computer vision and pattern recognition point of
view. Therefore, considering the soft biometric characteristics of distinctive human population, we
prefer to use “race” as more suitable category terminology in this thesis.
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restricting access to certain areas based on gender and/or age, collecting demographic

information in public places and counting the number of women entering a retail store

and so on.

Figure 2.2: A wide variety of information can be gleaned from a face image, such as
identity, age, gender, race, scars, marks and tattoos (SMT).

Actually, apart demographic attributes a human face can reveal a person’s identity

[150], mood [97] and many other details (Fig 2.2). Though there has been a great

deal of progress in face analysis in the last years, facial soft biometric tasks have not

been associated to that progress as most work has mainly focused on face detection

and recognition problems. Consequently, the design of algorithms that are effective

in discriminating between males and females, or classifying faces into different age

and race categories is still challenging and remains an open area of research. Since

the early publications in [110], [138], research on this class of soft biometrics has been

embraced by the computer vision community.

2.2.1.1 Gender recognition

Human gender recognition is one of the fundamental tasks in the area of computer

vision, which has recently gained a lot of attraction in research communities as well

as industries due to its substantial role in a notable number of real time applications.
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Particularly, in social interactions, different salutations and grammar rules are used

for men and women. In the targeted advertisement, the billboard’s contents can be

visualized based on the demographics of pedestrians. The gender can be used as a

key characteristic to perceive the shopping nature for the future of retail.

Gender recognition can be considered as a binary class problem that is only two

classes are assumed to be present (male and female class). Human beings are diverse

in nature. They differ in their physical appearance, personality, behaviour, thoughts

and many more features. Even if two individuals are similar by physical appearance,

there will be many distinguishing features separating them.

To solve the issue of gender recognition, many methods use physical appearance as

input for classification. Physical appearance includes facial features like the eyes,

nose, cheeks, lips, hair, forehead, ears, and the mid and lower body parts such

as hands, legs, stomach area etc. Many research papers have facial features as an

input to the classification problem. However, gender recognition is still a challenging

task due to various changes in viewing angles, facial expressions, extreme poses,

background, resolution variations, and face image appearance. It is more challenging

in unconstrained imaging conditions. Indeed, an average female face is rounder than

an average male one, while men often have more facial hair than women. Nevertheless,

Loth and Iscan [103] showed that not a single face characteristic can be solely used

to confidently recognize gender. Moreover, the difficulty of gender recognition can

be increased by the presence of makeup (Fig 2.3) and facial accessories (eyeglasses,

scarf, etc.). Gender recognition can be very challenging in unconstrained imaging

conditions.

2.2.1.2 Age estimation

Human age is one of the crucial facial soft biometric attributes. Therefore, age is

important for the facial analysis (e.g. age estimation and age classification). Typically,
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Figure 2.3: Female to Male Makeup Transformation.

a human facial appearances are varying as age growth, such as the shape of facial

contour, skin textures, shape of facial features, and so on. Generally, there are some

general changes and resemblances in human facial aging process [4]. Therefore, we

can always describe some global biological characteristics from the statistic view,

such as craniofacial growth (shape change) from the birth to the adulthood [124],

more protrusive chin as aging, smaller eyes as aging, growing wrinkle as aging, more

dense mustache as mature, and skin aging from adulthood to agedness [43]. Fig 2.4

illustrates the common human facial changes in the human aging process.

Figure 2.4: An illustration of human aging progress. At various stages of life, aging
affects different face parts. [136]
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In recent years, computer vision has made a great progress in various kinds

of practical applications, e.g., bio-vision bionics, monitoring system, data analysis.

Therefore, can a machine performs better human? Technology advances in computer

science and engineering have given a positive answer to this question. There are two

basic tasks in this field, computer based age progression and estimation, that are

described as follows:

• Age progression: Re-render a face image aesthetically with natural aging and

rejuvenating effects on the individual face.

• Age estimation: Label a face image automatically with the exact age (year) or

the age group (year range) of the individual face.

To further understand the tasks, we can differentiate three concepts about human

age:

• Actual age: The real age (cumulated years after birth) of an individual.

• Apparent age: The age information shown on the visual appearance.

• Estimated age: The individual age recognized by machine from the visual

appearance.

The apparent age is typically consistent with the actual age. However, the

variation is often inevitable due to the generic difference between different individuals

and environmental/artificial factors. The estimated age is defined on the appearance

age. The actual age is often defined as the ground truth.

2.2.1.3 Race classification

Besides gender and age, race is arguably the most prominent and dominant personal

attribute, which can be demonstrated empirically by its omnirelevance with a series
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of social cognitive and perceptual tasks (attitude, biased view, stereotype, emotion,

belief, etc.). Furthermore, it yields deep insights into how to conceptualize culture

and socialization in relation to individual appearance attributes, including social

categorization, association and communication. Therefore, the estimation of racial

variance by descriptive approaches for practical purposes is indeed indispensable

in both social and computer science. However, while race demarcation drives the

intrinsically genetic variation structure of essential facial regions to gather more

explicit appearance information, the core question emerges as the computational

mechanism underlying this extraordinary complexity. This raises the following

fundamental multi-disciplinary conundrum: How does a computer model and

categorize a racial face?

To answer this fundamental question, numerous research consortium and scholars have

developed intensive investigations from different angles. For example, psychologists

have studied behavior correlations of race perception such as other race effect (ORE)

and attention model [122], [34], [42], which show existence of racially-discriminative

facial features such as eye corners or nose tip. Neurophysiologists have shown how

race perception influences and regulates cognitive processes such as affection [134] and

stereotype [11], [82]. Computational neuroscientists have built models to simulate and

explain race perceptions (e.g., [92], [119]). Other cognitive experiments in [12] have

also indicated the existence of racial features as a salient visual factor. Among the

general public, the validity of racial categories is often taken for granted. Following

these quantitative analysis, computer vision scholars have been motivated to tackle

the inherent problem of racial demarcation by building computationally intelligent

systems capable of categorizing races.

13



Chapter 2. Overview on Soft Biometrics 2.2. Soft biometric attributes

2.2.1.4 Relation between age, gender and race

It is often the case that a single facial feature can carry information about different

soft biometric attributes. That is why attributes such as age, gender and race are

often treated and categorized simultaneously [99], [52], an approach that is in line

with the perceived correlation of these soft biometric attributes.

In addition to the correlation, exploring this intertwined nature of attributes can carry

substantial advantages; for example, from a genetic point of view, understanding

the interaction of race with aging allows for conclusions on race based differences

in longevity and aging associated diseases [133]. This perceived correlation between

these attributes has motivated additional work such as that in [53], which studied the

influence of gender and race on age estimation process. The work concluded that age

estimation can be impacted by the gender and race differences considerably. While

joint treatment is not beneficial for gender and race classification and that gender and

race can be estimated separately, due to the fact that features used to estimate gender

are shared by all race groups and features used for race classification are present in

both female and male faces.

2.2.1.5 Beard and mustache detection

Another typical face attribute is provided by the presence of beard or mustache,

especially for men’s categorization. Generally considered as an obstacle to the face

recognition algorithms because of its high time variability, the study of beard and

mustache detection is principally focused towards a detect-and-remove approach. As

major example, in [84] authors proposed an algorithm for beard removal from images

of people with facial hairs, the system is designed using the concept of structural

similarity and coordinate transformations.
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2.2.1.6 Evaluation Metrics

A. Gender classification

Gender recognition is a binary classification problem, and the accuracy of automatic

gender classification algorithms is most often measured by a classification accuracy,

which is simply defined as the ratio between the number of correct predictions Nc and

the total number of predictions N :

Accuracy =
Nc

N
(2.1)

The biggest downside of gender classification accuracy is that it does not reflect the

partial prediction scores for male and female. Thus, sometimes the standard binary

classification metrics such as True Positive (TP), False Positive (FP), True Negative

(TN) and False Negative (FN) rates are used together with classification accuracy

(see Table 2.2).

Ground Truth
Positive Negative

Positive True Positive False Positive

P
re

d
ic

te
d

Negative False Negative True Negative

Table 2.2: Confusion Matrix

Otherwise, ROC curve is often employed in addition to classification accuracy

for binary classification problems. A simple way to summarize a ROC curve in one

real value is the usage of an Area Under Curve (AUC) [65] which allows the direct

comparison between a pair of ROC curves.
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B. Age

Various evaluation metrics have been proposed for characterizing the performance of

facial age analysis methods. In the following we briefly recall the ones commonly used.

1) Mean Absolute Error (MAE): is the most used evaluation metric for real

age estimation. Given xi the age estimated on the ith sample and yi the corresponding

true label, the MAE is the average error over the N test samples. Denoting with

ei = |xi − yi| the error on the ith sample:

MAE =

∑N
i=1 ei
N

(2.2)

2) Cumulative Score (CS): is used to evaluate the age estimator performance at

different absolute error levels, where the age estimation error is lower than a threshold

value. The CS is calculated by:

CS(k) =
Ne≤k

N
∗ 100 (2.3)

Where k is the threshold (years), Ne is the number of test images on which the

age estimation makes an absolute error no higher than k and N is the total number

of samples.

3) ε-error: is a metric specifically proposed for the Chalearn Looking at People

challenge [37], [38] for apparent age estimation, where no ground truth is available;

the age labels are computed by asking people to guess them by watching the images.

Let be µi and δi
2 respectively the average and the variance of the distribution of the

estimates provided by the persons for the ith sample of the database, the classification

εi on the ith sample, is calculated as:

16



Chapter 2. Overview on Soft Biometrics 2.2. Soft biometric attributes

εi = 1− e−
(xi−µi)

2

2δi
2 (2.4)

The idea behind this index is to weight the estimation errors by taking into

account the complexity of the sample under consideration as experienced by people.

In particular, the error on the ith sample is normalized by the corresponding variance,

according to (eq:2.4), samples with high variance give less contribution to the error.

4) Accuracy: is the evaluation metric generally adopted for age group classifica-

tion, defined as the ratio between the number of correct classifications and the total

number of test samples. This index is used in two forms: the top-1 and the 1-off. In

the first case, a classification is considered correct if and only if exactly corresponds

to the true age group. In the second case, the evaluation metric is more tolerant and

considers correct also the classifications for age groups that are adjacent to the true

age group.

Better performance refers to higher CS, higher accuracy, lower MAE, and lower ε-error

values.

2.2.1.7 Databases

In recent years several databases have been collected for face analysis, In Table 2.3,

we list different databases that have been used to evaluate face analysis tasks, together

with the most relevant characteristics as the size, the label, the presence of additional

annotations as identity, expression. An idea of the size and the popularity of the

various database along the years, in terms of the number of methods using them, is

given in Fig 2.5. A more detailed description of each database is reported in the next

subsections.
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Figure 2.5: The size and popularity of the various database along the years.

Database Year # Images # Subjects
Label

Gender Age Race Other info
FG-NET 2002 1,002 82 N/A Identity

PAL 2004 1,142 575 Expression
MORPH-II 2006 55,608 13,673 N/A

FACES 2010 2,052 171 N/A N/A Expression
CACD 2014 163,446 2,000 N/A N/A
PCSO 2014 1,500,000 100,012 N/A

Adience 2014 26580 2,984 N/A N/A
LFW+ 2015 2,052 171 N/A

IMDB-WIKI 2016 523,061 82,612 N/A Identity
AgeDB 2017 16,488 568 N/A Identity

Table 2.3: Publicly available databases for facial soft biometrics.
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IMDB-WIKI: [128] is the largest available database annotated with age and

gender labels. It comes from the fusion of the 460,723 face images of 20,284 people

from IMDB, the famous web portal of the celebrities. Fig 2.6 illustrates distribution

of age in IMDB-WIKI database. Being composed by pictures of celebrities, mostly

looking towards the camera, the images do not present very challenging variations. It

is important to mention that the authors do not assure the accuracy of the identities

and of the age annotations.

Figure 2.6: Distribution of age in IMDB-WIKI database.

Indeed, they took the images and the birth date from the personal profiles of the

celebrities and assumed that the timestamp of the photo was correct. IMDB-WIKI is

currently the most used database for pre-training networks for age estimation, which

probably allows to achieve remarkable performance thanks to its size. Few examples

of face images extracted from IMDB-WIKI databases are shown in Fig 2.7.

MORPH-II: [123] is collected by Face Aging Group at the University of
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Figure 2.7: Some facial images from the IMDB-WIKI database.

North Carolina at Wilmington in controlled laboratory conditions, obtained with

collaborative people that look towards the camera. So, the images do not have

significant pose variations and the quality and image resolution is rather poor (between

200x240 and 400x480 pixels). Despite, this database is characterized by a high

variability in terms of the age range, being [16-99 years], race, with a black/white

ratio of about 4:1, and a male/female ratio of 5.5:1; it is created so as to preserve the

distribution of age, gender and race of the whole database for each of its 5 folds.

Age
range

0-20 21-30 31-40 41-50 51-60 61+ Total

Female 1081 2264 2939 1832 355 17 8488
Male 8372 13236 12690 9427 2678 243 64,646
Black 7571 12077 11848 8626 2263 177 42562
White 1351 2571 3368 2491 740 79 10600
Other 531 852 413 142 30 4 1972
Total 9453 15500 15629 11259 3033 260 55134

Table 2.4: The Age range, Gender, and Race distributions of subjects in the MORPH
II database.

MORPH-II is highly recommended to be used in the evaluation of demographic

estimation systems due to the high number of images in it and the distribution of the
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demographic attributes, this can be seen in Table 2.4 and Fig 2.8.

Figure 2.8: Some facial images from the MORPH-II database [123].

The Labeled Faces in the Wild (LFW+): is the most widely used database

for studying the problem of unconstrained face recognition. Han et al [62], performed

age, gender, and race estimation on a subset of LFW with 4,211 subjects (one image

per subject), where the face images have relatively small pose variations. Since the

label of race and real age are not available, they collected human (crowdsourced)

estimates of age, gender and race of each face image by using the Amazon Mechanical

Turk (MTurk) crowdsourcing service with three workers per task. A few examples of

face images extracted from LFW+ databases are shown in Fig 2.9.

FG-NET: [94] has been proposed by the BeFIT for age estimation in uncontrolled

real life conditions. In our opinion this database is not particularly challenging, since

the people are aware they are in the field of view of the camera. In addition, the

images are not equally distributed over age and only a few images of individuals older

than 40 are available. Moreover, its limited size imposes the leave-one-person-out

(LOPO) evaluation protocol.

The Productive Aging Lab Face (PAL) database: [112] contains totally

1,046 frontal face images from 580 subjects with two different expressions: neutral
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Figure 2.9: Some facial images from the LFW+ [62].

and happy. The resolution of the faces is 640x480, and with age range from 18 to 93

years old.

Age
range

0-20 21-30 31-40 41-50 51-60 61+ Total

Female 59 161 51 40 39 266 616
Male 57 199 27 32 13 102 430
Black 43 84 13 22 7 39 208
White 58 189 65 50 45 325 732
Other 15 87 0 0. 0 4 106
Total 116 360 78 72 52 368 1046

Table 2.5: Age range, Gender, and Race distributions of subjects in the PAL database.

The PAL database can be divided into three main races: Black subjects (208

images), White subjects (732 images) and other races subjects (106 images). See Fig

2.10 for some samples.

Adience [36] is a database for age and gender classification collected in real-world

conditions, including variations in appearance, pose, lighting and image quality. The

whole database consists of 26,580 face images with different yaws from frontal angle

and only 13,649 almost frontal. The faces are divided in eight not balanced age

categories: 0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+.
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Figure 2.10: Some facial images from the PAL database.

Figure 2.11: Some facial images from the Adience database.
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These characteristics make the database particularly suited for the benchmark of

age group classification algorithms in challenging conditions. Some examples from

Adience database are shown in Fig 2.11.

Cross-Age Celebrity Dataset (CACD): [19] is mainly used for face recognition

and retrieval purposes, but it is one of the largest publicly available database of

celebrities images, with age annotations. Its main problems are on the one hand

the uncertainty of the annotations (collected with the same protocol proposed for

IMDB-WIKI) and on the other hand the reduced age range [14-62 years]. For these

reasons, the authors themselves discourages its use for age estimation purposes. Some

examples from CACD database are shown in Fig 2.12.

Figure 2.12: Some facial images from the CACD database [19].

Images of Groups (GROUPS): [44] is the database proposed by the BeFIT

for age group classification. The images of the database are divided in seven age

categories: 0-2, 3-7, 8-12, 13-19, 20-36, 37-65, and 66+. Considering that the class
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20-36 contains more than 15,000 faces, this database is significantly unbalanced.

Therefore, the set up proposed by the authors [44] is made of 3,500 images used

for training and 1,050 for testing, being careful that training and testing images are

equally distributed across the seven age groups.

Figure 2.13: Some facial images from the GROUPS database.

It is worth pointing out that the complexity of this data- base is similar to that

of Adience. Images of Groups exhibits less variations in terms of pose, consists of less

images in its balanced version and has a single age group 37-65 for the adulthood.

Consequently, Adience is widely better and this is the reason why GROUPS is less

used. Fig 2.13 shows some facial examples from the GROUPS database.

LAP databases: Since 2011 ChaLearn Looking at People (LAP) organizes

several computer vision competitions aimed at recognizing people in images. One of

the most successful events is the Age Estimation Challenge, organized for the first time

during ICCV 2015 [37] and CVPR 2016 [38]. A database for estimating the apparent

age of people, based on the opinion of web users, was in these occasions made available

to the community. Although these databases do not provide large number of images,

they are rightly considered the most challenging ones in terms of face variations and

consequently the most commonly adopted in recent years. These reasons make them

the most suited for benchmarking the performance of age estimation methods both
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in terms of completeness and of available performance data.

2.2.1.8 Databases analysis

Fig 2.5 points out that FG-NET and MORPH-II are the most used databases for

evaluating the performance of facial soft biometrics estimation algorithms, since they

were the first database available (2002 and 2006 respectively). The availability of

several results on those databases in the last five years is surely a stimulus to their

use. On the contrary, the recent ChaLearn LAP databases, collected for estimating the

apparent age, make them particularly suited for benchmarking apparent age methods.

Adience and Images of Groups are databases as challenging as the ones proposed for

the ChaLearn LAP competitions, since the available images exhibit strong variations

in terms of image resolution and quality and facial poses. They may be considered

as good alternatives, even because the age group annotation is available, but not the

real age. Recently, many researchers have experienced the benefits of using facial soft

biometrics, a good database for analysing the impact of the facial expression on the

perceived age is FACES. Indeed the other databases typically contain people smiling

or with a neutral expression (including PAL).

To perform an effective training of a network for age estimation it is fundamental to

have a very large and heterogeneous database. Currently, the database most suited to

this need is the IMDB-WIKI, used by almost all the researchers in their experiments.

Despite the remarkable effort done for the collection of IMDB-WIKI, the authors

themselves point out that the procedure used for gathering images and labels is not

optimal to guarantee the accuracy of the age annotations. Moreover, being available

the identity and the gender annotations, IMDB-WIKI can be used likewise for face

recognition pre-training.
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2.2.2 Body Soft Biometrics

In this subsection, we focus on soft biometric attributes that have been historically

used to quantify the geometry and shape of the body and skeleton (i.e., of classical

anthropometric measures). The studies on anthropometric measures are not generally

driven by biometric use. While at the beginning anthropometry was a technique used

in physical anthropology to study the physical development of the human species.

Nowadays it is employed in industrial/clothing design, ergonomics, and architecture

to optimize the products to the customers needs. Other interesting works regards the

study of population statistics so as to monitor changes in lifestyle, and nutrition to

track body dimensions (e.g. obesity epidemic)[16].

The first biometric application of anthropometric measurement is due to the

aforementioned work by Alphonse Bertillon [68]. His anthropometric measurement-

based classification method was used to identify criminals, and it is indeed one of the

few examples of anthropometric attrimeasurement used as biometric identifier (see

Fig 2.14).

Figure 2.14: Examples of Bertillon’s gathering of measurements [10]
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Among the many anthropometric attributes, height, gait, body weight and color

of clothes concern the body and are the main attributes that can be extracted from

distance. The best distinctiveness is provided by gait detection, which is why gait

occasionally is referred to as a classical biometric.

2.2.2.1 Body height

Among the many geometric attributes, body height is the most prominent. In

extracting this measure, different challenges remain, including that of the human

pose which can serve as a primary biasing factor. However, height estimation is an

already mature topic in the literature and it has been exploited several times. One

of the earliest approaches is presented in [51]. The authors used the content of the

image to compute geometrical properties of objects that lie on the same plane, later

they can compare objects dimensions. By knowing the height of given objects in

the scene they are able to measure height of people in the Camera Field of View

(FOV). Extending this last work, the authors of [95] proposed further improvements

using multiple measures and a statistical approach to remove outliers. Using the

proposed approach the authors reached a precision of 1cm for subjects walking in

an unconstrained scenario. Precise measurement of height has been already used in

combination with other features so as to track people across multiple camera systems,

and to allow the identification of the same person in multiple video streams [108].

The estimation is performed via the computation of height related to the real world

coordinates estimated in camera images.

Height is possibly one of the most used feature in real cases and can become under

certain circumstances a crime evidence. It is indeed one of the main factors used in

photogrammetry. This technique is nowadays widely used to estimate anthropometric

measures from images or video surveillance footages. The Netherlands Forensic

Institute has performed a comparison [35] of two methods for obtaining body height
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measurements from images. One is based on projective geometry and the other one on

3D modeling of the crime scene. Keeping the same camera settings setup, the authors

demonstrated that the predictions of both methods are accurate, but changing camera

position makes the first algorithm less reliable. Moreover, also the 3D reconstruction of

the environment can be helpful as this kind of analysis greatly simplify the extraction

of measurements. The possibility of using such a technique is explored in [28] where

the authors used landmarks within the scene to enable the automatic collection of

subjects’ height measurements.

BenAbdelkader and Yacoob [12] estimated height from full body images and from

images which contain only the upper part. They evaluated their methodology on

synthetic data (generated randomly) and real images.

2.2.2.2 Body weight

Since the beginning, weight was introduced within the list of the soft biometric

attributes [74]. However it was not fully explored as soft biometric attributes. A

field where weight is considered an important feature is represented by medical studies.

Here the main interest is represented by the visual extraction capability and reliability

of human operators in case of emergency situations where there is no possibility of

using scales like in [111], [60].

Other interests are represented by the use of weight as a foremost important

feature that helps to monitor body health status [89]. Additionally, a branch of

medical studies explore the forensic aspect of weight estimation [90] so as to recover

information from latent traces that help to recognize victims or crime suspects. To

the best of our knowledge, the only paper which involves weight directly referring

to it as a soft biometrics is [3], where the authors use a scale to weight clients of

a fingerprint recognition system. By exploiting weight and body fat measurements

the authors reduce the total error rate of the system by 2.4%. Another work [131]

29



Chapter 2. Overview on Soft Biometrics 2.2. Soft biometric attributes

considered weight as a discrete value visually defined by subjects participating to a

psycho-visual experiment. However, the values used (Very Thin, Thin, Average, Fat,

Very Fat) show that rather than the weight itself, the description refers to the way fat

is distributed on the inspected body. That is to say users described the body build of

subjects rather than their body mass.

2.2.2.3 Gait

Gait is a complex pattern that involves not only some anthropometric parameters but

especially behavioral information. Among all the soft biometric attributes, it is one

of the most explored, and because of its distinctiveness it is debated as being actually

a hard biometric. One of the first experiments (1973) on gait analysis is presented in

[80], where the author uses lights attached to the joints of the human body to record

subjects’ gait patterns. The author demonstrates how observers can recognize walking

style people familiar to them just by the light traces they leave while walking. Since

1970’s, many other authors were interested in the topic of automatic gait recognition.

In [142], a spatiotemporal signature is extracted by the moving silhouette, later on a

principal component analysis is employed to discard irrelevant information. Finally,

supervised pattern classification techniques are performed in the lower–dimensional

eigenspace. In order to provide more discriminative power, both the structural and

behavioral characteristics of gait are captured. Another interesting work is proposed

in [131], where gait is chosen as primary biometric attribute to be coupled with

“semantic biometrics”, that seems to be a very similar concept to soft biometrics.

Using ANOVA they first outline the most important semantic attributes. After they

merge the results of the signature generated by gait with the one generated by the

semantic information so as to identify users of the biometric system. Other ways of

performing human identification via gait analysis are based on the human silhouette

and on model based systems like [64]. Gait analysis is not only used to identify people
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or extract soft biometric attributes, it is also actively used also in the medical field.

The use of markers has been widely exploited, lately some studies have started to

involve new techniques like computer vision, or new sensors like accelerometers [153]

to analyze this attribute.

2.2.2.4 Databases

USF/NIST HumanID Gait Challenge Database: In 2005, the University of

South Florida (USF) published USF/NIST HumanID Gait Challenge Database [132].

The database as formulated to facilitate objective, quantitative measurement of gait

research progress on a large data set. It is presently the largest available data set.

Fig. 2.15 shows some sample frames.

Figure 2.15: Samples from the HumanID gait challenge data set: subject walking on
grass (a) along the frontal half of the elliptical path and (b) along the back half of
the elliptical path.

The full data set consists of 1,870 sequences from 122 individuals, all these

individuals walked around an ellipse. While walking, the following five covariates

were changed: with or without a briefcase, left viewpoint and right viewpoint, two

different shoes types, two different time instants, and grass surface or concrete surface.

It is the only data set to include walking on a grass surface.
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UMD Gait Database There are two UMD gait Databases: Dataset-1 consists

of walking sequences of 25 subjects and Dataset-2 contains walking sequences of 55

subjects walking along a T-shape pathway. Dataset-2 is larger than Dataset-1, it

taken outdoor by two surveillance cameras at a height of 4.57 meters. Fig 2.16 shows

one sample frame. Each video sequence has approximately 10 gait cycles, viewed

frontally and sideways. The database is diverse in terms of gender, age, and race.

Moreover, the databases collected on different days differ with respect to clothing as

well.

Figure 2.16: Sample frame from the UMD gait database.

NHANES Database: National Health and Nutrition Examination Survey

database (NHANES)[81]. This database is unique because of its characteristics: size

of the population, and time span analysis. This database was collected from a large

population of individuals (more than 28000 people), over a period of 6 years (from 1999

to 2005) by the Centers for Disease Control and Prevention during the National Health

and Nutrition Examination Survey. The purpose of this survey was the monitoring

of American population, and the assessment of health and nutritional conditions of
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adults and children in the United States. The database is a significant source of

data regarding a wide range of different statistics: health conditions, physical body

measurements (weight, height, leg and arm length and so on).

CAESAR CAESAR dataset [125] that contains 3D scans of the full body of more

than 4000 subjects (see fig 2.17 for an example). In this case the body measures might

be extracted by the 3D body shape and the face recognition might be performed on

the 3D face model.

Figure 2.17: CAESAR commercial database that contains 3D full body scans of more
than 4000 subjects.

2.2.3 Accessory soft biometrics

The new soft biometrics definitions allow the inclusion of accessories among the afore-

mentioned attributes. Accessories can indeed be related to personal characteristics

(as vision problems in the case of glasses), or personal choices (as adornment in case

of jewelry and clothes). One of the first example is clothes color detection. According

to the definition of soft biometrics these characteristics can be added to the list of

already mentioned attributes.

This section focuses on the usage of accessory attributes, as well as color as

soft biometrics. Also gender estimation from attributes other than face and body

is discussed – examples are included for gender from iris, fingerprints or ear. Similar

examples can be found in the literature for the estimation of age using alternative

33



Chapter 2. Overview on Soft Biometrics 2.2. Soft biometric attributes

features, as briefly discussed in the following sections.

2.2.3.1 Clothes classification

Several works focused on the use of color information from clothes to re-identify

people in video surveillance scenarios. Fig 2.18 illustrates a situation where clothing

attributes were visible and can be used as a soft biometric, contributing to the

identification of a suspect. One of the common ways to discriminate among different

targets is represented by histogram based methods [77]. Content based retrieval

systems have demonstrated how those techniques are well suited to retrieve similar

images, however they are strongly affected by changes in appearance and illumination

[70]. Another positive aspect of the histogram like methods [86] is that they are

straightforward and fast to compute. For this reason, those works were taken as

baseline techniques in [47] where the authors present a set of methods that show

promising performances considering both the size of the database and the simplicity

of implementation of the techniques themselves. Later, D’Angelo et al. [25] improved

the performance proposing the probabilistic color histogram as new histogram like

descriptor.

Figure 2.18: Image highlighting a marked suspect with covered face but wearing
distinct clothing, and a face image (bottom right) of a suspect appearing to wear the
same clothes [73].
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An interesting yet preliminary result on clothes categorization is shown in [48]

where authors are able to classify clothes in different categories as a side effect of 2D

body silhouette analysis.

2.2.3.2 Eye Glasses detection

As for the beard and mustache, also for glasses the state of the art explore ways of

removing this attribute so as to ameliorate the automatic face recognition results.

One of the earliest works for glasses detection was performed by [79], they exploit

edge detection on a preprocessed gray level image to enhance some characteristics of

glasses. Certain face areas are observed and an indicator for glasses presence. The

best identifying part is found to be the nose region between the eyes, where the bridge

is usually located. A 3D method to detect glasses frames is presented in [144], where

3D features are obtained by a trinocular stereo vision system. Another approach for

glasses extraction is employed in [145] where a face model is established based on the

Delaunay triangulation. Up to now, the best results on glasses detection are achieved

on thermal images from [113] where in the data fusion process, eyeglasses, which block

thermal energy, are detected from thermal images and replaced with an eye template.

2.3 Benefits of soft biometric

Soft biometrics can be inexpensive to compute, discerned at a distance in a crowded

environment, and require less or no cooperation of the observed subjects. To elaborate,

we note the following benefits:

Human understandable interpretation : Soft biometric attributes have a

semantic interpretation, in the sense that that they can provide a description that can

be readily understood by humans. For example, the description “young, tall, female”.

This makes them particularly useful in applications such as video surveillance, where
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they are directly compatible with how humans perceive their surroundings. In other

words, when a human attempts to verbally describe a person, obvious characteristics

regarding the person’s appearance such as gender, age, height and clothes color

are often used (e.g., in police reports). This allows soft biometrics to be used in

applications where traditional biometrics may be insufficient.

Robustness to low data quality : Some soft biometric attributes can be

deduced from low quality biometric data. In this context, such attributes can be

extracted, when primary biometric data is not conclusive, due to poor acquisition

quality. For example, if the input iris image is of poor quality, one could utilize the

surrounding periocular information to perform recognition, rather than relying on the

iris itself.

Consent free acquisition : Soft biometrics can often be captured without the

consent and cooperation of the observed subject. For example, information about a

person’s height or gender can be deduced from a distance.

Privacy : Since soft biometrics are not distinctive, they only provide a partial

description of a person (such as “male, tall, old”). This limitation has positive privacy

ramifications when it comes to extracting and storing such soft biometric data.

Filtering : Soft biometrics can often be used to filtering and indexing the large

database to limit the number of searched data according to the connected person

characteristics. For example, we can restrict the search for female gender.
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2.4 Extraction of soft biometrics in the context of

Covid-19 pandemic situation

Many soft biometrics are actually extracted from faces (e.g. age, gender, race,

mustache, beard, etc.). However, recently people are wearing masks due to Covid-

19 pandemic. This situation makes the extraction of some soft biometrics traits

very challenging. When people are wearing masks, the use of periocular regions for

soft biometric is attracting more and more attention. Periocular region refers to the

periphery of eyes which contains eye, eyebrow and pre-eye orbital region as illustrated

in Fig. 2.19.

Figure 2.19: First row: Periocular region contains both eye; Second Row: Periocular
region contains separate Left/Right eye.

Periocular region which can be considered as only 20 to 30% of the face area,

itself is a small region of interest. Partial occlusion of such small size region may also

deteriorate the performance of the system. The reason of the occlusion may be the

use of eyeglasses, partial closure of eyes or pose variation.
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2.5 Conclusion

This chapter was devoted to the overview of the most notable soft biometric attributes

on three modalities, namely: (1) facial soft biometrics (cf. Subsection 2.2.1), (2) body

soft biometrics (cf. Subsection 2.2.2) and (3) accessory soft biometrics (cf. Subsection

2.2.3). The analysis of the existing handcraft and deep learning studies are done

separately in Chapters 3 and 4 respectively.

Below, we present the summary of the observations which we believe the most

important in this overview chapter:

1. Among all soft biometric modalities, the face is the richest source that provides

information about a person.

2. Automatic age estimation can be influenced by the gender and race differences

considerably. Hence, joint treatment is not beneficial for gender and race

classification. So, they can be estimated separately.

3. The database most suited to perform an effective training of a deep learning

network is the IMDB-WIKI. Only MORPH II, PAL, LFW+ and PCSO

databases are labeled with the gender,race and age informations.

4. Among the many anthropometric attributes height, gait and body weight

concern the body and are the main attributes that can be extracted from a

distance.

These observations have been utilized in the Subsection 5.3 to design our proposed

approach for age estimation based on facial demographic attributes (i.e., gender, race

and age group), and choose the databases that labeled with the gender,race and age

to evaluate our proposed approach (cf. subsection 5.3.3).
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The next chapters discuss some of existing methods (based on handcrafted features

and also on deep learning) for extracting soft biometrics traits.
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3.1 Introduction

Generally, facial soft biometric systems can be categorized based on handcrafted

or deep learning algorithms. The main difference between these two algorithms,

is the process of features extraction and selection which is accomplished manually

for handcrafted models. While in case of deep learning this process is performed

automatically without human interference.

In this chapter, we present a facial soft biometric review. The structure of this

chapter is based on the aforementioned algorithms. We start with handcraft based

methods in Section 3.2, then we present deep learning based methods in Section 3.3.

3.2 Handcraft based methods

Principally, handcrafted-based methods depend on extracting the features from

images manually using set of descriptors. In fact, this process requires extra knowledge

by hand. Two types of features can describe the facial components, these features are

the local features and the global features [51]. The facial wrinkles and the different

landmarks such as eyes, cheeks, and nose can be represented using the local features.

While, global features, or holistic features is arguably the most typical technique to

be used in handcrafted-based methods due to its capability to preserve configural

(e.g.,the inter relations between facial regions) information, which is essential for

discriminating facial soft biometric.

In this section, we will present a typical pipeline of facial soft biometric systems based

on handcraft features and makes an review of the existing methods in Subsections 3.2.1

and 3.2.2 respectively. We end this section by illustrating some classification methods

in Subsection 3.2.3.
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Face detection

& alignment

features vector

Classification or

Regression

Facial feature

extraction

Figure 3.1: Typical pipeline of automatic facial soft biometric extraction systems. It
consists of three phases:face face detection & alignment, facial feature representations
and classification or regression.

3.2.1 General framework

Facial soft biometric systems based on handcrafted features, are normally follow a

typical pipeline which is presented in Fig 3.1. It usually composed of three main

phases, namely: (1) Face detection and alignment, (2) Facial feature representations

and (3) Classification or regression.

The objective of the first phase is to extract a face or faces from an input image

then scale and crop them in the same way using a set of reference points located at

fixed locations in the image. while the objective of the second phase is to extract

facial features based on the detected and aligned face. In the third phase the decision

for the soft biometric is made. In the next subsections, we will detail each phase

separately.

3.2.2 Face Detection and Alignment

Face extraction and alignment phase is normally composed of two smaller steps. The

first one, face detection, is indispensable and is present in all systems of automatic

face analysis. Basically, its goal is to detect a face (or faces) in an input image and

to output the respective delimiting region (or regions) in the image. Face detection is
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a classical problem of computer vision with plenty of existing open-source solutions

such as Viola and Jones [141], MTCNN [149] and Retinaface [30]. It should be noted

that the form of the delimiting face region (square, rectangle, oval etc.) depends

on the particular face detector. For example, in this manuscript, we employ Dlib

face detector [87] which is based on Kazemi and Sullivan algorithm [85] and outputs

square-sized face regions.

Figure 3.2: 2D facial landmarks detected by Kazemi and Sullivan algorithm [85]
(figure from google image)

Sometimes, the face detected is directly given to classification or regression phase.

But more often, the input faces are expected to be in a certain normalized form.

For example, a face image can be aligned by rotating it so that the two eyes lie on a

horizontal line, and by scaling the resulting image in order to set the distance between

the eyes in pixels to some predefined value (See Fig 3.3). The described alignment

process is simple but it is very sensible to precise estimation of the position of the

eyes. Instead, a much more general and robust approach consists in detecting a set
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Figure 3.3: Pose correction using 2D affine transformation based on the two eye
locations in [61]

of landmarks (their exact number depends on the particular implementation). In the

present manuscript, we used dlib face landmark detection [87]. Fig 3.2 illustrates

location of 68 facial landmarks detected by Kazemi and Sullivan algorithm [85].

3.2.3 Facial Feature extraction

Feature extraction means extracting the features from the image so that recognition

is made accurate and easy. Both global and local features are crucial for face

representation and recognition [9]. A number of various hand-crafted feature

representations have been designed for different problems of computer vision. Often

such features are well-adapted for certain problems, and are much less effective for

another ones. Below, we present different approaches for description of face images,

which have been utilized in previous soft biometric studies. Principally, the hand-

crafted methods for feature extraction can be divided into three main groups:

3.2.3.1 Anthropometry-Based Features

Anthropometry-based features are a set of distances and ratios which are based on

dimensions of the whole face/salient features (e.g., mouth, eyes, nose, etc.) and

distance ratios measured from facial landmarks. The idea is to use these distances
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in order to describe the topological differences between male and female faces or

between faces of different ages or races. Basically, the anthropometric features derive

the geometric dimensions of the skull based on the provided face image. Notice that

only frontal faces can be used to compute such representations, which are sensitive

to head pose variations. Another disadvantage is these models consider only facial

geometry while ignore texture information.

Figure 3.4: The set of 24 face fiducial distances used by Fellous [40].

For example, one of the first attempts to classify age from faces was performed by

Kwon and Lobo [93], where the authors presented an age classification method based

on facial images by computing distance ratios of different facial features (i.e., eyes,

nose, mouth, chin,...etc) and detecting the presence of wrinkles. Their method can
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classify the input faces into one of three age groups (babies, young adults, and senior

adults). Poggio et al.[120] attempted to distinguish cranial shapes of male and female

faces. To this end, the authors used 15 fiducial distances: pupil to eyebrow separation

and nose width appeared to be the most discriminative among them. Later, Fellous

[40] extended the previous study [120] by proposing 24 fiducial distances for gender

recognition (See Fig. 3.4). Indeed, in addition, to the distance between the eyes and

the eyebrows and to the width of the nose, the total width of the face and the distance

between the two eye pupils were also found useful for race classification in [151].

Dehshibi and Bastanfard [29] computed the geometric ratios from the facial images

to extract the related features of facial components and texture and used these features

for image classification into four age groups. While this approach is considering only

the geometric features, it might be inappropriate for adults and old people since the

appearance of the skin is the noticeable feature that represents the aging information.

The set of 8 face landmarks and 6 geometric ratios are presented in Fig. 3.5.

Figure 3.5: The set of 8 face landmarks and 6 geometric ratios for anthropometric
recognition of age used in [29].
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3.2.3.2 Texture-Based Features

Many studies on soft biometric from face images are based on extraction of both global

and local texture features. These texture features can be directly extracted from

images using the intensities (gray level or color) of pixels. One of the most primary

and effective texture descriptor is Local Binary Patterns (LBP) [2]. This approach was

employed by several facial soft biometric studies with various classification algorithms.

Yang and Ai [148], introduced a demographic classification method involving age

group classification, namely child, youth and old. They considered Local Binary

Patterns Histogram (LBPH) feature for ordinary binary classification problems. The

step descent method was applied to find an optimal reference template which is used

as a measurement of confidence for classification. Their method achieved 6.82%,

7.88% and 12.5% error rates for age classification on SNAPSHOT, FERET and PIE

databases respectively.

Figure 3.6: Han et al [55] hierarchical approach consisting of three binary classifiers.

A few other hand-crafted features rather than LBP were also experimented for

facial soft biometric. Guo and Mu [55] proposed a complete framework that can

estimate the age, gender, and race traits jointly within a single step (See Fig. 3.6).

They adopted two methods of linear dimensionality, which are the Partial Least

Squares (PLS) model [127] and Canonical Correlation Analysis (CCA) based methods

[66]. These methods are also used to reduce the dimensionality of the original
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feature space. Their framework produced a Mean Absolute Error of 3.92 years on

the MORPH-II database.

Another approach to determine the demographic attributes proposed by Hadid

and Pietikäinen [59] considered LBP based spatio-temporal representation as a

baseline system for combining spatial (i.e., facial structure information) and temporal

(i.e., dynamics information) features for facial demographic classification from video

sequences. Moreover, the correlation between the frames through manifold learning

has been encoded. Chang and Chen [17] introduced a cost-sensitive ordinal

hyperplanes ranking method to estimate human age from facial images while a novel

multistage learning system which is called grouping estimation fusion (DEF) was

proposed to classify human age.

However, many researchers have been attempted to develop new approaches that

can estimate the facial age based on the results of race and gender classification. For

instance, Han et al [62] presented a hierarchical approach consisting of three binary

classifiers to build a two-level binary decision to predict gender and race attributes

followed by a separate SVM regressor trained within each group to make an accurate

age prediction (See fig 3.7). More recently, the same idea has been explored by

Bekhouche et al. [9]. They proposed a hierarchical classifier with three layers to

adopt a learning system for facial demographic attributes estimation. According to

the highest accuracy of race estimation in their experiments, they chose to estimate

the race of the input face as root of their hierarchical estimator. The gender is then

estimated based on the race predicted using a corresponding classifier. Finally, based

on the predicted race and gender, the age is estimated.
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Further, in [61] the authors addressed the facial appearance variations which are

considered as the more challenging problem of automatic demographic estimation

from face images acquired in the wild (real-life face images) by presenting a complete

framework that involves face normalization, feature extraction, and age group (or

exact age), gender, and race estimation. The Biologically inspired features (BIF)

and Support Vector Machines (SVM) were used in extraction and classification steps

respectively. The same problem was addressed in [36], by presenting a robust face

alignment technique. They provided a unique more challenging benchmark of face

images, acquired under real-world conditions, labeled only for age and gender, to

develop their proposed method and to evaluate performances.

3.2.3.3 Appearance-Based Features

The appearance features are based both on shape and texture information. A typical

method for extracting appearance features is Active Appearance Models (AAM). It

initially proposed by Cootes et al. [24] and commonly used to represent the facial

image. The learning step for the shape and texture models is performed through the

training process on some images. AAM separately applies PCA to learn a statistical

shape model and an intensity model of face images.

Later, Lanitis et al. [94] extended AAM for age modelling by proposing an aging

function to explain variations in ages. Every image in the face database is described by

a set of parameters b, and for each subject the best age function is drawn depending

on his/her b. The greatest advantage of this approach is that different subject-based

age functions allow taking into account for external factors which contribute towards

the age variations. The authors tested this approach on a database of 12 people, with

80 images in the gallery and 85 in the probe. They reported an improvement of about

4–8% and 12–15% swapping the probe and gallery set.

Appearance-Based Features was applied for gender classification in [146], where
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Figure 3.8: 10 features extracted with AAM that used in [146].

the authors proposed a hybrid method using local features (10 features extracted with

AAM) as illustrated in Fig. 3.8 and global features (extracted using AdaBoost with

Haar-like features). The authors show that a better accuracy can be obtained by fusing

these features before classification. Overall accuracy using 5-fold cross validation on

1000 images is 92.38%.

Significantly, AAM technique shows a clear advantage over anthropometric model

that it can deal with any age and gender consider both texture and anthropometric

models. Nevertheless, a serious weakness with this model is the loss of some skin areas

and wrinkles information because of using dimensionality reduction [56]. Another

crucial issue of this techniques is the intensive computations and the need of large

number of images to learn the features that are related to the shape and appearance.

Moreover, the performance of AAM model depends on the image quality, so dealing

with image intensities in the gray-level, may lead to a vulnerable model.
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3.2.4 Classification/Regression

After extracting the facial feature vector, a classifier or regressor is used in training

stage on the available datasets. In this subsection, we focus on the last step of facial

soft biometric systems based on handcrafted features pipeline presented in Fig 3.1, i.e.

on algorithms which perform classification or regression based on the image descriptors

discussed in Subsection 3.2.3.

3.2.4.1 Classfication

Classification is a process of categorizing a given set of data into classes, It can

be performed on both structured or unstructured data. The process starts with

predicting the class of given data points. The classes are often referred to as target,

label or categories. The classification predictive modeling is the task of approximating

the mapping function from input variables to discrete output variables. The main goal

is to identify which class/category the new data will fall into.

3.2.4.2 Regression

In machine learning, regression algorithms attempt to estimate the mapping function

f from the input variables x to numerical or continuous output variables y. In this

case, y is a real value, which can be an integer or a floating point value. Therefore,

regression prediction problems are usually quantities or sizes. For example, Instead of

dealing ages prediction as a multi-class problem, labels can be considered as numerical

values. The common regression algorithms include linear regression, Support Vector

Regression (SVR), and regression trees. Some algorithms, such as logistic regression,

have the name ”regression” in their names but they are not regression algorithms.
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3.3 Deep learning based methods

Deep learning methods enhancing the performance of many tasks in computer vision.

In facial soft biometric system, deep learning have been effectively utilized to make a

transformation of face images to output the label space [92]. A different approach is

taken by deep learning based methods and especially Convolutional Neural Networks

(CNN) comparing with hand-crafted based methods. The features are automatically

extracted during the training process instead of defining a set of algorithms. The basic

idea of using deep learning is based on trying to solve the problem in a hierarchical

manner of concepts. This way of learning gives us the power to replace the hand-

crafted methods with deep learning based methods [101]. In the next subsections,

we firstly explain the basic principles and the intuitions behind CNNs in Subsection

3.3.1, and then in Subsections 3.3.2 and 3.3.3, we introduce, the two main common

ways are used to training deep learning approaches. Deep Learning frameworks are

introduced in details in Section 3.3.4.

3.3.1 Convolutional Neural Networks

Convolutional neural networks (CNN/ConvNet) is a type of deep learning model

which is specifically applied on Image, video and some other 2D and/or 3D data.

Since facial age estimation research deals with image and video data only, most of

the recent research works on facial soft biometric deal with CNN models. CNNs

perceive images as three- dimensional volumes. These input and output volumes after

each layer of CNN model are expressed mathematically in terms of multi-dimensional

matrices. As the image moves deeper into a CNN, the dimensions of these matrices

get transformed after every layer. A general structure of a CNN model is depicted in

Fig. 3.9.

CNN frameworks are built up of a well decided combinations of a few layers
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Figure 3.9: A general structure of a convolutional neural networks.

named as convolutional layers, sub-sampling or layers and Fully connected layers.

Convolutional layers are used to perform the basic task of convolution. This layer acts

as the main building block of a CNN. Sub-sampling layers like max pooling reduce

the special size and/or the parameter size using MAX or AVERAGE operation. This

layer performs a major task of controlling the problem of overfitting. Finally, neurons

of a fully connected layer map all the activations in the previous layer. This layer

is connected at the end of a CNN model. Moreover, there is an additional RELU

layer which can be used to implement the function of non-linearity and rectification

in CNNs. A SoftMax layer is often used as the final layer and performs the function

of assigning decimal probabilities to each outputted neuron. Depending on this basic

concept, researchers have proposed many Convolutional Neural Network architectures

(Sabharwal et al. 2018) in order to implement their research ideas. Popular CNN

models such as AlexNet, VGG-16, GoogLeNet and ResNet are shortly introduced in

the following subsections.

3.3.1.1 AlexNet

AlexNet is named after Alex Krizhevsky, who has designed this neural network model

in the year 2012 [91]. As shown in Fig. 5, AlexNet is a combination of a total of
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8 layers. 5 of them are convolutional layers. Some of these convolutional layers are

followed by Max-Pooling layers. Last three layers are fully connected layers. A ReLU

layer is attached after every convolutional and fully connected layer. A dropout layer

is also attached after every fully connected layer in order to control the problem of

overfitting.

Figure 3.10: AlexNet architecture

3.3.1.2 VGG16

VGG-16 architecture is designed by Simonyan and Zisserman [137]. It is considered

to be one of the excellent vision model architecture till date. VGG-16 is a very

uniform architecture made up of 16 convolutional layers, 5 Max-pooling layers, 3 fully

connected layers and a SoftMax layer at the output. A ReLU layer is provided after

all the hidden layers. The basic architecture of VGG-16 is presented in Fig. 3.11. This

network is a pretty large network and it has about 138 million (approx) parameters.
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Figure 3.11: Architecture of Vgg16

3.3.1.3 GoogLeNet

GoogLeNet [140] is designed by inter-connecting nine Inception modules to recom-

mend a deeper architecture. As a part of basic CNN architecture, Maximum pooling

layers that helps in reducing the parameter size follows some inception modules for

GoogLeNet architecture. Unlike Alex-Net and VGG-Net architecture, GoogLeNet

does not consider a firm Convolution size. Generally, sizes of convolutional kernels

are 1×1, 3×3 and 5×5 (See fig. 3.12). The 1×1 convolution layers implements feature

dimensionality reduction function that is processed to broad network. GoogLeNet

exceed AlexNet and VGGNet as conclusion to top-5 error that reduces to 6.67% by

using 22 convolutional layers.
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3.3.1.4 ResNet

ResNets [67] work on the principle of skip connections and allow researchers to go

very deeper the neural networks without vanishing gradient and higher training error.

A ResNet module can be built by using identity mapping to create a path between

the input and the output layer and skipping some in between layers (See Fig. 3.13).

Various types of ResNet models studied so far are ResNet-18, ResNet-34, ResNet-50,

ResNet-101 and ResNet-152.

Figure 3.13: ResNet skip connection

Canziani et al. [14] provide an excellent comparison of popular CNN architectures

shown in Fig. 3.14. It provides more informative view of the accuracy values of CNN

architectures, because it also visualises computational cost and number of network’s

parameters. The first thing that is very apparent is that VGG, even though it is

widely used in many applications, is by far the most expensive architecture, both in

terms of computational requirements and number of parameters. The other ResNet
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architectures form a curve growing line.

Figure 3.14: Comparison of popular CNN architectures. The vertical axis shows
top 1 accuracy on ImageNet classification. The horizontal axis shows the number of
operations needed to classify an image. Circle size is proportional to the number of
parameters in the network [14].

3.3.2 Training deep learning approach

Learn a series of nonlinear features using deep learning enhances the performance of

many tasks in computer vision. All CNN architectures can be employed by doing

minor modifications in the architecture. To perform deep learning, two main common

ways are used:
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3.3.2.1 Training from scratch

In case of having new application or large number of classes as output, it can be

useful to train the network from scratch on large labeled data to allow learning the

features (See Fig. 3.15.a). However, training from scratch (full-training) of CNN

may not be very easy as CNN requires plenty of training data for better performance

[7]. This approach is less common due to the need of high-performance graphical

processing units (GPUs) also needed in training of CNN for fast processing because

the training with such a big collection of data is a time-consuming process [7]. Besides,

the process of training in CNN is very complicated and required constant adjustments

of parameters to ensure equivalent learning of all the layers due to issues of convergence

and overfitting [72].

(a)

(b)

Figure 3.15: (a) Training from scratch, (b) Transfer learning.
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3.3.2.2 Transfer Learning

Due to the vastness and design complexity of deep neural network architecture, most

of machine learning tasks have too few training and verification sets. More image data

training is needed to further improve accuracy, sensitivity, and specificity. Transfer

learning is an approach is more suitable when limited training data is available for

the problem under consideration. In transfer learning, one can learn a complex model

using data from a source domain where large-scale annotated images are available (e.g.

ImageNet, FaceNet dataset,...etc.). Then, the model is further fine-tuned with data

of the target domain where only a small number of annotated images are available

(e.g. race images) [5](Fig 3.15.b)

3.3.3 Deep Learning frameworks

Along with the success of deep learning techniques in diverse areas and the availability

of large number of training databases, researchers have turned their attention to

learning facial representations by deep neural networks in recent years. These deep

learned features [38], [128] are more representative and discriminative for facial soft

biometric tasks than traditional handcrafted features.

The first use of CNN was by Yang et al. [147] to estimate demographic attributes.

They created a CNN model of 5 layers and trained it from scratch. In their model, a

recognition system was built to recognize the face from videos and images then extract

the corresponding human profile. Many outputs were obtained from the model related

to gender, age and race.

Later, Wang et al. [143] developed a relatively deeper CNN (i.e., 3 convolution +

2 pooling + full connection) to address the problem of age estimation. However, the

proposed CNN is only used to extract features, which is then fed to a regressor (i.e.,

a linear SVR regressor) for final age prediction.
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Figure 3.16: Yang et al [147] Convolutional neural network of 5 layers.

Levi and Hassner [36] used a shallow CNN architecture to classify the Adience dataset

into eight age and two gender groups. They compromised between the complexity

of the network with the performance to reduce the chance for overfitting. Hu et

al. [69] proposed a CNNs scheme to facial age estimation without age labels by

using the age difference information with three kinds of loss functions, (i.e., cross

entropy loss, entropy loss, and K-L divergence distance). While Rothe et al. [128]

offered a solution to real and apparent age estimation by proposing an approach called

Deep EXpectation (DEX). They used a deep CNN network pre-trained on the large

ImageNet images [129] with VGG-16 architecture [137] followed by a softmax function

to expect value formulation for age regression. Their results are reported on FG-NET,

MORPH II and CACD datasets for estimating the biological (real) age. Fig 3.17

illustrates pipeline of DEX method. . Liu et al. [101], exploited the label correlation

among face samples in the transformed subspace and proposed a label-sensitive deep

metric learning (LSDML) approach for facial age estimation. Then they extended

it to a multi-source LSDML (M-LSDML) by using the correlation of multi-source

face aging datasets to learn the label-sensitive feature similarity. Their experimental

results showed the effectiveness of their approach on MORPH II, AdienceFaces, FG-

NET, FACES and ChaLearn databases.

Fudong Nian et al. [116] propose to use CNN for robust gender classification

in unconstrained environment. They test their method on the LFWA database and
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Figure 3.17: Pipeline of DEX method [128]

get the state-of-art performance of 98.8% for gender classification. In [78], Jia et

al. modified VGG-16 network to create networks of depths 6, 10 and 16 and found

that the increase in depth allowed larger sets having noisier training data. The results

demonstrated that large depth networks perform better on gender classification tasks.

Tested on the LFW dataset, the network of depth 6 achieved an accuracy of 95.80%,

the network of depth 10 achieved an accuracy of 96.94% while the network of depth

16 achieved a higher accuracy of 98.25%.

3.4 Conclusion

This chapter has been devoted to a brief overview of the most prominent techniques

of hand-crafted and deep learning for facial soft biometric. Therefore, we have

mainly focused on the handcrafted algorithms and methods which are essential for

understanding the rest of the manuscript. As explained above, the analysis of the

existing facial soft biometric studies is done separately. In Section 2.2, we have

introduced the most notable handcraft based methods on the main problems which

are addressed in the present manuscript.

CNNs are primary deep learning models which are used in all contributions of

the recent works. They have been presented in Section 2.3 as the models which have

revolutionized in facial soft biometric field.
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In the next chapter, we describe our contributions comparing the resulting for age

prediction based on demographic classification and editing with the state-of-the-art

studies presented above.
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4.1 Introduction

In this chapter, we will describe the principle of the proposed approach in Section

4.2. Our approach consists of three main parts; 1) Automatic face detection and

alignment to extract only the regions of interest (facial regions) and to correct the

position and the size of faces. 2) Feature extraction from the facial regions image

including both global and local texture features. 3) Tow-Stages-Estimator, where the

input face is first classified into a specific demographic class using Support Vector

Machines (SVM) and then a specific regressor is selected to estimate the exact age

using Support Vector Regression (SVR). In Section 4.3, we will present and discuss

the results of our proposed approach is evaluated on MORPH-II, PAL and a subset

of LFW databases.

4.2 Proposed Approach

In this section, we present our proposed approach for facial age estimation relying on

demographic attributes. In our work, we focus on the gender and the race attributes,

since they are two of the most frequently facial demographic attributes reported in

literature that can influence on age prediction process. Our approach consists of 3

main parts:

• Automatic face detection and alignment.

• Feature extraction.

• Demographic classification & age estimation.

The general scheme of our complete approach is illustrated in Fig 4.1. Detailed

description of each part is provided in the following subsections.
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4.2.1 Automatic face detection and alignment

The original face images can be affected by the many factors such as illumination

conditions, pose variation, etc. These factors led to misalignment between face images.

As already discussed in the Subsection 3.2.2 of Chapter3, we adopted an alignment

process based on eyes center localization, which includes:(i) face and landmarks

detection, (ii) eyes localization, (iii) pose correction, and (vi) regions of interest (ROI)

cropping (see Fig 4.2).

Firstly, to alleviate the influence of inconsistent colors, we transformed the input

face color images to gray scale images. Next we detected the 2D facial landmarks

by using Dlib open source Python library [88] which is implemented by Kazemi and

Sullivan framework [85]. It detects 68 facial landmarks located on the mouth, nose,

eyes, and eyebrows (See Fig 3.2). In our study, we only used 12 facial landmarks which

are located around the eyes to set (Xright, Yright) and (Xleft, Yleft) coordinates of right

and left eye respectively, by applying the center of pressure formula. These two-points

coordinates enable us to correct the pose by rotating the face images according to the

rotation with an angle β which is defined as follows:

β = tan−1(
Yright − Yleft
Xright −Xleft

) (4.1)

Next, the rotated images are scaled to the same inter-pupillary distance d that

is measured from the eyes centers. Finally, the ROIs (aligned faces) are cropped to

a standard size of 200 x 200 pixels. Fig 4.2 schematizes the above automatic face

detection and alignment procedure.

4.2.2 Feature extraction

The feature extraction step is performed on each aligned face. In order to extract the

features, the Multi-level (ML) face representation [115] is used. The main idea behind
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Figure 4.2: Automatic face detection and alignment.65

applying the ML face representation is to get various global and local texture features

from the whole ROI. The ML representation represents the aligned face image at

different levels (see Fig 4.3). In each level, the ROI is divided into n2 non-overlapping

local blocks, where n is the levels number (e.g., the first level is the aligned face

without dividing). The features extracted from blocks in each level are concatenated

to construct the level features vector. The order of concatenating is from left to right

and from up to down. The features vectors of all levels are concatenated later to

form the global face features vector. Fig 4.3 depicts an example of features vector

constructing with Multi-Level face representation for 3 levels.

In many researches on age estimation, variety of feature descriptors have been

proposed in order to extract aging features from images. They fall into two categories:

learning-based and handcrafted-based. Learning-based methods include Discriminant

Face Descriptor (DFD) [96], Cost-Sensitive Local Binary Feature Learning (CS-

LBFL) [106], Deep Binary Descriptor with Multi-Quantization (DBD-MQ) [32],

Discriminative Deep Metric Learning (DDML) [104] and Context-Aware Local Binary

Feature Learning (CA-LBFL) [33]. In the other hand, handcrafted-based methods

include Biologically Inspired Features (BIF) [57], AGing pattErn Subspace (AGES)

[46], Local Binary Pattern (LBP) [2], Weber Local Descriptor (WLD) [20], and

Histograms of Oriented Gradients (HOG) [26]. Some of the latter methods, such

as LBP and HOG, consider the face image as a texture pattern.
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Figure 4.3: Exemple of Multi-Level face representation for 3 levels.

In this manuscript, two texture descriptors are used: Binarized Statistical Image

Feature (BSIF) and Local Phase Quantization (LPQ). The choice is based on feature

extraction descriptors analyse that was done in the section 3.2.3 of Chapter 3, where

demonstrated that BSIF and LPQ descriptors are powerful texture descriptors for

demographic estimation [9].

4.2.2.1 Local Phase Quantization (LPQ)

Ojansivu et al in [118] proposed a spatial blurring method which used to build LPQ

face description. In the frequency domain, the Fourier transforms of the blurred image

G(u) is the multiplication of an original image F (u) with the Point Spread Function

(PSF) of the blur H(u).

G(u) = F (u).H(u) (4.2)
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Where u is a vector of coordinates [u,v]T . In LPQ, the phase is examined in local

neighborhoods Nx at each pixel position x of the image f(x). The short-term Fourier

transform (STFT) is applied to compute local Fourier coefficients at four frequency

points u1 = [a, 0]T ,u2 = [0, a]T ,u3 = [a, a]T ,u4 = [a,−a]T where a is a sufficiently small

scalar to satisfy H(u) > 0.

The phase information in these coefficients can be counted by using a simple scalar

quantization

qi(x) =

 1 if gi > 0

0 otherwise.
(4.3)

Where gi is the j-th component of the vector G(u). The resulting eight binary

coefficients qi(x) are represented as integer values between 0-255 using binary coding:

fLPQ(x) =
8∑

j=1

qj(x) ∗ 2j−1 (4.4)

Finally, the histogram of these integer values is considered as a feature vector.

4.2.2.2 Binarized Statistical Image Feature (BSIF)

A Binarized Statistical Image Feature (BSIF) [83] is a local image texture descriptor

that characterizes a pixels surrounding (patch) by a binary code. The bits in the code

string are generated by binarizing the convolution results between the patch X of size

M ×M pixels with a linear filter Hi (i = 1....n) of the same size. The convolution

operation is defined as:

Si =
∑
v,u

X(v, n) ∗Hn(v, u) (4.5)

Each bit bi(i = 1...n) of the binary code is considered by setting a threshold at

zero for the response Si as shown in equation (3):
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bi =

 1 if Si > 0

0 otherwise.
(4.6)

Consequently, the number of filters used determines the length of the binary

code. Notice that the filters are learnt from natural image patches by maximizing

the statistical independence of the filter responses. In all our experiments, the BSIF

descriptor has been used with filters of size 13x13 and 8 bits.

4.2.3 Two-stages age estimation

The human age estimation using a generic classifier or regressor is an intrinsically

challenging problem and many studies have been proposed to achieve small estimation

error. As we mentioned aforementioned (Subsection 2.1.2 of Chapter 2), the age

group classification (i.e., age grouping) is one of the famous solutions proposed for

this problem. Another solution is introduced in [53] by dividing the prediction age

into two phases: The first one classifies the input face images only into gender-race

groups. Next, in the second phase, an age prediction model is learned on each classified

gender-race group to estimate the age. This approach is conducted on a pre-selected

subset of MORPH II database with the same number of face images from two races

(Black and White) and two genders (Male and Female).

Unlike these studies, in this manuscript we present a novel Two-Stages Estimator

(TSE), for human age estimation based on three facial demographic attributes (i.e.,

gender, race and age ranges). This is the main contribution of this manuscript. The

TSE consists of two stages as shown in Fig 4.1:

1. Demographic classification;

2. Age estimation within demographic classes;
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In the first stage, the test subject features vector is automatically classified into

one of different demographic classes using support vector machine (SVM), where each

class has three demographic information integrated in the same label Yi,j,k, where

i, j and k denote gender, race, and age range labels respectively. The number of

demographic classes is decided based on the number of races and genders in the

available training set. For example, if the training set is labeled with two genders,

three races and six age ranges, we will have thirty-six demographic classes.

After the demographic classification stage is carried out, in the second stage,

for each demographic class, an age estimation model is learnt using support vector

regression (SVR). Noteworthy that the same features are used in both stages.

The recent CNNs based methods typically implement the extracting features and

classifying in just one step with billions of arithmetic operations. They require high-

cost hardware to implement high computational complexity of their algorithms [58].

In contrary to these methods, we intentionally adopted a pipeline based on feature

extraction and feature classification, which are performed separately, like in [15],

[8] and [1]. This pipeline allows making series of stacked classifiers and avoiding

disadvantages of the CNN methods.

4.3 Experiments

In this section, we first introduce the databases and the evaluation protocols of our

experiments. After that, we will give description about experimental setups. Finally,

we discuss the results obtained on each databases.

4.3.1 Databases

In Subsection 2.1.7 of Chapter 2, we have introduced different databases that have

been used to evaluate facial soft biometric systems. Since, our proposed method based
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on facial demographic attributes. We only used the databases that labeled with the

gender, race and age, to evaluate the performance of the proposed approach, namely:

MORPH II, PAL and LFW+. We did not use PCSO database due to its large size

( 1.5 million images).

The facial images of MORPH-II and PAL databases were collected under

controlled and cooperative scenarios: frontal facial images, illumination variation, and

facial expression. On the other hand, LFW+ database is a very challenging database,

since their facial images were captured in uncontrolled environments (from the real

life ), non-frontal views, occlusions, and law image quality. All these databases are

labeled with the gender, race and age needed for our algorithm.

In our experiments, the entire age of each database is divided into six non-

overlapping ranges of 10 years (i.e., decades of life: -20, 21−30, 31−40, 41−50, 51−60

and 61+). We avoided dividing the whole database into more than 6 ranges since the

number of training samples in each group becomes too small.

4.3.2 Experiment Setup

The demographic classification is a classification problem. While age estimation is

naturally formulated as a regression task. To this end, we used LIBLINEAR library

[39], which supports logistic regression and linear support vector machines (SVM).

Their optimal parameters c and ε were founded by a grid search on the training phase

for the both stages of our proposed approach (demographic classification and age

estimation).

In order to evaluate our proposed approach, we considered 5-fold cross validation

and reported the average performance over the 5 folds, which is frequently used for

MORPH II and PAL [114], [139], [9], [102]. This protocol randomly considers 1/5 of

data samples as test set, and the rest is used as training set. It assures that a sample

is not in the both sets simultaneously. For this reason, the 5-fold cross validation
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protocol is used for all databases.

4.3.3 Experimental Results

In this study, our purpose is to investigate whether our proposed approach provides

more accurate results than other age estimation approach. Towards this goal and to

investigate the effectiveness of our approach, we conducted a comparative study for

three automatic age estimation methods: 1) direct age regression without relying on

results of other attributes (Fig 4.4.a); 2) Hierarchical age estimation method (Fig

4.4.b) using two different orders; 3) Our proposed approach TSE to estimate the age

based on the result of combining gender, race and age ranges classification. In the

next subsections, we present the experimental results of each method.

(a)

(b)

Figure 4.4: Two different age estimation methods, (a) direct age estimation (b)
Hierarchical age estimation.
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4.3.3.1 Direct age estimation

Direct age estimation is the basic pipeline which has been proposed for age estimation

[152], [8], using a single level age regression. The MAE results for this method on

MORPH II, PAL and a subset of LFW databases, with different image descriptors

(BSIF, LPQ and BSIF+LPQ). The cumulative scores on PAL database are shown in

Table 4.1 and Fig 4.6.

Table 4.1 lists the results of direct age estimation using different texture features

(BSIF, LPQ features and their combination) in terms of MAE. We can observe, when

using BSIF features for MORPH II database, the MAE is 3.68 years, which slightly

out-performs LPQ features providing a MAE of 3.88 years. However, the combination

of BSIF and LPQ features achieves much lower MAE (3.41 years). In PAL and subset

of LFW databases, the combination between BSIF and LPQ features also performs

better than BSIF or LPQ features used separately.

Database BSIF LPQ BSIF+LPQ
MORPH II 3.68 3.88 3.58

PAL 6.01 5.88 5.55
Subset of LFW 9.74 10.18 9.07

Table 4.1: Mean Absolute Error (MAE) of age estimation on MORPH II, PAL and
subset of LFW databases (in years) using direct age estimation.

Fig 4.5, 4.6 and 4.7, show the cumulative scores of age estimation on MORPH II,

PAL and subset of LFW databases at the error levels from 0 to 10 years respectively.

From Table 4.1, the age estimation performance is improved by the combination of

BSIF and LPQ features in both MAE and cumulative score.

4.3.3.2 Hierarchical age estimation

In order to compare our proposed approach with an age estimation method based

on demographic attributes, we performed the hierarchical age estimation method
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Figure 4.5: CS curves of direct age estimation at error levels from 0 to 10 years on
MORPH II database.
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Figure 4.6: CS curves of direct age estimation at error levels from 0 to 10 years on
PAL database.

77



Chapter 4. Experimental Results 4.3. Experiments

0 1 2 3 4 5 6 7 8 9 10

Absolute error(years)

0

10

20

30

40

50

60

70

C
u

m
u

la
ti

v
e

 S
c

o
re

(%
)

LPQ features

BSIF features

BSIF+LPQ features

Figure 4.7: CS curves of direct age estimation at error levels from 0 to 10 years on
ubset of LFW database.

for LPQ and BSIF features using two different demographic attributes orders

(G→R→AR→Real age) and (R→G→AR→Real age). Where G, R and AR denote

gender, race and age range attributes respectively.

The hierarchical method has been studied for age estimation task. It consists of

a series of classifiers to classify each attribute separately followed by a regressor to

predict age (Fig 4.4.b).

Table 4 shows the performance of hierarchical age estimation method on MORPH

II, PAL, and subset of LFW databases. One can see that the best age estimation

results are always obtained with (R→G→AR→real age) order and BSIF+LPQ

features on MORPH II and PAL databases. These results can answer the question:

Which of the two orders leads to good performances? They make sure that the order

adopted in [9], where the race is chosen as the root of the hierarchical estimator,

provides better MAE on MORPH II and PAL databases than the order adopted in
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[63], where the gender is chosen as root. We can see also that the change in MAE

value, which depends as said before on the order of attributes, is occurring regardless

of their accuracy. However, we note the opposite case on subset of LFW database,

where the (G→R→AR→real age) order provides better MAE than the other one. It

seems that the better order must start by the attribute providing the higher accuracy

(Gender as root provides 94.49% of accuracy whereas Race as root provides only

91.81%).

Database Order of attributes
Features

BSIF LPQ BSIF+LPQ

MORPH II

G→R→AR

Gender(%) 98.53 98.36 98.91
Race(%) 98.03 97.83 98.22

Age ranges(%) 65.42 63.48 67.85
Age(years) 4.02 3.70 3.70

R→G→AR

Race(%) 98.12 97.74 98.22
Gender(%) 98.89 98.50 99.05

Age ranges(%) 67.25 64.03 68.58
Age(years) 3.70 4.05 3.52

PAL

G→R→AR

Gender 96.27 94.65 96.75
Race 97.04 96.65 97.23

Age ranges(%) 82.79 80.11 82.41
Age(years) 4.87 5.36 4.84

R→G→AR

Race(%) 97.32 97.04 97.71
Gender(%) 96.18 94.93 96.27

Age ranges(%) 83.08 80.21 83.17
Age(years) 4.70 5.25 4.69

Subset of LFW

G→R→AR

Gender(%) 93.90 93.56 94.49
Race(%) 90.48 90.55 91.52

Age range(%) 35.15 34.08 35.67
Age(years) 8.54 8.91 8.20

R→G→AR

Race(%) 90.93 90.81 91.81
Gender(%) 93.26 92.54 94.04

Age range(%) 33.84 34.48 35.64
Age(years) 8.66 8.74 8.27

Table 4.2: Age estimation results of hierarchical method for MORPH II, PAL, and
subset of LFW databases.
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Fig 4.8, shows the comparison of hierarchical and direct age estimation method

using BSIF+LPQ features. From the figure, it is clear that the hierarchical method

provides more accurate results than direct age estimation method.
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Figure 4.8: Comparison of hierarchical and direct age estimation methods.

4.3.3.3 Proposed Two-Stages age Estimator (TSE)

According to the results of the previous subsection, we found that the MAE can

be decreased when the age estimation is performed across demographic attributes.

In this subsection, the experimental evaluation of our TSE to age estimations is

reported. The basic idea of TSE is to classify first the input test face image into one
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of the demographic classes. Then, based on this classification result, age estimation is

performed on each classified group. We believe that estimating age within the same

race, gender and age range class will provide smaller estimation errors. We conducted

our experiments on MORPH, PAL and subset of LFW databases to evaluate the

performance of the TSE. In Table 4.3, we organized the proposed approach results

by grouping them according to the three databases. In each database, 2 results (2

sub-rows) are reported, demographic classification accuracy and MAE.

Database Stage
Features

BSIF LPQ BSIF+LPQ

MORPH II
Demographic
Classification(%)

65.49 61.75 66.78

MAE(years) 3.39 3.68 3.21

PAL
Demographic
Classification(%)

79.54 75.81 79.73

MAE(years) 4.67 4.95 4.49

Subset of LFW
Demographic
Classification(%)

29.64 26.29 30.49

MAE(years) 8.19 8.25 7.93

Table 4.3: TSE performance results

We can see from the last column in Table 4.3 that our proposed TSE improves

the age estimation accuracy for all databases. MAEs of 3.21 years for MORPH II

database, 4.49 years for PAL database and 7.93 years for subset of LFW database

are obtained when using the combined (BSIF+LPQ) features. These results are

much smaller than direct and hierarchical age estimation results which are shown

in Tables 4.1 and 4.2 (direct: 3.58/5.55/9.07 years; hierarchical: 3.52/4.69/8.27 years

for MORPH II, PAL and subset of LFW databases respectively). The improvements

are achieved according to the accuracy of the demographic classification. For

example, the demographic classification accuracy of LPQ and BSIF texture features

for PAL database are of 75.81% and 79.54% respectively. After the combination of
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these features, the demographic classification accuracy is increased to 79.73%. The

MAEs are reduced from 4.95 to 4.67 then to 4.49 years. The improvement of this

demographic classification accuracy is not too much, but it has a great influence on age

estimation result. The demographic classification accuracy increases the estimation

error decreases.

Considering the performance of the proposed approach on subset of LFW database,

demographic classification accuracies did not exceed the threshold of 30.49 %. They

are not high compared to accuracies on MORPH II and PAL databases, even the

MAE is fairly high (7.93 years). Two possible explanations for these poor accuracies:

1. The race and the age which were used as the ground truth on the training phase

are not available in LFW database, they are estimated by human [63] using

(MTurk) crowdsourcing service [6].

2. Most of subject images in LFW database are celebrity figures, collected from

internet with large variation in pose, illumination, facial makeup and facial

dynamics which make it difficult to estimate their real age.

Despite the age is estimated after classifying the integrated demographic attributes

in our propose TSE, and after series of demographic attribute classifiers in hierarchical

age estimation method, a question arises: why the proposed TSE approach outper-

forms the hierarchical method?. To answer this question, we reported in Table 4.4 the

overall accuracy of the classification stage (race, gender and age range classifiers) of

hierarchical age estimation method on MORPH-II, PAL and subset of LFW database.

We reported also in Table 4.4 the classification stage accuracies (extracted from

Table 4.3) of the proposed TSE. Comparing the two results of Table 4.4, we can

see that the overall accuracies of the classification stage of hierarchical method in

the two orders are higher. Whereas, we observe the opposite in terms of MAE. This

can be explained by misclassification that occurs in one or more of the hierarchical
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classifiers, which may cause accumulation of errors. For example, on PAL database,

the overall accuracies of the classification stage of the hierarchical method are 92.13%

and 92.38% with 4.84 years and 4.69 years in MAE for G→R→AR and R→G→AR

orders, respectively. While, in our proposed TSE, the demographic classification

accuracy is 79.73 % with 4.49 years in MAE. If we look at the correct classification

rates in race, gender and age range attributes taken simultaneously, the classification

stage of the hierarchical method reached only 78.75% and 79.42% in G→R→AR and

R→G→AR orders respectively, which are lower than the overall rates obtained by

the classification stage of TSE method. This show that the errors accumulation,

occurring in the classification stage of the hierarchical method, was discarded in

TSE method thanks to integrating race, gender and age range attributes in a single

classifier. Therein lies the outperformance of the proposed TSE than hierarchical age

estimation method.

Method Classification accuracy
Database

MORPH-II PAL Subset of LFW

Hierarchical

G→R→AR
Order

Overall (%) 88.32 92.13 73.89
Correct (%) 65.23 78.75 30.03
MAE(years) 3.70 4.84 8.20

R→G→AR
Order

Overall (%) 88.61 92.38 73.83
Correct (%) 65.26 79.42 3.10
MAE(years) 3.52 4.69 8.27

TSE
Demographic
classification

Overall (%) 66.78 79.73 30.49
MAE(years) 3.21 4.49 7.93.

Table 4.4: Overall accuracy of the classification stage of hierarchical age estimation
method and proposed TSE method.

Fig 4.9, 4.10 and 4.11 show the CS curves obtained by the proposed TSE approach,

on MORPH, PAL and subset of LFW databases at error levels from 0 to 10 years.

The ages of approximately 11.19% of the subjects in the MORPH II database, 12.05%

of the subjects in the PAL database and 4.51% of the subjects in the subset of

LFW database can be estimated with zero error level. Whereas when the error level
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increases the estimation accuracy also increases. Our proposed BSIF+LPQ based TSE

is able to achieve cumulative scores of 83.13%, 74.75% and 43.64% for an absolute

error of 5 years and 97%, 90.34% and 72.29% for an absolute error of 10 years for

MORPH, PAL and subset of LFW databases respectively.
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Figure 4.9: CS curves of proposed the TSE approach at error levels from 0 to 10 years
on Subset of LFW database.

Next, in Tables 4.5, 4.6 and 4.7 we compare the performance of our proposed

age estimation approach with recent state-of-the-art approaches in terms of MAE

and CS on MORPH, PAL and subset of LFW databases. The experimental setup is

the same for all compared methods. The results show that our proposed approach

is most effective and can offer better performance in the age estimation task than

others. Fig 4.12 illustrates some examples of correct and incorrect age estimated by

the proposed approach on PAL database. Next, in Tables 4.5 and 4.6 we compare the

performance of our proposed age estimation approach with known and recent state-

of-the-art approaches in terms of MAE and CS on MORPH II and PAL databases
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Figure 4.10: CS curves of proposed the TSE approach at error levels from 0 to 10
years on PAL database.
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Figure 4.11: CS curves of proposed the TSE approach at error levels from 0 to 10
years on MORPH II database.
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respectively. Existing methods adopted different experimental settings on MORPH-

II. The 5-folds cross validation is introduced in [71], [41], [18], [9]. 10-fold cross

validation is another setting which is used in [105], [100],[45]. To compare performance

of our proposed TSE with different state-of-art age estimation methods on MORPH-II

database, we performed experimental evaluation with both settings. The upper part of

Table 4.5 shows that the proposed method out performs all the compared handcrafted

state-of-the-art methods on MORPH-II database, thanks to adopting demographic

classification based age estimation. Further, in the lower part of Table 4.5, we

compared the performance of our proposed TSE with age estimation CNN based

methods. The results show that our proposed approach can offer better performance

than some CNN-based age estimation methods such as [98], [31], [143], [100] and [71].

In the literature, some works [126], [128] reported a MAE below 3 years on MORPH-

II database. Based on deep learning these approaches, reached 2.56 and 2.58 years

in MAE, respectively. However, they did not consider the whole database in their

evaluation procedure. Indeed, they used a subset of 5,475 face images of persons,

while the original database contains about 55,134 face images. Furthermore, deep

learning based methods require important resources in terms of computation and

memory.

Table 4.7, shows the comparison of the proposed approach with [63] which is,

to the best of our knowledge, the only work on age estimation including subset of

LFW database as part of their experiments. One can see from the results that the

TSE method provides competitive performance. Fig 4.12 illustrates some examples

of correct and incorrect age estimated by the proposed approach on PAL database.
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Publication Approach
Performance

Protocol
MAE (years) CS (%)

Guo & Mu, (2011)[54] BIF+KPLS 4.4 - different split
Chang et al, (2011)[18] OHRank 6.07 56.4 5-fold cross validation
Fernández et al, (2015)[41] HOG+SVR 4.83 63.4 5-fold cross validation
Huerta et al, (2015)[71] rCCA 4.24 71.17 5-fold cross validation
Lu et al, (2015)[105] CS-LBMFL 4.37 74.10* 10-fold cross validation
Guo & Mu, (2013)[55] BIF 3.98 - different split
Bekhouche et al, (2017)[9] Pyramid ML 3.50 75.13* 5-fold cross validation
Our TSE 3.21 83.13 5-fold cross validation
Our TSE 3.17 83.72 10-fold cross validation

Huerta et al, (2015) [71] CNN 3.88 - 5-fold cross validation
Wang et al, (2015)[143] CNN 4.77 - 5-fold cross validation
Niu et al, (2016)[117] OR-CNN 3.27 73.42* 5-fold cross validation
Liu et al, (2017)[100] GA-DFL (MP-CNN) 3.25 80.40* 10-fold cross validation
Duan et al, (2018)[31] CNN+ELM 3.44 70.01 Private
Liao et al, (2018)[98] DLF+FAM. 3.48 71.03* 5-fold cross validation
Our TSE 3.21 83.13 5-fold cross validation
Our TSE 3.17 83.72 10-fold cross validation
Chen et al, (2017)[21] Ranking-CNN 2.96 85.26* 5-fold cross validation
Liu et al, (2018)[101] M-LSDML 2.89 87.03* 5-fold cross validation
Gao et al, (2017)[45] DLDL+VGG-Face 2.42 88.88* 10-fold cross validation

*CS result is obtained from the curves in the original paper.
The numbers in bold represent the performance of our method.

Table 4.5: Comparison of the proposed approach with known and recent state-of-the-
art approaches on MORPH II database.

Publication Approach
Performance

Protocol
MAE (years) CS (%)

Choi et al, (2011)[22] GHPF + SVR 8.44 - 5-fold cross validation
Luu et al, (2011)[107] CAM + SVR 6.00 - LOPO
Nguyen et al, (2014)[115] MLBP+GABOR 6.50 - 2-fold cross-validation
Günay & Nabiyev, (2016)[50] AAM+GABOR+LBP 5.38 - 3-fold cross validation
Günay & Nabiyev, (2017)[49] WLD+LBP+LPQ 5.75 54.28 3-fold cross validation
Choi et al, (2017)[23] AAM+MLBP 5.50 - Private
Agrawal et al, (2017)[1] HOG+GABOR 6.55 - 2-fold cross validation
Bekhouche et al, (2017)[9] Pyramid ML 5.00 57.44* 5-fold cross validation
Our TSE 4.49 74.57 5-fold cross validation

*CS result is obtained from the curves in the original paper.

Table 4.6: Comparison of the proposed approach with known and recent methods for
age estimation on PAL database.
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Publication Approach
Performance

MEA (years) CS (%)
Han et al. (2015) [63] DIF + SVM+SVR 7.8 43.35
Our TSE 7.9 43.65

Table 4.7: Comparison of the proposed approach with [63] method for age estimation
on subset of LFW database.
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4.3.3.4 Demographic attributes classification effect

In the proposed two-stages age estimator, the age is estimated after classifying the

demographic attributes. The performance of age estimation can deteriorate when poor

accuracies are obtained in demographic classification stage. To investigate the effect

of misclassification in demographic attributes classification stage on age estimation

stage, we have performed age estimation with our proposed TSE by considering the

ground-truth of demographic attributes classes as the output of the first stage. In

other words, we estimated the age with 100% accuracy of demographic classification

stage.

Databases
MORPH-II PAL Subset of LFW

TSE with ground-truth classes 1.17 2.50 2.74
TSE with predicted classes 3.21 4.49 7.93

Table 4.8: MAE of TSE using the ground-truth and the predicted demographic
attributes classes in the first stage (in years).

Table 4.8 illustrates MAEs on MORPH-II, PAL and Subset of LFW databases,

obtained by the proposed TSE method with ground-truth demographic attributes

classes and with predicted demographic attributes classes. As can be seen, performing

our proposed TSE with ground-truth of demographic attributes classes has improved

the performance of age estimation (1.17, 2.5 and 2.74 years for MORPH II, PAL and

subset of LFW databases respectively) when compared to the results obtained by using

predicted demographic attributes classes (3.21, 4.49 and 7.93). The explanation is very

intuitive. Estimating age within the correct (race, gender and age range) class provides

smaller estimation errors and misclassified images in predicted demographic attributes

classes (output of the first stage) can damage the performance of age estimation.

To study the influence of misclassified images in predicted demographic attributes

classes on MAE values, we identified them in Table 4.9, and calculated their MAE for
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MORPH-II, PAL and subset of LFW databases. We can clearly see, that the MAE

of misclassified images in demographic classification stage are high, which adversely

affects the performance of age estimation.

Database Number of misclassified images MAE (years)
MORPH II 18278 5.29

PAL 212 10.07
Subset of LFW 2927 9.07

Table 4.9: MAE of misclassified images in demographic classification stage of the TSE
method

4.4 Conclusion

In this chapter, we proposed a novel age estimation approach based on facial

demographic attributes. Face detection and alignment to extract only the regions

of interest and correct the position and the size of the input face image are first

performed. The features are then extracted by Multi-level face representation, using

the LPQ and BSIF texture descriptors. Finally, a Two-stages estimator (TSE) for

age prediction is proposed. When performing age estimation experiments over three

databases using direct and hierarchical (with two different orders) age estimation

methods, we observed that TSE approach outperforms significantly the two other

methods. A conclusion can be drawn that age estimation can have much small error

if age estimation is carried out within the same race, gender and age range. The

comparison with known and recent state-of-art age estimation methods, including

deep learning based methods, showed that the proposed TSE approach provides the

lower MAE on PAL and MORPH II databases and competitive performance on subset

of LFW database. The simplicity and efficiency of the proposed approach can provide

a helpful guide to facial age estimation on mobile devices with less memory and

computation resources.
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5.1 Conclusion

Human civilization has come a long way since its inception in small tribal primitive

societies where every person in the community knew every other person. In

today’s complex, geographically mobile, increasingly electronically inter-connected

information society, accurate person identification is becoming very important and

increasingly difficult. It is widely believed that biometrics will become a significant

component of future identification technologies and it is already of universal interest.

The goal of a biometric system is to determine the identity of an individual using

his/her physical/biological characteristics (known as biometric modalities). Biometric

systems have many applications such as criminal identification, airport checking,

computer or mobile devices log-in, building gate control, digital multimedia access,

transaction authentication, voice mail, or secure teleworking. Various characteristics

(or modalities) can be used: from the most conventional biometric modalities such

as face, voice, fingerprint, iris, hand geometry or signature, to the so–called emerging

biometric modalities such as gait, hand-grip, ear, body odour, body salinity or electro-

physiological signals (EEG and ECG). Each modality has its strengths and drawbacks.

Despite the great deal of progress during the recent years, biometrics is still a

major area of research. Wide range of viewpoints, occlusions, aging of subjects and

complex outdoor lighting are challenges in biometric recognition. While there is a

significant number of works addressing these issues, the extracting soft biometric

traits has attained less attention.

Soft biometrics refers to human characteristics which are relatively easier to

extract especially from distance. These characteristics include age, gender, ethnicity

etc. Extracting soft biometrics is doable when considering controlled environment.

However, soft biometrics in the wild is still an open research area. In this thesis,

we described the problematic and proposed few solutions especially for human age
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prediction from face images. We obtained very interesting results, outperforming the

state of the art.

5.2 Perspectives and future work

Although the extraction of soft biometrics has significantly improved during the recent

years, there are still many remaining challenges including:

• The lack of clean and well labeled data : The question of building models

from noisy and unlabeled data is still challenging. Unsupervised learning can

help solving some problems. Data augmentation can also help.

• The interdependence between different soft biometric traits remains

unclear: Although the thesis has investigated this important topic, the results

showed that age can affect gender and other soft biometric modalities.

• The potential privacy issues raised by soft biometrics are well studied:

No much has work yet investigated the possible privacy consequences of using

soft biometrics especially in public places.

• The combination of soft and hard biometrics is not well studied: The

combination of soft and hard biometrics is shown to be useful but no clear results

are reported.

• The use of soft biometrics is mainly limited to shopping and profiling:

Soft biometrics can be used to many applications but not only shopping and

profiling. Among the possible applications include criminal investigations and

forensics.

• Behavioral soft biometrics have not been much explored: Most existing

work on soft biometrics are based on still images. The use of dynamic and
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behavioral features is challenging and hence not well investigated.

To overcome some of the remaining challenges, efforts should be done in exploring

the use of deep learning and weakly supervising learning for handling noisy and

incomplete data.
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[15] Pierluigi Carcagnıé et al. “A study on different experimental configurations for

age, race, and gender estimation problems”. In: EURASIP Journal on Image

and Video Processing 2015.1 (2015), p. 37.

97



References References

[16] CFDCaP Cdc. “National health and nutrition examination survey”. In:

NCFHS (NCHS), editor (Hyattsville, MD: US Department of Health and

Human Services, Centers for Disease Control and Prevention (2005).

[17] Kuang-Yu Chang and Chu-Song Chen. “A learning framework for age rank

estimation based on face images with scattering transform”. In: IEEE Trans-

actions on Image Processing 24.3 (2015), pp. 785–798.

[18] Kuang-Yu Chang, Chu-Song Chen, and Yi-Ping Hung. “Ordinal hyperplanes

ranker with cost sensitivities for age estimation”. In: Computer vision and

pattern recognition (cvpr), 2011 ieee conference on. IEEE. 2011, pp. 585–592.

[19] Bor-Chun Chen, Chu-Song Chen, and Winston H Hsu. “Cross-age reference

coding for age-invariant face recognition and retrieval”. In: European conference

on computer vision. Springer. 2014, pp. 768–783.

[20] Jie Chen et al. “WLD: A robust local image descriptor”. In: IEEE transactions

on pattern analysis and machine intelligence 32.9 (2010), pp. 1705–1720.

[21] Shixing Chen et al. “Using ranking-cnn for age estimation”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. 2017,

pp. 5183–5192.

[22] Sung Eun Choi et al. “Age estimation using a hierarchical classifier based on

global and local facial features”. In: Pattern Recognition 44.6 (2011), pp. 1262–

1281.

[23] Sung Eun Choi et al. “Age face simulation using aging functions on global and

local features with residual images”. In: Expert Systems with Applications 80

(2017), pp. 107–125.

98



References References

[24] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. “Active

appearance models”. In: IEEE Transactions on pattern analysis and machine

intelligence 23.6 (2001), pp. 681–685.

[25] Angela D’Angelo and Jean-Luc Dugelay. “People re-identification in camera

networks based on probabilistic color histograms”. In: Visual Information

Processing and Communication II. Vol. 7882. International Society for Optics

and Photonics. 2011, 78820K.

[26] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human

detection”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on. Vol. 1. IEEE. 2005, pp. 886–893.

[27] Antitza Dantcheva et al. “Bag of soft biometrics for person identification”. In:

Multimedia Tools and Applications 51.2 (2011), pp. 739–777.

[28] Danilo De Angelis et al. “New method for height estimation of subjects repre-

sented in photograms taken from video surveillance systems”. In: International

Journal of Legal Medicine 121.6 (2007), pp. 489–492.

[29] Mohammad Mahdi Dehshibi and Azam Bastanfard. “A new algorithm for age

recognition from facial images”. In: Signal Processing 90.8 (2010), pp. 2431–

2444.

[30] Jiankang Deng et al. “Retinaface: Single-stage dense face localisation in the

wild”. In: arXiv preprint arXiv:1905.00641 (2019).

[31] Mingxing Duan et al. “A hybrid deep learning CNN–ELM for age and gender

classification”. In: Neurocomputing 275 (2018), pp. 448–461.

[32] Yueqi Duan et al. “Learning deep binary descriptor with multi-quantization”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2017, pp. 1183–1192.

99



References References

[33] Yueqi Duan et al. “Context-aware local binary feature learning for face recog-

nition”. In: IEEE transactions on pattern analysis and machine intelligence

40.5 (2018), pp. 1139–1153.

[34] Jennifer L Eberhardt, Nilanjana Dasgupta, and Tracy L Banaszynski. “Believ-

ing is seeing: The effects of racial labels and implicit beliefs on face perception”.

In: Personality and Social Psychology Bulletin 29.3 (2003), pp. 360–370.

[35] Gerda Edelman, Ivo Alberink, and Bart Hoogeboom. “Comparison of the

performance of two methods for height estimation”. In: Journal of forensic

sciences 55.2 (2010), pp. 358–365.

[36] Eran Eidinger, Roee Enbar, and Tal Hassner. “Age and gender estimation of

unfiltered faces”. In: IEEE Transactions on Information Forensics and Security

9.12 (2014), pp. 2170–2179.

[37] Sergio Escalera et al. “Chalearn looking at people 2015: Apparent age and

cultural event recognition datasets and results”. In: Proceedings of the IEEE

International Conference on Computer Vision Workshops. 2015, pp. 1–9.

[38] Sergio Escalera et al. “Chalearn looking at people and faces of the world: Face

analysis workshop and challenge 2016”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops. 2016, pp. 1–8.

[39] Rong-En Fan et al. “LIBLINEAR: A Library for Large Linear Classification”.

In: Journal of Machine Learning Research 9 (2008), pp. 1871–1874.

[40] Jean-Marc Fellous. “Gender discrimination and prediction on the basis of facial

metric information”. In: Vision research 37.14 (1997), pp. 1961–1973.

[41] Carles Fernández, Ivan Huerta, and Andrea Prati. “A comparative evaluation

of regression learning algorithms for facial age estimation”. In: Face and Facial

Expression Recognition from Real World Videos. Springer, 2015, pp. 133–144.

100



References References

[42] Jonathan B Freeman, Nalini Ambady, and Phillip J Holcomb. “The face-

sensitive N170 encodes social category information”. In: Neuroreport 21.1

(2010), p. 24.

[43] Yun Fu, Guodong Guo, and Thomas S Huang. “Age synthesis and estimation

via faces: A survey”. In: IEEE transactions on pattern analysis and machine

intelligence 32.11 (2010), pp. 1955–1976.

[44] Andrew C Gallagher and Tsuhan Chen. “Understanding images of groups

of people”. In: 2009 IEEE Conference on Computer Vision and Pattern

Recognition. IEEE. 2009, pp. 256–263.

[45] Bin-Bin Gao et al. “Deep label distribution learning with label ambiguity”. In:

IEEE Transactions on Image Processing 26.6 (2017), pp. 2825–2838.

[46] Xin Geng, Zhi-Hua Zhou, and Kate Smith-Miles. “Automatic age estimation

based on facial aging patterns”. In: IEEE Transactions on pattern analysis and

machine intelligence 29.12 (2007), pp. 2234–2240.

[47] Douglas Gray, Shane Brennan, and Hai Tao. “Evaluating appearance models

for recognition, reacquisition, and tracking”. In: Proc. IEEE international

workshop on performance evaluation for tracking and surveillance (PETS).

Vol. 3. 5. Citeseer. 2007, pp. 1–7.

[48] Peng Guan, Oren Freifeld, and Michael J Black. “A 2D human body model

dressed in eigen clothing”. In: European conference on computer vision.

Springer. 2010, pp. 285–298.

[49] Asuman Günay and Vasif Nabiyev. “A new facial age estimation method using

centrally overlapped block based local texture features”. In: Multimedia Tools

and Applications (2017), pp. 1–27.

101



References References

[50] Asuman Günay and Vasif V. Nabiyev. “Age Estimation Based on Hybrid

Features of Facial Images”. In: Information Sciences and Systems 2015. Ed. by

Omer H. Abdelrahman et al. Cham: Springer International Publishing, 2016,

pp. 295–304. isbn: 978-3-319-22635-4.

[51] Semih Gunel, Helge Rhodin, and Pascal Fua. “What face and body shapes

can tell us about height”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision Workshops. 2019.

[52] Guodong Guo and Guowang Mu. “A study of large-scale ethnicity estimation

with gender and age variations”. In: 2010 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition-Workshops. IEEE. 2010, pp. 79–

86.

[53] Guodong Guo and Guowang Mu. “Human age estimation: What is the influ-

ence across race and gender?” In: Computer Vision and Pattern Recognition

Workshops (CVPRW), 2010 IEEE Computer Society Conference on. IEEE.

2010, pp. 71–78.

[54] Guodong Guo and Guowang Mu. “Simultaneous dimensionality reduction and

human age estimation via kernel partial least squares regression”. In: Computer

vision and pattern recognition (cvpr), 2011 ieee conference on. IEEE. 2011,

pp. 657–664.

[55] Guodong Guo and Guowang Mu. “Joint estimation of age, gender and

ethnicity: CCA vs. PLS”. In: Automatic face and gesture recognition (fg), 2013

10th ieee international conference and workshops on. IEEE. 2013, pp. 1–6.

[56] Guodong Guo and Xiaolong Wang. “A study on human age estimation under

facial expression changes”. In: 2012 IEEE Conference on Computer Vision and

Pattern Recognition. IEEE. 2012, pp. 2547–2553.

102



References References

[57] Guodong Guo et al. “Human age estimation using bio-inspired features”.

In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE

Conference on. IEEE. 2009, pp. 112–119.

[58] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. “Hardware-oriented

approximation of convolutional neural networks”. In: arXiv preprint arXiv:1604.03168

(2016).
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