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ABSTRACT 

 

 

 
Prediction methods of Glioblastoma tumors growth constitute a hard task due to 

the lack of medical data, which is mostly related to the patients’ privacy, the cost of 

collecting a large medical dataset, and the availability of related notations by experts. 

In this thesis, we study and propose a Synthetic Medical Image Generator (SMIG) with 

the purpose of generating synthetic data based on Generative Adversarial Network in 

order to provide anonymized data. In addition, to predict the Glioblastoma multiform 

(GBM) tumor growth we developed a Tumor Growth Predictor (TGP) based on End to 

End Convolution Neural Network architecture that allows training on a public dataset 

from The Cancer Imaging Archive (TCIA), combined with the generated synthetic data. 

We also highlighted the impact of implicating a synthetic data generated using SMIG 

as a data augmentation tool. Despite small data size provided by TCIA dataset, the 

obtained results demonstrate valuable tumor growth prediction accuracy. 

 

 
Resume 

 

 

Les méthodes de prédiction de la croissance des tumeurs du glioblastome constituent 

une tâche difficile en raison du manque de données médicales, qui est principalement 

lié à la vie privée des patients, au coût de la collecte d’un grand ensemble de données 

médicales et à la disponibilité de notations connexes par des experts. 

Dans  cette  thèse,  nous  étudions  et  proposons  un  générateur  d’images  médicales 

synthétiques (SMIG) dans le but de générer des données synthétiques basées sur un 

réseau adversarial génératif afin de fournir des données anonymes.   De plus,  afin de 

prédire  la  croissance  de  la  tumeur  du  glioblastome  multiforme  (GBM)  nous  avons 

développé un  prédicteur  de  croissance  tumorale  (TGP)  basé sur une architecture de 

réseau neuronal à convolution de bout en bout qui permet l’entraı̂nement sur un ensem- 

ble  de  données  publiques  provenant  de  The  Cancer  Imaging  Archive  (TCIA),  com- 

biné  aux  données  synthétiques  générées. Nous  avons également  souligné l’impact 

de  l’implication  des  données  synthétiques  générées  à  l’aide  de  SMIG  comme  outil 

d’augmentation des données.  Malgré la petite taille des données fournies par le jeu de 
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données TCIA, les résultats obtenus démontrent une grande précision dans la prédiction 

de la croissance tumorale. 

 

 ملخص
 

  بخصوصية  الغالب  في  ترتبط والتي الطبية،  البيانات  نقص  بسبب  صعبة   مهمة  الدبقية  الاورام  بنمو  التنبؤ   طرق   تشكل 

 .الخبراء  قبل  من  الصلة  ذات   الملاحظات   وتوافر  كبيرة،   طبية  بيانات   مجموعة جمع  وتكلفة  المرضى، 

اقتراح فكرة خوارزمية ذكية لتوليد   طريق   عن   اصطناعية  طبية  صور   توليد فكرة  ونقترح ندرس  الأطروحة،   هذه  في

  طبية  صور   توفير أجل   من  التوليدية  شبكة   على  بناء   مزيفة  بيانات  إنشاء  بغرض وهذا ،     (SMIG) صور طبية  

 . لمرضى ل  خصوصية   بيانات تحمل لا  حيث  للأبحاث  تستعمل 

 حجم   نمو لتوقع  برنامج  تطوير  على  عملنا  (GBM) الأشكال  متعدد الدبقية  الورم  بنمو  للتنبؤ ذلك،   إلى  بالإضافة 

ا (TGP) الورم  و   المصدر  مفتوحة  بيانات  مجموعة  على  بالتدريب  تسمح  والتي  العصبية  الشبكة  بنية إلى   استناد 

 .بإنشائها  قمنا  صطناعية التيالا   طبيةال   صورال  إلى  اضافة ،  (TCIA) السرطان   تصوير  أرشيف  من  للاستخدام  متاحة 

ا  أبرزنا  لقد   SMIG باستخدام  إنشاؤها   تم  التي)المزيفة(   صطناعيةالا   طبيةال   صور ال  البيانات   استخدام أثر  تأثير  أيض 

 ( Deep Learningت تدريب برامج التعلم العميق ) بيانا  لزيادة  كأداة 

 عليها   الحصول   تم التي النتائج   فإن ،  TCIA بيانات  مجموعة  قدمتها   التي  البيانات  حجم   صغر   من  الرغم   على

  .الورم   لنمو  قيّمة  تنبؤ  دقة   تظهر 

 

 

Keywords: Tumor growth prediction, Generative Adversarial Network, Glioblas- 

toma multiform, convolution neural network, Literature. 
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 إهداء 

  و الامتنان   في جميع مراحل الحياة يوجد أ ناس يس تحقون منا الشكر 

لى صاحب   السيرة العطرة والفكر المس تنير، فلقد كان له الفضل ال ول في بلوغي التعليم العالي )والدي  ا 

 .ورزقه الصحة والعافية   ( أ طال الله في عمره فضيل   الحبيب 

لى من وضعتني على طريق الحياة وجعلتني ربط الجأ ش، وراعتني حتى صرت كبيراً )أ مي الغالية    ا 

 .ا رؤوس ن ادامها الله فوق  (  خديجة 

لى جميع أ ساتذتي الكرام، ممن لم   خوتي، من كان لهم بالغ ال ثر في كثير من العقبات والصعاب، ا  لى ا  ا 

 .يتوانوا في مد يد العون لي 

ليكم بحث حبا وكرامة    .  أ هدي ا 
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General Introduction 
 

 

 

Introduction 
 

Nowadays, Brain tumor detection has become a very active area of research, which 

is still at the level of experiments. Glioblastoma multiforme (GBM) is one of the most 

fast-growing gliomas and heterogeneous brain tumors with a high potential for lethality. 

These tumors could be detected using magnetic resonance imaging (MRI), which helps 

neurosurgery to identify and predict the treatment plan by analyzing patients’ images 

and biomarkers [Tamimi and Juweid (2017)]. However, there seems to be no cure in 

the case of many patients, particularly higher-grade tumors. 

Cancer research has gone beyond the walls of medical institutions and biology labs. 

The investigations encompass research in mathematical models and Machine Learning 

ML algorithms as well. These techniques may provide an opportunity for novel clinical 

insights and discoveries. 

In brain tumor research, ML aims to simulate human cognitive capacity in analyzing 

and comprehension of the complex tumor growth criteria. In the literature, ML are pro- 

posed to extract useful information from medical data, in which it plays a very important 

role in brain tumor diagnosis, segmentation, and growth prediction. These models are 

mainly focused to work on the image-based diagnosis and image analysis to improve 

treatment and helps in therapy decisions. 

For tumor detection, Google’s DeepMind [Powles and Hodson (2017)] develop an algo- 

rithm that can detect cancerous and abnormal conditions in healthy tissues. DeepMind 

helps to speed up the segmentation process, thereby improves the accuracy and effec- 

tiveness of radiotherapy planning. 

Moreover, for radiotherapy effect prediction, Microsoft conducts various research in 

computer vision and machine learning. InnerEye [Oktay et al. (2020)] perform auto- 

matic and quantitative three-dimensional radiographic images. This technique provides 

an accurate image that is effectively used as a measuring device. Furthermore, getting 

an efficient segmentation of brain tumors is a research-active area where many works 

[Pereira et al. (2015), Havaei et al. (2017), Akil et al. (2020), Naceur et al. (2019)] pro- 

pose a GBM segmentation model that based on Convolutional Neural Networks (CNNs) 

[LeCun et al. (1998)]. 
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Thesis Motivation and Objectives 
 

The main aims of this thesis are to develop a supporting decision-making tool for brain 

tumor growth prediction, which can predict GBM tumor growth based on automatic 

medical image analysis. In the literature, Swanson team [Swanson et al. (2000, 2003, 

2008), Jackson et al. (2015), Randall et al. (2018)] has the major contributions in us- 

ing mathematical modeling for GBM tumor growth. However, the major challenge in 

mathematical modeling is the parameters needed to accurately predict the tumor growth 

[Swanson et al. (2008)]. In the other hand, to the best of our knowledge, fewer investi- 

gations are based on machine learning for GBM growth, [Morris et al. (2006), Elazab 

et al. (2020)]. 

Due to the lack of sufficient training data and the complexity of GBM tumor behavior, 

brain tumor prediction is still a challenging task and a lot of efforts remain to be done 

for improving the prediction accuracy. 

We focus our interests on machine learning investigation in brain tumor growth predic- 

tion. However, providing sufficient study data is a challenging task, the data medical 

data privacy and the lack of publicly available datasets. Generative Adversarial Net- 

works (GANs) prepare a future seeing to generate a synthetic medical image, also, 

GANs provide data anonymizing and guarantee a free public dataset. 

GANs are known as the combination of two types of networks; the first network is the 

generative model [Oord et al. (2016)] which study the spatial distribution from different 

features in the image. The second network is a Discriminator [Beyerlein (1997)], which 

classifies the two input images according to their characteristics and appearance differ- 

ences. GANs could be trained to learn and use the internal representations in unlabeled 

data, and aim produces new content based on the extracted features. 

In the literature, wide broad potential applications of GANs including: 

• New image generation [Wang and Gupta (2016)]. 
 

• Text-to-image synthesis [Xu et al. (2018)]. 
 

• Face aging [Antipov et al. (2017)]. 
 

• Complete the missing parts of images [Li et al. (2019)]. 

The common uses of GANs in the medical field are for synthetic image generation 

and data anonymization, [Frid-Adar et al. (2018)] combines a GAN model with CNN 

architecture in order to develop a liver lesion classification network. The authors proved 

a positive effect by using GAN in improving the classification rate on a liver lesion clas- 

sification. Furthermore, [Iqbal and Ali (2018) ] proposed a GAN-based framework as 
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data augmentation with the aim to enhance the retinal vessel image segmentation. For 

GAN in brain research, [Han et al. (2018) ] proposed to generate multi-sequence brain 

MR images. Han model increases the diagnostic reliability and the results are approved 

by physician [Geman et al. (2015)]. Moreover, [Shin et al. (2018)] proposed to gener- 

ate synthetic multi-series abnormal brain MRIs. Shin model is based on two publicly 

available datasets (ADNI, BRATS), and the aim is to provide training data as well as an 

effective tool for medical images anonymizing. 

In addition, [Bowles et al. (2018)] show the impact of using the generated image in the 

brain tumor segmentation accuracy. 

GBM treatment planning, follow-up need an accurate prediction result and keep a chal- 

lenging task. We are motivated by the huge evolution in machine learning algorithms 

and image analysis, that may use to consider information from different medical im- 

ages. In the next section, we cite a list of our contributions to deal with this situation. 

 
Contributions 

 
This thesis has three main contributions: 

 
1. Tumor Growth Predictor TGP model [Kamli et al. (2020) ] is proposed to predict 

the tumor growth based on multi-modal MRI images and motivated by: 

• The lack of investigations on GBM volume growth prediction using deep- 

learning. 

• The short survival rate of GBM patients and the complexity of the prediction 

task. 

• TGP is a Fully automatic brain tumor prediction method. 

• Otherwise, compared to the majority of the prediction mathematical model, 

the TGP model didn’t require any patient’s supplementary data (based only 

on images). 

2. To overcome the issue of data privacy, imbalanced data, and the lack of sufficient 

training data, we propose Synthetic Medical Image Generator (SMIG) [Kamli 

et al. (2020) ]. SMIG is considered as data augmentation and an anonymizing 

technique. 

3. The two previously mentioned models have been combined to show a proof of 

concept for a general framework to predict brain tumor growth based on multi- 

model images. This concept integrates information from different MRI image 

modalities, which are usually available for each single brain tumor patient. 
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4. We reviewed the impact of using various preprocessing steps on the accuracy of 

tumor growth prediction. 

 
Thesis Outline 

 
Including this general introduction, our thesis is divided into 6 chapters: 

 

• In chapter 1, we provide the medical background and information about Glioblas- 

toma multiforme (GBM) and brain tumor imaging, before citing the public dataset 

used in this work and their provided sample details. 

• In chapter 2, the state of the art in tumor growth modeling and the mathematical 

viewpoint of GMB growth, the studies in the microscopic and macroscopic levels 

are briefly discussed and reviewed. Besides, we provide an overview of GBM 

tumor growth investigation based on artificial intelligence for treatment planning 

and genetic profile prediction in order to study treatment efficacity. 

• In chapter 3, our TGP model as the first contribution is detailed. TGP aims to 

predict the volume changing and tumor growth based on multi-modal images. 

Besides, we studied the pre-processing tools used in literature and their impact 

on the model pre- diction accuracy; include the important methods for separating 

the brain from the skull, resizing, and registration, and finely image denoising. 

• Chapter 4 deals with our SMIG model as the second contribution. The objec- 

tive and motivation and the math behind the generative adversarial model also 

detailed, the used methods and the contribution compared to related work also 

provided. The results and examples of generative images are demonstrated as 

well 

• Chapter 5, We combined the two previous approaches, and aimed to demonstrate 

that using SMIG data improve GBM prediction performance. 

• Finally, the general conclusion that include all our results and future improve- 

ments work are summarized before the current status is critically assessed and 

potential future, as well as new developments, are discussed and detailed. 
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CHAPTER 1 

 
Medical background 

 

 

 

1.1 Glioblastoma 
 

As neurosurgery and neuro-oncology have evolved, so has the classification system for 

central nervous system tumors, and Glioblastoma multiforme has been chosen as the 

most common type of malignant brain tumor in adults and represents approximately 

27% of all primary brain tumors and 80% of malignant primary brain tumors in the 

United States Ostrom et al. (2018). Glioblastoma multiforme (GBM) is a fast-growing 

glioma that develops from star-shaped glial cells (astrocytes and oligodendrocytes) that 

support the health of the nerve cells within the brain. Figure 1.1 shows a representative 

image for a large portion of tumor cells (GBM tumor lesion). GBM brain tumors are 

heterogeneous brain tumors with a high risk of being lethal. Generally, it is the most 

aggressive malignant primary brain tumor with an incidence rate of 32 people per mil- 

lion in the USA, where 64 years is the average age of GBM patients Tamimi and Juweid 

(2017). The overall incidence and histological types of intracranial tumors vary with 

age. In general, there is a small peak before the age of 10, and it rises steadily from the 

age of 15. The Central Brain Tumor Registry of the United States (CBTRUS) data indi- 

cate that the incidence of intracranial tumors tends to flatten or even decrease after the 

age of 75, but this finding may be due to insufficient assessment of the elderly patients 

with neurologic disability. Low-grade gliomas, such as astrocytomas, are more com- 

mon in the young, and high-grade tumors, such as glioblastoma, are more common in 

the elderly. Medulloblastomas and germ cell tumors of the pineal region are tumors of 

childhood. Study in the period 1973–1991 report only 208 glioblastomas under age 20, 

compared to 3 479 over age 65. Conversely, pilocytic astrocytomas, a low-grade tumor, 

were more common under age 20 (n = 252) than over age 65 (n = 7). There were 578 

medulloblastomas under age 20 and only 3 over age 65. Pineal region tumors numbered 

25 under age 20 and only 1 over age 65.26 The lifetime risk of a GBM malignancy is 

0.67% for men and 0.52% for women.Buckner et al. (2007). 

A population study in Japan compared the incidence of intracranial tumors under 70 

years of age. Between 1989 and 1995, 1354 new primary intracranial tumors were diag- 
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Fig. 1.1 Representative image show a large portion of tumor cells (GBM tumor lesion) 

 

 
nosed in Kumamoto City, Japan. The total age-adjusted incidence rate for people over 

70 years of age was 18.1/105, compared with 8.7/105 for younger people. CBTRUS 

data shows that with age, the incidence of all intracranial tumors is increasing. The 

age group with the highest incidence is 75-84 years old. Glioblastoma peaks between 

65 and 74 years of age, and decreases slightly after 75 years of age. The incidence of 

meningioma also increases with age and does not decrease after the age of 75 (See Table 

1). The reported incidence of brain tumors also varies by geographic location. The in- 

cidence of primary brain tumors reported in the least developed countries is higher than 

that of less developed countries. According to reports, the age-adjusted incidence rate 

in Scandinavia is 31.4 per million, which is much higher than the 21.7 for blacks and 

26.4 for whites in the United States. In the United States, Canada, Western Europe, and 

Australia, this ratio is similar and higher than in Eastern Europe.Buckner et al. (2007) 

The lowest incidence rates in developed countries are Japan, India, and Singapore. Al- 

though the overall incidence in Asia is lower, certain tumors are more common. For 

example, germ cell tumors are more common in Japanese boys than in any other pop- 

ulation in the world. The migration rate of the immigrant population is usually higher 

than that of the immigrants from the adopting country, and the rate of immigrants who 

stay in the country of origin is higher, which shows that environmental factors are im- 

portant. It is not yet clear how the geographic differences between countries are affected 

by diagnostic facilities and autopsy rates. Buckner et al. (2007) 

These tumors could be detected using magnetic resonance imaging (MRI) which 

creates an image of soft tissue that could be used after that to detect and measure the tu- 

mor’s size. The study of GBM growth behavior is a very challenging task due to tumor 

malignancy and short survival times Smoll et al. (2013), thus, the processing of MRI 
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Age at diagnosis (years) 

Histology 0-19 20-34 35-44 45-54 55-64 65-74 75-84 +85 

Total tumors 3.69 5.67 9.50 15.78 24.92 36.45 39.81 31.55 

Glioblastoma 0.17 0.41 1.21 3.81 8.16 11.34 11.22 5.41 

Mcningioma 0.10 0.64 1.13 4.35 6.60 11.50 14.70 14.30 

Lymphoma 0.01 0.26 0.47 0.41 0.65 1.09 1.22 0.47 

Table 1.1 The reported statistics for the median age diagnosis for Glioblastoma (GBM) 

patients 

 
images has vital importance for the diagnosis and evaluation of progressive disease dur- 

ing the treatment of GBM patients, generating MR-derived growth pattern models for 

GBM is an active research field in neuro-oncology.GBM is often referred to as a grade 

IV astrocytoma. These are the most invasive type of glial tumors, rapidly growing and 

commonly spreading into nearby brain tissue. Lima et al. (2012). GBMs can arise in 

the brain “de novo” or evolve from lower-grade astrocytomas or oligodendrogliomas. 

In adults, GBM occurs most often in the cerebral hemispheres, especially in the frontal 

and temporal lobes of the brain. GBM is a devastating brain cancer that typically re- 

sults in death in the first 15 months after diagnosisBrem and Abdullah (2016). The 

development of neurosurgery and neuropathology served as the first necessary steps in 

understanding glioblastoma and the early detection of glioblastoma through biomark- 

ers and response to therapy promises to inform future clinical trials and accelerate the 

pace of discovery to continuously increase survival. Glioblastoma has one of the poorest 

survival rates of any malignant brain tumor and contributes disproportionately to cancer 

mortality and morbidity. Median survival after diagnosis with glioblastoma is approxi- 

mately 12 months, and this survival period increases to approximately 14 months when 

patients are treated with current standard therapy, which consists of maximal safe sur- 

gical resection followed by concurrent radiation and temozolomideDeAngelis (2001). 

The new 2016 WHO Classification of Tumors of the Central Nervous System was a 

paradigm shift: some of the tumors were defined also by their genetic composition as 

well as their cell morphology. The landscape of molecular and genetic profiling of 

glioblastoma is continuously expanding, and, as these phenomena are increasingly well 

described, therapeutic targets with biological underpinnings may more accurately be 

tailored to care and treatment in the clinical realm. The grading of gliomas changed 

importantly and glioblastoma was now mainly classified according to the molecular 

and genetic pathways, and especially on the status of isocitrate dehydrogenase (IDH) 

mutation: IDH-wildtype or IDH-mutant (see table 1.2)Louis et al. (2016). 

GBM is lethal cancer and without treatment, patients diagnosed with this disease 

survive nine months. With the best therapeutics science has to offer, including surgical 

resection, radiation therapy, and temozolomide, patients survive only five more months. 

Brain tumors are difficult to detect early because the brain is covered by the skull and 
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IDH-wildtype glioblastoma IDH-mutant glioblastoma 

Synonym Primary glioblastoma Secondary glioblastoma 

Precursor lesion Identified de novo Diffuse/Anaplastic astrocytoma 

Proportion of glioblastomas -90% -10% 

Median age at diagnosis -62 years -44 years 

Male:Female ratio 1.42:1 1 051 

Median length of clinical history at diagnosis 4 months 15 months 

Median overall survival 

Surgery + radiotherapy 9.9 months 24 months 

Surgery + radiotherapy + chemotherapy 15 months 31 months 

Location Supratentorial Preferentially frontal 

Necrosis Extensive Limited 

TERT promoter mutations 72% 26% 

TP53 mutations 27% 81% 

ATRX mutations Exceptional 71% 

EGFR amplification 35% Exceptional 

PTEN mutations 24% Exceptional 

Table 1.2 World Health Organization Classification of Tumors of the Central Nervous 

System (GBM classification according to IDH mutation) 

 
the brain tumors do not show very specific clinical symptoms. Generally, three differ- 

ent categories of brain tumor symptoms can be distinguished Buckner et al. (2007) : 

1. Increased cranial pressure can lead to headache, vomiting, and altered states of con- 

sciousness. 1. Cognitive and behavioral impairment, personality, or emotional changes 

can be attributed to brain dysfunction. 3. Symptoms of irritation like absences, fatigue, 

or seizures can be observed. However, all these symptoms are not just for brain tumors. 

Therefore, diagnosis usually starts with asking the patient’s medical history and symp- 

toms. If a brain tumor is suspected, imaging plays a central role. Currently, different 

methods of magnetic resonance imaging (MRI) are the latest technology for the non- 

invasive diagnosis of brain tumors DeAngelis (2001). However, despite the crucial role 

of imaging, a definitive diagnosis can only be confirmed by histological examination of 

tumor tissue samples, which have been obtained by biopsy or surgery. Once the tumor 

is diagnosed, treatment options range from surgery to radiotherapy or chemotherapy 

Buckner et al. (2007). Combination therapy is also possible. The purpose of surgery is 

to completely remove the tumor while preserving nerve function. In radiotherapy, the 

goal is to selectively kill tumor cells by splitting several irradiations while preserving 

healthy tissue in the brain. Chemotherapy can be used in combination with other ther- 

apies, but for many patients with brain tumors, it can only provide moderate benefits 

Buckner et al. (2007). All treatment options require imaging for treatment planning and 

treatment monitoring. Before and during treatment, it is important to distinguish the dif- 

ferent tumor compartments based on the image and to outline important healthy brain 

structures. Each tumor compartment exhibits different biological processes and should 

therefore be considered separately. GBM are brain tumors derived from a single glial 

cell. Some brain tumors are benign, which means they will not recur after treatment 

(surgical removal and radiotherapy). But most tumors are malignant and even continue 
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to grow and spread after treatment, and ultimately lead to patient death. In general, ma- 

lignant tumors outpace the growth of surrounding normal tissue as cancer cells divide 

and multiply more rapidly. A cell becomes cancerous after it undergoes some mutation 

(a chromosomal or genetic change) that increases the mitotic division in this cell or a 

decrease in a protein that suppresses cell division Hoang-Xuan et al. (2005). Eventu- 

ally, cells that have undergone these genetic mutations become immune to inhibitory 

growth signals from their surrounding normal cells. As mutations in malignant cells 

accumulate while these cells divide, tumors become even more invasive to normal tis- 

sue and threaten the patient’s life. The speed and degree of invasion of malignant tumor 

growth are described in terms of tumor grades. Four distinct glioma grades are ranging 

from low-grade brain neoplasms (astrocytomas originating from an astrocyte glial cell) 

and intermediate (anaplastic astrocytoma) to aggressive grade-four gliomas. Tumors in 

general and high-grade gliomas, in particular, are still recurrent, despite extensive clin- 

ical efforts and more sophisticated treatment methods. Tumor recurrence can be due to 

several factors, including cancer tissue resistance to therapy or the presence of occult 

malignant cells not destroyed by formal therapy Morris (2005). Although the visible 

tumor mass may have been removed or irradiated. The occult cells continue to diffuse 

in healthy brain regions outside The tumor boundary and form other small masses of 

cancer cells while the visible tumor may have been removed. With MR imaging, such 

small masses can remain undetected as they exist around the visible tumor in small con- 

centrations. For example, even though surgical treatment eliminates the visible tumor 

mass, the tumor will likely grow again from the diffuse cells and tendrils that have in- 

vaded the healthy tissue around the border of the original tumor. The malignant cells 

fight for nutrients in more violent tumors that develop into a considerably large mass, 

creating a necrotic region at the heart of the tumor as the cells at the center are dead. 

However, cancer cells begin to proliferate at the periphery of the tumor border, adding 

to the slower-growing malignant mass and typically secreting chemicals that make the 

tumor expand into blood vessels supplying it with nutrients (this phenomenon is known 

as angiogenesis) Morris (2005). Malignant cells take advantage of nutrients and normal 

cell resources, share materials with normal cells, overwhelm them with waste products, 

and are in many ways able to threaten their survivalMorris (2005). Treatment for GBM 

is typically successful in extending the life of the patient by some years or months. But 

the treatment, in particular with radiotherapy, can become more effective and may even 

grant the cure to many patients if the treatment volume is specified in a way that would 

help eradicate the diffuse cancer cells and tendrils by applying a high radiation dose; 

therefore reducing the possibility of recurrence while minimizing the amount of healthy 

tissue compromised. 

At the moment of diagnosis, GBMs are often large due to rapid and infiltrative 
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Fig. 1.2 A CT scan shows the rapid growing and infiltrative development of GBM tumor 

[Janelidze et al. (2009)] 

 

 
development. The normal treatment of GBM consists of surgery, radiotherapy, and 

chemotherapy. It can not be fully resected by surgery due to the infiltrative nature of 

the tumor, but full surgical resection is desirable to reduce the symptoms caused by 

increased intracranial pressure and to provide tissue for histologic diagnosis. How- 

ever, surgical resection may not always be necessary, depending on the location of 

the tumor. Figure 1.2 shows the rapid growing cancers and often outgrow their blood 

supply so the center ofthe tumor is literally dead cells or necrotic. Advances in brain 

tumor surgery, such as intraoperative magnetic resonance imaging, brain mapping, and 

fluorescence-guided surgery, have improved the extent of resection, but it is not clear 

whether this affects patient survival. GBM treated eventually recur, generally within 2 

cm of the original location, with a median progression period of 6.9 months after radi- 

ation treatment and a median progression time of 6.9 months after radiation treatment 

and temozolomide Janelidze et al. (2009). Traditional therapy resistance is primarily 

due to many reasons including The first, inadequate drug delivery due to blood-brain 

barrier and high intratumoral pressure, The second reason, is genome instability lead- 

ing to single-therapy resistant cell clonal populations, Thirdly, invasive tumor cells, 

And the fourth reason is stem-like cells with separate resistance mechanisms from the 

rest of the tumor cells, and lastly, the properties of DNA repair. Infiltrating tumor cells 
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also form microsatellites located at a distance from the bulk of the contrast-enhancing 

tumor, thereby preventing therapy with surgical resection and radiation. Further on, it 

has been shown that migration and cell proliferation are mutually exclusive, suggesting 

that migrating tumor cells do not proliferate Svensson (2015). 

Any brain tumor is inherently serious and life-threatening because of its invasive 

and infiltrative character in the limited space of the intracranial cavity. However, brain 

tumors (even malignant ones) are not invariably fatal, especially lipomas which are in- 

herently benign. Brain tumors or intracranial neoplasms can be cancerous (malignant) 

or non-cancerous (benign); however, the definitions of malignant or benign neoplasms 

differ from those commonly used in other types of cancerous or non-cancerous neo- 

plasms in the body. Its threat level depends on the combination of factors like the type 

of tumor, its location, its size, and its state of development. Because the brain is well 

protected by the skull, the early detection of a brain tumor occurs only when diagnos- 

tic tools are directed at the intracranial cavity. Usually, detection occurs in advanced 

stages when the presence of the tumor has caused unexplained symptoms. FIGURE 1.3 

Moore et al. (1996) depicts an aging woman’s inability to be diagnosed with a brain 

tumor. A lady in her 70s presented with a new-onset headache. In this elderly patient, 

a non-contrast MR T2 weighted (left image) scan showed a right temporal lobe lesion 

(arrow), which was interpreted as ischemic vascular disease. The headaches went away, 

but then she started having mood changes, confusion, and fatigue, a contrast-enhanced 

MR scan (right image) revealed that the previously tiny lesion had grown into a massive 

glioblastoma (arrow). 

 

Fig. 1.3 Illustration of old women tumor using non-contrast MR T2 weighted image 

 
 

The tumor’s origin determines symptoms, surgical resectability, and, as a result, 
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prognosis. Tumors in the non-dominant frontal lobe, for example, are often asymp- 

tomatic before they reach a large scale, can also be entirely resected, and have a higher 

prognosis than tumors in extremely symptomatic but surgically unavailable regions like 

the brainstem or basal ganglia. Tumors that arise outside of the brain, such as menin- 

giomas and pituitary tumors, have a higher prognosis than tumors that arise within the 

brain’s parenchyma. The patient’s age is a significant prognostic factor. Surgery Black 

(2000) is the most important single modality in the treatment of intracranial tumors, 

treatment planning techniques permits the design of treatment plans which match how 

should this patient get the treatment for his brain tumor, according to many features 

related to tumor grade, patient age, sex, and health general state.Moore et al. (1996) 

Surgery establishes the diagnosis and often relieves neurologic symptoms but whether 

it prolongs survival is controversial. 43 Older patients ( > 40 years) with tumors >3 

cm and with mass effect do appear to benefit from resection. Surgery seems to im- 

prove both quality and duration of life in children with astrocytomas, both low- and 

highgrade44 and we believe that it also does so in adults. However, surgery does not 

cure (pilocytic astrocytoma is an exception); surgery conventionally has been followed 

by radiotherapy Moore et al. (1996). Radiotherapy RT Walker et al. (1979) is cura- 

tive; for some, it significantly prolongs longevity or at the very least slows progression. 

Radiation techniques have evolved, allowing greater exposures to the tumor while spar- 

ing normal brain, As with surgery, recent developments in radiation therapy have made 

that treatment modality both more effective for some tumors and less toxic to the brain 

Many health institutions have focused their efforts on cancer research leading to numer- 

ous advances in cancer treatment. But there seems to be no cure in the case of many 

patients; in particular, those affected with higher-grade tumors. Because of this, cancer 

research has gone beyond the walls of medical institutions and biology labs to encom- 

pass research in mathematical and computational sciences as well. Chemotherapeutic 

Vuorinen et al. (2003) drugs have been shown to be ineffective in the management of 

the majority of brain tumors. Cerebral germinomas, medulloblastomas, central nervous 

system lymphomas, and some oligodendrogliomas are anomalies. Chemotherapy’s role 

in the treatment of astrocytomas is debatable, but most experts agree it plays a minor 

role in increasing recovery in certain patients. For meningiomas, acoustic neuromas, 

and most pituitary adenomas, no adequate chemotherapeutic agents have been created. 

Chemotherapy is thought to work in the same way with all cancers. The diagnosis of 

GBM can be done by clinical imaging techniques, with MRI being the most common 

technique. When viewed with traditional imaging techniques, GBM often appears as 

ring-enhancing lesions with non-specific boundaries: due to very high cell invasiveness, 

Glioma Growth Modeling unlike solid tumors, GBM does not form a solid and compact 

mass with cells dispersed around the lesion Duffau (2017b). 
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1.2 GBM Investigations level 
 

From literature brain tumor investigation, we distinguish three portmanteaux models 

Andre´ et al. (2004a) 

 
1.2.1 In Vivo: 

Experimentation in vivo (Latin for ”inside the living”) refers to using a whole, living 

organism rather than a partial or dead organism. Animal studies and clinical trials are 

two forms of in vivo research. Because it is best suited for monitoring the overall effects 

of an experiment on a living subject, in vivo testing is often used over in vitro testing. 

While there are several reasons to think that in vivo studies have the potential to provide 

definitive insights into the nature of medicine and disease, there are many ways in which 

these findings can be inaccurate. A treatment, for example, may provide a short-term 

benefit but cause long-term harm. 

 
1.2.2 In Vitro 

This method allows to carry out a biological procedure in a controlled environment 

outside of a living organism usually in test tubes or on Petri dishes. The process of 

conducting a given procedure in a controlled environment outside of a living organism 

is referred to as in vitro (Latin for inside the glass). Many cellular biology experiments 

are carried out outside of organisms or cells. One of the most serious shortcomings of 

in vitro experiments is their inability to reproduce the exact cellular conditions of an 

organism, especially a microbe. In fact, the investigation in vitro level are much faster 

than in vivo experiment but did not replace it completely and may lead to results that 

do not correspond to the circumstances occurring around a living organism. 

 
1.2.3 In Silico 

The term ”in silico” refers to work done on a computer or through computer simula- 

tion. The word in silico was first used in public in 1989 in a workshop to describe 

biological experiments conducted entirely on a computer. Although in silico studies are 

still a relatively new avenue of investigation, they are increasingly being used in stud- 

ies that predict how drugs interact with the body and pathogens. In a 2009 study, for 

example, software emulations were used to predict how certain already-on-the-market 

drugs would treat multidrug-resistant and widely drug-resistant. In GBM investigation 

Mathematic model and computer simulation models may provide testing proceeds on 

virtual patients, to study and simulate how the tumor would look like in the late stage, 

also how treatment will react with GBM growth and innovation. Such a model had no 

risk of harm or threat to the safety and it’s the most used in GBM investigation. 
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1.3 Medical Imaging 
 

Diagnosis of tumors is centered on the examination of biopsy tissue samples collected. 

Biopsies are highly invasive and risky. Biopsy morbidity is estimated at 1.4 to 3.5 %, 

with a death rate of 0.2 to 0.8 %, and is rarely done on infirm or elderly patients, or 

in patients with very slow-growing tumors. Noninvasive imaging methods like MRI 

Dale et al. (2015a), Computed Tomography (CT) Buzug (2011), and Positron Emission 

Tomography (PET) Bailey et al. (2005) can diagnose a brain tumor, without surgery. 

MRI provides soft-tissue contrast with high-resolution information and is an approach 

for the anatomical assessment of brain tumors. 

The method despite its familiarity in clinical practice fails on metabolic change 

detections. Proton is a sensitive nucleus and is a prominent option for medical appli- 

cations. MRI has become a major aid in the clinical diagnosis of brain tumors. The 

technique assesses tumor extents, anatomical location, and morphology and has a high 

spatial resolution. Stacked images of the whole brain are used for tumor localization. 

MRI with different contrasts allows assessing the integrity of the blood-brain barrier. 

Brain tumors often result in an interruption of the blood-brain barrier and contrast agent 

discharges out of the vasculature into the brain or tumor tissue, thereby giving rise to 

abnormal enhancement. MRI is a helpful mechanism for brain tumor diagnosis and 

treatment. 

• Magnetic resonance imagingDale et al. (2015a) : MRI is the most used device that 

provides pictures of various planes. The MRI provides clear images of tumors as 

it detects signals emitted from normal and abnormal tissues (more details in next 

section). 

• Computed Tomography scanBuzug (2011) (formerly known as computed axial 

tomography): CT combines upgraded x-ray and computer technology that can 

showcase a combination of soft tissue, bone, and blood vessels. CT images allow 

to determine certain types of tumors and also help in detecting swelling, bleeding, 

and bone. Usually, iodine is the contrast agent made use of during a CT scan. 

• Positron emission tomographyBailey et al. (2005) : PET scan gives a picture of 

the brains function, rather than its structure, by calculating the rate at which a tu- 

mor takes in glucose (a sugar). The patient is injected with deoxyglucose that has 

been labeled with radioactive markers. The PET scan identifies the brain activity 

and sends this data obtained to a computer, which forms a live image. Pathol- 

ogists use PET scans to view the difference between scar tissue and recurring 

tumor cells. 

• Tumor tissue biopsyVuorinen et al. (2003) : A sample of tissue is extracted from 
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the tumor-affected area and a microscopic study is made by a surgical procedure 

called a biopsy. Biopsy provides information about the abnormal cells present 

in the tumor and is used to find the type and grade of a tumor, which diagnose 

accurately. A craniotomy is an open biopsy, for which a small piece of skull is 

removed for the extraction of the tumor part. After the tumor is resected (com- 

pletely removed) or debulked (partially removed), the bone is again fixed. The 

surgeon drills a small hole into the skull and passes a narrow hollow needle into 

the tumor to remove a sample. A closed biopsy called stereotactic or needle 

biopsy is performed when the tumor is in a difficult part of the brain. The tissue 

is analyzed under a microscope for a detailed report. 

 
1.3.1 MRI imaging techniques 

Functional brain imaging can be strictly or more broadly defined. It considers it broadly 

to include the full range of techniques by which physiological changes accompany- 

ing brain activity are defined. Different techniques are sensitive to different types of 

changes. Dale et al. (2015b) 

Magnetic resonance (MR) is based upon the interaction between an applied mag- 

netic field and a nucleus that possesses spin. Nuclear spin or, more precisely, nuclear 

spin angular momentum, is one of several intrinsic properties of an atom and its value 

depends on the precise atomic composition. Every element in the Periodic Table except 

argon and cerium has at least one naturally occurring isotope that possesses spin. Thus, 

in principle, nearly every element can be examined using MR, and the basic ideas of 

resonance absorption and relaxation are common to all of these elements. The precise 

details will vary from nucleus to nucleus and from system to system. Poldrack et al. 

(2011) 

The concept of Nuclear magnetic resonance (NMR) imaging used in present-day 

MRI systems was proposed by Paul Lauterbur as early as 1973. MRI exploits the pres- 

ence of the vast amount of hydrogen (protons) in a human body as the water content 

in a human body is said to be about 80 % Poldrack et al. (2011). When protons in the 

tissues of the body, aligned in a static magnetic field (B0), are subjected to resonant RF 

excitation, they absorb energy. Proton relaxes back and emits a resonant signal which 

is a characteristic of the tissue. The signal is picked up by a receiver located inside the 

magnet bore and is used to construct the image using Fourier transform. Since the NMR 

signal frequency is proportional to the magnetic field the whole tissue can be mapped 

by assigning different values of the proton frequency to different proton locations in the 

sample using a well-computed field gradient. All MRIs use proton NMR for mapping 

proton density which is different in different types of tissues. The images show contrast 

which helps in identifying those tissues and the changes occurring in a sample tissue. 
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MRI turns out to be an ideal technique for soft tissue regions of the body such as the 

brain, eyes, and soft tissue part of the head. Since bones have a low density of protons 

they appear as dark regions. Poldrack et al. (2011). 

 
The focus on magnetic resonance-based techniques arises from the extraordinary 

flexibility and range of potential applications for magnetic resonance methods, as well 

as the safety and widespread availability of MRI scanners. In contrast to many of the 

in vitro methods used to define brain function, methods used in vivo generally are con- 

cerned not with the behaviors of single neurons but with the activities of large popula- 

tions of neurons. This nonetheless is highly informative, as single neurons do not work 

independently, but function in large aggregates (consider, for example, the vertical inte- 

gration of neurons in columns in the primary sensory cortex). Despite the small sizes of 

individual neurons, useful information concerning brain function therefore can be ob- 

tained using methods that have an in-plane spatial resolution of even 3 mm or greater. 

Information transfer in the brain along axons occurs by electrical conduction. Infor- 

mation is transferred between neurons by the release of neurotransmitter molecules at 

synapses and their subsequent interactions with specific receptors on target neurons. 

These neurotransmitter–receptor interactions then lead to changes in membrane current 

flow which change the post-synaptic neuronal membrane potential (and the accompany- 

ing extracellular electrical field) and after depolarization frequency. Dale et al. (2015b). 

 
Brain tumor therapy is highly dependent on diagnosis, which must be as close as 

possible at the early stages of the disease. Since the asymptomatic period can last for 

a long period (months or ages), this is crucial to diagnose the disease before local ex- 

pansion or metastatic invasion. Every indication should motivate every person to ask 

for medical assistance, since the recognition of a symptom (e.g. persistent headaches, 

cough, swelling, or hardening of the breast) may be the first step for early diagnosis of 

malignant neoplasia. Diagnosis is critical for identifying the type and the characteris- 

tics of a tumor. Misdiagnosis can often lead to an erroneous prognosis and treatment. 

Poldrack et al. (2011) 

MRI is particularly useful for examining the brain and spinal cord, considered the 

best technique to detect tumors in these locations. The energy from the radio waves is 

absorbed and then released in a pattern linked to the tissue and certain diseases. Spe- 

cial computer software translates the pattern into a very detailed image which can be 

represented in 3 dimensions. In most cases, the patient receives a contrast agent, called 

gadolinium (Gd), by intravenous injection before scanning to obtain clearer images. 

Dale et al. (2015b). 
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In general, MR measurements are made on collections of similar spins rather than 

on an individual spin. It is useful to consider such a collection both as individual spins 

acting independently (a “microscopic” picture) and as a single entity (a “macroscopic” 

picture). For many concepts, the two pictures provide equivalent results, even though 

the microscopic picture is more complete. Conversion between the two pictures requires 

the principles of statistical mechanics. 

 
1.3.2 MRI Types 

MRI is perhaps the best application of superconductivity which directly affected hu- 

manity across the globe. It is a common tool with the radiologist in diagnostic hospitals 

for imaging various soft tissue parts of the human body and for detecting tumors. The 

most used type of MRI images in brain tumor investigation are : 

 
1.3.2.1 T1 weighted 

T1 weighted MRI refers to a set of standard scans that depict differences in the spin- 

lattice relaxation time (known as T1) of various tissues within the brain. T1 weighted 

images can be acquired using either spin-echo or gradient-echo sequences. T1 weighted 

contrast can be increased with the application of an inversion recovery radiofrequency 

pulse. Gradient-echo-based T1-weighted sequences can be acquired very rapidly be- 

cause of their ability to use short inter-pulse repetition times. T1-weighted sequences 

are often collected before and after infusion of T1-shortening MRI contrast agents 

Smith (1990). 

 
1.3.2.2 T2 weighted 

T2 weighted MRI is another basic type of MRI. Like the T1 weighted MRI, fat is differ- 

entiated from water, but in this case, fat shows darker and water lighter. For example, 

in the case of cerebral and spinal study, the cerebrospinal fluid (CSF) will be lighter 

in T2 weighted images. These scans are therefore particularly well suited to imaging 

edema with long echo time and repetition time. Because the spin-echo sequence is less 

susceptible to inhomogeneities in the magnetic field, they are widely used in clinical 

praxis. Freeman and Minch (1998) 

 
1.3.2.3 Fluid Attenuated Inversion Recovery (FLAIR) 

Fluid Attenuated Inversion Recovery (FLAIR) is an inversion-recovery pulse sequence 

used to null signal from fluids. It can be used in brain imaging to suppress cerebrospinal 

fluid (CSF) to bring out the periventricular hyperintense lesions, such as multiple scle- 

rosis plaques. By carefully choosing the inversion time (the time between the inversion 
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and excitation pulses), the signal from any particular tissue can be suppressed De Coene 

et al. (1992). 

 

 
1.3.2.4 Diffusion Tensor Imaging (DTI) 

MR diffusion tensors are constructed from diffusion measurements obtained in non- 

collinear directions that describe the trajectory field of moving water molecules in 

three-dimensional space. A tensor matrix can be converted into three differential equa- 

tions. DTI enables diffusion to be measured in multiple directions and the fractional 

anisotropy in each direction to be calculated for each voxel. This enables researchers to 

make brain maps of fiber directions to examine the connectivity of different regions in 

the brain (using tractography) De Coene et al. (1992), Figure 1.4 Network et al. (2008) 

illustrates the four types of MRI images for a GBM patient. 

 

Fig. 1.4 An illustration of the four types of MRI images for the GBM patients 

 

 
 

1.3.3 Challenge in medical images: 

Medical image analysis for brain tumor studies is gaining attention in recent times due 

to an increased need for efficient and objective evaluation of large amounts of data. 

Indeed, the investigation in the medical field introduces new legal challenges in three 

interrelated areas: privacy of identifiable health information, reliability and quality of 

health data, and tort-based liability Coatrieux (2011). 

In another viewpoint, we believe that the collaborative networks and data-sharing initia- 

tives are broadening the opportunities for the advancement of science. These initiatives 

offer greater transparency in science, with the opportunity for external research groups 

to reproduce, replicate, and extend research findings. Furthermore, to identify homoge- 

neous patterns within subgroups of individuals, a huge amount of data is needed, where 
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these patterns may be obscured by the heterogeneity of the neurobiological measure in 

smaller samples. 

The absolute challenge appears in the three characteristics should be ensured: 

 

• Confidentiality : is the property that ensures that only authorized users in normal 

conditions have access to the information. Remember that these purposes are leg- 

islatively specified and that disclosure may be made without the consent of the 

patient. It should also be noticed that if a particular emphasis is placed on pa- 

tient data privacy, stakeholders’ practitioners are themselves concerned Armoni 

(2000). 

 

• Reliability : has two aspects: 1) Authenticity: the origin of the information and 

its attachment to the patient concerned; 2) Integrity: proof that the information 

has not been modified in a non-authorized way. It is either critical or non-critical. 

If the alteration of information is responsible for damage or inadequate treatment 

for the patient, integrity is critical. This is the case, but to a lesser extent, whether 

breaches of integrity induce legal or financial prejudices for the healthcare estab- 

lishment. Otherwise, integrity may be considered as Jennett et al. (1996): 

• The availability of personal medical information: the ability of an information 

system to be used under the normal conditions of access.   Its absence may be 

the consequence of partial or total destruction of the information or a denial of 

access. The origins of the destruction may be different (physical or logical attack) 

and trigger immediate or delayed loss.Katsikas (2016) 

It will be critical if, on one hand, the unavailability is a source of danger for diag- 

nosis, treatment, and care for the patient and, on the other hand, it has consequences at 

financial or legal levels, or on other health care facility. 

 
The Needs of data anonymization: 

Within the framework of privacy protection, the degree of anonymization of the data 

is an important consideration and thus is an aspect incorporated in privacy regulations. 

Different rules apply to data, which are dependent on whether the data is considered 

personal data, fully anonymized, or de-identified. Fully anonymized data has all per- 

sonalized data removed, is given a separate identification code, and the key between 

the fully anonymized dataset and any path back to the original data is deleted such that 

it would be extremely difficult to trace the data back to an individual. However, de- 

pending on the type and amount of data, machine learning algorithms could, within a 

specific probability distribution, trace back to a specific individual. Typically, various 
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techniques aim for fully anonymized data that can be shared without the consent of an 

individual (more details about our study in chapter 3). However, there are a set number 

of criteria that need to be met before data can be considered fully anonymized. These 

include taking actions to prevent the possibility of tracing, linking, or deducing individ- 

uals from the data. Each variable or combination of variables that could reasonably be 

used to identify an individual should be taken into account. For example, low rates of 

specific ethnic minorities in combination with other variables, such as age and gender, 

could be used to re-identify individuals. Also, more rare medical conditions coupled 

with other demographic features could be used to re-identify individuals. Within this 

context, there has been recent concern that large datasets with multiple variables cannot 

truly be anonymized. By merging with other large databases, algorithms can predict 

within a certain error margin, whether a specific dataset belongs to a certain individual. 

Thus, for some large datasets, it may be best to consider the dataset in the de-identified 

category when large numbers of variables will be shared. 

 
1.4 Dataset (ADNI, BraTS, TCIA) 

 
In this section, we will describe the three public datasets used in our work: 

 
1.4.1 The Cancer Imaging Archive (TCIA) 

The Cancer Imaging Archive TCIA Clark et al. (2013) Data Portal provides a platform 

for researchers to search, download, and analyze data sets generated by TCGA. current 

national Institutes of Health (NIH) research funding favors both collaborative efforts 

and sharable data in hopes of decreasing the time to achieve new levels of understand- 

ing and therapies. This, in turn, has stoked demands for collaborative initiatives to 

produce large and sharable data repositories, along with tools and resources to man- 

age and analyze these data. The used collection Schmainda and Prah (2018) has 20 

subjects with primary diagnosed GBM that are primarily diagnosed with glioblastoma 

each patient has two MRI scans within 90 days follow-up, where it contains T1(pre- and 

post-contrast agent), FLAIR, T2, and binary tumor masks (generated using T1 images). 

This dataset is collected to provide a way of training a deep learning algorithm for pre- 

dict tumor progression tasks. Figure 1.5 shows an illustration of the MRI modalities 

used as inputs to our proposed TGP model with the aim to predict the tumor volume 

grown up from the first time scan ( 1st row tumor volume column) and the patient scan 

after 90 days (2nd row tumor volume column). 
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Fig. 1.5 illustration of the MRI provided by TCIA dataset, that contains T1(pre- and 

post-contrast agent), FLAIR, T2, and binary tumor masks (generated using T1 images) 

 
1.4.2 Alzheimer’s Disease Neuroimaging Initiative ADNI: 

ADNI Petersen et al. (2010) The overarching aim of this dataset is to measure the pro- 

gression of early Alzheimer’s diseases based on MRI images and clinical data to deter- 

mine the relationships between the clinical, cognitive, imaging, genetic and biochemical 

biomarker characteristics of the entire spectrum of Alzheimer’s disease. The collection 

that we used contains 3416 pairs of T1 weighted MRI images and their ATLAS tissue 

(white/gray matter, and cerebrospinal fluid CSF). 
 

Fig. 1.6 Illustration of an example of ADNI dataset images 
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1.4.3 Brain Tumor Segmentation BraTS 

BraTS Menze et al. (2014) scans are in NIfTI file format which contains a native (T1) 

, post-contrast T1-weighted (T1Gd), T2-weighted (T2), T2 Fluid Attenuated Inversion 

Recovery (T2-FLAIR). All the imaging datasets have been segmented manually, by 

one to four raters, following the same annotation protocol, and their annotations were 

approved by experienced neuro-radiologists. Annotations comprise the GD-enhancing 

tumor volume, the peritumoral edema, and the necrotic and non-enhancing tumor core. 
 

Fig. 1.7 Illustration of Brain Tumor Segmentation BraTS images 

 

 
 

1.5 Conclusion 
 

In this chapter, we presented a medical background for Glioblastoma tumor and statis- 

tics that motivate our investigation, We also showed the anatomy and the origin of 

Glioblastoma brain tumors, besides, how radiologists and oncologists diagnose and as- 

sess patients’ MRI images with these tumors, besides the different level of investigation 

are presented and detailed. 

The medical imaging and MRI techniques are presented, in addition to the challenges 

related to medical data in brain tumor studies. Moreover, we presented a set of three 

public datasets used in our work. In the next chapter, we present a survey on brain 

tumor growth modelling approaches. We also showed the the state-of-the-art modern 

approaches for genetic profile prediction, in addition to the limitation and the challenges 

of getting an accurate prediction result using mathematical modelling. 
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CHAPTER 2 

 
Tumor growth modeling 

 

 

 

2.1 Introduction 
 

The Medical and surgical neuro-oncologists believed that it was almost impossible to re- 

move this kind of tumor without generating functional deficits, especially when located 

within the so-called “eloquent areas”, as frequently observed. The surgical removal is 

mainly based on the subjective estimation of the extent of resection by neurosurgeons. 

It is only to achieve a biopsy that aims to obtain neuropathological examination in or- 

der to decide whether a simple follow-up could be considered or whether radiotherapy 

should be performed. 

Indeed, a resection cannot be achieved according to “oncological” limits issued from 

radiological examination (as preoperative MRI, into surgical neuro navigation or in- 

tra operative neuroimaging) because this information is not the reflection of the entire 

glioma Duffau (2017b). It was previously thought that the abnormalities visible on 

neuroimaging corresponded to the whole disease (associated with edema), leading to 

consider a “normal brain” around these signal abnormalities. 

In this context, Given a limited infiltrative character of the Glioma tumor, the resection 

imposes a major surgical challenge Pallud et al. (2012), Mandonnet et al. (2010). 

The next section aim to demonstrate the effectiveness of the individual growth rate 

measurement, and the use cases of mathematical models before and after each therapy. 

 
2.2 The math of GBM growth 

 
In this section we aim to review the main known mathematical models in Brain cancer 

in particular the Glioma tumor. To reach this goal, we begin with models that describe 

the microscopic view of tumor cells and volume simulation of tumoral cell concentra- 

tion at an earlier stage. Then, we discuss the macroscopic view with Reaction-Diffusion 

Equation (R-D) followed by some parameter estimation work, furthermore Swanson’s 

work to introduce specific parameters on R-D equation. Finally, we conclude by new 

investigation on mathematic modeling of the Glioma brain tumor using machine learn- 

ing and deep learning methods. 
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A common feature of these tumors is the great heterogeneity in neuropathologic 

appearance, gene expression, and prognosis Weller et al. (2015). In 2007 WHO classi- 

fication, the astrocytic tumor is the prototype referred to the description of the histologic 

grading. Grade I is assigned to localized tumors with low proliferative levels and poten- 

tially curable by surgical resection (pilocytic astrocytoma). Grade II includes diffusely 

infiltrative lesions, with cytologic atypia and low proliferative activity, which may recur 

and progress to higher degrees of malignancy (diffuse astrocytoma). Grade III con- 

sists of tumors with histologic evidence of malignancy, which express nuclear atypia 

and high mitotic activity (anaplastic astrocytoma). And grade IV includes tumors with 

malignant cytology, high mitotic activity, the tendency to necrosis and microvascular 

proliferation, with rapid growth, infiltration of surrounding tissues, skull and spinal dis- 

semination, and unfavorable outcome (Glioblastoma multiforme). From literature brain 

tumor investigation, we distinguish three portmanteaux model, the first one is In Vivo in 

which researchers conducted tests and experiments on whole living organisms or cells, 

usually animals, secondly, In Vitro which was much faster than in vivo experiment but 

did not replace it completely. This method allows to carry out a biological procedure in 

a controlled environment outside of a living organism usually in test tubes or on Petri 

dishes, Finely, In Silico models (mathematic model and computer simulation), these 

models provide a testing proceeds on virtual patients, there is no risk of harm or threat 

to safety. Andre´ et al. (2004b). Following a brief overview of the main known Mathe- 

matical models, that allow describing the tumor as behavior, formulating and simulating 

the mechanisms of tumor growth over time. These models can be divided into two main 

levels of mechanism description, firstly, Microscopic where focus on biological interac- 

tion and interaction at the cell level. In the other hand, the Macroscopic models describe 

the full tumor behavior, velocity, and mass deformation based on information extracted 

from medical images. the next section will detailed each model and review the sate of 

the art in GBM mathematical modelling. 

 

 
2.2.1 Microscopic models 

The microscopic scale describes the evolution of individual cells based on division and 

invasion rules. This level studies the intra-cellular or biological interactions and chem- 

ical excretion. Each cell is considered independently as shown in figure 2.1. Hence, it 

presents the individual cells explicitly in space, time, and also the update of the individ- 

ual cell according to a predefined set of biological and biophysical rules. These models 

are adequate when the tumor is in the early-stage (small lesion region). It focused on 

the study of tumor cell quantity and provided an estimation of the exact number of ab- 
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normal cells. However, when the number of cells increases, this microscopic scale will 

not fit due to the description obtained which is quite complicated. 

 

 

 

 
 

 

 

Fig. 2.1 Illustration of microscopic tumor tissue representation where each cell is con- 

sidered independently, in the left a microscopic image for real tumor Fox et al. (2011), 

in the right is a schematic representation. 

 
 

In literature, the study of tumor growth has been done by a series of microscopic 

models to quantify tumor cells. 

The relationship of the cell cycle to tumor growth and control of cell division are de- 

scribe and reviewed in Baserga (1965).The change of tumor area overtime led to the 

proposal of a 2D model by Lamia et al. Sallemi et al. (2015). The model provides 

a computer-aided prognosis for brain Glioblastomas tumor growth estimation. Such a 

model is based on cellular automata and fast matching Chaudhuri et al. (1997), Sethian 

(1996) in order to simulate the tumor growth and to predict the change of tumor size. 

Lamia’s model used a dataset that contains MRI images for 80 patients. The evalua- 

tion of this model is based on a comparison between the obtained result and real tumor 

measurement by manual segmentation for successive patient scans. Besides, Kansal et 

al. Kansal et al. (2000) developed a three-dimensional cellular automaton (CA) model 

which describes proliferative GBM growth as a function of time. This approach is es- 
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pecially suited for a GBM, and it’s designed with the evaluation of clinically important 

criteria in mind. The simulation data produced is in agreement with a test case derived 

from the medical literature, furthermore, Several GBM cell features have been incor- 

porated into this model: the fraction of the tumor which can divide (proliferation), the 

non-proliferative quiescent, and necrotic fractions. As a major flaw of this approach, 

it’s doesn’t consider the spatial distribution of tumor cells or nutrients. As well, when 

the number of cells increases in the case of the advanced stage of the tumor, the analysis 

of the proposed model becomes more complicated. Al Mahmud et al. (2014) proposed 

a 2D cellular automaton to predict tumor growth at the microscopic level based on 

hypoxia (lack of oxygen) as a constraint on tumor growth, which is related to tumor 

invasion and cells number. Indeed, the proposed model is based on measure tumor in- 

vasion and dead cells number under different concentrations of oxygen. The obtained 

results demonstrate that although the cells die because of hypoxia environment (see fig- 

ure 2.2(B)), it leads to increase the tumor invasion and to create a cell resistance to the 

drugs as shown in figure 2.2(A) 

 
2.2.2 Macroscopic models 

Magnetic resonance images MRI with its excellent soft-tissue contrast, high spatial 

resolution is currently the method of first choice for the diagnosis of cerebral glioma. 

Indeed, it is usually admitted that tumors appear on MRI only for cell densities above 

500 cells/mm3 Duffau (2017a). Despite technical advances, MRI (or even PET scan) 

still underestimates the actual spatial extent of gliomas, since tumoral cells are present 

several millimeters to centimeters beyond the area of signal abnormalities. For this, the 

macroscopic models are based on certain measurement information from the patient’s 

MRIs in aim to estimate how fast the glioma cells are growing and where they will 

spread in each patient. The Gompertz model (or logistic model) Lo (2007) (goes back 

to 1825) allowed simulating the changing of cells from proliferative to non-proliferative 

according to the oxygen and nutriment of the environment thus providing a necrotic area 

(dead cells). Gompertz model allowed calculating the volume change in time and mod- 

eling the slowing of growth in the late-stage until product necrotic cells for the case of 

GBM. Based on Gompertz law Pollard and Valkovics (1992) Ri-Cha Hu Hu and Ruan 

(2002) proposed rules for the interaction of individuals which allows simulating the bi- 

ological phenomena such as tumor growth. This model aims to show the process of 

tumor growth on a computer screen. In order to describe the spatiotemporal evolution 

of cell density a quantitative tool to predict the most probable location of tumor recur- 

rences is proposed. Murray 1989 Murray (1989) proposed the first model for Glioma 

tumor growth as biological phenomena with mathematics equations. This model allows 

the integration of the spatial aspects and local quantities into the modeling such as the 
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Fig. 2.2 Illustration of Al Mahmud et al. (2014) obtained results. The authors demon- 

strate the relation between the increase tumor invasion and the creation of cell resistance 

to the drugs. 

 

 
tissue anisotropy, local density of cancer cells, or the spatial distribution of nutrients. 

These models are based on the use of Differential Equations Ordinary EDO DiPerna 

and Lions (1989) The model in Murray (1989) used a reaction-diffusion equation that 

allows estimating the cancer cells concentration in time where each patient can be char- 

acterized by two parameters: proliferation (ρ) and Diffusion (D). - The rate of change 

of tumor cell density is (c) = Diffusion (motility) of tumor cells + the proliferation 

(growth) of tumor cells as follows: 

dc 
= D( c) + ρc (2.1) 

dt 

where ρ (1/day) represents the net rate of growth of cells including proliferation 
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and death (or loss), D (cm2/day) is the diffusion coefficient of cells in brain tissue, 

and represents the spatial gradient. The diffusion term describes the active migration 

of the glioma cells using a simple Fickian diffusion Rehage et al. (1970) where cells 

move from regions of higher to lower densities. Tumor cells are assumed to grow 

exponentially. 

Thereafter, Woodward et al Woodward et al. (1996) proposed a model that allows 

quantifying the Glioma tumor cell motility and invasion capabilities in vivo and in vitro. 

The obtained results suggest an average linear velocity of 12.5um/hr for human glioma 

cells in vitro and a minimum linear velocity of 4.8um/hr in vivo. Tracqui et al. Tracqui 

(1995) proposed a method to describe the invasive nature of gliomas with treatment 

regimes. This model simulates how tumor area is changing in time under-treatment 

based on the prior assumption that isotropic environment (the same diffusion coeffi- 

cient). Cook et al Woodward et al. (1996) propose a mathematic model based on the 

Murray equation Murray (1989) to predict the resection effects on a patient’s survival 

time. The obtained results led surgery to add little more than two extra months of life. 

Earlier, Traqui, et al Tracqui et al. (1995) developed a model that uses CT scans of a 

patient with Glioma tumors to quantify the effect of chemotherapy on Glioma tumor 

growth. The change of area and volume is measured while the patients undergoing 

chemotherapy treatment. Swanson team Swanson et al. (2000, 2003, 2008), Jackson 

et al. (2015), Randall et al. (2018) have a major contribution in mathematic modeling 

for glioma tumors. The first model Swanson et al. (2000) is based on the equation of 

Murray Murray (1989) and allows the introduction of the brain tissue heterogeneity 

(i.e. white and grey matters) to identify the accurate tumor region and their effects on 

cell migration velocity. Thus, based on Reaction-Diffusion (see equation 2.1) and the 

introduced parameters by Tracqui et al Tracqui (1995), Swanson’s model specified for 

each brain tissue (i.e. white and grey matters) a fixed diffusion coefficient. Brain-Web 

database Kwan et al. (1999) is used to identify accurately the grey and white matter and 

the effects of the heterogeneity within brain tissue in tumor invasion in order to control 

the malignancy of gliomas regions. 

The model in Swanson et al. (2000) take into account how fast is the tumor grows and 

spread through the mentioned brain tissue, also this equation could predict the mobility 

of the tumoral cells (see figure 2.3). 

The equation of Swanson is based on the heterogeneity of the brain tissue. It has two 

diffusion coefficient parameters, where this equation (see equation 2.2) assumes that the 

diffusion in white matter( is equal to five times the diffusion in grey matter and tumoral 

cell position x, thats lead to five-fold difference in the diffusion coefficients in grey and 

white matter: Dw = 5 Dg. 
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 if x ∈ Gray matter 

 

 
dc 

dt 
= ∇D(x)(∇c) + ρc. (2.2) 

D(x) = 
DW if x ∈ White matter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Swanson Simulation of tumour invasion of a high-grade glioma in the superior 

cerebral hemisphere. the left side is the tumor area by the standard threshold of detec- 

tion. Where the sensitive threshold of detection shown in the right side Swanson et al. 

(2000). 

 

In 2003, Swanson et al. (2003) studied Glioma tumor growth in a virtual and real 

brain. The virtual Glioma model quantifies the spatiotemporal growth and invasion in 

3-dimensional space on a virtual human brain from a diagnostic size of 3 cm to a fa- 

tal size of 6 cm in diameter. The features that affect the prognosis of a patient with 

Glioma tumors are the histological type, the grade of malignancy, the patient’s age, 

and level of neurological functioning in which, those features may predict the individ- 

ual tumor behavior (growth velocity). They Swanson et al. (2003) found the velocity 

of expansion is linear with time, where it increases 10 times faster, from 4 mm/year 

for low-grade Gliomas to 36 mm/year for high-grade Gliomas. Besides, Randall et al. 

(2018) developed a model that allows simulating the effects of the operation on the 

GBM lesions. The model predicts behavior similar to that observed clinically, their 

model based on given initial tumor size, grade, and location, in order to simulate the 

effects of various resection sizes and geometries on survival time. In 2008, Swanson 

Swanson et al. (2008) has developed virtual control for each patient with Glioblastoma 
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tumors. A software Swanson et al. (2008) program had been created using data from 

magnetic resonance imaging scans in order to simulate how fast is spread of tumoral 

cells in a patient’s brain. In addition, this software has an accurate result in terms of 

precision, where it could predict the tumor growth and the survival time of each pa- 

tient and under various treatment scenarios. In 2015 Jackson Jackson et al. (2015), 

developed patient-specific mathematical modeling enabling neuro-oncology to obtain 

optimized individualized treatment plans. Thereby an efficient and accurate prediction 

of tumor growth is proposed. These mathematical models are dedicated to improving 

the response of each patient to treatments. Despite the success of these models, they 

still have an issue of defining the parameters (i.e. p, D). Clatz Clatz et al. (2004) pro- 

posed a reaction-diffusion model to simulate Glioblastoma growth and brain anisotropy 

using DTI images. Clatz model Clatz et al. (2004) created a virtual tumor and a proved 

compression with real Glioblastoma at a different time point (6-month period). The 

model of Clatz Clatz et al. (2004) is oriented to address the tumor mechanical inter- 

action. Also, this model allows simulating the mass effects inside the brain. Matthieu 

Leˆ et al. (2015) proposed a method for conducting the Bayesian personalization of the 

Glioblastoma growth model parameters. Their model estimates the parameters of the 

tumor growth model using posterior probability. The work of Leˆ et al. (2015) has con- 

tributed (1) to the estimation of the growth model parameters, which are difficult to 

predict due to the lack of identifiability of these parameters. On the other hand, the 

uncertainty in the tumor segmentation, and the model approximation cannot perfectly 

capture the dynamics of the tumor. The method of Leˆ et al. (2015) extracts the seg- 

mentation’s of the visible abnormalities and uses the Bayesian method to estimate the 

parameters that control the tumor growth at different points of time. 

 
2.2.3 Overview of mathematical modeling approaches 

A wide variety of mathematical modeling approaches have been studied to simulate 

brain tumor growth. In this section, a chronological classification is provided. Figure 

2.4 shows a history of Tumor growth model evolution. 
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Fig. 2.4 Timeline of major mathematical models of brain tumor growth. 

 
[1]: Baserga (1965) [2]: Murray (1989). 

[3]: Tracqui (1995) [4]: Woodward et al. (1996). 

[5]: Swanson et al. (2000). [6]: Swanson et al. (2003). 

[7]: Swanson et al. (2008). [8]: Jackson et al. (2015). 

[9]: Massey et al. (2018) [10]: Massey et al. (2020). 

 
2.3 Genetic of Brain Tumor 

 
Within the glioma brain tumor classification, genomic studies have described distinct 

molecular subtypes that tend to correlate with biological etiology, prognosis, and ther- 

apeutic response. The discovery of these subtypes indicates that, in addition to con- 

ventional histology, molecular genetic testing will and may be useful in the clinical 

assessment of glioma. In 2008, the Cancer Genome Atlas (TCGA) reported a compre- 

hensive study of the molecular characteristics of glioblastomas Network et al. (2008), 

and demonstrated that glioblastomas aggressiveness and growth depends frequently on 

its molecular profile that contains the status of genes-set (markers), this molecular pro- 

file provides valuable information about prognosis and treatment response for GBM. 

During a diagnosis exam, a doctor may recommend a biopsy test in order to define the 

molecular profile of glioma patients using gene testing laboratory-based, in which a 

sample of blood or tissue is tested for changes in a chromosome linked to brain tumors 

and tested for the inherited syndrome. Predicting a single glioma reaction to a drug is a 

big aim of contemporary oncology, and it could eventually lead to individualized care. 

Multiple associations between genomic changes and drug responses have been discov- 



2.3.  GENETIC OF BRAIN TUMOR 

33 

 

 

 

ered by high-throughput screenings of potentially active compounds against a panel of 

genomically heterogeneous cancer cell lines. Several statistical methods to predict sus- 

ceptibility based on genomic features have been suggested, while others have focused 

on the chemical properties of the drugs to assess their effect. A common method for 

identifying lead compounds with a beneficial impact on a given phenotype is to scan a 

large number of molecules in a high-throughput manner. In the field of cancer, libraries 

of chemical entities have been examined against panels of cell lines grown in various 

environments and with varying genomic histories in this manner. 

 
2.3.1 State of the art for Genetic investigation: 

For the genetic profile studies, Zhou Zhou et al. (2017) proposes a model to predict 

survival rate and molecular profile for Low-Grade Glioma (LGG) patients using TCIA 

dataset Pedano et al. (n.d.) contains 165 patient multimodel MRI scans (T1, T1C, T2, 

Flair). Zhou et al. (2017) study based on the Visually Accessible Rembrandt Image 

(VASARI) feature collection, conduct a systematic study of MR imaging characteristics 

of LGGs as they contribute to patient survival and molecular markers. Also uses a 

textural features derived from MR imaging to make binary predictions of wild-type IDH 

versus IDH1 mutation, IDH1 mutation with 1p/19q codeletion versus IDH1 mutation 

without 1p/19q codeletion, grade II versus grade III LGGs, and progression versus non- 

progression of LGGs. 

 
 

 

Fig. 2.5 Zhou et al. (2017) model to predict survival rate and molecular profile 

 
 

As a result, IDH1 mutation, 1p/19q codeletion, histological rating, and tumor pro- 

gression were all predicted with high precision using textural analysis of MR imaging 

results. In the same objective, Zeju Li et al. (2017) proposes a model to predict IDH 

for low-grade glioma patients, this model is based on Deep-Learning architecture to 

extract deep information from multiple modalities of magnetic resonance (MR) images 

and used private data. The private dataset yielded a cohort of 151 cases. Patients that 

have been diagnosed with grade II glioma. Every case’s diagnosis of low-grade glioma 
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was verified by two pathologists independently, and the IDH1 mutation status was con- 

firmed by Sanger sequencing Sanger et al. (1977). 

Li et al. (2017) model’s success was tested using various MR imaging modalities in 

the first cohort, which included 119 cases of both T2 flair and T1 contrast images. The 

second cohort, which included 110 cases with T2 flare images, was used to compare the 

IDH1 prediction performance of the model and the conventional radiomics approach. 

Figure 2.6 Li et al. (2017) illustrates and flowchart to recognize the tumor regions in the 

MR images to extract the deep filters. The molecular profile prediction was based on 

the deep filters and evaluated by a leave-one-out cross-validation SVM. 

Zeynettin Akkus et al. (2017) proposes convolutional neural networks (CNN) model 

based on MR images from patients with LGG. The results obtained in this model is the 

prediction of 1p/19q without the need for surgical biopsy. Akkus et al. (2017) classifi- 

cation algorithm takes a mixture of two frequently acquired image forms as input: T2 

and post-contrast T1-weighted images. Multi-modal image registration, tumor segmen- 

tation, data normalization, and data augmentation are among the pre-processing steps 

used in the classification algorithm. Segmented images are used to train a multi-scale 

CNN for 1p/19q status prediction after applying pre-processing steps to the data. Figure 

2.7Akkus et al. (2017) depicts the multiscale CNN’s flowchart and implementation info 

for the Zeynettin model. 

Ken Zhang et al. (2017) propose a CNN model to predict IDH status for low and 

high-grade glioma patients, The model is based on Deep-Learning architecture to learn 

from MRI images for 446 patients. Zhang et al. (2017) uses a range of training heuristics 

and equipped a neural network for coronal, sagittal, and axial dimensions with compara- 

ble research set performance using the dimensional networks training heuristic. Finely, 

they trained a neural network for each MR series using the sequence networks train- 

ing heuristic. As result, T1 post-contrast images had a higher predictive performance 

than other MR samples, and they proved to be responsible for the vast majority of the 

combined sequence model’s precision, with additional sequences providing a smaller 

 
 

 

Fig. 2.6 Li et al. (2017) model diagram for IDH status prediction for low-grade glioma 

patients 
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Fig. 2.7 Li et al. (2017) flowchart to recognize the tumor regions in the MR images to 

extract the deep filters 
 

 

 

Fig. 2.8 Flowchart and implementation info for the Zeynettin model Akkus et al. (2017) 

 

 
incremental gain. Javier Villanueva-Meyer et al. (2018) is a Radiologist studied for 

qualitative tumor characteristics for patients with LGG (grade2), this work aims to de- 

termine the MRI characteristics associated with IDH mutational status, Javier finds that 

age is an important characteristic for IDH prediction Chon Lao et al. (2017) propose 

to use deep features extracted via deep-learning with the aim to predict survival time 

for GBM patients. The goal of the Lao et al. (2017) study was to see whether radiomic 

feature-based imaging signatures would predict survival and stratify patients with newly 

diagnosed glioblastoma with compared precision with the clinical and radiologic risk 

models. 

Furthermore, TP53 is a biomarker for glioma and allows to predict the high-risk 

(progression to high grade). Yiming Li et al. (2018) proposes a machine learning model 

to predict molecular information TP53 based on the radiomic features that are extracted 

images from the Chinese Glioma Genome Atlas database (http://www.cgga.org.cn), the 

content of the dataset is detail in table bellow. 

Li et al. (2018) model based on the radiomic signatures extracted from conventional 

magnetic resonance (MR) images for the patient with primary grade II/III gliomas. 

Using the Least Absolute Shrinkage and Selection Operator LASSO regression and 
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Fig. 2.9 Chon Lao et al. (2017) used a radiomic feature-based imaging signatures to 

predict survival 
 

 

 

 
 

Age (years; mean) 40.1 39.2 41.9 0.054a
 

Sex (male/female) 169/103 111/69 58/34 0.825b
 

Grade II/Grade III 179/93 123/57 56/36 0.220b
 

P53 wild type/P53 

mutation 
151/121 104/76 47/45 0.293b

 

Tumor location 

(left/right/bilateral) 
142/113/17 95/73/12 47/40/5 0.306b

 

Legends. 

a T-statistical test. 

b Chi-square test. 

Table 2.1 Details data used in Yiming Li et al. (2018) model 

 
Support Vector Machine SVM, to establish the radiomic signature that achieves non- 

invasive and efficient prediction of the p53 status in gliomas as shown in .9. 

A strong correlation between p53 phenotype and the radiomic features in lower- 

grade gliomas with 80.0% of prediction accuracy is achieved. A satisfactory review for 

genetic investigations on glioma research is provided in Chong Suh et al. (2019) that 

study and review about 30 article works on predicting IDH status from patients image 

Total Training Validation p value 

(n = 272) (n = 180) (n = 92)  
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Fig. 2.10 Yiming Li et al. (2018) machine learning flowchart to predict molecular in- 

formation TP53 based on the radiomic features 

 

 

2.4 Proposed MLP for genetic profile prediction: 
 

Gliomas are the most common primary brain tumors in adults ,where doctors in diag- 

nosis step aim to : 

• Detect the tumor lesion (detection). 
 

• Define the tumor volume and contours (segmentation). 
 

• Predict Treatment efficacy. 
 

• Predict survival time. 
 

• Risk of evolution to High grade. 

Our aim is to develop non-invasive method to determine the genetic markers such as 

1p/19q, IDH, EGFR, p53,witch provide valuable information about treatment response 

and prognosis in patients with low-grade gliomas (LGG) We aim to develop a Genetic 

Profile Predictor MLP which considered as a non-invasive model that provides genetic 

markers. the objective is to predict genetic markers and survival time for patients with 

low grade glioma based on series of features obtained from MRI images : 

• IDH,1p19q,EGFR: Treatment response and treatment decision-making. 
 

• TP53: High risk (progression from LGG to the HGG). 
 

• Survival rate: As future work. 

In 2016 The World Health Organization (WHO) classifies gliomas tumors entities based 

on molecular profile. The molecular information guided decision-making and has re- 

mained beneficial to determining treatment strategies. Among the genes used in the 

WHO classification, we cited : 
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Gene Status possible To predict 

IDH Mutant/wide-type  

Treatment efficiency 1p/19q co deletion/non-co-deletion 

EGFR Mutant/wide-type 

p53 Mutant/wide-type Progression to High grade 
 

Table 2.2 The molecular information guided decision-making World Health Organisa- 

tion 2020 

 
Several reason lead to start with IDH1 gene prediction: (i) The Isocitrate DeHydro- 

genase (IDH) gene is identified in most diseases of Gliomas tumor, (ii) Recently, the 

Gene mutations (status) have been identified for this gene in more than 70% of grade II 

and III gliomas and also for secondary glioblastomas VI. (iii) Tumors with mutations in 

IDH have distinct clinical and genetic characteristics and generally have a better prog- 

nosis than similar tumors. Finally, IDH1 have two possible states: IDH Mutant that 

coded in the dataset “IDH-mut” and IDH wide-type coded in the dataset as “IDH-wt” 

 
2.4.1 Materiel and methods: 

We based on public available dataset that contain 30 Features called VASSARI features 

and their explications, and composed of 188 samples include : 

• Patients’ clinical data includes : age, sex, tumor grade (see figure 2.10). 

 

• Features called VASARI features extracted by an expert from patients images 

namely : Tumor location, Side of Tumor, Lesion Size (see figure 2.11). 

• Patients Image (T1,T1C,T2,T2Flair). 
 

 

Fig. 2.11 Patients’ clinical data (age, sex, tumor grade, . . . ) 
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Fig. 2.12 Patient’s VASARI features extracted by an expert based on medical images 

includes : (Tumor location, Side of Tumor, Lesion Size . . . ) 

 

 
2.4.2 Data preparation 

A step of digitization and normalization was applied to the dataset in order to be read- 

able and usable, then we combine clinical features (histological type, neoplasm histo- 

logical grade, gender, age at initial pathological . . . ) and VASARI information. Elimi- 

nate Not Available features. Finely we eliminate Genetic status and survival rate (to be 

used as our model output). Here we list all the steps used to prepare the data file: 

• Normalize file (to be usable with programming language “python”). 

 

• Combine clinical features (histological type, neoplasm histologic grade, gender, 

age at initial pathologic . . . ) and VASSARI information obtained from images 

(Tumor location , Side of Tumor , Lesion Size . . . ). 

• Select relevant features. 

 

• Eliminate features (Not Available). 

 

• Eliminate Genetic status (to be used as model label). 

 

• Eliminate survival time (May used as label as well). 
 

The actual used dataset contain 160 patient with 38 available features (see figure 

2.12). 

 
2.4.3 Model Conception and Implementation : 

Our model takes as input all relevant features provided by the TCIA dataset, and use 

the IDH1 Status as a model label (see figure 2.13). 

After the step of data cleaning and preparing, we have a dataset containing 160 

samples with 38 available features, We put our MLP model under series of different 

testing techniques to achieve the best prediction accuracy : 
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Fig. 2.13 Patient’s features used for the model training : 38 features ( VASSARI + 

clinical ) in green color and IDH1 status in blue. Separate Dataset into two division 

(training and testing ) green and yellow. 

 

 
• Different combination of features as input 

 

• The effect of adding layers and nodes to neural network 

 

• Test different architecture (model size and dimension ) 
 

Our model train using a GPU and the obtained results were evaluated based on metrics 

known in the literature. One of the major challenges faced our model is the hyper- 

parameter selection, where the accuracy depends on a set of such parameters. A plage 

of testing hyper-parameter is used in our training, and each set of those parameters 

called ‘Fit Case ’ and give result (Accuracy, loss) we choose the best model when High 

Accuracy and low loss : 

• Size of hidden layers [32 .. 1024] 

 

• Activation function [’logistic’, ’tanh’, ’relu’] 

 

• Number epoch [10 .. 20 000 ] 

 

• Patches size [2,4,8,16,32,64] 

 

• Optimizer functions[’SGD’, ‘RMSprop’] 



2.4.  PROPOSED MLP FOR GENETIC PROFILE PREDICTION: 

41 

 

 

 
 

 
 

Fig. 2.14 Multilayer perceptron architecture (MLP). the green/yellow indicate the input 

feature for training and testing, the blue is the prediction output (binary classification of 

IDH status). 
 

 
 

 

Fig. 2.15 Illustration of our classification results, we showed 7 result cases obtained 

using different training hyper-parameters. All result are based on BRATS 2017 dataset 

 
• Learning rate = [1e-3,1e-4,1e-5,1e-6,1e-7,1e-8] 

 
2.4.4 Our model classification results : 

The aim is to find the best accuracy by trying different experiments (testing different 

hyper-parameters ). From obtained results, the best experiment is the last case (07) 

when the training accuracy achieved 100% and test accuracy 93,9%. Case (07) pa- 

rameters : hidden layers [128,256,512], Optimizer = ‘SGD’ , Learning rate = ’0.001’ 

activation function ‘Relu ’, figure 2.14 we list cases with all obtained results. 

The major issue face our model is the problem Over-fitting, which the lack of model 

generalization- the so-called (over-fitting) is a term used to describe a model’s ability to 

reach for new data. It makes the model useless even though it is able to make accurate 
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predictions for the training data. So the model will fail to make accurate predictions 

with new data. As Solution: we attend to enrich inputs data by adding patients images 

for model input. 

 
2.5 Discussion and Conclusion 

 
We have been motivated by the recent investigations in both GBM tumor prediction 

Morris (2005) and data generation Shin et al. (2018) in the field of brain tumor predic- 

tion, mathematical methods becomes more accurate and the inference time is decreased 

compared to the time spent by radiologists to predict the tumoral area growth. In ad- 

dition, these automatic brain tumor prediction methods provide an objective, fast, and 

reproducible assessment of patients MRI analysis compared to radiologists who pro- 

duce a subjective, slow, and difficult to reproduce even for the one patient MRI images. 

Table 2.3 shows a summary of state-of-the-art modern approaches for tumor growth 

modelling. These approaches are based on both mathematical modelling and machine 

learning techniques. Moreover, these approaches are applied to the GBM brain tumors 

growth and genetic profile prediction. 

 
In this chapter, we presented a survey on brain tumor growth modelling approaches. 

We also showed the the state-of-the-art modern approaches for genetic profile predic- 

tion, in addition to the limitation and the challenges of getting an accurate prediction 

result using mathematical modelling. Through a variety of applications in medical im- 

age analysis, in particular, GBM brain tumors growth, Genetic profile prediction have 

proven their effectiveness in treatment planing and predicting all treatment response . 

In addition, they provide a promising prediction performance compared to classical ap- 

proaches and state-of-the-art methods in terms of treatment planing. 

In the next chapter, we present our first contribution based on Convolutional Auto- 

encodeur Networks for Tumor Growth Prediction (TGP). Our model aim to solve and 

answer the questions related to the fully automatic manner GBM volume growth pre- 

diction. In addition, we sutdy and review preprocessing tools used for medical image 

preparation, and theier impact on TGP prediction performance. 
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Reference Tumor Study-l Take into account Under Treatment 

D N M chemo Radio Rese 

Sallemi et al. (2015)  

Kansal et al. (2000) GBM Micro √ 
√ 

√ 
N N N

√

 N N 

Hu and Ruan (2002) Solid-G Micro √ √ √ N N N 
Murray (1989) Glioma Macro √ √ √ N N √ 
Woodward et al. (1996) Glioma Macro √ √ √ √ √ √ 
Tracqui (1995) Glioma Macro       

Swanson et al. (2000, 2003)  

 

Glioma 

 

 

Macro 

 

√ 
√ 

 

√ 
√ 

 

√ 
√ 

N N 

 

√ 

Swanson et al. (2008) 

Jackson et al. (2015) 

Randall et al. (2018) 

Clatz et al. (2004) GBM Macro √ √ √ N N N 
Leˆ et al. (2015) GBM Macro √ √ √    

Morris et al. (2006) L.G.G Macro √ √ √ N N N 
Lao et al. (2017) GBM Macro √ √ √ N N N 
Randall et al. (2018) GBM Macro       

Legends. 

Study-l : Study level. Micro : Microscopic, Macro : Macroscopic, Gen : genetic. 

D : take into account cells density changing. 

N : take into account dead cells density. 

M : take into account cells megration. 

Chemo : chemiotherapy treatment. 

Radio : Radiotherapy treatment. 

Res : Resection and suregy treatment. 

 
Table 2.3 Overview of state-of-the-art mathematical modelling approaches for brain 

tumor growth modelling 
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CHAPTER 3 

 
Brain Tumor Growth Predictor 

 

In this chapter, we present the issue of developing an efficient brain Tumor Growth 

Predictor (TGP) model that allows to predict how GBM tumor will look like after the 

follow-up step, TGP used multi-sequence MRI images publicly available and provided 

by TCIA datasetClark et al. (2013), (see figure 2.5). TGP is based on End-to-End 

Convolutional Neural Networks architecture LeCun et al. (1998) and it is inspired by 

convolutional autoencoder architecture Seyfioğlu et al. (2018). 

TGP model takes input MRI image with four channels in the aim to predict the tumor 

volume in late-stage (i.e., tumor area after 90 days). To evaluate the effectiveness of 

our TGP proposed network we perform three common metrics: recall, precision, and 

Dice scores, each metric is described using four statistical values: True Positive (TP), 

True Negative (TN), False Positive (FP), and False Negative (FN) Volume Fractions are 

borrowed from statistical decision theory metrics (Sensitivity and Specificity) Yeghi- 

azaryan and Voiculescu (2018) . 

Getting an efficient and accurate prediction of Glioblastoma brain tumors growth gives 

an early clinical diagnosis, treatment plan, and follow-up. To the best of our knowledge, 

GBM growth prediction based mainly on mathematical modelling where the tumor le- 

sion studied as the biological process and the growth calculated using the principe of 

mathematical biology invented by Pr. Murray (1989). . The mathematical modelling 

(MM) based on reaction-diffusion equation lead the majority of GBM growth prediction 

in 1990 and the early 2000, which uses the patients clinical data and details extracted 

for patients image to form the so-called patient-specific equation Jackson et al. (2015), 

as major limitations for this process is first: time consuming task, while GBM patients 

have short survival rate Buckner et al. (2007), the second limit is that this equation 

could used only for one specific patients due to the huge lot of parameters used in 

forming these equations. for this reason we believe that machine learning (ML) could 

contribute for the GBM growth with the same level as MM, and could be applied to 

many patients in the same time. in addition, ML didn’t take into account details related 

to specific patient, thus show results in short time comparing to MM. In this chapter, 

we focus on the process of developing a machine learning algorithms, inspired by con- 
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volutional autoencoder architecture Seyfioğlu et al. (2018) for GBM growth prediction, 

we start by a brief introduction and background. In aim to prepare MRI image for TGP 

model, we review data pre-processing tools and techniques that are needed for an effi- 

cient prediction accuracy. Thus, we study the impact of pre-processing in TGP model 

prediction accuracy including the skull stripping, registration and resizing, normalisa- 

tion/standardisation , and filtering/denoising process. TGP model take as input patients 

image in the diagnosis time point and aim to the tumor volume in late stage (after 90 

days of followup). 

 
3.1 Motivation and objectives 

 
During the last two decades, the problem of GBM brain tumor growth prediction has 

attracted many researchers, in which a huge number of published papers study GBM 

behavior and involve the problem of its growth prediction, the creation of a smart brain 

tumor prediction system has always been a highly needed option. The motivation be- 

hind the need to create a smart system powered by Deep Learning and CNNs is that 

instead of waiting to collect all parameters needs for mathematical modelling. This way 

gives radiologists and oncologists more time with their patients in the therapy planning 

process, especially in the treatment and follow-up stages. The aim of this section is to 

propose a methodology to develop a fully automatic method for the GBM brain tumors 

growth prediction using MRI images. To achieve this goal, we propose the following 

contributions: 

• We study and review the effect of MRI image quality on the performance of 

machine learning model, since we need to improve the quality of these images by 

first removing the skull, then applying a registration step, then normalizing these 

images, and finely denoising and filtering. 

• We develop a fully automated tumor growth predictor TGP inspired by convolu- 

tional autoencoder architecture to solve the issue of GBM growth prediction and 

provide the tumor volume in late stage, TGP based mainly on multi-sequence 

MRI image for primary diagnosed GBM, each patient has two MRI scans within 

90 days in two time points. TGP capable to predict the tumor volume in late- 

stage. 

In the next section we present a brief introduction and background theory for machine 

learning, in addition to its applicability on health care field, also, we mention some 

research in brain tumor and GBM behavior. 
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3.2 Background theory: machine learning 
 

Since the early days of Machine Learning (ML) in the 1950s Samuel (1959) the goal 

was to learn from data, to gain knowledge from experience, and to make predictions. 

The field accelerated by the introduction of statistical learning theory in the late 1960s; 

although it was at that time a purely theoretical analysis of the problem of function 

estimation from a given collection of data Vapnik (1999). With the advent of modern 

statistical learning algorithms (e.g. help vector machine Boser et al. (1992)) statistical 

learning theory becomes more and more interesting as a method for designing algo- 

rithms of realistic use for the estimation of multidimensional functions Hastie et al. 

(2009). 

Today, ML is the most growing sub-field in computer science, and Health Informatics 

(HI) is the great application challenge Jordan and Mitchell (2015), Shen et al. (2017). 

In the health domain, we are confronted with probabilistic, uncertain, unknown, incom- 

plete, heterogeneous, noisy, dirty, unwanted, and missing data sets which endanger the 

modeling of artifacts. Moreover, in the biomedical world, we are confronted with a 

further problem: time. Whilst most computational approaches assume homogeneity in 

time, people and processes in the health domain are not homogenous in time and cannot 

be forecasted, sometimes it can happen completely unexpected. That makes automatic 

solutions in this domain difficult, yet sometimes impossible. There are uncountable 

future challenges in the design, development, experimentation and evaluation of ML 

algorithms generally and in the application to health informatics specifically. The ul- 

timate goal ever since is to develop algorithms that can automatically learn from data, 

hence can improve with experience over time without any human-in-the-loop. Many re- 

searchers in ML community are concentrating on automatic Machine Learning (AML), 

with the goal of excluding humans, hence making it fully automaticTenenbaum et al. 

(2011). 

Artificial intelligence can be described as the field of designing and creating systems 

that can provide effective solutions for real-world problems by drawing inspiration from 

human thinking behaviors, as well as actions were taken by other living organisms and 

natural dynamics Cortes et al. (2020). Machine learning is a human-made product that 

offers very effective and efficient tools for automating real-world problems. As hu- 

manity has made many discoveries and innovations in the past, artificial intelligence 

is the most recent groundbreaking innovation that has driven technical advances since 

the mid-twentieth century. Taking the modern state of the 20th Century into account, 

there are no areas in which approaches, processes, and strategies dependent on artifi- 

cial intelligence are not used. It has been a very simple task to solve complex (and 

sometimes almost impossible) problems using artificial intelligence in the form of only 

iterative code classes. Romportl et al. (2016) figure 3.1 Holzinger (2016b) represents 
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a broad overview of the relationship and the field of artificial intelligence in general. 

The perspective can be strengthened by adding further relationships, as artificial intelli- 

gence has a great good relationship with its surroundings. Today, artificial intelligence 

is a common combination of multiple solution approaches, strategies within these ap- 

proaches, and techniques algorithms based on these approaches. Aside from compre- 

hensive foundations, it is possible to suggest that an artificial intelligence-based system 

can accomplish the following while solving real-world problems Henning (2018). 
 

Fig. 3.1 A representation overview of the relationship and the field of artificial intelli- 

gence in general Holzinger (2016b) 

 

 
Due to the characteristics of artificial intelligence, the area has become an important 

tool for various fields where problems can be modeled mathematically and logically, as 

existence itself is a traditional mess with definitions in terms of mathematics and mod- 

ern logic. Detailed, artificial intelligence methods adopt the chance factor as a heuristic 

vision of solutions. By excluding technical information such as the processes and al- 

gorithms that are run in the system, the idea of the intelligent system can be used to 

objectively describe a whole artificial intelligence-based system. Since artificial intelli- 

gence is on the verge of becoming a commonplace phenomenon in everyday life, such 

broad terms are appropriate for indicating the active use of AI-based solutions in a va- 

riety of domains. An intelligent machine may be a problem-specific implementation of 

technology, a hybrid formation incorporating multiple artificial intelligence techniques, 

or a mixture of both artificial intelligence techniques and alternate methods from di- 

verse fields. Returning to the rational definition of intelligent systems, these systems 

enable people to communicate with one another in order to find a solution. 
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Fig. 3.2 a representation overview of the relationship and the field of artificial intelli- 

gence in general Holzinger (2016b) 

 

 
3.2.1 Machine learning for health care 

Recent advances in information technologies result in the evolution of decision support 

systems involving various techniques for analyses and handling big data. These sys- 

tems are applied in a broad range of disciplines, e.g., in administration, engineering, 

and health systems Holzinger (2016a). In the field of medical informatics, designing 

and developing tools to support decision-making were highly motivated by advances 

in biometrics. Among different applications in health systems, medical diagnostics is 

especially important. Diagnostics is often challenging since many signs and symptoms 

are hidden and nonspecific. To cope with this problem, a correlation of the information 

must be analyzed, combined with recognition and differentiation of patterns. Algo- 

rithms for data analysis are among various techniques used in diagnostic procedures. 

Among them, neural networks and deep learning approaches play an important role. In 

medical diagnostics, deep learning frequently provides more robust results compared 

with artificial neural networks. The deep learning techniques were successfully used 

for cancer diagnostics. Many other fields of medicine are also open to high-level deci- 

sion support systems that can diagnose and treat better than humans Holzinger (2016b). 

 
3.3 Brain tumor growth prediction pipeline 

 
The main objective of our TGP model is to predict the tumor volume in late-stage 

(tumor area after 90 days), based on multi-sequence MRI image for primary diagnosed 
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GBM, each patient has two MRI scans within 90 days. The input image is contains T1 

(pre- and post-contrast agent), FLAIR, T2, where the label is to predict the follow-up 

image (volume after 90 days). 

The result is a Tumor Growth Predictor model that is capable to predict the tumor 

volume in late-stage (see figure 3.3). 

 

 

Fig. 3.3 Illustrate the workflow for TGP model,As input TGP take MRI image(four 

channels), the result is a model that capable to predict the tumor volume in late-stage 

(tumor area after 90days). 

 
TGP model performance could be affected by MRI image quality, thus, image pre- 

processing is the basic stage that sets all input image for subsequent processes. That 

boost the MRI image improvement and enhance the set of relevant features extracted 

from patients images. 

 
3.3.1 MRI image quality limitations 

In recent years, magnetic resonance imaging (MRI) has proven to be an effective tool 

for clinical research, and it has been found useful in the detection of brain tumors. 

However, MRI images suffer from many issues such as: 

• The presence of non-brain tissues or (Skull) is considered a major challenge in 

brain MRI image processing, which the high intensity of skull pixels fluctuate 

the machine learning algorithms in the process or features extraction Fennema- 

Notestine et al. (2006) 

• Due to the diversity of MRI scanner, a different temporal and spatial sources 

images appears. Correlating these images in order to ensure spatial consistency 
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between given points is more than important due to its impact on ML algorithms 

Maintz and Viergever (1996). 

• During MR image acquisition, the large variations in input parameters for MRI 

scanner, makes the intensity normalization an important pre-processing step in 

MRI image analysis Bağcı et al. (2010). 

• Medical image acquisition, storage, or transmission, MRI images have been very 

sensitive to be affected by different types of noises. that is distributed across 

all the MRI images. Thus, Noise reduction is one of the challenging issues in 

medical data Sagheer and George (2020). 

In order to reduce the effect of MRI image quality on the performance of machine learn- 

ing model, we need to improve the quality of these images by first removing the skull, 

then applying a registration step, then normalizing these images, and finely denoising 

and filtering (See next section for more details). 

 
3.3.2 Skull stripping 

The presence of non-brain tissues is considered a major challenge in brain MRI image 

processing. The first step in the case of neurological MRI analysis is skull stripping. 

This step is very important for the remaining part of our proposed pipeline to remove 

the skull of the brain from all patients’ MRI images, this step involves removing extra- 

meningeal tissue from patient MRI images. There are many ways to perform this oper- 

ation Fennema-Notestine et al. (2006), in this section, we introduce the literature tools 

for skull stripping, also we show the result and its associated limitations. 

 

 
3.3.2.1 FSL BET: Brain Extraction Tool (BET): 

Brain Extraction Tool (BET) Woolrich et al. (2009) is a part of the FSLSmith (2002) 

package used to remove non-brain tissue from the patient MRI image of the whole 

head. BET is a commonly used tool for fully automated extracting of brain inner and 

outer skull and scalp surfaces from MR images. It provides an accurate result, that 

requires a pair of T1- and T2-weighted image BET uses a tessellated mesh to model 

the brain surface, which is allowed to deform according to various dynamic controlling 

terms until It reaches the brain edge, BET takes about 5–20 seconds to run on a modern 

desktop computer and is an open-source Smith (2002) As a major limitation of the 

BET tool is the resulting crude “skull” image contains a relatively large number of false 

negatives and positives (figure 3.4) shows an example of T2 and Flair images). 

As it is shown in figure 3.4, BET takes out undesirable brain extractions with T2 and 
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Flair image type, which includes only part of the brain and in some cases part from 

non-brain tissue. The performance can be improved substantially with post-processing 

T2 and Flair according to the result of the couple T1 (pre and post-contrast). 

 

Fig. 3.4 illustration of skull stripping for patient’s images using the BET-FSL tool, the 

original image in the 1st row, and images result after skull stripping are shown in the 

2nd image row. 

 

 
3.3.2.2 Brain-suit tools Brain Surface Extracto (BSE): 

Brain Surface Extracto (BSE) Dogdas et al. (2005) from Brain-suit packageBhushan 

(2016) operates using a Marr-Hildreth Marr and Hildreth (1980) edge detector to find 

a boundary between the brain and the skull. Since the Cerebrospinal fluid (CSF) space 

and skull are dark on a T1 scan, the edges between the brain and the scalp are relatively 

well-defined. 

Skull stripping using BES based on 04 steps: 

• Filtration using anisotropic diffusion filter (See figure 3.5.1 ) 
 

• Edge detection based on Marr-Hildreth algorithm (See figure 3.5.2) 
 

• Finding the brain based on a series of mathematical morphological operators (See 

figure 3.5.3) 

• The final step is extracting the brain by applying a mask (See figure 3.5.4) 

The BSE allows mainly to adjust the parameters of the skull stripping process and 

according to the intermediate results. Several options and parameters are available for 

optimizing BES performance, thus, finding the right alternative BES settings can be a 

difficult and time-consuming task, which can introduce undesirable variability. figure 

3.4 shows a visualization of skull stripping results using BSE tool, as it is shown visu- 

alization results of skull stripping obtained by Brain Surface Extractor (BSE) of brain 
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Fig. 3.5 Brain-suit skull stripping steps: (1) Filtration using anisotropic diffusion filter 

(2) Edge detection (based on Marr- Hildreth algorithm) (3) Finding the brain (based on 

a series of mathematical morphological operators (4) extracting the brain by applying a 

mask. 

 

 
suit package, the original image is in the 1st row, the 2nd row shows the process of 

BES (detect the brain boundaries) and the 3rd row shows the brain surface. A major 

limitation of the Brain Surface Extractor (BSE) is rendering the poor-quality solutions 

on many occasions, in which the chosen manual parameter introduces undesirable vari- 

ability. Therefore, it is a time-consuming, error-prone and almost completely human 

parameter choice dependent. 

 
3.3.3 Registration and resizing 

Due to the diversity of MRI images details (different sensors, different perspectives, 

and different shooting conditions), registration techniques essentially involve the pro- 

cess of correlating images from different temporal and spatial sources in order to ensure 

spatial consistency between given points in all images. Image registration is the pro- 

cess of transforming different sets of data into one coordinate system (image reference). 

The basic principle of registration is the process of finding a rigid body transformation 
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Fig. 3.6 Visualization results of skull stripping obtained by Brain Surface Extractor 

(BSE) of brain suit package, the original image is in the 1st row, the 2nd row shows the 

process of BES (detect the brain boundaries) and the 3rd row shows the brain surface 

 

 
between two images or volumes through an optimization algorithm by minimizing a 

global image similarity metric. The matching anatomical points in image registration 

are considered as a critical optimization process aim to allow the learning models to im- 

prove their features extraction and classification process Maintz and Viergever (1996). 

figure 3.5 shows a registration example from the TCIA dataset, in the left the raw image 

(260*320*24) high*width*slices was registered to an image reference (256*256*23) 

where 256*256 the high*width choosing as the median of all our image dimensions 

and 23 is the median number of slices as well. 

 
3.3.4 Normalization and standardization 

The large intensity variations in MRI images due to using different MRI scanners and 

different parameters during MR image acquisition makes the intensity normalization an 

important pre-processing step in brain magnetic resonance image (MRI) analysisBağcı 

et al. (2010). Normalization is a process that changes the range of pixel intensity val- 

ues, thus, calibrating the intensities of the different pixels into a normal distribution. 

wherein similar intensities achieve similar tissue meanings, and the lack of a standard 

image intensity scale in MRI leads to many difficulties in tissue characterizability (see 

equation 3.1). This process aims to get a similar range for features also the data center- 
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Fig. 3.7 An example of registration of the raw image with size (260*320*24) to the 

reference image with size (256*256*23) 

 

 
ing normalization right can be a crucial factor in getting the model to train effectively. 

Besides, image standardization (see figure 3.8) is known as the process of bringing all 

images in the common format, in practice, Standardization has a mean value of 0 and 

a standard deviation equals to 1. Thus, assuming that the data has a Gaussian (bell 

curve) distribution. For the TCIA dataset, we standardize the intensity of the image (X) 

by subtracting the image Mean and divide by the standard deviation STD of the same 

image in all channels (see equation (3.1)): 

 
(X  − X.Mean())/X.STD()) (3.1) 

The lack of a standard image intensity scale in MRI leads to many difficulties in 

tissue characterizability. 
 

Fig. 3.8 Normalization- standardization result. 
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3.3.5 Filtering and denoising 

During medical image acquisition, storage, or transmission, MRI images have been 

very sensitive to be affected by different types of noises. that is distributed across all 

the MRI images. Thus, Noise reduction is one of the challenging issues in medical 

data which is performed using various filter types: average, median, and wiener filter 

Sagheer and George (2020), an example of the result applying each filter is shown in 

figure 3.9. In our model, we apply in the preprocessing four steps as a fellow (skull 

stripping, normalization/standardization, registration then finely denoising). We notice 

that we used the combination of two skull stripping tools, the robust automated BET 

tool proceeded by BES that has four steps to prepare MRI images. The first step of 

the skull stripping using the BES tool is image filtering using an Anisotropic diffusion 

filter which preserves the edges and produces a filter depending on the significant parts 

of the image, hence, the result is its combination with the original image. After testing 

many experiments on the resulted images for the preprocessing step, we chose to apply 

the Wiener filter which is a linear estimation of the original image based on a stochastic 

process, it permits us to overcome the extra noise and flips the blurring at the same time. 

Besides, we apply the wiener filter due to its efficacy and its speed. 

 

Fig. 3.9 Illustration of the resulted images after applying different filter: (a) the original 

input image (b), (c) and (d) the result of filtering average, median and wiener respec- 

tively. 
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3.4 TGP model conception and architecture 
 

This section aims to illustrate more details of the new developed Convolutional Neural 

Networks architectures for the GBM brain tumors growth prediction. The proposed 

architectures may used to predict the brain tumors growth with both high- and low- 

grade, in our case, we used and tested in high-grade GBM in two time-points (scans 

within 90 days follow-up). Furthermore, the methodology and the steps to develop a 

fully automatic method for the GBM tumors prediction using MRI images. 

figure 3.10 shows the flow of the proposed preprocessing steps and tools. The first 

step is the normalization to changes the range of pixel intensity values and making a 

normalised range. In addition, the standardisation is applied for correcting inter-subject 

intensity variations through transforming all images from the given image gray scale 

into a standard gray scale wherein similar intensities achieve similar tissue meanings . 

Besides, all TCIA medical image passed by registration step, whereas its crucial process 

of transforming different sets of image data into one coordinate system. Furthermore, 

skull stripping, where the brain tissue (cortex and cerebellum) segmented and speared 

from surrounding region (skull and non-brain area). This step is based on two public 

available tools BET (BET) Woolrich et al. (2009) and BES Dogdas et al. (2005). Also, 

we perform the combination of both tools, the result of each skull stripping method 

pass by three steps: the first, slices selection (selecting 10 slices where tumor appear), 

the last step is patches extraction to prepare data as input for CNN model. Also, we 

explains in detail the prediction of brain tumor growth in based MRI image. The input 

brain images are provided by TCIA dataset Clark et al. (2013) and passed throw the 

preprocessing steps (See figure 3.10). 
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Fig. 3.10 Diagram illustrates the outline that is used in our work starting with prepro- 

cessing (normalization, standardization and registration), then skull stripping (based on 

BET and BES and the combination of them). The result of each skull stripping method 

pass by three steps: the first, slices selection (selecting 10 slices where tumor appear), 

the last step is patches extraction to prepare data as input for CNN model. 

 
The encoder has used the convolutional layer and max-pooling function which re- 

duces the dimensions of the feature maps. After a specific number of layers, when the 

encoder is complete the feature maps are flattened and a dense layer is used for the 

latent-space representation. Now, the transpose convolution is used for the upsampling 

of the incoming feature maps, which is followed by the batch normalization and the 

activation function. 

 
Figures 3.11 and 3.12 show the detailed conception architecture for the developed 

TGP model. Our proposed TGP model is based on End-to-End Convolution Neural 

Networks architecture And inspired by convolutional auto-encoder architecture. The 

convolution step creates many small pieces called the feature maps (image size 32*32*4 

in figure 3.11), where the de-convolution step reproduce the original image size based 

on the feature maps. many small pieces called the feature maps These squares preserve 

the relationship between pixels in the input image. Let each feature scan through the 

original image like what’s shown in Figure 3.12. An autoencoder consists of two parts: 

encoder and decoder. 
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Fig. 3.11 A schematic representation of the principal idea of convolution aut-oencoder, 

where its start by compressing the input image to a small piece called feature map 

(convolution part). The compression uses MaxPolling layers (in red color). The second 

part is responsible of reproduce the original image size based on the feature maps (de- 

convolution part). The decompression based on Up-samplling layers (green color) 
 

 
 

 

 

 

 

 

Fig. 3.12 Our TGP model conception inspired by convolution auto-encodeur. 

 

 
3.4.1 Training parameters 

When researching the most common methods used to train deep learning architectures. 

Interestingly, there is no specific method for training the CNN architecture. Many 

hyper-parameters should be selected before starting the training phase of the CNN ar- 

chitecture, and there is no guarantee that the success or failure of the architecture will 
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converge to the global minimum. For these reasons, we choose to based on a new 

strategy called ELOBA Naceur et al. (2019) to unify the training method of CNNs 

architectures. The algorithm of ELOBA takes into account the most influencing hyper- 

parameters (i.e., Epochs, Batch size, Learning rate and Optimizer). 

 
3.4.2 Implementation and working environment 

In this work, all our results are obtained using Python environment on windows 64 bit, 

Intel Xeon processor CPU @2.10 GHz with 24 GB RAM. For the training phase, it is 

done on Nvidia Quadro GPU K1200 with 4 GB memory. Our proposed TGP model is 

developed using Anaconda environment, Keras 1 and Theano 2 as a backend, Keras 

is a high-level open-source deep learning library that runs on top of Theano which can 

benefit from a massively parallel architecture such as Graphics processing unit (GPU) 

for the deep learning network optimization. 

 
3.5 TGP Experimental results 

 
In this work, we propose an End-to-End method to improve the prediction of Glioma 

brain tumor growth based on an MRI image of the brain from the TCIA public dataset 

Clark et al. (2013) and integrating several data augmentation techniques. TGP model 

takes as an input MRI images with four channels, where the aim is to predict the tumor 

volume in late-stage (i.e., tumor area after 90-days). 

Accuracy metric is not sufficient to evaluate efficiency the complete model effec- 

tively. Hence, we perform Dice, Precision, Recall for every predicted image. So, we 

evaluate the effectiveness of TGP model we measure the three common metrics (recall, 

precision, and Dice scores). Each metric is described using four statistical values: True 

Positive (TP), False Positive (FP), and False Negative (FN) , True Negative (TN) Yeghi- 

azaryan and Voiculescu (2018). 

False positive (FP) case happens when the pixel in the predicted image is indicated by 

the classification model to be as tumor, but it actually does not belong to the tumor 

region. If a non-tumor pixel in ground-truth image is suggested as non-tumor by the 

classifier, it is the case of true negative(TN) (See figure 3.14). 

 

1. Recall/Sensitivity is also called as the True Positive Rate (TPR) or Recall. It an- 

swers the following question: What proportion of actual positives was identified 

correctly? And it is defined as: 
 

 

 
1https://keras.io/ 

Recall = 
TP 

TP + FN 

2http://deeplearning.net/software/theano/ 

http://deeplearning.net/software/theano/
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Fig. 3.13 An example of the TGP model prediction results compared to the segmenta- 

tion provided by TCIA expert. We illustrate two GBM patient scans (T1, T2, FLAIR 

and T1C). The two last columns represent the binary lesion mask provided by the expert 

and TGP prediction. 

 
2. Precision metric answers the following question: What proportion of positive 

identifications was actually correct? 

It is defined as: 

Precision = 
TP 

 
 

TP + FP 

3. Dice Similarity Coefficient (DSC)is used to measure the similarity of two sam- 

ples. 



3.5.  TGP EXPERIMENTAL RESULTS 

61 

 

 

 
 

 
 

Fig. 3.14 An example of the validation result which shows True Positive, False Positive, 

True Negative, and False Negative, that are indicated by colors in the order of green, 

black, red, gray and represent the number of pixels in each class. 

 

It is defined as:  

Dice = 

 

2TP 
 

 

TN + FN + TP + FP 
 

3.5.1 Evaluating TGP performance 

We evaluate our proposed TGP model based on cross-validation K-fold (See figure 

3.15) in which the validation performed using 03 samples never seen by the model in 

training (also not used in the process of data augmentation and generation of synthetic 

image). Then, we change the selected patients for the 40 evaluation experiments. The 

chose 17 samples are used as training and 03 as a test is are carefully trialed in a variety 

of different portion (train-test) in which using more patients for test will reduce the 

number of training cases entered to the model, thus the model performance will be 

affected, in the other hand using less than 03 samples will not establish the reached 

results. This operation helps to provide a better evaluation for the obtained results. 

All training experiments took 500 epochs to convergence to the best parameters. 

 
3.5.1.1 Review the impact of preprocessing on TGP performance 

With the purpose of measuring the performance of our proposed TGP model under 

different preprocessing techniques. The first training strategy is to evaluate our TGP 

model on 04 composite datasets with different variants of the preprocessing techniques. 

• Experiment 01: Training TGP model using raw data (Original TCIA data). 

 

• Experiment 02: Training TGP model including pre-processing (registration, nor- 

malization, standardization, and denoising) and using BET Woolrich et al. (2009) 

as a skull stripping tool. 
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Fig. 3.15 A schema representation for the Cross-validation testing procedure that used 

to evaluate TGP performance 

 

 
• Experiment 03: Training TGP model including pre-processing (registration, nor- 

malization, standardization, and denoising) and using BES Dogdas et al. (2005) 

as a skull stripping tool. 

• Experiment 04: Including pre-processing (registration, normalization, standard- 

ization, and denoising) and using the combination of BET and BES for skull 

stripping. 

 

 
 

Fig. 3.16 Evaluating TGP model and measuring the impact of pre-processing on TGP 

performance 

 

 
Figure 3.16 shows the evaluation results of TGP model based on three metrics (re- 

call, precision, and dice coefficient scores). As it is shown, we observe that training our 

TGP model with raw data gives 60.3%precision in the best case; besides a low value of 
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recall (47.8%) and 58.1% in dice coefficient score. While applying the pre-processing 

and the skull-stripping using BET improve the model precision accuracy to achieve 

65.3% and obvious change in recall score (+15% compared to training with raw im- 

ages) and achieve to 65.9%and 60.0%dice coefficient, alongside the BES shows lower 

precision (mean score 48.2% ) beside 56.2% and 58.2% in recall and dice coefficient 

respectively. Finally, our model accuracy achieve 67.4% of precision 60.4% in dice 

coefficient and 70.0% in recall metrics when the combination of the two skull stripping 

tool used (BES Dogdas et al. (2005) followed by BETWoolrich et al. (2009)), all results 

and the standard deviation of the experiment are shown in table 3.1. 

Experiment  Metrics       Recall % ± STD       Precision % ± STD       Dice % ± STD 

Experiment 01 47.8 ± 8.3 59.1 ± 7.2 55.1 ± 3.0 

Experiment 02 62.3 ± 3.9 46.2 ± 5.2 58.2 ± 5.9 

Experiment 03 62.3 ± 5.9 63.4 ± 7.6 69.1 ± 5.4 

Experiment 04 48.3 ± 6.1 56.1 ± 3.2 49.4 ± 7.7 

Table 3.1 Table illustrates TGP model result and the impact of different pre-processing 

tools on TGP performance. 

 

 
3.6 Discussion and Conclusion 

 
In this section, we proposed three fully automatic models for GBM tumor growth pre- 

diction (TGP), Our model is capable to predict GBM tumor volume growth based on 

patients MRI images. 

In addition, we review the impact of using different preprocessing tools for TGP the 

accuracy result. Through the empirical experiments, we proved that using the combi- 

nation of BET and BES for skull stripping gives the best performance. We illustrate 

that the combination improve +10% in terms of prediction accuracy. And the volume 

prediction achieve 67.3%, 68.4%, 70.0% in recall and dice coefficient respectively. 

Our intuition behind the proposed TGP model is to overcome the issue of using math- 

ematical equation for simulating GBM growth volume, and provide a fully automatic 

model for brain tumor prediction using Multi-sequence MRI images. 

We believe that TGP may overcome the issue of the tumor prediction. Moreover, it will 

provide a new tool for tumor growth prediction. 

The main challenge that face TGP model is the lack of sufficient training data due to 

limit number of publicly available dataset for GBM growth. In the other hand, Gen- 

erative Adversarial Networks (GANs) prepare a future seeing to grant freely public 

medical image dataset. 

For these reasons, we propose a new method for generating and Anonymization of med- 

ical image that may be used as training data to deep learning models. 
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In the next chapter, we present the issue of training GANs to generate and anonimize 

medical image data. 



65 

 

 

 

 

 

 

 

 

CHAPTER 4 

 
Synthetic Medical Image Generator 

 
 

4.1 Introduction 
 

The investigations in brain tumor growth is keeping an active area of research, and pro- 

viding sufficient study data is the major challenge due to the data privacy and the lack of 

publicly available data-set in which Generative Adversarial Networks (GANs) prepare 

a future seeing to freely guarantee public medical image dataset. 

Generative Adversarial Networks (GANs) are known as the combination of two types 

of networks; the first network is a type of generative model Oord et al. (2016) which 

makes use of detailed prior information associated with the appearance and spatial dis- 

tribution from different features in the image. The second is a Discriminator Beyerlein 

(1997) classifier, which classify the two input images according to their characteristics 

and appearance differences (more details in section 4.2). 

GANs could be trained to use unlabeled data as they learn the internal representations, 

which produces new content based on training data. A variety of applications in the 

literature are based on GANs and fairly useful practical applications; such as Image 

generation Wang and Gupta (2016) which use GANs based architecture to generate 

new images that are different from the images in the training dataset, also text-to-image 

synthesis Xu et al. (2018) GANs allows to generate an image based on text descriptions, 

also used to generate sequences of a story based on made text. Face aging and older im- 

age generationAntipov et al. (2017) is another application for GAN, in which provides 

an effective way to imagining how the face will look like when the person gets older 

which help in security systems (face detection), In addition complete the missing parts 

of imagesLi et al. (2019); where GAN allows recovering the missing part from existing 

image. 

Generating new realistic data is a common use case of GANs especially in the medical 

image where the GANs provide an effective method of synthetic data generation and 

data anonymizing, the reason why several approaches are based on GANs in medical 

Fields. 
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4.2. MOTIVATION AND OBJECTIVES 

 

4.2 Motivation and objectives 
 

We focus our interests on machine learning investigation in brain tumor growth predic- 

tion. However, providing sufficient study data is a challenging task, the data medical 

data privacy and the lack of publicly available datasets. Generative Adversarial Net- 

works (GANs) prepare a future seeing to generate a synthetic medical image, also, 

GANs provide data anonymizing and guarantee a free public dataset. That’s what un- 

roll a huge need for the generative model, that provide a way of data augmentation and 

medical image anonymizing. 

In the next section we present a brief introduction and background theory for Generative 

adversarial network, in addition to its applicability on health care field and medical data 

generation, also, we mention some researches that based on GANs as data augmentation 

technique for brain tumor investigations. 

 
4.3 Background Theory : Generative adversarial networks (GANs) 

 
Generative Adversarial Networks (GANs) are a type of Neural network composed of 

two network types: generative and discriminator networks that are trained in an ad- 

versarial manner to generate data according to given data distribution. GANs have 

emerged as powerful computational models since they were introduced by Ian Good- 

fellow in 2014 Goodfellow et al. (2014), and have shown good results and very large 

applications such as Image-to-image translation Isola et al. (2017), Super-resolution, 

and synthetic Goodfellow et al. (2016) image. 

 
4.3.1 Generative adversarial networks: Model conception 

GANs are unsupervised generative models which implicitly learn an underlying distri- 

bution (such as a uniform or Gaussian) using two neural network models trained in the 

same time together: The Generator (G) network creates synthetic images from noise 

vectors and the Discriminator (D) network to make the difference between fake images 

generated by the generator G and real images of the dataset. The GANs game training 

may be resumed as two networks: the first is a generator G which take a given standard 

random input noise vector (z) from a prior distribution Pz and generates a fake sam- 

ple G(z) corresponds of distribution D’ which close as much as possible from the true 

distribution D. The second is the Discriminator D network which aims to discriminate 

between two different class of data, D receives as input a data (x) which could be from 

the true samples or generated by G model and outputs the estimation probability that 

(x) was sampled from the real data rather than the model G as shown in figure 4.1. 
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Fig. 4.1 The illustration of GANs workflow Goodfellow et al. (2016). 

 

 
4.3.2 Generative adversarial networks: Training strategy 

GANs is based on the concept of a non-cooperative game of two networks generator 

G and discriminator D, where each player(G, D) uses a gradient-based optimization 

technique in aim to minimizing its cost and continue simultaneously until leads to Nash 

equilibrium Maskin (1999). 

During the training of GANs model, the objective of discriminator D is to correctly 

classify the real image input (which labeled 1) and the fake input (labeled 0) as a binary 

classification where the loss function L corresponds to the binary cross-entropy Mao 

et al. (2016): 

 
 

• For the real image 

L(D(x), 1) = [logD(x)] (4.1) 
 

• For the generated image 

 
L(D(G(z)), 0) = [1 − logD(G(z)))] (4.2) 

 
Where D(x) is the discriminator classification probability of input (x), G(z) is the gen- 

erator model output for z random input from Pz distribution. The objective of the dis- 

criminator is to form a correct classification by maximizing Eq (4.1) and Eq (4.2): 

 

MaxD[logD(x)] + [1 − logD(G(z)))] (4.3) 

At the same time the generator G has the objective of fooling on the discriminator 

by minimizing the same objective function: 

 
MinG[logD(x)] + [1 − logD(G(z)))] (4.4) 
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GAN training simultaneously keeps trying to move the generated samples towards the 

real data based on gradient information following the equation: 

 

MinθGMaxθD V (G, D) = MinGMaxD[Ex pdata [logD(x)] (4.5) 

 
+Ez pz [log(1 − D(G(z)))] 

Where θD and θG represent the set of parameters in the Generator G and the dis- 

criminator D respectively, Pdata(x) correspond with the real data distribution, PZ (z) 

is a random distribution of the data, and V(D, G) is a binary cross-entropy function 

Mao et al. (2016). The Discriminator D and the Generator G are performed by back- 

propagating the error signal via their respective models and the update rule is defined 

in Eq 4.5 and The optimization equation is solved by alternating two gradient updates 

as described in function Eq 4.6: 

 

 

 t+1 t+1 
Update   if   D(x)   predicts   wrong 

{θD    , θG    } ← Update if D(G(z)) predicts wrong 

Update if D(G(z)) predicts correct 
 

θt+1 = θt + λt∇θ V (Dt, Gt) (4.6) 
D 

 

θt+1 = θt 

D 
 

+ λt∇θ 

D 

 

V (Dt+1, Gt) (4.7) 
 

Which θD and θG are the parameters of D and G, respectively, is the learning rate and t is 

the iterations number?, and θt+1 is the updated set of parameters for the generator G, and 

θt+1 is the updated set of the Discriminator D, t is the iterations number. λ is the learning 

rate, and t is the iteration number. The final objective function of Eq 4.3 and 4.4 is to 

train the Discriminator D and the Generator G to have enough capacity that can reach 

a point at which both cannot improve (Nash Equilibrium ?), that’s provide a Generator 

G able to transform a simple prior distribution PG to more complex distributions i.e., 

PG converges to Pdata, such as PG= Pdata. And the Discriminator D is incapable to 

distinguish between the two distributions, i.e. D(x)=1/2 and cannot distinguish whether 

a sample is generated by the G or generated from the real data distribution. 

 
4.3.3 Game theory 

The adversarial method of training GANs based on a min-max game, where two players 

make simultaneous updates (back-propagation [Hecht-Nielsen (1992)]), in which there 

is a single value function of classification, and the discriminator is trained to maximize 

the classification accuracy (i.e. well classification image real and fake) and adversely 

the generator is trained to minimize the probability of discriminator being well taken. 

The major problem of the min-max game is when the discriminator saturated and the 

G 
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generator failed to fool the discriminator completely. Then, the generator no longer 

has an update for the gradient, the advantages of the cross-entropy loss function that 

it trains Sigmoid classifiers and SoftMax classifiers are that whenever the classifier 

fails in choosing the right class, the gradient of cross-entropy with the respect of logits 

is guaranteed to nonzero (the gradient approaches to 1 as probability assigned to the 

correct class approach is zero). Besides, cross-entropy [De Boer et al. (2005)] provides 

the possibility to flip the order of argument in the cost function (i.e. the generator tries 

to maximize the log probability of the miss-classification rather than trying to minimize 

the classification accuracy). Although, it is known that GANs are facing the problem 

of training instability and failure to converge due to the min-max strategy and the cost 

function in the original work. 

 
4.4 State of the art: GANs in Medical investigation 

 
Machine learning is experiencing explosive growth that provides a better way to exploit 

the massive volume of medical data received. Nevertheless not all machine learning 

(ML) approaches are capable for brain tumor growth prediction due to the complex 

tumor behavior and the absence of sufficient training data. 

The investigations in brain tumor growth is keeping an active area of research, and 

providing sufficient study data is the major challenge due to the data privacy and the 

lack of publicly available data-set in which Generative Adversarial Networks (GANs) 

prepare a future seeing to freely guarantee public medical image dataset. 

GANs could be trained to use unlabeled data as they learn the internal representations, 

which produces new content based on training data. A variety of applications in the 

literature are based on GANs and fairly useful practical applications; such as: 

• Synthetic image generation [Wang and Gupta (2016)], this type of model use 

GAN-based architecture, and aim to generate a new and synthetic image that’s 

conserve the input data distribution, and contain different features compared to 

the images in the training dataset 

• Text-to-image synthesis [Xu et al. (2018)]. GANs allows to generate an image 

based on text descriptions, also used to generate sequences of a story based on 

made text. 

• Face aging and older image generation [Antipov et al. (2017)]. Another applica- 

tion for GAN that provides an way to imagining how the face will look like when 

the person gets older. This technique used the most in security systems as face 

detection. 
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• Complete the missing parts of images [Li et al. (2019)]. GAN allows also recov- 

ering the missing part from existing image. 

 

In this section, we present the state of the art of GANs in medical works. There is 

two major categories for GANs models in the medical in investigations: 

 
4.4.1 Synthetic medical image generations: 

Generating new realistic data is a common use case of GANs especially in the medical 

image where the GANs provide an effective method of synthetic data generation and 

data anonymization, the reason why several approaches are based on GANs in medical 

Fields. 

Frid-Adar et al. (2018) combines a GANs model with CNN architecture in order to de- 

velop a liver lesion classification network, Frid model aim to demonstrates the impact 

of GANs generated data on liver lesion classification task, and its allows achieving an 

improvement of ∼ 7% of classification accuracy using synthetic data augmentation over 

classic augmentation. In addition, Iqbal and Ali (2018) proposes a GAN-based frame- 

work to generate realistic images, Iqbal generated image used as the additional training 

dataset, and aim to enhance the retinal vessel image segmentation performance. For 

brain image generation, Han et al. (2018) proposes to generate a multi-sequence brain 

MR images using GANs to increase diagnostic reliability, their result are approved by 

physician Geman et al. (2015). Shin et al. (2018) proposes to generate synthetic medi- 

cal images based on two publicly available datasets (ADNI 1, BRATS 2) which aims 

to provide more data to train tumor segmentation architecture also an effective tool to 

medical images anonymizing, the model trained to generate synthetic images from la- 

bels, where it allows to generate multi-series abnormal brain MRIs based on the brain 

map and tumor label separately to generate various synthetic data (changing tumor lo- 

cation, size . . . ). 

For brain tumor MR image segmentation, Bowles et al. (2018) proposes a model that 

allows augmenting the training data with an aim to improve the brain tumor segmenta- 

tion accuracy. The model is based on GANs and trained using BraTS dataset, and the 

validation is performed by using the augmented annotated training sets for the segmen- 

tation tasks which show the impact of using the generated image in the network. 

In the case of brain tumor prediction task, the accuracy remains always a challenging 

task due to the lack of sufficient training data and the complexity of GBM tumor behav- 

ior. Generative Adversarial Network (GAN) achieve exceptional success in the medical 

investigations Yi et al. (2019). 

11: Alzheimer’s Disease Neuroimaging Initiative(ADNI) 
21: Brain Tumor Segmentation (BraTS) 
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4.4.2 Medical image quality enhancing. 

GANs not only used in new image generation, also ability to enhance quality and pro- 

vide high resolution images. Zhou et al. (2021) developed a model augment perfor- 

mance of a classifier trained using the generated MRI images. To achieve this goal, 

Zhou processed brain MRI scans of multiple magnetic field strengths (1.5 Tesla (1.5T) 

and 3 Tesla (3T)) from the ADNI dataset. Using these generated data, Zhou demon- 

strates a proof of principle that GAN frameworks can be constructed to augment classi- 

fication performance and improve image quality. 

 
4.5 Synthetic Medical Image generator (SMIG) pipeline 

 
The main objective of SMIG model is to generate synthetic MRI images based on 

GANs. SMIG model is inspired by Shin work Shin et al. (2018) that uses (Alzheimer’s 

Disease Neuroimaging Initiative) ANDI and BraTS datasets to generate a synthetic im- 

age. In our work we don’t change the tumor size as done in Shin work (see figure 5 

row 3 and 4 Shin et al. (2018)), the save the tumor size and shape, is critical in our 

work, Since to predict tumor growth, size and shape are more than important. Also 

any change in tumor size will surely affect the prediction performance. Another differ- 

ence between SMIG and Shin work is in the used dataset, where SMIG based on the 

TCIA dataset Schmainda and Prah (2018) instead of Brats Menze et al. (2014) used by 

Shin et al. (2018). SMIG model is trained to generate different types of synthetic MRI 

images such as; (1) Abnormal brain (See Fig 4.4(A)) that is based on using a healthy 

brain and tumor volume (See figure 2.5 tumor volume column). (2) Besides, the tumor 

in a new location (see Fig 4.4(B)) by taking as input the original and the tumor vol- 

ume. The image-to-image translation conditional-GAN (pix2pix) model introduced in 

Shin et al. (2018) is adopted to translate label-to-MRI (synthetic image generation) and 

MRI-to-label (image segmentation). For brain segmentation, the generator G is given 

a T1-weighted image of ADNI as input and is trained to produce a brain mask with 

white matter, grey matter and CSF. The discriminator D on the other hand, is trained to 

distinguish “real” labels versus synthetically generated “fake” labels. During the pro- 

cedure (depicted in figure 4.2 (a)) the generator G learns to segment brain labels from a 

T1-weighted MRI input. Since we did not have an appropriate off-the-shelf segmenta- 

tion method available for brain anatomy in the BRATS data set, and the ADNI data set 

does not contain tumor information, we first train the pix2pix model to segment normal 

brain anatomy from the T1-weighted images of the ADNI data set. We then use this 

model to perform inference on the T1 series of the BRATS data set. The segmentation 

of neural anatomy, in combination with tumor segmentation provided by the BRATS 
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data set, provide a complete segmentation of the brain with tumor. 

The synthetic image generation is trained by reversing the inputs to the generator and 

training the discriminator to perform the inverse task (i.e., “is this imaging data ac- 

quired from a scanner or synthetically generated?” as opposed to “is this segmentation 

the ground-truth annotation or synthetically generated?” – figure 4.2 (b)). We generate 

synthetic abnormal brain MRI from the labels and introduce variability by adjusting 

those labels (e.g., changing tumor size, moving the tumor’s location, or placing tumor 

on a otherwise tumor-free brain label). 

 

 
 

Fig. 4.2 Illustration of training GAN for (a) MRI-to-brain segmentation; (b) label-to- 

MRI synthesis Shin et al. (2018). 

 
 

The SMIG trained to generate synthetic images from labels allows for the genera- 

tion of arbitrary multi-series abnormal brain MRIs. Since we have the brain anatomy 

label and tumor label separately, we can alter either the tumor label or the brain label to 

get synthetic images with the characteristics we desire. For instance, we can alter the 

tumor characteristics such as size, location of the existing brain and tumor label set, or 

place tumor label on an otherwise tumor-free brain label. Examples of this are shown 

in figure 4.3. 
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The effect of the brain segmentation algorithm’s performance has not been evaluated in 

this study. Since the GANs was first trained on 3,416 pairs of T1-weighted (T1) images 

from the ADNI data set, generated T1 images are of the high quality, and, qualitatively 

difficult to distinguish from their original counterparts. BRATS data was used to train 

the generation of non-T1-weighted image series. Contrast-enhanced T1-weighted im- 

ages use the same image acquisition scheme as T1-weighted images. Consequently, the 

synthesized contrast-enhanced T1 images appear reasonably realistic, although higher 

contrast along the tumor boundary is observed in some of the generated images. T2- 

weighted (T2) and FLAIR image acquisitions are fundamentally different from the T1- 

weighted images, resulting in synthetic images that are less challenging to distinguish 

from scanner-acquired images. However, given a sufficiently large training set on all 

these modalities, this early evidence suggests that the generation of realistic synthetic 

images on all the modalities may be possible. 

 

 

Fig. 4.3 Workflow of getting synthetic images with variation. On BRATS data set, MRI- 

to-label image translation GAN is applied to T1-weighted images to get brain atlas. It is 

then merged with the tumor label given in the BRATS data set, possibly with alterations 

(shift tumor location; enlarge; shrink). The merged labels (with possibly alterations) 

are then used as an input to label to- MRI GAN, to generate synthetic multi-parametric 

MRI with brain tumor Shin et al. (2018). 
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4.5.1 SMIG Model Training 

As it is shown in 4.4(A), the generator is trained to place the tumor volume into a healthy 

brain from ADNI. Then, the discriminator D is trained to classify images as fake (from 

the generator) or real from the original dataset. Moreover, SMIG produces a synthetic 

abnormal brain with the same size as input (e.g. see figure 4.4(A)). Furthermore, as it 

is shown in figure 4.4(B), Generator G is trained to generate a tumor in a new location 

while discriminator D helps to improve the quality of generated images. 

The main objective of the SMIG model is to generate synthetic images (changing the 
 

Fig. 4.4 Illustration of our proposed Synthetic Medical Image Generator (SMIG) train- 

ing workflow, (A) SMIG trained to generate abnormal brain based on a healthy brain 

from ADNI dataset and tumor volume provided by TCIA, (B) SMIG trained to change 

the tumor location Kamli et al. (2020) 

 

 
tumor location and setting a tumor in a healthy brain region) to give us new MRI images. 

While traditional data augmentation techniques apply a geometric transformation to 
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produce the augmented image, i.e., geometric transformation does not change the tumor 

information it only gives the same image with some modifications while SMIG helps 

the model to generalize by providing quite different images (tumor information). 

 
4.5.2 SMIG model Results 

The application of SMIG model to generate data produces images at high resolution that 

are both realistic and phenotypically diverse. Figure 4.5 shows a comparison between 

real and synthetic image (generated by SMIG). As figure shows, no noticeable differ- 

ences between the two images. Also the mathematical model behind GANs guarantee 

that no differences in the data distribution for both images. Furthermore, to ensure that 

such qualities hold for SMIG in medical imaging data, we trained a neural network to 

calculate approximate similarity between all generated images. 

 

 

 

Fig. 4.5 An example of SMIG synthetic generated image compared to the original pa- 

tient images from the BraTS dataset. 

 

 
Figure 4.5 shows an an example of the application of SMIG model on a single pa- 

tient images from the BraTS dataset to augment its number of images, and we compare 

them to the traditional data augmentation techniques in which the four rows depict the 

four image type(T1 , T1C, T2, and Flair). The original images are shown in the first 

raw the second and the thired depicts the result of generating an image with changing 

the tumor location, the fourth row is the result of generating a synthetic abnormal brain 

by integrating the tumor in a healthy brain(set tumor volume on a healthy brain from 

the ADNI. The last rows illustrates examples of the application of traditional data aug- 

mentation techniques on the original image. 
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SMIG can generate synthetic images of unprecedented size, and be used via its 

latent to space to learn imaging features in an unsupervised manner. Its application will 

open new avenues for synthetic image generation in medical imaging, which has thus 

far been limited by an inability to synthesize images at native resolution. 
 

Fig. 4.6 An example of the application of SMIG model on a single patient images from 

the BraTS dataset compared to the traditional data augmentation techniques 

 

 

 
4.5.3 model limitation and future work 
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4.5.4 Conclusion 

In this chapter, we introduced our novel method that is based on GANs model for the 

aim to obtain synthetic medical images. The lack of public medical training data is 

known in medical sector due to two main reasons: (i) privacy of patients identity, and 

(ii) poorly labeled data. Our proposed SMIG model (See section 4.5) is developed 

specifically to solve these two issues. The SMIG model is composed of two networks: 

generator and discriminator networks. One the one hand, the generator network is re- 

sponsible to generate medical images from the same distribution of the training data. 

Moreover, the generator network is based on the idea of central limit theorem, where the 

lack of training data makes the training phase diverge from the expectation point. Fur- 

thermore, generating and using medical data makes the expectation point of the training 

data closer to the expectation point of the real distribution. From the other hand, the dis- 

criminator network is responsible to classify the generated data into fake or real classes. 

When the discriminator network reaches the point where it cannot be fooled by the gen- 

erator network, at this point we can say it reached the Nash equilibrium point. 

SMIG model effectively generates synthetic multi-sequences MRI images from the ac- 

quired one, which saves time slots for GBMs patients. The second reason may be the 

large number of MRI data set available in the public domain allowing researchers to 

have a surplus sample size for better model training. Further, a large fraction of studies 

conducted in the area of tumor growth prediction are due to better adversarial training 

and regulation on the generator’s output of the GAN model for image-to-image transla- 

tion framework. Although, conditional generation provides flexibility over augmenta- 

tion and high resolution for training data. A very limited number of studies have been 

reported for the challenge of generating GBM tumor MRI images. As future work, we 

intend to test our proposed SMIG model with the Wasserstein loss function Arjovsky 

et al. (2017) that theory-justified to be more informative and more stable in training the 

GANs model. Wasserstein uses 1-Wasserstein distance, instead of the JS-Divergence 

(used in cross-entropy) to measure the difference between the real distribution and goal 

distribution. 

In addition, we attend to use generated and Anonymized medical image training data 

for TGP models. 

In the next chapter, we present the proposed method of training TGP using generate and 

anonimize medical image data provided by SMIG model. 
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CHAPTER 5 

 
Synthetic MRI images to predict GBM growth 

 
 

5.1 Introduction 
 

GBM brain tumors are heterogeneous brain tumors with a high risk of being lethal, the 

complex behavior of theses tumor lead to many challenges in lesion segmentation and 

growth prediction. 

In the other hand, generating new realistic data is a common use case of GANs espe- 

cially in the medical image where the GANs provide an effective method of synthetic 

data generation and data anonymization, the reason why several approaches are based 

on GAN in medical fileds. 

The lack of public available dataset and the limit number deep-learning of investigations 

in GBM growth prediction motivate us to use SMIG model (see chapter4) to generate 

synthetic data and use them as training for our TGP model (see chapter 3). 

The combination of the two models to improve GBM growth prediction accuracy, that 

inspired by the ability of SMIG to generate data in different time point that could be 

used as data augmentation for TGP model. 

 
5.1.1 Problem statement 

The complex tumor behavior and the absence of sufficient training data create a chal- 

lenge for machine learning (ML) approaches to be capable in brain tumor growth pre- 

diction. The investigations in brain tumor growth is keeping an active area of research, 

and providing sufficient study data is the major issue due to the data privacy and the 

lack of publicly available data-set. Moreover, GBM growth prediction need a historical 

data (MRI scans from different time point) to help ML model to improve the prediction 

accuracy. 

 
5.1.2 Objectives and motivation 

In this chapter, we solve the limits of training GMB growth models, in particular, TGP 

model performance with two issues independently. The first issue is the lack of training 

data where we find a class of interest has a minority of data compared to other classes. 
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The second issue is the complex behavior of GBM growth; where SMIG model allow 

to provide historical image from single patient scan. Consequently, our main objective 

is to provide an accurate prediction for GBM growth, by generate patients historic data 

and improve TGP performance. In addition, we compare training result using synthetic 

data with reel patients image. 

Finally, we combine multiple models through various data and MRI modalities to em- 

pirically evaluate and report the improvements of TGP results over divers models com- 

bination. 

 
5.2 Related work 

 
In literature, plentiful investigations in mathematical modeling of GBM tumor are pro- 

posed Swanson et al. (2000, 2003, 2008), Jackson et al. (2015) which provide a useful 

manner toward patients’ specific model to personalized treatment for each patient , also 

to build a personalized models for tumor growth prediction. As major limit for the 

mathematical models is the necessity of an experts annotation and quantification of 

the tumor cell density. In the other hand, machine learning is experiencing explosive 

growth that provides a better way to exploit the massive volume of medical data re- 

ceived. Nevertheless not all machine learning (ML) approaches are capable for brain 

tumor growth prediction due to the complex tumor behavior and the absence of suf- 

ficient training data. As one of machine learning investigations, Morris et al. (2006) 

proposes a model trained to learn and predict Glioma tumor growth, that is based on 

the features of the tumor-adjacent voxels and their probability to become a tumor. In 

which, they pre-processed patients MRI images to reduce noise and to extract relevant 

features. Afterwards, they developed a model in aiming to determine what is exactly 

the tumor region of the brain diagnosed with primary glioma to treat in the occult tissue. 

The model is trained to classify the adjacent voxel according to their features (such as 

tissue type, voxel intensities . . . ), where the classification is based on two different 

classifiers (Support Vector Machine and Logistic Regression). As a major limitation 

of the Morris et al. (2006) model is that the validation and the model performance are 

based only on one sample due to the lack of training data and reach 59 % in the best 

case, also the model required Handcrafted features extraction that includes many diffi- 

culties and human error margin. 

The investigations in brain tumor growth is keeping an active area of research, and pro- 

viding sufficient study data is the major challenge due to the data privacy and the lack of 

publicly available data-set in which Generative Adversarial Networks (GANs) prepare 

a future seeing to freely guarantee public medical image dataset. 
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5.3 SMIG data based on TCIA dataset 
 

The main objective of this thesis is to provide a high prediction accuracy for GBM 

tumor growth, for that reason we based or test on TCIA dataset that contain 20 GBM 

patients; each sample include scans for tow time point (diagnosis and 90 days of follow 

up). 

Due to limit data size, we will use SMIG model to generate synthetic samples that 

contain two time point scans (the same as TCIA data diagnosis and 90 days of follow 

up). 

The SMIG trained to generate synthetic images from labels allows for the generation 

of arbitrary multi-series abnormal brain MRIs. Since we have the brain anatomy label 

and tumor label separately, we can alter either the tumor label or the brain label to 

get synthetic images with the characteristics we desire. For instance, we can alter the 

tumor characteristics such as size, location of the existing brain and tumor label set, or 

place tumor label on an otherwise tumor-free brain label (more details in chapter 4). As 

shown in figure 5.1, no difference can be observed between the synthetic (generated) 

and the original image. In the same way learning model couldn’t differentiate between 

the image due to the equilibrium state provided by the training strategy of GAN models. 
 

Fig. 5.1 Illustration of an example of synthetic image generated using SMIG model 

based on TCIA dataset 
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5.4 Tumor Growth Prediction Based on SMIG data 
 

Noise reduction, image shaping, and registration are the biggest issues in medical image 

analysis, thus, enhancing image quality and relevant information extraction continue 

being a difficult challenge and mostly depends on the exact application objectives and 

the result of experiments. 

In our model, we apply in the preprocessing four steps as a follow (skull stripping, 

normalization/ standardization, registration and denoising). We notice that we used the 

combination of two skull stripping tools; the robust automated BET tool proceeded by 

BES that has four steps to prepare MRI images (Filtration, Edge detection, Finding the 

brain contours, and extracting the brain). The choice of the combination is motivated 

by the suggestion of the author of BET Woolrich et al. (2009) that the performance of 

an automated methods could be improved by pre-processing (which is the role of step 1 

of BES). As the final step, we apply the wiener filter due to its efficacy and its speed; we 

provide a measurement of the most known metrics of noise. All steps of preprocessing 

applied and the used tool and the image output are shown in figure 5.2. 

The variety of raw images in intensity, size, noise, and spatial resolution was treated 

as a pre-processing step to achieves a uniform image dimension (256*256*23) High*width*Slices. 

For the issue of skull stripping, we evaluate the result of the BET Woolrich et al. (2009) 

and BES Dogdas et al. (2005) tools and the combination of them. 

In addition, to focus on the region of interest we select the slices from number 07 to 

slices number 17 among the whole 23 slices to omit initial/final slices, since they con- 

vey a negligible amount of useful information and negatively affect the training of our 

model. 

The output dimensions (256*256*10) High*width*Slices (10 slices is the max number 

of slices contain tumor portion based on the tumor mask provided by TCIA)). 

SMIG model is used to provide sufficient data and generate synthetic images (change 

tumor location and tumor in the free-tumor brain from the ADNI dataset). 

 
Finally, we create a new 3D volume, in which it contains one slice and its corre- 

sponding one from every image type (i.e., slice from T1 pre, the second from T1 post, 

the third from T2 and the forth from Flair). As a result, we got 3D volume (256*256*4) 

High*width*channel where the channel is the four images type, then we extract the 

patch area of 128*128 from the image. This step is important to help our CNN model 

to focus on the local information by sub-dividing all existing images into rectangle size 

(128,128,4) to be as an input for the Convolution neural network as (see figure 5.3). 



5.4.  TUMOR GROWTH PREDICTION BASED ON SMIG DATA 

82 

 

 

 
 

 
 

Fig. 5.2 Preprocessing steps applied to prepare the input images for TGP model 

 
Figure 5.4 shows a schematic representation of the final step before launching our 

TGP Convolution architecture, where we extract image patches with size (128*128*4). 

128*128 represents the width*height and 4 is the four image type (T1 pre, T1 post, T2, 

Flair). This step has two main reasons, the first is to reduce the size of the input image 

due to the limited GPU capacity. The second is to help the proposed model to focus on 

the local information in the specific area from the input image. 
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Fig. 5.3 diagram illustrate the outline that used in our work starting with preprocess- 

ing (normalization, strandarisation and registration) then skull stripping (based on BET 

and BES and the combination), the result of each skull stripping method pass by three 

steps: the first, slices selection (select 10 slices where tumor appear), the second is data 

augmentation based on traditional technique beside GAN, the last step was patches ex- 

traction to prepare data as input for CNN model. 

 
5.5 Evaluating strategy 

 
We propose an End-to-End method to improve the prediction of GBM growth based on 

MRI images with several data augmentation techniques. TGP model takes as input MRI 

image (four channels) with an aim to predict the tumor volume in the late-stage (tumor 

area after 90 days) in terms of three metrics ?: recall, precision, and Dice scores, each 

metric is calculated using four statistical values: 

• True Positive (TP): is the correctly classified tumoral region (number of pixels). 

 

• False Positive (FP): is the healthy tissue (number of pixels) identified incorrectly 

as a tumoral region. 

• True Negative (TN): is the correctly classified healthy tissue (number of pixels). 

 

• False Negative (FN): is the tumoral region (number of pixels) identified incor- 

rectly as healthy tissue. 
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Fig. 5.4 Patch extraction diagram from the input image size(256*256*23) 

high*width*slices to data augmentation the patch extraction to get image size 

(128*128*4) where 128*128 is high*width and four is the channel number(T1 pre,T1 

post, T2, and Flair). 

 
• Recall = TP /TP+FN, Precision= TP /TP+FP, Dice Similarity Coefficient (DSC) 

= 2TP / TN+FN +TP+FP. 

 
5.5.1 Combination result validation 

The validation of TGP model is based on image processing techniques to compute the 

tumor volume, and we intent to get the affirmation from an expert from medicine. 

Firstly, we trained TGP model to take as input image from TCIA dataset and to pre- 

dict the tumor volume in the late stage (tumor volume after 90 days), then, we seg- 

ment the lesion volume using Brain Intensity AbNormalities Classification Algorithm 

(BIANCA) tool implemented in FSL package for the two compared images: 

• The predicted image transformed to a binary lesion mask (TGP output lesion 

volume). 

• The original patient image after 90 days from TCIA dataset transformed to a 

binary lesion mask for the target image (the target lesion volume). 

Afterward, we compare the two output masks in terms of three metrics ?: recall, 

precision, and Dice scores. 
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figure 5.5 shows an example of the basic idea of TP, FP, TN, FN that are indicated by 

colors in the order of green, black, red, and gray for each class. The green/black colors 

represent the tumor/healthy pixels that are well classified by TGP model. And the mis- 

classified parts are: (1) in red represents the pixels that are classified as tumors only by 

TGP model, (2) in gray which the part of the tumor that is considered healthy tissue by 

TGP model. To overcome the issue of segmentation influence on the validation results, 

we perform the segmentation using the same tool for the two compared images (The 

predicted image and the original image). 

 
 

Fig. 5.5 An example of the validation result which True Positive, False Positive, True 

Negative, False Negative, that are indicated by colors in the order of green, black, red, 

gray and represent the number of pixels in each class in the binary lesion mask on the 

compared images. 

 
The evaluation of TGP model is based on cross-validation K-fold (see figure 3.10) 

in which it performed using 03 patients never seen by the model in training (also not 

entered in the process of data augmentation and generation of synthetic image), then, 

we change the selected patients for the 40 evaluation experiments. The chosen of 17 

patients as training and 03 as a test is are carefully trialed in a variety of different por- 

tion (train-test) in which using more patients for test will reduce the number of training 

cases entered to the model thus the model performance will be affected, in the other 

hand using less than 03 patient will not establish the reached results. This operation 

helps to provide a better evaluation for the obtained results. All training experiments 
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took 500 epochs to converge to the best parameters. 

 

 

5.6 Experimental results 
 

Review the result of our model while trained on a different ratio of synthetic data and 

its impact on TGP prediction performance: 

This strategy aims to measure the performance of our TGP model in the readjustment 

of the synthetic image produced by SMIG generator and the impact of training with 

different proportion data generated by SMIG model. For this experiment we use the 

best result given by TGP model trained with real data (section 4.1.1), while we are 

based on using the combination of two skull stripping tools BET Woolrich et al. (2009) 

and BES Dogdas et al. (2005) in order to separate non-brain tissue for all image in the 

training data: 

• Experiment 01: Training TGP model with only original data (0% synthetic) 

 
 

• Experiment 02: Training TGP model with 75 % original data and 25% synthetic 

image produced by SMIG 

 

• Experiment 03: Training TGP model with 50 % original data and 50% synthetic 

image produced by SMIG 

 

• Experiment 04: Training TGP model with 80 % original data and 20% synthetic 

image produced by SMIG 

 

• Experiment 05: Training TGP model with 100% synthetic data and produced by 

SMIG image (0 % Original) 

 
 

Figure 5.6 shows the result of evaluating our TGP model under different ratios of the 

synthetic images in training data, synthetic images are produced with our proposed 

SMIG model with an aim to provide more extra training data for our TGP model. 

The impact of changing the ratio of synthetic data in the training is measured which 

0% of synthetic data is achieved 69.3%, 67.8%, and 68.9% of recall, precision and dice 

coefficient score respectively, and improvement of model performance were observed 

with the addition of synthetic data to achieve 75.8%, 80.2%, 82.1% of recall, precision 

and dice coefficient respectively (ie a mean of +13% of accuracy). 
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Fig. 5.6 Recall, Precision, and Dice metric evaluation of the performance of our TGP 

models trained on 05 datasets with different ratios of synthetic/original images. We 

observe that 80% ratio of synthetic data generated by SMIG and 20% from TCIA data 

have a greater effect on model accuracy 76.8%, 80.2%, 82.1% 

 
We observe that 80% ratio of synthetic data generated by SMIG and 20% from TCIA 

data have a greater effect on model accuracy 76.8%, 80.2%, 82.1% of recall, precision 

and dice coefficient respectively when 50% of synthetic achieve 70.2%, 77.6%, 73.9% 

of recall, precision and dice coefficient, and less accuracy is noticed when training the 

model only on the synthetic data in which 48.2% ,55.1%, and 49.6% of dice coefficient, 

recall, and precision in order. As it is shown in table 5.1, which provides the numer- 

ical value that was measured within the change of synthetic data ratio, we observe an 

improvement of model performance (+13%) due to using SMIG generated data as data 

augmentation and providing more training sample. 

Experiment  Metrics Recall % ± STD Precision % ± STD Dice % ± STD 

Experiment 01 69.3 ± 5.3 67.8 ± 7.2 68.9 ± 4.0 

Experiment 02 70.2 ± 4.9 65.1 ± 5.2 73.2 ± 5.9 

Experiment 03 74.4 ± 5.9 77.6 ± 7.6 73.9 ± 5.4 

Experiment 04 75.8 ± 5.1 80.2 ± 4.2 82.1 ± 7.7 

Experiment 05 48.2 ± 5.1 55.1 ± 4.2 49.6 ± 7.7 

Table 5.1 Table illustrates Recall, Precision, and Dice metric evaluation of the per- 

formance of our TGP models trained on 04 datasets with different ratios of syn- 

thetic/original images. 
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5.7 Discussion 

 
Comparison of TGP performance with the literature model for the issue of tumor pre- 

diction 

TGP model aims to predict the tumor volume growth, comparing to the majority of the 

prediction model based on mathematical modelling. Moreover, the TGP model do not 

require any supplement input data, it is based only on patient’s MRI images. 

Morris et al. (2006) trained a model to predict the future Glioma tumor growth; 

Morris model based on support vector machine and logistic regression, where they ex- 

tract handcrafted features such as Growth rate of tumour mass, Percentage of edema, 

Volume increase between 2 scans. All extracted features used for the for the classifica- 

tion of voxel around the active tumour border to tumour or non-tumour class. Morris 

et al. (2006) model achieve 59% of prediction accuracy, and the test phase is performed 

on a single patient images. 

 
Furthermore, Nathan et al. (2019) proposes a GBM tumor cell density prediction 

model that achieve 51.8% using a machine learning model combined with mathematical 

model, where they achieved 83,8 accuracy. 

The advantages of TGP model are: (i) fully automatic, and (ii) reach better results de- 

spite the small size of data. TGP trained also on the generated data by SMIG model and 

achieve a valuable performance compared to the state-of-the-art methods. SMIG model 

solves the issue of the lack of sufficient training data, and provides a way to anonymize 

the data, in addition, to protecting patient’s privacy and allowing the share of training 

data. 

figure 5.7 shows the evaluation results of the state-of-the-art machine learning methods 

for the issue of tumor prediction with our proposed TGP model. 

In order to determine the performance of our TGP model , we first compared the ac- 

curacy of TGP between the all training strategies to get the optimal ration of synthetic 

data, Table 5.1 shows the comparison result using two metrics: Recall, precision and 

Dice coefficient between the predicted and the expert volume measurements. As a sec- 

ond comparison, we aim to compare to state of the art ( ML model for GBM growth 

prediction) with TGP result, as shown in figure 5.7 all metrics metrics show a clear 

improvements of the prediction accuracy. where a mean of +20% of accuracy improve- 

ment observed with TGP model to achieve 76.8%, 80.2%, 82.1% of recall, precision 

and dice coefficient respectively. 
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Fig. 5.7 Comparison of the state-of-the-art methods for the issue of tumor prediction 

with our proposed TGP model (which is noted by adding ]. 

 
5.8 Conclusion 

 
In this chapter, we introduced a use case for our developed SMIG model. The main ob- 

jective is to obtain synthetic medical images that can be used as training data for TGP 

model. 

The combination of SMIG generated data and TGP model help to improve the pre- 

diction accuracy, a mean of +13% in the three metrics; which achieve 75.8%, 80.2%, 

82.1% of recall, precision and dice coefficient. 

SMIG model provides a super realistic data as shown in figure 5.1, where no difference 

can be observed between the synthetic (generated) and the original image. In the other 

hand during the TGP training; the match between images features (due to the train- 

ing strategy of GAN models) ensure the high performance of the prediction accuracy 

(82,1% Dice coefficient). 

In addition, for the GBM growth prediction, we need to train on historical data (i.e. 

scans from different times points) where its generated using our SMIG model. 

It is well accepted that GBM tumor growth prediction accuracy didn’t achieve a very 

high precision, however, TGP model result show an improvement of 20% all metrics 

compared to state of the art. We have to note that an exact comparison in the medical 

image domain is not possible, as different datasets are used in each work. 

Despite our prediction results still need to be improved by introducing other regions 

MRI images and improve the generated data quality by using new loss function during 

the training of SMIG model. We hope that this finding will be successfully used by the 

research community for medical image generating and the prediction tasks. 
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General Conclusion 

 

In this dissertation, we studied the challenge of GBM tumor growth prediction using 

the MRI multi-modal imaging technique. These imaging tools can accurately diagnose 

GBM condition and its growth for a while, whether in clinical assessment or research 

settings. 

Machine learning algorithms have produced emerging results for various domain appli- 

cations; among which is the medical field. At this stage, there is no doubt about the 

advantages and benefits of using ML models for GBM growth prediction. 

Thus, in the current Ph.D. work, we study and propose two models; First model: Tumor 

Growth Predictor (TGP) based on an End-to-End CNN network aiming to predict GBM 

tumor growth. TGP is a high automatic prediction model to help clinicians predict the 

volume of GBM in the late-stage based on the patients scans. Besides, TGP does not 

require any prior feature extraction or signature generation process and adopts them for 

brain MRI imaging. Second model: SMIG to generate synthetic data based on GANs 

architecture. SMIG provides an efficient method for a low-cost dataset generation, pro- 

tects patients’ privacy and medical data anonymizing, and provides a way for future 

sharing of the training data. 

Through this work, we aim to show the effectiveness of developing a fully automatic 

GBM growth predictor that is trained on synthetic data, we review the combination of 

the two models (TGP and SMIG), we also study the impact of changing the preprocess- 

ing tools which have a valuable impact on the prediction accuracy. 

However, the deep prediction methods necessitate huge datasets for training models; 

overall, they consist of millions of parameters. This can be a big challenge in the med- 

ical field, since datasets are not often readily available. Thus, we addressed two main 

crucial points: how to deal with the constraint of limitation of the available dataset using 

synthetic data, and how to conceive adaptable architecture designs for the GBM growth 

prediction challenge. 

 
In chapter 1, we first introduced the medical background and necessary information 

about Glioblastoma multiforme (GBM) and brain tumor imaging, we also we provided 

a complete description of the public dataset used in this work. 
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In chapter 2, we covered a detailed presentation of tumor growth modeling and the 

mathematical viewpoint of GBM growth. It includes a the studies in the microscopic 

and macroscopic levels that are briefly discussed and reviewed. We also presented an 

overview of GBM tumor growth investigation based on artificial intelligence. We high- 

lighted the investigations on treatment planning and genetic profile prediction to study 

treatment efficacy. 

 
In chapter 3, we present our TGP model, which is an adapted architecture that aims 

to predict GBM tumor growth (volume changing) based on multi-modal images. TGP 

model takes into account the complexity of computing that needs to be low, whereas in- 

creasing the accuracy of results, which is achieved by using convolution auto-encoder. 

Besides, we made various analyses with different settings in order to study the impact of 

pre-processing tools on the model prediction accuracy; including the important methods 

for separating the brain from the skull, resizing, and registration, and image denoising. 

We highlight the effect of using BET and BES as skull stripping and their combination 

results. As a result, we obtained a high accuracy for GBM tumor prediction: 69,9%, 

71,7%, 72,3% of recall, precision, and dice coefficient respectively. 

 
In chapter 4, we presented our SMIG model which is based on generative adversarial 

networks (GANs). The mathematical theory behind the GANs is also detailed, and the 

contribution is compared to related work as well. Then we demonstrated all results and 

examples of generative images. SMIG model provides an efficient method that has sev- 

eral advantages: (1) Protecting patients’ privacy by generating synthetic images to be 

used for researches. (2) Medical data anonymizing and allowing for future sharing of 

the training data. (3) A low-cost dataset generation (provide sufficient data for learning 

model). (4) SMIG model is capable of augmenting medical dataset images with realis- 

tic and high-quality generated MRI images. 

 
In chapter 5, we further extended our proposed SMIG model, we introduce its ca- 

pability to generate scans at different time points. The generated images were used in 

TGP training to improve its prediction accuracy. We took advantage of the combination 

methods (TGP and SMIG) using different settings and strategies to enhance our TGP 

models’ robustness. We showed the effectiveness of using multiple ratios of synthetic 

data and its impact on the TGP model performance. TGP model achieves a means of 

+10.28 % more accuracy by using the generated data; thus GBM tumor prediction ac- 

curacy achieves 75,8%, 80,2%, 82,1% of recall, precision, and dice coefficient respec- 

tively. Moreover, we exhibited the improved results provided by the majority of applied 

metrics in medical image investigations. The obtained results demonstrate promising 
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prediction performance and simplicity compared to the state-of-the-art. We conclude 

this thesis by identifying and discussing potential future research lines, where we in- 

tended to train our SMIG model to generate scans from various datasets, also, we also 

worked to implicit the mathematical model of GBM growth in TGP and combine the 

Reaction-Diffusion (RD) model with machine learning. 

Finally, the one interesting research line that we have not covered in this thesis is 

the use of the Wasserstein loss function Arjovsky et al. (2017) that theory-justified to 

be more informative and more stable in training the GANs model. Another approach 

would be interesting to investigate, is to use multi-model MRI image as input for TGP 

model; This would develop more comprehensible and valuable systems that bring the 

concept of covering all tumor feature for better prediction result. 

 

 
Limitations and perspectives 

 
We attempt to overcome some limitations of our model in future works such as : 

 

• Using a large number of training data that is important to improve and to gener- 

alize on new cases. In our experiments we used a dataset with only 20 subjects. 

Moreover, the dataset that we used does not have to normalize data time points 

over all subjects. 

• Small tumoral regions might get lost due to the use of many down-sampling and 

upsampling layers in our TGP model. 

• As Shin et al. (2018) we believe that using T2/flair images can improves the qual- 

ity of generated synthetic images, because T2/flair contain more relevant features 

related to the tumor area. 
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