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ABSTRACT

Nowadays, mobility prediction models play an important role in many location-

based services, such as food delivery, transportation planning, and advertisement post-

ing. Most previous studies on predicting mobility have worked on computer generated

data and focused on mathematical modeling principally due to the lack of a real mobility

data. Such studies have limited ability to capture human mobility accurately. However,

with the democratization of mobility data and the availability of large data sets, nu-

merous research activities turned toward predicting mobility based on examining real

mobility data traces with the aim of building realistic models that can capture and un-

derstand human’s mobility behaviors as well as making accurate mobility prediction.

In this thesis, we present the methods we proposed to predict spatial and temporal be-

haviors of mobile users. Our first work focuses on predicting the next location of mo-

bile users by analyzing large data sets of the history of their movements. We make use

of past location sequences, also called location history, to train a classification model

that will be used to predict future locations. Contrary to traditional mobility prediction

techniques based on Markovian models, we investigate the use of modern deep learn-

ing techniques such as the use of Convolutional Neural Networks (CNNs). Inspired

by the word2vec embedding technique used for the next word prediction, we present

a new method called loc2vec in which each location is encoded as a vector whereby

the more often two locations cooccur in the location sequences, the closer their vectors

will be. Using the vector representation, we divide long mobility sequences into several

sub-sequences and use them to form Mobility Subsequence Matrices on which we run

CNN classification which will be used later for the prediction. We run extensive testing

and experimentation on a subset of a large real mobility trace database made publicly

available through the CRAWDAD project. Our results show that loc2vec embedding

and CNN-based prediction provide significant improvement in the next location predic-

tion accuracy compared to state-of-the-art methods. We also show that transfer learning

on existing pre-trained CNN models provides further improvement over CNN models

build from scratch on mobility data. We also show that our loc2vec-CNN model en-

hanced with transfer learning achieves better results than other variants including our
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other proposal onehot-CNN and existing Markovian models.

In the second work, we focus on predicting the temporal behavior, particularly the

residence time, of mobile users at their relevant locations. In this work, we explored the

joint use of location history, arrival time, and the previous residence time to accurately

predict the residence time at the current location. We developed a model that integrates

all these parameters and uses our modified Moving-Average and CDF time-aided algo-

rithms that include the arrival time in the model. We run performance evaluation ex-

periments on a subset of the same mobility trace collected by Dartmouth College. Our

results show that adding high-granularity temporal information to the mobility model

allows to significantly improve the residence time prediction compared to state-of-the-

art methods. The prediction accuracy improvement for the dataset we work on has been

consistent and of about 20% on the average.

We also presented two linear mobility models for residence time prediction, namely

Linear Regression (LR), and Auto-Regression (AR). We run performance evaluation

experiments on two different WiFi mobility traces datasets made available through the

CRAWDAD project. Our results show that using linear regression-based learning algo-

rithms significantly improve the residence time prediction accuracy compared to state-

of-the-art methods, and achieve prediction errors in the order of seconds and minutes

for a large number of users.

Keywords: Location Prediction, Time Prediction, Location Embedding, Convolutional

Neural Networks, WiFi Mobility Traces.
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Résumé

De nos jours, les modèles de prédiction de la mobilité jouent un rôle important dans de

nombreux services basés sur la localisation, tels que la livraison de nourriture, la plan-

ification du transport et la publication d’annonces. La plupart des études précédentes

sur la prédiction de la mobilité ont travaillé sur des données générées par ordinateur

et se sont concentrées sur la modélisation mathématique principalement en raison du

manque de données de mobilité réelles. Ces études ont une capacité limitée à capturer

avec précision la mobilité humaine. Cependant, avec la démocratisation des données de

mobilité et la disponibilité de grands ensembles de données, de nombreuses activités de

recherche se sont orientées vers la prédiction de la mobilité basée sur l’analyse de traces

de données de mobilité réelles dans le but de construire des modèles réalistes capables

de capturer et de comprendre les comportements de mobilité humaine et aussi faire une

prédiction précise de mobilité.

Dans cette thèse, nous présentons les méthodes que nous avons proposées pour

prédire les comportements spatiaux et temporels des utilisateurs mobiles. Notre premier

travail se concentre sur la prédiction du prochain emplacement des utilisateurs mobiles

en analysant de grands ensembles de données de l’historique de leurs déplacements.

Nous utilisons des séquences des emplacements visités dans le passé, également ap-

pelées historique des emplacements, pour former un modèle de classification qui sera

utilisé pour prédire les futures emplacements. Contrairement aux techniques tradition-

nelles de prédiction de la mobilité basées sur les modèles markoviens, nous étudions

l’utilisation de techniques modernes d’apprentissage en profondeur telles que l’utilisation

de réseaux de neurones convolutifs (CNN). Inspiré par la technique d’intégration word2vec

utilisée pour la prédiction du mot suivant, nous présentons une nouvelle méthode ap-

pelée loc2vec dans laquelle chaque emplacement est codé en tant que vecteur, de sorte

que plus deux emplacements coexistent dans les séquences d’emplacements, plus leurs

vecteurs seront proches. En utilisant la représentation vectorielle, nous divisons les

longues séquences de mobilité en plusieurs sous-séquences et les utilisons pour former

des matrices de sous-séquences de mobilité sur lesquelles nous exécutons la classifi-

cation CNN qui sera utilisée plus tard pour la prédiction. Nous effectuons des tests et

des expérimentations approfondis sur un sous-ensemble d’une grande base de données
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de traces de mobilité réelle rendue publique via le projet CRAWDAD. Nos résultats

montrent que l’intégration loc2vec et la prédiction basée sur CNN améliorent con-

sidérablement la précision de la prédiction du prochain emplacement par rapport aux

méthodes d’état de l’art. Nous montrons également que le transfert d’apprentissage

des modèles CNN pré-entranés existants fournit une amélioration significative par rap-

port aux modèles CNN construits à partir de zéro sur les données de mobilité. Nous

montrons également que notre modèle loc2vec-CNN amélioré avec l’apprentissage par

transfert obtient de meilleurs résultats que d’autres variantes, y compris notre autre

proposition onehot-CNN et les modèles markoviens existants.

Dans le deuxième travail, nous nous concentrons sur la prédiction du comportement

temporel, en particulier le temps de résidence, des utilisateurs mobiles à leurs em-

placements pertinents. Dans ce travail, nous avons exploré l’utilisation conjointe de

l’historique d’emplacement, de l’heure d’arrivée et du temps de résidence précédent

pour prédire avec précision le temps de résidence à l’emplacement actuel. Nous avons

développé un modèle qui intègre tous ces paramètres et utilise nos algorithmes Moving-

Average et CDF modifiés et aidés par le temps qui incluent l’heure d’arrivée dans le

modèle. Nous menons des expériences d’évaluation des performances sur un sous-

ensemble de la même trace de mobilité collectée par le Dartmouth College. Nos résultats

montrent que l’ajout d’informations temporelles de haute granularité au modèle de mo-

bilité permet d’améliorer considérablement la prédiction du temps de résidence par rap-

port aux méthodes d’etat de l’art. L’amélioration de la précision des prédictions pour

l’ensemble de données sur lequel nous travaillons a été cohérente et d’environ 20% en

moyenne.

Nous avons également présenté deux modèles de mobilité linéaire pour la prédiction

du temps de résidence, appelés la régression linéaire (LR) et l’auto-régression (AR).

Nous menons des expériences d’évaluation des performances sur deux différents en-

sembles de données de traces de mobilité WiFi mis à disposition via le projet CRAW-

DAD. Nos résultats montrent que l’utilisation d’algorithmes d’apprentissage basés sur

la régression linéaire améliore considérablement la précision de la prédiction du temps

de résidence par rapport aux méthodes d’etat de l’art et permet d’obtenir des erreurs de

prédiction de l’ordre de quelques secondes et minutes pour un grand nombre d’utilisateurs.

Mots clés: Prédiction de l’Emplacement, Prediction de Temps, Intégration de l’Emplacement,
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Réseaux de Neurones Convolutifs, Traces de Mobilité WiFi.
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 الملخص
 توصیل مثل الموقع، على ةمرتكزال الخدمات من العدید في مھمًا دورًا الحركیة التنبؤ نماذج تلعب الحاضر، الوقت في

  .الإعلانات ونشر النقل وتخطیط ، الطعام طلبات

 النمذجة على وركزت الكمبیوتر بواسطة إنشاؤھا تم التي البیانات على الحركي التنبؤ حول السابقة الدراسات معظم عملت

 .بدقة الإنسان تنقل لالتقاط محدودة قدرة لدیھا الدراسات ھذه مثل. الحقیقیة التنقل بیانات نقص بسبب أساسي بشكل الریاضیة

 تنبؤ نحو البحثیة الأنشطة من العدید تحولت ،الضخمة البیانات مجموعات وتوافر التنقل بیانات دمقرطة مع ، ذلك ومع

 كذلكو الإنسان تنقل سلوكیات وفھم التقاط یمكنھا واقعیة نماذج بناء بھدف حقیقیة تنقل بیانات تتبع فحص على يً بنالم التنقل

   .دقیق لتنقلاتنبؤ  جعل

 یركز .المحمولة الھواتف لمستخدمي والزمانیة المكانیة بالسلوكیات للتنبؤ اقترحناھا التي الطرق نقدم ، الأطروحة ھذه في

 لتاریخ الكبیرة البیانات مجموعات تحلیل خلال من المحمول الھاتف لمستخدمي التالي بالموقع التنبؤ على الأول عملنا

 سیتم الذي تصنیف نموذج لتدریب ، الموقع سجل أیضًا تسمى والتي ، السابقة المواقع تسلسلات نستخدم نحن .تحركاتھم

  .المستقبلیة بالمواقع للتنبؤ استخدامھ

 العمیق التعلم تقنیات استخدام عن نتحرى فإننا ، ماركوفیان نماذج على القائمة التقلیدیة التنقل التنبؤ تقنیات عكس على

 تضمین تقنیة من مستوحاة loc2vec تسمى جدیدة طریقة نقدم ).CNNs( التلافیفیة العصبیة الشبكات استخدام مثل الحدیثة

word2vec تسلسل في معا موقعین ظھور زاد كلما حیث كمتجھ موقع كل ترمیز فیھا یتم التالیة، بالكلمة للتنبؤ المستخدمة 

  .متجھاتھما اقتربت كلما ،المواقع

تسلسلات  مصفوفات لتشكیل ونستخدمھا فرعیةتسلسلات  عدة إلى الطویلة التنقلتسلسلات  نقسم ،بالمتجھ التمثیل باستخدام

  .للتنبؤ لاحقاً استخدامھ سیتم والذي علیھا CNN مصنف بتشغیل نقوم التي التنقل

 مشروع خلال من للعامة المتاحة و الحقیقي التنقل تتبعل كبیرة بیانات قاعدة من جزء على مكثفة رباتجو  اختبارات نجري

Crawdad.  تضمین أن نتائجنا تظھر Loc2vec شبكة على القائم التنبؤ و CNN بالموقع التنبؤ دقة في كبیرا تحسنا یوفر 

 التحسین من مزیدا یوفر مسبقا المدربةو الحالیة CNN نماذج على التعلم نقل أن أیضا نظھر .الحدیثة بالطرق مقارنة التالي

 loc2vec-CNN نموذجنا أن أیضًا نظھر .التنقل بیانات على الصفر نقطة من یةبنالم CNN نماذج على التنبؤ دقة في

 ونماذج onehot-CNN الآخر اقتراحنا ذلك في بما الأخرى المتغیرات من أفضل نتائج یحقق التعلم بنقل المحسن

Markovian الحالیة.  

 .الشعبیة مواقعھم في المحمول الھاتف لمستخدمي ، الإقامة وقت وخاصة ، الزمني السلوك تنبؤ على نركز ،الثاني العمل في

 الإقامة بوقت بدقة للتنبؤ السابق الإقامة قتوو الوصول، وقت ،الموقع سجلل المشترك الاستخدام استكشفنا ، العمل ھذا في

  .الحالي الموقع في

 وقت تتضمن والتي CDF-ATو  MA-AT  المعدلةنا خوارزمیات ویستخدم العوامل ھذه كل یدمج نموذجًا طورنا لقد

 .النموذج في الوصول

 كلیة بواسطة اجمعھ تم يتال التنقل تتبع بیانات مجموعة نفس من فرعیة مجموعة على الأداء تقییم تجارب نجري 

 الإقامة بوقت التنبؤ بتحسین كبیر بشكل حیسم التنقل لنموذج الدقة عالیة زمنیة معلومات إضافة أن نتائجنا تظھر .دارتموث

  .الحالیة طرقالب مقارنة

  .المتوسط في٪ 20 وحوالي ثابتاً كان علیھا نعمل التي البیانات مجموعةل التنبؤ دقة تحسین

). AR( التلقائي والانحدار) LR( الخطي الانحدار وھما ، الإقامة بوقت للتنبؤ ةخطی تنقل اذجنم نوعین من أیضًا قدمنا

 مشروع خلال من المتاحة WiFi التنقل تتبع بیانات مجموعات من مختلفتین مجموعتین على الأداء تقییم تجارب نجري

CRAWDAD.  



 مقارنة الإقامة بوقت التنبؤ دقة كبیر بشكل تحسن الخطي الانحدار على القائم التعلم خوارزمیات استخدام أن نتائجنا تظھر

   .المستخدمین من كبیر لعدد والدقائق الثواني بترتیب التنبؤ أخطاء قوتحق ، الحالیة بالطرق

 

  WIFI تنقل آثار ،التلافیفیة العصبیة الشبكات ، الموقع تضمین ،الوقت تنبؤ  ،الموقع تنبؤ :الكلمات المفتاحیة
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CHAPTER 1

Introduction

Mobility is ubiquitous in people’s daily life. An individual might move from one place

to the other such as moving from home to workplace, from workplace to restaurant,

etc., and spend different amounts of time at each place.

With the rapid growth of positioning technology coupled with the ubiquitous use of

wearable devices such as smart phones, detecting and recording human movements

have become possible almost anywhere and at anytime with various levels of accuracy.

Since these movements usually contain spatial and temporal information, modeling

user’s mobility behaviors basing on this information would help a lot in making accurate

mobility prediction models. Predicting user mobility become a critical issue for loca-

tion based services. It is generally based on analyzing the history of their movements

and identifying repeating mobility patterns. It is a fundamental requirement for a wide-

range of application areas including urban management, location-based travel recom-

mendation system Ravi and Vairavasundaram (2016), Noulas et al. (2012b), Rodriguez-

Carrion et al. (2012), advertisement dissemination Aalto et al. (2004), leisure events

reports and notifications Marmasse and Schmandt (2000), as well as intelligent HVAC

systems Scott et al. (2011).

In this thesis, we focus on the prediction of mobility, and present our approaches to

predict individuals next location as well as residence time at a particular location.
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1.1 Motivation

1.1.1 Predicting the next location

One strong motivation that drives the research of mobility prediction is recommendation

service. By knowing user’s future location, many services related not only to their

current location, but also to their future destinations can be suggested to the user, such

as recommendation of new places or recommendation of nearby restaurants, shops,

transportations, etc.

1.1.2 Predicting the residence time

The ability to predict the arrival and residence time of mobile users at a particular place

is essential for the development of a wealth of new applications and services, such as

smart heating control, transportation planning or urban navigation. Regarding residence

time, it has been shown that users tend to spend most of their time in a few places with

temporal regularity. In Chon et al. (2012), Montoliu et al. (2013), it has been shown that

users spend 60% to 65% of their residence time in the top-1 place and between 80%

and 85% of residence-time in the top-2 places. This indicates that, in order to predict

the temporal behaviours, focus has to be put on predicting the residence time in places

which represents the majority of users’ time.

1.2 Problem Statement

Predicting user mobility accurately become a critical issue for location based services.

The main goal of this thesis is to build a model able to predict human mobility accu-

rately. In particular, we focus on the following two main research questions.

1. Which place a user is gong to visit next?

2. How long the user will stay at a specific place?
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1.3 Contributions

In this section, we present an overview of the main contributions of this thesis to the

mobility prediction.

• The locations representation

Traditional next location prediction algorithms are based on a symbolic represen-

tation of locations in a way they consider each location as a different symbol.

With such a representation, it is not easy to include more information that pro-

vides additional meaningful and helpful description for the location.

We propose a new location embedding technique called loc2vec in which each

location is encoded as a vector by taking into consideration several features.

Loc2vec embedding ensures that locations that are likely to appear close to each

other in location sequences (i.e. locations frequently seen the one next to the

other) are embedded into similar vectors such that the distance between these vec-

tors is small. A better prediction results can be achieved by integrating loc2vec

in the prediction model.

• The next location prediction

Traditional prediction models such as those based on Markov chains do not per-

form well with long sequences, and cannot build a robust prediction model that is

not highly dependent on context length. Markovian models have been extensively

used in the literature to predict next locations of user. The assumption is that the

probability of the next location of a user depends only on a sequence of limited

previous locations visited by the user. Usually, lower order Markov model, i.e.

1-order or 2-order is a popular configuration for such model. However, certains

people have a complex mobility behaviors and basing on a low sequences length

to predict the next location may not be sufficient.

We propose an innovative representation of mobility subsequences which we call
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Mobility Sequence Matrices which allows having a two-dimensional represen-

tation of mobility subsequences and thus can be used as inputs for a modern

deep learning techniques. The Mobility Sequence Matrices could be also seen

as similar to images and thus allow us to make use of Convolutional Neural Net-

works (CNNs) classifiers particularly those which have been pre-trained on image

datasets such as ImageNet. With the Mobility Subsequence Matrices representa-

tion, we propose two variants of CNN-based location prediction algorithms called

onehot-CNN and loc2vec-CNN which are based on onehot and loc2vec location

representations respectively.

• Residence time prediction

We focus on predicting the residence time at the current location of a particular

user. In the first part, we developed two new models named k-moving-average-

arrival-time (k-MA-AT) and k-CDF-arrival-time (K-CDF-AT) by combining the

location history, the arrival times and the previous residence time at each location,

and tested them against existing models such as k-moving-average (k-MA) and

k-CDF which do not take into consideration the arrival time in their model Song,

Deshpande, Kozat, Kotz and Jain (2006). Our work differs from Song, Desh-

pande, Kozat, Kotz and Jain (2006), Scellato et al. (2011) by the way we use the

joint temporal and spatial information to predict the residence time. In the sec-

ond part, we used regression-based learning algorithms to predict the residence

time of a particular user at the current location. Previous techniques based on

probabilistic models have not been able to perform such prediction accurately.

We specifically build models using Linear Regression (LR) and Auto Regression

(AR) by considering both linear combination of previous residence times and

other spatial or temporal features as well.
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1.4 Outline of thesis

The remainder of this thesis is organized as follows:

1. Chapter 2 contains background information about basic concepts, and presents a

study of several techniques on mobility prediction.

2. Chapter 3 presents a deep learning methodology as a classification model for next

location prediction. It also provides an overview on the most relevant contribu-

tions concerning the next location prediction topic.

3. Chapter 4 demonstrates our approaches and models for predicting the residence

time of mobile user at particular location.

4. lastly, we conclude our work and further work in Chapter 5
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CHAPTER 2

Background

In this chapter, we first define what we mean by location, then we introduce the traces

that we used to drive our simulations, next we present several prediction algorithms

that allow: (i) to predict future locations, i.e, where will a user go next, and (ii) to

estimate the residence time of a user at a particular location, i.e how long a user will

stay at a particular location. We also discuss the metrics that we used to evaluate the

performance of our prediction algorithms.

2.1 Location

We assume in this work that, at any given time, a user resides at a given discrete location.

We assume that the set of all possible locations are listed in a finite alphabet L =

{l1, l2, . . . , li, . . . , lm}. We represent the sequence of the locations visited by a user,

also called location history H , as a string of symbols. If the history has n locations,

H1:n = l1l2 . . . ln where li ∈ L for 1 ≤ i ≤ n. In our data, the location is expressed as

the access point (AP) with which the user device is associated (i.e., there are n different

access points).

2.2 Data collection

The dataset used in this work is a subset of WLAN traces extracted from Dartmouth

College Kotz and Essien (2005), Henderson et al. (2008) and made available through

the CRAWDAD project Kotz et al. (2009). In this dataset, mobility sequence is ex-

pressed in the form of (time, location) pairs for each user where location is taken to be

6



Table 2.1 A Sample of User Trace

Timestamp Location (AP)
1008253217 AcadBldg12AP2
1008253716 AcadBldg25AP4
1022867758 AcadBldg20AP1
1022868237 OFF

that of the access point (AP) to which the user is associated as shown in Table 2.1. This

dataset contains more than 543 different access points resulting in more than 543 dif-

ferent locations. As users move around these locations, they generate different mobility

sequences for different users which lengths vary widely from a user to another reaching

several thousand movements for some users.

Table 2.1 also shows a special location named OFF that represents the users depar-

ture from the network. The timestamp granularity is one second and measured as UNIX

timestamps which count the number of seconds since the epoch. It is to be noted that

the location of a user does not necessarily reflect their exact geographical position. It

rather indicates an approximation of that location to the one of the access point (AP)

that was serving the user at that moment. In this dataset, mobility does not necessarily

represent a physical movement of a user. In fact, it is possible that the users device

associates and re-associates with a number of different nearby access points without

physically moving. Typically, a user situated at boundary of the transmission range of

two APs or more may change association with each one of in response to varying radio

conditions even the user does not move.

2.3 Location Prediction

Location prediction has become an important task for many applications including ur-

ban management Lv et al. (2018), Jiang et al. (2018), Liu and Shoji (2019), trans-

portation recommender systems Rodriguez-Carrion et al. (2012), smartphone energy

optimization Chon et al. (2011), etc.

In general, location predictors can be classified into two categories: domain-independent
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and domain-dependent predictors. The domain-independent predictors consider only

the location history of a user to predict their next location whereas the domain-dependent

predictors may include additional information into the location predictor such as time,

geographical distance, social relationships, and check-in on location-based social net-

work Noulas et al. (2012a), Gonzalez et al. (2008), Cho et al. (2011). In Song et al.

(2004), the authors evaluated and compared the performance of several different loca-

tion predictors by using two popular families of domain-independent predictors, named

Order-k (O(k)) Markov Predictors, and LZ-based Predictors. The major advantage of

this category of domain-independent predictors is that they can be performed online, i.e.

by examining the already available history, extracting the k most recent locations, and

predict the next location. The sequence of the k most recent locations in the location

history is also called the current context.

2.4 Prediction algorithms

A large number of algorithms and techniques can be used to treat the prediction prob-

lems. In this thesis, we consider several prediction algorithms that we use for location

and time prediction.

2.4.1 Markov Predictors

Here we introduce an overview of the most popular approach used to solve the predic-

tion tasks. The O(k) Markov predictor assumes that the probability of visiting a partic-

ular next location depends on the current context defined as the sequence of the k most

recent locations in the location history. For instance, if we assume that the next location

depends on the current location only, then we refer to this model as the order-1 O(1)

Markov model. If the next location now depends on the sequence of the current and

the previous locations, we refer to the model as the order-2 O(2) Markov model, and

so on. The O(k) Markov model consists of a finite set of states, and transitions from

one state to another. The states represent the possible contexts, while the transitions

represent the possible locations that follow each context with their corresponding prob-
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abilities. More formally, in a location sequence S1:m = l1l2 . . . lm, the O(k) Markov

predictor predicts the next location lm+1 based on the sequence of the k most recent

locations c = lm−k+1 . . . lm−1lm in the history H1:n. The probability estimation for the

next location to be l ∈ L can be calculated as follows:

P̂k(l) =
N(cl,H)

N(c,H)
(2.1)

whereN(cl,H) denotes the number of times the sub-sequence cl occurs in the sequence

H . Given this estimate, we can predict the location l ∈ L with the highest probability,

that is, the location that most frequently followed the current context c in the history. If

c has never occurred before, the above equation evaluates to 0/1 = 0 for all l, and O(k)

Markov predictor can not predict any location.

Example: Consider H = l1l2l3l4l1l2l4l1l2l1l2l3l1l2 as the location history in this exam-

ple. We observe that H contains four distinct relevant locations l1, l2, l3, and l4. We

now want to derive O(2) Markov predictor. The current context (last 2 locations of the

history) l1l2 has seen 5 times in the location history H . The probabilities would be 1/5,

2/5, 1/5 for l1, l3, l4, respectively. Therefore, it predicts the location c with the highest

probability.

The order-k O(k) Markov model has many advantages as it is easy to implement

and requires a relatively small memory space. In fact, after each movement to the next

location, the predictor updates only one transition probability which make it so fast.

The order-k O(k) Markov model has however some limitations caused by the difficulty

to find the best value for k a priori as it varies from a situation to another. Note that

the order-k O(k) Markov predictor might also be unable to make a prediction when a

new pattern that has never been recorded before appears, mostly in case when a human

detour from their normal mobility behaviour, e.g., visiting new places, or old places

through new routes, etc. Hence, human’s next location will not match any previous

patterns, which would lead to make inaccurate prediction.

9



2.4.2 Moving Average Predictor

Moving Averages are most useful to predict a trend in a sequence of values. The order-k

average predictor takes a sequence of previous values and predicts that the next value of

the sequence is the average of the last k values in that sequence. Consider a sequence

of values v1, v2, . . . , vn. The order-k average predictor estimates the next value to be as

follows:

v̂n+1 =
1

m

m∑
i=1

vn−i+1 (2.2)

where m = min{k, n}.

2.4.3 CDF Predictor

The CDF predictor takes a set of values and computes the probability that the next value

is less than (or greater than) a given value.

Consider a sequence of values v1, v2, . . . , vn. Assume that V is the random variable

that outputs the actual values v1, v2, . . . , vn. The CDF predictor computes the probabil-

ity that next value, i.e. vn+1, is less than a given value v.

v̂n+1 = argmin
v

(Pr(V < v) ≥ p)

= argmin
v

(
1

n

n∑
i=1

I(vi < v) ≥ p

)
(2.3)

where I is the indicator function.

2.4.4 Linear Regression-Based Prediction

Linear regression assumes a linearity relation ship between data as shown in the Figure

2.1. In fact, it is a parametric model that computes a linear combination of the input vari-

ables using a vector of parameters. Given a set of n input variables x1, . . . , xn, and an

output value y, Linear Regression hθ aims at finding the set of parameters θ0, θ1, . . . , θn
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so that:

y = hθ(x1, . . . , xn) = θ0 + θ1x1 + · · ·+ θnxn (2.4)

where θj are the weights (also called parameters), and xj are the features (also called

variables) with j = 1, . . . , n. By assuming that x0 = 1 (this is the intercept term) and

putting x = (x0, x1, ..., xn)
T , and θ = (θ0, θ1, ..., θn)

T , Eq. (2.4) can be rewritten as:

y = hθ(x) = θ
Tx (2.5)

The linear regression model presented in Eq. (2.4) can be used as a method to make

prediction for a given set of input features xj with j = 1, . . . , n.

The model can be trained on a set of m instances x(1),x(2), . . . ,x(m) with the corre-

sponding labels y(1), y(2), · · · , y(m), respectively, where each vector x(i) is defined as

x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n )T . The aim of the model is find the best value of parameters,

called θ̂ and based on the training data, which will be used to predict output values, e.g.

ŷ(m+1), from a vector of input variables, e.g. x(m+1), as shown in the following:

ŷ(m+1) = hθ
(
x(m+1)

)
= θ̂Tx(m+1) (2.6)

Finding the best set of parameters θ̂ for function hθ with m training examples, i.e.

(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)), can be obtained by minimizing the square er-

ror function J(θ) defined as follows:

J(θ) =
1

2m

m∑
i=1

(
hθ(x

(i))− y(i)
)2

(2.7)

Finding the optimal parameter θ̂ that minimizes J(θ) can be done with a Gradient

Descent (GD) algorithm or using Normal Equation (NE) technique that we explain later

in the Section 2.5.

Figure 2.1 shows an example of a Linear Regression model hθ(x) with one input
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Fig. 2.1 The best fitting straight line after getting the optimal parameter θ̂.

variable x after getting an optimal value of the parameter θ̂ by training the model on a

set of m training examples, i.e, (x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)).

Figure 2.1 shows how the fitted line hθ(x) can be used as predictor by assigning a

value y to each input value of the variable x.

2.4.5 Auto Regression-Based Prediction

The Auto Regression (AR)-based prediction model is only based on building relations

between successive output values, the value to be predicted, say ŷn+1 is based on its

previous values yn, yn−1, . . . , y1. Therefore, an order-k autoregression model can be

written as follows:

yn = hβ(yn−1, yn−2, . . . , yn−k) + εn (2.8)
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where the output variable y at time n is defined by a function hβ of the k immediate past

values plus an error term for time n. Assume that hβ is a linear function and consider

the history of values y1, y2, . . . , yn. The order-k autoregression model hβ will be then

written as:

hβ(yi−1, yi−2, . . . , yi−k) = β0 + β1yi−1 + β2yi−2 + · · ·+ βkyi−k (2.9)

for i ∈ {k + 1, . . . , n}. This means that the next value is a linear weighted sum of the

k immediate past values.

By putting y = (yi−1, yi−2, . . . , yi−k)
T , and β = (β0, β1, . . . , βn)

T , Eq. (2.9) can be

rewritten as:

hβ(y) = β
Ty (2.10)

Also, by defining Yn−1 and yn as follows:

Yn−1 =



1 y
(1)
k · · · y

(1)
1

1 y
(2)
k+1 · · · y

(2)
2

...
...

...
...

1 y
(m)
n−1 · · · y

(m)
n−k


,yn =



y
(1)
k+1

y
(2)
k+2

...

y
(m)
n



we have:

yn = Yn−1β + εn (2.11)

Given a history of m observations (we take m = n − k for the sake of simplicity

and without loss of generality), β may be estimated by minimizing the squared error
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function J(β) as follows:

β̂ =argmin
β

J(β)

= argmin
β

(
1

2m

n∑
i=k+1

(yi − hβ(yi−1, . . . , yi−k))2
)

=argmin
β

(
1

2m

n∑
i=k+1

(yi − β0 − β1yi−1 − · · · − βkyi−k)2
)

=argmin
β

(
1

2m
(Yn−1β − yn)

T (Yn−1β − yn)

)
=argmin

β

(
1

2m
‖Yn−1β − yn‖2

)
(2.12)

After estimating the parameters β̂ by using the Gradient Descent (GD) or the Normal

Equation (NE) methods that we explain later in the Section 2.5, the predicted value can

be computed by Eq. (2.9) as follows:

ŷn+1 = hβ(yn, yn−1, . . . , yn−k+1) = β̂0 + β̂1yn + β̂2yn−1 + · · ·+ β̂kyn−k+1 (2.13)

Also, Eq. (2.13) can be rewritten, using the vector/matrix format, as follows.

ŷn+1 = hβ(yn+1) = β
Tyn+1 (2.14)

where yn+1 = (1, yn, yn−1, . . . , yn−k+1)
T , and β = (β0, β1, . . . , βk, βk+1)

T .

2.5 Minimizing Squared Error

2.5.1 Using Gradient Descent

Gradient Descent (GD) is an iterative method that is generally used for solving a min-

imization problem for general functions Ng (2013). In our case, GD can be used to

find and update values of a parameter θ (which could be substituted with α and β). .

Algorithm 1 shows how GD can be applied to find optimal values of θ (α and β). The
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Algorithm 1 Finding θ using GD algorithm.

1: . Let θold be a given initial value
2: θold ← 0
3: . Iterate until the difference between old value θold and the new value θnew is smaller

than the preset accuracy ε.
4: repeat
5: θnew

j ←− θold
j − λ ∂

∂θj
J(θ) (with j = 1, . . . , n)

6: until (|θnew − θold| < ε)

GD method starts by initializing the vector of parameters θ and iterates to update the

values of θ with the aim of minimizing the value of J(θ) as shown in the Figure 2.2 and

Figure 2.3. The iteration continues until reaching a preset accuracy ε. For a given value

θj (with j = 1, . . . , n) of the vector θ, the algorithm GD operates as the following:

θnew
j := θold

j − λ
∂

∂θj
J(θ) (2.15)

where λ is a positive number called the learning rate. It basically controls how big a

step will take with GD when updating θ as showed in Figure 2.4. We have:

∂

∂θj
J(θ) =

1

m

m∑
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
j (2.16)

Therefore, Eq. (2.15) can be rewritten as:

θnew
j := θold

j − λ
1

m

m∑
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
j (2.17)

Each time we change the parameters θ, we choose the gradient that reduces J(θ)

the most possible. With each step of gradient descent as shown in the Figure 2.2(b)

and Figure 2.3(b), the parameters θj come closer to the optimal values that will achieve

the lowest cost J(θ) which corresponds the best fitting straight line as shows the Figure

2.2(a) and Figure 2.3(a).

Eq. (2.17) is the main instruction in the GD algorithm. The updating of θ can be

performed in batch, mini batch or incremental modes thereby resulting in three variants

of GD algorithm: Batch GD, Mini-Batch GD, and Stochastic GD.
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1. Stochastic Gradient Descent

Instead of updating the parameter θ based on the whole training set, Stochastic

Gradient Descent (SGD) consider a single training example to update the param-

eter θ. It updates θ sequentially with every randomly picked training example

during the iteration until finding the best value of θ. The algorithm operates as

described in Algorithm 2.

Algorithm 2 Finding θ using SGD algorithm.
1: . Let θ be a given initial value
2: θ ← 0
3: . Iterate until the difference between old value θ and the new value θnew is smaller

than the preset accuracy ε.
4: repeat
5: θnew ← θ
6: for i← 1 to m do
7: θnew ← θ − λ

(
hθ(x

(i))− y(i)
)
x(i)

8: end for
9: until (‖θnew − θ‖ < ε)

2. Batch Gradient Descent

In Batch Gradient Descent (BGD), the m training examples are considered at

once for every iteration to update θ. Previous equations can be written using

matrix notation as the following. Eq. (2.7) can be rewritten, using matrix format,

as the following:

J(θ) =
1

2m

m∑
i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑
i=1

(
θTx(i) − y(i)

)2
=

1

2m
(Xθ − y)T (Xθ − y)

=
1

2m
‖Xθ − y‖2 (2.18)
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where X and y are defined as follows:

X =



1 x
(1)
1 · · · x

(1)
n

...
... . . . ...

1 x
(i)
1 · · · x

(i)
n

...
... . . . ...

1 x
(m)
1 · · · x

(m)
n


,y =



y(1)

...

y(i)

...

y(m)


Similarly, Eq. (2.15) can be rewritten, using the vector/matrix format, as follows.

θnew := θold − λ∇θJ(θ) (2.19)

where∇θJ(θ) is defined as:

∇θJ(θ) =
(
∂

∂θ1
J(θ), . . . ,

∂

∂θn
J(θ)

)T
(2.20)

Hence, Eq. (2.17) can be rewritten as:

θnew ← θold − λ 1

m
((Xθ − y)X)T (2.21)

Algorithm 3 Finding θ using BGD algorithm.
1: . Let θ be a given initial value
2: θ ← 0
3: . Iterate until the difference between old value θ and the new value θnew is smaller

than the preset accuracy ε.
4: repeat
5: θnew ← θ − λ 1

m
((Xθ − y)X)T

6: until (‖θnew − θ‖ < ε)

3. Mini Batch Gradient Descent

While the Batch Gradient Descent (BGD) method looks at every example in the

whole training set on every step to do a single update for a parameter θ , in
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Mini Batch Gradient Descent (M-BGD), on the other hand, only a subset b of the

training examples from the entire training set m is considered for every step to

update θ, cycling over the training set.

In this case, previous matrices X and y can be rewritten as follows:

X =



X{1}

...

X{i}

...

X{m−b+1}


,y =



y{1}

...

y{i}

...

y{m−b+1}


where X{i} and y{i} are defined as follows:

X{i} =



1 x
(i)
1 · · · x

(i)
n

1 x
(i+1)
1 · · · x

(i+1)
n

...
... . . . ...

1 x
(i+b−1)
1 · · · x

(i+b−1)
n


,y{i} =



y(i)

y(i+1)

...

y(i+b−1)



Algorithm 4 Finding θ using MBGD algorithm.
1: . Let θ be a given initial value
2: θ ← 0
3: . Let b be a given mini-batch size
4: . Iterate until the difference between old value θ and the new value θnew is smaller

than the preset accuracy ε.
5: repeat
6: θnew ← θ
7: for (i← 1; (m− b+ 1); b) do
8: θnew ← θ − λ1

b

((
X{i}θ − y{i}

)
X{i}

)T
9: end for

10: until (‖θnew − θ‖ < ε)

with i ∈ {1, b+ 1, 2b+ 1, 3b+ 1, . . . ,m− b+ 1}
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Fig. 2.2 Optimization of the function hθ1 by applying the gradient descent to the func-
tion J(θ1)

19



Fig. 2.3 Optimization of the function hθ0,θ1 by applying the gradient descent to the
function J(θ0, θ1)
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Fig. 2.4 The Learning rate λ
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2.5.2 Minimizing Square Error with Normal Equation

Rather than needing to run an iterative algorithm that takes many steps, multiple iter-

ations of GD to converge in to the global minimum, we can instead just solve for the

optimal value for θ analytically using the Normal equation method. So that in basically

one step the optimal value of the parameters θ can be easily computed analytically and

is given by :

θ̂ = (XTX)−1XTy (2.22)

Where (XTX) is an (n × n) symmetric matrix and assumed non-singular (invert-

ible).

If (XTX) not invertible (i.e, singular), we may need to use a pseudo-inverse to

compute the parameters θ (In python, numpy.linalg.pinv(a)).

2.6 Prediction metrics

The performance of the predictors listed in Section 2.4 can be evaluated using different

performance metrics. According to the study conducted in this thesis, we use two pop-

ular metrics that measures the performance of location prediction and time prediction.

2.6.1 Next-location prediction

Predictor should predict the next location after analysing the location history. By com-

paring the actual location with the predicted one, three possible outcomes for the next

location prediction:

• Correct location.

• Incorrect location.

• No prediction.

22



Predictors may encounter situations in which they can not make prediction espe-

cially for the first locations of the history and for new other locations that have not seen

before in the history (see Table 2.2). In our evaluation, we consider cases when predic-

tors are unable to make prediction as incorrect prediction. We define the Accuracy to

be the ratio between the number of correct next location predictions and that of all next

location predictions made as follows:

Accuracy =
Number of Correct Predictions

Number of Total Predictions
(2.23)

Table 2.2 shows an example of how we calculate the accuracy when applying the

order-1 O(1) Markov predictor to the sequence ababcab. The last value of the accuracy

in the table depicts the overall accuracy.

Table 2.2 Example of accuracy calculation for O(1) Markov predictor

History a b a b c a b
Prediction NP NP NP b a NP b
Accuracy 1/7 0/2 0/3 1/4 1/5 1/6 2/7

2.6.2 Time prediction

Since time is a continuous value, it is impossible to build a model able to predict the

exact time event. To evaluate a such models, the idea is to measure how much the

predicted time value differs from the actual time value. In this thesis, we evaluate the

performance of our time predictors using the Prediction Error metric defined as the

absolute value of the difference between the predicted time value v̂p and the real time

value v as follows.

Prediction Error = |v − v̂p| (2.24)
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2.7 Conclusion

In this chapter, we have presented several location and time prediction algorithms used

in this dissertation. We have also discussed the metrics that we used to evaluate the

performance of our prediction algorithms. In the next chapters, our contributions for

the next location prediction of users will be presented.
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CHAPTER 3

Next Location Prediction

3.1 Introduction

The ability to accurately predict the future locations of mobile users has become a

fundamental requirement for a wide range of location-based services in many areas in-

cluding urban management, travel recommendation systems Ravi and Vairavasundaram

(2016), Noulas et al. (2012b), Rodriguez-Carrion et al. (2012), advertisement dissem-

ination Aalto et al. (2004), leisure event reporting Marmasse and Schmandt (2000),

intelligent HVAC systems Scott et al. (2011), etc.

Predicting future locations of a user is generally based on analyzing the history of

their locations and identifying repeating patterns Gonzalez et al. (2008). Many tech-

niques have been used to achieve this. Markovian models are one of the models that

have been extensively used in the literature Song et al. (2004), Song, Kotz, Jain and He

(2006), Asahara et al. (2011), Gambs et al. (2012, 2010). Markovian models assume

that the next location of a user depends on the current context defined as a sequence

of the most recent locations visited by the user. According to the considered context

length, various accuracy values have been obtained for different situations. Finding the

optimal context length that achieves high accuracy values consistently has been one of

the main limitations the Markovian models.

With the recent advances in machine learning, new next location prediction algo-

rithms have been developed based on sequence modeling with deep neural networks Liu

et al. (2016), Mikolov et al. (2010), Wu et al. (2017). In these models, the locations vis-

ited by a user are considered as a sequence of elements. Prediction of the next location is
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thus seen as a pattern recognition problem which can be solved using a neural network.

For example, in the work presented in Liu et al. (2016), the authors proposed the use

of Recurrent Neural Networks (RNNs) for location modeling and solving the next lo-

cation prediction problem. In their model, they take into account temporal information

in addition to spatial information to further enhance their results.

With the recent advances in machine learning, new next location prediction algo-

rithms have been developed based on sequence modeling with deep neural networks Liu

et al. (2016), Mikolov et al. (2010), Wu et al. (2017). In these models, the locations vis-

ited by a user are considered as a sequence of elements. Prediction of the next location is

thus seen as a pattern recognition problem which can be solved using a neural network.

For example, in the work presented in Liu et al. (2016), the authors proposed the use

of Recurrent Neural Networks (RNNs) for location modeling and solving the next lo-

cation prediction problem. In their model, they take into account temporal information

in addition to spatial information to further enhance their results.

Neural Networks have been generally used efficiently in sequence modeling and

next element prediction in many application domains. For example, in Mikolov et al.

(2010), the authors developed a neural networks model for the prediction of the next

word in a text. In their approach Mikolov et al. (2013), they enhanced the performance

of their neural network model by making use of a new embedding technique which con-

sists in encoding words as vectors of real values. The proposed embedding technique

called word2vec allowed to achieve significant performance improvement as it ensures

that the distance between the vectors representing words reflects the closeness of these

words in text documents, i.e. words that tend to be next to each other frequently have

very close vector representations.

In our work, we follow a similar approach as word2vec and propose a new location

embedding technique that we use on locations instead of words. Similar to word2vec

philosophy, loc2vec embedding ensures that locations that are likely to appear close to

each other in location sequences (i.e. locations frequently seen the one next to the other)

are embedded into vectors such that the distance between these vectors is small.
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Next, contrary to existing approaches that use recurrent networks in mobility se-

quence modeling, and seen that convolutional architectures outperform recurrent net-

works for a wide range of mobility sequence modeling tasks and datasets Bai et al.

(2018), we make use of Convolutional Neural Network (CNN) to perform the predic-

tion of the next location. In our solution, we rely on Convolutional Neural Networks

(CNNs) and propose new prediction techniques called onehot-CNN and loc2vec-CNN

which are built by converting mobility sequences into matrices which we call Mobility

Sequence Matrices. These matrices could be seen as similar to images and thus allow

us to make use of CNN classifiers particularly those which have been pre-trained on

ImageNet datasets. The use of pre-trained CNN models has achieved significant results

in various application domains such as sequence modeling Bai et al. (2018), malware

binary detection Yue (2017), action recognition Laraba et al. (2017), Minh et al. (2018),

sounds classification Boddapati et al. (2017), etc. compared to CNN models established

from scratch on the specific data of the considered domain.

The main contributions of this work are the following:

• Traditional next location prediction algorithms are based on a symbolic repre-

sentation of locations in a way they consider each location as a different sym-

bol. With such a representation, it is not easy to include more information that

provides additional meaningful and helpful description for the location. The pro-

posed loc2vec location embedding technique, however, represents each location

as a vector by taking into consideration several features. In our case we consider,

to represent locations as vectors, the surrounding locations, i.e. previous and next

location. A better prediction results can be achieved by integrating loc2vec in the

prediction model.

• Traditional prediction models such as those based on Markov chains do not per-

form well with long sequences, and cannot build a robust prediction model that is

not highly dependent on context length. We propose an innovative representation

of mobility subsequences which we call Mobility Subsequence Matrix which al-

lows having a two-dimensional representation of mobility subsequences and thus
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can be used as inputs for a CNN model that has been pre-trained on large image

datasets such as ImageNet Russakovsky et al. (2015). With the Mobility Subse-

quence Matrices representation, we propose two variants of CNN-based location

prediction algorithms called onehot-CNN and loc2vec-CNN which are based on

onehot and loc2vec location representations respectively.

• We conduct extensive simulations on large real mobility traces from the CRAW-

DAD project Kotz and Essien (2005), Henderson et al. (2008) and compare our re-

sults with those obtained by means of the prediction techniques based on Marko-

vian models. Experimentation results show that we achieve a stable and higher

prediction accuracy compared to those proposed in the literature.

The remainder of the chapter is organized as follows. In Section 3.2, we provide an

overview of the main contributions on solving the next location prediction problem. In

Section 3.3, we present our prediction model and algorithms. In Section 3.4, we evalu-

ate the performance of our algorithms and discuss the obtained results. In Section 3.5,

we conclude the chapter by summarizing our findings.

3.2 Related Work

A variety of algorithms for next location prediction have been proposed in the liter-

ature. Most algorithms focused on Markovian models (e.g. Song, Kotz, Jain and He

(2006), Gambs et al. (2012)). These models, called Order-k (O(k)) Markovian models,

assumed that the probability of visiting a particular next location depends on the current

context defined as the sequence of the k most recent locations visited. The principle of

such models is based on parsing the location history looking for locations that follow

all occurrences of the current context (i.e., the sequence of the k most recent locations)

in the history, then predict the most frequently one as the next location.

In Song et al. (2004), the authors evaluated and compared the prediction accuracy

of several O(k) Markovian location predictors with the goal of enhancing the initial

Markovian model with a simple fallback mechanism by decrementing the order of the
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model to k − 1, then k − 2, ..., in case the searched context has not been seen before

in the location history. In their experiments, they found that lower order Markov pre-

dictors provide more accurate results compared to higher order ones. In particular, the

O(2) Markovian model with fallback has been shown to be the best overall predictor. In

Song, Kotz, Jain and He (2006), the authors proposed a time-aided mechanism where

each state of the predictor was a pair of location and arrival time (location, time) with

the aim of improving the spatial-only Markov location predictor. They considered a

quantized time (one minute and one-hour buckets) for the Markov time-aided model

to obtain a finite set of states. They found that the prediction accuracy of one-hour

time quantization is better than that of one-minute. They also found that the original

Markovian model that does not include temporal information provided a better accu-

racy. They explained their findings by the fact that adding a temporal information in

the Markov model increases the number of states. As the number of states increases,

the number of the set of next location candidate decreases. This leads to increase the

incorrect prediction cases.

In Gambs et al. (2012), the authors proposed a next location prediction algorithm

called n-MMC, by using the Mobility Markov Chains (MMC) presented in Gambs et al.

(2010). This model incorporates the n previously visited locations to predict the next

location of users. The evaluation over different datasets showed that a high accuracy

for the next location prediction is obtained with n = 2. Similar to the results obtained

with Order-k Markovian models, the authors showed that having a context larger than

2 elements did not improve the accuracy of the prediction.

The previously mentioned models have many advantages. They are easy to imple-

ment and do not require large memory space as the predictor updates only one transition

probability after each movement from one location to another. These models have how-

ever some limitations caused by the difficulty of a priori finding the best value for k as

these vary from a situation to another. With a large value for k in a Markovian model,

chances of encountering a pattern that has been seen before in the location history are

slim and thus a prediction cannot be done without performing a fallback into lower
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values for k. In Scellato et al. (2011), the authors used delay embedding technique to

extract similar patterns from time series. The proposed algorithm, called Nextplace,

used the previous arrival and residence times of a user at each of their relevant places

to predict the next relevant place. In their proposal, they independently predict the ar-

rival time and the residence time of a user at a given location. The prediction of arrival

time (resp. residence time) is based on the similarity existing between the current ar-

rival time pattern (resp. residence time pattern) and the previous arrival times patterns

(resp. residence times patterns) of the same location in the location history. Then, they

used the predicted values of arrival and residence times of a user at each of their rel-

evant places to predict the next relevant place. Nextplace can only predict the user to

be or not to be in one of his relevant places. Compared to Markov predictor, NextPlace

model considers the similarity between sequences of arrival time (resp. residence time)

without taking into account information about the previously visited locations. They

considered Nextplace model as a location-independent predictor.

In Baumann et al. (2013b), the authors presented a prediction model in which they

ran several parallel predictors and performed voting to select the best predictors. In

their proposal they incorporated more information to the Markovian model (the time

of the day, the day of the week, etc.). They derived several prediction algorithms by

using different combinations of spatial and temporal features. The authors proposed an

algorithm, called Major, which predicts the next location of the user based on a voting

processes combining the outputs of the several prediction algorithms used.

In Wu et al. (2017), the authors treated the problem of next location prediction as

a classification problem. They proposed a solution based on Long Short Term Mem-

ory (LSTM) neural networks which is a class of Reccurent Neural Networks (RNNs).

The authors proposed a spatial-temporal-semantic neural network algorithm for loca-

tion prediction called STS-LSTM. First, the algorithm generates a discrete location

sequences from the whole trajectory by using a spatial-temporal-semantic feature ex-

traction algorithm (STS). Then, a Long Short-Term Memory (LSTM) neural network

model is constructed to make further prediction.
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Our proposal differs from the aforementioned work on two aspects. First, we consider

a CNN architecture as opposed to RNN, which allows us to take advantage of transfer

learning from pre-trained CNNs. Second, our work makes use of location embedding

according to the loc2vec technique which contributes in improving the quality of learn-

ing and prediction.

This work also considers the location prediction as a classification problem, but it

differs from our method by the way we integrate a new location embedding algorithm

to represent the locations. It also differs from our solution by the way we apply the

CNN-classification based on a transformation of the embedded location sequences to

images.

3.3 Proposed Approach

We assume in this work that, at any given time, a user resides at a given discrete location.

We assume L is the set of all discrete locations where L = {l1, l2, . . . , li, . . . , ln}. In

our data, the location is expressed as the access point with which the user device is

associated (i.e., there are n different access points). Our aim is to answer the question:

where will a user go next. First, we describe the proposed approach, illustrated in

Figure 3.1, which contains three components as follows:

1. Representation phase: In this phase, we perform location embedding which con-

sists in representing each location li ∈ L by a vector vi of length l where vi is

defined as vi = (vi1, vi2, . . . , vil)
T . For a sequence of successive user locations,

we consider sequence embedding by replacing each location in the sequence by

its corresponding vector. After that, we divide the embedded location sequence

(i.e. a sequence of vectors vi) into multiple sub-sequences with fixed length k.

Finally, each subsequence can be represented as a matrix and thus can be seen

as an image. We give a label for each subsequence (or image), the label is the

next vector in the location embedding sequence. For example: consider a loca-

tion sequence of a given user as l1l2l3l4l5, the corresponding embedding will be

31



Fig. 3.1 Overview of next location prediction based on CNN.

v1v2v3v4v5. If we take a window length of k = 2 to construct sub-sequences,

we get the following sub-sequences (in the case where we do not take overlap-

ping sub-sequences) v1v2 and v3v4. We provide a label for each subsequence

in the following way: the label of a given sub-sequence is the embedding vector

representing the next location in the original sequence, i.e. for the sub-sequence

v1v2 the label will be v3 and for the other subsequence v3v4 the label will be v5.

Note that sub-sequencing can also generate overlapping sub-sequences as shown

in Table 3.2.

The output of this phase is a set of images classified according to their next loca-

tion labels. We divide the set of images assigned to each label into two parts. We

use the first part to train the model and the second part to test it.

2. Training phase: we propose to use a CNN to train an image classification model

that will be used to predict future locations.

• Pre-training: rather than starting from a model with a random configuration
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of neural network parameters, we can instead start with parameters of an

already trained neural network on a specific task with a very large number

of examples Yue (2017), Boddapati et al. (2017), Laraba et al. (2017), Singh

et al. (2017). In this phase, deep architectures will be trained on a large

dataset of images like ImageNet Russakovsky et al. (2015) using powerful

machines with the aim of initializing the network weights to be used for

the next phase. This pre-training phase is optional and we evaluate later in

this work the improvement while using pre-training. The pre-training phase

results in a neural network composed of an input layer, middle layers, and

an output layer with the weights set for the connection between the elements

of the neural network. The output layer represents the number of classes in

the classification problem to be solved.

• Training (fine-tuning): by changing the number of classes of the output layer

of the pre-trained model to match the number of next locations, we fine-tune

the model by considering a part of images set, i.e the training images set.

• Testing: we test our model by considering the second part of images set.

3. Deployment: the obtained CNN can be used to predict the next location of users

by finding the corresponding label (which represents the next location) from a

given sub-sequence of user history locations.

3.3.1 Embedding Methods for Location Representations

Embedding methods, which correspond to representing a given piece of data by a vector

of reals, are being extensively used as inputs to machine learning algorithms, especially

in the deep learning community Mikolov et al. (2013), LeCun et al. (2015), Bengio et al.

(2013). Several embedding methods have been proposed in the literature Camacho-

Collados and Pilehvar (2018) with one-hot embedding and word embedding being the

most popular ones. We consider both methods of embedding with our proposal based

on pre-trained CNNs which we name one-hot and loc2vec.
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3.3.1.1 One-Hot Representation

In the one-hot embedding, a given location li ∈ L is represented by a vector vonehot
i

which the dimension l is equal to n where l1 is embedded as vonehot
1 with vonehot

1 =

(1, 0, . . . , 0)T , l2 is embedded as vonehot
2 with vonehot

2 = (0, 1, . . . , 0)T , and ln is embed-

ded as vonehot
n with vonehot

n = (0, 0, . . . , 1)T . In general, a location li is represented by a

vector vonehot
i = (v1, v2, . . . , vj, . . . , vn)

T where:

vj =

 1 if i = j

0 otherwise
j ∈ {1, . . . , n}

It is a way to represent locations li as vectors vi by taking all vocabulary of loca-

tions L = l1, l2, . . . , ln, put them in a certain order, and then use one-hot encoding to

transform each location li to a vector vi of length n where each vector vi consisting of

a single value of 1 at the i-th index of the vector and zeros in all other indexes. For

example, given n vocabulary of locations, the vector v1 = (1, 0, 0, . . . , 0, 0) represents

the first location and the vector v2 = (0, 1, 0, . . . , 0, 0) represents the second location

and so on.

3.3.1.2 loc2vec Representation

The previously described representation one-Hot does not take context into consider-

ation. Therefore, we propose another representation inspired from word2vec Mikolov

et al. (2013) to take context into account which we call loc2vec. In order to find the

best embedding, loc2vec uses a similar approach as word2vec which consists in using a

neural network with a single hidden layer as shown in Figure 3.2 to find the best vector

corresponding to a given location. The basic idea behind loc2vec is to attribute to each

location li a vector vloc2vec
i such as locations that have the same neighboring locations

in sequences will have similar embedding. For example, given a hypothetical sequence

of locations l1l2l3l4l1l5l3, the locations l2 and l5 are surrounded by the same locations

l1 and l3. Therefore, the locations l2 and l5 will have similar vectors vloc2vec
2 and vloc2vec

5
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respectively.

We propose to build our loc2vec neural network on locations and their surrounding

locations (i.e previous and next locations in the mobility sequence). For a given location

li the surrounding locations are all location lj defined such that j ∈ {i−c, . . . , i−2, i−

1, i+ 1, i+ 2, . . . , i+ c} where c is the length of the context, which delimits how long

the surrounding context is taken around the location i. The loc2vec neural network is

built by training it on various pairs (li, lj). We show in Table 3.1 some of the training

examples (location pairs) taken from location sub-sequence of length equal to 9 and a

context c of length equal to 2.

Table 3.1 Training examples extracted from a sub-sequence with the loc2vec neural
network model

Sub-sequence of locations Training examples (li, lj)
l1 l2 l3 l4 l5 l6 l7 l8 l9 (l1, l2), (l1, l3)
l1 l2 l3 l4 l5 l6 l7 l8 l9 (l2, l1), (l2, l3), (l2, l4)
l1 l2 l3 l4 l5 l6 l7 l8 l9 (l3, l1), (l3, l2), (l3, l4), (l3, l5)

. . . . . .
l1 l2 l3 l4 l5 l6 l7 l8 l9 (l9, l7), (l9, l8)

The main goal of loc2vec is to represent a function that find the best association

for each input location li with its corresponding output location lj . To construct the

hidden layer of the loc2vec neural network, we use all pairs (li, lj). To achieve this, we

consider the one-hot representations vonehot
i vonehot

j of locations li and lj .

In this work, we propose two ways of generating sub-sequences from the locations

sequence: non overlapping and overlapping sub-sequences. In the overlapping case, we

generate an overlapping sub-sequences of fixed length s from the locations sequence

by sliding a window of length s across the locations sequence. For example, given a

sequence of locations l1l2l3l4l5l6l7l8, a sub-sequence of length 5 with an overlapping of

2 locations can be generated as follows: {l1l2l3l4l5, l4l5l6l7l8}. In this work we focus

on a sub-sequences of length s = 32 consecutive locations shifted by 15 locations

at a time. In non-overlapping case, we generate sub-suequences of length s from the

locations sequence while shifting the starting point by s consecutive locations at each
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step. In this work, we focus on a sub-sequences of s = day consecutive locations.

This means that the length of sub-sequences is variable and depend on the number of

locations visited at each a day period.

Fig. 3.2 Architecture of the training loc2vec neural network.

Figure 3.2 shows that loc2vec is a neural network with an input layer and a single

hidden layer.

In that Figure, vi represents the one-hot vector corresponding to the input location

li in the training example and {vi−C , . . . , vi−1, vi+1, . . . , vi+C} are the one-hot vectors

corresponding to the output locations in the training example. Both the input and the

outputs are represented as a one-hot vectors of length n.

The goal of loc2vec is to find a representation vector vloc2vec
i for each location li. By
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contrast to one-hot where the representation vector vonehot
i of location li is of length n,

the length of the loc2vec representation vector vloc2vec
i can be equal to a value m pre-set

in advance and considered as a parameter which is the number of nodes in the hidden

layer of the loc2vec neural network. To find the values of the vector vloc2vec
i , loc2vec

consists in constructing a n×m matrix W, called the weight matrix, where the ith row

of the matrix W represents the weights of location li. We have:

vloc2vec
i = WTvonehot

i (3.1)

where WT is the transpose of matrix W. The elements of the matrix W are constructed

by applying back-propagation and stochastic gradient descent algorithms by consider-

ing the set of all inputs li ∈ L (represented by vonehot
i ) and the corresponding outputs lj

(represented by vonehot
j ) for each considered li.

3.3.2 Convolutional Neural Network for Next Location Prediction

Very good results are achieved using Convolutional Neural Networks (CNNs) in many

areas in the literature Taigman et al. (2014), Krizhevsky et al. (2012), Szegedy et al.

(n.d.), LeCun et al. (2015). In this work, we propose to use these powerful neural net-

works for next location prediction of users based on learning from previous mobility

sequences. CNNs have a great power in learning patterns and can make correct predic-

tion even with long sequences by generating images from Mobility sequences. We shift

toward using images in our representation to exploit standard architectures of images

which are already trained on a large dataset of images like ImageNet Russakovsky et al.

(2015).

The general architecture of a CNN is presented in Figure 3.3. A CNN is typically

composed of a Convolution layer, Max-pooling layer and two Fully Connected lay-

ers. Depending on the way these layers are superposed, various architectures can be

constructed providing different performance results for different application domains.

A CNN takes various types of inputs and provide results as outputs. Depending on
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Fig. 3.3 Convolutional Neural Network (CNN)

the structure and the encoding of input, different results may be obtained.

The following subsection gives some details about these layers.

3.3.3 CNN layers

3.3.3.1 Convolution layer

 

Fig. 3.4 Convolution layer.

The Convolution operation consists of sliding on image/tensor a small rectangular

patch of learnable weights. These patches, called filters or kernel, are used to detect

local features in images/tensors (see Figure 3.4). More formally, the convolution op-

eration ∗ between an image I having C channels and a filter K having the dimension

k1 × k2 ×Din is given by the following formula:
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(I ∗K)(i, j) =

k1−1∑
n=0

k2−1∑
m=0

Din−1∑
d=0

I(i− n, i−m, d)K(n,m, d) (3.2)

where (I ∗K)(i, j) is a value that measures the similarity between the filter K and

an image region during the filter sliding. Hence, the matrix I ∗K, called feature map,

resumes all activations between the filter and image I . In practice, convolution layer

applies Din different filters on input tensor which yields an output tensor composed of

Dout feature maps.

Fig. 3.5 ReLU activation function.

To increase the expressiveness of the CNN, an activation function is applied after the

convolution Goodfellow et al. (2016). Recently, Rectified Linear Unit (ReLU) is used

as the standard activation function on CNN standard architectures Krizhevsky et al.

(2017). ReLU is defined by the following formula:
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ReLU(z) =max(0, z) (3.3)

where z here is a value from the convolution output tensor. Therefore, the applica-

tion of RelU function enforce all values calculated by the convolution to be positive or

zero.

3.3.3.2 Pooling layer

The Max-Polling layer is used to reduce the spatial size of the inputs while preserving

the depth of the input tensor (Din = Dout). The pooling divides every feature map of

the input tensor in non-overlapping rectangular regions. Then, values of each region are

reduced to one value using a specific function. For example, max-pooling, used exten-

sively recently, produce the maximum value of each region. In Figure 3.6, max-pooling

is applied to a tensor having Din = 1. However, if Din > 1 then max pooling is applied

for each feature map Krizhevsky et al. (2017), Szegedy et al. (2015), He et al. (2015).

3.3.3.3 Fully connected layer

After several stages of constructing features by alternating convolution and pooling lay-

ers, fully connected layers are used as the final layers in the CNN architecture Krizhevsky

et al. (2017). The fully connected layers are used to implement the decision component

by combining all input tensor values to produce a vector that estimates the class of the

input image.

3.3.4 CNN Training

CNN is trained using an optimization algorithm in order to minimize a Loss function

in respect to the learnable weights W of the network function g. This Loss function
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Fig. 3.6 Max-pooling layer.

represents the error of the network output ŷi = g(Ii,W ) compared to the ground truth

label yi for all N examples (Ii, yi) in the training set. This loss can be written as

following:

Loss =
N∑
i=1

Lossi(ŷi, yi) =
N∑
i=1

Lossi(g(Ii,W ), yi) (3.4)

Lossi(ŷi, yi) = −
C∑
i=1

yilog(ŷi) (3.5)

To minimize this loss function, gradient descent calculate the gradient ∇WLoss of

the loss function in respect to all learnable weights W in the network. This gradient

is calculated using backpropagation algorithm. Then, network weights are updated as

following:
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W = W − α∇WLoss (3.6)

Where α is a hyper-parameter called learning rate. α controls the size of each updating

gradient descent step.

As shown in Table 3.2, we propose to encode inputs as Mobility Subsequence Matri-

ces where each matrix is composed of a mobility subsequence of length k as explained

in Section 3.3. Each element of the mobility sub-sequence (i.e. each vector vi of the

Mobility Subsequence Matrix) is represented by one-hot embedding and loc2vec em-

bedding resulting in two methods that we refer to as one-hot-CNN and loc2vec-CNN

respectively.

Finally, an image and its label are generated from each Mobility Subsequence Ma-

trix to be used by CNN. Both images and their labels (see Table 3.2) are used to train a

CNN model as well as making predictions. Hence, our model will take an image as an

input and will output a label which correspond to the next location to be visited.

It is important to note that our loc2vec-CNN construction ensure a spatial locality in

the image generation to get closer to the spatial structure of real images. Indeed, each

row i of the image corresponds to the encoded vector of location li which is itself com-

puted using a neural network based on the surrounding locations (see Section 3.3.1).

The vectors corresponding to rows after and before the row i are computed based on

neighbouring surrounding locations which guarantee the spatial locality.

The success of using a given CNN solution depends on the architecture and also on

the availability of pre-training. It has been shown that a CNN with pre-training gener-

ally provides significantly better results than a randomly initialized CNN. We consider

using existing pre-trained CNN models that have been constructed based on a large

image dataset like ImageNet (e.g. Inception Szegedy et al. (2016), ResNet He et al.

(2016), SequeezeNet Iandola et al. (2016), DenseNet Huang et al. (n.d.), etc.)) which

showed significant results in various application domains Yue (2017), Boddapati et al.

(2017), Laraba et al. (2017), Singh et al. (2017), Minh et al. (2018). The rationale of
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relying on images is two-fold: (i) using a pre-trained network is generally better than a

randomly initialized one even if the domain applications are different (e.g. environmen-

tal sound classification Yue (2017)), and (ii) there is a similarity between our Mobility

Subsequence Matrices and images as there is proximity between neighboring pixels in

images and neighboring location in a mobility subsequence.

In our solution, we choose to rely on SequeezeNet architecture Iandola et al. (2016)

which is a CNN that has been trained on very large image datasets. In our solution,

we use a pre-trained CNN model that we fine-tune by further training it on a subset of

Mobility Subsequence Matrices (as inputs) and their corresponding labels (as outputs).

Table 3.2 Generating Mobility Subsequence Matrices and their corresponding labels
from a mobility sequence according to a sliding window of length k = 3

Sequence of vectors Mobility Sub-sequence Matrix Label
v1v2v3 . . .vn (v1,v2,v3)

T v4

v1v2v3v4 . . .vn−1vn (v2,v3,v4)
T v5

. . . . . . . . .
v1 . . .vn−3vn−2vn−1vn (vn−3,vn−2,vn−1)

T vn

3.4 Performance Evaluation

3.4.1 Effect of loc2vec Parameters Choice

We wrote simulation code in Python and used Gensim Rehurek and Sojka (2010) mod-

ule to implement our location embedding approach loc2vec. We start by taking a subset

of our dataset which we use for the generation of loc2vec embedding for locations. On

this subset, we run loc2vec training algorithm by considering all pairs extracted from

each mobility subsequence by considering both overlapping and non overlapping sub-

sequences. We set the length of the context c = 3, i.e. for each location in the mobility

sequence we consider its one and three-hop neighboring locations.

In the overlapping case, we choose to reduce the length of the initial mobility se-

quences taken from the considered subset by splitting long sequences into subsequences

of equal length s = 32. However, for the non-overlapping case, we reduce the length
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of sequences by splitting long ones into subsequences of lengths covering mobility se-

quence of one day.

In Figure 3.7, we evaluate the effect of loc2vec construction on the performance

of the final prediction algorithm that is based on CNN, called loc2vec-CNN. We use

the accuracy metric defined as the ratio between the number of correct next location

predictions and that of all next location predictions made. In the evaluation of the effect

of loc2vec parameters choice, we consider the following parameters: (i) the embedding

vector length m, and (ii) the length of the subsequences s obtained from the splitting

of long sequences. We consider the following values (m, s) = (50, 32), (10, 32) and

(10, 1 day), with the two first values concerning the overlapping case and the latter one

concerning the non-overlapping one. We show that non-overlapping loc2vec-CNN with

a variable subsequences length (s=1 day) provides the best performance over the other

considered cases. The reason is that constructing subsequences according to a certain

logic (activities during a day) captures better the relations between user movements and

activities than taking fixed length subsequences.

We also show that having relatively shorter loc2vec vectors is likely to be more

accurate than having longer ones as loc2vec-CNN (m=10, s=32) provides better results

than a loc2vec-CNN (m=50, s=32). By reducing the length m of location vectors, each

vector will contain more information and the mobility subsequence matrix generated

from each k vectors may show more patterns.

We also show in Figure 3.7 that the accuracy of the combination of loc2vec with

CNN is affected by the choice of parameter k which determines the length of the context

that is taken into account for the prediction of the next location. We show that increasing

the length of k decreases the accuracy of the prediction which is in concordance with

early results on location prediction based on O(k) Markovian models.

The accuracy, however, decreases whenever the length of the window k increases for

the three models. For example, with loc2vec-CNN(m=10, s=1 day) model the accuracy

decreases by more than 9% between the two values of k = 8 and k = 32, and decreases

of about 17% between the two values of k = 2 and k = 32.

44



This means that a high value of the window k does not necessarily improve the

model because it becomes difficult to find repeating patterns that would help predicting

the next location correctly which is a similar behaviour observed with O(k) Markovian

Predictor when k is large.

Fig. 3.7 Comparison of the three variants of loc2vec-CNN model according to the av-
erage accuracy metric with various subsequence lengths s and embedding vector sizes
m.

3.4.2 Evaluating the Performance of CNN-based Predictions

We evaluate the performance of our CNN-based location prediction proposal, we choose

two variants for location encoding: one-hot and loc2vec, thereby resulting in two differ-

ent methods which we call onehot-CNN and loc2vec-CNN respectively. We proceed as

the following. We construct a subset by randomly choosing different users whose mo-

bility sequences vary widely in length with a minimum of 2500, a medium of 6000, and

a maximum of 13500 location sequences. For each user, we split the location sequence

into two halves: we use the first half to build and train the model, and the second half as
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a live data to test the performance of our predictor. The training of the proposed CNN

model is based on Stochastic gradient descent algorithm with the following hyperpa-

rameters: (learning rate = 0.001, momentum = 0.9, batch size= 20, number of epochs =

20).

We compare the performance of our models loc2vec-CNN and onehot-CNN with

O(k) Markov predictor, which is one of the most popular next location predictors of the

literature.

In Figure 3.8, we evaluate the performance of three models: loc2vec-CNN, onehot-

CNN, and O(k) Markov, according to different context lengths by varying the value of

k from 2 to 32. We show that the loc2vec-CNN provides a much higher accuracy com-

pared with onehot-CNN for all the values of k. We also show that loc2vec embedding

improves the accuracy of about 40% on the average compared to onehot representation.

We also show that low-order loc2vec-CNN models worked as well or better than

high-order ones, and better than both onehot-CNN and O(k) Markov models. Figure 3.8

shows that O(k) Markov is better than onehot-CNN only when k is small. It also shows

that increasing the value of k in both loc2vec-CNN and onehot-CNN provides a smaller

decreasing in the accuracy compared to the O(k) Markov model which exhibits a very

high decreasing in the accuracy. For example, with O(k) Markov, the average accuracy

decreases by more than 30% between the two values of k = 8 and k = 32 whereas with

our models onehot-CNN and loc2vec-CNN, it only decreases by less than 4% and 7%

respectively for the same values of k.

This means that CNN models are able to keep somewhat the accuracy even with a

high order of context k due to its efficiency in learning patterns contrary to traditional

mobility prediction models such as O(k) Markovian which are based on examining the

history of sequence to predict the next location.

In Figure 3.9, we plot comparison results of 20 users with a context length k = 8,

a sequence length s corresponding to one day, and a loc2vec embedding vector size

m = 10. We show that the accuracy varies from a user to another for models loc2vec-
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Fig. 3.8 Comparison of loc2vec-CNN, onehot-CNN and O(k) Markov, according to the
average accuracy metric.

Fig. 3.9 Comparison of loc2vec-CNN, onehot-CNN and O(k) Markov according to the
accuracy metric for every user.
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CNN, onehot-CNN, and O(k) Markov. The results show that loc2vec-CNN provides

the best accuracy compared to the other models for almost all considered users. Only in

four cases, O(k) Markov provided slightly better accuracy compared to loc2vec-CNN.

Fig. 3.10 Effect of pre-training on the performance of loc2vec-CNN.

Table 3.3 Average accuracy with and without fine-tuning for five pre-trained models

Models Fine Tuning From Scratch
SqueezeNet 71.78% 67.54%
Inception 75.31% 69.76%
AlexNet 79.97% 71.14%

DenseNet 79.87% 72.52%
ResNet 79.92% 72.90%

In Figure 3.10 and Table 3.3, we compare the average accuracy of five existing

CNN models by training the whole network from scratch, and by fine-tuning these

models using transfer learning from existing popular pre-trained models. We considered

the following models: SqueezeNet Iandola et al. (2016) (the model used to obtain the

previous results in this work), Inception Szegedy et al. (2016), AlexNet Krizhevsky
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et al. (2012), DenseNet Huang et al. (n.d.) and ResNet He et al. (2016). We show that

starting from an already trained CNN model provides a much higher accuracy compared

to the training from scratch. We show that the average accuracy obtained with all the five

considered CNN models increases with fine-tuning. The difference between a model

trained from scratch and another one taking advantage of transfer learning after fine-

tuning exceeds 7% for most considered models.

The use of pre-trained models can be viewed as transfer learning from real images

to our images. This transfer learning may be justified by the presence of some low-level

image features (edges, colors, etc.) shared between real images and generated images.

3.5 Conclusions

In this chapter, we have presented and evaluated several models for next location pre-

diction using a subset of real mobility traces. In contrast to most existing proposals,

we proposed to make use of modern machine learning techniques based on deep neu-

ral networks. We have proposed the use of Convolutional Neural Networks for which

we enhanced the representation of input data by the use of embedding techniques. We

have explicitly derived a new location embedding technique which we called loc2vec

to enhance the quality of input location representations. Our loc2vec embedding tech-

nique improves the representation of locations by encoding close locations in mobility

sequences in a way that makes their loc2vec representations also close after the em-

bedding. We enhanced the performance of our CNN models that are based on loc2vec

embedding with the use of transfer learning which allows us to take advantage of pre-

trained CNN networks which we fine-tuned on our location prediction application do-

main. We evaluated the performance of our proposals on real mobility datasets and

showed that the combination of loc2vec, CNN, and the use of transfer learning from

existing CNN model provide the best results compared to popular state of the art pre-

diction techniques relying on Markovian models.
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CHAPTER 4

Residence Time Prediction

4.1 Introduction

The ability to predict the arrival and residence time of mobile users at a particular place

is essential for the development of a wealth of new applications and services, such as

smart heating control, transportation planning or urban navigation.

In addition to the prediction of spatial aspects of human mobility such as predicting

the next location Wu et al. (2018), Zheng et al. (2018), Sassi et al. (2019), there has been

several models and algorithms developed to predict the temporal aspects too. Most

of these methods focused on predicting the residence times of users at their relevant

places typically defined as the places frequently visited by those users Baumann et al.

(2013a), Chon et al. (2012), Sassi et al. (2017). Others focused on predicting both

spatial and temporal aspects as the same time such as predicting the residence times at

the current location and the next location movement Song, Deshpande, Kozat, Kotz and

Jain (2006), Chon et al. (2012), Scellato et al. (2011).

Regarding residence time, it has been shown that users tend to spend most of their

time in a few places with temporal regularity. In Chon et al. (2012), Montoliu et al.

(2013), it has been shown that users spend 60% to 65% of their residence time in the top-

1 place and between 80% and 85% of residence-time in the top-2 places. This indicates

that, in order to predict the temporal behaviours, focus has to be put on predicting the

residence time in places which represents the majority of users’ time.

In this chapter, we describe our models and the algorithms we use in this thesis to

predict the residence time of a user at their relevant places. Our aim is to find an answer
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to the question: how long a user will stay at their relevant places in the future? We

consider relevant places as those places that the user visits more frequently compared

to other places.

This chapter is organized as follows:

• The chapter starts by presenting an overview of the related works on the residence

time prediction (section 4.2).

• The Section 4.3 describes the system model of the first contribution on predicting

the residence time of mobile users. It also presents the different algorithms we

use to solve the residence time prediction problem (Section 4.3.2). At the end of

the first contribution (i.e. Section 4.3.3), a series of experiments are presented in

order to evaluate the performance of the presented approach.

• In the Section 4.4, we present the second contribution of this chapter. Like the

previous Section 4.3, this section (Section 4.4) presents algorithms, discussion

and evaluation of these algorithms.

• Finally, section 4.6 concludes the chapter by a general discussion of temporal

prediction models.

4.2 Related Work

Human mobility prediction has attracted extensive research covering both temporal and

spatial aspects Pirozmand et al. (2014).

In Song et al. (2004), the authors evaluated and compared the performance of sev-

eral different location predictors by using two popular families of domain-independent

predictors, named Order-k (O(k)) Markov Predictors, and LZ-based Predictors. The

major advantage of this category of domain-independent predictors is that they can be

performed online, i.e. by examining the already available history, extracting the k most

recent locations, and predict the next location. The sequence of the k most recent loca-

tions in the location history is also called the current context. The O(k) Markov model
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consists of a finite set of states, and transitions from one state to another. The states

represent the possible contexts, while the transitions represent the possible locations

that follow each context with their corresponding probabilities.

In Song et al. (2004), the authors found that a low order Markov predictors provide

more accurate results compared to a high order ones. They also showed that adding

fallback to those lower order predictors further improves their accuracy.

Markovian models such as the Order-k O(k) Markov model can be considered as

a domain independent model which targets to predict the next residence time of a user

based only on the history of previous residence times Song, Deshpande, Kozat, Kotz

and Jain (2006), Chon et al. (2012), Baumann et al. (2013a).

In Song, Deshpande, Kozat, Kotz and Jain (2006), the authors applied a Markov

model to a sequence of previous durations, where each duration is quantized into inter-

vals of equal lengths.

The O(k) Markov model has many advantages as it is easy to implement and re-

quires a relatively small memory space. In fact, after each movement to the next lo-

cation, the predictor updates only one transition probability which make it relatively

fast. The O(k) Markov model has however some limitations caused by the difficulty to

find the best value for k a priori as it varies from a situation to another. Note that the

O(k) Markov predictor might also be unable to make a prediction when a new pattern

that has never been recorded before appears. To cope with the case where a predictors

encountered a pattern that has never been seen before in the location history, which

would affect the prediction quality by failing to make prediction, the authors of Song

et al. (2004), Song, Kotz, Jain and He (2006), Chon et al. (2012) used a fallback mech-

anism to reduce the length of the pattern sequence gradually until a matching becomes

available so it would be able to make a prediction. In brief, the fallback mechanism

recursively uses the result of the low-order predictor if the high-order predictor has no

prediction result. The fallback mechanism has been shown to significantly improve the

overall accuracy of the predictor.

In Vu et al. (2011), the authors proposed a model based on a Naive Bayesian clas-
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sifier to predict next location and residence duration at that location. They added extra

information such as the type of the day (weekdays or weekends) and quantized the

time into one and two hours buckets. They found that adding these high granularity

time-related information improved the prediction quality.

In Scellato et al. (2011), the authors used delay embedding technique to extract

similar temporal patterns from time series. The proposed algorithm used the previous

residence times (resp. arrival times) of a user at a given location to predict the next

residence times (resp. arrival times). The prediction of residence time (resp. arrival

time) is based on the similarity existing between the current residence time pattern

(resp. arrival time pattern) and the previous residence times patterns (resp. arrival

times patterns) of the same location in the location history. To predict residence time

they consider the similarity between sequences of residence time without taking into

account other temporal features about the current residence time pattern.

In Song, Deshpande, Kozat, Kotz and Jain (2006), the authors considered three

techniques to predict the next residence time by considering the history of previous

residence times at a location which are: Markovian, Moving-Average, Cumulative Dis-

tribution Function (CDF), predictors. They combined spatial and temporal information

to predict both the next spatial and temporal information about a particular user. They

particularly combined a Markovian location predictor with a duration predictor where

the states of the Markovian location model are only based on spatial information and do

not depend on temporal information. The next location prediction is based on the cur-

rent context and the transition probabilities between the states of the Markovian model.

Regarding the residence time predictor, it is based on the previous residence times at

the same location. For the residence time prediction, they used CDF time predictors

but without integrating the arrival time information in the predictor. They named the

proposed integrated approach that predicts the location and time jointly MarkovCDF.

The predictor outputs a list of location and probability pairs; the user may move to each

of the locations with the corresponding probability within duration d.

In Sassi et al. (2017), the authors proposed a time predictor model to predict the
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residence time at the current location of a particular user by combining both the cur-

rent arrival time and the previous residence times at that location. Their work differs

from Song, Deshpande, Kozat, Kotz and Jain (2006), Scellato et al. (2011) by the way

they used the joint temporal and spatial information to predict the residence time. They

developed two time-aided algorithms that include the arrival time in the model named

k-moving-average-arrival-time and k-CDF-arrival-time and tested them against exist-

ing models such as k-moving-average and k-CDF which do not take into consideration

the arrival time in their model Song, Deshpande, Kozat, Kotz and Jain (2006). They

showed that including the arrival time information in the models used to predict the

residence time, i.e k-moving-average-arrival-time and k-CDF-arrival-time provides a

significant improvement of the prediction accuracy by about 20% on the average com-

pared to k-moving-average and k-CDF models proposed in Song, Deshpande, Kozat,

Kotz and Jain (2006).

In Baumann et al. (2013a), the authors analyzed the theoretical predictability of

arrival and residence times and evaluated the performance of eight different existing

residence time predictors proposed in Song, Deshpande, Kozat, Kotz and Jain (2006),

Scellato et al. (2011). They also consider MarkovCDF time-aided (i.e., the residence

time depends on the arrival time) which differs from Song, Deshpande, Kozat, Kotz and

Jain (2006) by the way they included the arrival time in the model to predict both the

next spatial and temporal aspects. They found that the predictability of the arrival times

is in general lower than the predictability of the residence times, and that spending a

higher period of time at a specific place influences negatively on the predictability of

the arrival and residence time.

In Chon et al. (2012), the authors evaluated several time-aided mobility models for

the prediction of the residence time of users at their current locations. In their work,

they predict the residence time of the current location by looking at the residence times

at the same location in the location history of the user in addition to the arrival time.

They take only locations that have similar location sequence pattern. They showed that

the location-dependent model is better than the location-independent model for the pre-
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diction of temporal behavior, and that a longer location-sequence does not necessarily

improve the accuracy of the residence time prediction. They also showed that the spa-

tiotemporal regularity is only inherent to a few locations and in other situations previous

locations do not help improve the accuracy of the residence time.

4.3 First System Model

In our first model, we particularly focus on two parameters: the arrival time, and the res-

idence time at that location. Consider a user with the following time-ordered movement

sequence history H such that:

H = {(t1, d1, l1), (t2, d2, l2), . . . , (tn, dn, ln)} (4.1)

where ti are the arrival times, di are the residence time and li are the locations for

1 ≤ i ≤ n. From the movement history H we extract the location history L =

l1, l2, . . . , ln−k+1, . . . , ln−1, ln. We define the k recent location context cl(k) as sub-

set of L such that cl(k) = L(n − k + 1, n) = ln−k+1, . . . , ln−1, ln. The visit history at

a particular location lj is Hj = {(t1, d1, lj), (t2, d2, lj), . . . , (tn, dn, lj)}. From Hj , we

extract the history of arrival times at location lj , Tj = t1, t2, . . . , tn−k+1, . . . , tn−1, tn,

and recent k arrival time context cl,t(k) = T (n− k + 1, n) = tn−k+1, ..., tn−1, tn.

To predict the residence time at a certain location lj , where 1 ≤ j ≤ m and m is

a finite set of relevant places, previous works proceed as the following. For the entire

history of locations L, identify all occurrences of the context ca. For each occurrence

of ca find the set of all possible destinations. For each destination x, calculate the set

of residence times corresponding to the last location in each occurrence of the context.

The set of all these durations is Dx. Formally, Dx is defined as the following.

Dx = {di|di = ti+1 − ti where L(i− k + 1, i+ 1) = (cax)} (4.2)

In this case, the set Dx will contain all the residence times of the current location, i.e.

the one that will correspond to lj , where the next location after lj will be x. Note that
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Dx has been constructed according to contexts of length equal to k.

Note that the previously described approach, proposed in Song, Deshpande, Kozat,

Kotz and Jain (2006), does not take into consideration the effect of arrival time in pre-

dicting the residence time. As we will show, the arrival time has a significant effect on

the residence time, we propose a new model in which we include the arrival time in the

prediction of the residence time.

We start by constructing the set of all occurrences of a given context, ca. We sort all

occurrences of this context according to the arrival time which we quantize to obtain a

discrete set of possible arrival times. We can take as an example, a one-hour bucket for

quantization. Therefore, we will have time-dependent context, c(a, t) which contain all

occurrences of the context where the arrival time at the last location of the context is

equal to t. For each time-dependent context ca,t, we perform a similar technique as the

previously described one to construct the set of all time-dependent resident times Dt,x

for each possible destination x that follows the time-dependent context ca,t. Formally,

the set Dt,x is defined as the following:

Dt,x = {di|di = ti+1 − ti where L(i− k + 1, i+ 1) = (ca,tx)} (4.3)

Note that the set of residence times Dt,x which we constructed in our model is a

subset of the set of residence times Dx constructed in the previously cited work.

Our subset contains only residence times that have the same quantized arrival time

in the history of visits to that location according to the context length we chose which

we took equal to k. We will show that this will significantly improve the residence time

prediction accuracy. The rationale behind including the arrival time in the prediction

of the residence time is that in most cases the residence time depends on the arrival

time. For example, assume that we have a user that arrived at their workplace at 9am.

The user is most likely to leave work place at the end of the work shift, typically at

around 5pm. In this case the residence time is about 8 hours. Note that even if the same

user arrived at 10am or 10.30am, they are likely to leave at 5pm too, in which case the

residence time becomes 7 hours or 6.5 hours respectively which is different from the
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Table 4.1 Example of the visits history at Workplace when the next location is Home

Work Place Home
AT RT AT RT
10.45pm 90min 12.15pm 45min
1.10pm 320min 6.30pm 90min
... ... ... ...
... ... ... ...
3.10pm 195min 6.25pm 120min
10.50am ? ? ?

Table 4.2 Example of the visits history at Workplace when the next location is Cafeteria

Work Place Cafeteria
AT RT AT RT
12.15am 55min 1.10pm 20min
5pm 98min 7.32pm 30min
... ... ... ...
... ... ... ...
12pm ? ? ?

original residence time of 8 hours.

4.3.1 An illustrative Example

Assume that the current location of a user is Workplace and the possible next locations

according to the context are Home and Cafeteria. In our model, we need to estimate

the residence time at Workplace for each of the possible next locations: Home and

Cafeteria. Tables 4.1 and 4.2 provide a view on the history of mobility data of the user.

We use AT (resp. RT) to refer to the Arrival Time (resp. Residence Time)

When relying only on the set of residence times corresponds to the one defined in

Eq. (4.2). From the mobility data presented in tables 4.1 and 4.2, the set of residence

times corresponding to a current location equal to Workplace is obtained as follows.

DHome = {90min, 320min, ..., 195min, where L(i, i + 1) = (ca, x) = Workplace,

Home}

DCafeteria = {55min, 98min, ..., where L(i, i+ 1) = (ca, x) = Workplace, Cafeteria}

Note that in the previous example, we assumed that length of the context is equal to

1, i.e. k = 1. When adding the arrival time to the context such as shown in tables 4.3
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Table 4.3 Example of visit history taking into account the arrival time when the next
location is Home.

Work Place Home
Time Slot AT RT AT RT
10 10.45pm 90min 12.15pm 45min
1 1.10pm 320min 6.30pm 90min
... ... ... ... ...
... ... ... ... ...
3 3.10pm 195min 6.25pm 120min
10 10.50am ? ? ?

Table 4.4 Example of visit history taking into account the arrival time when the next
location is Cafeteria.

Work Place Cafeteria
Time Slot AT RT AT RT
12 12.15am 55min 1.10pm 20min
5 5pm 98min 7.32pm 30min
... ... ... ... ...
... ... ... ... ...
12 12pm ? ? ?

and 4.4, taking a quantized arrival time in one-hour buckets, and applying the definition

or residence times expressed in Eq. (4.3), we can obtain various arrival-time dependent

residence time sets.

For example, if we take the arrival time as equal to 10am for a next place equals to

home and another arrival time equals to 12 for a next place equal to Cafeteria, we obtain

the following residence time sets D10am, Home and D12pm, Cafeteria.

D10am, Home = {90min where L(i, i+ 1) = (ca,10am, x) = Workplace, Home} (4.4)

D12pm, Cafeteria = {55min where L(i, i+ 1) = (ca,12pm, x) = Workplace, Cafeteria}

4.3.2 Residence Time Prediction

After the construction of the residence time sets, we focus on predicting the residence

time in the current location for each possible next location. We apply the following

algorithms:

58



• The order-k average duration predictor which predicts the next duration value of

the sequence to be the average of the previous k values in the sequence.

• The order-k CDF duration predictor with probability p to predict the residence

time in the current location. The probability p expresses the desired confidence

in the result.

4.3.2.1 The Order-k Average Predictor

The order-k average predictor takes a sequence of previous residence times of a user at

a given location, and predicts that the next residence time of the sequence is the average

of the last k durations in that sequence.

Consider a set of residence times Dx,t as defined in Eq. (4.3). We assume that

Dx,t = {d1, d2, . . . , dn}. The order-k average predictor estimates the next residence

time to be as follows:

d̂n+1 =
1

m

m∑
i=1

dn−i+1 (4.5)

where m = min{k, n}. Note that we used m that is the smallest value between k and

n to reflect the fact that if we have not enough history to reach k elements in the set of

residence times Dx,t, we take all the values contained in Dx,t, i.e. all values of Dx,t.

Algorithm 5 The Order-k Average Predictor.
Input: H, k
Output: the average duration Av

1: n← LENGTH(H)
2: sum← 0
3: i← 1
4: if k > n then
5: k ← n
6: end if
7: while i ≤ k do
8: sum← sum+ dn−i+1

9: i← i+ 1
10: end while
11: Av ← sum

k
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4.3.2.2 The Order-k CDF Predictor

Similarly to the order-k average predictor, we start by constructing the set Dx,t. The

order-k CDF predictor takes the last k values of the set Dx,t and computes the probabil-

ity that the next residence time value is less than (or greater than) a given value. Assume

that D is the random variable that outputs the actual values in Dx,t. The order-k CDF

predictor computes the probability that next residence time, i.e. dn+1, is less than a

given value d.

d̂n+1 = argmin
d

(Pr(D < d) ≥ p)

= argmin
d

(
1

m

m∑
i=1

I(dn−i+1 < d) ≥ p

)
(4.6)

where m = min{k, n} and I is the indicator function. We can also use this algorithm

in a way that takes the last k values from a sequence of values and a given probability

P (the desired confidence in the result), and outputs the value of d that satisfies the

probability P .

Algorithm 6 CDF-Prediction.
Input: H, d, k
Output: the probability P

1: n← LENGTH(H)
2: c← 0
3: i← 1
4: if k > n then
5: k ← n
6: end if
7: while i ≤ k do
8: if dn−i+1 > d then
9: c← c+ 1

10: end if
11: end while
12: p← c

k
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Fig. 4.1 Comparison of the four predictors according to the time difference metric. The
k-CDF and k-moving have been first proposed in Song, Deshpande, Kozat, Kotz and
Jain (2006).

4.3.3 Results

In this section, we evaluate the performance of our approach presented in Section 4.3

according to time difference metric. We compare the performance of our models k-

CDF-AT (k-CDF Arrival Time) and k-moving-average-AT (k-moving-average Arrival

Time) with k-CDF and k-moving-average proposed in Song, Deshpande, Kozat, Kotz

and Jain (2006) which have been proposed by analysing the same dataset we worked on

in this thesis.

Our results have been obtained with a quantization of one hour bucket. They show

that some predictors provide better results than others for some situations. Some pre-

dictors work better for certain users or for some particular locations.

Figure 4.1 has been plotted by randomly taking a subset of users. It shows that the

accuracy of a given predictor depends on the user and that the residence time of some

users is difficult to predict. However, even with this difficulty, the results plotted in

the figure show that our proposed models k-CDF-AT and k-moving-average-AT always

provide a better accuracy even for those users whom the residence time is difficult to

predict.

In Figure 4.2, we show the cumulative distribution of the time difference metric

obtained with the four tested prediction models. We show that our models k-CDF-
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AT and k-moving-average-AT constantly provide a smaller time difference between the

predicted and the real residence time compared to the other models. For example, with

our models we achieve less than 5000 seconds prediction error for about 80% of the

users whereas the other models achieve that accuracy, i.e. 5000 seconds, for a much

lesser percentage of users (only about 60% of users residence times are predicted with

that accuracy). Overall, the presented results show that our proposed model improve

the accuracy of existing ones by a 20% margin on the average.

In Figure 4.3, we explore the performance of two different orders of moving-average

predictors: O(5) and O(10) with a recent history of a 5 and 10 residence times respec-

tively. The results show that an O(5) moving-average-AT predictor with one hour inter-

val yields the best performance over all other tested models. The results also show that

an O(5) moving-average predictor was more accurate than an O(10) moving-average

Fig. 4.2 Comparison of the four predictors according to the time difference metric. The
values used for the context length k is 5 and the value used for the desired confidence p
is 0.8.
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one. Similarly, an O(5) moving-average-AT was better than an O(10) moving-average-

AT. These results confirm existing findings that lower-order moving-average predictors,

with or without arrival times, perform better than higher-order ones.

In Figure 4.4, we evaluate the performance of k-CDF predictors with and without

arrival time. We considered two values p = 0.2 and p = 0.8 for the desired confidence.

The results also show that higher values of p yield better results. For example, for a

p = 0.8, the predicted value is larger than 80% of the existing residence times and thus

there is a higher chance (about 80%) that the predicted value match the real value.

These results show that our models relying on the integrating the arrival time in

the prediction of the residence time significantly reduce the time difference between

the predicted and the real residence times compared to traditional methods which not

include the arrival time in the prediction.

Fig. 4.3 Comparison of the two k-moving average and k-moving-average-AT predictors
according to various context lengths (k = 5 and k = 10
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Fig. 4.4 Comparison of the two k-CDF and k-CDF-AT predictors according to various
desired confidence values (p = 0.2 and p = 0.8)
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4.4 Second System Model

In this section, we follow a different approach and focus on using regression-based

learning algorithms to predict the residence time of a user at its relevant location. We

specifically build models using Linear Regression (LR) and Auto Regression (AR) by

considering both linear combination of previous residence times and other spatial or

temporal features as well. Our first model LR uses a linear combination of several tem-

poral features, and our second mode AR uses a linear combination of the k immediate

past values of residence times and is also called Order-k AR and noted as (O(k)AR).

Our work differs from previous works Song, Deshpande, Kozat, Kotz and Jain (2006),

Sassi et al. (2017), Scellato et al. (2011) mainly by the way we use a linear combination

of spatial and temporal features to predict the residence time. We evaluated our pro-

posal by comparing their performance against existing models such Order(k)-Moving-

Average (O(k)-MA) and Order(k)-Cumulative-Distribution-Function (O(k)-CDF) pro-

posed in Song, Deshpande, Kozat, Kotz and Jain (2006), Sassi et al. (2017), and non-

linear (NL) time series analysis method proposed in Scellato et al. (2011). In our eval-

uation, we worked on two real mobility traces from the CRAWDAD project: one pro-

vided by Dartmouth College Kotz et al. (2009), and another one called the ”Ile Sans

Fils” Wireless Network Lenczner and Hoen (2015). These two datasets have been con-

structed by recording WiFi associations of mobile users with access points — with the

location of a user is taken to be that of the access point with which it is associated.

The obtained results on these two benchmark datasets showed that our proposals LR

and AR provide significant improvement of the prediction accuracy compared to the

aforementioned state-of-the-art methods.

4.4.1 Regression-Based Residence Time Prediction

4.4.1.1 System Model and Assumptions

We assume in this work that, at any given time, a user resides at a given discrete location.

In our data, the location is expressed as the name of an access point with which the
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user’s device associated (see Section 4.5).

In our work, we propose to make use of two types of models: Linear Regression-

based (LR) models, and Autoregression-based (AR) models. Both models can be

trained on the history of visits of an individual and used to predict its residence time. To

predict the residence time of a user at a relevant location, we consider only the history

of visits to that same location. We particularly focus on three parameters: the arrival

time which allows to derive other additional temporal features, the residence time at

that location, and the current location.

For a given user u at a given location l, we define the visit history Hul as the set of

the residence times spent by user u at location l as the following:

Hul = {(t1, d1), (t2, d2), . . . , (tn, dn)} (4.7)

where di is the residence time spent by the same user u at location l at time ti.

4.4.1.2 Linear Regression-Based Prediction

The Linear Regression (LR) model aims at finding the optimal function hα that aims

at approximating the following equation for all values Hul for a given user at a given

location such that:

di = hα(ti) (4.8)

Given a temporal information t, many features can be extracted such as time of the

day, day of the week, type of the day, etc. In the general case, let us assume that

n features could be extracted from the temporal information, and use the following

variables x(1), . . . , x(n) to represent these features. Therefore, Eq. (4.8) can be rewritten

as:

d =hα(x
(1), . . . , x(n)) (4.9)
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With linear regression for function hα, Eq (4.9) can be rewritten as:

di =α0 + α1x
(1)
i + · · ·+ αnx

(n)
i (4.10)

=αTxi (4.11)

where xi =
(
1, x

(1)
i , ..., x

(n)
i

)T
and α = (α0, α1, ..., αn). By finding the optimal value

for α, Linear Regression presented in Eq. (4.11) can be used as a method to make

prediction for next residence time d given a set of input features x. To find the opti-

mal value for α, represented by α̂, the model can be trained on a set of m instances

x1,x2, . . . ,xm of input values with the corresponding labels d1, d2, · · · , dm, respec-

tively. Therefore, given an input instance xm+1, the corresponding output value d̂m+1

can be predicted according to the following equation:

d̂m+1 = α̂
Txm+1 (4.12)

Finding the best set of parameters α̂ for function hα with m training examples, i.e.

(x1, d1), (x2, d2), . . . , (xm, dm), can be obtained by minimizing the mean squared error

function J(α) defined as follows:

J(α) =
1

2m

m∑
i=1

(
αTxi − di

)2
(4.13)

Finding the optimal parameter α̂ that minimizes J(α), i.e. α̂ = argminα J(α) can be

done with a Gradient Descent (GD) algorithm or using Normal Equation (NE) technique

as shown in Section 4.4.2.

Figure 4.5 shows an example of a Linear Regression model hα(t) with one input

variable t after getting an optimal value of the parameter α̂ by training the model on a

set of m training examples, i.e, (t1, d1), (t2, d1), . . . , (tm, dm).

Figure 4.5 shows how the fitted line hα(t) can be used as predictor by assigning a

value d to each input value of the variable t.
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Fig. 4.5 The best fitting straight line after getting the optimal parameter α̂.

4.4.1.3 Auto Regression-Based Prediction

By contrast to LR that is based on input values, the Auto Regression (AR) predictor

is solely based on building relations between successive output values, residence times

in our case. Consequently the prediction of residence time d̂m+1 is calculated from

previous values dm, dm−1, . . . , d1. Order(k) AR model performs prediction according

to the following equation:

di = hβ(di−1, di−2, . . . , di−k) (4.14)

where the output variable d at time i is defined by a function hβ of the k immediate

past values. Assume that hβ is a linear function and consider the history of values

d1, d2, . . . , dm. The O(k) AR model hβ will be then written as:

di = β0 + β1di−1 + β2di−2 + · · ·+ βkdi−k (4.15)
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for i ∈ {k + 1, . . . ,m}. This means that the next value is a linear weighted sum

of the k immediate past values. By putting di = (di−1, di−2, . . . , di−k)
T , and β =

(β0, β1, . . . , βk)
T , Eq. (4.15) can be rewritten as:

di = β
Tdi (4.16)

Also, by defining D and d as follows:

D =



dk · · · d1

dk+1 · · · d2
...

...
...

dm−1 · · · dm−k


, d =



dk+1

dk+2

...

dm



we have:

d = Dβ (4.17)

Given a history of p observations (we take p = m−k for the sake of simplicity and with-

out loss of generality), β may be estimated by minimizing the squared error function

J(β) defined as follows:

J(β) =
1

2p

m∑
i=k+1

(di − hβ(di−1, . . . , di−k))2

=
1

2p

m∑
i=k+1

(di − β0 − β1di−1 − · · · − βkdi−k)2

=
1

2p
(Dβ − d)T (Dβ − d)

=
1

2p
‖Dβ − d‖2 (4.18)

After estimating the parameters β̂ = argminβ J(β) by using the Gradient Descent

(GD) or the Normal Equation (NE) methods as shown in Section 4.4.2, the predicted
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value can be computed by Eq. (4.16) as follows:

d̂m+1 = β̂
Tdm+1 (4.19)

4.4.2 Minimizing Squared Error

4.4.2.1 Using Gradient Descent

As has been described before, The Gradient Descent (GD) method can be used to find

and update values of θ.

For a given value θj (with j = 1, . . . , n) of the vector θ, the algorithm GD operates

as the following:

θnew
j := θold

j − λ
∂

∂θj
J(θ) (4.20)

When J(θ) is taken as the mean squared error function, we have for LR (where θ

is substituted by α):

∂

∂αj
J(α) =

1

m

m∑
i=1

(hα(xi)− di)x(j)i (4.21)

and we have for AR (where θ is substituted by β):

∂

∂βj
J(β) =

1

p

m∑
i=k+1

(hβ(di)− di) di−j (4.22)

4.4.2.2 Using Normal Equation

Rather than needing to run an iterative algorithm that takes multiple iterations of GD

to converge to the global minimum, we can instead just solve for the optimal value

for θ analytically using the Normal equation method. So that in basically one step the

optimal value of the parameters θ can be easily computed analytically and is given in
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the LR case by:

θ̂ = (XTX)−1XTd (4.23)

where X and d are defined as the following:

X =



1 x
(1)
1 · · · x

(n)
1

1 x
(1)
2 · · · x

(n)
2

...
... · · · ...

1 x
(1)
m · · · x

(n)
m


, d =



d1

d2
...

dm



and it is given in the AR case by :

θ̂ = (DTD)−1DTd (4.24)

where D and d are defined as follows:

D =



dk · · · d1

dk+1 · · · d2
...

...
...

dm−1 · · · dm−k


, d =



dk+1

dk+2

...

dm



4.4.3 Applying LR and AR on Selected Features

4.4.3.1 With LR

LR takes into account input variables and tries to build a model that links those input

variables with the output variables. The input variables can have several features that

resulting of a vector of variables. In our case we consider temporal information ti
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(as defined in Eq.(4.9)) from which we extract two features x(1)i presenting the time

of the day quantized into intervals of 1 hour and x(2)i day of the week. There is also

the possibility to extract another variable to represent type of the day, whether it is a

working day, week-end, bank holiday, season holiday, etc. We choose to restraint our

study to the previously mentioned features. Other features can be extracted and fed to

our model as it is designed to be as general as possible and is able to take many feature

variables. Under this choice, input values ti can be used to construct input variables

xi = (1, x
(1)
i , x

(2)
i )T where x(1)i ∈ {0, . . . , 23} and x(2)i ∈ {0, . . . , 6}. The intuitions

behind choosing those two features are the following:

1. The time of the day: people tend to spend similar residence times at similar times

of day. For example, assume that we have a user that arrived at their workplace

at 9am. The user is most likely to leave work place at the end of the work shift,

typically at around 5pm. In this case the residence time is about 8 hours. Similar

behaviour would be observed in restaurants, department stores, etc.

2. The day of the week: people tend to spend similar residence times at similar

places in similar days of the week. For example, if an individual periodically

goes to the gym on Mondays and Thursdays, their mobility pattern would be

affected for those particular days.

4.4.3.2 With AR

AR does not try to find a relation between input and output variables but it builds a

model for successive observations of a variable. Therefore building the AR model con-

sists in using residence times di as described in (Eq. (4.15)) and use the development

described in Section 4.4.1.3 and find optimal value for β̂ using GD or NE.

4.4.4 Results

In this section, we evaluate the performance of the approaches presented in the pre-

vious sections according to time difference metric which measures the difference be-

tween the predicted residence time and the real one. We compare the performance of
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Fig. 4.6 Cumulative Distribution of the fraction of users according to the prediction
error achieved on them for the Dartmouth WiFi dataset and the Ile Sans Fils dataset.

our models: O(k)-AutoRegression, Linear Regression with O(k)-moving-average and

O(k)-CDF time-aided algorithms proposed in Sassi et al. (2017), and with nonlinear

time series analysis method proposed in Scellato et al. (2011). For the sake of con-

ciseness, we use the term ”the five algorithms” to refer to AutoRegression (AR), Linear

Regression (LR), Moving-Average-Arrival-Time (MA-AT), CDF Arrival-Time (CDF-

AT), and NonLinear time series (NL). Wherever it not explicitly stated, the value of

default value used for our experiments for k is 8.

In Figure 4.6, we show the cumulative distribution of the prediction errors of 100

users obtained with our prediction algorithms compared to CDF-AT and MA-AT pro-

posed in Sassi et al. (2017), and NL proposed in Scellato et al. (2011). We show that our

proposed models AR-GD, AR-NE, LR-GD and LR-GD (with GD standing for Gradient

Descent and NE for Normal Equation) provide better accuracy compared to the others.

The results presented in the Figure 4.6 show that our models can achieve a prediction
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error in the order of seconds and minutes compared to the other algorithms. For exam-

ple in the Dartmouth WiFi dataset, with our models we achieve less than 60 seconds

prediction error for about more than 10% of the users, and less than 200 seconds predic-

tion error for about 40% to 65% of the users, whereas the other models do not achieve

that accuracy, i.e. a prediction error of 200 seconds, at all for all the users. All predic-

tions errors with the other models are above 200 seconds (ses Figure 4.6(b)). However,

in the case of Ile Sans Fils dataset we achieve between 120 and 250 seconds prediction

error for about more than 10% of the users, and less than 400 seconds prediction error

for about 40% to 65% of the users which are better results than those provided by NL,

CDF-AT, and MA-AT as shown in Figure 4.6(c) and Figure 4.6(d).

These results confirm existing findings that using linear regression and autoregres-

sion models perform better than using a simple moving-average models for predicting

residence time of a user. Overall, the presented results with the Dartmouth WiFi dataset

(resp. Ile Sans Fils dataset) show that our proposed models improve the prediction er-

ror of at least 40% (resp. 30%) of users (see Figure 4.6(a) and Figure 4.6(c)) as 40%

(resp. 30%) of users have their prediction error below 200 seconds (resp. 300 seconds)

which is not obtained for any user with other algorithms. The results plotted in the

Figure 4.6 also show that AR-GD model achieves the best performance over all other

tested models proposed in this chapter. We also show that GD models achieve lower

prediction errors than NE ones with LR-GD achieving better than LR-NE, and AR-GD

achieving better than an AR-NE. We see in Figure 4.7 that for the two datasets, AR and

LR models are always outperforming the other methods.

Figure 4.7(a) and Figure 4.7(c) show the median prediction error of TOP-n relevant

places for the four AR, LR, MA-AT and NL models. they show also that, for all TOP-n

places, AR has a lower prediction error than LR which in turn has a lower error than

MA-AT and NL.

In Figure 4.7(b) and Figure 4.7(d), we show that all considered models provide rel-

atively low prediction errors for some relevant places compared to others. O(k) AR

provides the lowest prediction error for all the relevant places compared to the other
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Fig. 4.7 Comparison of Autoregression, Linear Regression, NonLinear and Moving-
Average models for the two datasets on different relevant places of a sample user’s
history.
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Fig. 4.8 Prediction Error variation for a sample users history.

considered models. We also show that, with the Dartmouth WiFi dataset, LR achieves

a lower error than MA-AT and NL for most of the cases (in 7 out of the 8 cases con-

sidered). While with Ile Sans Fils dataset, LR achieves a lower error than MA-AT and

NL for all the relevant places. We did not plot CDF-AR in Figure 4.8 and Figure 4.7

because its values are very close to that of MA-AT and the curves are almost identical.,

For the remaining Figures, We present only the results obtained by the Dartmouth WiFi

dataset.

In the Figure 4.8, we run the considered algorithms to make predictions and for

each prediction step we measure the Prediction Error defined as the difference between

the real and the predicted residence times. We show that generally LR and O(k) AR

achieve lower Prediction Errors compared to NL and O(k) MA-AT (with k = 8). We

also show that for some instances AR provides better values and for others LR provide

better values, but overall AR provides lower Prediction Error.
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Fig. 4.9 Prediction Error of various LR models with input features including: H (Hour
of the Day), D (Day of the Week), and W (Type of the Day).
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Fig. 4.10 Comparison of the two autoregression models according to the time difference
metric with various values of k.

In Figure 4.9, we evaluate various LR models by considering three main input fea-

tures: H (Hour of the Day), D (Day of the Week), and W (Type of the Day). The figure

shows the cumulative distribution of the prediction errors of 100 users obtained with

our linear regression models LR-H, LR-D, LR-W, and LR-DH. The results plotted in

the Figure 4.9show that LR-D model provide a better accuracy compared to LR-H and

LR-W models, and that LR-H was more accurate than LR-W. The results also show that

adding a feature such as D to LR-H model, i.e LR-DH model, increases the performance

of the model.

Figure 4.10 has been plotted by randomly taking four users. It explores the per-

formance of two AR algorithms AR-GD and AR-NE models for different values of k:

k = 4, k = 5, k = 6, k = 7 and k = 8 with a recent history of a 4, 5, 6, 7 and 8

residence times respectively.

It shows that AR-GD always provides a lower prediction error compared to AR-NE
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Fig. 4.11 Evaluating three variants of GD techniques: Batch GD, Mini-Batch GD, and
Stochastic GD with both autoregression and linear regression models according to the
prediction error metric.

model for all considered value of k. This may be explained by the way GD and NE con-

verge to the global minimum. In fact, GD does not necessarily converge to the global

minimum exactly but instead in some regions close to the global minimum. And it

could be a good model when the parameters end up in some regions close to the global

minimum. Figure 4.10 also shows that increasing the value of k in AR-GD provides

a lower prediction error compared to AR-NE which shows deteriorating performance

with higher prediction errors with higher values of k. For example, with AR-NE the

prediction error for user 3 reaches 130 seconds between the two values of k (k = 4 and

k = 8) whereas with AR-GD, the prediction error do not exceed 8 seconds for the same

values of k. Figure 4.11 has been plotted by randomly taking a subset of 100 users.

The Figure explores different variants of GD techniques, such as Batch GD, MiniBatch

GD, and Stochastic GD, with both linear regression and autoregression models. In Fig-

ure 4.11(a), we compare the above three GD techniques by using autoregression model.
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We show that with Stochastic GD a lower prediction errors are obtained with a higher

fraction of users, compared to Batch and Mini-Batch variants. Although the curves are

close to each other, it is clear that Batch GD is less accurate than both Stochastic and

Mini-Batch GD and that the median user experienced an average prediction accuracy

of 152, 155, and 177 seconds, for Stochastic GD, and Mini-Batch GD, and Batch GD,

respectively. However, in Figure 4.11(b) we show that with linear regression models,

Batch GD is slightly less accurate than Mini-Batch and Stochastic GD.

4.5 Performance Evaluation

In this section, we present the results of our experiments for predicting the residence

times of users. Then we evaluate the performance of our predictors using the Prediction

Error metric defined as the difference between the predicted residence time d̂ and the

real one d. First, we describe the datasets we used in our evaluation.

4.5.1 Evaluation Dataset

For the evaluation of our models, we use two different datasets. The first dataset is a

subset of WiFi traces extracted from the dataset provided by Dartmouth College Kotz

and Essien (2005), Henderson et al. (2008) and made available through the CRAWDAD

project Kotz et al. (2009). In this dataset, each user’s mobility trace is expressed as a

series of (time, location) pairs where a location is taken to be that of the access point

to which the user (their hand-held devices) is associated. This dataset contains more

than 543 different access points resulting in more than 543 different locations. The

second dataset, called ”Ile Sans Fils”, is composed of access points used by the City

of Montreal to provide free internet access through WiFi hotspots Lenczner and Hoen

(2015). In this dataset, there are more than 140 hotspots located in publicly accessible

spaces such as restaurants, cafes, parks, streets, etc. so that outdoor spaces are also

covered.

In our experiments, we consider relevant places. We define a place as relevant to a

user, if it has been visited by that user for more than 20 times in the past. We divide
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each dataset in two halves: We use the first half to serve as an initial offline training

data and the second one as a live data set to test the performance of our predictor. At

each prediction, a sliding window is used.

4.5.2 Eliminating the Ping-Pong Effect

Our preliminary studies of the two datasets have shown frequent re-associations of two

or more neighboring access points in a short period of time repeatedly. Such behavior,

called ping-pong effect, appears even if the user is not moving, which may result in a se-

quence of locations of the form: . . . , li, lj, li, lj, li, lj, . . . , where a device keeps switch-

ing from location li to lj and then back to li then again to lj for a number of times in a

short time interval. Various techniques have been used in the literature to deal with this

ping-pong effect with the aim of obtaining accurate residence times Rodrı́guez Carrión

(2015), Burbey (2011). In our case we adopt the following procedure. Consider a user

with the following sequence of visits (li, di), (li+1, di+1), (li+2, di+2), . . . , where di is

the residence time spent at location li. We define a residence time threshold σ consid-

ered as the minimum residence time. Therefore, if li = li+2 and di+1 ≤ σ, we merge li,

li+1, and li+2 so the entire sequence becomes (li, di+di+1+di+2), . . . , which eliminates

the ping-pong effect. In our experiments we set the value of σ to 30 seconds.

In this way the sequences of durations obtained are more likely to imitate the real

patterns of residence times of a users.

In order to obtain a more accurate residence time, we should eliminate this effect.

For that, we have performed pretreatments by applying a merging procedure to the

two datasets. We choose a two-month subset of mobility data corresponding to the

period from January to February 2003 and we did not compute the prediction error for

transitions to or from the location OFF. We use the first month to serve as an initial

offline training data and the second one as a live data set to test the performance of our

predictor. At each prediction, a sliding window of one month is used.
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4.6 Conclusions

In this chapter, we presented and evaluated several models for temporal prediction us-

ing a subset of real mobility data made available by the CRAWDAD project. We have

shown that the prediction of the residence time at the current location of a given user

can be significantly improved by using popular linear regression-based learning models

namely: linear regression and the autoregression. We have shown that these models

perform significantly better than traditional models such as simple moving-average,

moving-CDF, and NL models. We have also shown that simple low-order autoregres-

sion worked at least as well or better than the linear regression for residence time at

relevant place prediction, and that higher order, taking a longer history context, do not

necessarily improve the prediction accuracy and rather deteriorate it. In particular with

the data set we worked on, we showed that Order(5) (and above) autoregression did

not improve over Order(4) autoregression models even with a large number of users.

In fact, it is difficult to find the best value for k a priori as it varies from a situation to

another.

We have also evaluated the performance of different variants of our proposed lin-

ear and auto regression models with two different optimization techniques Gradient

Descent and Normal Equation. The resulting variants: AR-GD, AR-NE, LR-GD and

LR-NE, have been compared with state-of-the-art approaches according to the predic-

tion error metric. Our results showed that using Gradient Descent as the optimization

technique to minimize the mean squared prediction error provided better results than

Normal Equation, and resulted in errors in the order of seconds and minutes for a large

set of users which has not been achieved by state-of-the-art methods.

There are several directions for further research. First, we have evaluated the perfor-

mance of our models by using only patterns of a devices association with access points

which is not human movements. Our future work will address large-scale data analysis

and more sophisticated GPS-based datasets to validate our finding.

Also, it will be interesting to exploit additional data sources, such as other users or
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on line social networks (e.g., Facebook, Twitter), to explore more features of human

mobility. Secondly, we will address location prediction problem by investigating some

deep learning techniques such as Recurrent Neural Network (RNN) as RNN is able to

predict a sequence or a value at particular time point. Finally, we will use other metrics

to evaluate our models.
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CHAPTER 5

Conclusion and future research directions

This chapter gives a general conclusion of this thesis and some future research direc-

tions.

In this thesis, we presented and evaluated several models for next location and

time prediction using a subset of real mobility data made available by the CRAWDAD

project.

For next location prediction, we proposed to make use of modern machine learning

techniques based on deep neural networks. We have proposed the use of Convolu-

tional Neural Networks for which we enhanced the representation of input data by the

use of embedding techniques. We have explicitly derived a new location embedding

technique which we called loc2vec to enhance the quality of input location represen-

tations. Our loc2vec embedding technique improves the representation of locations by

encoding close locations in mobility sequences in a way that makes their loc2vec rep-

resentations also close after the embedding. We enhanced the performance of our CNN

models that are based on loc2vec embedding with the use of transfer learning which

allows us to take advantage of pre-trained CNN networks which we fine-tuned on our

location prediction application domain. We evaluated the performance of our proposals

on real mobility datasets and showed that the combination of loc2vec, CNN, and the

use of transfer learning from existing CNN model provide the best results compared to

popular state of the art prediction techniques relying on Markovian models.

For time prediction, We have shown that the prediction of the residence time at the

current location of a given user can be significantly improved by using popular linear

regression-based learning models namely: linear regression and the autoregression. We
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have shown that these models perform significantly better than traditional models such

as simple moving-average, moving-CDF, and NL models. We have also shown that sim-

ple low-order autoregression worked at least as well or better than the linear regression

for residence time at relevant place prediction, and that higher order, taking a longer his-

tory context, do not necessarily improve the prediction accuracy and rather deteriorate

it. In particular with the data set we worked on, we showed that Order(5) (and above)

autoregression did not improve over Order(4) autoregression models even with a large

number of users. In fact, it is difficult to find the best value for k a priori as it varies

from a situation to another. We have also evaluated the performance of different vari-

ants of our proposed linear and auto regression models with two different optimization

techniques Gradient Descent and Normal Equation. The resulting variants: AR-GD,

AR-NE, LR-GD and LR-NE, have been compared with state-of-the-art approaches ac-

cording to the prediction error metric. Our results showed that using Gradient Descent

as the optimization technique to minimize the mean squared prediction error provided

better results than Normal Equation, and resulted in errors in the order of seconds and

minutes for a large set of users which has not been achieved by state-of-the-art methods.

There are several directions for further research. First, we have evaluated the perfor-

mance of our models by using only patterns of a devices association with access points

which is not human movements. Our future work will address large-scale data analysis

and more sophisticated GPS-based datasets to validate our finding.

Also, it will be interesting to exploit additional data sources, such as other users

or on line social networks (e.g., Facebook, Twitter), to explore more features of hu-

man mobility. Secondly, we will address location prediction problem by investigating

other deep learning techniques such Transformers as Transformers can capture natu-

rally longer term dependencies between sequence components than LSTMs and process

them simultaneously. Finally, we will use other metrics to evaluate our models.
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