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Abstract

In this thesis, we propose a new robust estimation procedure for the tail index

for Pareto-type distributions under incomplete data (censorship or truncation).

Under truncation, the extreme quantile estimation is also derived and applied to

an actual data set on automobile brake pad life.

Simulation study using R statistical software is carried out to evaluate the perfor-

mance and the robustness of the proposed estimators for small and large sample

size and for both uncontaminated and contaminated cases. Our newly estimators

have been shown to be more robust and perform better than existing Hill-type esti-

mators based on upper order statistics, in both cases of incomplete data (censorship

or truncation).
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Notations and symbols

a:s! almost sure convergence

P! convergence in probability

d! convergence in distribution

cdf cumulative distribution function

F (:) distribution function

�F (:) tail function

D (A) domain of attraction of A

Fn (:) empirical distribution function

evi extreme value index

EVT extreme value theory

E (X) expectation of X

iid independent and identically distributed

1A indicator function of a set A

i.e. in other words

f (:) probability density function

Q (:) quantile function

rv or rv�s random variable(s)
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RV�a regularly varying functions with index a

N (0; 1) standard Gaussian distribution

L (:) slowly varying function at in�nity

xF upper endpoint

F a set of distributions with support in R+

(
;A; P ) probability space

abias absolute bias

rmse root mean squared error

RRT randomly right-truncated

X1;n � ::: � Xn;n order statistics pertaining to the sample (X1; :::; Xn)

k numbers of top statistics (upper observations)

Q" high quantile corresponding to upper tail probability (1� ")

F
(KM)
n Kaplan-Meier nonparametric estimator of F

F
(LB)
n Lynden-Bell nonparametric estimator of F

F
(W )
n Woodroofe�s nonparametric estimator of F

� tail index

 extreme value index

b�H Hill (1975) tail index estimator

b�(H;c)1 Einmahl et al. (2008) adapted tail index estimator

Tn Beran and Shell (2012) tail index estimator

b�(S)1 Sayah et al. (2014) tail index estimator

b�(Z)1 Zahnit et al. (2021) tail index estimator

̂
(GS)
1 Gardes and Stup�er (2015) extreme value index estimator

̂
(W )
1 Worms and Worms (2016) extreme value index estimator

̂
(B)
1 Benchaira et al. (2016) extreme value index estimator

̂
(Z)
1 Zahnit et al. (2021) extreme value index estimator
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Résumé de la thèse

Dans cette thèse, nous proposons une nouvelle procédure d�estimation robuste de

l�indice des queues pour les distributions de type Pareto sous données incomplètes

(censure ou troncature). Après la construction des estimateurs de l�indice des

queues de distribution et des quantiles extrêmes, nous étudions leurs propriétés

asymptotiques.

Nos considérations sont basées sur l�intégrale de Lynden-Bell (pour les données de

troncature aléatoire) et les idées d�intégration de Kaplan-Meier (sous le modèle de

censure aléatoire) en utilisant l�estimateur M-Huberisé de l�indice de queue.

Sous troncature, l�estimation des quantiles extrêmes est également dérivée et ap-

pliquée à un ensemble de données réelles sur la durée de vie des plaquettes de frein

automobile.

Des travaux de simulation à l�aide du logiciel de traitement statistique R sont

réalisés pour con�rmer le bon comportement et pour évaluer la performance et la

robustesse des estimateurs proposés pour des échantillons de petite et grande taille

ainsi que dans le cas de contamination.

Il a été démontré que nos nouveaux estimateurs d�indice de valeur extrême des

distributions de type Pareto sont plus robustes et fonctionnent mieux que les esti-

1



Résumé de la thèse

mateurs de type Hill existants basés sur les statistiques d�ordre et les observations

supérieures, pour les petits échantillons et dans les deux cas de données incom-

plètes (censure ou troncature).

La thèse est organisée en quatre chapitres comme suit :

Le premier chapitre est consacré à la présentation du concept de distributions à

queue lourde et des di¤érentes classes de ce type de distributions. Les distribu-

tions à queue lourde sont liées à la théorie des valeurs extrêmes et permettent de

modéliser plusieurs phénomènes rencontrés dans di¤érentes disciplines : �nance,

hydrologie, télécommunications, géologie ... etc. Plusieurs dé�nitions ont été as-

sociées à ces distributions en fonction de critères de classi�cation.

Nous donnons dans un deuxième chapitre, quelques résultats importants et utiles,

des concepts de base et des exemples dans la littérature sur le contexte des données

incomplètes (troncature et censure).

Dans le troisième chapitre, nous proposons une nouvelle procédure robuste d�estimation

de l�indice de queue pour les distributions de type Pareto dans le cadre d�échantillons

censurés aléatoirement, basée sur les idées de l�intégration de Kaplan-Meier en

utilisant l�M-estimateur hubérisé de l�indice de queue. Nous en dérivons les ré-

sultats asymptotiques et nous illustrons les performances et la robustesse de cet

estimateur pour des échantillons de petite et grande taille dans une étude de sim-

ulation.

Dans le quatrième et dernier chapitre de cette thèse, nous introduisons un nou-

vel estimateur robuste pour l�indice des valeurs extrêmes des distributions de type

Pareto sous des données tronquées à droite et établissons sa cohérence et sa nor-

malité asymptotique. Nos considérations sont basées sur l�intégrale de Lynden-Bell

2



Résumé de la thèse

et un M-estimateur hubérisé de l�indice de queue. Une étude de simulation est réal-

isée pour évaluer la robustesse et le comportement en échantillon de taille �nie de

l�estimateur proposé. L�estimation des quantiles extrêmes est également dérivée

et appliqué à un ensemble de données réelles sur la durée de vie des plaquettes de

frein automobile.

En�n, nous décrivons quelques remarques de conclusion et quelques perspectives

de recherche dans la partie Conclusion et Perspectives.

3



Introduction

Heavy tailed (or Pareto-type) distributions are related to extreme value theory

(EVT) and allow to model several phenomena encountered in di¤erent disciplines:

Finance and business, internet tra¢ c, hydrology, economics and have been ac-

cepted as realistic models for various phenomena, �ood levels of rivers, major

insurance claims, low and high temperatures...

Let (Xj), 1 � j � n; denote a sample of positive and independent random variables

(rv�s) de�ned over some probability space (
;A; P ) ; with continuous cumulative

distribution functions (cdf) F . We assume that the survival function F := 1� F

is regularly varying at in�nity, with index (1= =: �), i.e, F 2 RV�1=. That is,

for any t > 0;

lim
x!1

F (tx)

F (x)
= t�1=. (1)

where  > 0 is the so-called extreme value index (e.v.i) is a well-known parameter

to measure the tail heaviness of a distribution. Distributions satisfying (1) play

a very crucial role in extreme value analysis. They include many commonly used

models such as Pareto, Burr, Fréchet and Lévy-stable distributions, known to be

suitable models for adjusting large insurance claims, log-returns, large �uctuations,

etc... see, for instance, [Resnick (2006)].

Estimation of e.v.i. is very important in the determination of high quantiles,
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Introduction

upper tail probabilities, mean excess functions, and excess-of-loss and stop-loss

reinsurance premiums. Consequently, small errors in estimation of this quantity

can produce substantial impact in applications. Thus, for robust estimation of

quantities based on  robust estimation of  itself is crucial. In other words, for a

heavy tailed distributions, robust estimation of the high quantile Q" corresponding

to upper tail probability ", becomes of interest, and this may be carried out by

robust estimation of : [Brazauskas and Ser�ing (2000)] gives a detailed account

of this issue.

The more popular estimator for e.v.i , is the well known Hill estimators [Hill (1975)]

denoted by ̂ as functions of the numbers of upper observations:

̂(k) :=
1

k

kX
j=1

log
�
X(n�j+1)=X(n�k)

�
;

X(1) � ::: � X(n) denote the usual order statistics of the observed samples, k is the

number of top statistics (upper observations). This estimator su¤ers from some

kind of robustness, in the sense that it very sensitive to extreme observations, data

contamination or model deviation and tend to be highly volatile for small samples.

Also, the rate of convergence of this estimator is based on the optimal value of

the numbers of top statistics k; but this rate is slower than the parametric rate
p
n: Moreover, estimating the optimal value of k is virtually impossible when the

sample size n is small and this leads to unstable estimates for small samples and

large con�dence intervals, see for a discussion [Resnick (1997)].

In many real applications, such as survival analysis, reliability theory or insur-

ance..., the variable of interest X is not necessarily completely available. This is

the case of incomplete data (presence of random right censoring or random right

5
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truncation). The usual way to model the situation of random right censoring is to

introduce a random variable Y called censoring rv, independent of X, and then

to consider the rv Z := min (X; Y ) and the indicator variable � := 1 (X � Y ) ;

which determines whether or not X has been observed. Statistics of extremes of

randomly censored data is a new research �eld. The topic was �rst mentioned in

[Reiss and Thomas (1997)], where an estimator of a positive extreme value index

was introduced, but with no asymptotic results. Recently, [Beirlant et al. (2007)]

proposed an estimators for the general extreme value index and for the extreme

quantile with their asymptotic properties. [Einmahl et al. (2008)] adapted vari-

ous extreme value index estimators to the case where the data are censored, by

a random threshold and establish their asymptotic normality by imposing some

assumptions that are rather unusual to the context of extreme value theory. More

recently [Sayah et al. (2014)], using the empirical process theory to approximate

the adapted Hill estimator, for censored data, and derived its asymptotic normal-

ity.

In case of presence of random right truncation (RRT), the rv of interest X may

not be fully available. This truncation can occur in many areas, for example, it

is usual that the insurer�s claim data do not correspond to the underlying losses,

because they are truncated from above. For a recent paper on insurance claims

under RRT, one refers to [Escudero and Ortega (2008)].

As a consequence of truncation, the size of actually observed sample, n, is a bi-

nomial rv with parameters N and p := P (X � Y ) : We shall assume that p > 0;

otherwise, nothing will be observed. Recently, [Gardes and Stup�er (2015)] de-

�ned an estimator for the parameter of interest  by considering the classical

Hill estimators [Hill (1975)]. Recently, [Worms and Worms (2016)] proposed an

6
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asymptotically normal estimator for 1 by considering a Lynden-Bell integrals

with a deterministic threshold. The case of a random threshold, is addressed by

[Benchaira et al. (2016)] who propose a Hill-type estimator under RRT based on

a Woodroofe integration.

The alternative approach is inspired by the theory of robust inference (see, for in-

stance, [Huber (1981)] and [Hampel et al. (1986)]) instead of exact consistency,

this theory aim at stability for small samples, possibly at the cost of a small asymp-

totic bias. However, as observed by [Beran and Shell (2012)], in some practical

cases, such as natural disasters, operational risk assessment or reinsurance data

are sparse (with n often somewhere between 20 and 50) and distributions are

expected to be heavy tailed with an unknown e.v.i. Robust estimation of e.v.i.

focuses primarily on complete data case, see [Brazauskas and Ser�ing (2000)],

[Beran and Shell (2012)] and references therein. The incomplete data case has

�rst been considered by [Sayah et al. (2014)], who dealt with heavy-tailed and right

censored data and they gives a robust estimation of e.v.i. for the exactly Pareto

distribution. The general case is discuted in the remainder of this thesis.

The thesis is organized into four chapters as follow:

The �rst chapter is devoted to the presentation of the concept of heavy-tailed distri-

butions and di¤erent classes of this type of distributions. Heavy tailed distributions

are related to extreme value theory and allow to modeling several phenomena in

di¤erent disciplines: �nance, hydrology, telecommunications, geology... etc.

Since our work carries on the incomplete data, and in order to give back easy the

reading of this thesis, we give in a second chapter, some important and useful re-

sults, basic concepts and examples in the literature on the incomplete data context

7
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(truncation and censoring).

In the third chapter, we propose a new robust tail index estimation procedure for

Pareto-type distributions in the framework of randomly censored samples, based

on the ideas of Kaplan-Meier integration using the huberized M-estimator of the

tail index. We derive their asymptotic results. We illustrate the performance and

the robustness of this estimator for small and large sample size in a simulation

study.

In the fourth chapter of this thesis, we introduce a new robust estimator for the

extreme value index of Pareto-type distributions under randomly right-truncated

data and establish its consistency and asymptotic normality. Our considerations

are based on the Lynden-Bell integral and a useful huberized M-functional and

M-estimators of the tail index. A simulation study is carried out to evaluate

the robustness and the �nite sample behavior of the proposed estimator. Extreme

quantiles estimation is also derived and applied to real dataset of lifetimes of au-

tomobile brake pads.

Finally we outline some concluding remarks and topic for future investigations in

the Conclusion and Perspectives part.

8



Chapter 1

Heavy-tailed distributions and

extreme value theory

1.1 Heavy-tailed distributions

In statistical theory, heavy-tailed distributions are functions whose tail is heavier

than the exponential distribution (see, Fig1.1).

0 5 10 15 20

0.
0

0.
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0.
4

0.
6

0.
8

1.
0

x

1
F(

x)

Hea vy
Exponential
Nor mal

Figure 1.1: Decay of the tail functions: Normal, Exponential and Heavy.
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Chapter 1. Heavy-tailed distributions and Extreme Value Theory

In many applications it is the right tail that is of interest, but a cast can have a

heavy left tail, or both tails can be heavy. There are a few di¤erent de�nitions of

heavy tailedness, all are related to the decay of the tail function.

For example, in real data application, �nancial returns are known to be non-

normal and tend to have heavy-tailed distributions. Fig1.2 contains the daily

returns Rt (closing prices Pt) of Germany DAX (Ibis) stock indice between 1991

and 1998 :

Rt = log

�
Pt
Pt�1

�
; t = (1991; 130) : (1998; 169) = 7440 obs:

The data are sampled in business time (260 days/year), i.e., weekends and holidays

are omitted. The data were kindly provided by Erste Bank AG, Vienna, Austria.

Time

DA
X

1992 1993 1994 1995 1996 1997 19980
.1

0
0

.0
5

0.
00

0.
05

Figure 1.2: Daily returns of Germany DAX stock indice (1991-1998).

Normal quantiles-quantiles plot in Fig1.3 show the non-normality of the Germany

DAX stock indice daily return�s, due to possible heavy-tailed distributions.

Let (Xj), 1 � j � n; denote a sample of independent and identically distributed

(iid) random variables (rv�s) de�ned over some probability space (
;A; P ) ; with

10



Chapter 1. Heavy-tailed distributions and Extreme Value Theory
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Figure 1.3: QQ-plot of daily returns of Germany DAX stock indice.

continuous cumulative distribution functions (cdf) F :

F (x) = P (X � x) :

We consider nonnegative rv�s X, such as losses in investments or claims in insur-

ance. For arbitrary rv�s, we should consider both right and left tails. Concerning

about large losses leads us to consider P (X > x) for x large. If F is the distribu-

tion function of X, we de�ne the tail (survival) function �F by

�F (x) = 1� F (x) = P (X > x):

The tail of a distribution represents the probability for large (extremes) values of

the variable. When these large values appear in a dataset, their probabilities of

occurrence are not zero.

De�nition 1.1.1 It is said that the distribution has heavy tail if the kurtosis

11



Chapter 1. Heavy-tailed distributions and Extreme Value Theory

coe¢ cient � de�ned by:

� =
�4
�22

> 3; (1.1)

where �j := E (X � E (X))j is the centred j � th moment, and �= 3 in the case

of normal rv X:

Remark 1.1.1 The characterization given by equation (1.1) is very general and

can be applied only if the moment of order 4 exists, therefore no discrimination,

for distributions with in�nite 4 � th moment can be made. The following table

1.1 shows the historical kurtosis of some real data sets (see, [Gouriéroux (2012)],

pages 68-69).

Data Kodak G.Electric G.Motors Gold Zinc
Period 1966� 1976 1966� 1976 1966� 1976 1975� 1982 1970� 1981
� 6:3 5:1 7:2 11:4 15:0

Table 1.1: Kurtosis coe¢ cients of some real data sets

De�nition 1.1.2 Let X a rv with a distribution function F . This distribution is

said to have a heavy tail if

�F (x) = P (X > x) � x��; as x!1;

where the parameter � > 0 is called the tail index, which measure the tail heaviness

of a distribution (see, Figure 1.4).

Remark 1.1.2 If a distribution is heavy-tailed then its tail function is heavy-

tailed also. The distribution F is heavy tailed if its tail function goes slowly to

zero at in�nity. Distributions satisfying this de�nition are called Pareto type dis-

tribution given by:

F (x) = 1� x��; � > 0:

12
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Figure 1.4: Tail function of Pareto distribution for � = 0:5; 1; 1:5; 2 and 5:

1.1.1 Examples of heavy-tailed distributions

i) Pareto distribution : This distribution has tail function �F given by

�F (x) =

�
c

x+ c

��
;

for parameters c > 0 and � > 0. Clearly we have �F (x) � (x=c)�� as x ! 1.

The Pareto distribution has all moments of order � < � �nite, while all moments

of order � � � are in�nite.

ii) Burr distribution (a model for losses in insurance): Has tail function

�F given by

�F (x) =

�
c

x� + c

��
;

for parameters �; c; � > 0. We have �F (x) � c�x��� as x ! 1; thus the Burr

distribution is similar in its tail to the Pareto distribution, of which it is otherwise a

generalization. All moments of order � < �� are �nite, while those of order � � ��

are in�nite.

13



Chapter 1. Heavy-tailed distributions and Extreme Value Theory

iii) Cauchy distribution : Recall that the density of the standard Cauchy

distribution is

f (x) =
1

� (1 + x2)
; x 2 R;

and its distribution function is

F (x) =
1

2
+
arctanx

�
;

and hence

�F (x) =
1

2
� arctanx

�
;

we see that �F (x) � (�x)�1, as x!1, its tail goes to zero like the power function

x�1: All moments are in�nite.

iv) Lognormal distribution : The tail of the distribution F is then

�F (x) = ��

�
log x� �

�

�
for x > 0;

for parameters � and � > 0, where �� is the tail of the standard normal random

variable N (0; 1). All moments of the lognormal distribution are �nite.

v) Weibull distribution: This has tail function �F given by

�F (x) = e�(x=c)
�

; x � 0:

for some scale parameter c > 0 and shape parameter � > 0. This is a heavy-tailed

distribution if and only if � < 1:

14
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1.1.2 Regularly varying distribution functions

An important class of heavy tailed distributions is the class of regularly varying

distribution functions. A more detail is found in [Bingham et al. (1987)].

De�nition 1.1.3 A distribution F (or r.v. X) is called a regularly varying at

in�nity with index (1= =: �), i.e, F 2 RV�1=. That is

�F (x) = P (X > x) = x�1=` (x) ; 8x > 0;

where  > 0 is the so-called extreme value index (e.v.i), the parameter � is called

the tail index. ` (x) is a slowly varying function (` 2 RV0) :

Remark 1.1.3 1) A positive, measurable function ` (x) on (0;1) is called a

slowly varying function at in�nity if

lim
x!1

` (tx)

` (x)
= 1; 8t > 0:

2) Examples of ` (x) are given by clnx, cln (lnx) and all functions converging to

positive constants.

Remark 1.1.4 For the regularly varying distribution functions, the k � th mo-

ment does not exist whenever k � 1=: This has a few important implications.

When we consider the sum of iid rv�s that has a regularly varying distributions

with a tail index � < 2, the variance of these rv�s is in�nite, and hence the central

limit theorem does not hold.

Example 1.1.1 1) If X has a Pareto distribution with tail �F (x) =
�

c

x+ c

��
;

then F 2 RV��:

2) If X has a Burr distribution with tail �F (x) =
�

c

x� + c

��
; then F 2 RV���:

15
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1.2 Extreme value theory

Extreme value theory (EVT) has emerged as one of the most important statistical

disciplines for the applied sciences. Their techniques are also becoming widely

used in many other disciplines. In particular, extreme value analyses usually

require estimation of the probability of events that are more extreme than any

that have already been observed. For example, EVT might be used in the �eld of

hydrology to estimate the probability of an unusually large �ooding event.

1.2.1 Extreme value distributions

Let X1; ::; Xn be iid rv�s representing risks or losses with unknown cumulative

distribution function (cdf), F (x) = P (X � x). Examples of random risks are

returns on �nancial markets or portfolios, operational losses, catastrophic insur-

ance claims, credit losses, natural disasters, tra¢ c prediction in telecommuni-

cations etc. See [Coles (2001)], [McNeil and Frey (2000)], [Rachev (2003)], and

[Embrechts et al. (1997)].

A traditional statistical discussion on the mean is based on the central limit the-

orem (CLT ) and hence often returns to the normal distribution as a basis for

statistical inference. The classical CLT states that the distribution of

p
n
�X � E (X)p
V ar (X)

=
X1 + :::+Xn � nE (X)p

nV ar (X)
;

converges for n ! 1 to a standard normal distribution N (0; 1). In general,

the central limit problem deals with the sum Sn := X1 + ::: + Xn and tries to

�nd constants an> 0 and bn such that
Sn � bn
an

tends in distribution to a non-

16



Chapter 1. Heavy-tailed distributions and Extreme Value Theory

degenerate distribution. Typically the normal distribution is attained as a limit

for this sum of iid rv�s, except when the underlying distribution F possesses a

heavy tail with in�nite variance which yield non-normal limits for the average.

In what follows, we will replace the sum Sn by the maximum. The model focuses

on the statistical property of :

X(n) = max (X1; :::; Xn) :

Clearly, results for the minimum or the maximum can be immediately transferred

to the other through the relation

X(1) = min (X1; :::; Xn) = �max (�X1; :::;�Xn) :

In theory the distribution of X(n) can be derived exactly for all values of n :

FX(n) (x) = P
�
X(n) � x

�
= P (X1 � x; :::; Xn � x) = F n (x) : (1.2)

However, this is not immediately helpful in practice, since the distribution function

F is unknown. An alternative approach is to accept that F is unknown, and to

look for approximate families of models de�ned in (1.2), which can be estimated

on the basis of the extreme data only. This is similar to the usual practice of

approximating the distribution of sample means by the normal distribution, as

justi�ed by the central limit theorem.

It is natural to consider the probabilistic problem of �nding the possible limit

distributions of the maximumX(n). Hence, the main mathematical problem posed

in extreme value theory concerns the search for distributions of X for which there

17
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exist a sequence of numbers fbn;n � 1g and a sequence of positive numbers

fan;n � 1g such that for all real values x (at which the limit is continuous)

P

�
X(n) � bn

an
� x

�
! G (x) as n!1:

This problem has been solved in [Fisher and Tippett (1928)], and [Gnedenko (1943)]

and was later revived and streamlined by [de Haan (1970)], by the following the-

orem which is an extreme value analog of the CLT.

Theorem 1.2.1 (Fischer-Tippett, 1928 and Gnedenko, 1943) Let (Xi) be

independent identically distributed random variables with distribution function F .

If there exist two real valued sequences an > 0 and bn 2 R and a distribution

function G such that:
X(n) � bn

an

D! G�:

Then, if � > 0

G� (x) = e(�x)
��
1(x>0) (x) ;

if � < 0

G� (x) =

8><>: e�(�x)
�

; x � 0

1; x > 0

and if � = 0

G0 (x) = e�e
�x
; x 2 R:

Remark 1.2.1 1) The previous theorem is true for most of the usual laws.

2) The distribution function G� is called Generalized Extreme Value Dis-

tribution. The parameter � is called the extreme value index. If F veri�es the

precedent Theorem, we say that belongs to the domain of attraction of G�:

3) Within the sign of � there are three areas of attraction.
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� If � > 0 we say that F belongs to the domain of attraction of Frechet. This

domain of attraction contains the heavy tailed distribution functions (with poly-

nomial decay) such as the Cauchy distribution, Pareto, Burr, inverse gamma and

log gamma distributions.

� If � < 0 we say that F belongs to the domain of attraction of Weibull. This

domain of attraction contains the majority of distribution functions whose end

point is �nite (uniform law, Beta(p; q), Weibull distributions etc.)

� If � = 0 we say that F belongs to the domain of attraction of Gumbel. This

domain of attraction contains the distribution functions (with exponential decay)

such as Gaussian, exponential, gamma, lognormal, Logistic, etc).

The Fischer-Tippett Theorem is stating that the distribution function describing

the dynamic of extreme events belongs to Maximum Domain of Attraction of a

Generalized Extreme Value Distribution, that is:

De�nition 1.2.1 The Generalized Extreme Value Distribution G�;�;� (z), is de-

�ned by

G�;�;� (z) =

8>>>><>>>>:
exp

 
�
�
1 + �

z � �

�

��1=�!
� 6= 0

exp

�
� exp

�
�z � �

�

��
� = 0;

G�;�;� (z) is de�ned on fz : 1 + �(z � �)=� > 0g, where � 2 R, � > 0; and the

real parameter � is a shape parameter that determines the tail behavior of G� (z).

[Gnedenko (1943)] accomplished an important result on this issue. He proved that

The Fischer-Tippett theorem is applicable for heavy tailed distributions functions.

More precisely, he shown that heavy tailed distribution functions belong to the

maximum domain of attraction of the Frechet distribution.

19



Chapter 1. Heavy-tailed distributions and Extreme Value Theory

1.2.2 Tail index estimation

The estimation of � has a great interest and common applications in a big vari-

ety of domains, as for example in economics, applied �nance, insurance, business,

industry, tra¢ c, telecommunications, sociology and geology, as one might see the

textbook, [Dekkers et al. (1989)], [Bacro and Brito (1995)], [Beirlant et al. (2007)]

and references therein.

The tail index is used for the estimation of high quantiles of observed rv�s. For

many applications, it is important to know �as well as to determine the number

of �nite moments. For example, if � < 2, than EX2 =1 holds.

There are numerous tail-index estimators. They are based on various assumptions,

have diverse asymptotic and �nite-sample properties. The paper of [Fedotenkov (2018)]

reviews more than one hundred univariate Pareto-type (and equivalent) tail index

estimators : Hill, Kernel, Pickands, Peng,...

In the case of a positive-valued tail index (� > 0) ; the most celebrated estimator

of � is that proposed by [Hill (1975)], for  = 1=�; is determined by

̂H := ̂H (k) =
1

k

kX
i=1

log (Xn�i+1;n)� log (Xn�k;n) ;

X1;n � ::: � Xn;n denote the usual order statistics of the observed samples, k = kn

is the number of top statistics (upper observations), k is an integer sequence

satisfying

1 < k < n; k !1 and k=n! 0 as n!1: (1.3)

The asymptotic properties of ̂H have been much studied. In the independent con-

text, it is well known that, under some regularity conditions, ̂H is strongly con-
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sistent with asymptotic normal distribution [Haeusler and Teugels (1985)] when

properly normalized. The consistency of ̂H was proved by [Mason (1982)] by only

assuming the regular variation condition while its asymptotic normality was estab-

lished under a suitable extra assumption, known as the second-order regular varia-

tion condition (see [de Haan and Stadtmüller (1996)] and [de Haan and Ferreira (2006)]).

In particular, under (1.3) Hill�s estimator is weakly consistent

̂H
P! ; as n!1:

and asymptotically normal with mean  and variance 2=k :

p
k

�
̂H � 



�
D! N (0; 1) ; as n!1:

Plots of Hill ̂H estimator against k is shown in Figure 1.5 for Pareto distribution,

with parameter  = 0; 7. The sample size is n = 1000:

0 200 400 600 800 1000
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4

0.
6

0.
8

1.
0

k

H
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Figure 1.5: Hill ̂H estimator against k for Pareto distribution, with parameter
 = 0; 7:
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1.2.3 Robust estimation vs upper quantile

A given estimator is said to be robust if small changes in its distribution have a

relatively small e¤ect on its value. The theory of robustness aim at :

i) Stability for small samples : In general, small sample size n leads to unstable

estimates.

ii) Resistant to errors in the results: Produced by deviations from assumptions

on the �-contaminated model known by mixture distributions:

F� (x) = (1� �)F (x) + �G (x) :

iii) Sensitivity to the presence of outliers: An outlier may be due to measurement

error, experimental error or it may indicate that the population has a heavy-

tailed distribution with extremes values.

Example 1.2.1 The sample mean �X, is not robust. Taking the dataset f1; 3; 5; 8; 13g.

If we add another datapoint with value 100 to the data, the resulting mean
�
�X = 130

6
= 21:67

�
will be very di¤erent to the mean of the original data

�
�X = 30

5
= 6
�
.

Example 1.2.2 The median is a robust statistic : Taking the same dataset f1; 3; 5; 8; 13g,

if we add another datapoint with value 100 then the median will change slightly

(Med = 6:5), but it will still be similar to the median of the original data (Med = 5).

Readers interested in mathematical issues on robustness can refer to the excellent

books by [Huber (1981)], [Hampel et al. (1986)] as well as [Barnett and Lewis (1995)].
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Estimation of e.v.i. is very important in the determination of high quantiles,

upper tail probabilities, mean excess functions, and excess-of-loss and stop-loss

reinsurance premiums. Consequently, small errors in estimation of this quantity

can produce substantial impact in applications. Thus, for robust estimation of

quantities based on � robust estimation of � itself is crucial.

A useful parametric model with relatively high probability in the upper tail is the

Pareto distribution having cdf

F (x) = 1� x��; x � 1: (1.4)

de�ned for � > 0.

For estimation of upper (high) quantile, let " # 0 above a speci�ed threshold

Q = F�1, it follows from equation (1.4) that

x = (1� F (x))�1=� ) Q" = "�1=�:

Thus, for the estimator Q̂", de�ned by putting �̂ for �, we have

Q̂"
Q"

= "1=��1=�̂:

1) For " = 0:001; � = 1 and �̂ = 1:1 we get

Q̂"
Q"

= "1=��1=�̂ = (0:001)1�1=1:1 = 0:53:

Consequently, overestimation of � = 1 by 10% produces underestimation of Q0;001

by 47%.
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2) For " = 0:001; � = 1:5 and �̂ = 1:65 we get

Q̂"
Q"

= (0:001)1=1:5�1=1:65 = 0:66:

Thus, overestimation of � = 1:5 by 10% produces underestimation of Q0;001 by

34%.

3) Likewise, underestimation of � = 1by only 5%produces overestimation of

Q0;001by 44% :

�̂ = 0:95 and
Q̂"
Q"

= (0:001)1�1=0:95 = 1:44:

4) In the case of underestimation of � = 1:5 by 5%; we get

�̂ = 1:425 and
Q̂"
Q"

= (0:001)1=1:5�1=1:425 = 1:27:

which produces overestimation of Q0;001 by 27%.

In conclusion, for a heavy tailed distributions, robust estimation of the high quan-

tile Q" corresponding to upper tail probability ", becomes of interest, and this may

be carried out by robust estimation of �: [Brazauskas and Ser�ing (2000)] gives a

detailed account of this issue.
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Chapter 2

Incomplete data context

A survival model is based on lifetime. This term (lifetime) is a positive and

continuous random variable Xdesignating the necessarily time to the appearance

of a precise event or to pass from a state A to a state B in general. The survival

model and lifetime study can occur in many areas of application: such as in

medicine (length of survival after a heart attack), in engineering (operating time

of a component), �nance (time between 2 successive failures of a device), social

sciences (duration of unemployment),...

Generally, the data to treat are not completely observed. In this case classical

techniques don�t adjust correctly to the incomplete data (truncation or censoring).

Since our work carries on the incomplete data, and in order to give back easy the

reading of this thesis, we give some de�nitions, examples, important and useful

results on this issue of the incomplete data context which occur quite naturally

in lifetime data analysis.
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2.1 Censoring

Censoring is when a data is incompletely observed due to same random case

(problem of missing data, end of the study,...). In such case, the observed value

of same variables is only partially known.

2.1.1 Censoring Types

1) Right censoring: Commonest form of censoring is right censoring. Sub-

jects followed until some time, at which the event has yet to occur, but then

talks no further part in the study. This may be because:

� the subject dies from another cause, independently of the cause of interest,

� the study ends while the subject survives,

� the subject is lost to the study, by dropping out, moving to a di¤erent area.

So the lifetime X is only known to be greater than a censoring time denoted

C: In this case, we have:

The exact lifetime X of an individual will be known if X � C:

An individual is survivor and his event time is censored from the right at

X > C:

2) Left censoring: A lifetime X is left censoring if it is less than a censoring

time denoted C: The event of interest has already occurred for individual

before that person is observed in the study at the censoring time:

X while be known if X � C:

X is censored from the left at C if X < C:
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Example 2.1.1 In a study of the learning time of a task for some children. This

lifetime is a random variable X and C is the age of the child. For children who

already know perform the task, C censors X from the left because for them the

learning time X is unknown but inferior at C : X < C.

3) Interval censoring: A data point is somewhere on an interval between

two dates C1; C2 in which the event of interest occurred (C1 < X < C2) :

Left and right censoring are special cases of interval censoring, with the

beginning of the interval at zero or the end at in�nity, respectively.

This type occurs in medical study (when a person have a periodic follow-

up), in industrial experiments (where there is a periodic inspection for proper

functioning or ecupement items),...

2.1.2 Framework of randomly right censoring

Let X1; :::; Xn be n copies of iid rv X; with cdf F assumed to be heavy-tailed. In

many real applications, such as survival analysis, reliability theory or insurance...,

the variable of interest X is not necessarily completely available. This is the case

in the presence of random right censoring.

The usual way to model this situation is to introduce another random variable

C called censoring rv, independent of X: In this case the data can be represented

by pairs of rv�s (Zi; �i) where

Zi := min (Xi; Ci) ; �i := 1(Xi�Ci); i = 1; :::; n:

Remark 2.1.1 If our data contain only uncensored and right-censored data, we

can represent all individuals by the triple (i; Zi; �i) :
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i : indexes subjects,

Zi : is the time at which the death or censoring event occurs to individual j,

�i : is an indicator variable which determines whether or not Xi has been observed:

�i = 1 if i is uncensored and �i = 0 if censored.

Example 2.1.2 An arti�cial example of right-censored data involving n = 10

data points is given in Table 2.1. We see that the observed sample is given by

(Z1; Z2; Z3; Z4; Z5; Z6; Z7; Z8; Z9; Z10) = (C1; X2; C3; X4; X5; C6; X7; C8; X9; X10)

for which Zj = min (Xj; Cj) : The indicator variable

�j = 1(Xj<Cj) =

8><>: 1, if Xj has been observed

0, if Xj is censored

= (0; 1; 0; 1; 1; 0; 1; 0; 1; 1) :

j Xj Cj Zj = min (Xj; Cj) �j
1 11:12 9:15 9:15 0
2 10:85 11:45 10:85 1
3 10:25 9:68 9:68 0
4 10:02 10:25 10:02 1
5 9:08 9:88 9:08 1
6 7:65 7:54 7:54 0
7 6:63 7:65 6:63 1
8 5:41 4:03 4:03 0
9 5:21 8:03 5:21 1
10 5:03 5:77 5:03 1

Table 2.1: An arti�cial example of right-censored data.

In the context of this randomly right censoring, the nonparametric maximum

likelihood estimator of F in the case of censored data equals the famous the

28



Chapter 2. Incomplete data context

Kaplan-Meier estimator [Kaplan and Meire (1958)], given by

1� F (KM)
n (z) :=

Y
i:Zi;n�z

�
1� �i;n

n� i+ 1

�
; for z 2 R

where Zi;n denote the order statistics associated to Z1; :::; Zn and �i;n is the con-

comitant of the ith�order statistics, for which �i;n = �i if Zi;n = Zi:

Remark 2.1.2 When there is no censorship, the Kaplan-Meier estimator F (KM)
n (z)

is reduced to the empirical distribution function Fn (z) = 1
n

Pn
i=1 1(Xi�z).

2.2 Truncation

The censored data are not the unique type of incomplete data. The other case is

the one of the so-called truncated data. Truncation appears when time to event

is only observed in study. A rv X is said to be truncated from below if, for some

threshold value T , the exact value ofX is known for all casesX > T , but unknown

for all cases X � T . Similarly, truncation from above means the exact value of X

is known in cases where X < T , but unknown for all cases X � T:

2.2.1 Truncation Types

1) Right truncation: In many real applications, the rv of interest X may be

not fully available (truncated from the right by a rv denoted Y ). In this

case, only individuals with event time less than some threshold are included

in the study.

Example 2.2.1 If we ask a group of smoking school pupils at what age they

started smoking, we have necessarily a truncated data. Individuals who start
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smoking after leaving school are not included in the study, and therefore right

truncated.

Example 2.2.2 An arti�cial example of right-truncated data involving N = 10

data points is given in Table 2.2. We see that (X1; X3; X5; X6; X7; X8; X9) are

observed, but not (X2; X4;X10). In this case, the observed sample is given by

(X�
1 ; X

�
2 ; X

�
3 ; X

�
4 ; X

�
5 ; X

�
6 ; X

�
7 ) = (0:56; 0:10; 2:61; 3:55; 6:09; 4:01; 8:18)

j Xj Yj X�
j

1 0:56 8:05 0:56
2 0:14 0:11
3 0:10 1:12 0:10
4 1:5 0:98
5 2:61 3:35 2:61
6 3:55 4:58 3:55
7 6:09 8:07 6:09
8 4:01 5:03 4:01
9 8:19 9:81 8:19
10 7:15 6:14

Table 2.2: An arti�cial example of right-truncated data.

The truncation probability is about 30%; thus: p = P (X � Y ) ' n
N
= 7

10
= 0:7:

2) Left truncation: due to structure of the study design, we can only ob-

serve those individuals whose event time is greater than some truncation

threshold.

Example 2.2.3 Imagine you wish to study how long people who have been hospi-

talized for a heart attack survive taking some treatment at home. The start time
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is taken to be the time of the heart attack. Only those individuals who survive

their stay in hospital are able to be included in the study.

2.2.2 Estimation under right truncation

Let X; denote a rv of interest, with continuous cdf F and let Y; denote the trun-

cation rv with cdf G. Consequently, the observed subsequence denote (X�
i ; Y

�
i ) ;

1 � i � n subject to X�
i � Y �

i from the N -sample (Xj; Yj) ; 1 � j � N; (n � N).

Then, the size of actually observed sample,

n :=
NX
j=1

1(Xj�Yj)

is a binomial rv with parameters N and p := P (X � Y ) : We shall assume that

p > 0; otherwise, nothing will be observed.

Since, the joint cdf of (X�; Y �) is

H (x; y) = P (X� � x; Y � � y) = P (X � min (x; Y ) ; Y � yjX � Y )

= p�1
Z y

0

F (min (x; t))dG(t):

The marginal cdf�s of the observed rv�s X� and Y � (subject to X� � Y �), respec-

tively denoted by F � and G�, becomes

F �(x) = P (X� � x) = P (X � xjX � Y ) := p�1
Z x

0

G(t)dF (t)

and

G�(y) = P (Y � � y) = P (Y � yjX � Y ) := p�1
Z y

0

F (t)dG(t);

Therefore, the Woodroofe�s nonparametric estimator, see [Woodroofe (1985)] of
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F , is de�ned by

F (W )
n (x) :=

Y
j:X�

j>x

exp
�
� 1
nCn(X�

j )

�
; where Cn (x) :=

1

n

nX
j=1

1(X�
j�x�Y �j )

;

in which Cn is the empirical estimator of

C (z) := P (X� � z � Y �) = P (X � z � Y jX � Y ) = p�1G(z)F (z) :

Another more popular estimator for F , is the well known Lynden-Bell nonpara-

metric maximum likelihood estimator, originally proposed by [Lynden-Bell (1971)],

de�ned by

F (LB)n (x) :=
Y

j:X�
j>x

�
1� 1

nCn(X�
j )

�
:

Finally, readers interested on the incomplete data, lifetime and survival analysis

can refer to [Lawless (2011)], [Escudero and Ortega (2008)] and references therein.
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Robust tail index estimation

under censoring

Statistics of extremes under random censoring is a new research �eld. The topic

was �rst mentioned in [Reiss and Thomas (2007)], where an estimator of a positive

extreme value index was introduced, but with no asymptotic results. Recently,

[Beirlant et al. (2007)] proposed an estimators for the general extreme value index

and for the extreme quantile with their asymptotic properties. [Einmahl et al. (2008)]

adapted various extreme value index estimators to the case where the data are

censored, by a random threshold and establish their asymptotic normality by im-

posing some assumptions that are rather unusual to the context of extreme value

theory. Robust estimation of e.v.i. focuses primarily on complete data case, see

[Brazauskas and Ser�ing (2000)], [Beran and Shell (2012)] and references therein.

The incomplete data case has �rst been considered by [Sayah et al. (2014)], who

dealt with single Pareto distributions under right censored data.

The aim of the current chapter is to provide a robust e.v.i. estimator for the
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general case of heavy tailed Pareto-type distributions under random censorship.

Based on the ideas of Kaplan-Meier integration using the huberized M-estimator of

the tail index. We derive the asymptotic results and we illustrate (in a simulation

study) the performance and the robustness of this newly estimator.

3.1 Hill-type estimator under censoring

Let X1; :::; Xn be n copies of iid rv X; with cdf F assumed to be heavy-tailed.

In other words, the distribution tail F := 1 � F is regularly varying, with index

(��1) ; notation: F 2 RV(��1): That is

lim
t!1

F (tx)

F (t)
= x��1 ; for any x > 0;

where �1 > 0 is the so-called shape parameter or tail index.

The estimation of �1 has a great interest (see, chapter 1). The most celebrated

estimator of �1 is that proposed by [Hill (1975)]

�̂H1 := �̂H1 (k) =

 
1

k

kX
i=1

log (Xn�i+1;n)� log (Xn�k;n)

!�1
;

for k = kn is an integer sequence satisfying

1 < k < n; k !1 and k=n! 0 as n!1: (3.1)

The asymptotic properties of �̂H1 have been much studied. In the indepen-

dent context, it is well known that, under some regularity conditions, �̂H1 is

strongly consistent with asymptotic normal distribution when properly normal-

ized [Haeusler and Teugels (1985)]. The consistency of �̂H1 (k) was proved by
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[Mason (1982)] by only assuming the regular variation condition while its asymp-

totic normality was established under a suitable extra assumption, known as the

second-order regular variation condition (see [de Haan and Stadtmüller (1996)]

and [de Haan and Ferreira (2006)]).

As shown in chapter 2, in many real applications, such as survival analysis, re-

liability theory or insurance...(in the presence of random right censoring), the

variable of interest X is not necessarily completely available. The usual way to

model this situation is to introduce a random variable C called censoring rv, in-

dependent of X, and then to consider the rv Z := min (X;C) and the indicator

variable � := 1 (X � C) ; which determines whether or not X has been observed.

The cdf�s of C and Z will be denoted by G and H respectively.

The tail of the censoring distribution G is assumed to be regularly varying too,

that is 1�G 2 RV(��2); for some �2 > 0: By virtue of the independence of X and

C; we have

1�H (x) = (1� F (x)) (1�G (x)) :

Therefore 1 � H 2 RV(��); with � := �1 + �2: Let f(Zi; �i) ; 1 � i � ng be a

sample from the couple of rv�s (Z; �) and Z1;n � ::: � Zn;n represent the order

statistics pertaining to (Z1; :::; Zn) :

De�nition 3.1.1 The adapted Hill estimator proposed by [Einmahl et al. (2008)]

of the tail index �1 is de�ned by

b�(H;c)1 :=
b�H (k)bp ; (3.2)
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where

b�H (k) := 1

k

kX
i=1

logZn�i+1;n � logZn�k;n (3.3)

and

bp := 1

k

kX
i=1

�n�i+1;n; (3.4)

the proportion of non-censored observations in the largest k order statistics of Z,

with �i;n (i.e. �i;n = �j if Zi;n = Zj) denote the concomitant of the ith order

statistic Zi;n and k :=kn satisfying (3.1).

Remark 3.1.1 The adapted Hill estimator (3.2) is equal to the quotient of the

classical Hill estimator to the proportion of non censored data p = 1
n

P
1(X�C)

based on k largest order statistics.

3.2 Robust tail index estimation and asymptotic

results

The adapted Hill estimator (3.2), as well as the classical Hill-type (in complete

data case) are non robust, in the sense that they are very sensitive to extreme ob-

servations, data contamination or model deviation and tend to be highly volatile

for small samples (this is illustrated in our simulation study). Also, the rate of

convergence of these estimators are based on the optimal value of the numbers of

top statistics k, but this rate are slower than the parametric rate
p
n: Moreover,

estimating the optimal value of k is virtually impossible when the sample size n

is small and this leads to unstable estimates for small samples. The alternative

approach is inspired from the theory of robust inference, which aim at stability for

small samples. However, as observed by [Beran and Shell (2012)], in some prac-
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tical cases, such as natural disasters, operational risk assessment or reinsurance

data are sparse (with n often somewhere between 20 and 50) and distributions

are expected to be heavy tailed with an unknown e.v.i.

Historically, several approaches to robust estimation were proposed, including

R-estimators, L-estimators and M-estimators as a result of a generalization of

the (non-robust) maximum likelihood estimators. Robust estimation of e.v.i.

focuses primarily on complete data case, see [Brazauskas and Ser�ing (2000)],

[Beran and Shell (2012)] and references therein. This can be obtained by the

de�nition of the following class of M-functional and M-estimators respectively

that are de�ned as follows (see, [Beran and Shell (2012)]).

De�nition 3.2.1 Let FPar (x; �) = 1� x�� (x � 1) and

 v (x; �) = [� log (x)� 1]v �
Z
[� log (z)� 1]vdFPar(z; �)

= [� log (x)� 1]v � (v + exp(� (v + 1))) ;

where [y]v = max (y; v) ; and denote by F a set of distributions with support in

R+: Then the functional T =: T v de�ned on F as the solution t0 of the equation

�F (t) =

Z
 v (x; t) dF (x) = 0; (F 2 F)

is called huberized tail index M-functional. The corresponding M-estimator Tn =:

T vn ; de�ned by
nX
j=1

 v (Xj; Tn) = 0; (3.5)

is called huberized M-estimator of the tail index. Moreover,  v (:; �) is de�ned

for any choice of � > 0 and v 2 R: Thus, as shown by [Beran and Shell (2012)],
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robustness on the left is obtained only if v � �1:

Remark 3.2.1 This approach of huberized M-estimator is inspired from the the-

ory of robust inference (see, for instance, [Huber (1981)]).

The nonparametric maximum likelihood estimator of F in the case of censored

data equals the famous estimator of [Kaplan and Meire (1958)] also called the

product limit estimator, given by

1� F (KM)
n (z) :=

Y
i:Zi;n�z

�
1� �i;n

n� i+ 1

�
; for z 2 R: (3.6)

[Stute and Wang (1993)] and [Stute (1995)] studied the almost sure and distrib-

utional behavior of the so-called Kaplan-Meier integrals

In :=

Z
' (z) dF (KM)

n (z) ;

where ' is an arbitrary integrable function. It is easily seen from (3.6) that

In =
nX
i=1

Win' (Zi;n) ;

where for 1 � i � n

Win =
�i;n

n� i+ 1

i�1Y
j=1

�
n� j

n� j + 1

��j;n
:

[Stute (1995)] obtained under random censoring and under some assumptions the

central limit theorem for a general transformation ', that is

p
n

Z
'd
�
F (KM)
n � F

� D! N
�
0; �2

�
;

�
�2 <1

�
:
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To formulate our main results, the following assumptions are required:

Z
 2v (x; �1)�

2
0 (x) ~H1 (dx) <1; (3.7)

and Z
j v (x; �1)jA1=2 (x)F (dx) <1; (3.8)

where

A (x) :=

Z x

�1

G (dy)

(1�H (y)) (1�G (y))
:

The functions ~H0; ~H1; �0; �1 and �2 are de�ned as below

~H0 (z) := P (Z � z; � = 0) =

Z z

�1
�F (t)G (dt) ;

~H1 (z) := P (Z � z; � = 1) =

Z z

�1
�G (t)F (dt) ;

�0 (z) := exp

 Z z

�1

~H0 (dx)
�H (x)

!
;

�1 (z) :=
1
�H (z)

Z
 v (x; �1)�0 (x)1fz<xg ~H1 (dx) ;

and

�2 (z) :=

Z Z
 v (x; �1)�0 (x)1fy<z; y<xg

�H (y)
~H0 (dy) ~H1 (dx) :

Theorem 3.2.1 ([Sayah et al. (2014)]) LetXi �FPar (x; �1) and Ci �FPar (y; �2) ;

x � 1; y � 1 where �1 > 0 and �2 > 0; with �2 < �1: Moreover, let Fn = F
(KM)
n

be the Kaplan-Meier estimator of the df F and b�(S)1 a sequence of solutions of

�Fn (t) =

nX
j=1

Win v (Zi;n; t) = 0; (n 2 N) :
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Then, under assumptions (3.7) and (3.8) we have

p
n
�b�(S)1 � �1

�
D! N

�
0; �2

�
:

where �2 <1 and expletively given by the authors in the proof of their theorem.

Proof of Theorem 3.2.1. See the proof of Theorem 1, page 678-682 in [Sayah et al. (2014)].

Remark 3.2.2 Condition (3.7) is the properly modi�ed variance assumption on

 vand (3.8) only incorporates the �rst  v�moment. It is mainly to control the

bias of
Z
 vdF̂n; which is a function of  v rather than  2v : [Stute (1994)] and

[Stute (1995)] gives a detailed account of this issue. In our case, this two assump-

tions are satis�ed when �2 < �1.

Next, we investigate the asymptotic properties of the estimator of the tail index

�1 under the large class of Pareto-type distributions assumptions.

Theorem 3.2.2 Let F 2 RV(��1) and G 2 RV(��2) where �1 > 0 and �2 > 0;

with �2 < �1: Assume that assumptions (3.7) and (3.8) hold. Then, provided the

existence of �1 as a unique solution of �F (t) = 0, any solution sequence b�(Z)1 of

�̂Fn (t) =
nX
j=1

Win v (Zi;n; t) = 0 (n 2 N)

is a consistent estimator of �1: Assume further that
R

@
@t
 v (x; t) dF (x) 6= 0 hold

in a neighborhood of �1: Then

p
n
�b�(Z)1 � �1

�
d! N

�
0; �2v

�
; as n!1
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where d! stands for convergence in distribution and

�2v := �2
�Z

@

@t
 v (x; t) dF (x)

��2

in which

�2 = V ar f� (z; �1)�0 (z) � + �1 (z) (1� �)� �2 (z)g :

Remark 3.2.3 It is worth mentioning that for complete data case (no censoring),

we have, Win = 1=n and Zi = Xi so that In becomes the sample mean. It follows

that �̂Fn
�b�(Z)1

�
=
Xn

i=1
 v (Xi; Tn) and consequently b�(Z)1 reduce to the Beran

and Shell estimator Tn see, e.g. [Beran and Shell (2012)].

Proof of Theorem 3.2.2. The proof is essentially based on Theorem 1.1 in

[Stute and Wang (1993), page 1594], Corollary 1.2 in [Stute (1995), page 426]

and [Beran and Shell (2012), page 3432]. Recall that,

Z
 v

�
z; b�(Z)1

�
dFn (z)�

Z
 v (z; �1) dF (z)�

Z
 v (z; �1) dFn (z) +

Z
 v (z; �1) dFn (z)

=

Z �
 v

�
z; b�(Z)1

�
�  v (z; �1)

�
dFn (z) +

Z
 v (z; �1) d (Fn (z)� F (z)) = 0;

The assumed di¤erentiability of  v;u (x; t) in t allows a Taylor expansion around

�1 which yields

p
n
�b�(Z)1 � �1

�Z @

@t
 v (z; t) dFn (z) =

p
n

Z
(� v (z; �1)) d (Fn (z)� F (z)) :

Then,

p
n
�b�(Z)1 � �1

�
=
p
n

�Z �
@

@t
 v (z; t)

�
dFn (z)

��1 Z
(� v (z; �1)) d (Fn (z)� F (z)) :
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It was shown in Theorem 1.1 in [Stute and Wang (1993)] that for any measurable

real function '; and under the condition
R
j'j dF <1; we get

Z
'dFn =

Z
'dF + op (1) :

From [Stute (1995)] under assumptions (3.7) and (3.8) we have

p
n

Z
(� v (z; �1)) d (Fn (z)� F (z))

D! N
�
0; �2

�
:

The stated assumptions are su¢ cient for consistency and asymptotic normality.

3.3 Performance and comparative study

In this section we examines the performance of our estimator and compare with

the adapted Hill estimator given in 3.2 proposed by [Einmahl et al. (2008)]. For

this reason, we follows the steps below.

Step 1: We generate 1000 pseudorandom samples X and C of size n = 100; 200;

500 from Pareto cdfs with �1 = 0:6 and �2 = 0:25 respectively:

F (x) = x��1 and �G (x) = x��2 ; x � 0:

Here v = 1 and p = 0:70 that means the percentage of censorship is 30%:

Step 2: We obtained 1000 pseudorandom samples Z = min (X;C) and the indi-

cator variable � := 1(X�C) of size n = 100; 200 and 500:

Step 3: We estimate the tail index parameter by the two estimators based on
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the observed data Z:

Step 4: For choosing the optimal number k = kn of upper order statistics used

in the computation of the adapted Hill estimator given in 3.2 we adopt the Reiss

and Thomas algorithm [Reiss and Thomas (2007), page 137].

Step 5: Finally, we compute the absolute bias (abias) and root mean squared

error (rmse) of these estimators :

abias
�b�(Z)1

�
=
���E �b�(Z)1

�
� �1

��� ' ����� 1N
NX
j=1

b�(Z)1j � �1

�����
and rmse =

r
bias2

�b�(Z)1

�
+ var

�b�(Z)1

�
:

The results are summarized in Table 3.1.

b�(Z)1 k b�(H;c)1 (k)
n abias rmse abias rmse

100 :0611 :2511 17 :1143 :2586
200 :0431 :1821 34 :0845 :1013
500 :0153 :1142 86 :0245 :0684

Table 3.1: Bias and RMSE of the two estimators based on 1000 samples of Pareto-
distributed with tail index 0.6.

We see that our new estimator shows good performance for small sample sizes.

3.4 Comparative robustness study

We study the sensitivity to outliers of our estimator and compare with the adapted

Hill estimator. We consider an �-contaminated model known by mixture of Pareto

distributions

F� (x) = 1� (1� �)x��1 + �x�; (3.9)
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where �1; �2 > 0 and 0 < � < 0:5 is the fraction of contamination. Note that for

� = 0; b�(Z)1 and b�(H;c)1 (k) are asymptotically unbiased. Therefore, for � > 0, the

e¤ect of contamination becomes immediately apparent. If �1 <  and � > 0; (3.9)

corresponds to a Pareto distribution contaminated by a longer tailed distribution.

For the implementation of mixtures models to the study outliers one refers, for

instance, to [Barnett and Lewis (1995), page 43]. In this context, we proceed our

study as follows.

Step 1: We consider �1 = 0:6;  = 0:5 and �2 = 0:25; to have the contaminated

model.

Step 2: Then we consider three contamination scenarios according to � = 5%;

10%; 15%:

Step 3: For each value �; we generate 1000 samples of size n = 100; 200 and 500

from the model (3.9).

Step 4: Finally, we compare the two estimators with the true value (�1 = 0:6),

by computing for each estimator, the appropriate abias and rmse and summarize

the results in Table 3.2.

The values of the �rst line are those of the case where � = 0 (i.e., uncontaminated

case). It has been shown that our estimator is more robust and perform better

than the adapted Hill estimator proposed by [Einmahl et al. (2008)]. In fact, the

adapted Hill estimator depends on the choice of the optimal number k = kn of

upper order statistics and turn out to be more sensitive to this type of conta-

minations, for example, in 0% contamination for n = 100 the (abias, rmse) of

the adapted Hill estimator equals (0:1143; 0:2568) ; while for 15% contamination

is (1:0452; 1:1256) : We may conclude that the adapted Hill estimator is note ro-

bust. However for 0% contamination the (abias, rmse) of our estimator equals
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b�(Z)1 b�(H;c)1 (k)
n % contamination abias rmse abias rmse

0 :0611 :2511 :1143 :2586
100 5 :0685 :2865 :1325 :3251

10 :0754 :3561 :6485 :7546
15 :0791 :3940 1:0452 1:1256

0 :0431 :1821 :0845 :1013
200 5 :0487 :1965 :0911 :2511

10 :0510 :2213 :2496 :3217
15 :0614 :3889 :4518 :9941

0 :0153 :1142 :0245 :0684
500 5 :0099 :1021 :1231 :1254

10 :0239 :2289 :2211 :4024
15 :0556 :3496 :4154 :4372

Table 3.2: Abais and rmse of the two estimators based on 1000 samples of mixture
of Pareto distributions with tail index 0:6.

(0:0611; 0:2511) ; while for 15% contamination is (0:0791; 0:3940) : We can con-

clude the robustness of our estimator, giving us, an excellent level of protection

against contaminated data.
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Chapter 4

Robust tail index estimation

under truncation

In this chapter1, we introduce a new robust estimator for the extreme value index

of Pareto-type distributions under randomly right-truncated data and establish

its consistency and asymptotic normality. Our considerations are based on the

Lynden-Bell integral and a useful huberized M-functional and M-estimators of the

tail index. A simulation study is carried out to evaluate the robustness and the

�nite sample behavior of the proposed estimator. Extreme quantiles estimation

is also derived and applied to real dataset of lifetimes of automobile brake pads.

4.1 Introduction

Let (Xj; Yj), 1 � j � N; denote a sample of bivariate positive and independent rv�s

de�ned over some probability space (
;A; P ) ; with cdf�s F and G respectively.

1Zahnit A., Brahimi B. ,Yahia D. (2021). Robust estimation of the extreme value index of
Pareto-type distributions under random truncation with applications. Pak. J. Stat. Oper.Res.
Vol.17 No.1, pp. 235-245.
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Suppose that X is right-truncated by Y , in the sense that the rv of interest Xj is

only observed when Xj � Yj:We assume that both survival functions F := 1�F

and G := 1�G are regularly varying at in�nity, with respective indices (�1=1)

and (�1=2), i.e, F 2 RV�1=1 and G 2 RV�1=2. That is, for any t > 0;

lim
x!1

F (tx) =F (x) = t�1=1 and lim
x!1

G (tx) =G (x) = t�1=2 (4.1)

where j > 0 (j = 1; 2) is the so-called extreme value index (e.v.i) is a well-known

parameter to measure the tail heaviness of a distribution. Distributions satisfying

(4.1) play a very crucial role in extreme value analysis. They include many com-

monly used models such as Pareto, Burr, Fréchet and Lévy-stable distributions,

known to be suitable models for adjusting large insurance claims, log-returns,

large �uctuations, etc... see, for instance, [Resnick (2006)]. In many real applica-

tions, in case of presence of random right truncation (RRT), the rv of interest X

may not be fully available. This truncation can occur in many areas, for example,

it is usual that the insurer�s claim data do not correspond to the underlying losses,

because they are truncated from above. For a recent paper on insurance claims

under RRT, one refers to [Escudero and Ortega (2008)].

In what follows, the star notation (�) relates to any characteristic of the observed

subsequence denoted by (X�
i ; Y

�
i ) ; 1 � i � n; (n � N) subject to X�

i � Y �
i from

the N -sample. As a consequence of truncation, the size of actually observed sam-

ple, n, is a binomial rv with parameters N and p := P (X � Y ) :We shall assume

that p > 0; otherwise, nothing will be observed. Consequently, the marginal cdf�s

of X� and Y �, respectively denoted by F � and G�, becomes

F �(x) := p�1
Z x

0

G(t)dF (t) and G�(y) := p�1
Z y

0

F (t)dG(t);
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the corresponding tails are

F �(x) = �p�1
Z 1

x

G(t)dF (t) and G�(y) = �p�1
Z 1

y

F (t)dG(t):

We can easily show that see, Proposition B.1.10 in [de Haan and Ferreira (2006)]

F � 2 RV�1=�1 and G� 2 RV�1=�2 with respective indices

�1 =
12
1 + 2

and �2 = 2: (4.2)

Since F and G are heavy-tailed. Therefore, the Woodroofe�s nonparametric esti-

mator, see [Woodroofe (1985)] of F , is de�ned by

F (W )
n (x) :=

Y
j:X�

j>x

exp
�
� 1
nCn(X�

j )

�
; where Cn (x) :=

1

n

nX
j=1

1(X�
j�x�Y �j )

;

in which Cn is the empirical estimator of

C (z) := P (X � z � Y jX � Y ) = p�1G(z)F (z) :

Another more popular estimator for F , is the well known Lynden-Bell nonpara-

metric maximum likelihood estimator, originally proposed by [Lynden-Bell (1971)],

de�ned by

F (LB)n (x) :=
Y

j:X�
j>x

�
1� 1

nCn(X�
j )

�
:

Recently, [Gardes and Stup�er (2015)] exploited the above relations (4.2) to de�ne

an estimator for the parameter of interest 1 by considering the classical Hill

estimators, see [Hill (1975)] of �1 and 
�
2 as functions of two distinct numbers of
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upper observations. Thus, from (4.2) we have

2 = �2 and 1 =
�1

�
2

�2 � �1
:

Therefor,

̂
(GS)
1 (k1;k2) =

̂�1(k1)̂
�
2(k2)

(̂�2(k2)� ̂�1(k1))
(4.3)

where

̂�1(k1) :=
1

k1

k1X
j=1

log
�
X�
n�j+1;n
X�
n�k1;n

�
and ̂�2(k2) :=

1

k2

k2X
j=1

log
�
Y �n�j+1;n
Y �n�k2;n

�
;

X�
1;n � ::: � X�

n;n and Y
�
1;n � ::: � Y �

n;n denote the usual order statistics of both

observed samples, k1 and k2 are the numbers of top statistics (upper observations)

which are kept for estimating �1 and 
�
2 .

The estimator given by (4.3) su¤er from some kind of calibration problem, because

of the di¢ culty in assessing the correlation between ̂�1 and ̂
�
2 , [Gardes and Stup�er (2015)]

they don�t consider the situation where the upper statistics are equal. [Benchaira et al. (2015)]

considered the case where k := k1 = k2 in the expression (4.3) of ̂
(GS)
1 : They

proved the asymptotic normality of this estimator under the tail dependence and

the second-order regular variation conditions. Recently, [Worms and Worms (2016)]

proposed an asymptotically normal estimator for 1 by considering a Lynden-Bell

integrals with a deterministic threshold tn > 0 given by

̂
(W )
1 (tn) :=

1

nF
(LB)
n (tn)

nX
j=1

F
(LB)
n (X�

j )
Cn(X�

j )
log
�
X�
j

tn

�
1(X�

j>tn)
: (4.4)

The case of a random threshold, is addressed by [Benchaira et al. (2016)] who

propose a Hill-type estimator under RRT based on a Woodroofe integration as
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follows:

̂
(B)
1 (k) := 1

nF
(W )
n (X�

n�k;n)

kX
i=1

F
(W )
n (X�

n�i+1;n)
Cn(X�

n�i+1;n)
log
�
X�
n�i+1;n
X�
n�k;n

�
: (4.5)

All of these e.v.i estimators, as well as the classical Hill-type (in complete data

case) are non robust, in the sense that they are very sensitive to extreme obser-

vations, data contamination or model deviation and tend to be highly volatile

for small samples (this is illustrated in our simulation study). Also, the rate of

convergence of these estimators are based on the optimal value of the numbers of

top statistics k or the threshold tn; but this rate are slower than the parametric

rate
p
n: Moreover, estimating the optimal value of k is virtually impossible when

the sample size n is small and this leads to unstable estimates for small sam-

ples and large con�dence intervals, see [Resnick (1997)] for a detailed discussion.

The alternative approach is inspired by the theory of robust inference (see, for

instance, [Huber (1981)] and [Hampel et al. (1986)]) instead of exact consistency,

this theory aim at stability for small samples, possibly at the cost of a small asymp-

totic bias. However, as observed by [Beran and Shell (2012)], in some practical

cases, such as natural disasters, operational risk assessment or reinsurance data

are sparse (with n often somewhere between 20 and 50) and distributions are ex-

pected to be heavy tailed with an unknown e.v.i. Robust estimation of e.v.i.

focuses primarily on complete data case, see [Brazauskas and Ser�ing (2000)],

[Beran and Shell (2012)] and references therein. The incomplete data case has

�rst been considered by [Sayah et al. (2014)], who dealt with heavy-tailed and

right censored data. The aim of the current paper is to provide a robust e.v.i.

estimator for heavy tailed data under RRT.
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4.2 Framework and statement of the results

Recall that the condition (4.1) can be rephrased as �F (x) = x�1=1LF (x) and

G (x) = x�1=2LG (x) ; where LF and LG are slowly varying functions at in�nity.

Assuming that limx!1 LF (x) = c > 0 leads to the class of so-called Pareto-like

(or heavy-tailed) distributions, i.e. distribution satisfying 1�F (x) � cx�1=1as x

tends to in�nity. Then, the tail of such distribution behaves asymptotically like the

tail of Pareto distribution. Thus, we suggests to robustify the Pareto maximum

likelihood estimator of 1 in order to obtain sensible estimates for the class of

Pareto-type distributions despite possible deviations from the single-parameter

Pareto model see, [Beran and Shell (2012)] for a detailed discussion. A natural

estimate of 1 can therefore be based on a Huberized Pareto score function :

 v;u (x; ) = [
�1 log (x)� 1]uv �

Z
[�1 log (z)� 1]uvdFPar;(z)

= [�1 log (x)� 1]uv � (v + exp(� (v + 1))� exp(� (u+ 1))) ; (4.6)

where FPar; (x) := 1 � x�1=, for x � 1 and [y]uv := min (max (y; v) ; u) : The

reason for huberization is that the Pareto distribution is only an approximation

of the true cdf. By huberizing, the estimate becomes robust against a large class

of deviations from this approximation. Since deviations are mainly relevant in the

center of the distribution, the lower truncation parameter v is more important.

As an alternative to Hill-type estimation, [Beran(1997)] proposed to use all data

but huberize the Pareto score function at lower quantiles. This method has been

investigated in the complete data case in [Beran and Shell (2012)]. Moreover,

 v;u (x; ) is de�ned for any choice of  > 0 and �1 � v < u � 1: Thus,

as shown by [Beran and Shell (2012)], robustness needs to be achieved for lower
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quantiles whereas extreme observations on the right are those we are interested

in. In particular,  �1;1 (x; ) = �1 log (x)� 1 for x � 1: Consequently, a natural

choice is u =1 and robusti�cation on the left is obtained only if v > �1:

Under the assumptions above, and denote by F a set of distributions with support

in R+: Then the functional T (F ) de�ned on F as the solution t = t0 of the

equation

�F (t) =

Z
 v;u (x; t) dF (x) = 0; (F 2 F)

is called huberized tail indexM -functional. Consequently, by using relations (1.9)

and (1.10) in [Stute and Wang (2008)] in the left truncation case, a natural adap-

tation of this integral �F (t) in the framework of RRT, leads to the corresponding

Huberized Lynden-Bell integral estimator of the e.v.i. 1 as any solution sequence

Tn of the empirical equation

�̂Fn (Tn) :=
nX
j=1

 v;u
�
X�
j ; Tn

� F (LB)n (X�
j )

Cn(X�
j )

= 0: (4.7)

Remark 4.2.1 It is worth mentioning that for complete data case (no trunca-

tion), we have n = N; X� = X and Cn = Fn = F �n , it follows that �̂Fn (Tn) =Xn

i=1
 v;u (Xi; Tn) and consequently Tn reduce to the Beran and Shell estimator

see, e.g. [Beran and Shell (2012)].

Next, we investigate the asymptotic properties of the estimator of the tail index

1 under the large class of Pareto-type distributions assumptions. To formulate

our main result, the following conditions are required:

(A1) Let F 2 RV�1=1 and G 2 RV�1=2 with 0 < 1 < 2:

(A2)
Z

1
G(x)

 2v;u (x; t) dF (x) <1 and
Z

1
G(x)

dF (x) <1:
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Theorem 4.2.1 Assume that assumptions (A1) and (A2) hold. Moreover, let

Fn := F
(LB)
n be the Lynden-Bell estimator of the cdf F . Then, provided the ex-

istence of 1 as a unique solution of �F (t) = 0, any solution sequence ̂(Z)1 :=

̂
(Z)
1n (v; u) of

�̂Fn (t) =

Z
 v;u (x; t) dFn (x) = 0 (n 2 N)

is a consistent estimator of 1: Assume further that
R

@
@t
 v;u (x; t) dF (x) 6= 0 hold

in a neighborhood of 1: Then

p
n
�
̂
(Z)
1 � 1

�
d! N

�
0; �2v;u

�
; as n!1

where d! stands for convergence in distribution and

�2v;u := �2
�Z

@

@t
 v;u (x; t) dF (x)

��2
(4.8)

in which

�2 = V ar

�
� (X�)

C (X�)
+

Z Y �

X�

� (z)

C2 (z)
dF � (z)

�
;

where

� (z) :=

Z
z>x

[ v;u (z; 1)�  v;u (x; 1)] dF (x) :

Remark 4.2.2 Condition (A1) is standard in heavy-tailed and RRT context. The

condition 1 < 2 ensures that the tail of the truncated rv of interest X is note too

contaminated by the truncation rv Y: In addition, (A1) implies that, the right end-

points of X and Y are in�nite and thus they are equal. Assumption (A2) already

appeared in [Stute and Wang (2008)], they showed that, �2 < 1 under (A2),

therefore, �2v;u <1 too. Since G � 1; it implies
Z
 2v;u (x; t) dF (x) <1; which is

the assumption when no truncation occurs, see Theorem 2 in [Beran and Shell (2012)].
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In our case, (A2) is satis�ed when 0 < 1 < 2:

Remark 4.2.3 In comparison with the optimal value of the numbers of top sta-

tistics k in the Hill-type estimators, the parameter v play a less crucial role, since

the rate of convergence does not depend on v. In contrast to Hill-type estimators

under truncation (see, equations 4.3 and 4.5), all data are used. The role of v is

only to determine a threshold below which data have a bounded in�uence on the

estimator. Note also that, the equation (4.7) de�ning our estimator has a solution

for n � 2 almost surely.

4.3 Simulation study

In this section we examines the performance of our estimator ̂(Z)1 given by solving

the empirical equation (4.7), in which, the huberizing constants are v = 0 and

u =1; and compare it with estimators proposed by [Gardes and Stup�er (2015)],

[Worms and Worms (2016)] and [Benchaira et al. (2016)] given by (4.3), (4.4) and

(4.5) respectively. Firstly, we generate 1000 pseudo-random samples X and Y of

size N = 100; 150 and 200 from Burr�s models, F (x) =
�
1 + x1=�

���=1 and
�G (x) =

�
1 + x1=�

���=2
; x � 0:We �x � = 1=4 and choose the values 0:6 and 0:8

for 1 and p = 0:7 (resp. 0:9); that means the percentage of truncation is 30%

(resp. 10%). The pertaining 2-value is obtained by solving the equation p =

2= (1 + 2), for each couple (1; p) : We obtained 1000 pseudo-random samples

X� and Y � of size n ' pN: Next, we calculate the estimators values from the

observed data X� and Y �: For choosing the optimal number kn of upper order

statistics used in the computation of ̂(GS)1 ; ̂
(W )
1 and ̂(B)1 we adopt the Reiss and

Thomas algorithm [Reiss and Thomas (2007), page 137]. In those simulations, we

used the random threshold X�
n�kn;n instead of tn in the de�nition of ̂

(W )
1 : Also
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note that we only consider kn := k1 = k2 in the expression (4.3), in this case

̂
(GS)
1 is the one considered in [Benchaira et al. (2015)]. Finally, we compute the

absolute bias (abias) and root mean squared error (rmse) of these estimators, the

results are summarized in Table 4.1 and Table 4.2. We see that our new estimator

shows good performance compared to existing methods for small sample sizes.

Table 4.1: Bias and rmse of the estimators based on 1000 samples of Burr�s models
with 1 = 0:6, for p=0.7 (top) and p=0.9 (bottom).

̂
(Z)
1 ̂

(GS)
1 ̂

(W )
1 ̂

(B)
1

p N n abias rmse abias rmse abias rmse abias rmse
100 70 :008 :028 :422 7:310 :014 :243 :197 :447

0:7 150 104 :006 :013 :225 1:892 :011 :212 :154 :399
200 139 :003 :010 :227 :993 :009 :187 :148 :363

100 90 :004 :171 :122 4:751 :007 :178 :050 :556
0:9 150 135 :005 :073 :072 :537 :007 :143 :061 :392

200 179 :006 :019 :084 :651 :006 :121 :068 :309

Table 4.2: Bias and rmse of the estimators based on 1000 samples of Burr�s models
with 1 = 0:8, for p=0.7 (top) and p=0.9 (bottom).

̂
(Z)
1 ̂

(GS)
1 ̂

(W )
1 ̂

(B)
1

p N n abias rmse abias rmse abias rmse abias rmse
100 70 :006 :019 :315 9:594 :017 :379 :247 :617

0:7 150 104 :009 :011 :308 2:803 :018 :365 :190 :515
200 139 :008 :012 :256 1:192 :019 :291 :200 :513

100 90 :023 :027 :093 5:440 :037 :183 :090 :713
0:9 150 135 :018 :020 :138 :786 :036 :161 :137 :467

200 179 :010 :014 :110 :487 :034 :138 :102 :407

Now, in order to study the sensitivity to outliers of our newly estimator, we

consider an �-contaminated model known by mixture of Pareto distributions

F1;�;� (z) = 1� (1� �) z�1=1 + �z�1=�; 1; � > 0 and 0 < � < 0:5 (4.9)

Note that, for 1 < � and � > 0; (4.9) corresponds to a Pareto distribution

contaminated by a longer tailed distribution. In this context, we proceed our
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study as follows. We �x � = 2 and consider four di¤erent contamination levels

� = 0:05; 0:15; 0:25; 0:35; and we vary 1 among 0:6 and 0:8: For each value of �;

1000 samples of size N = 200 were generated from the model (4.9) truncated by a

simple Pareto model �G (x) = x�1=2 ; with p = 0:7 and 0:9. Our illustration, made

with respect to the biases and rmse�s, are summarized in Table 4.3. The values of

the �rst line are those of the case where � = 0 (i.e., uncontaminated case). Both

the bias and the rmse of our estimator are note sensitive to outliers. Then we can

conclude its robustness, giving us, in fact, an excellent level of protection against

contamination data.

Table 4.3: Bais and rmse of the estimators based on 1000 samples of a contam-
inated Pareto distribution, with tail index 1 = 0:6 ( left) and 1 = 0:8 (right),
N = 200.

1= 0:6 1= 0:8
p 0:7 0:9 0:7 0:9

�% bias rmse bias rmse bias rmse bias rmse
0 :0088 :0137 :0052 :0998 :0265 :0180 :0189 :0558
5 :0104 :0558 :0644 :1112 :0562 :0591 :0698 :0954
15 :0153 :0921 :0905 :1568 :0872 :0938 :0954 :1589
25 :0256 :3336 :1256 :4451 :1010 :7470 :1615 :4785
35 :1414 :5330 :2115 :6121 :1726 :9221 :2121 :7787

4.4 Applications

4.4.1 Estimation of an upper quantile

Estimation of e.v.i. is very important in the determination of high quantiles,

upper tail probabilities, mean excess functions, and excess-of-loss and stop-loss

reinsurance premiums. Consequently, small errors in estimation of this quantity

can produce substantial impact in applications. Thus, for robust estimation of

quantities based on 1 robust estimation of 1 itself is crucial. In other words, for a
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heavy tailed distributions, robust estimation of the high quantileQ" corresponding

to upper tail probability ", becomes of interest, and this may be carried out by

robust estimation of 1: [Brazauskas and Ser�ing (2000)] gives a detailed account

of this issue.

Let (�n) be some sequence of quantiles orders tending to 0, such that �n =

o
�
F (sn)

�
; where (sn) is a sequence of positive deterministic thresholds growing

to in�nity with n: Consequently, the quantile of F of order (1� �n) is such that

F (Q�n) = �n: We can then de�ne an estimator Q̂�n;sn of Q�n :

Q̂�n;sn = sn
�
��1n

�
1� F (LB)n (sn)

��̂(Z)1 :

A similar estimator is proposed by [Worms and Worms (2016)], but instead of

̂
(Z)
1 they consider the estimator ̂(W )

1 (tn) given by (4.4). Before we state the

asymptotic normality of Q̂�n;sn, we set dn := F (sn) =�n and assume that

dn !1 and
p
n= log (dn)!1; as n!1: (4.10)

Theorem 4.4.1 Under (4.10) and the assumptions of Theorem 4.2.1, we have

p
n

log (dn)

 
Q̂�n;sn
Q�n

� 1
!

d! N
�
0; �2v;u

�
; as n!1:

4.4.2 Real data example : automobile brake pad lifetime

In reliability, a real dataset of lifetimes of automobile brake pads already consid-

ered by [Lawless (2011)], was recently analyzed in [Gardes and Stup�er (2015)]

and [Benchaira et al. (2016)] as an application of heavy-tailed and RRT data.

We follow the same steps as those of [Gardes and Stup�er (2015)] who trans-
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formed this sample into a right-truncated data, which originally is left-truncated.

We are dealing with a dataset of small size (n = 98), consequently, robust es-

timation of 1 can produce substantial robust estimation of the high quantile.

Then, our procedure should be preferred to that based on no robust estimation

of 1. In these situation, we used the random threshold X�
n�kn;n instead of sn in

the de�nition of Q̂�n;sn. We select the optimal number of top statistics, via the

numerical procedure of [Reiss and Thomas (2007), page 137] and we get k = 10

and we estimate the tail index 1 given in (4.5) and (4.7) we get ̂
(B)
1 = 0:4701

and ̂(Z)1 = 0:4925 respectively. The estimation results of our based (right-panel)

and that of [Benchaira et al. (2016)] based (left-panel) extreme quantiles esti-

mators with three di¤erent quantile levels (0:990; 0:995; 0:99) corresponding to

�n = 0:001; 0:005; 0:010 are summarized in Table 4.4. For instance, we conclude

that the brake pad lifetime is estimated to be less than 17063 km for 1% of the

cars while only one out of a thousand brake pads lasts less than 10200 km.

Table 4.4: Extreme quantiles for car brake pad lifetimes.
Quantile level Q̂�n via ̂

(B)
1 Q̂�n via ̂

(Z)
1

0:990 17604 17063

0:995 14641 14138

0:999 10559 10203

4.5 Proofs

Proof of Theorem 4.2.1. The proof is essentially based on Theorem 4.3 in

[He and Yang (1998)] and Corollary 1.1. in [Stute and Wang (2008)]. Note that

 v;u (x; t) is monotone and continuous in t and �F (t) possesses an isolated root
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at t = 1: Let " > 0; then under (A1) and (A2) by strong low of large numbers

under truncation, see Theorem 4.3 in [He and Yang (1998)], we have

�̂Fn (1 � ") =

Z
 v;u (x; 1 � ") dFn (x)! �F (t0 � ") > 0 almost surely

and

�̂Fn (1 + ") =

Z
 v;u (x; 1 + ") dFn (x)! �F (t0 + ") < 0 almost surely.

Hence, there exists some n 2 N such that

P
�
�̂Fm (1 + ") < 0 < �̂Fm (1 � ") ; 8m � n

�
! 1 as n!1: (4.11)

According to the monotonicity of  v;u (x; t) in t, together with the assumption of

the existence of a solution sequence ̂(Z)1 of the empirical equation

�̂Fn (t) =

Z
 v;u (x; t) dFn (x) = 0 (n 2 N)

we then get

P
�
1 + " < ̂

(Z)
1 < 1 � "; 8n � m

�
! 1 as n!1:

The existence of such a solution sequence for a continuous function in a neigh-

borhood of 1 follows from (4.11) for n large enough. Thus, ̂(Z)1 is a consistent

estimator of 1:
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Let us now focus on the asymptotic normality of ̂(Z)1 : Recall that,

Z
 v;u

�
x; ̂

(Z)
1

�
dFn (x)�

Z
 v;u (x; 1) dF (x) =

Z �
 v;u

�
x; ̂

(Z)
1

�
�  v;u (x; 1)

�
� dFn (x) +

Z
 v;u (x; 1) d (Fn (x)� F (x)) ;

(4.12)

The assumed di¤erentiability of  v;u (x; t) in t allows a Taylor expansion around

1 which yields

p
n
�
̂
(Z)
1 � 1

�Z @

@t
 v;u (x; t) dFn (x) =

p
n

Z
(� v;u (x; 1)) d (Fn (x)� F (x)) :

Then,

p
n
�
̂
(Z)
1 � 1

�
=
p
n

�Z
@

@t
 v;u (x; t) dFn (x)

��1 Z
(� v;u (x; 1)) d (Fn (x)� F (x)) :

It was shown in Theorem 4.3 in [He and Yang (1998)] that for any nonnegative

measurable real function ' := @
@t
 ; and under the condition

R
'v;u (x; t) dF (x) 6= 0

hold in a neighborhood of 1; we get

Z
'v;u (x; t) dFn (x) =

Z
'v;u (x; t) dF (x) + op (1) : (4.13)

Under assumptions (A1) and (A2), we can apply the central limit theorem under

right truncation, see Corollary 1.1 in [Stute and Wang (2008)] for the Lynden-Bell

integral, obtaining

p
n

Z
(� v;u (x; 1)) d (Fn (x)� F (x))

d! N
�
0; �2

�
; as n!1 (4.14)
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where �2 is given by (4.8). Consequently, the limit variance follows from (4.13)

and (4.14). This concludes the proof of Theorem 4.2.1.

Proof of Theorem 4.4.1. The result follows by analogous arguments as in the

proof of Theorem 2 in [Worms and Worms (2016)]. Recall that the high quantile

Q�n corresponding to order (1� �n) is such that F (Q�n) = �n; and its estimator

is de�ned by

Q̂�n;sn = sn

� �Fn (sn)
�n

�̂(Z)1

:

For convenience, we set �n := �Fn (sn) = �F (sn) : Indeed, we have

Q̂�n;sn
Q�n

� 1 = sn
Q�n

� �Fn (sn)
�n

�n

�̂(Z)1

� 1

= �̂
(Z)
1
n

��
sn
Q�n

d1n d

�
̂
(Z)
1 �1

�
n � 1

�
+
�
1� ��̂

(Z)
1

n

�
+

�
sn
Q�n

d1n � 1
��

=: �
̂
(Z)
1
n fIn1 + In2 + In3g :

We will show that
p
n

log(dn)
In1 is asymptotically centred Gaussian rv with variance

�2v;u and
p
n

log(dn)
Inj

P! 0, j = 2; 3: Concerning the term In1; by using the mean

value theorem, it follows that

p
n

log (dn)
In1 =

p
n
�
̂
(Z)
1 � 1

�
exp (�n) ;

where �n �
���̂(Z)1 � 1

��� log (dn). Assumption (4.10) and Theorem 4.2.1, allows us

to conclude that �n tends to 0: We use then Theorem 4.2.1 to get.

p
n

log (dn)
In1 ! N

�
0; �2v;u

�
; as n!1:

Let us now focus on the negligible terms In2 and In3: By using the mean value
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theorem, we get

In2 = ̂
(Z)
1 M�̂(Z)1 �1

n (�n � 1) ;

with Mn tending to 1: In view of assumptions (A1) and (4.10), the sequence (�n)

converge to 1 in probability (see, Lemma 2 in [Worms and Worms (2016)]), we

have then p
n

log (dn)
(�n � 1) = op (1) :

Hence p
n

log (dn)
In2 = op (1) :

For In3; in view of the regular variation of �F; (4.1) can be rephrased as �F (x) =

x�1=1LF (x) ; where LF is slowly varying function at in�nity and by de�nition of

Q�n ; we get

In3 =
sn
Q�n

� �F (sn)
�F (Q�n)

��1
� 1 =

�
LF (Q�n)

LF (sn)

��1
� 1:

Therefore, we use the following representation of LF (see, [Smith (1987)], page

1195)

LF (x) = c
�
1 + ��1h (x) + o (h (x))

�
; for x!1

where h is a positive measurable function, slowly varying with index � < 0: We

have, Q�n=sn tends to in�nity, then h (Q�n) =h (sn) tends to 0 and

����h (Q�n)h (sn)
�
�
Q�n
sn

������ � sup
w�1

����h (wsn)h (sn)
� w�

�1
����! 0:
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It follows that

LF (Q�n)

LF (sn)
= 1� ��1h (sn)

�
1� h (Q�n)

h (sn)
+ o

�
h (Q�n)

h (sn)

�
+ op (1)

�
= 1� ��1h (sn) (1 + op (1)) :

Therefore jIn3j � C jLF (Q�n) =LF (sn)� 1j ; then

p
n

log (dn)
jIn3j � C

p
n

log (dn)
��1h (sn) (1 + op (1))

and then the desired negligibility of In3 follows from assumption (4.10), which

ends the proof of the Theorem.
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Conclusion & Perspectives

In this Thesis, we propose a new robust tail index estimation procedure for Pareto-

type distributions under incomplete data (random censorship or random trunca-

tion). Our considerations are based on the Lynden-Bell integral (for randomly

truncation data) and the ideas of Kaplan-Meier integration (under random cen-

sorship model) using the huberized M-estimator of the tail index. We derive their

asymptotic results. Extreme quantiles estimation is also derived and applied to

real dataset of lifetimes of automobile brake pads. A simulation study is carried

out to evaluate the performance and the robustness of the proposed estimators.

It has been shown that our newly extreme value index estimators of Pareto-type

distributions are more robust and perform better than the existing Hill-type esti-

mators based on the order statistics and numbers of upper observations, for small

sample sizes and for both uncontaminated and contaminated cases. Therefore, it

can be used in practice as an alternative when one has to deal with small samples,

in contaminated cases or in the presence of outliers.

In our further research we will study this robust estimator in more detail. Note

that, the degree of robustness is determined by the tuning parameters v and u. It

remains a likely topic for future investigations to treat the choice of these para-

meters.
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صــــــ���  

تو في ظل لتوزيعات من نوع باريجديدة لمؤشر الذيل وصلبة في هذه الأطروحة، نقترح إجراء تقديرات قوية 

 اوتطبيقه الربيعيات الحادةتقدير  الاقتطاع، يتم أيضًا اشتقاق حالةبيانات غير كاملة (الرقابة أو الاقتطاع). في 

 .اتفرامل السيار  صفائححول عمر  حقيقيةعلى مجموعة بيانات 

ة المقدرات المقترحة لحجم عينة صغير لتقييم أداء وقو  R الإحصائي  نامجالبر تم إجراء دراسة محاكاة باستخدام 

استنادًا إلى إحصائيات  هيل من نوع المقدراتأداء من وأفضل أكثر قوة  ةديالجد المقدراتلقد ثبت أن  .وكبير

 ).البيانات غير المكتملة (الرقابة أو الاقتطاع حالتي، في كلتا الحادةالترتيب 

     

Résumé 

Dans cette thèse, nous proposons une nouvelle procédure d'estimation robuste de 

l'indice de queue pour les distributions de type Pareto sous données incomplètes 

(censure ou troncature). Sous troncature, l'estimation des quantiles extrêmes est 

également dérivée et appliquée à un ensemble de données réel sur la durée de vie des 

plaquettes de frein automobile. 

Une étude de simulation à l'aide du logiciel statistique R est réalisée pour évaluer la 

performance et la robustesse des estimateurs proposés pour des échantillons de petite 

et grande taille. Nos nouveaux estimateurs se sont révélés plus robustes et plus 

performants que les estimateurs de type Hill existants basés sur des statistiques d'ordre 

supérieur, dans les deux cas de données incomplètes (censure ou troncature). 

 

Abstract 

In this thesis, we propose a new robust estimation procedure for the tail index for Pareto-

type distributions under incomplete data (censorship or truncation). Under truncation, 

the extreme quantile estimation is also derived and applied to an actual data set on 

automotive brake pad life. 

Simulation study using R statistical software is carried out to evaluate the performance 

and the robustness of the proposed estimators for small and large sample size. Our newly 

estimators have been shown to be more robust and perform better than existing Hill-type 

estimators based on upper order statistics, in both cases  of incomplete data (censorship 

or truncation). 
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