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Introduction

An important aspect of statistics, often neglected nowadays, is the presentation

of the data back to the client in order to provide explanation and illustration

of conclusions that may possibly have been obtained by other means. Density

estimates are ideal for this purpose, for the simple reason that they are fairly easily

comprehensible to non-mathematicians. It is a research area in statistics and has

been studied extensively in this field. Oftentimes it is not possible to make such

strict assumptions about the form of the underlying density function. The existing

literature on density function estimation can be categorized into two broad themes:

parametric and nonparametric methods. Non-parametric approaches are more

appropriate in these situations. These techniques make few assumptions about

the density function and allow the data to drive the estimation process more

directly. Nonparametric kernel smoothing belongs to a general category of tech-

niques for nonparametric estimations including : density, distribution, regression,

quantiles.These estimators are now popular and in wide use with great success

in statistical applications. Nonparametric density estimation is one of the most

researched and still active areas in statistical theory, and the techniques and the

theory are highly sophisticated. A lot of development in statistics has taken place
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around the themes, methods, and mathematics of density estimation. Density

estimation has experienced a wide explosion of interest over the last 20 years.

Early results on kernel density estimation are due to Rosenblatt (1956) and Parzen

(1962). Good references in this area are Silverman (1986), and Wand and Jones

(1995). Kernel estimates may suffer from boundary effects. This type of boundary

effect for kernel estimators of curves with compact supports is well-known in

density function estimation frameworks. In the density estimation context, a vari-

ous boundary bias correction methods have been proposed. Schuster (1999) and

Cline and Hart (1991) considered the reflection method, which is most suitable

for densities with zero derivatives near the boundaries. Boundary kernel method

and local polynomial method are more general without restrictions on the shape

of densities. Local polynomial method can be seen as a special case of boundary

kernel method and draws much attention due to its good theoretical properties.

Though early versions of these methods might produce negative estimates or in-

flate variance near the boundaries, remedies and refinements have been proposed,

see Muller (1991), Jones (1993), Jones and Foster (1996), Cheng (1997), Zhang and

Karunamuni (1998; 2000); and Karunamuni and Alberts (2005). Cowling and Hall

(1996) proposed a pseudo-data method that estimates density functions based on

the original data plus pseudo-data generated by linear interpolation of order statis-

tics. Zhang et al. (1999) combined the pseudo-data, transformation and reflection

method. In the regression function estimation context, Gasser and Muller (1979)

identified the unsatisfactory behavior of the Nadaraya Watson regression estima-

tor for points in the boundary region. They proposed optimal boundary kernels

but did not give any formulas. However, Gasser and Muller (1979) and Muller
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(1988) suggested multiplying the truncated kernel at the boundary zone or region

by a linear function. Rice (1984) proposed another approach using a generalized

jackknife. Schuster (1985) introduced a reflection technique for density estimation.

Eubank and Speckman (1991) presented a method for removing boundary effects

using a bias reduction theorem. This thesis is organized as follows :

• Chapter 1. In this chapter, we provide an overview of the essential definitions

of the probability density estimation, a common problem in statistics is that

of estimating a density f, existing methods to estimate on unknown density

function from data can be classified into two groups, namely : parametric and

nonparametric methods. Parametric methods are dependent on assumption

that the functional form of the density function is specified. Non-parametic

density estimators in general make no assumptions on the type of the density

that produced the samples

• Chapter 2. This chapter is designed for the methods of boundary correc-

tion in kernel density estimation, we focused on the boundary effect, some

methods of boundary correction have been discussed.

• Chapter 3. In this chapter, We have focused also on the bias correction at

end points in kernel density estimation. Our new approach is the preferable

method, because it has a good performance in most of the investigated

situations.
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Probability Density Estimation

This chapter discusses the method of density estimation, it can be broadly classi-

fied into two groups: parametric density estimation and non-parametric density

estimation. The first approach requires specification of a family of densities and

estimation of the unknown parameter using a suitable estimation method. This ap-

proach may be prone to bias that arises from either estimation of the parameter or

from incorrect specification of the probability distribution. The second approach,

does not assume a specific parametric family.

1.1 Parametric Density Estimation

Parametric methods assume a certain type of density for approximating the true

underlying density, which can be any type of parametric density representation

like Gaussian, Laplacian, uniform, etc., or mixtures of such densities. This assump-
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tion does not mean that the true underlying density has to be of this type. The idea

behind this approach is to find the parameters of the chosen density type such that

the observed data has the highest possible probability. Parametric methods make

strict a priori assumptions about the form of the underlying density function. For

instance, a parametric approach may assume the random variables have a PDF is

a polynomial of a particular degree. Such assumptions significantly simplify the

problem, since only the parameters of the chosen family of functions need to be

determined.

1.1.1 Method of Moments

In the method of moments approach, the parameters of a probability distribution

model are estimated by matching the moments of the dataset with that of the

candidate model. The number of moments required corresponds to the number of

unknown model parameters. Application of this method is straightforward, as

closed-form expressions for the moments can be readily derived for most common

distributions. However, the raw moments may be biased due to the presence of

outliers and/or the lack of perfect agreement between the data and the model. To

show how the method of moments determines an estimator, we first consider the

case of one parameter.

Definition 1.1.1 Let be X1, X2, ... an independent random variables chosen according to

the probability density fX(x,θ)associatedtoanunknownparametervalueθ. The common

mean of the Xi, µX , is a function k(θ) of θ. For example, if the Xi are continuous random
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variables, then

µ
X
=

∞∫
−∞

xfX(x, θ)dx = k(θ)

The law of large numbers states that

Xn =
1

n

n∑
i=1

Xi → µX as n→ ∞

Thus, if the number of observations n is large, the distributional mean, µ = k(θ), should

be well approximated by the sample mean, i.e.,

X ≈ k(θ)

This can be turned into an estimator by setting

X = k(θ)

and solving for θ̂. More generally, for independent random variables X1, X2, ... chosen

according to the probability distribution derived from the parameter value θ and m a real

valued function, if k(θ) = Eθm(X1), then

1

n

n∑
i=1

m(Xi) → k(θ) as n→ ∞

The method of moments results from the choices m(x) = xm . Write

µm = EXm = km (θ) (1.1.1)

for the m-th moment.

Our estimation procedure follows from these 4 steps to link the sample moments

to parameter estimates.
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Step1. If the model has d parameters, we compute the functions km in equation for

the first d moments

µ1 = k1 (θ1 , θ2 , . . . , θd) , µ2 = k2 (θ1 , θ2 , . . . , θd) , . . . , µd = kd (θ1 , θ2 , . . . , θd)

obtaining d equations in d unknowns.

Step2. We then solve for the d parameters as a function of the moments.

θ1 = g1 (µ1 , µ2 , . . . , µd) , θ2 = g2 (µ1 , µ2 , . . . , µd) , . . . , θd = gd (µ1 , µ2 , . . . , µd)

(1.1.2)

Step3. Now, based on the data x = (x1, x2, ..., xn), we compute the first d sample

moments,

x =
1

n

n∑
i=1

xi, x2 =
1

n

n∑
i=1

x2i , . . . , x
d =

1

n

n∑
i=1

xdi .

Using the law of large numbers, we have, for each moment, m = 1, ..., d,

that µm ≈ xm .

Step4. We replace the distributional moments µm by the sample moments xm , then

the solutions in (1.1.2) give us formulas for the method of moment estimators

(θ̂1, θ̂2, ..., θ̂d). For the data x, these estimates are

θ̂1(x) = g1(x, x2, . . . , xd), θ̂2(x) = g2(x, x2, . . . , xd), . . . , θ̂d(x) = gd(x, x2, . . . , xd),

Example 1.1.2 Let X1, X2, ..., Xn be a random sample with density of beta of parametre

a and b

fX(x, a, b) =
xa−1(1− x)b−1

B(a, b)
, x ∈ [0; 1] .
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where B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
and Γ is the gamma function. The mean and the variance are,

respectively,

µ =
a

a+ b
, σ2 =

ab

(a+ b)2(a+ b+ 1)
.

In this situation, we have two parameter, namely a, b. Thus, in step 1, we will need to

determine the first moment

µ = X̄ =
a

a+ b

step 2, we will need to determine the second moment

S2 =
ab

(a+ b)2(a+ b+ 1)

to find the method of moments estimator (â, b̂) for (a, b) we need to solve the system


X̄ =

â

â+ b̂

S2 =
âb̂

(â+ b̂)2(â+ b̂+ 1)

In the following figure we use beta density of parametre (2, 4), our paramters estimated

by this method are â = 2.0774 and b̂ = 4.2613

1.1.2 Maximum Likelihood Estimation

Maximum likelihood estimation is a method of estimating the parameters of an

assumed probability distribution, given some observed data. This is achieved by

maximizing a likelihood function so that, under the assumed statistical model, the
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Figure 1.1: Moment estimaator of the beta density of parametre (2, 4)
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observed data is most probable. The point in the parameter space that maximizes

the likelihood function is called the maximum likelihood estimate.

Definition 1.1.3 The logic of maximum likelihood is both intuitive and flexible, and as

such the method has become a dominant means of statistical inference.

L (θ) =
n∏

i=1

fXi
(xi, θ)

maximizing L (θ) with respect to θ will give us the

θ̂ = argmax
n∑

i=1

fXi
(xi, θ)

Example 1.1.4 The Pareto distribution has been used in economics as a model for a

density function with a slowly decaying tail

fX (x, θ) =
θ

xθ+1
, x > 1

The log-likelihood function is

L (θ) =
∑n

i=1 log fXi
(xi, θ)

=
∑n

i=1 (log θ − (θ + 1) logXi )

= n log θ − (θ + 1)
∑n

i=1 logXi

Let the derivative with respect to θ be zero:

dL (θ)

dθ
=
n

θ
−

n∑
i=1

logXi = 0

Solving the equation yields the MLE of θ :

θ̂ =
n∑n

i=1 logXi
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Figure 1.2: Maximum Likelihood estimator of the Beta density

We applied this method to the precedant example beta(2, 4), then we have â = 2.0400

and b̂ = 4.1841 that give the following figure

By comparing the two methods, we notice that The maximum probability

method is more precise than the method of moments, as shown in the following

figure
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Figure 1.3: Comparing of the two methods Moment and Maximum Likelihood
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1.2 Nonparametric Density Estimation

Estimation of a probability density is similar to its construction from observed

data. The first approach is that of parametric estimation. The idea principle of

this approach is to assume that the density f to be estimated belongs to a family of

distributions having a finite number of parameters (we mainly cite the maximum

likelihood method and the method of moments). Son advantage lies in the algorith-

mic simplicity of its implementation. By opposition, the non-parametric approach

makes no a priori assumption on the membership of f to a known family of laws.

The estimate therefore no longer concerns a parameter in this family of law, but

directly the function itself (hence the term nonparametric). Nonparametric density

estimation is an important data analytic tool which provides a very effective way

of showing structure in a set of data at the beginning of its analysis. The grouping

of data in the form of a frequency histogram is a classical methodology that is

used in nonparametric density estimatoion, this method was introduced by John

Graunt (1962). Since histograms are not smooth, Parzen (1962) devoloped the

kernel density estimator proposed on (1956) by Rosenblatt, which are smoother

and which converge to the true density faster.

1.2.1 Histogram

The simplest non-parametric technique for density estimation is the histogram. A

histogram is appropriate for continuous data. It consists of a series of contiguous

bars, the areas of which are proportional to the counts of observations that fall
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within the intervals covered by the bars. Anyone who has drawn a histogram will

realize that the appearance is strongly affected by the origin or anchor point at

which one chooses to start the histogram, and the width of the intervals used bin

width. Whallon (1987) illustrates this well. The grouping of data in the form of a

frequency histogram is a classical methodology that is intrinsic to the foundations

of a variety of estimation procedures. Providing useful visual information, it has

served as a data presentation device, however, as a density estimation method, it

has played a fundamental role in nonparametric statistics. This method is usually

formed by dividing the real line into equally sized intervals often called bins B.

Definition 1.2.1 For positive and negative integersm, the bins are of the form [x0 +mh, x0 + (m+ 1)h) ,

x0 ∈ R. The intervals have been chosen closed on the left and open on the right for defi-

niteness. Then the histogram estimate at a point x is given by,

fH (x) =
1 {Xi ∈ Bi}

nh
, i = 1, . . . , n.

Note that, to construct the histogram, we have to choose both an origin and

a bin width, it is the choise of bin width which, primarily, controls the amount

of smoothing inherent in the procedure. The smoothness of the histogram esti-

mate is controlled by the smoothing parameter h, a characteristic shared by all

nonparametric cure estimators. Choosing a small bandwidth leads to a jagged

estimate, while larger bandwidths tend to produce over smoothed histogram

estimates. Histograms for the graphical presentation of bivariate or trivariate data

present several difficulties; for example, one cannot easily draw contour diagrams

to present the data, and the problems raised in the univariate case are exacerbated
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Figure 1.4: The histogram estimation for density function

by the dependance of the estimates on the choice not only of an origin but also of

the coordinate direction(s) of the grid of cells. Finally, it should be stressed that, in

all cases, the histogram still requires a choice of the amount of smoothing.

Lemma 1.2.2 The basic properties of fH (x) are,
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• The bias of fH (x) is

E(fH (x)) =
1

h

x+h∫
x

f(t)dt

=
F (x+ h)− F (x)

h

= f(x) +
h

2
f (1)(x) + o(h)

=
h

2
f (1)(x) + o(h) →

n→∞
f (x) .

= Bias (fH (x))

• The variance of fH (x) is

V ar (fH (x)) = V ar

(
1

nh

n∑
i=1

I(x < Xi ≤ x+ h)

)

=
1

nh2
V ar (I(x < Xi ≤ x+ h))

=
1

nh

[
F (x+ h)− F (x)

h
(1− (F (x+ h)− F (x)))

]

=
f (x)

nh
+O

(
1

n

)
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• The mean squared error (MSE) can be written as

MSE(fH (x)) = E(fH (x)− f (x))2

= E ((fH (x))− f (x))2 + V ar(fH (x))

= V ar(fH (x)) +Bias2(fH (x)).

=

(
h

2
f (1)(x)

)2

+ o (h2) +
f (x)

nh
+O

(
1

n

)
The histogram estimation method is the most natural and widely used because

it is easily implemented. However, the density estimator provided by a histogram

cannot be adapted to the fairly common situation where there is a priori infor-

mation on the regularity of the density to be estimated. More precisely, if we

know in advance that the density of the observed sample is, for example, twice

continuously differentiable, we would naturally want to estimate this density by a

function which, too, is twice continuously differentiable, for this fact, we present

an other estimator.

1.2.2 Naive estimator

Definition 1.2.3 From the definition of a probability density, if the random variable X

has density f , then

f (x) = lim
h→0

1

2h
P (x− h < X < x+ h)

For any given h, we can of course estimate P (x− h < X < x+ h) by the proportion

of the sample falling in the interval (x− h, x+ h) . Thus a natural estimator fn of the

density is gien by choosing a small number h and setting
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fn (x) =
1

2nh
[no. of X1, . . . , Xn falling in (x− h, x+ h) ]

we shall call this the naive estimator or the Rosenblatt estimator. To express the estimator

more transparently, define the weight function w by

w (x) =



1

2
if |x| < 1

0 otherwise

(a)

Then it is easy to see that the naive estimator can be written

fn (x) =
1

nh

n∑
i=1

w

(
x−Xi

h

)
It follows from (a) that the estimate is constructed by placing a ’box’ of width 2h

and height (2nh)−1 on each obseration and then summing to obtain the estimate.

We shall return to this interpretation below, but it is instructive first to consider a

connection with histograms.

Lemma 1.2.4 The statistical properties of fn are,

V ar (fn (x)) =
1

4nh2n
[−F 2 (x+ hn) + F (x+ hn) + F (x+ hn)F (x− hn)

− F (x− hn) + F (x+ hn)F (x− hn)− F (x− hn)

− F 2 (x− hn) + F (x− hn)]

=
1

4nh2n

[
F (x+ hn)− F (x− hn)− (F (x+ hn)− F (x− hn))

2]
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Now

MSE (fn (x)) = E

[(
f̂n (x)− f (x)

)2]

= V ar
(
f̂n (x)

)
+Biais2

(
f̂n (x)

)
=

1

4nh2n

[
F (x+ hn)− F (x− hn)− (F (x+ hn)− F (x− hn))

2]
+

[
F (x+ hn)− F (x− hn)

2hn
− f (x)

]2
Assuming that f is thrice differentiable at x therefore we have

F (x+ hn)− F (x− hn) = 2hnf (x) +
h3n
3
f ′′ (x) +O(h4n)

MSE (fn (x)) =
1

4nh2n

[
2hnf (x) +

h3n
3
f ′′ (x) +O(h4n)

−
(
2hnf (x) +

h3n
3
f ′′ (x) +O(h4n)

)2
]

+
1

4h2n

[
2hnf (x) +

h3n
3
f ′′ (x) +O(h4n)− 2hnf (x)

]2

=
f (x)

2nhn
+
h4n
36

(f ′′ (x))2 + o

(
1

nhn
+ h4n

)
.

The naive estimator is not wholly satisfactory from the point of view of using

density estimates for presentation. It follows from the definition that hat f is not a

continuous function, but has jumps at the points Xi ± h and has zero derivative

everywhere else. This gives the estimates a somewhat ragged character which

is not only aesthetically undesirable, but, more seriously, could provide the un-

trained observer with a misleading impression. Partly to overcome this difficulty,
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and partly for other technical reasons given later, it is of interest to consider the

generalization of the naive estimator given in the following section.

1.2.3 Kernel estimator

The kernel method originated from the idea of Rosenblatt and Parzen dedicated

to density estimation. The distribution function F (x) is naturally estimated by the

EDF. It might seem natural to estimate the density f(x) as the derivative of Fn(x),

d
dx
Fn(x). but this estimator would be a set of mass point, not a density, and as such

is not a useful estimate of f(x).

Instead, consider a discrete derivative. For some small h > 0, let

fR (x) =
Fn(x+ h)− Fn(x− h)

2b
.

We can write this as

fR (x) =
1

2nh

n∑
i=1

I (x− h ≤ Xi ≤ x+ h)

=
1

2nh

n∑
i=1

I

(
|Xi − x|

h
≤ 1

)
=

1

nh

n∑
i=1

k

(
Xi − x

h

)
,

where

k(t) =


1

2
, |t| ≤ 1

0, |t| > 1.

is the uniform density function on [−1, 1] . fR (x) is a special case of what is called

a Rosenblatt-Parzen kernel density estimator is as follows ( Wand and Jones 1995;
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Silverman 1996):

fR (x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
,

where X1, ..., Xn be independent random variables identically distributed which

are drawn from a continuous distribution F (x) with density function f(x). n is the

sample size, h := hn (h→ 0 and nh→ ∞) is the smoothing parameter, called the

bandwidth, which controls the smoothness of the estimator, k(.) is the weighting

function called the kernel function. When k(.) is symmetric and unimodal function

and the following conditions are fulfilled:

1. k(t) ≥ 0, ∀t ∈ R.

2.

∫ ∞

−∞
k(t)dt = 1, hence k is a density function.

3. k(−t) = k(t), hence k is a symmetric function.

4.

∫ ∞

−∞
tk(t)dt = 0.

5.

∫ ∞

−∞
t2k(t)dt <∞.

The basic idea of a kernel estimation of densities that each data point, xi, is

associated with a kernel k, and the bandwidth h are summed to get the KDE,

the population choice of kernel and bandwidth are discuted in the following

subsuction . The function fR is called the kernel density estimator or the Parzen-

Rosenblatt estimator.

Theorem 1.2.5 We discuss some of the numerical properties of the kernel estimator fR,

first, if k(x) is non-negative then it is easy to see that fR ≥ 0: However, this is not
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guarenteed if k is a higher-order kernel. That is, in this case it is possible that fR < 0 for

some values of x. Second, fR integrates to one, to see this, first note that if k is a kernel,

then fR is a density,we have

∫
R

fR(x)dx =

∫
R

1

nh

n∑
i=1

k

(
Xi − x

h

)
dx

=
1

nh

n∑
i=1

∫
R

k

(
Xi − x

h

)
dx

=

∫
R

k (t) dt

= 1

Third, we can also calculate the numerical moments of the density fR: Again using the

change of-variables t = Xi−x
h

; the mean of the estimated density is

∫
R
xfR (x) dx =

1

n

∫
x
1

h
k

(
Xi − x

h

)
dx

=
1

n

∫
(Xi + th) k (t) dt

=
1

n
Xi

∫
k (t) dt

+
1

n
h

∫
tk (t) dt

=
1

n
Xi
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the sample mean of the Xi. The second moment of the estimated density is∫
R
x2fR (x) dx =

1

n

∫
x2

1

h
k

(
Xi − x

h

)
dx

=
1

n

∫
(Xi + th)2 k (t) dt

=
1

n
X2

i +
2

n
Xih

∫
k (t) dt

+
1

n
h2
∫
t2k (t) dt

=
1

n
X2

i + h2
∫
t2k (t) dt

The bias of fR is then

Bias (fR (x)) =
f (2)(x)

2
h2
∫
t2k (t) +O(h(3)) (1.2.1)

and

V ar (fR (x)) =
f(x)

nh
h2
∫
k2 (t) + o(nh)(−1) (1.2.2)

Then from (1.2.1) and (1.2.2) we have

MSE (fR (x)) ∼ 1

4
f (2)(x)2h4(

∫
t2k (t))2 +

f(x)

nh
f(x)

∫
k2 (t) (1.2.3)

A good introduction to kernel density estimation with an interesting collection

of its use in data analysis is given by the monograph of Silverman (1986). It turns

out that the choise of h is much more important for the bahaviour of fR (x) than the

choise of K.Small values of h make the estimate look "wiggly" and show spurious

features, whereas to big of h will lead to an estimate which is too smooth in the

sense that it is too biased and may not reveal structural features .
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Kernel Functions and Bandwidth

• Kernel Functions. Much of the first decade of theoretical work focused upon

various aspects of estimation properties relating to the characteristics of a

kernel. The quality of a density estimate is now widely recognized to be

primarily determined by the choice of smoothing parameter, and only in a

minor way by the choice of kernel. Thus the topic could be de-emphasized.

However, there has been a recent spurt of useful research on kernel design

in special situations. While many potential hazards face the user of density

estimation (for example, underestimating the smoothness of the unknown

density), the specification of desired properties for the kernel is entirely at

the disposal of the worker, who should have a good understanding of the

following results.

Kernel k (t) Eff

Epanechnikov
3

4
(1− t2) for |t| < 1 1

Biweight
15

16
(1− t2)

2 for |t| < 1 0.994

Triangular 1− |t| for |t| < 1 0.986

Gaussian
1√
2π

exp (−t2/2) 0.951

Tricube
70

81

(
1− |t|3

)3
for |t| < 1 0.998

Cosine
π

4
cos
(π
2
t
)

for |t| < 1 0.999

Logistic 1
exp(t)+ 2+exp(−t)

0.887

Triweight 35
32

(1− t2)
3 for |t| < 1 0.987

Uniform
1

2
for |t| < 1 0.930



1.2 Nonparametric Density Estimation 33

Figure 1.5: Some commoly used kernel functions

• Bandwidth parameter. Selecting an appropriate bandwidth for a kernel

density estimator is of crucial importance, and the purpose of the estimation

may be an influential factor in the selection method. In many situations, it is

sufficient to subjectively choose the smoothing parameter by looking at the

density estimates produced by a range of bandwidths. One can start with

a large bandwidth, and decrease the amount of smoothing until reaching a

"reasonable" density estimate. However, there are situations where several

estimations are needed, and such an approach is impractical. An automatic

procedure is essential when a large number of estimations are required as

part of a more global analysis, the following figure show this phonemena for

rundam value of h
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Figure 1.6: Comparing of appropriate bandwidth for a density estimator

The problem of selecting the smoothing parameter for kernel estimation has

been explored by many authors, and no procedure has yet been considered

the best in every situation. Automatic bandwidth selection methods can

basically be divided in two categories: plug-in and classical. Plug-in meth-

ods refer to those that find a pilot estimate of f , sometimes using a pilot

estimate of h, and "plug it in" the estimation of MISE. Classical methods,

such as cross-validation, Bootstrap and another methods are basically exten-

sions of methods used in parametric modeling. We present in more detail

the reference method and the most used automatic bandwidth selection

procedures.
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Plug-in methods

It is well known that plug-in bandwidth estimators tend to select larger

bandwidths when compared to the classical estimators. They are usually

tuned by arbitrary specification of pilot estimates and most often produce

over smoothed results when the smoothing problem is difficult. On the

other hand, smaller bandwidths tend to be selected by classical methods,

producing under smoothed results. The goal of a selector of the smoothing

parameter is to make that decision purely from the data, finding automati-

cally which features are important and which should be smoothed away The

slow rate of convergence encouraged much research on faster converging

methods.

– Optimal bandwidth. We Consider the following AMISE version of the

function of a probability density f(x).

hMISE =

(
R (K)

µ2
2 (K)R (f (2))

)1/5

n−1/5

– Rule Of Thumb. If we choose f as being the normal distribution of

mean 0 and variance σ2 we will have:

R
(
f (2)
)
=

∫ (
f (2) (x)

)2
dx =

3

8
√
π
σ−1/5 (rot)

Moreover, if k is a Gaussian kernel, then the value for the hrot is ob-

tained by substituting this kernel and the value R
(
f (2)
)

obtained in the

formula (2.29)
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Classical methods

Cross-validation is a popular and readily implemented heuristic for selecting

the smoothing parameter in kernel estimation.

– Unbiased cross-validation. Rudemo (1982) and Bowman (1984) pro-

posed a so-called unbiased cross-validation (UCV ) in kernel density

estimator, is probably the most popular and best studied one. An adap-

tation of unbiased cross-validation is proposed by Wolfgang et all (1990)

for bandwidth choice in the rth derivative of kernel density estimator.

The essential idea of this methods, it aims to estimate h the minimizer

of UCV (h) given by

UCV (h) =
R (k)

nh
+

1

n (n− 1)h

n∑
i=1

n∑
j=1
j ̸=i

k2
(
Xj −Xi

h

)

The minimization criterion is defined by:

hucv = argmin
h>0

UCV (h)

– Biased cross-validation. Biased cross-validation was proposed by Scott

and George (1987), which has as its immediate target the AMISE.

AMISE (fn) =
R (k)

nh
+
h4

4
µ2
2 (k)R

(
f (2)
)

– Complete cross-validation.

CCV (h) = R
(
f̂h

)
−θ0 (h)+

1

2
µ2 (k)h

2θ1 (h)+
1

24

(
6µ2

2 (k)− δ (k)
)
h4θ2 (h)
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where

R
(
f̂h

)
=
R (k)

nh
+

1

n (n− 1)h

n∑
i=1

n∑
j=1

i ̸=j

k

(
Xj −Xi

h

)

and

θ0 (h) =
1

n (n− 1)h

n∑
i=1

n∑
j=1

j ̸=i

k

(
Xj −Xi

h

)

with

δ (k) =

∫
R
x4k (x) dx

– Modified cross-validation

MCV (h) =
R (k)

nh
+

1

n(n− 1)h

n∑
i=1

n∑
j=1

j ̸=i

ψ

(
Xj −Xi

h

)

where

ψ (t) =

(
k ∗ k − k − µ2 (k)

2
k(2)
)
(t)

– Maximum likelihood cross-validation

MLCV (h) =

(
n−1

n∑
i=1

log

[∑
j ̸=i

k

(
Xj −Xi

h

)]
− log [(n− 1)h]

)

hmlcv = argmax
h>0

MLCV (h)

Bootstrap

A methodology that has been recently explored is that of selecting the bandwidth

using bootstrap. It focuses on replacing the MSE by MSE∗, a bootstrapped

version of MSE, which can be minimized directly. Some authors resample from a
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subsample of the data X1, ..., Xn, others replace from a pilot density based on the

data, more precisely, from

f̃ b
n =

1

nbn

n∑
i=1

L

(
x−Xi

bn

)
where L is another kernel and bn is a pilot bandwidth. Since the bandwidth choice

reduces to estimating s in h = n−1/5s, Ziegler introduces

f ∗
n,s (x) =

1

n4/5s

n∑
i=1

k

(
x−X∗

i

n− 1
5 s

)
and obtain MSE∗

n,s (x) = E∗
((

f ∗
n,s (x)− f̃ b

n (x)
)2)

. The proposed bandwidth

is

hn = n−1/5 argmin
s
MSE∗

n,s

1.2.4 Variable kernel method

The estimate is constructed similary to the classical kernel estimate, but the scale

parameter of the bumps placed on the data points is allowed to vary from one data

point to another. Let k be a kernel function and τ a positive integer. Define dj,τ

to be the distance from Xj to the τ th nearst point in the set comprising the other

n− 1 data points. Then the variable kernel estimate with smoothing parameter h

is defined by

fV (x) =
1

n

n∑
j=1

1

hdj,τ
k

(
x−Xj

hdj,τ

)
The window width of the kernel placed on the point Xj is proportional to dj,τ

so that data points in regions where the data are sparse will have flatter kernels
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associated with them. For any fixed τ, the overall degree of smoothing will depend

on the parameter h. The choise of k determines how responsive the window width

choice will be to very local detail.

1.2.5 General weight function estimators

It is possible to define a general class of density estimators which includes several

of the estimators discussed above. Suppose that ω (x, y) is a function of two

arguments, which in most cases will satisfy the conditions

+∞∫
−∞

ω (x, y) dy = 1 (1.2.4)

and

ω (x, y) ≥ 0 for all x and y. (1.2.5)

We should think of ω as being defined in such a way that most of the weight of the

probability density ω (x, .) falls near x. An estimate of the density underlying the

data may be obtained by putting

fGW (t) =
1

n

n∑
i=1

ω (Xi, t) (1.2.6)

We shall refer to estimates of the form (1.2.6) as general weight function estimates.

It is clear from (1.2.6) that the conditions (3.2.13) and (1.2.5) will be sufficient

to ensure that fGW is a probability density function, and that the smoothness

properties of fGW will be inherited from those of the functions ω (x, .).

To obtain the histogram as a special case of (1.2.6), set
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ω (x, y) =


1

h (x)
if x and y fall in the same bin

0 otherwise

where h (x) is the width of the bin containing x. The kernel estimate can be

obtained by putting

ω (x, y) =
1

h
k

(
y − x

h

)
.

1.2.6 Multivariate kernel density estimation

Kernel density estimation for multivariate data is an important technique that

has a wide range of applications. However, its widespread usefulness has been

limited by the difficulty in computing an optimal data-driven bandwidth.

Definition 1.2.6 Let X = (X1, . . . , Xd)
t denote a d-dimensional random vector with

density f(x) defined on Rd, and let {x1, . . . , xn} be an independent random sample drawn

from f(x). The general form of the kernel estimator of f(x) is,

One estimator we consider is the well known kernel density estimator (KDE) for f

defined as

fH (x) =
1

n |H|

n∑
i=1

K
(
H−1 (x−Xi)

)
where K (.) is a multivariate kernel function, and H is a symmetric positive definite

d× d matrix known as the bandwidth matrix verify Rd → R+ qui vérifie les conditions

suivants:
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(k1)

∫
Rd

K (t) dt = 1

(k2)

∫
Rd

tK (t) dt =
−→
0 ⇔

∫
Rd

tiK (t) dt


1≤i≤d

= 0Rd

(k3)

∫
Rd

ttTK (t) dt = µ2 (K) Id > 0 avec Id estl′identitdans Rd.

(k4)

∫
Rd

K (t)2 dt = ∥K∥22 <∞

In practice, we use the following kernels

The produit kernel: K (t) =
d∏

j=1

kj (tj).

The spheric kernel: K (t) = Cd × k
((
tT t
)1/2) where Cd : the volum of the

unit dimension d.

Nonparametric estimation of unknown densities on partially or totally bounded

supports, with or without correlation in its multivariate components, is a recurrent

practical problem. Because of symmetry, the multivariate classical or symmetric

kernels, not depending on any parameter, are not appropriate for these densi-

ties. In fact, these estimators give weights outside the support causing a bias in

boundary regions.

Lemma 1.2.7 The bias of fH is

bais [fH (x)] = E [fH (x)− f (x)] =
1

2
trace

∫
Rd

tT tK (t) dt
(
HTH (x)H

)+ o
(
∥Ht∥22

)
=

1

2
µ2 (K) trace

(
HTH (x)H

)
+ o

(
∥Ht∥22

)
=

1

2
µ2 (K) trace

(
HTH (x)H

)
+

∫
Rd

o
(
∥Ht∥22

)
K (t) dt
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2
Boundary correction methods in kernel den-

sity estimation

The performance of the kernel density estimator at the boundary points, i.e. for

x ∈ [0;h) ∪ (a− h; a] , diffiers from the interior points due to so-called "boundary

effiects" that occur in nonparametric curve estimation problems. Assume that the

density has support [0,∞) and its second derivative exists and is continuous at

x, then it can be shown that the bias of fn(x) is of order O(h) instead of O(h2) at

boundary points, for x = ch, the bias of the kernel estimator has the form:

Bias (fR (x)) = −f(x)
1∫

c

k (t) dt− hf (1)(x)

c∫
−1

tk (t) dt+
h2

2
f (2)(x)

c∫
−1

t2k (t) dt+ o
(
h2
)
,

In the past, Many boundary or endpoint estimation problems in statistics

are closely related to problems involving nonparametric curve estimation. The

methods used are generally biased, and in fact the sign or direction (in the case

of spatial problems) of bias is generally known. However, the relative error of
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bias estimators is typically of larger order than would be found in the related

curve estimation setting, flowing to marked asymmetries inherent to boundary

estimation. Consequently, an idea on how to include boundary corrections in these

estimators is presented. The first statement implies that the density has a support

which is bounded on the left hand side. Without loss of generality the support is

set to be [0,∞) . Nonparametric kernel density estimation is now popular and in

wide use with great success in statistical applications. The reflection method is

specifically designed for the case f (1) (0) = 0 where f (1) denotes the first derivative

of f . The boundary kernel method is more general than the reflection method in

the sense that it can adapt to any shape of density. These included a boundary

kernel and its close counterpart the local linear fitting method, the transformation

and reflection based method given by Zhang et al. (1999), Jones and Foster’s (1993)

nonnegative adaptation estimator, Cowling and Hall’s (1996) pseudo-data method,

and a recent estimator due to Hall and Park (2002) based on a transformation of

the data “inside” the kernel.

2.1 The reflection method

The reflection method is one of the fairly frequently methods applied in practice

of bias reduction in the kernel density estimation. The modification of the classical

kernel density estimator consists in isolating that part of the kernel function which

is outside the interval of the support of the random variable and then on its

symmetrical reflection. This reflection is done in relation to the boundary of the

support. It can be shown that the estimator taking into account the reflection
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method of the kernel function has a support which is the same as the support

of the random variable. The kernel density estimator with the reflection kernel

function for a random variable with the support [0,∞) is of the form:

fRef (x) =
1

nh

n∑
i=1

{
k

(
x−Xi

h

)
+ k

(
x+Xi

h

)}

Theorem 2.1.1 The bias and the variance of the estimator are,

• The bias:

Bias (fRef (x)) =
h2

2
f (2) (x)

∫
t2k (t) dt+ o

(
h2
)

• The variance:

V ar (fRef (x)) =
1

nh
f (x)

∫
k2 (t) dt+ o (nh)−1

Remark 2.1.2 fRef is consistent, but the bias is of order O(h) near the boundary.

2.2 The transformation method

The transformation idea is based on transforming the original data X1, ..., Xn to

g(X1), ..., g(Xn), where g is a non-negative, continuous and monotonically increas-

ing function from [0, 1) to [0, 1). Consists of a three-step process. First, a transfor-

mation g is selected from a parametric family so that the density of Y = g (X) has

a first derivative that is approximately equal to 0 at the boundaries of its support.

Next, a kernel estimator with reflection is applied to the Yi’s. Finally, this estimator

is converted by the change of variables formula to obtain an estimate of f definied

by
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fTr (x) =
1

nh

n∑
i=1

k

(
x− g (Xi)

h

)
,

Note this isn’t really estimating the density function of X , but instead of g (X) .

2.2.1 Locally Adaptive Transformation Estimator

For convenience, we shall assume that the unknown probability density function

f has support [0; 1), and consider estimation of f based on a random sample

X1, ..., Xn from f . Our transformation idea is based on transforming the original

data X1, ..., Xn to g(X1), ..., g(Xn), where g is a non-negative, continuous and

monotonically increasing function from [0; 1) to [0; 1). Based on the transformed

data, we now deflne,

fLATr (x) =
1

nh

n∑
i=1

k

(
x− g (Xi)

h

)
/

c∫
−1

k(t)dt. (2.2.1)

Lemma 2.2.1 Let fLATr be deflned by (2.2.1). Assume that f (2) and g(2) exist and are

continuous on [0; 1), where f (i) and g(i) denote the i-th derivative of f and g, respectively,

with f (0) = f ; g(0) = g. Further assume that g(0) = 0 and g(1)(0) = 1. Then for x = ch,

we have
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Bias (fLATr (x)) =
−h∫ c

−1

k(t)dt

f(0)g(2)(0)
c∫

−1

(c− t)k (t) dt+ f (0)

c∫
−1

tk (t) dt


+

h2

2

c∫
−1

k (t) dt

−f (2)(0)c(2)
c∫

−1

k (t) dt+

c∫
−1

(t− c)(2)k (t) dt



×
[
f (2) (0)− f(0)g(3)(0)− 3g(2)(0)

[
f (1) (0)− f (0) g(2)(0)

]]
+ o (h2) ,

(2.2.2)

and

V ar (fLATr (x)) =
f(x)

(

c∫
−1

k (t) dt)2nh

c∫
−1

k(2) (t) dt

+ o

(
1

nh

)
.

(2.2.3)

Note that the leading term of the variance of fLATr is not afiected by the transformation g.

When c = 1, V ar (fLATr (x)) = f(x)/nh

1∫
−1

k(2) (t) dt + o(1/nh) , which is exactly the

expansion of the interior variance of the traditional estimator.

2.2.2 Double transformation Estimator

The reflection estimator computes the estimate density based on the original and

the reflected data points. Unfortunately, this does not always yield a satisfying

result since this estimator enforces the shoulder condition and still contains a bias
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of order h if the density does not fulfill this condition. The generalized reflection

and transformation density estimators is given by

fDT (x) =
1

nh

n∑
i=1

{
K

(
x− g1 (Xi)

h

)
+K

(
x+ g2 (Xi)

h

)}
x ≥ 0 (2.2.4)

where g1 and g2 are transformations that need to be determined.

Lemma 2.2.2 Assume that g−1
i exists, gi(0) = 0; g(1)i (0) = 1, and that g(2)i and g(3)i exist

and are continuous on [0; 1), where g(j)i denotes the jth-derivative of gi, with g(0)i = gi and

g−1
i denoting the inverse function of gi; i = 1, 2. Suppose that f (j), the j-th derivative of f ,

exists and is continuous on [0; 1), j = 0, 1, 2, with f (0) = f . Then the bias and variance

of (2.2.4) are given by, for x = ch,
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BiasfDT (x) = h

2f (1) (0)

1∫
c

(t− c)k (t) dt− g
(2)
1 (0) f (0)

 1∫
c

(t− c)k (t) dt


−g(2)2 (0)f (0)

1∫
c

(t− c)k (t) dt



+
h2

2

f (2) (0)

1∫
−1

t2k (t) dt

−
{
g

(3)

1 (0) f (0)− 3g
(2)

1 (0)
[
f (1) (0)− f (0) g

(2)
1 (0)

]} 1∫
c

(t− c)2 k (t) dt

−
{
g
(3)
2 (0)f (0)− 3g

(2)
2 (0)

[
f (1) (0)− f (0) g

(2)
2 (0)

]} c∫
−1

(t− c)2k (t) dt


+o (h2)

(2.2.5)

and

V arfDT (x) =
f(0)

nh

2 1∫
c

k (t) k (2c− t) dt+

1∫
−1

k2 (t) dt

+ o

(
1

nh

)
(2.2.6)

Note that the contribution of g1 on the bias vanishes as c −→ 1.

2.3 The pseudo-data method

The pseudo-data method estimator is defined (see Cowling and Hall (1996)), this

generates data beyond the left endpoint of the support of the density. Generates
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some extra data X(i)’ using what they call the "three-point-rule", which are then

combined with the original data Xi ’s to form a kernel type estimator.

fCH (x) =
1

nh

{
n∑

i=1

K

(
x−Xi

h

)
+

m∑
i=1

K

(
x−X(−i)

h

)}
where,

X(i) = 5X(i/3) − 4X(2i/3) +
10

3
X(i), i = 1, 2, ..., n

and X(i) is the ith-order statistic of sample X1, ..., Xn and m is an integer such

that nb < m < n

2.4 The boundary kernel method

The boundary kernel method is more general than the reflection method in the

sense that it can adapt to any shape of density. However, a drawback of this

method is that the estimates might be negative near the endpoints; especially

when f(0) ≈ 0.The boundary kernel and related methods usually have low bias

but the price for that is an increase in variance. The boundary kernel estimator

with bandwidth variation is defined (see Zhang and Karunamuni (1998)) as

fBou (x) =
1

nh

n∑
i=1

K(c)

(
x−Xi

h

)

2.5 The local linear method

Special case of the boundary kernel method that is thought of by some as a simple,

hard to beat, defaut approach parthy because of "optimal" theoretical properties in
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the boundary kernel implicit in local linear fitting.

fLL (x) =
Sn,2 (x)Tn,0 (x)− Sn,1 (x)Tn,1 (x)

Sn,2 (x)Sn,0 (x)− Sn,1 (x)
2

where

Sn,j (x) =
n∑

i=1

k

(
x−Xi

n

)
(Xi − x)j j = 0, 1, 2

and

Tn,j (x) =
1

nh

n∑
i=1

k

(
x−Xi

n

)
(Xi − x)j ci j = 0, 1

2.6 The cut-and-normalized method

Due to Gasser and Müller (1979), a very naive correction could then be to divide

the original estimator by this factor
∫ c

−1

k (t) dt. The order of the bias is then h,

which still is not very satisfying since in [h,∞) it becomes of order h2. The goal is

to achieve such an order in the boundary interval. This is a local correction since

the integral depends on the relative position of x with respect to the bandwidth h

fCN (x) =
1

nh

1
c∫

−1

k (t) dt

n∑
i=1

K

(
x−Xi

h

)
, x ≥ 0

Theorem 2.6.1 If f is continuously differentiable in a neighbourhood of x, we have

•

BiasfCN (x) =
f (2)h2

2

c∫
−1

k (t) dt

(x)

1∫
−1

t2k (t) dt+ o
(
h2
)
,

Poste 1
Machine à écrire
The bias:
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and

•

V arfCN (x) =
f (x)

nh

c∫
−1

k (t) dt

1∫
−1

k2 (t) dt+ o

(
1

nh

)
.

Poste 1
Machine à écrire
The variance:
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3
Bias correction at end points in kernel den-

sity estimation

In this paper, we propose a new approach of boundary correction for kernel

density estimation with the support [0, 1], in particular at the right endpoints

and we derive the theoretical properties of this new estimator and show that it

asymptotically reduce the order of bias at the boundary region, whereas the order

of variance remains unchanged. Our Monte Carlo simulations demonstrate the

good finite sample performance of our proposed estimator. Two examples with

real data are provided.

3.1 Introduction

Suppose we observe n independent identically distributed aleatoire random

variables, with unknown continuous density function f . The kernel density
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estimator which presented by Rosenblatt [19] then developed by Parzen [8], is

defined as,

fR (x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
, x ∈ R, (3.1.1)

where h is a positive smoothing parameter, called the bandwidth, in which

h → 0 and nh → ∞ when n → ∞, and k is the kernel function with compact

support [−1, 1], satisfying the following conditions,

k (t) ≥ 0, k (t) = k (−t) ,
1∫

−1

k (t) dt = 1, 0 ̸=
1∫

−1

t2k (t) dt <∞. (3.1.2)

Let introduce the notation,
1∫

−1

tjk (t) dt = µj, j = 1, 2, 3, (3.1.3)

to be more precise µ1 = µ3 = 0 since k is symmetric. Best reference in this area

is Silverman [4] and Wand and Jones [48]. With appropriate choice of h, we can

divided the support of the density onto regions, the intervals [0, h) and (1− h, 1]

are called the left and the right boundary region respectively and the interior

region formed by the interval [h, 1 − h]. The performance of the kernel density

estimator at least in one side of the support (x ∈ [0, h) ∪ (1− h, 1]), differs from

the interior points due to so-called boundary problems and the region formed by

the points with boundary problems is called the boundary region.

To remove these boundary effects at the left region (x ∈ [0, h)), a diversity of

methods have been developed during the past two decades. Among them the

reflection method (Schuster [9]), the transformation method (Marron and Ruppert

[12]), the boundary kernel method (Jones [16]), the pseudo-data method (Cowling

and Hall [38]), the local linear method (Zhang and Karunamuni [28]).
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As the boundary kernel density estimator could yield negative point estimates,

Jones and Foster [22] propose much simpler nonnegative boundary corrected esti-

mators which are analogues of the wide class of simple. Karunamuni and Alberts

[25] proposed a new general method generates a class of boundary corrected esti-

mators possess desirable properties such as local adaptivity and non-negativity, in

addition to this work, Karunamuni and Alberts [26] constructed a new technique

based on a data transformation that depends on the point of estimation. In a very

exciting work, Zhang and al [30] expected a new method of boundary correction

for kernel density estimation, their approach is an amount of generalized reflection

method involving reflecting a transformation of the data.

In this paper, we focus on the boundary bias problem in the right side of the

support (1− h, 1], when the true density supported with endpoints one, the kernel

density estimator has the well-known boundary problem. More specifically, we

assume that f (j), the jth derivative of f , exists and is continuous on a neighbor-

hood of x, (j = 0, 1, 2, 3), with f (0) = f , then for x = 1− ch, c ∈ [0, 1[,

E (fR (x)) =

1∫
−c

k (t) f(x− th)dt

= f(x)

1∫
−c

k (t) dt− hf (1)(x)

1∫
−c

tk (t) dt+
h2

2
f (2)(x)

1∫
−c

t2k (t) dt+ o
(
h2
)

= f(x)− f(x)

−c∫
−1

k (t) dt− hf (1)(x)

1∫
−c

tk (t) dt+
h2

2
f (2)(x)

1∫
−c

t2k (t) dt+ o
(
h2
)
,
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therefore the value of bias of fR is

− f (x)

−c∫
−1

k (t) dt+ hf (1) (x)

1∫
−c

tk (t) dt+
h2

2
f (2) (x)

1∫
−c

t2k (t) dt+ o
(
h2
)
. (3.1.4)

Similar computations give the variance expression,

f (x)

nh

1∫
−c

k2 (t) dt+ o

(
1

nh

)
. (3.1.5)

However, the usual bias is

h2

2
f (2) (x)

1∫
−1

t2k (t) dt+ o
(
h2
)
, (3.1.6)

for (3.1.4) and (3.1.6), we see that fR is not a consistent estimator of f and there

exists an extra first order term of h. To correct this boundary problem, we construct

a new approach, the basic technique of construction of the proposed estimator

is kind of a generalized reflection method involving reflecting a transformation

of the observed data. Then, a comparison of the boundary performance of our

proposed estimator with the other kernel density estimators is carried out. It is

well-known that a comparison between different methods is only meaningful with

respect to their respective optimal performances. We have adopted this strategy

in our comparison.

The rest of the paper is formulated as following. Section 3.2 introduces asymp-

totic properties of the proposed kernel estimator. Section 3.3 conducts Monte Carlo

simulations and data analysis to compare the performance of our estimator, which

is the main objective of this paper.
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3.2 Transformation-reflection Kernel Density Estima-

tion

Using transformation and reflection method in kernel density estimations im-

proved bias at the boundary, but unless the first derivative of the density is 0, the

estimator with reflection can still be much more severely biased at the boundary

than in the interior. Marron and Ruppert [12] propose to transform the data to a

density that has its first derivative equal to 0 at both boundaries. The transforma-

tion is selected from a parametric family, which is allowed to be quite general in

our theoretical study. Zhang and al [30] combine those two methods to construct a

new approach which correct the boundary problem at the left side of the support.

We use this technique to correct the boundary problem at the right side. The

proposed estimator defined as follow,

fn,TR (x) =
1

nh

n∑
i=1

{
k

(
x−Xi

h

)
+ k

(
x− 2 + ψ(Xi)

h

)}
, (3.2.1)

The transformation ψ is stated in the theorem 3.2.1, which exhibits the explicit

forms of the bias, variance and mean squared error (MSE), under certain condi-

tions on ψ.

Theorem 3.2.1 Assume that ψ(3) exist and is continuous, where ψ(i) denote the ith

derivative of ψ. Further assume that ψ−1 (1) = 1 and ψ(1) (1) = 1, where ψ−1 is the

inverse function of ψ. Then for x = 1− ch, 0 ≤ c < 1, we have,
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Bias (fn,TR (x)) = h

−c∫
−1

(t+ c)k (t) dt
[
2f (1) (1)− f (1)ψ(2)(1)

]
+
h2

2
µ2f

(2)(1)

− h2

2

−c∫
−1

(t+ c)2k (t) dt×
[
f (1)ψ(3)(1)− 3ψ(2)(1)

[
f (1) (1)− f (1)ψ(2)(1)

]]

+ o (h2) ,

(3.2.2)

and

V ar (fn,TR (x)) =
f(1)

nh

 1∫
−1

k2 (t) dt+ 2

1∫
−c

k (t) k (− (2c+ t)) dt

+ o

(
1

nh

)
.

We shall choose the transformation ψ so that the first order term in the bias expansions

(3.2.2) is zero. Assume that f(1) > 0, it is enough to let,

ψ(2) (1) = 2f (1) (1) /f (1) . (3.2.3)

So ψ should satisfy the following three conditions:

C [1] . ψ is monotonically increasing.

C [2] . ψ(1) (1) = 1 and ψ−1 (1) = 1.

C [3] . ψ(2) (1) = 2f (1) (1) /f (1) .

The transformation function ψ, verify the conditions C[1], C[2] and C[3], has the form:

ψ (x) =M −BM2 +
(
1− 2M + 3BM2

)
x+

(
M − 3BM2

)
x2 +BM2x3, (3.2.4)

where

M = f (1) (1) /f (1) , (3.2.5)
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and

B > 1/3. (3.2.6)

For ψ be defined by (3.2.4) and for x = 1− ch, 0 ≤ c < 1, we have,

Bias (fn,TR (x)) =
h2

2

µ2f
(2)(1)− 6 [B + 1]

[
f (1) (1)

]2
f (1)

×
−c∫

−1

(t+ c)2k (t) dt

+o
(
h2
)
.

(3.2.7)

Then the approximate form of mean squared error (MSE) is,

MSE (fn,TR (x)) ∼ h4

4

µ2f
(2)(1)− 6 [B + 1]

[
f (1) (1)

]2
f (1)

×
−c∫

−1

(t+ c)2k (t) dt

2

+
f(1)

nh

 1∫
−1

k2 (t) dt+ 2

1∫
−c

k (t) k (− (2c+ t)) dt

 .
(3.2.8)

The mean integrated squared error (MISE) of fn,TR (x) can be expressed as the sum of

the integrated squared bias and the integrated variance for it,

MISE (fn,TR (x)) =

∫
Bias2 (fn,TR (x)) dx+

∫
V ar (fn,TR (x)) dx. (3.2.9)

Estimation of ψ

In practice, the transformation ψ given by (3.2.4) is not available because it

defined by unknown term M (3.2.5). We must replace M with a pilot estimator.

Our proposed estimator (3.2.1) is not very sensitive to the accurate details of the

pilot estimate of M , and therefore any appropriate estimate can be used. Note

that M can be written as the derivative of log f(x) evaluated at x = 1, so M can be
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estimated by,

Mn =
log fR (1)− log fR (1− h)

h
, (3.2.10)

we now define,

ψn (x) =Mn−BM2
n+
(
1− 2Mn + 3BM2

n

)
x+
(
Mn − 3BM2

n

)
x2+BM2

nx
3, (3.2.11)

as the estimator of ψ (x).

The proposed new estimator

Our proposed new estimator of f(x) is defined as, for x = 1− ch, 0 ≤ c < 1,

fn,TR,new (x) =
1

nh

n∑
i=1

{
k

(
x−Xi

h

)
+ k

(
x− 2 + ψn(Xi)

h

)}
,

where ψn is given by (3.2.11) with M replaced by Mn of (3.2.10).

Proof This proof starts by proving the bias of fn,TR, we have

E(fn,TR (x)) =
1

h
E

{
k

(
x−X1

h

)
+ k

(
x− 2 + ψ(X1)

h

)}
= I1 + I2

By using change of variable and Taylor expansion for x = 1− ch, 0 ≤ c < 1, we

can write,

I1 =
1

h

1∫
0

k

(
x− y

h

)
f (y) dy

= f(x)

1∫
−c

k (t) dt− hf (1)(x)

1∫
−c

tk (t) dt+
h2

2
f (2)(x)

1∫
−c

t2k (t) dt

+ o (h2) .

Therefore,
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I2 =

−c∫
−1

k (t)
f (ψ−1 (th− x+ 2))

ψ(1)(ψ−1 (th− x+ 2))
dt

=

−c∫
−1

k (t)

[
f (ψ−1 (1))

ψ(1)(ψ−1 (1))

+ (t+ c)h

[
f (1) (ψ−1 (1))ψ(1)(ψ−1 (1))− f (ψ−1 (1))ψ(2)(ψ−1 (1))

[ψ(1)(ψ−1 (1))]
3

]

+ (t+c)2
h2

2

[
ψ(1)(ψ−1 (1))f (2) (ψ−1 (1))− f (ψ−1 (1))ψ(3)(ψ−1 (1))

[ψ(1)(ψ−1 (1))]
4

−
3ψ(2)(ψ−1 (1))

[
f (1) (ψ−1 (1))ψ(1)(ψ−1 (1))

[ψ(1)(ψ−1 (1))]
5

−
f (ψ−1 (1))ψ(2)(ψ−1 (1))

]
[ψ(1)(ψ−1 (1))]

5

]
dt

+ o (h2) .

Using the condition C [2] we have,

1

h
E

[
k

(
x− 2 + ψ(X1)

h

)]
=

−c∫
−1

f (1) k (t) dt+ h
[
f (1) (1)− f (1)ψ(2)(1)

] −c∫
−1

(t+ c)k (t) dt

+
h2

2

[
f

(2)

(1)− f (1)ψ(3)(1)− 3ψ(2)(1)
[
f (1) (1)− f (1)ψ(2)(1)

]]
×

−c∫
−1

(t+ c)2k (t) dt

+ o (h2) .

(3.2.12)
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By the existence and continuity of f (2) near 1, we obtain, for x = 1− ch,

f (1) = f(x) + chf (1)(x) +
(ch)2

2
f (2)(x) + o(h2).

f (1)(x) = f (1)(1)− chf (2)(1) + o(h).

f (2)(x) = f (2)(1) + o(1).

So,

f (1) = f(x) + chf (1)(1)− (ch)2

2
f (2)(1) + o(h2). (3.2.13)

Now combining (I1) and (I2) and using the formula (3.2.13), we get,

Bias (fn,TR (x)) = h

−c∫
−1

(t+ c)k (t) dt
[
2f (1) (1)− f (1)ψ(2)(1)

]
+
h2

2
µ2f

(2)(1)

− h2

2

−c∫
−1

(t+ c)2k (t) dt
[
f (1)ψ(3)(1)− 3ψ(2)(1)

[
f (1) (1)− f (1)ψ(2)(1)

]]

+ o (h2) .

The task now is to prove the variance of fn,TR: observe that for x = 1−ch, 0 ≤ c < 1,

we have,

V ar (fn,TR (x)) =
1

nh2
V ar

{
k

(
x−X1

h

)
+ k

(
x− 2 + ψ(X1)

h

)}
= J1 + J2,
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where,

J1 =
1

nh2
E

[
k

(
x−X1

h

)
+ k

(
x− 2 + ψ(X1)

h

)]2

=
1

nh2

 1∫
0

k2
(
x− y

h

)
f(y)dy +

1∫
0

k2
(
x− 2 + ψ(y)

h

)
f(y)dy



+
2

nh2

1∫
0

k

(
x− y

h

)
k

(
x− 2 + ψ(y)

h

)
f(y)dy

= J11 + J12.

Using a Taylor expansion, it can be shown that,

J11 =
1

nh

 1∫
−c

k2 (t) f(x− th)dt+

−c∫
−1

k2 (t)
f(ψ−1 (th− x+ 2))

ψ(1)(ψ−1 (th− x+ 2))
dt


=

1

nh

 1∫
−c

k2 (t) [f(1) + o(1)] dt+

−c∫
−1

k2 (t)

(
f(ψ−1 (1))

ψ(1)(ψ−1 (1))
+ o(1)

)
dt


=
f(1)

nh
µ2 + o

(
1

nh

)
,

and,

J12 =
2

nh

1∫
−c

k (t) k

(
x− 2 + ψ (x− th)

h

)
f(x− th)dt

=
2

nh

1∫
−c

k (t) k

(
1− ch− 2 + 1− (c+ t)h) + o (h)

h

)
f(1− (c+ t)h)dt

=
2f(1)

nh

1∫
−c

k (t) k (− (2c+ t)) dt+ o(
1

nh
).
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Similarly as in the proof of J1, we get

J2 = − 1

nh2

[
E2

(
k

(
x−X1

h

)
+ k

(
x− 2 + ψ(X1)

h

))]
= o

(
1

nh

)
.

By adding up J1 and J2, we have the desired result for the variance.

3.3 Simulation study

To compare the performance of our proposed estimator against the other well

known estimators, we divided this section into two parts, in the first, we introduce

the results of simulated data and in the second part, we present some examples of

real data. All computations were done by utilizing R software.

3.3.1 Simulated Data

In our simulation study reported in this part, we introduced the issue of poten-

tial quality of our proposed estimator per se form that of bandwidth selection.

Throughout our study we use Epanechnikov kernel k (t) = (3/4) (1− t2) I(−1 ≤

t ≤ 1), where I denote the indicatrice function.

Smoothing Parameter Selection

It is well known that the kernel estimation of the density depends crucially on the

bandwidths. In our study, we used two methods of smoothing parameter selection

which are the optimal bandwidth and the cross validation method.
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Optimal Bandwidth

The popular bandwidth selector in kernel density estimation is due to Sheather

and Jones [?]. This method adopts the asymptotic MISE as criterion, defined by

AMISE ∼ h4

4
µ2
2

∫ [
f (2)(x)

]2
dx+

1

nh

∫
k2(t)dt, (3.3.1)

the optimal bandwidth minimizing (3.3.1) is,

hopt =

{∫
k2(t)dt/nµ2

2

∫ [
f (2)(x)

]2
dx

}1/5

.

Cross Validation Method

Rudemo [20] and Bowman [1] suggested known as unbiased cross-validation

(UCV ) in kernel density estimator, is surely the most popular and exceed studied

one. The basic thought of this strategie, it purpose to estimate h the minimizer of

ISE(h). The minimisation measure is characterized by,

hucv = argminhUCV (h), (3.3.2)

where

UCV (h) =

∫
f 2
n,R (x) dx− 2

n

n∑
i=1

fR (xi) . (3.3.3)

Compared Estimators

We compare the performance of the kernel density estimator fR, the transformation-

reflection kernel density estimation fn,TR, the boundary kernel estimator fn,B and

the Jones and Foster estimator fn,JF . The comparison is carried out with respect to

the different densities.

Poste 1
Mettre en évidence

Poste 1
Rectangle

Poste 1
Machine à écrire
49
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The boundary kernel estimator is the general boundary corrected estimators

define by Jones [16], which replace the standard kernel function by the modified

version. The modified kernel function gave at the right boundary region based on

the Epanechnikov kernel, by

kB (t) = 12
1− t

(1 + c)4

(
3c2 − 2c+ 1

2
− t (1− 2c)

)
I (−c ≤ t ≤ 1) , (3.3.4)

this kernel satisfies the following conditions,

−c∫
−1

kB (t) dt = 0,

1∫
−c

kB (t) dt = 1,

1∫
−c

tkB (t) dt = 0,

1∫
−c

t2kB (t) dt <∞, (3.3.5)

the boundary kernel estimator is defined as,

fn,B (x) =
1

nh

n∑
i=1

kB

(
x−Xi

h

)
. (3.3.6)

The Jones and Foster estimator that corrects for the possible negativity of the

boundary kernel estimates has the following form,

fn,JF (x) = fn,CN (x) exp

(
fn,B (x)− fn,CN (x)

fn,CN (x)

)
, (3.3.7)

where,

fn,CN (x) =
1

nh

n∑
i=1

kCN

(
x−Xi

h

)
, (3.3.8)

denote the cut-and-normalized density estimator introduced by Gasser and Muller

[33] and by using the kernel function kCN for the right boundary region truncated

and normalized, ensuring integration to unity. For Epanechnikov kernel, it given

by
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kCN (t) =
1− t2

1∫
−c

(
1− t2

)
dt

I(−c ≤ t ≤ 1) (3.3.9)

Simulation Steps

We can compile the steps of simulation as follow,

Step 1. We simulate sample of size n with R repetition from the probability density

f .

Step 2. We calculate h using the optimal bandwidth and the cross validation method.

Step 3. We estimate f by fR, fn,TR, fn,B and fn,JF .

Step 4. We compute the SBIS, V AR and MSE of each estimator.

Step 5. We graph the MISE in the form of a boxplot.

For evaluating the performance of estimators at the boundaries, we tend to

limit our attention to n = 200. We consider six distributions with bounded support

[0, 1]. This set of distributions illustrated in Table 3.1, and for each distrubution we

simulate R = 1000.

Results and discussions

For each density, we have calculated the squared bias (SBIS), variance (V AR)

and mean squared error (MSE) of the estimators at the endpoint x = 1 using the
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Table 3.1: Densities used in the simulation

Distribution Density function

D1 Beta (3/2, 1) (3/2)x1/2

D2 Truncated Gamma (2, 1) x exp(−x)/1− 2 exp(−1)

D3 Truncated Normal (0, 1) exp(−x2/2)/
1∫

0

exp(−t2/2)dt

D4 (1/2)Beta (3/2, 1) +(1/2)Beta (1, 3/2) 0.75x1/2 + 0.75(1− x)1/2

D5 Truncated Exponential (1) exp(−x)/1− exp(−1)

D6 Truncated Beta (5, 1)[1/2,1] 160x4/31

two methods of smoothing parameter selection. The results are presented in Table

3.2 and Table 3.3.

Comparing between the estimators, we can see from the table 2, which includes

simulated values of SBIS, V AR and MSE calculated by using the optimal band-

width, that fn,TR had the smallest values of SBIS, V AR and MSE among the

other estimators for all the cases considered, followed by fn,B and fn,JF estimators,

while the fR estimator is the worst among them, as to the Beta, Truncated Gamma

and the last one Truncated Beta, but as to Truncated Normal, Mixture Beta and

Truncated Exponontiel, the fn,B changed your position to the third place and fn,JF

came in the second place.

From the table 3, which includes simulated values of SBIS, V AR and MSE
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Table 3.2: The squared bias, variance and MSE values computed using the optimal

bandwidth

Density D1 D2 D3 D4 D5 D6

Estimator h = 0.2122 h = 0.1884 h = 0.2259 h = 0.2341 h = 0.2304 h = 0.2378

fR

SBIS

V AR

MSE

0.0954

0.0584

0.1538

0.0832

0.0466

0.1298

0.0221

0.0109

0.0331

0.0315

0.0132

0.0447

0.0148

0.0078

0.0226

0.0434

0.0248

0.0683

fn,TR

SBIS

V AR

MSE

0.0205

0.0094

0.0299

0.0220

0.0077

0.0297

0.0096

0.0025

0.0121

0.0119

0.0030

0.0149

0.0078

0.0022

0.0100

0.0133

0.0048

0.0182

fn,B

SBIS

V AR

MSE

0.0222

0.0156

0.0378

0.0262

0.0172

0.0433

0.0123

0.0073

0.0196

0.0149

0.0093

0.0242

0.0108

0.0065

0.0173

0.0163

0.0107

0.0270

fn,JF

SBIS

V AR

MSE

0.0228

0.0173

0.0402

0.0267

0.0183

0.0451

0.0121

0.0069

0.0190

0.0143

0.0088

0.0231

0.0106

0.0062

0.0167

0.0165

0.0116

0.0282
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Table 3.3: The squared bias, variance and MSE values computed using the cross

validation method

Density D1 D2 D3 D4 D5 D6

Estimator h = 0.1324 h = 0.0865 h = 0.0945 h = 0.2256 h = 0.1297 h = 0.1729

fR

SBIS

V AR

MSE

0.0946

0.0687

0.1633

0.0803

0.0583

0.1385

0.0292

0.0141

0.0433

0.0353

0.0162

0.0516

0.0209

0.0083

0.0292

0.0502

0.0289

0.0791

fn,TR

SBIS

V AR

MSE

0.0463

0.0189

0.0652

0.0415

0.0157

0.0572

0.0223

0.0054

0.0278

0.0240

0.0055

0.0295

0.0146

0.0032

0.0178

0.0349

0.0092

0.0440

fn,B

SBIS

V AR

MSE

0.0566

0.0331

0.0897

0.0511

0.0298

0.0809

0.0284

0.0144

0.0429

0.0298

0.0153

0.0452

0.0191

0.0102

0.0293

0.0444

0.0217

0.0661

fn,JF

SBIS

V AR

MSE

0.0575

0.0320

0.0895

0.0518

0.0280

0.0798

0.0286

0.0146

0.0432

0.0299

0.0152

0.0451

0.0194

0.0114

0.0308

0.0449

0.0224

0.0674
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calculated by using the unbasied cross validation method, it can be observe that

fn,TR has good performance among the others. Moreover, the ranking from best to

worst concerning the SBIS is fn,TR, fn,B , fn,JF , fR for all densities, but concerning

the MSE we can observe that fn,B change it’s order to the third place and fn,JF

came to the second place for the Beta, Truncated Gamma and Mixture Beta den-

sities, but for the other densities Truncated Normal, Truncated Exponentiel and

Truncated Beta fn,B and fn,JF came in the second, third place respectively.

Comparing two smoothing parameter for a given estimators, we also find that,

in general, the optimal bandwidth tends to perform better.

3.3.2 Real Data

In this section, we apply our proposed estimators over two data sets. The den-

sities of our data sets are assumed to have a compact support S = [a, b]. In our

study, we mapped the original observation Xi ∈ S onto the unit interval by the

transformation Yi = (Xi − a)/(b− a).

The natural stands of the seedlings and saplings of Japanese black pines.

The first data set consists the data were collected on the position, height (cm) and

age (years) of the natural stands of the seedlings and saplings of 204 Japanese

black pines in a 100m2 region. The data set can be found in the paper of Ogata

Y. and Tanemura M. (1985). Table 3.4 shows the descriptive statistics of the data.

We used bandwidth h = 0.14, which we choose subjectively. We have graphed

the performance of our proposed estimator and the histogram of unknown real
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Table 3.4: Descriptive statistics of the natural stands of the seedlings and saplings

of Japanese black pines data.

Min 1st Qu Median Mean 3rd Qu Max kurtosis skewness

3.10 10.20 15.40 31.92 46.52 150.2 6.70 1.91

Figure 3.1: Density estimates of the natural stands of the seedlings and saplings of

204 Japanese black pines.

density function in figure 3.1.

From the figure 3.1 alone, one can see that the fn,TR is a good estimator of the

true density removes a large part of the boundary effect and when we move to the

interior, we remark that all the estimators close to the kernel density estimator. We

can conclude that, fn,TR yield the best estimator of natural stands of the seedlings

and saplings of Japanese black pines data and hence can be adequat for estimation

these data.

The measure of the motor cortex neuron interspike of unstimulated monkey.

The second data set is the measres intervals of motor cortex neuron interspike

(in ms) for an unstimulated monkey. The objects of the analysis were to estimate
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Table 3.5: Descriptive statistics of the measrues intervals of motor cortex neuron

interspike for an unstimulated monkey data.

Min 1st Qu Median Mean 3rd Qu Max kurtosis skewness

2.00 20.00 29.50 36.49 49.25 104 1.08 3.87

Figure 3.2: Density estimates of the measres intervals of motor cortex neuron

interspike for an unstimulated monkey.

the firing rate prior to Stimulation and to characterize the time dependence. The

data set can be found in the paper of Zeger, S.L. and Bahjat Qaqish (1988). The

descriptive statistics of the data is given in Table 5. The bandwidth is chosen

subjectively to be h = 0.16. The proposed estimators are plotted in figure 3.2,

superimposed on the histogram of the data.

From figure 3.2 we can see that the fn,TR is closer to the empirical histogram of

the density. That indicates, fn,TR is well covers the density of the measure of the

motor cortex neuron interspike of unstimulated monkey data.

"
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4
Conclusions

The concept of probability density functions is a vital concept in statistics. Density

function estimates represent a corner stone in a wide range of statistical analyses.

Among the density function estimation techniques, the kernel method provides a

simple and efficient way for estimating density functions, but this method is not

consistent near the finite end points of their supports.

In other words, these effects seriously affect the performance of these estimators.

In this thesis, we have studied the boundary effect in the kernel density estimation.

We have mentioned some methods for correcting this effect and we propose a very

intuitive and feasible kernel density estimator which reduces the bias.

The proposed estimator possesses a number of desirable properties, including

the non-negativity of the estimator. Each estimator has certain advantages and

works well at certain times. The proposed method seems to have inherited the

best of both transformation and reflection methods and that improved boundary
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effects near the points at left boundary region.
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R Software

R is a computer language not entirely unlike the S language developed at ATT Bell

Laboratories by Rick Becker, John Chambers and Allan Wilks. The two languages

are implemented quite differently, but bear enough superficial resemblance that

users should be able to switch between the two with relative ease. Currently

the software is undergoing active development. Discussion of the development

process is carried out on the "r-devel" mailing list.

Poste 1
Machine à écrire
We have implemented R in what we hope is a very portable fashion and inway 

which requires relatively little in the way of machine resources. Implementations 

exist for many for many members of the Unix family of operating systems,

including AIX, FreeBSD, GNU/Linux, HPUX, Irix, macOS, Solaris, and Tru64. 

Inaddition there is a version for Microsoft Windows (9x, ME, NT4, 2000, XP).
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We have implemented R in what we hope is a very portable fashion and in

way which requires relatively little in the way of machine resources. Implementa-

tions exist for many for many members of the Unix family of operating systems,

including AIX, FreeBSD, GNU/Linux, HPUX, Irix, macOS, Solaris, and Tru64. In

addition there is a version for Microsoft Windows (9x, ME, NT4, 2000, XP).
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X Random variable

X1, ..., Xn Sample of n observations

IA Indicator function of set A

R Set of real numbers

F Distribution function

f Propability density function

fH histogram estimate

fn naive estimator

fR kernel estimator

fV variable kernel estimate

fGW general weight function estimate

fRef reflection method

fTr transformation method

fLATr Locally Adaptive Transformation Estimator

fDT Double transformation Estimator

fCH Cowling and Hall Estimator

fBou boundary kernel estimator

fLL local linear Estimator

fCN cut-and-normalized Estimator
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k Kernel function

K Distribution of kernel function

h Bandwidth or smoothing parameter

µ Mean

f (i) The i th derivatives of f

ψ Transformation function

ψ(i) The i th derivatives of ψ

iid Independent and identically distributed

[0,∞) Positive interval

E (X) Esperance of X

V ar (X) Variance of X

MSE Mean Squared Error

AMSE Asymptotic Mean Squared Error

AMISE Asymptotic Mean Integrated Squared Error

UCV Unbiased cross validation

CCV Complete cross-validation.

MCV Modified cross-validation

MLCV Maximum likelihood cross-validation

SBIS Squared Bias

PDF Probability Density Function



86

HJJK

Poste 1
Machine à écrire
Dans cette thèse, nous étudions certaines méthodes de correction aux bords pour les estimateurs à noyau de la fonction de densité et leurs propriétés statistiques. Les estimateurs à noyau ne sont pas cohérents près des extrémités finies de leurs supports. En d'autres termes, ces effets affectent sérieusement les performances de ces estimateurs. Pour supprimer ces effets de bords, différentes méthodes ont été développées dans la littérature, les plus utilisées sont la méthode de réflexion, la transformation et les méthodes linéaires locales. Nous combinons les méthodes de transformation et de réflexion afin d'introduire un nouvel estimateur de correction aux bords  dans le cas de l'estimation à noyau de la fonction de densité dont le support est [0,1].

Poste 1
Rectangle

Poste 1
Machine à écrire
Résumé

Poste 1
Machine à écrire
Abstract

Poste 1
Machine à écrire
In this thesis, we study some boundary correction methods for kernel estimators of the density function and their statistical properties. The kernel estimators are not consistent near the finite end points of their supports. In other words, these effects seriously affect the performance of these estimators. To remove these boundary effects, various methods have been developed in the literature, the most used are the reflection method, the transformation and the local linear method. We combine transformation and reflection methods in order to introduce a new boundary correction estimator in the case of kernel estimation of the density function whose support  is [0,1].
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