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Résumé

Le principe du maximum stochastique est l’une des approches importantes pour dis-

cuter les problèmes de contrôle stochastique. Beaucoup de travail a été fait sur ce

genre de problème, voir, par exemple, Bensoussan [3], Cadenillas et Karatzas [10], Kush-

ner [31], Peng [41]. Récemment, un autre type de principe du maximum stochastique, les

conditions nécessaires ponctuelles du second ordre pour les contrôles optimaux stochas-

tiques a été établi et étudié pour ses applications sur le marché financier par Zhang et

Zhang [58] lorsque la région de contrôle est supposée être convexe. Dans Zhang et Zhang

[59], les auteurs ont étendu les conditions nécessaires ponctuelles du second ordre pour

les contrôles optimaux stochastiques dans le cas général où la région de contrôle est non

convexe. Les conditions nécessaires du second ordre pour un contrôle optimal avec des

utilitaires récursifs ont été prouvées par Dong et Meng [13].

Dans cette thèse, nous généralisons le travail de Zhang et Zhang [58] pour les

systèmes avec saut, nous établissons les conditions nécessaires du second ordre où le

système contrôlé est décrit par un système différentiel stochastique gouverné par une

mesure aléatoire de Poisson et un mouvement brownien indépendant. Le domaine de

contrôle est supposé convexe. La preuve du résultat principal est basée sur une approche

variationnelle utilisant le calcul stochastique des diffusions de sauts et quelques estimations

sur le processus d’état.

Mots Clés. Contrôle optimal, Systèmes stochastiques avec sauts, Condition néces-

saire ponctuelle du second ordre, Principe du maximum, Equation variationnelle.



Abstract

Stochastic maximum principle is one of the important major approaches to discuss

stochastic control problems. A lot of work has been done on this kind of problem,

see, for example, Bensoussan [3], Cadenillas and Karatzas [10], Kushner [31], Peng [41].

Recently, another kind of stochastic maximum principle, pointwise second order nec-

essary conditions for stochastic optimal controls has been established and studied for its

applications in the financial market by Zhang and Zhang [58] when the control region is

assumed to be convex. In Zhang and Zhang [59], the authors extended the pointwise sec-

ond order necessary conditions for stochastic optimal controls in the general cases when

the control region is allowed to be non convex. Second order necessary conditions for

optimal control with recursive utilities was proved by Dong and Meng [13].

In this thesis, we generalizes the work of Zhang and Zhang [58] for jump diffusions,

we establish a second order necessary conditions where the controlled system is described

by a stochastic differential systems driven by Poisson random measure and an independent

Brownian motion. The control domain is assumed to be convex. Pointwise second order

maximum principle for controlled jump diffusion in terms of the martingale with respect to

the time variable is proved. The proof of the main result is based on variational approach

using the stochastic calculus of jump diffusions and some estimates on the state processes.

Our stochastic control problem provides also an interesting models in many applications

such as economics and mathematical finance.

Keys words. Optimal control, Stochastic systems with jumps, Pointwise second-

order necessary condition, Maximum principle, Variational equation.



Symbols and Acronyms

(Ω,F ,F,P) Complete probability space

F = {Ft}0≤t≤T Natural filtration

W Brownian motion

N Poisson random measure

Ñ Compensator jump martingale random measure

µ (dt, dz) Compensator of random measure

a.e. Almost everywhere

a.s. Almost surely

e.g. For example (abbreviation of Latin exempli gratia)

i.e. Abbreviation of Latin (id)

SDE Stochastic differential equations

BSDE Backward stochastic differential equation

ODE Ordinary differential equation

φx (t, x, u) First parial derivatives of φ with respect to x

φu (t, x, u) First parial derivatives of φ with respect to u

φxx (t, x, u) The second order derivatives of φ with respect to (x, x)

φxu (t, x, u) First parial derivatives of φ with respect to (x, u)

φuu (t, x, u) Second order derivatives of φ with respect to (u, u)

φ(x,u)2 (t, x, u) Second order derivatives of φ with respect to (x, u)

Uad The set of all admissible controls

L2
Ft (Ω;R) The space of R-valued, Ft-measurable random variables

L2
F ([0, T ] ;R) The space of R-valued, B([0, T ])⊗F -measurable, F-adapted processes

L2 ([0, T ] ;R) The space of R-valued, B([0, T ]× Ω)⊗ B (Z) measurable processes

iv



Contents

Abstract

Résumé

Symbols and Acronyms

Introduction

1 Introduction to stochastic calculus 5

1.1 Diffusion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Brownian motion and martingales . . . . . . . . . . . . . . . . . . . 5

1.1.2 Quadratic variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Stochastic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Stochastic differential equations . . . . . . . . . . . . . . . . . . . . 10

1.1.5 Itô’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.6 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Jump diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Itô Formula with Jumps . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3 Stochastic differential equations with jumps . . . . . . . . . . . . . 19

2 Stochastic optimal control problems 21

2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Dynamic programming principle . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Stochastic maximum principle . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 A General stochastic maximum principle for optimal control problems . . . 37



CONTENTS vi

2.4.1 Problem formulation and assumptions . . . . . . . . . . . . . . . . 38

2.4.2 Second order expansion . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.3 Adjoint processes and variational inequality . . . . . . . . . . . . . 42

2.4.4 Adjoint equations and the maximum principle . . . . . . . . . . . . 46

3 Pointwise second order necessary conditions for stochastic optimal con-

trol 47

3.1 Preliminaries and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Second order necessary condition in integral form . . . . . . . . . . . . . . 49

3.3 Pointwise second order maximum principle in terms of the martingale . . . 59

4 Pointwise second order necessary conditions for stochastic optimal con-

trol with jump diffusions 66

4.1 Preliminaries and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Second order necessary condition in integral form with jump Diffusions . . 69

4.3 Pointwise second order maximum principle in terms of the martingale with

Jump Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Conclusion 86

Bibliographie 90



Introduction

The main goal of this thesis is to investigate the pointwise second order neces-

sary conditions for stochastic optimal control problem with jump diffusions. The

maximum principle is one of the major approaches to discuss this kind of problems. The

stochastic optimal control problems for jump processes have been investigated by many

authors. Cadenillas [8] proved a stochastic maximum principle for a linear dynamics with

jumps and convex state constraint, this result is the first version of stochastic maximum

principle that covers the consumption-investment problem in which there are jumps in the

price system. The stochastic maximum principle for jump diffusion in general case, where

the control domain need not be convex, and the diffusion coefficient depends explicitly

on the control variable, was derived via spike variation method by Tang and Li [50], ex-

tending the Peng’s stochastic maximum principle of optimality developed in Peng [41]. A

general linear quadratic optimal stochastic control problem driven by a Brownian motion

and a Poisson random martingale measure with random coefficients has been studied in

Meng [37]. Optimal control of mean-field jump-diffusion systems with delay was studied

by Meng and Shen [38]. Necessary and sufficient conditions for mean-field jump–diffusion

stochastic delay differential equations and its application to finance have been obtained in

Meng and Shen [46]. Linear quadratic optimal control problems for mean-field stochastic

differential equations with jumps have been investigated in Tang and Meng [51]. Necessary

and sufficient conditions for stochastic near-optimal singular controls for jump diffusions

have been investigated in Hafayed and Abbas [26]. Necessary conditions for partially

1



Introduction 2

observed optimal control of general McKean–Vlasov stochastic differential equations with

jumps has been studied in Miloudi et al. [39] A mean-field maximum principle for optimal

control of forward-backward stochastic differential equations with Poisson jump processes

has been studied by Hafayed [27]. The sufficient conditions for optimality was obtained by

Framstad et al. [15]. Maximum principle for forward-backward stochastic control system

with random jumps with some application to finance has been investigated by Shi and Wu

[48]. Filtering problems for forward-backward stochastic systems with random jumps with

applications to partial information stochastic optimal control have been studied in Xiao

andWang [54]. Infinite horizon stochastic optimal control problem of mean-field delay sys-

tem with semi-Markov modulated jump-diffusion processes has been studied in Deepa and

Muthukumar [12]. Discrete time approximation of decoupled forward-backward stochas-

tic systems with jumps was studied in Bouchard and Elie [6]. Stochastic optimal control

of evolution equations of jump type with random coefficients has been studied in Tang

and Meng [53]. Zhang et al. [57] proved the sufficient maximum principle where the

state process is governed by a continuous-time Markov regime-switching jump-diffusion

model. A various maximum principles for optimal controls of stochastic with random

jumps have been investigated in [45, 47]. An extensive list of references to the stochastic

optimal control problem with jumps with some applications in finance and economics can

be found in [47, 40].

An integral type second order necessary condition for stochastic optimal control prob-

lems under the assumption that the control region is convex have been studied by Bonnans

and Silva [7]. Zhang and Zhang [58] established the pointwise second order necessary con-

ditions for stochastic optimal controls when the control region is assumed to be convex.

In Zhang and Zhang [59], the authors extended the pointwise second order necessary

conditions for stochastic optimal controls in the general cases when the control region is

allowed to be non convex. Second order necessary conditions for optimal control with

recursive utilities was proved by Dong and Meng [13]. Pointwise second order necessary

conditions of optimality for the Mayer-type problem with constraints have been derived

by Frankoswka and Tonon [16]. Second order necessary conditions for singular optimal

stochastic controls with some examples have been obtained in Tang [52]. First and second



Introduction

order necessary optimality conditions for local minimizers of stochastic optimal control

problems with state constraints have been established in Frankowska et al. [17].

Motivated by the works mentioned above, our main goal in this thesis is to prove

pointwise second order necessary conditions for stochastic optimal control for jump dif-

fusions. The control variable is allowed to enter into both drift and diffusion terms. Our

stochastic control problem provides also an interesting models in many applications such

as economics and mathematical finance. Our maximum principle generalizes the work

of Zhang and Zhang [58] to jump diffusion, which is a type of stochastic process that

has discrete movements called jumps, with random arrival times, rather than continuous

movements.

This thesis is organized as follows.

In Chapter 1, we give an introduction to stochastic calculus, we presents some con-

cepts and results that allow us to prove our results, such as Diffusion process ( Brownian

motion and martingales, Stochastic integrals, Stochastic differential equations, Itô for-

mula), Jump diffusions ( Lévy processes, Itô formula and related results, Lévy stochastic

differential equations).

In Chapter 2, we present strong and weak formulations of stochastic optimal control

problems. Then, by using the dynamic programming principle (DPP) and the stochastic

maximum principle (SMP) in the classical case where the control domain is convex and the

system is governed by Brownian motion, we solve our stochastic control problem. Then,

we study the maximum principle for nonlinear stochastic optimal control problems in the

general case where the control domain need not be convex, and the diffusion coefficient

can contain a control variable.

In Chapter 3, we discuss pointwise second-order necessary conditions for stochastic

singular optimal controls in the classical sense. The controlled system is described by a

stochastic differential equation and the control domain is assumed to be convex. This

chapter is based on the work of Zhang and Zhang [58].

In Chapter 4, we give the main result of this thesis, we establish a second order

necessary conditions for stochastic optimal control for jump diffusions. The controlled

3



Introduction

system is described by a stochastic differential systems driven by Poisson random measure

and an independent Brownian motion. The control domain is assumed to be convex.

Pointwise second order maximum principle for controlled jump diffusion in terms of the

martingale with respect to the time variable is proved. The proof of the main result is

based on variational approach using the stochastic calculus of jump diffusions and some

estimates on the state processes.

Published Author Papers
The content of this thesis was the subject of the following paper:

A. Ghoul, & I.E. Lakhdari, & M. Hafayed, & S. Meherrem, Pointwise Second Order

Necessary Conditions for Stochastic Optimal Control with Jump Diffusion , Communica-

tions in Mathematics and Statistics. Springer.

Received: 30 April 2021 / Revised: 3 September 2021 / Accepted: 25 October 2021.
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Chapter 1

Introduction to stochastic calculus

1.1 Diffusion process

1.1.1 Brownian motion and martingales

We assume as given a filtered propability space (Ω,F , P ) where:

1. Ω is the universe of possible outcomes.

2. The set F represents the set of possible events where an event is a subset of Ω.

3. P is the true probability measure.

i) There is also a filtration, {Ft}t≥0, that models the evolution of information through

time. So for example,if it is known by time t whether or not an event, E, has occurred,

then we have E ∈ Ft. If we are working with a finite horizon, [0;T ], then we can take

F = FT .

ii) We also say that a stochastic process Xt, is Ft-adapted if the value of Xt is known

at time t when the information represented by Ft is known. All the processes we consider

will be Ft-adapted so we will not bother to state this in the sequel.

iii) In the continuous-time models that we will study, it will be understood that the

filtration {Ft}t will be the filtration generated by the stochastic processes {Bt}, that are

specified in the model description.

Definition 1.1.1
A stoshastic process {Bt : 0 ≤ t ≤ ∞} is a standard Brownian motion:

1) B0 = 0.

2) With probability 1, the function t→ Bt is continuous in t.

3) The process {Bt}t≥0 has stationary, independent increments.

5



Introduction to stochastic calculus

4) Bt ∼ N (0, t) .

Definition 1.1.2

An d-dimensional Wiener process is a vector-valued stochastic process, Bt = (B(1)
t , ..., B

(d)
t )

is a standard d-dimensional Brownian motion if each B(i)
t it is a standard Brownian

motion and the whose components B
(i)
t ’s are independent of each other.

Definition 1.1.3
A stochastic process,{Yt : 0 ≤ t ≤ ∞} ,is a martingale with respect to the filtration,

Ft and probability measure P , if

• EP [|Yt|] <∞ for all t ≥ 0.

• EP [Yt+s�Ft] = Yt for all t, s ≥ 0.

Example 1.1.1
Let Bt be a Brownian motion.

Then B2
t − t ,B3

t − 3tBt and exp(−λ2 t

2) expλBt ,are all martingales.

1.1.2 Quadratic variation

Suppose that Bt is a real-valued stochastic process defined on a probability space (Ω,F , P )

and with time index t ranging over the non-negative real numbers ,consider a partition of

the time interval, [0;T ] given by

0 = t0 < t1 < t2 < ... < tn = T.

Let Yt be a Brownian motion and consider the sum of squared changes

Qn (T ) :=
n∑
i=1

[
Bti −Bti−1

]2
. (1.1)

Definition 1.1.4
The quadratic variation of a stochastic process, Yt, is the process, written as [Y ]t is

equal to the limit of

Qn (T ) as 4t := max
i

(ti − ti−1)→ 0.

6



Introduction to stochastic calculus

Remark 1.1.1
The functions with which you are normally familiar, e.g. continuous differentiable

functions, have quadratic variation equal to zero. Note that any continuous stochastic

process or function that has non-zero quadratic variation must have infinite total

variation where the total variation of a process, Yt, on [0;T ] is defined as

Total Variation := lim
4t→0

n∑
k=1

∣∣∣Ytk − Ytk−1

∣∣∣ .

This follows by observing that
n∑
k=1

(
Ytk − Ytk−1

)2
≤

n∑
k=1

∣∣∣Ytk − Ytk−1

∣∣∣) max
1≤k≤n

∣∣∣Ytk − Ytk−1

∣∣∣ . (1.2)

If we now let n→∞ in (1.2) then the continuity of Yt implies the impossibility of the

process having finite total variation and non-zero quadratic variation. Theorem (1.2.1)

therefore implies that the total variation of a Brownian motion is infinite. We have the

following important result which proves very useful if we need to price options when there

are multiple underlying Brownian motions, as is the case with quanto options for example.

1.1.3 Stochastic integrals

We now discuss the concept of a stochastic integral, ignoring the various technical condi-

tions that are required to make our definitions rigorous. In this section, we write Xt (ω)

instead of the usual Xt to emphasize that the quantities in question are stochastic.

Definition 1.1.5
A stopping time of the filtration Ft is a random time τ , such that the event {τ ≤ t} ∈

Ft for all t > 0.

In non-mathematical terms, we see that a stopping time is a random time whose value

is part of the information accumulated by that time.

Definition 1.1.6
We say a process ht (ω), is elementary if it is piece-wise constant so that there exists a

sequence of stopping times 0 = t0 < t1 < t2 < ... < tn = T, and a set of Fti–measurable

7



Introduction to stochastic calculus

functions,ei (ω) ,such that

ht (ω) =
∑
i

ei (ω) I[ti,ti+1) (t) ,

where I[ti,ti+1) (t) = 1 if t ∈ [ti, ti+1) and 0 otherwise.

Definition 1.1.7
A stochastic integral of an elementary function, ht (ω), with respect to a Brownian

motion, Bt is defined as
∫ T

0
ht (ω) dBt (ω) :=

n−1∑
i=0

ei (ω)
(
Bti+1 (ω)−Bti (ω)

)
. (1.3)

Note that, if we interpret ht (ω) as a trading strategy and the stochastic integral as the

gains or losses from this trading strategy, then evaluating ht (ω) at the left-hand point is

equivalent to imposing the non-anticipativity of the trading strategy, a property that

we always wish to impose.

For a more general process,Yt (ω) ,we have
∫ T

0
Yt (ω) dBt (ω) := lim

n→0

∫ T

0t
Y

(n)
t (ω) dBt (ω) ,

where Y (n)
t is a sequence of elementary processes that converges (in an appropriate

manner) to Yt.

Example 1.1.2

We want to compute
∫ T

0
BtdBt.Towards this end, let

0 = tn0 < tn1 < tn2 < ... < tnn = T,

be a partition of [0;T ] and define

Y n
t :=

n−1∑
i=0

Btni
I[tni ,tni+1) (t) ,

where I[tni ,tni+1) = 1 if t ∈
[
tni , t

n
i+1

)
and is 0 otherwise. Then Y n

t is an adapted

elementary process and, by continuity of Brownian motion, satisfies lim
n→0

Y n
t = Bt

8



Introduction to stochastic calculus

almost surely as max
i

∣∣∣tni+1 − tni
∣∣∣→ 0.The stochastic integral of Y n

t is given by

∫ T

0
Y n
t dBt =

n−1∑
i=0

Btni

(
Btni+1

−Btni

)
= 1

2

n−1∑
i=0

(
B2
tni+1
−B2

tni
−
(
Btni+1

−Btni

)2
)

= 1
2B

2
T −

1
2B

2
0 −

1
2

n−1∑
i=0

(
Btni+1

−Btni

)2
.

(1.4)

By Theorem (1.2.1) the sum on the right-hand-side of (1.4) converges in probability

to T as n→∞. And since B0 = 0 we obtain
∫ T

0
BtdBt = lim

n→0

∫ T

0
Y n
t dBt = 1

2B
2
T −

1
2T.

Note that we will generally evaluate stochastic integrals using Itô’s Lemma (to be

discussed later) without having to take limits of elementary processes as we did in Example

(1.2.1).

Definition 1.1.8
We define the space L2 [0, T ] to be the space of processes , Yt (ω) shuch that

E
[∫ T

0
Yt (ω)2 dt

]
<∞.

Theorem 1.1.1 (Itô’s Isometry)
For any Yt (ω) ∈ L2 [0, T ] we have

E

(∫ T

0
Yt (ω) dBt (ω)

)2
 = E

[∫ T

0
Yt (ω)2 dt

]
.

Theorem 1.1.2 (Martingale Property of Stochastic Integrals)

The stochastic integral, Xt :=
∫ T

0
Yt (ω) dBt ,is a martingale for any Yt (ω) ∈ L2 [0, T ] .

9



Introduction to stochastic calculus

1.1.4 Stochastic differential equations
Definition 1.1.9

An n-dimensional Itô process, Yt, is a process of the form

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdBs, (1.5)

whereB is anm-dimensional standard Brownian motion, and b and σ are n-dimensional

and n×m-dimensional Ft-adapted processes, respectively.

We often use the notation

dXt = btdt+ σtdBt,

as shorthand for (1.5) .An n-dimensional stochastic diferential equation (SDE) has the

form

dXt = bt (Xt, t) dt+ σt (Xt, t) dBt; X0 = 0, (1.6)

where as before, Bt is an m- dimensional standard Brownian motion, and b and σ are

n-dimensional and n × m-dimensional adapted processes, respectively. Once again,

(1.6) is shorthand for

Xt = x+
∫ t

0
bs (Xs, s) ds+

∫ t

0
σs (Xs, s) dBs. (1.7)

While we do not discuss the issue here, various conditions exist to guarantee existence

and uniqueness of solutions to (1.7). A useful tool for solving SDE’s is Itô’s Lemma

which we now discuss.

1.1.5 Itô’s lemma
Theorem 1.1.3 (Itô’s Lemma for 1-dimensional Brownian Motion)

Let Bt be a Brownian motion on [0, T ] and suppose f (x) is a twice continuously

differentiable function on R. Then for any t ≤ T we have

f (Bt) = f (0) + 1
2

∫ t

0
f ′′ (Bs) ds+

∫ t

0
f ′ (Bs) dBs. (1.8)

10



Introduction to stochastic calculus

Proof : Let 0 = t0 < t1 < t2 < ... < tn = T, be a partition of [0, t] . Clearly

f (Bt) = f (0) +
n−1∑
i=0

(
f
(
Bti+1

)
− f (Bti)

)
. (1.9)

Taylor’s Theorem implies

f
(
Bti+1

)
− f (Bti) = f ′ (Bti)

(
Bti+1 −Bti

)
+ 1

2f
′′ (θi)

(
Bti+1 −Bti

)2
, (1.10)

for some θi ∈
(
Bti+1 −Bti

)
Substituting (1.10) into (1.9) we obtain

f (Bti) = f (0) +
n−1∑
i=0

f ′ (Bti)
(
Bti+1 −Bti

)
+ 1

2

n−1∑
i=0

f ′′ (θi)
(
Bti+1 −Bti

)2
. (1.11)

If we let δ := max |ti+1 − ti| → 0 then it can be shown that the terms on the right-hand-

side of (1.11) converge to the corresponding terms on the right-hand-side of (1.8) as

desired. (This should not be surprising as we know the quadratic variation of Brownian

motion on [0, t] is equal to t).

A more general version of Itô’s Lemma can be stated for Itô processes.

Theorem 1.1.4 (Itô’s Lemma for 1-dimensional Itô process)
Let Xt be 1-dimensional Itô process satisfying the SDE

dXt = µtdt+ σtdBt.

If f (t.x) : [0,∞)× R× R is a C1,2 function and Yt := f (t,Xt) then

dYt = ∂f

∂t
(t,Xt) dt+ ∂f

∂x
(t,Xt) dXt + 1

2
∂2f

∂x2 (t,Xt) (dXt)2

=
(
∂f

∂t
(t,Xt) + ∂f

∂x
(t,Xt)µt + 1

2
∂2f

∂x2 (t,Xt)σ2
t

)
dt+ ∂f

∂x
(t,Xt)σtdBt.

The "Box" calculus

In the statement of Itô’s Lemma, we implicitly assumed that (dXt)2 = σ2
t dt. The box

calculus is a series of simple rules for calculating such quantities. In particular, we use

the rules
dt× dt = dt× dBt = 0,

and dBt × dBt = dt,

11



Introduction to stochastic calculus

when determining quantities such as (dBt)2 in the statement of Itô’s Lemma above.Note

that these rules are consistent with Theorem (1.2.1). When we have two correlated Brow-

nian motions, B(1)
t and B

(2)
t ,with correlation coeficient,ρt, then we easily obtain that

dB
(1)
t × dB

(2)
t = ρtdt. We use the box calculus for computing the quadratic variation of

Itô processes.

1.1.6 Some examples
Example 1.1.3

Suppose a stock price,St,satisfies the SDE

dSt = µtStdt+
∫ t

0
σttStdBt.

Then we can use the substitution,Yt = log (St) and Itô’s Lemma applied to the function

f (x) := log (x) to obtain

dSt = S0 exp
(∫ t

0

(
µs − σ2

s/2
)
ds+

∫ t

0
σsdBs

)
(1.12)

Note that St does not appear on the right-hand-side of (1.12) so that we have indeed

solved the SDE. When µs = µ and σs = σ are constants we obtain

St = S0 exp
((
µ− σ2/2

)
t+ σdBt

)
, (1.13)

so that log (St) ∼ N
((
µ− σ2/2

)
t, σ2t

)
.

Example 1.1.4 (Ornstein-Uhlenbeck Process)
Let St be a security price and suppose Xt = log (St) satisfies the SDE

dXt = [−γ (Xt − µt) + µ] dt+ σdBt.

Then we can apply Itô’s Lemma to Yt = exp (γt)Xt to obtain

dYt = exp (γt) dXt +Xtd (exp (γt))

= exp (γt) ([−γ (Xt − µt) + µ] dt+ σdBt) +Xtγ exp (γt) dt

= exp (γt) ([γµt+ µ] dt+ σdBt)

so that

Yt = Y0 + µ
∫ t

0
eγs (γs+ 1) ds+ σ

∫ t

0
eγsdBs, (1.14)

12
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or alternatively (after simplifying the Riemann integral in (1.14)

Xt = X0e
−γt + µt+ σe−γt

∫ t

0
eγsdBs. (1.15)

Once again,note that Xt does note appear on the right-hand-side of (1.15) so that we

have indeed solved SDE .We also abtain E (Xt) = X0e
−γt + µt and

V ar (Xt) = V ar
(
σe−γt

∫ t

0
eγsdBs

)
= σ2e−2γtE

[(∫ t

0
eγsdBs

)2]
= σ2e−2γt

∫ t

0
e2γsds (by Itô’s Isometry)

= σ2

2γ
(
1− e−2γs

)
.

These moments should be compared with the corresponding moments for log(St)

in the previous example.

For more informations about stochastic calculus, we refer to [25].

1.2 Jump diffusions

In this part, we present the basic concepts needed for the applied calculus of jump diffu-

sions. Since there are several excellent books which give a detailed account of this basic

theory, we will just briefly review it here and refer the reader [40] for more information.

1.2.1 Lévy processes

Let
(
Ω,F , {Ft}t≥0 , P

)
be a filtered probability space.

Definition 1.2.1
An Ft adapted process {L (t)}t≥0 = {Lt}t≥0 ⊂ R is called a Lévy process if it satisties

1. L0 = 0 a.s.

2. Lt is continuous in probability

3. Lt is stationary, independent increments.

13
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Theorem 1.2.1
Let {Lt} be a Lévy process. Then Lt has a càdlàg version (right continuous with left

limits) which is also a Lévy process.

The jump of Lt at t ≥ 0 is defined by

4 Lt = Lt − Lt− (1.16)

Let B0 be the family of Borel sets U ⊂ R whose closure U does not contain 0. For

U ∈ B0 we define

N (t, U) = N (t, U, ω) =
∑

0<s≤t
χ
U

(4Ls) . (1.17)

In other words, N (t, U) is the number of jumps of size 4Lt ∈ U which occur before

or at time t. N (t, U) is called the Poisson random measure (or jump measure) of L (t)

The differential form of this measure is written N (dt, dz) .

Example 1.2.1 (Brownian motion)
Brownian motion {B (t)}t≥0 has stationary and independent increments. Thus B (t)

is a Lévy process.

Example 1.2.2 (The Poisson process)
The Poisson process π (t) of intensity λ > 0 is a Lévy process taking values in N∪{0}

and such that

P [π (t) = n] = (λt)n

n! e−λt; n = 0, 1, 2, ...

Example 1.2.3 (The compound Poisson process)
Let X (n); n ∈ N be a sequence of i.i.d. random variables taking values in R with

common distribution µX(1) = µX and let π (t) be a Poisson process of intensity λ,

independent of all the X (n)’s.

The compound Poisson process Y (t) is defined by

Y (t) = X (1) + ...+X (π (t)) ; t ≥ 0. (1.18)

14
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An increment of this process is given by

Y (s)− Y (t) =
π(s)∑

k=π(t+1)
X (k) ; s > t.

This is independent of X(1), ..., X(π(t)), and depends only on the difference (s − t).

Thus Y (t) is a Lévy process.To find the Lévy measure ν of Y (t) note that if U ∈ B0

then

ν (U) = E [N (1, U)] = E
 ∑
s;0≤s≤1

χU (4Y (s))


= E [(number of jumps) .χU (jumps)] = E [π (1)χU (X)] = λµX (U) ,

by independence.We conclude that

ν = λµX . (1.19)

This shows that a Lévy process can be represented by a compound Poisson process if

and only if its Lévy measure is finite. Note, however, that there are many interesting

Lévy processes with infinite Lévy measure. See e.g [1]

Theorem 1.2.2 (Lévy decomposition [30])
Let {Lt} be a Lévy process. Then Lt has the decomposition

Lt = αt+ βB (t) +
∫
|z|<R

zÑ (t, dz) +
∫
|z|≥R

zN (t, dz) , (1.20)

for some constant α ∈ R, β ∈ R, R ∈ [0,∞] .Here

Ñ (t, dz) = N (t, dz)− ν (dz) dt, (1.21)

is the compensated Poisson random measure of L (·) and B (t) is an independent

Brownian motion. For each A ∈ B0 the process

Mt := Ñ (t, A) is a martingale. (1.22)

If α = 0 and R =∞,we call Lt a Lévy martingale .

15
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Theorem 1.2.3 ([43], Corollary p. 48 )
A Lévy process is a semimartingale.

Definition 1.2.2 ([43])
Let Ducp denote the space of cadlag adapted processes,equipped with the topology of

uniform convergence on compacts in probability (ucp) : Hn → H ucp if for all t > 0

sup |Hn (s)−H (s)| → 0 in probability (An → A) in probability if for all θ > 0 there

exists nθ ∈ N such that n ≥ nθ ⇒ P (|An → A| > θ) < θ.

Let Lucp denote the space of adapted caglad processes (left continuous with right

limits), equipped with the ucp topology. If H(t) is a step function of the form

H (t) = H0χ{0} (t) +
∑
i

Hiχ{Ti,Ti+1} (t) ,

where Hi ∈ FTi and 0 = T0 ≤ T1 ≤ ... ≤ Tn+1 < ∞ are Ft-stopping times and X is

cadlag, we define

JXH (t) :=
∫ t

0
HsdXs := H0X0 +

∑
i

Hi

(
XTi+1∧t −XTi∧t

)
; t ≥ 0.

Theorem 1.2.4 ([43] ,p.51 )
Let X be a semimartingale.Then the mapping JX can be extended to a continuous

linear map

JX : Lucp → Ducp.

This construction allows us to define stochastic integrals of the form
∫ t

0
H (s) dLs,

for allH ∈ Lucp. (See also Remark 1.3.2). In view of the decomposition (1.20) this inte-

gral can be split into integrals with respect to ds, dB(s), N(ds, dz) and Ñ(ds, dz).This

makes it natural to consider the more general stochastic integrals of the form

X (t) = X (0) +
∫ t

0
α (s, ω) ds+

∫ t

0
β (s, ω) dB (s) +

∫ t

0

∫
R
γ (s, z, ω) N̄(ds, dz), (1.23)

where the integrands are satisfying the appropriate conditions for the integrals to exist

16



Introduction to stochastic calculus

and we for simplicity have put

N̄(ds, dz)

 N(ds, dz)− ν (dz) ds if |z| < R,

N(ds, dz) if |z| ≥ R,

with R as in (Theorem 1.3.3). As is customary we will use the following short hand

differential notation for processes X (t) satisfying (1.23):

dXt = α (t) dt+ β (t) dB (t) +
∫
R
γ (t, z) N̄(ds, dz). (1.24)

We call such processes Itô-Lévy processes .

1.2.2 Itô Formula with Jumps

We now come to the important Itô formula for Itô-Lévy processes:

If X (t) is given by (1.24) and f : R2 → R is a C2 function,is the process Y (t) :=

f (t,X (t)) again an Itô-Lévy process and if so, how do we represent it in the form (1.24)?

If we argue heuristically and use our knowledge of the classical Itô formula it is easy

to guess what the answer is:

Let X(c) (t) be the continuous part of X (t), i.e. X(c) (t) is obtained by removing the

jumps from X (t). Then an increment in Y (t) stems from an increment in X(c) (t) plus

the jumps (coming from N(·,·)). Hence in view of the classical Itô formula we would

guess that

dY (t) = ∂f

∂t
(t,X (t)) dt+ ∂f

∂x
(t,X (t)) dXc (t) + 1

2
∂2f

∂x2 (t,Xt) β2 (t) dt

+
∫
R

{
f
(
t,X

(
t−
)

+ γ (t, z)
)
− f

(
t,X

(
t−
))}

N(ds, dz).

It can be proved that our guess is correct. Since

dXc (t) =
(
α (t)−

∫
|z|<R

γ (t, z) ν (dz)
)
dt+ β (t) dB (t) ,

this gives the following result:

Theorem 1.2.5 (The 1-dimensional Itô formula [43])
Suppose X (t) ∈ R is an Itô-Lévy process of the form

X (t) = α (t, ω) dt+ β (t, ω) dB (t) +
∫
R

∫
|z|≤R

γ (t, z, ω) N̄(dt, dz), (1.25)
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where

N̄(ds, dz)

 N(ds, dz)− ν (dz) ds if |z| < R,

N(ds, dz) if |z| ≥ R,
, (1.26)

for some R ∈ [0,∞].

Let f ∈ C2
(
R2
)
and define Y (t) = f (t,X (t)). Then Y (t) is again an Itô-Lévy

process and

dYt = ∂f

∂t
(t,X (t)) dt+ ∂f

∂x
(t,X (t)) ([α (t, ω) + β (t, ω) dBt]) + 1

2β
2 (t, ω) ∂

2f

∂x2 (t,Xt) dt

=
∫
|z|<R

{
f
(
t,X

(
t−
)

+ γ (t, z)
)
− f

(
t,X

(
t−
))
− ∂f

∂x

(
t,X

(
t−
))
γ (t, z)

}
ν (dz) .

+
∫
R

{
f
(
t,X

(
t−
)

+ γ (t, z)
)
− f

(
t,X

(
t−
))}

N̄(dt, dz).
(1.27)

Note: If R = 0 then N̄ = N everywhere.

If R = 0 then N̄ = Ñ everywhere.

Lemma 1.2.1 (Integration by parts formula for jumps processes)
Suppose that the processes xi(t) are given by: for i = 1, 2, t ∈ [0, T ] :

dxi(t) = b (t, xi(t), u(t)) dt+ σ (t, xi(t), u(t)) dW (t)

+
∫
Z
η (t, xi(t−), z) Ñ (dz, dt) ,

xi(0) = 0.

Then we get

E (x1(T )x2(T )) = E
[∫ T

0
x1(t)dx2(t) +

∫ T

0
x2(t)dx1(t)

]

+ E
∫ T

0
σᵀ (t, x1(t), u(t))σ (t, x2(t), u(t)) dt

+ E
∫ T

0

∫
Z
ηᵀ (t, x1(t), z) η (t, x2(t), z)µ(dz)dt.

18
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Proposition 1.2.1
Let G be the predictable σ−field on Ω×[0, T ], µ(Z) <∞, and f be a G×B(Z)−measurable

function such that.

E
∫ T

0

∫
Z
|f (s, z)|2 µ(dz)ds <∞,

then for all k ≥ 2 there exists a positive constant C(k,µ(Z)) > 0 such that

E
[

sup
0≤t≤T

∣∣∣∣∫ t

0

∫
Z
f (s, z) Ñ(dz, ds)

∣∣∣∣k
]
≤ C(k,µ(Z))E

[∫ T

0

∫
Z
|f (s, z)|k µ(dz)ds

]
.

Proof : See Bouchard et al., [6, Appendix].

Theorem 1.2.6 (The Itô-Lévy isometry)
Let X (t) ∈ Rn, with X (t) = 0 and α = 0. Then

E
[
X2 (T )

]
= E

 T∫
0


n∑
i=1

m∑
j=1
σ2
ij (t) +

n∑
i=1

∑̀
j=1

∫
R

γ2
ij (t, zj) νj (dzj)

 dt


=
n∑
i=1
E

 T∫
0


m∑
j=1
σ2
ij (t) +

∑̀
j=1

∫
R

γ2
ij (t, zj) νj (dzj)

 dt
 ,

(1.28)

provided that the right hand side is finite.

1.2.3 Stochastic differential equations with jumps

The geometric Lévy process is an example of a Lévy diffusion, i.e. the solution of a

stochastic differential equation (SDE) driven by Lévy processes.

Theorem 1.2.7 (Existence and uniqueness of solutions of Lévy SDEs)
Consider the following Lévy SDE in Rn: X (0) = x0 and

dX (t) = α (t,X (t)) dt+ σ (t,X (t)) dB (t) +
∫
Rn
γ
(
t,X

(
t−
)
, z
)
Ñ(dt, dz), (1.29)

where α : [0, T ]× Rn → Rn, σ : [0, T ]× Rn → Rn×m and γ : [0, T ]× Rn × Rn → Rn×`

satisfy the following conditions

(i) (At most linear growth) There exists a constant C1 <∞ such that

‖σ (t, x)‖2+|α (t, x)|2+
∫
R

∑̀
j=1
|γk (t, x, z)|2 νk (dzk) ≤ C1

(
1 + |x|2

)
; for all x ∈ Rn.
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(ii) (Lipschitz continuity) There exists a constant C2 <∞ such that

‖σ (t, x)− σ (t, y)‖2 + |α (t, x)− α (t, y)|2

+
∑̀
j=1

∫
R

∣∣∣γ(k) (t, x, zk)− γ(k) (t, y, zk)
∣∣∣2 νk (dzk) ≤ C2

(
1 + |x− y|2

)
;

for all x, y ∈ Rn.

Then there exists a unique cadlag adapted solution X (t) such that

E
[
X2 (T )

]
<∞, for all t.

Solutions of Lévy SDEs in the time homogeneous case, i.e. when α (t, x) =

α (x) , σ (t, x) = σ (x) and γ (t, x, z) = γ (x, z), are called jump diffusions (or

Lévy diffusions).

Definition 1.2.3
Let X (t) ∈ Rn be a jump diffusion.Then the generator A of X is defined on functions

f : Rn → R by

Af (x) = lim
t→0+

1
t
{Ex [f (X (t))]− f (x)} (if the limit exists),

where Ex [f (X (t))] = E [f (Xx (t))] , Xx (0) = x.

Theorem 1.2.8
Suppose f ∈ C2

0 (Rn) .Then Af (x) exists and is given by

Af (x) =
n∑
i=1
αi (x) ∂f

∂xi
(x) + 1

2

n∑
i,j=1

(
σσT

)
ij

(x) ∂2f

∂xi∂xj
(x)

+
∫
R

∑̀
k=1

{
f
(
x+ γ(k) (x, z)

)
− f (x)−∇f (x) γ(k) (x, z)

}
νk (dzk) .

(1.30)

From now on we define Af (x) by the expression (1.30) for all f such that the partial

derivatives of f and the integrals in (1.30) exist at x.
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Chapter 2

Stochastic optimal control problems

The problem of stochastic optimal control is to control a system in such a way as to do

something to it optimally. This theory is part of a larger field called control theory. The

applications of this type of problem are very numerous and in very diverse fields, such as

finance, mechanics, biology, electricity, chemistry, economics, etc ...

There are two well-known approaches to solving the optimal control problem, which

are the stochastic maximum principle and the principle of dynamic programming.

The study of optimal control problems by using Bellman’s Dynamic Programming

Principle can be linked with the solution of a particular class of nonlinear second order

partial differential equations: the Hamilton-Jacobi-Bellman equations.

Stochastic Maximum Principle is to study a set of necessary and sufficient conditions

that must be satisfied by any optimal control, the basic idea is by perturbing an optimal

control on a small time interval of length θ. Performing a Taylor expansion with respect to

θ and then sending θ to zero one obtains a variational inequality. By duality the stochastic

maximum principle is obtained. For more informations about the two approaches, we can

see, Lakhdari [36].

2.1 Problem formulation

In this section, we present the strong and weak formulations of stochastic control problem.

2.1.1. Strong formulation

Let
(
Ω,F , {Ft}t≥0 ,P

)
be a filtered probability space, on witch we define an m-

dimensional standard Brownian motion B (·) , denote by U the separable metric space.

We denote by Uad [0, T ] the set of all admissible controls.
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The state of a controlled diffusion is described by the SDE dy (t) = b (t, y (t) , u (t)) dt+ σ (t, y (t) , u (t)) dB (t)

y (0) = y,
(2.1)

where b : [0, T ]×Rn × U → Rn, σ : [0, T ]×Rn × U → Rn×m, are given. u(·) is called the

control representing the action of the decision-makers (controllers). At any time instant

the controller knowledgeable about some information (as specified by the information filed

{Ft}t≥0) of what has happened up to that moment, but not able to foretell what is going

to happen afterwards due to the uncertainty of the system (as a consequence, for any t

the controller cannot exercise his/her decision u(t) befor the time t really comes) witche

can be expressed in mathematical term as " u(·) is {Ft}t≥0 adapted", the control u is

taken from the set

U [0, T ] ∆=
{
u : [0, T ]× Ω −→ U | u (·) is {Ft}t≥0 adapted

}
.

The cost functional has the form:

J (u (·)) = E
[∫ T

0
f (t, y (t) , u (t)) dt+ g (y (T ))

]
.

Definition 2.1.1
Let (Ω,F ,Ft,P) be given filtered probability space satisfying the usual conditions and

let B (t) be a given m-dimensional standard {Ft}t≥0-Brownian motion. A control u(·)

called an admissible control, and (y(·), u(·)) an admissible pair, if

i) y(·) is the unique solution of equation (2.1).

ii) f (·, y (·) , u (·)) ∈ L1
F (0, T,R) and g (y (T )) ∈ L1

F (Ω,R) .

iii) u(·) ∈ U [0, T ] .

Stochastic control problem is to find an optimal control û(·) ∈ U [0, T ] (if it ever exists),

such that

J (û (·)) = inf
u(·)∈U [0,T ]

J (u (·)) ,

where û (·) is called an optimal control and the state control pair (ŷ(·), û(·)) are called an

optimal state process.

2.1.2. Weak formulation
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In the strong formulation the filtered probability space
(
Ω,F , {Ft}t≥0 ,P

)
on witch we

define the Brownian motion B are all fixed. However in the weak formulation, where we

consider them as a parts of the control.

Definition 2.1.2(
Ω,F , {Ft}t≥0 ,P, B (·) , u(·)

)
is called a w-admissible control, and y (·) , u (·) a w-

admissible pair if

1.
(
Ω,F , {Ft}t≥0 ,P

)
is a filtered probability space satisfying the usual conditions.

2. B (·) is anm-dimensional standard Brownian motion defined on
(
Ω,F , {Ft}t≥0 ,P

)
.

3. u (·) is an {Ft}t≥0-adapted process on (Ω,F ,P) taking values in U .

4. y (·) is the unique solution of equation (2.1).

5. f (·, y (·) , u (·)) ∈ L1
F (0, T,R) and g (y (T )) ∈ L1

F (Ω,R) .

The set of all admissible controls is denoted by U [0, T ] . Our stochastic optimal

control problem under weak formulation is to find an optimal control û(·) ∈ U [0, T ]

(if it ever exists), such that

J (û (·)) = u(·)∈U [0, T
]

infJ (u (·)) .

2.2 Dynamic programming principle

2.2.1. The Bellman principle

Let
(
Ω,F , {Ft}t≤T ,P

)
be a filtered probability space and B (t) a Brownian motion

valued in Rd. We denote by A the set of all progressively measurable processes {u (t)}t≥0

valued in U ⊂ Rk.

The state of the stochastic controlled system has the form: dy (t) = b (t, y (t) , u (t)) dt+ σ (t, y (t) , u (t)) dB (t)

y (0) = y,
(2.2)

where b : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn × U → Rn×d be two given functions
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satisfying, for some constant M

|b (t, y (t) , u (t))− b (t, x (t) , u (t))|+ |σ (t, y (t) , u (t))− σ (t, x (t) , u (t))| ≤M |y − x| ,

(2.3)

|b (t, y (t) , u (t))|+ |σ (t, y (t) , u (t))| ≤M (1 + |y (t)|) . (2.4)

Under (2.3) and (2.4) the above equation has a unique solution y.

The cost functional J : [0, T ]× Rn × U → R, defined by

J (t, y, u) = Et,y
[∫ T

t
f (s, y (s) , u (s)) ds+ g (y (T ))

]
, (2.5)

where Et,y is the expectation operator conditional on y (t) = y, and f : [0, T ]×Rn×U −→

R, g : Rn −→ R, we assume that

|f (t, y, u)|+ |g (y)| ≤M
(
1 + |y|2

)
, (2.6)

for some constantM . The quadratic growth condition (2.6), ensure that J is well defined.

The purpose of this Section is to study the minimization problem

V (t, y) = inf
u∈U

J (t, y, u) , for (t, y) ∈ [0, T ]× Rn, (2.7)

which is called the value function of the problem (2.2) and (2.5).

The dynamic programming is a fundamental principle in the theory of stochastic

control, we give a version of the stochastic Bellman’s principle of optimality. For mathe-

matical treatments of this problem , we refer the reader to Lions [35], Krylov [34], Yong

and Zhou [55], Fleming and Soner [19], Lakhdari [36].

Theorem 2.2.1
Let (t, y) ∈ [0, T ]× Rn be given. Then, for every h ∈ [0, T − t] , we have

V (t, y) = inf
u∈U

Et,y
(∫ t+h

t
f (s, y (s) , u (s)) ds+ V (t+ h, y (t+ h))

)
. (2.8)

Proof : Suppose that for h > 0, we given by û (s) = û (s, y) the optimal feedback control

for the problem (2.2) and (2.5) over the time interval [t, T ] starting at point y (t+ h) .

i.e.

J (t+ h, y (t+ h) , û (t+ h)) = V (t+ h, y (t+ h)) , P− a.s. (2.9)
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Now, we consider

ũ =


u (s, y) , t ≤ s ≤ t+ h

û (s, y) , t+ h ≤ s ≤ T,

for some control u. By definition of V (t, y), and using (2.5), we obtain

V (t, y) ≤ J (t, y, ũ)

= Et;y
(∫ t+h

t
f (s, y (s) , u (s)) ds+

∫ T

t+h
f (s, y (s) , û (s)) ds+ g (y (T ))

)
.

By the unicity of solution for the SDE (2.2), we have for s≥ t+ h, yt+h,y
t,y(t+h) (s) =

yt,y (s) , then

J (t, y, ũ) = E
(∫ t+h

t
f (s, y (s) , u (s)) ds

+
∫ T

t+h
f
(
s, yt+h,y

t,y(t+h) (s) , û (s)
)
ds+ g

(
yt+h,y

t,y(t+h) (T )
))

= E
(∫ t+h

t
f (s, y (s) , u (s)) ds

+ E
∫ T

t+h
f (s, y (s) , û (s)) ds+ g (y (T )) | yt,y (t+ h)

)

= E
(∫ t+h

t
f (s, y (s) , u (s)) ds+ V

(
t+ h, yt,y (t+ h)

))
.

So we get

V (t, y) ≤ E
(∫ t+h

t
f (s, y (s) , u (s)) ds+ V

(
t+ h, yt,y (t+ h)

))
, (2.10)

and the equality holds if ũ = û, which proves (2.8).

2.2.2 The Hamilton Jacobi Bellman equation

Now, we introduce the HJB equation by deriving it form the dynamic programming

principle under smoothness assumptions on the value function. Let G : [0, T ]×R×Rn×

Rn×d into R, be defined by

G (t, y, r, p, A) = b(t, y, u)ᵀp+ 1
2tr [σσᵀ (t, y, u)A] + f (t, y, u) , (2.11)

we also need to introduce the linear second order operator Lu associated to the con-

trolled processes y (t) , t ≥ 0, we consider the constant control u
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Luϕ(t, y) = b(t, y, u)ᵀDyϕ(t, y) + 1
2tr [σσᵀ (t, y, u)Dyy (ϕ(t, y))] , (2.12)

whereDy, Dyy denote the gradient and the Hessian operator with respect to the y variable.

Assume the value function V ∈ C ([0, T ] ,Rn), and f(·, ·, u) be continuous in (t, y) for all

fixed u ∈ A, then we have by Itô’s formula

V (t+ h, y (t+ h)) = V (t, y) +
∫ t+h

t

(
∂V

∂s
+ LuV

)(
s, yt,y (s)

)
ds

+
∫ t+h

t
DyV

(
s, yt,y (s)

)ᵀ
σ
(
s, yt,y (s) , u

)
dB (s) ,

by taking the expectation, we get

E (V (t+ h, y (t+ h))) = V (t, y) + E
(∫ t+h

t

(
∂V

∂s
+ LuV

)(
s, yt,y (s)

)
ds

)
,

then, we have by (2.10)

0 ≤ E
(

1
h

∫ t+h

t

((
∂V

∂s
+ LuV

)(
s, yt,y (s)

)
+ f

(
s, yt,y (s) , u

))
ds

)
.

We now send h to zero, we obtain

0 ≤ ∂V

∂t
(t, y) + LuV (t, y) + f (t, y, u) ,

this provides

− ∂V

∂t
(t, y)− inf

u∈U
[LuV (t, y) + f (t, y, u)] ≤ 0. (2.13)

Now we shall assume that û ∈ U, and using the same procedure as above, we conclude

that

− ∂V

∂t
(t, y)− LûV (t, y)− f (t, y, u) = 0, (2.14)

by (2.13), then the value function solves the HJB equation

− ∂V

∂t
(t, y)− inf

u∈U
[LuV (t, y) + f (t, y, u)] = 0, ∀ (t, y) ∈ [0, T ]× Rn. (2.15)

We give sufficient conditions which allow to conclude that the smooth solution of the

HJB equation coincides with the value functionm this is the so-called verification result.
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Theorem 2.2.2
LetW be a C1,2 ([0, T ] ,Rn)∩C ([0, T ] ,Rn) function. Assume that f and g are quadratic

growth, i.e. there is a constant M such that

|f (t, y, u)|+ |g (y)| ≤M
(
1 + |y|2

)
, for all (t, y, u) ∈ [0, T ]× Rn × U.

(1) Suppose that W (T, ·) ≤ g, and

∂W

∂t
(t, y) +G (t, y,W (t, y) , DyW (t, y) , Dyy (W (t, y))) ≥ 0, (2.16)

on [0, T ]× Rn, then W ≤ V on [0, T ]× Rn.

(2) Assume further that W (T, ·) = g, and there exists a minimizer û (t, y) of

LuV (t, y) + f (t, y, u) ,

such that

0 = ∂W

∂t
(t, y) +G (t, y,W (t, y) , DyW (t, y) , Dyy (W (t, y))) (2.17)

= ∂W

∂t
(t, y) + Lû(t,y)W (t, y) + f (t, y, u) , (1.22)

the stochastic differential equation

dy (t) = b (t, y (t) , û (t, y)) dt+ σ (t, y (t) , û (t, y)) dB (t) , (2.18)

defines a unique solution y (t) for each given initial data y (t) = y, and the process

û (t, y) is a well-defined control process in U. ThenW = V, and û is an optimal Markov

control process.

Proof : The function W ∈ C1,2 ([0, T ] ,Rn) ∩ C ([0, T ] ,Rn) , then for all 0 ≤ t ≤ s ≤ T, by

Itô’s Lemma we get

W
(
t, yt,y (r)

)
=
∫ s

t

(
∂W

∂t
+ Lu(r)W

)(
r, yt,y (r)

)
dr

+
∫ s

t
DyW

(
r, yt,y (r)

)ᵀ
σ
(
r, yt,y (r) , u (r)

)
dB (r) ,

the process
∫ s

t
DyW

(
r, yt,y (r)

)ᵀ
σ
(
r, yt,y (r) , u (r)

)
, is a martingale, then by taking
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expectation, it follows that

E
[
W
(
s, yt,y (s)

)]
= W (t, y) + E

(∫ s

t

(
∂W

∂t
+ Lu(r)W

)(
r, yt,y (r)

)
dr

)
.

By (2.16), we get

∂W

∂t

(
r, yt,y (r)

)
+ Lu(r)W

(
r, yt,y (r)

)
+ f

(
r, yt,y (r) , u (r)

)
≥ 0, ∀u ∈ A,

then

E
[
W
(
s, yt,y (s)

)]
≥W (t, y)− E

(∫ s

t
f
(
r, yt,y (r) , u (r)

)
dr

)
, ∀u ∈ A,

we now take the limit as s −→ T, then by the fact that W (T ) ≤ g we obtain

E
[
g
(
yt,y (T )

)]
≥W (t, y)− E

(∫ s

t
f
(
r, yt,y (r) , u (r)

)
dr

)
, ∀u ∈ A,

then W (t, y) ≤ V (t, y) , ∀ (t, y) ∈ [0, T ] × Rn. Statement (2) is proved by repeating

the above argument and observing that the control û achieves equality at the crucial step

(2.16).

We now state without proof an existence result for the HJB equation (2.15), together

with the terminal condition W (T, y) = g (y) .

Theorem 2.2.3
assume that

1. ∃C > 0�ξᵀσσᵀ (t, y, u) ξ ≥ C |ξ|2 , for all (t, y, u) ∈ [0, T ]× Rn × U,

2. U is compact,

3. b, σ and f are in C1,2
b ([0, T ] ,Rn) ,

4. g ∈ C3
b (Rn) ,

Then the HJB equation (1.20), with the terminal data V (T, y) = g (y) , has a

unique solution V ∈ C1,2
b ([0, T ] ,Rn) .

Proof : See Fleming and Rischel [18].
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2.3 Stochastic maximum principle

The basic idea of the stochastic maximum principle is to derive a set of necessary and

sufficient conditions that must be satisfied by any optimal control. The first version

of the stochastic maximum principle was established by Bismut [4], Kushner [33], and

Haussmann [21], under the condition that there is no control on the diffusion coefficient.

Haussman [22], developed a powerful form of stochastic maximum principle for the feed-

back class of controls by Girsanov’s transformation, and applied it to solve some problems

in stochastic control.

2.3.1. Formulation of the problem

Let
(
Ω,F , {Ft}t≤T ,P

)
be a probability space such that F0 contains the P-null sets,

FT = F for an arbitrarily fixed time horizon T . We assume that {Ft}t≤T is generated by

a d-dimensional standard Brownian motion B. We denote by U the set of all admissible

controls. Any element y ∈ Rn will be identified to a column vector with n components,

and the norm |y| =
∣∣∣x1
∣∣∣+ ...+ |xn| . The scalar product of any two vectors y and x on Rn

is denoted by yx or ∑n
i=1y

ixi. For a function h, we denote by hy (resp. hyy) the gradient

or Jacobian (resp. the Hessian) of h with respect to the variable y.

Definition 2.3.1
An admissible control is a measurable, adapted processes u : [0, T ] × Ω → U , such

that E
[∫ T

0
u (s) ds

]
<∞.

Consider the following stochastic controlled system dy (t) = b (t, y (t) , u (t)) dt+ σ (t, y (t) , u (t)) dB (t)

y (0) = y,
(2.19)

where b : [0, T ]× Rn × U → Rn, σ : [0, T ]× Rn × U → Rn×d, are given.

Suppose we are given a performance functional J (u) of the form

J (u) = E
[∫ T

0
f (t, y (t) , u (t)) dt+ g (y (T ))

]
, (2.20)

where f : [0, T ]× Rn × U1 → R, g : Rn → R.

The stochastic control problem is to find an optimal control û ∈ U such that

J (û) = inf
u∈U

J (u) , (2.21)
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Let us make the following assumptions about the coefficients b, σ, f, and g.

(H1) The maps b, σ, and f are continuously differentiable with respect to (y, u), and g

is continuously differentiable in y.

(H2) The derivatives by, bu, σy, σu, fy, fu, and gy are continuous in (y, u) and uniformly

bounded.

(H3) b, σ, f are bounded byK1 (1 + |y|+ |u|) , and g is bounded byK1 (1 + |y|) , for some

K1 > 0.

2.3.2. The stochastic maximum principle

Now, define the Hamiltonian H : [0, T ]× Rn × U × Rn × Rn×d −→ R, by

H (t, y, u, p, q) = f (t, y, u) + pb (t, y, u) +∑n
j=1q

jσj (t, y, u) , (2.22)

where qj and σj for j = 1, .., n, denote the jth column of the matrix q and σ, respectively.

Let û be an optimal control and ŷ denote the corresponding optimal trajectory. Then,

we consider a pair (p, q) of square integrable adapted processes associated to û, with values

in Rn × Rn×d such that dp (t) = −Hy(t, ŷ (t) , û (t) , p (t) , q (t))dt+ q (t) dB (t) ,

p (T ) = gy (ŷ (T )) .
(2.23)

2.3.3. Necessary conditions of optimality

The purpose of this part is to find optimality necessary conditions satisfied by an opti-

mal control, assuming that the solution exists. The idea is to use convex perturbation for

the optimal control, jointly with some estimations of the state trajectory and performance

functional, and by sending the perturbations to zero, one obtains some inequality, then by

completing with martingale representation theorem’s the maximum principle is expressed

in terms of an adjoint process.

We can state the stochastic maximum principle in a stronger form.

Theorem 2.3.1
Let û be an optimal control minimizing the performance functional J over U , and

let ŷ be the corresponding optimal trajectory, then there exists an adapted processes
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(p, q) ∈ L2 (([0, T ] ;Rn))×L2
((

[0, T ] ;Rn×d
))

which is the unique solution of the BSDE

(2.23), such that for all v ∈ U

Hu (t, ŷ (t) , û (t) , p (t) , q (t)) (vt − û (t)) ≤ 0, P− a.s.

In order to give the proof of ( theorem 2.2.1), it is convenient to present the following.

2.3.4. Variational equation

Let v ∈ U be such that (û+ v) ∈ U , the convexity condition of the control domain

ensure that, for θ ∈ (0, 1) the control (û+ θv) is also in U . We denote by yθ the solution

of the SDE (2.19) correspond to the control (û+ θv), then by standard arguments from

stochastic calculus, it is easy to check the following convergence result.

Lemma 2.3.1
Under assumption (H1) we have

lim
θ→0
E
[

sup
t∈[0,T ]

∣∣∣yθ (t)− ŷ (t)
∣∣∣2] = 0. (2.24)

Proof : From assumption (H1), we get by using the Burkholder-Davis-Gundy inequality

E
[

sup
t∈[0,T ]

∣∣∣yθ (t)− ŷ (t)
∣∣∣2] ≤ K ∫ t

0
E
[

sup
τ∈[0,s]

∣∣∣yθ (r)− ŷ (r)
∣∣∣2] ds

+Kθ2
(∫ t

0
E
[

sup
r∈[0,s]

|v (r)|2
]
ds

)
. (2.25)

From (definition 2.2.1), and Gronwall’s lemma, the result follows immediately by letting

θ go to zero.

We define the process z (t) = zû,v (t) by

dz (t) = {by (t, ẑ (t) , û (t)) z (t) + bu (t, ŷ (t) , û (t)) v (t)} dt

+
d∑
j=1

{
σjy (t, ŷ (t) , û (t)) z (t) + σju (t, ŷ (t) , û (t)) v (t)

}
dBj (t) ,

z (0) = 0.

(2.26)

From (H2) and (definition 2.2.1), one can find a unique solution z which solves the

variational equation (2.26), and the following estimation holds.
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Lemma 2.3.2
Under assumption (H1) , it holds that

lim
θ→0
E
∣∣∣∣∣yθ (t)− ŷ (t)

θ
− z (t)

∣∣∣∣∣
2

= 0. (2.27)

Proof : Let

Γθ (t) = yθ (t)− ŷ (t)
θ

− z (t) .

Denoting yµ,θ (t) = ŷ (t)+µθ
(
Γθ (t) + z (t)

)
, and uµ,θ (t) = û (t)+µθv (t) , for notational

convenience. Then we have immediately that Γθ (0) = 0 and Γθ (t) fulfills the following

SDE

dΓθ (t) =
{1
θ

(
b
(
t, yµ,θ (t) , uµ,θ (t)

)
− b (t, ŷ (t) , û (t))

)
− (by (t, ŷ (t) , û (t)) z (t) + bu (t, ŷ (t) , û (t)) v (t))} dt

+
{1
θ

(
σ
(
t, yµ,θ (t) , uµ,θ (t)

)
− σ (t, ŷ (t) , û (t))

)
− (σy (t, ŷ (t) , û (t)) z (t) + σu (t, ŷ (t) , û (t)) v (t))} dB (t)

Since the derivatives of the coefficients are bounded, and from (definition 2.2.1), it is

easy to verify by Gronwall’s inequality that

E
∣∣∣Γθ (t)

∣∣∣2 ≤ KE ∫ t

0

∣∣∣∣∫ 1

0
by
(
s, yµ,θ (s) , uµ,θ (s)

)
Γθ (s) dµ

∣∣∣∣2 ds+KE
∣∣∣ρθ (t)

∣∣∣2
+KE

∫ t

0

∣∣∣∣∫ 1

0
σy
(
s, yµ,θ (s) , uµ,θ (s)

)
Γθ (s) dµ

∣∣∣∣2 ds,
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where ρθ (t) is given by

ρθ (t) = −
∫ t

0
by (s, ŷ (s) , û (s)) z (s) ds

−
∫ t

0
σy (s, ŷ (s) , û (s)) z (s) dB (s)

−
∫ t

0
bv (s, ŷ (s) , û (s)) v (s) ds

−
∫ t

0
σv (s, ŷ (s) , û (s)) v (s) dB (s)

+
∫ t

0

∫ 1

0
by
(
s, yµ,θ (s) , uµ,θ (s)

)
z (s) dµds

+
∫ t

0

∫ 1

0
bv
(
s, yµ,θ (s) , uµ,θ (s)

)
v (s) dµds

+
∫ t

0

∫ 1

0
σy
(
s, yµ,θ (s) , uµ,θ (s)

)
z (s) dµdB (s)

+
∫ t

0

∫ 1

0
σv
(
s, yµ,θ (s) , uµ,θ (s)

)
v (s) dµdB (s) .

Since by, σy are bounded, then

E
∣∣∣Γθ (t)

∣∣∣2 ≤ME ∫ t

0

∣∣∣Γθ (s)
∣∣∣2 ds+ME

∣∣∣ρθ (t)
∣∣∣2 ,

where M is a generic constant depending on the constant K and T. We conclude from

lemma 1.4.2 that lim
θ→0

ρθ (t) = 0. Hence (2.27) follows from Gronwall lemma and by letting

θ go to 0.

Let Φ be the fundamental solution of the linear matrix equation, for 0 ≤ s < t ≤ T
dΦs,t = by (t, ŷ (t) , û (t)) Φs,tdt+

d∑
j=1
σjy (t, ŷ (t) , û (t)) Φs,tdB

j (t) ,

Φs,s = Id,

where Id is the n × n identity matrix, this equation is linear with bounded coefficients,

then it admits a unique strong solution.

From Itô’s formula we can easily check that d (Φs,tΨs,t) = 0, and Φs,sΨs,s = Id, where

Ψ is the solution of the following equation

dΨs,t = −Ψs,t

{
by (t, ŷ (t) , û (t))−

d∑
j=1
σjy (t, ŷ (t) , û (t))σjy (t, ŷ (t) , û (t))

}
dt

−
d∑
j=1

Ψs,tσ
j
y (t, ŷ (t) , û (t)) dBj (t) ,

Ψs,s = Id,
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so Ψ = Φ−1, if s = 0 we simply write Φ0,t = Φt, and Ψ0,t = Ψt. By integrating by part

formula we can see that, the solution of (2.26) is given by z (t) = Φtηt, where ηt is the

solution of the stochastic differential equation

dηt = Ψt

{
bu (t, ŷ (t) , û (t)) v (t)−

d∑
j=1
σjy (t, ŷ (t) , û (t))σju (t, ŷ (t) , û (t)) v (t)

}
dt

+
d∑
j=1

Ψtσ
j
u (t, x?t , u?t ) v (t) dBj (t) ,

η0 = 0.

Let us introduce the following convex perturbation of the optimal control û by

uθ = û+ θv, (2.28)

for any v ∈ U , and θ ∈ (0, 1) . Since û is an optimal control, then θ−1
(
J
(
uθ
)
− J (û)

)
≥ 0.

Thus a necessary condition for optimality is that

lim
θ→0

θ−1
(
J
(
uθ
)
− J (û)

)
≥ 0. (2.29)

The rest is devoted to the computation of the above limit. We shall see that the

expression (2.29) leads to a precise description of the optimal control û in terms of the

adjoint process. First, it is easy to prove the following lemma

Lemma 2.3.3
Under assumptions (H1) , we have

I = lim
θ→0

θ−1
(
J
(
uθ
)
− J (û)

)
= E

[∫ T

0
{fy (s, ŷ (s) , û (s)) z (s) + fu (s, ŷ (s) , û (s)) v (s)} ds+ gy (ŷ (T )) z (T )

]
.

(2.30)

Proof : We use the same notations as in the proof of (lemma 2.2.2). First, we have

θ−1
(
J
(
uθ
)
− J (û)

)
= E

[∫ T

0

∫ 1

0

{
fy
(
s, yµ,θ (s) , uµ,θ (s)

)
z (s) + fu

(
s, yµ,θ (s) , uµ,θ (s)

)
v (s)

}
dµds

+
∫ 1

0
gy
(
yµ,θ (T )

)
z (T ) dµ

]
+ βθ (t) ,
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where

βθ (t) = E
[∫ T

0

∫ 1

0
fy
(
s, yµ,θ (s) , uµ,θ (s)

)
Γθ (s) dµds+

∫ 1

0
gy
(
yµ,θ (T )

)
Γθ (T ) dµ

]
.

By using the (lemma 1.4.2), and since the derivatives fy, fu, and gy are bounded, we

have lim
θ→0

βθ (t) = 0. Then, the result follows by letting θ go to 0 in the above equality.

Substituting by z (t) = Φtηt in (2.30), this leads to

I = E
[∫ T

0
{fy (s, ŷ (s) , û (s)) Φsηs + fu (s, ŷ (s) , û (s)) v (s)} ds+ gy (ŷ (T )) ΦTηT

]
.

Consider the right continuous version of the square integrable martingale

M (t) := E
[∫ T

0
fy (s, ŷ (s) , û (s)) Φsds+ gy (ŷ (T )) ΦT |Ft

]
.

By the representation theorem, there exist Q =
(
Q1, .., Qd

)
where Qj ∈ L2,

for j = 1, ..., d,

M (t) = E
[∫ T

0
fy (s, ŷ (s) , û (s)) Φsds+ gy (ŷ (T )) ΦT

]
+

d∑
j=1

∫ t

0
Qj (s) dBj (s) .

We introduce some more notation, write ŷ (t) = M (t) −
∫ t

0
fy (s, ŷ (s) , û (s)) Φsds.

The adjoint variable is the processes defined by p (t) = ŷ (t) Ψt,

qj (t) = Qj (t) Ψt − p (t)σjy (t, ŷ (t) , û (t)) , for j = 1, ..., d.
(2.31)

Theorem 2.3.2
Under assumptions (H1) , we have

I = E
[∫ T

0

{
fu (s, ŷ (s) , û (s)) + p (s) bu (s, ŷ (s) , û (s)) +

d∑
j=1
qjσju (s, ŷ (s) , û (s))

}]
.

Proof : From the integration by part formula, and by using the definition of p (t) , qj (t) for

j = 1, .., d, we easily check that

E [y (T ) η (T )] = E
[∫ T

0

{
p (t) bu (s, ŷ (s) , û (s)) +

d∑
j=1

qj (s)σju (s, ŷ (s) , û (s))
}
v (t) dt

−
∫ T

0
fy (s, ŷ (s) , û (s)) ηtΦtdt.

(2.32)
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Also we have

I = E
[
y (T ) η (T ) +

∫ T

0
fy (s, ŷ (s) , û (s)) Φtηtdt+

∫ T

0
fu (s, ŷ (s) , û (s)) v (t) dt

]
,

(2.33)

substituting (2.32) in (2.33), This completes the proof.

2.3.5. Sufficient conditions of optimality

Theorem 2.3.3
Let û be an admissible control, we denote ŷ the associated controlled state process,

and let (p, q) be a solution to the corresponding BSDE (2.23). Let us assume that

H (t, y, u, p (t) , q (t)) , and (y) are concave functions. Moreover suppose that for all

t ∈ [0, T ],

H (t, ŷ (t) , û (t) , p (t) , q (t)) = inf
u∈U

H (t, ŷ (t) , u (t) , p (t) , q (t)) . (2.34)

Then û is an optimal control.

Proof : We consider the difference

J (û)− J (u) = E
[∫ T

0
(f (t, ŷ (t) , û (t))− f (t, y (t) , u (t))) dt

]

+ E [g (ŷ (T ))− g (y (T ))] .

Since g is concave, we get

E [g (ŷ (T ))− g (y (T ))] ≥ E [(ŷ (T )− y (T )) gy (ŷ (T ))]

= E [(ŷ (T )− y (T )) p (T )]

= E
[∫ T

0
(ŷ (t)− y (t)) dp (t) +

∫ T

0
p (t) d (ŷ (t)− y (t))

]

+ E
[∫ T

0

n∑
j=1

(
σj (t, ŷ (t) , û (t))− σj (t, y (t) , u (t))

)
qj (t) dt

]
,

with

E
[∫ T

0
(ŷ (t)− y (t)) dp (t)

]
= E

[∫ T

0
(ŷ (t)− y (t)) (−Hy (t, ŷ (t) , û (t) , p (t) , q (t))) dt

]

+ E
[∫ T

0
(ŷ (t)− y (t)) q (t) dB (t)

]
,
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and

E
[∫ T

0
p (t) d (ŷ (t)− y (t))

]
= E

[∫ T

0
p (t) (b (t, ŷ (t) , û (t))− b (t, y (t) , u (t))) dt

]

+ E
[∫ T

0
p (t) (σ (t, ŷ (t) , û (t))− σ (t, y (t) , u (t))) dB (t)

]
.

On the other hand, the process

E
[∫ T

0
{p (t) (σ (t, ŷ (t) , û (t))− σ (t, y (t) , u (t)) + (ŷ (t)− y (t)) q (t))} dB (t)

]

is a continuous local martingale for all 0 < t ≤ T, by the fact that (p, q) ∈ L2 (([0, T ] ;Rn))×

L2
((

[0, T ] ;Rn×d
))
, we deduce that the stochastic integrals with respect to the local

martingales have zero expectation. By the concavity of the Hamiltonian H, we get

E [g (ŷ (T ))− g (y (T ))] ≥ −E
[∫ T

0
(H (t, ŷ (t) , û (t) , p (t) , q (t))−H (t, y (t) , u (t) , p (t) , q (t))) dt

]

+ E
[∫ T

0
p (t) (b (t, ŷ (t) , û (t))− b (t, y (t) , u (t))) dt

]

+ E
[∫ T

0
(σ (t, ŷ (t) , û (t))− σ (t, y (t) , u (t))) q (t) dt

]
.

By the definition of the Hamiltonian H, we obtain

J (û)− J (u) ≥ 0,

then û is an optimal control.

2.4 A General stochastic maximum principle for op-

timal control problems

In this part, we will give a detailed proof of maximum principle in optimal control in

general case, where the control domain need not be convex, and the diffusion coefficient

depends explicitly , This result is the generalization of principle of the maximum was

obtained by Peng [41], he introduce a second-order expansion method and strong pertur-

bations .
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2.4.1 Problem formulation and assumptions

Let (Ω,F , P ) be a probability space with filtration Ft,. LetW (·) be an Rn-valued standard

Brownien process. We denote the set of all admissible controls by Uad.

We assume that (Ft) = σ (W (s) , 0 ≤ s ≤ t) , and we consider the following control

problem  dxt = b(xt, vt)dt+ σ(xt, vt)dWt

x(0) = x0,
(2.35)

where b (x, v) : Rn × Rk → Rn, σ (x, v) : Rn × Rk → L
(
Rd × Rn

)
, σ = σ

(
σ1, σ2, ..., σd

)
.

Definition 2.4.1 (Admissible control)
An admissible control v(·) is an Ft,-adapted process with values in U such that

sup
0≤t≤T

E |v(t)|m <∞,∀m = 1, 2, . . .

where U is a nonempty subset of Rk.

The stochastic optimal control problem is to minimize the following cost functional

J(v(·)) = E(
∫ T

0
l(xt, vt)dt+ h(xT )), (2.36)

inf {J(v(·)) : v(·) ∈ Uad} .

Here, l (x, v) : Rn × Rk → R, h(x) : Rn → R.

We also assume that:

1. b, σ, l, h are twice continuously differentiable with respect to x. (2.37)

2. All their derivatives bx, bxx, σx, σxx, lx, lxx, hx, hxx arecontinuous in (x, v).

3. bx, bxx, σx, σxx, , lxx, hxx are bounded,and b, σ, lx, hx are bounded by C (1 + |x|+ |v|) .

2.4.2 Second order expansion

In this part, we derive a kind of variational equation and variational inequality. The

control domain U is not necessarily convex, the usual first-order expansion approach does

not work. Hence, introducing a second order expansion method.
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Let (y(·), u(·)) be an optimal solution of the our stochastic control problem. We

introduce the following spike variation

uθ (t) =

 v τ ≤ t ≤ τ + θ

u(t) otherwise,

where 0 ≤ τ < T is fixed, θ > 0 is sufficiently small, and v is an arbitrary F τ -measurable

random variable with values in U , such that sup
ω∈Ω
|v(ω)| <∞.

Let yθ (t) be the trajectory of the control system (2.35) corresponding to the control

uθ(·).

Now, we derive the variational inequality from the fact that

J(uθ(·))− J(u(·)) ≥ 0.

Lemma 2.4.1
Under assumption (2.37). Then

sup θ−2

0≤t≤T

∣∣∣yθ (t)− y (t)− y1 (t)− y2 (t)
∣∣∣2 ≤ C, (2.38)

where y1 (·) , y2 (·) are solutions of

y1(t) =
∫ t

0

[
bx (ys, us) y1(s) +

(
b
(
ys.u

θ
s

)
− b (ys.us)

)]
ds

+
∫ t

0

[
σx (ys, us) y1(s) +

(
σ
(
ys.u

θ
s

)
− σ (ys.us)

)]
dWs,

(2.39)

and
y2(t) =

∫ t

0

[
bx (ys, us) y2(s) + 1

2bxx (ys.us) y1(s)y1(s)
]
ds

+
∫ t

0

[
σx (ys.us) y2(s)− 1

2σxx (ys, us)
]
y1(s)y1(s)dWs

+
∫ t

0

[
bx
(
ys, u

θ
s

)
+ bx (ys, us)

]
y1(s)ds

+
∫ t

0

[
σx
(
ys, u

θ
s

)
+ 1

2σx (ys, us) y1(s)
]
ds,

(2.40)

where

fxxyy =
n∑

i,j=1
fxixjy

iyj for f = b, σ, l, h.

Remark 2.4.1
Equation (2.39) is called the first-order variational equation. We must introduce what
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we call "the second order variational equation" (2.40), because with the solution of

2.39, we can only obtain the following estimation:

θ−1 sup
0≤t≤T

∣∣∣yθ (t)− y (t)− y1 (t)
∣∣∣2 ≤ C.

It is not enough to derive the variational inequality.

Proof : By Gronwall’s inequality and the moment inequality (see Ikeda and Watanabe [29]),

it is easy to verify that

sup
0≤t≤T

E
(
|y1 (t)|2

)
≤ Cθ, (2.41)

sup
0≤t≤T

E
(
|y2 (t)|2

)
≤ Cθ2, (2.42)

sup
0≤t≤T

E
(
|y1 (t)|4

)
≤ Cθ2,

sup
0≤t≤T

E
(
|y2 (t)|4

)
≤ Cθ4,

sup
0≤t≤T

E
(
|y1 (t)|8

)
≤ Cθ4.

(2.43)

Set y3 = y1 + y2.

We have∫ t

0
b
(
y + y3, u

θ
)
ds+

∫ t

0
σ
(
y + y3, u

θ
)
dWs

=
∫ t

0

[
b
(
y, uθ

)
+ bx

(
y, uθ

)
y3 +

∫ 1

0

∫ 1

0
λbxx

(
y + λuy3, u

θ
)
dλduy3y3

]
ds

+
∫ t

0

[
σ
(
y, uθ

)
+ σx

(
y, uθ

)
y3 +

∫ 1

0

∫ 1

0
λσxx

(
y + λuy3, u

θ
)
dλduy3y3

]
dWs

=
∫ t

0
b (y, u) ds+

∫ t

0
σ (y, u) dWs +

∫ t

0
bx (y, u) y3ds+

∫ t

0
σx (y, u) y3dWs

+
∫ t

0

(
b
(
y(s), uθ(s)

)
− b (y(s), u(s))

)
ds

+
∫ t

0

(
σ
(
y(s), uθ(s)

)
− σ (y(s), u(s))

)
dWs

+
∫ t

0

1
2bxx (y, u) y3(s)y3(s)ds+

∫ t

0

1
2σxx (y, u) y3(s)y3(s)dWs

+
∫ t

0

(
bx
(
y, uθ

)
− bx (y, u)

)
y3(s)ds

+
∫ t

0
σx
(
y, uθ

)
− σx (y, u) y3(s)dWs

+
∫ t

0

∫ 1

0

∫ 1

0
λ
[
bxx

(
y + λµy3, u

θ
)
− bxx(y, u)

]
dλdµy3y3ds

+
∫ t

0

∫ 1

0

∫ 1

0
λ
[
σxx

(
y + λµy3, u

θ
)
− σxx(y, u)

]
dλdµy3y3dWs

= y (t) + y3 (t)− x0 +
∫ t

0
bθ (s) ds+

∫ t

0
∧θ (s) dWs.
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Using (2.39) and (2.40), we have

Gθ (s) = 1
2bxx (ys, us) (y2 (s) y2 (s) + 2y1 (s) y2 (s)) +

[
bx
(
ys, u

θ
s

)
− bx (ys, us)

]
y2 (s)

+
∫ 1

0

∫ 1

0
λ
[
bxx

(
y + λuy3, u

θ
)
− bxx (y, v)

]
dλduy3(s)y3(s),

and

∧θ (s) = 1
2σxx (ys, us) (y2 (s) y2 (s) + 2y1 (s) y2 (s)) +

[
σx
(
ys, u

θ
s

)
− σx (ys, us)

]
y2 (s)

+
∫ 1

0

∫ 1

0
λ
[
σxx

(
y + λuy3, u

θ
)
− σxx (y, v)

]
dλduy3(s)y3(s).

From (2.41), (2.42), and (2.43) we can see that

sup
0≤t≤T

E
(∣∣∣Gθ (s) ds

∣∣∣2 +
∣∣∣∣∫ 1

0
∧θ (s) dWs

∣∣∣∣2
)

= o(θ2). (2.44)

Thus we have

y(t) + y3(t) = x0 +
∫ t

0
b
(
y (s) + y3(s), uθ(s)

)
ds

+
∫ t

0
σ
(
y (s) + y3(s), uθ (s)

)
dWs −

∫ 1

0
Gθ (s) ds−

∫ 1

0
∧θ (s) dWs.

Since

yθ(t) = x0 +
∫ t

0
b
(
yθ (s) , uθ(s)

)
ds

∫ t

0
σ
(
yθ (s) , uθ (s)

)
dBs,

we can derive

(yθ − y − y3)(t) =
∫ t

0
Aθ (s)

(
yθ − y3 − y

)
(s)ds

∫ t

0
Dθ (s)

(
yθ3 − y − y

)
dWs

+
∫ t

0
bθ (s) ds+

∫ t

0
∧θ (s) dWs,

with ∣∣∣Aθ (s, ω)
∣∣∣+ ∣∣∣Dθ (s, ω)

∣∣∣ ≤ C ∀s, ∀ω.

By using Itô’s formula and Gronwall’s inequality, we obtain the estimation (2.38).

Lemma 2.4.2
Under the assumption of (Lemma 2.4.1), we have

E
∫ T

0

[
lx (y (s) , u (s)) (y1 (s) + y2 (s)) + 1

2 lxx (y (s) , u (s)) y1 (s) y1 (s)
]
ds

+E
∫ T

0

(
l
(
y (s) , uθ (s)

)
− l (y (s) , u (s))

)
ds

+E (hx (y (T ))) (y (1 (T ) + y2 (T ))) + 1
2E (hxx (y (T )) y1 (T ) y1 (T )) ≥ o(θ).

(2.45)
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Remark 2.4.2
In the case where σ does not contain the control variable v, the relation (2.45) can

be reduced to

E
∫ T

0
lx (y (s) , u (s)) y1 (s) ds+ Ehx (y (T )) y1 (T )

+E
∫ T

0

(
l
(
y (s) , uθ (s)

)
− l (y (s) , u (s))

)
ds ≥ o(θ).

Thus we need only the first-order variational equation (2.39).

Proof : Since (y(·), u(·)) is optimal, we have

E
∫ T

0

[
l
(
yθ (t) , uθ (t)

)
− l (y (t) , u (t))

]
dt+ E

(
h
(
yθ (T )

)
− h (y (T ))

)
≥ 0.

Thus from (Lemma 2.4.1)

0 ≤ E
∫ T

0

[
l
(
y + y1 + y2, u

θ (t)
)
− l (y (t) , u (t)) dt

]
+E (h (y + y1 + y2) (T )− h (y (T ))) + o(θ)

= E
∫ T

0
[l (y + y1 + y2, u)− l (y, u)] dt

+E (h (y + y1 + y2) (T )− h (y (T )))

+E
∫ T

0

[
l
(
y + y1 + y2, u

θ
)
− l (y + y1 + y2, u)

]
dt+ o(θ)

= E
∫ T

0

[
lx (y, u) (y1 + y2) + 1

2 lxx (y, u) (y1 + y2) (y1 + y2)
]
ds

+E
∫ T

0

[
l
(
y, uθ

)
− l (y, u)

]
ds+ E

∫ T

0

[
lx
(
y, uθ

)
− lx (y, u)

]
(y1 + y2) ds

+1
2E
(∫ T

0

[
lxx
(
y, uθ

)
− lxx (y, u)

]
y1 (s) y1 (s) ds

)
+E (hxy (T )) (y1 (T ) + y2 (T )) + 1

2Ehxx (y (T )) y1 (T ) y1 (T ) + o(θ).

Then, (2.45) follows from (2.41) and (2.42).

2.4.3 Adjoint processes and variational inequality

For simplicity, we let

gx(t) = gx(y(t), u(t)), for g = b, σ, l, h,

gxx(t) = gxx(y(t), u(t)), for g = b, σ, l, h.
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We consider the linear stochastic system dz(t) = (bx(t)z(t) + φ(t)) ds+ (σx(t)z(t) + Ψ(t)) dWs

z(0) = 0,
(2.46)

(φ(t), ψ(t)) ∈ L2
F

(0, T ;Rn)× L2
F

(0, T ;Rn)d , Ψ = (ψ1, ..., ψd) ,

where L2
F

(0, T ;Rn) is the space of all Rn-valued adapted processes such that

E
∫ T

0
|φ(t)|2 dt〈∞

We can construct a linear functional on the Hilbert space L2
F

(0, T ;Rn)×L2
F

(0, T ;Rn)d

as follows:

I (φ(t), ψ(t)) = E
∫ T

0
lx(t)z(t)dt+ E (hx(T )z(T )) ,

where (φ(t), ψ(t)) and z(t) are related by (2.46). It is easy to verify that I(·, ·) is contin-

uous. Then by the Riesz Representation Theorem, there is a unique

(p(·), K(·)) ∈ L2
F

(0, T ;Rn)× L2
F

(0, T ;Rn)d

K = (K1, ..., Kd),

such that

E
∫ T

0

(p(·), φ(t)) +
d∑
j=1

(Kj(t), ψj(t))
 dt = I (φ(.), ψ(.))

∀ (φ(·), ψ(·)) ∈ L2
F

(0, T ;Rn)× L2
F

(0, T ;Rn)d .
(2.47)

With (2.39) and (2.40), we can apply this result to some of the terms of (2.45):

E
∫ T

0
lx(s)y1(s)ds+ E(hxy(T ))y1(T )

= E
∫ T

0
(p(s), b(y(s), uθ(s))− b(y(s), u(s)))ds

+ E
∫ T

0
tr
[
K(s)(σ(y(s), uθ(s))− σ(y(s), u(s)

]
.

E
∫ T

0
lx(s)y2(s)ds+ E(hxy(T ))y2(T )

= E
∫ T

0

1
2

p(s)bxx(s) +
d∑
j=1

Kj(s)σjxx(s)
 y1(s)y1(s)

 ds
+ E

∫ T

0
p∗(s)(bx(y(s), uθ(s))− bx(y(s), u(s)))y1(s)ds

+ E
∫ T

0

d∑
j=1

K∗j (s)
(
σjx(y(s), uθ(s))− σjx(y(s), u(s))

)
y1(s)ds.
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Thus we can rewrite (2.45) as

E
∫ T

0
(H(y(s), uθ(s), p(s), K(s))− (H(y(s), u(s), p(s), K(s)))ds

+1
2E
∫ T

0
y∗1(t)Hxx(y(s), u(s), p(s), K(s))y1(s)

+1
2Ey

∗
1(T )hxx(y(T ))y1(T ) ≥ o(θ),

(2.48)

where we denote

H(x, v, p,K) = l(x, v) + (p, b(x, v)) +
d∑
j=1

(Kj, σ
j(x, v)).

The interesting thing is that the quadratic terms of (2.48) can still be treated by

applying the Riesz Representation Theorem. Indeed, applying Itô’s formula to the matrix-

valued processes

Y (s) = y1(s)y∗1(s) =
y1

1y
1
1 ... y1

1y
n
1

... ...

y1
1y

n
1 ... yn1 y

n
1

,

we have

dY (t) =
Y (t)b∗x(t) + bx(t)Y (t) +

d∑
j=1

σjx(t)Y (t)σ∗jx (t) + Φθ(t)
 dt

+
[
Y (t)σ∗x(t) + σx(t)Y (t) + ψθ(t)

]
dWt,

(2.49)

where

Φθ(t) = y1 (t) (b
(
y(t), uθ(t)

)
− b (y(t), u(t)))∗ + (b

(
y(t), uθ(t)

)
− b (y(t), u(t)))y∗1 (t)

+σx (t) y1 (s) (σ
(
y(t), uθ(t)

)
− σx (t) y (t) , u(t)))∗

+
(
σ
(
y(t), uθ(t)

)
− σ (y(t), u(t))

)
y∗1 (t)σ∗x (t)

+(σ
(
y(t), uθ(t)

)
− σ (y(t), u(t)))(σ

(
y(t), uθ(t)

)
− σ (y(t), u(t)))∗

Ψθ(t) = y1(t)
(
σ
(
y(t), uθ(t)

)
− σ

(
y(t), uθ(t)

))∗
+
(
σ
(
y(t), uθ(t)

)
− σ

(
y(t), uθ(t)

))
y∗1(t).

Now, we define the following symmetric matrix-valued linear SDE:

dZ(t) =
Z(t)b∗x (t) + bx (t)Z(t) +

d∑
j=1

σjx(t)Z(t)σj∗x (t) + Φ(t)
 dt

+ [Z(t)σ∗x (t) + Z(t)σx (t) + Ψ(t)] dWt

Z(0) = 0,

(Φ(t),Ψ(t)) ∈ L2
F

(0, T ;Rn)× L2
F

(0, T ;Rn)d , Ψ = (ψ1, ..., ψd) ,
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where Rn,n is the space of all n × n real symmetric matrices with the following scalar

product:

(A1, A2)∗ = tr(A1A2) ∀A1, A2 ∈ Rn,n.

Now, let us construct a linear functional via (2.49)

M (Φ(t),Ψ(t)) = E
∫ T

0
(Z(t)Hxx(t))∗ dt+ E (Z(T )hxx(y(T ))∗ (2.50)

Obviously, M (Φ(t),Ψ(t)) is a linear continuous functional on

L2
F

(0, T ;Rn,n)× L2
F

(0, T ;Rn,n)d ,

there is a unique pair (P (·), Q(·)) ∈ L2
F

(0, T ;Rn,n)× L2
F

(0, T ;Rn,n)d such that

M (Φ(t),Ψ(t)) = E
∫ T

0

(P (t),Φ(t))∗ +
d∑
j=1

(
Qj(t),Ψ(t)j

)
∗

 dt
 (2.51)

Since for all y ∈ Rn, A ∈ Rn,n

(yy∗, A)∗ = tr(yy∗A) = y∗Ay,

from (2.49), (2.50), (2.51) we can rewrite (2.48)

E
∫ T

0

[
H
(
y(s), uθ(s), p(s), K(s)

)
−H (y(s), u(s), p(s), K(s))

]
ds

+E
∫ T

0

(P (s)φθ(s)
)
∗

+
d∑
j=1

(
Qj(s)ψ(s)θj

)
∗

 ds ≥ o(θ).

From the definition of Φθ(t) et Ψθ(t), we get:

E
(∫ T

0

[
H
(
y(s), uθ(s), p(s), K(s)

)
−H (y(s), u(s), p(s), K(s))

])
ds

+1
2E

(∫ T

0
tr
[(
σ
(
y(s), uθ(s)

)
− σy(s), u(s))

)∗
P (t)

(
σ
(
y(s), uθ(s)

)
− σ (y(s), u(s))

)]
ds

)
≥ o(θ).

Finally, we have

H (y(τ), v, p(τ), K(τ))−H (y(τ), u(τ), p(τ), K(τ))

+1
2tr [(σ(y(τ), v)− σ (y(τ), u(τ)))∗ P (τ) (σ(y(τ), v)− σ (y(τ), u(τ)))] ≥ 0 ∀v ∈ U, a.e, a.s

or, equivalently

H (y(τ), v, p(τ), K(τ)− P (τ)σ (y(τ), u(τ)))) + 1
2tr (σσ∗ (y(τ), v)P (τ))

≥ H (y(τ), u(τ), p(τ), K(τ)− P (τ)σ (y(τ), u(τ)))) + 1
2tr (σσ∗ (y(τ), u(τ))P (τ)) ;∀v ∈ U, a.e, a.s

(2.52)
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2.4.4 Adjoint equations and the maximum principle

The first-order adjoint equation is the classical one. In fact, from [2] and [42], the first-

order adjoint process (p (·) , K (·)) described in a unique way by (2.46), (2.47) is the unique

solution of
−dp(t) =

b∗x(y(t), u(t))p(t) +
d∑
j=1

σj∗x (y(t), u(t))Kj(t) + lx(y(t), u(t))
 dt−K(t)dW (t),

p(T ) = hx(y(T )).
(2.53)

We can also use this result to obtain an equation for (P (·), Q(·)). In fact, (P (.), Q(.))

is uniquely determined by (2.50), (2.51). Thus exactly as in [2] and [42], we can obtain

−dP (t) =
b∗x(y(t), u(t))P (t) + P (t)bx(y(t), u(t)) +

d∑
j=1

σj∗x (y(t), u(t))P (t)σjx(y(t), u(t))

+
d∑
j=1

σj∗x (y(t), u(t))Qj(t) +
d∑
j=1

Qj(t)σjx(y(t), u(t)) +Hxx(y(t), u(t), p(t), K(t))
 dt

−Q(t)dW (t)

P (T ) = hxx(T ).
(2.54)

Theorem 2.4.1
Let (2.37) hold. If (y(·), u(·)) is a solution of the optimal control problem (2.35),

(2.36), then we have

(p(·), K(·)) ∈ L2
F

(0, T ;Rn)× L2
F

(0, T ;Rn)d ,

(P (·), Q(·)) ∈ L2
F

(0, T ;Rn,n)× L2
F

(0, T ;Rn,n)d ,

which are, respectively, solutions of (2.53) and (2.54) such that the variational

inequality (2.52) holds.
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Chapter 3

Pointwise second order necessary

conditions for stochastic optimal

control

3.1 Preliminaries and assumptions

Let (Ω,F ,F,P) be a complete probability space with filtration, we assume that F =

{Ft}0≤t≤T is the natural filtration generated by one-dimensional standard Brownian mo-

tion W (·) . For a fuction φ : [0, T ] × R × U × Ω → R, we denote by φx (t, x, u) (resp.

φu (t, x, u)) the first order derivatives of φ with respect to x and u at (t, x, u, ω), and by

φ(x,u)2 (t, x, u) the second order derivatives of φ with respect to (x, u) at (t, x, u, ω) and by

φxx (t, x, u) , φxu (t, x, u) , and φuu (t, x, u) the second order derivatives of φ at (t, x, u, ω) ,

we denote by Uad the set of all admissible controls. Note that, we take out the ω (∈ Ω)

argument in the defined functions, when the conditions is clear as habitual.

We introduce some spaces of random variable and stochastic processes, for any t ∈

[0, T ], we let

• L2
Ft (Ω;R) the space of R-valued, Ft-measurable random variables ζ such that

E |ζ|2 <∞.

• L2
F ([0, T ] ;R) the space of R-valued, B([0, T ])⊗F -measurable, F-adapted processes

ψ such that

‖ψ‖L2
F([0,T ];R) :=

[
E
(∫ T

0
|ψ (t)|2 dt

)] 1
2

<∞.

Now, we introduce the following definition of singular control in the classical sense for

diffusion , which was motivated in [58, 20].
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Definition 3.1.1
(Singular control in the classical sense) An admissible control ũ(·) is called singular in

the classical sense if satisfies
Hu (t, x̃ (t) , ũ (t) , p̃ (t) , q̃ (t)) = 0 a.s. a.e.,

Huu (t, x̃ (t) , ũ (t) , p̃ (t) , q̃ (t)) + P̃ (t) (σu (t, x̃ (t) , ũ (t)))2 = 0 a.s. a.e.,

(3.1)

where (p̃ (·) , q̃ (·) , ) and (P̃ (·) , Q̃ (·)) are the adjoint processes given respectively by

(3.15) and (3.16) with (x (·) , u (·)) replaced by (x̃ (·) , ũ (·)) . If ũ(·) in (3.1) is also

optimal, then we call ũ(·) a singular optimal control in the classical sense.

We consider the following controlled stochastic differential equations
dx (t) = b (t, x (t) , u (t)) dt+ σ(t, x (t) , u (t))dW (t) ,

x(0) = x0,

(3.2)

where b : [0, T ]× R× U → R and σ : [0, T ]× R× U → R, with a cost functional

J(u (·)) = E
[∫ T

0
f (t, x (t) , u (t)) dt+ h(x (T ))

]
, u (·) ∈ Uad, (3.3)

and f : [0, T ]× R× U → R, h : R→ R are given functions.

The stochastic optimization problem which we interest is to find a control u (·) ∈ Uad such

that

J(u (·)) = inf
u(·)∈Uad

J (u (·)) . (3.4)

Any admissible control u (·) ∈ Uad that achieves the minimum is called an optimal control.

We also assume that

Assumptions (A1)

1. The maps b and σ are B([0, T ])⊗F-measurable and F-adapted.

2. The functions b and σ are continuously differentiable up to the second order with

respect to (x, u).

3. All the first order derivatives are continuous in (x, u) and uniformly bounded.

4. There exists a constant K1 > 0 such that for almost all (t, ω) ∈ [0, T ]× Ω and for any
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x, x̃ ∈ R and u, ũ ∈ U,

|φ (t, x, u)| ≤ K1, for φ = b, σ,

|φ (t, x, u)− φ (t, x̃, u)| ≤ K1 |x− x̃| , for φ = b, σ,∣∣∣φ(x,u)2 (t, x, u)− φ(x,u)2 (t, x̃, ũ)
∣∣∣ ≤ K1 (|x− x̃|+ |u− ũ|) ,

Assumptions (A2)

1. The process f is B([0, T ])⊗F -measurable and F-adapted.

2. The random variable h is FT -measurable.

3. The process f is bounded by K2(1 + |x|2 + |u|2) and h is bounded by K2(1 + |x|2).

4. The maps f and h are continuously differentiable up to the second order.

5. For any x, x̃ ∈ R and u, ũ ∈ U,

|fx(t, x, u)|+ |fu(t, x, u)| ≤ K2(1 + |x|+ |u|), |hx(x)| ≤ K2(1 + |x|),

|fxx(t, x, u)|+ |fxu(t, x, u)|+ |fuu(t, x, u)| ≤ K2,

|hxx(x)| ≤ K2, |hxx(x) + hxx(x̃)| ≤ K2 |x− x̃| ,∣∣∣f(x,u)2 (t, x, u)− f(x,u)2 (t, x̃, ũ)
∣∣∣ ≤ K2 (|x− x̃|+ |u− ũ|) .

Under assumptions (A1) and (A2), equation (3.2) has a unique strong solution x(t) given

by

x(t) = x0 +
∫ t

0
b (s, x(s), u(s)) ds+

∫ t

0
σ (s, x(s), u(s)) dW (s)

and by standard arguments it is easy to show that for any Ck > 0, it holds that

E( sup
t∈[0,T ]

|x(t)|k) < Ck,

where Ck is a constant depending only on k. Moreover, the functional (3.3) is well defined

from Uad into R.

3.2 Second order necessary condition in integral form

In this section, we prove an integral type second order necessary condition for stochastic

optimal control. We consider a control region U is nonempty and bounded. Moreover,

a convex perturbation of the optimal control defined by uθ (t) = u (t) + θ (u (t)− u (t)) ,
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for u (·) ∈ Uad and θ ∈ (0, 1). The convexity condition of the control domain ensures that

uθ(·) ∈ Uad.

For convenience, we will use the following notations, we denote by xθ(·), x(·) the state

trajectory of the SDE (3.2) corresponding to uθ(·) and u(·).

To simplify our notation, we write for φ = b, σ, f :

δφ (t) = φ
(
t, xθ (t) , uθ (t)

)
− φ (t, x(t), u(t)) ,

φx (t) = φx (t, x(t), u(t)) , φu (t) = φu (t, x(t), u(t)) ,

φxx (t) = φxx (t, x(t), u(t)) , φuu (t) = φuu (t, x(t), u(t)) ,

, φxu (t) = φxu (t, x(t), u(t)) ,

We introduce the following variational equations
dy1 (t) = {bx (t) y1 (t) + bu (t) v (t)} dt+ {σx (t) y1 (t) + σu (t) v (t)} dW (t)

y1(0) = 0,
(3.5)

and

dy2 (t) = [bx (t) y2 (t) + bxx (t) y1 (t)2 + 2bxu (t) y1 (t) v (t) + buu (t) v (t)2]dt

+[σx (t) y2 (t) + σxx (t) y1 (t)2 + 2σxu (t) y1 (t) v (t) + σuu (t) v (t)2]dW (t)

y2(0) = 0.

(3.6)

Remark 3.2.1
Under assumptions (A1), (A2) the variational equations (3.5) and (3.6) admits a

unique strong solutions y1 (t) and y2 (t) respectively.

Next, we prove the proposition which plays a crucial role in obtaining a second order

necessary conditions.

We note that unless specified, for each k ∈ R+, we will denote by Ck > 0 a generic

positive constant depending only on k and the constants appearing in Proposition 3.2.1 ,

which may vary from line to line.

Proposition 3.2.1
Assume that assumptions (A1), (A2) satisfied. Then, for any k ≥ 1, we have the
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following basic estimates

E
[

sup
t∈[0,T ]

∣∣∣xθ (t)− x (t)
∣∣∣2k] ≤ Ckθ

k, (3.7)

E
[

sup
t∈[0,T ]

|y1 (t)|2k
]
≤ Ck, (3.8)

E
[

sup
t∈[0,T ]

|y2 (t)|2k
]
≤ Ck, (3.9)

E
[

sup
t∈[0,T ]

∣∣∣xθ (t)− x (t)− θy1 (t)
∣∣∣2k] ≤ Ckθ

2k, (3.10)

E

 sup
t∈[0,T ]

∣∣∣∣∣xθ (t)− x (t)− θy1 (t)− θ2

2 y2 (t)
∣∣∣∣∣
2k
 ≤ Ckθ

2k. (3.11)

Proof : Let x(·) and xθ(·) be the trajectory of (3.2) corresponding to u(·) and uθ(·) resp.

Let y1(·) and y2(·) be the solution of first and second order adjoint equations (3.5)-(3.6).

Noting that estimate (3.7) follows from standard arguments, using Burkholder-Davis-

Gundy inequality for the martingale part and Propositions 1.3.1 . In what follows we

shall refer to equation (3.5) as the first-order variational equation, and the process y1(·)

is called the first order variational process. A very important step in Peng [41], and

Tang and Li [50] is in light of the Taylor expansion, to find a process y2(t) so that

xθ(t) − x(t) − θy1(t) − θ2

2 y2(t) = o
(
θ2
)
, as θ → 0, and that the convergence is of an

appropriate order. The process y2(·) is called the second-order variational process. So

the estimates (3.8), (3.9) and (3.10) are obvious and standard, see also [50, Lemma 2.1].

Now, we start to prove the estimate (3.11). From (3.2), (3.5) and (3.6), we have∣∣∣∣∣xθ(t)− x(t)− θy1(t)− θ2

2 y2(t)
∣∣∣∣∣
2k

=
∣∣∣∣∫ t

0
[δb (s)− θ [bx(s)y1(s) + bu(s)v(s)]

− θ2

2
[
bx(s)y2(s) + bxx(s)y1(s)2 + 2bxu(s)y1(s)v(s) + buu(s)v(s)2

]
]ds

+
∫ t

0
[δσ (s)− θ [σx(s)y1(s) + σu(s)v(s)]

− θ2

2
[
σx(s)y2(s) + σxx(s)y1(s)2 + 2σxu(s)y1(s)v(s)

+ σuu(s)v(s)2
]
]dW (s)
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straight forward calculation by applying the Cauchy-Schwarz inequality, we shows

that

E

 sup
t∈[0,T ]

∣∣∣∣∣xθ(t)− x(t)− θy1(t)− θ2

2 y2(t)
∣∣∣∣∣
2k
 (3.12)

≤ I1,

where

I1 = E
[
2 sup
t∈[0,T ]

∣∣∣∣∫ t

0
[δb (s)− θ [bx(s)y1(s) + bu(s)v(s)]

− θ2

2
[
bx(s)y2(s) + bxx(s)y1(s)2 + 2bxu(s)y1(s)v(s) + buu(s)v(s)2

]]
ds (3.13)

+
∫ t

0
[δσ (s)− θ [σx(s)y1(s) + σu(s)v(s)]

− θ2

2
[
σx(s)y2(s) + σxx(s)y1(s)2 + 2σxu(s)y1(s)v(s) + σuu(s)v(s)2

]]
dW (s)

∣∣∣∣∣
2k
 ,

Similar to Bonnans [7], Zhang and Zhang [58], by applying the Cauchy-Schwarz

inequality and the Burkhölder–Davis–Gundy inequality, we have

I1 ≤ Ckθ2k. (3.14)

By combining (3.12), (3.14) the desired result (3.11) is fulfilled. Thus, the proof of

Proposition 3.2.1 is completed.

Define the Hamiltonian function H : [0, T ]× R× U × R× R by

H (t, x, u, p, q) := b (t, x, u) p+ σ (t, x, u) q − f(t, x, u).

Now, we introduce the first adjoint equation

dp(t) = −{bx (t) p (t) + σx (t) q (t)− fx (t)} dt

+q (t) dW (t) ,

p (T ) = −hx (x (T )) ,

(3.15)
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and the second adjoint equation

dP (t) = −
{

2bx (t)P (t) + σx (t)2 P (t) + 2σx (t)Q (t)

+Hxx (t) dt

+Q (t) dW (t) ,

P (T ) = −hxx (x (T )) ,

(3.16)

where

Hxx (t) = bxx (t) p+ σxx (t) q − fxx (t) .

It is easy to prove that under assumptions (A1)-(A2), Eqs-(3.15) and (3.16) are clas-

sical linear backward stochastic differential equations (BSDEs in short) admit a unique

strong solution such that

(p(t), q(t)) ∈ L2
F ([0, T ] ;R)× L2

F ([0, T ] ;R)

(P (t), Q(t), ) ∈ L2
F ([0, T ] ;R)× L2

F ([0, T ] ;R)

Also, we define the functional H : [0, T ]× R× U × R× R× R× R× R× R by

H (t, x, u, p, q, P,Q) := Hxu (t, x, u, p, q) + bu (t, x, u)P (t) (3.17)

+ σu (t, x, u)Q(t) + σu (t, x, u)P (t)σx (t, x, u)

To simplify our notation, we set

H (t) = H(t, x (t) , u (t) , p (t) , q (t) , P (t) , Q (t)), t ∈ [0, T ] .

Lemma 3.2.1
Let (p(t), q(t)) be the solution of the adjoint equation (3.15), (P (t), Q(t)) be the

solution of the adjoint equation (3.16), and y1 (t) , y2 (t) are the solution to the first

and second variational equations (3.5) and (3.6) respectively. Then the following

duality relations hold:

−E [p (T ) y1 (T )] = −E
[∫ T

0
{p (t) (bu (t) v (t)) + q (t) (σu (t) v (t))} dt

]
−E

[∫ T

0
fx (t) y1 (t) dt

]
,

(3.18)
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E [p (T ) y2 (T )] = −E
[∫ T

0
p (t)

{
bxx (t) y1 (t)2 + 2bxu (t) y1 (t) v (t) + buu (t) v (t)2

}
dt

]
(3.19)

E
[∫ T

0
q (t)

{
σxx (t) y1 (t)2 + 2σxu (t) y1 (t) v (t) + σuu (t) v (t)2

}
dt

]

− E
[∫ T

0
fx (t) y2 (t) dt

]
,

and

−E
[
P (T ) y1 (T )2

]
= −2E

[∫ T

0
{P (t) y1 (t) (bu (t) v (t)) + P (t)σx (t) y1 (t) (σu (t) v (t))} dt

]
(3.20)

− 2E
[∫ T

0
{Q (t)σu (t) v (t) y1 (t)} dt

]
− E

[∫ T

0
P (t) (σu (t) v (t))2 dt

]

+ E
[∫ T

0
Hxx (t) y1 (t)2 dt

]
.

Proof : The proof of this lemma follows directly from Itô’s formula to p (t) y1 (t) and taking

expectation where y1(0) = 0, we have

E [p (T ) y1 (T )] = −E
∫ T

0
p (t) dy1 (t)− E

∫ T

0
y1 (t) dp (t) (3.21)

E
∫ T

0
q (t) {σx (t) y1 (t) + σu (t) v (t)} dt

where

− E
∫ T

0
p (t) dy1 (t) = −E

∫ T

0
p (t) [bx (t) y1 (t) + bu (t) v (t)] dt. (3.22)

Consequently

E
∫ T

0
y1 (t) dp (t) (3.23)

= E
∫ T

0
y1 (t) [bx (t) p (t) + σx (t) q (t)− fx (t)] dt,

substituting (3.22), (3.23), into (3.21), then the desired result (3.18) is fulfilled.

Now, applying Itô’s formula to p (t) y2 (t) and taking expectation where y2(0) = 0,

54



Pointwise second order necessary conditions for stochastic optimal control

we have

−E [p (T ) y2 (T )] = −E
∫ T

0
p (t) dy2 (t)− E

∫ T

0
y2 (t) dp (t) (3.24)

− E
[∫ T

0
q (t)

{
σx (t) y2 (t) + σxx (t) y1 (t)2

+ 2σxu (t) y1 (t) v (t) + σuu (t) v (t)2
}
dt
]

where

−E
∫ T

0
p (t) dy2 (t) = −E

∫ T

0
p (t)

{
bx (t) y2 (t) + bxx (t) y1 (t)2

+ 2bxu (t) y1 (t) v (t) + buu (t) v (t)2
}
dt, (3.25)

and

− E
∫ T

0
y2 (t) dp (t) (3.26)

= E
∫ T

0
y2 (t) [bx (t) p (t) + σx (t) q (t)− fx (t)] dt,

substituting (3.25), (3.26), into (3.24), we obtain the desired result (3.19).

Next, applying Itô’s formula to P (t) y1 (t) , where y1(0) = 0, we have

[P (T ) y1 (T )] =
∫ T

0
P (t) dy1 (t) +

∫ T

0
y1 (t) dP (t)

+
∫ T

0
Q (t) {σx (t) y1 (t) + σu (t) v (t)} dt

= I1 + I2 + I3, (3.27)

where

I1 =
∫ T

0
P (t) dy1 (t)

=
∫ T

0
P (t) {bx (t) y1 (t) + bu (t) v (t)} dt

+
∫ T

0
P (t) {σx (t) y1 (t) + σu (t) v (t)} dW (t)

by simple computations , we can prove

I2 =
∫ T

0
y1 (t) dP (t)

= −
∫ T

0
y1 (t)

{
2bx (t)P (t) + σx (t)2 P (t) + 2σx (t)Q (t)

+Hxx (t) dt+
∫ T

0
y1 (t)Q (t) dW (t) ,
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I3 =
∫ T

0
{Q (t)σx (t) y1 (t) +Q (t)σu (t) v (t)} dt,

Then we can write (3.27) as follows

[P (T ) y1 (T )] =
∫ T

0
[P (t) bu (t) v (t) dt+Q (t)σu (t) v (t)

− y1 (t) bx (t)P (t)− y1 (t)σx (t)2 P (t)− y1 (t)σx (t)Q (t)

− y1 (t)Hxx (t)] dt

+
∫ T

0
[P (t)σx (t) y1 (t) + P (t)σu (t) v (t) + y1 (t)Q (t)] dW (t)

Now, we applying Itô’s formula to (P (t) y1 (t)) y1 (t) and taking expectation, we

obtain

− E
[
P (T ) y1 (T )2

]
= −E

∫ T

0
P (t) y1 (t) dy1 (t)− E

∫ T

0
y1 (t) d (P (t) y1 (t))

− E
[∫ T

0
{σx (t) y1 (t) + σu (t) v (t)} {P (t)σx (t) y1 (t) + P (t)σu (t) v (t) + y1 (t)Q (t)} dt

]

= J1 + J2 + J3, (3.28)

where

J1 = −E
∫ T

0
P (t) y1 (t) dy1 (t) = −E

∫ T

0
P (t) y1 (t) {bx (t) y1 (t) + bu (t) v (t)} dt, (3.29)

J2 = −E
∫ T

0
y1 (t) d (P (t) y1 (t))

= −E
∫ T

0
y1 (t) [P (t) bu (t) v (t) dt+Q (t)σu (t) v (t)

− y1 (t) bx (t)P (t)− y1 (t)σx (t)2 P (t)− y1 (t)σx (t)Q (t)

− −y1 (t)Hxx (t)] dt, (3.30)

and it is easy to show that

J3 = −E
[∫ T

0
{σx (t) y1 (t) + σu (t) v (t)} {P (t)σx (t) y1 (t) + P (t)σu (t) v (t) + y1 (t)Q (t)} dt

]

= −E
[∫ T

0

{
P (t) (σx (t) y1 (t))2 + 2P (t)σx (t) y1 (t)σu (t) v (t) + σx (t)Q (t) y1 (t)2

+ P (t) (σu (t) v (t))2 +Q (t)σu (t) y1 (t) v (t)
}
dt
]
. (3.31)
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Similarly, we have Finally, substituting (3.29), (3.30), (3.31), into (3.28), then (3.20)

is fulfilled.

This completes the proof of Lemma 3.2.1.

To prove the main theorem we need the following technical result.

Proposition 3.2.2
Let (A1)-(A2) hold. Then, for any u(·) ∈ Uad we have

J(uθ(·))− J(u(·))

= −E
∫ T

0

[
θ {Hu (t) v (t)}+ θ2

2
{
Huu (t) v (t)2

}
+ θ2

2
{
P (t) (σu (t) v (t))2

}
+ θ2 {H (t) y1(t)v (t)}

]
dt+ o

(
θ2
)
,
(
θ → 0+

)
,

(3.32)

where

Hu(t) = Hu (t, x(t), u(t), p(t), q(t)) ,

Huu(t) = Huu(t, x(t), u(t), p(t), q(t)).

Proof : By applying Taylor’s formula, we get

J
(
uθ (·)

)
− J (u (·))

= E
[∫ T

0
{δf (t)} dt

]
+ E

[
h(xθ (T )− h(x (T )

]
= E

[∫ T

0

{
fx (t)

(
xθ (t)− x (t)

)
+ fu (t)

(
uθ (t)− u (t)

)
+ 1

2fxx (t)
(
xθ (t)− x (t)

)2

+ fxu (t)
(
xθ (t)− x (t)

) (
uθ (t)− u (t)

)
+ 1

2fuu (t)
(
uθ (t)− u (t)

)2
}
dt

]
+ E

[
hx(x (T )

(
xθ (T )− x (T )

)
+ 1

2hxx (x (T ))
(
xθ (T )− x (T )

)2
]

+ o
(
θ2
)
.
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Using Proposition 3.2.1 , we have

J
(
uθ (·)

)
− J (u (·))

= E
[∫ T

0

{
θfx (t) y1 (t) + θ2

2 fx (t) y2 (t) + θfu (t) v (t)

+ θ2

2
(
fxx (t) y1 (t)2 + 2fxu(t)y1 (t) v (t) + fuu (t) v (t)2

)}
dt

]

+ E
[
θhx(x (T ) y1 (T ) + θ2

2 hx (x (T )) y2 (T ) + θ2

2 hxx (x (T )) y1 (T )2
]

+ o
(
θ2
)
,
(
θ −→ 0+

)
.

(3.33)

Substituting (3.18), (3.19), and (3.20) into (3.33), we obtain

J(uθ(·))− J(u(·))

= −E
[∫ T

0
θ [p (t) (bu (t) v (t)) + q (t) (σu (t) v (t))− fu (t) v (t)] dt

]

− E
[∫ T

0

θ2

2
[
p (t) buu (t) v (t)2 + q (t)σuu (t) v (t)2 − fuu(t)v (t)2 + P (t) (σu (t) v (t))2

]
dt

]

− E
[∫ T

0
θ2 {p (t) bxu (t) y1 (t) v (t) + q (t)σxu (t) y1 (t) v (t)− fxu(t)y1 (t) v (t)

+ P (t) y1 (t) bu (t) v (t) + P (t)σx (t) y1 (t)σu (t) v (t) +Q (t)σu (t) v (t) y1 (t)} dt] + o
(
θ2
)
.

Finally, we get

J(uθ(·))− J(u(·))

= −E
∫ T

0

[
θ (Hu (t) v (t)) + θ2

2
[
Huu (t) v (t)2

]
+ θ2

2
[
P (t) (σu (t) v (t))2

]
+ θ2 [H (t) y1(t)v (t)]

]
dt+ o

(
θ2
)
,

(
θ → 0+

)
,

Thus, the proof of Proposition 3.2.2 is completed.

Now, by Proposition 3.2.2 , we can establish the following second order necessary

condition in integral form for stochastic optimal control (3.2)-(3.3).
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Theorem 3.2.1
Let (A1)-(A2) hold. If u (·) is a singular optimal control in the classical sense for the

control problem (3.2)-(3.3). Then we have

E
∫ T

0
H(t)y1(t)(u (t)− u (t))dt ≤ 0, (3.34)

for any u (·) ∈ Uad, where the Hamiltonian H is defined by (3.17) and y1 (t) solution

of first order adjoint equation given by

y1 (t) =
∫ t

0
[bx (s) y1 (s) + bu (s) v (s)] ds+ [σx (s) y1 (s) + σu (s) v (s)] dW (s)

Proof : The desired result (3.34) and Proposition 3.2.2 follows immediately from 3.1.

This completes the proof of Theorem 3.2.1

3.3 Pointwise second order maximum principle in terms

of the martingale

In this section, by using the property of Itô’s integrals and the martingale representation

theorem, we establish the second order necessary condition for singular optimal controls,

which is pointwise maximum principle in terms of the martingale with respect to the time

variable t. The following lemma play an important role to establish our result.
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Lemma 3.3.1
The first variational equation (3.1) admits a unique strong solution y1 (·), which is

represented by the following:

y1 (t) = Φ (t)
[∫ t

0
Ψ(s) (bu(s)− σx(s)σu(s)) v(s)ds

+
∫ t

0
Ψ(s)σu(s)v(s)dW (s)

]
, (3.35)

where Φ (t) is a defined by the following linear stochastic differential equation:
dΦ (t) = bx(t)Φ (t) dt+ σx(t)Φ (t) dW (t),

Φ (0) = 1,
(3.36)

and Ψ(t) its inverse.

Proof : Equation (3.5) is linear with bounded coefficients, then it admits a unique strong

solution. Moreover, this solution is inversible and its inverse Ψ(t) = Φ−1 (t) given by:
dΨ(t) =

[
σ2
x(t)Ψ(t)− bx(t)Ψ(t)

]
dt− [σx(t)Ψ(t)] dW (t)

Ψ (0) = 1.
(3.37)

Applying Itô’s formula to Ψ(t)y1 (t) we have

d [Ψ(t)y1 (t)] = y1 (t) dΨ(t) + Ψ(t)dy1 (t)

− [σx(t)Ψ(t)] [σx(t)y1(t) + σu(t)v(t)] dt

= I1 + I2 + I3, (3.38)

where

I1 = y1 (t) dΨ(t) (3.39)

=
[
y1 (t)σ2

x(t)Ψ(t)− y1 (t) bx(t)Ψ(t)
]
dt

− y1 (t)σx(t)Ψ(t)dW (t)

− y1 (t) .
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By simple computations, we obtain

I2 = Ψ(t)dy1 (t) (3.40)

= [Ψ(t)bx(t)y1(t) + Ψ(t)bu(t)v(t)] dt

+ [Ψ(t)σx(t)y1(t) + Ψ(t)σu(t)v(t)] dW (t)

and

I3 = − [σx(t)Ψ(t)] [σx(t)y1(t) + σu(t)v(t)] dt. (3.41)

Substituting (3.36), (3.37), and (3.38) into (3.36), we get

Ψ(t)y1 (t)−Ψ(0)y1 (0)

=
[∫ t

0
Ψ(s) [bu(s)− σx(s)σu(s)] v(s)ds

+
∫ t

0
Ψ(s)σu(s)v(s)dW (s). (3.42)

Since y1(0) = 0 and Ψ−1(t) = Φ (t) , then from (3.42) the desired result (3.35) is fulfilled.

This completes the proof of Lemma 3.3.1

To prove the main theorem we need the following technical Lemma.

Lemma 3.3.2
Let (A1)-(A2) hold. Then we have

(1) H (·) ∈ L2
F ([0, T ] ;R)

(2) For any v ∈ U , there exists φv (·, t) ∈ L2
F ([0, T ] ;R) , such that

H(t)(v − ū(t)) = E [H(t)(v − u(t))] +
∫ t

0
φv (s, t) dW (s) (3.43)

a.e. t ∈ [0, T ], P − a.s.

Proof : (1). The proof follows immediately from Lemma 3.9 in [58].

(2) The proof of (3.43) follows from Tang and Li [50, Appendix]

Now, we return to integral type of second order necessary condition and substituting the

explicit representation (3.35) of y1(·) into (3.34), we see that there appears a ”bad” term
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in the form

E
∫ T

0

[
H (t) Φ(t)

∫ t

0
Ψ(s)σu(s)v(s)dW (s)

]
v(t)dt, (3.44)

For more details see [58, p.2278] for this type of integrals.

Now, in order to derive a pointwise second order necessary condition from the integral

form in (3.35), we need to choose the following needle variation for the optimal control

u(·):

u(t) =


v, t ∈ Aθ,

u(t), t ∈ [0, T ] | Aθ,
(3.45)

where τ ∈ [0, T ), v ∈ U , and Aθ = [τ, τ+θ) so that θ > 0 and τ+θ ≤ T . Denote by χAθ(·)

the characteristic function of the set Aθ. Then we have v(·) = u(·)−u(·) = (v − u(·))χAθ .

The following theorem constitutes the main contribution of the result

Theorem 3.3.1
Let (A1)-(A2) hold. If u(·) is a singular optimal control in the classical sense for the

stochastic control (3.2)-(3.3), then for any v ∈ U , it holds that

E
(
H(τ)bu(τ)(v − u(τ))2

)
+ ∂+

τ

(
H(τ)(v − u(τ))2σu(τ)

)
≤ 0 a.e. τ ∈ [0, T ] , (3.46)

where

∂+
τ

(
H(τ)(v − u(τ))2σu(τ)

)
(3.47)

:= 2 lim
θ→0+

sup 1
θ2E

∫ τ+θ

τ

∫ t

τ
[φv(s, t)Φ (τ) Ψ (s)σu(s)(v − u(s))] dsdt,

φv(·, t) is determined by (3.43), Φ (·) is given by the following process

Φ (t) = Φ (0) +
∫ t

0
bx(s)Φ (s) ds+

∫ t

0
σx(s)Φ (s) dW (s)

and Ψ (·) is determined by

Ψ(t) = Ψ(0) +
∫ t

0

[
σ2
x(s)Ψ(s)− bx(s)Ψ(s)

]
ds

−
∫ t

0
[σx(s)Ψ(s)] dW (s).

Proof : From (3.42), we have v(·) = u(·) − u(·) = (v − u(·))χAθ(·) and the corresponding
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solution y1(·) to (3.5) is given by

y1(t) = Φ (t)
∫ t

0
Ψ (s) (bu(s)− σx(s)σu(s)) (v − u(s))χAθ(s)ds (3.48)

+ Φ (t)
∫ t

0
Ψ (s)σu(s)(v − u(s))χAθ(s)dW (s).

Substituting v(·) = (v − u(·))χAθ(·) and (3.48) into (3.34), we have

0 ≥ 1
θ2E

∫ τ+θ

τ
[H (t) y1(t) (v − u(t))] dt

= 1
θ2E

∫ τ+θ

τ

[
H (t) Φ (t)

∫ t

τ
Ψ (s) (bu(s)− σx(s)σu(s)) (v − u(s))ds (v − u(t))

]
dt

+ 1
θ2E

∫ τ+θ

τ

[
H (t) Φ (t)

∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

= Jθ1 + Jθ2 . (3.49)

From [[58, Lemma 4.1], we obtain

lim
θ→0+

Jθ1 = lim
θ→0+

1
θ2E

∫ τ+θ

τ

[
H (t) Φ (t)

∫ t

τ
Ψ (s) (bu(s)− σx(s)σu(s)) (v − u(s))ds (v − u(t))

]
dt

= 1
2E
(
H (τ) (bu(τ)− σx(τ)σu(τ)) (v − u(τ))2

)
. (3.50)

On the other hand, by (3.35), it follows that

Jθ2 = 1
θ2

∫ τ+θ

τ
E
[
H (t) Φ (t)

∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

= 1
θ2

∫ τ+θ

τ
E
[
H (t) Φ (τ)

∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

+ 1
θ2

∫ τ+θ

τ
E
[
H (t)

∫ t

τ
bx(s)Φ (s) ds

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt (3.51)

+ 1
θ2

∫ τ+θ

τ
E
[
H (t)

∫ t

τ
σx(s)Φ (s) dW (s)

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

}
dt.

= Jθ2,1 + Jθ2,2 + Jθ2,3 + Jθ2,4.
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By Lemma 3.3.2 , we get

lim
θ→0+

sup Jθ2,1

= lim
θ→0+

sup 1
θ2

∫ τ+θ

τ
E
[
H (t) Φ (τ)

∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

= lim
θ→0+

sup 1
θ2

∫ τ+θ

τ
E
[∫ t

τ
Φ (τ) Ψ (s)σu(s)(v − u(s))dW (s)E [H (t) (v − u(t))]

]
dt

+ lim
θ→0+

sup 1
θ2

∫ τ+θ

τ
E
{∫ t

τ
Φ (τ) Ψ (s)σu(s)(v − u(s))dW (s)

∫ t

0
φv(s, t)dW (s)

}
dt

= lim
θ→0+

sup 1
θ2

∫ τ+θ

τ

∫ t

τ
E {Φ (τ) Ψ (s)σu(s)(v − u(s))φv(s, t)} dsdt (3.52)

= 1
2∂

+
τ

(
H (τ) (v − u(τ))2σu(τ)

)
, ∀τ ∈ [0, T ).

It is crucial that, by the Martingale Representation Theorem in Lemma 3.3.2 , we only

know that φv(·, t) ∈ L2
F ([0, t] ;R) for any v ∈ U , and hence, for each τ ∈ [0, T ], the

function

ϕt (s) = E [Φ (τ) Ψ (s)σu(s)(v − u(s))φv(s, t)] , s ∈ [0, t] , t ∈ [0, T ] ,

is in L1 ([0, t] ;R). See [58] for more details for the superior limit

lim
θ→0+

1
θ2

∫ τ+θ

τ

∫ t

τ
ϕt (s) dsdt.

By simple computations, the last term in (3.51) is in fact a process with zero expectation.

Now, by using similar method in [58], we get

lim
θ→0+

Jθ2,2 = lim
θ→0+

1
θ2

∫ τ+θ

τ
E
{
H (t)

∫ t

τ
bx(s)Φ (s) ds (3.53)

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

}
dt

= 0,

lim
θ→0+

Jθ2,3 = lim
θ→0+

1
θ2

∫ τ+θ

τ
E
{
H (t)

∫ t

τ
σx(s)Φ (s) dW (s) (3.54)

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

}
dt

= 1
2E
(
H (τ) (σx(τ)σu(τ)) (v − u(τ))2

)
,

and Finally, substituting (3.49), (3.51), (3.52), (3.53), (3.54) in (3.48), we obtain

E
(
H(τ)bu(τ)(v − u(τ))2

)
+ ∂+

τ

(
H(τ)(v − u(τ))2σu(τ)

)
≤ 0, a.e. τ ∈ [0, T ] .

This completes the proof of Theorem 3.3.1
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Chapter 4

Pointwise second order necessary

conditions for stochastic optimal

control with jump diffusions

4.1 Preliminaries and assumptions

Let (Ω,F ,F,P) be a complete probability space with filtration, we assume that F =

{Ft}0≤t≤T is the natural filtration generated by one-dimensional standard Brownian mo-

tion W (·) and an independent Poisson random measure N on R+×Z, where Z is a fixed

nonempty subset of R with its Borel σ-field B (Z) such that µ(Z) < ∞. We denote by

{FWt }0≤t≤T (resp. {FNt }0≤t≤T ) the P-augmentation of the natural filtration of W (resp.

N), then we have

Ft = σ {W (s) ; s ≤ t} ∨ σ
{∫ ∫

(0,s]×A
N (dz, dr) ; s ≤ t, A ∈ B (Z)

}
∨N ,

where N denotes the totality of P-null sets, and σ1 ∨ σ2 denotes the σ-filed generated

by σ1 ∪ σ2. We assume that the compensator of N has the form µ (dt, dz) = µ (dz) dt for

some positive and σ-finite Lévy measure µ on Z. We suppose that
∫
Z

1 ∧ |z|2 µ (dz) <∞

and write Ñ = N − µdt for the compensated jump martingale random measure of N.

For a fuction φ : [0, T ]×R×U×Ω→ R, we denote by φx (t, x, u) (resp. φu (t, x, u)) the

first order derivatives of φ with respect to x and u at (t, x, u, ω), and by φ(x,u)2 (t, x, u) the

second order derivatives of φ with respect to (x, u) at (t, x, u, ω) and by φxx (t, x, u) , φxu (t, x, u) ,

and φuu (t, x, u) the second order derivatives of φ at (t, x, u, ω) , we denote by Uad the set

of all admissible controls. Note that, we take out the ω (∈ Ω) argument in the defined

functions, when the conditions is clear as habitual.

We introduce some spaces of random variable and stochastic processes, for any t ∈
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[0, T ], we let

• L2
Ft (Ω;R) the space of R-valued, Ft-measurable random variables ζ such that

E |ζ|2 <∞.

• L2
F ([0, T ] ;R) the space of R-valued, B([0, T ])⊗F -measurable, F-adapted processes

ψ such that

‖ψ‖L2
F([0,T ];R) :=

[
E
(∫ T

0
|ψ (t)|2 dt

)] 1
2

<∞.

• L2 ([0, T ] ;R) the space of R-valued, B([0, T ] × Ω) ⊗ B (Z) measurable processes ϑ

such that

‖ϑ‖L2([0,T ];R) := E
[∫ T

0
|ϑt (z)|2 µ (dz) dt

] 1
2

<∞.

We should note that in stochastic control problems, there is an other type of singularity,

where the control variable has two components (u(·), ξ (·)), the first being absolutely

continuous and the second is of bounded variation, non-decreasing left-continuous with

right limits and ξ(0−) = 0. This singularity come since dξ(t) may be singular with respect

to Lebesgue measure dt. An extensive list of references on the stochastic singular control

problem can be found in Haussmann and Suo [24], and Cadenillas and Haussmann [9].

In this chapter, we study pointwise optimal stochastic control problem for systems

governed by nonlinear controlled stochastic differential equations (SDEs) with jumps of

the form: t ∈ [0, T ]
dx (t) = b (t, x (t) , u (t)) dt+ σ(t, x (t) , u (t))dW (t) +

∫
Z
η (t, x (t−) , z) Ñ (dz, dt) ,

x(0) = x0,

(4.1)

where the coefficients of the state are given by the functions

b : [0, T ]× R× U → R,

σ : [0, T ]× R× U → R,

η : [0, T ]× R× Z → R.
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The cost functional to be minimized has the form:

J(u (·)) = E
[∫ T

0
f (t, x (t) , u (t)) dt+ h(x (T ))

]
, u (·) ∈ Uad, (4.2)

where f : [0, T ]× R× U → R and h : R→ R are given functions.

The stochastic optimization problem which we interest is to find a control u (·) ∈ Uad
such that

J(u (·)) = inf
u(·)∈Uad

J (u (·)) . (4.3)

Any admissible control u (·) ∈ Uad that achieves the minimum is called an optimal control.

Throughout this paper, we also assume that

Assumptions (B1) 1. The maps b and σ are B([0, T ])⊗F-measurable and F-adapted.

2. The functions b and σ are continuously differentiable up to the second order with

respect to (x, u).

3. The function η is continuously differentiable up to the second order with respect to x.

4. All the first order derivatives are continuous in (x, u) and uniformly bounded.

5. There exists a constant K1 > 0 such that for almost all (t, ω) ∈ [0, T ]× Ω and for any

x, x̃ ∈ R and u, ũ ∈ U,

|φ (t, x, u)| ≤ K1, for φ = b, σ,

|φ (t, x, u)− φ (t, x̃, u)| ≤ K1 |x− x̃| , for φ = b, σ,∣∣∣φ(x,u)2 (t, x, u)− φ(x,u)2 (t, x̃, ũ)
∣∣∣ ≤ K1 (|x− x̃|+ |u− ũ|) ,

|η (t, x (t−) , z)− η (t, x̃ (t−) , z)| ≤ K1 |x− x̃| and η (t, x (t−) , z) ≤ K1,

|ηxx (t, x (t−) , z)− ηxx (t, x̃ (t−) , z)| ≤ K1 |x− x̃| .

Under assumptions (B1) and (A2), equation (4.1) has a unique strong solution x(t)

given by

x(t) = x0 +
∫ t

0
b (s, x(s), u(s)) ds+

∫ t

0
σ (s, x(s), u(s)) dW (s)

+
∫ t

0

∫
Z
η (s, x (s−) , z) Ñ (dz, ds) ,

and by standard arguments it is easy to show that for any Ck > 0, it holds that

E( sup
t∈[0,T ]

|x(t)|k) < Ck,
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where Ck is a constant depending only on k. Moreover, the functional (4.2) is well defined

from Uad into R.

4.2 Second order necessary condition in integral form

with jump Diffusions

In this section, we prove an integral type second order necessary condition for stochastic

optimal control with jump diffusions. We consider a control region U is nonempty and

bounded. Moreover, a convex perturbation of the optimal control defined by uθ (t) =

u (t) + θ (u (t)− u (t)) , for u (·) ∈ Uad and θ ∈ (0, 1). The convexity condition of the

control domain ensures that uθ(·) ∈ Uad.

For convenience, we will use the following notations, we denote by xθ(·), x(·) the state

trajectory of the SDE (4.1) corresponding to uθ(·) and u(·).

To simplify our notation, we write for φ = b, σ, f and for ϕ = η :

δφ (t) = φ
(
t, xθ (t) , uθ (t)

)
− φ (t, x(t), u(t)) ,

φx (t) = φx (t, x(t), u(t)) , φu (t) = φu (t, x(t), u(t)) ,

φxx (t) = φxx (t, x(t), u(t)) , φuu (t) = φuu (t, x(t), u(t)) ,

ϕx (t, z) = ϕx (t, x(t−), z) , φxu (t) = φxu (t, x(t), u(t)) ,

ϕxx (t, z) = ϕxx (t, x(t−), z) .

We introduce the following variational equations

dy1 (t) = {bx (t) y1 (t) + bu (t) v (t)} dt+ {σx (t) y1 (t) + σu (t) v (t)} dW (t)

+
∫
Z
{ηx (t, z) y1 (t−)} Ñ (dz, dt) ,

y1(0) = 0,

(4.4)

68



Pointwise second order necessary conditions for stochastic optimal control with jump
diffusions

and

dy2 (t) = [bx (t) y2 (t) + bxx (t) y1 (t)2 + 2bxu (t) y1 (t) v (t) + buu (t) v (t)2]dt

+[σx (t) y2 (t) + σxx (t) y1 (t)2 + 2σxu (t) y1 (t) v (t) + σuu (t) v (t)2]dW (t)

+
∫
Z

[ηx (t, z) y2 (t−) + ηxx (t, z) y1(t−)2]Ñ (dz, dt) ,

y2(0) = 0.

(4.5)

Remark 4.2.1
Under assumptions (B1), (A2) the variational equations (4.4) and (4.5) admits a

unique strong solutions y1 (t) and y2 (t) respectively.

Next, we prove the proposition which plays a crucial role in obtaining a second order

necessary conditions.

We note that unless specified, for each k ∈ R+, we will denote by Ck > 0 a generic

positive constant depending only on k and the constants appearing in Proposition 4.2.1 ,

which may vary from line to line.

Proposition 4.2.1
Assume that assumptions (B1), (A2) satisfied. Then, for any k ≥ 1, we have the

following basic estimates

E
[

sup
t∈[0,T ]

∣∣∣xθ (t)− x (t)
∣∣∣2k] ≤ C(k,µ(Z))θ

k, (4.6)

E
[

sup
t∈[0,T ]

|y1 (t)|2k
]
≤ C(k,µ(Z)), (4.7)

E
[

sup
t∈[0,T ]

|y2 (t)|2k
]
≤ C(k,µ(Z)), (4.8)

E
[

sup
t∈[0,T ]

∣∣∣xθ (t)− x (t)− θy1 (t)
∣∣∣2k] ≤ C(k,µ(Z))θ

2k, (4.9)

E

 sup
t∈[0,T ]

∣∣∣∣∣xθ (t)− x (t)− θy1 (t)− θ2

2 y2 (t)
∣∣∣∣∣
2k
 ≤ C(k,µ(Z))θ

2k. (4.10)

Proof : Let x(·) and xθ(·) be the trajectory of (3.2) corresponding to u(·) and uθ(·) resp.

Let y1(·) and y2(·) be the solution of first and second order adjoint equations (4.4)-(4.5).
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Noting that estimate (4.6) follows from standard arguments, using Burkholder-Davis-

Gundy inequality for the martingale part and Propositions A2 (see Appendix). In what

follows we shall refer to equation (4.4) as the first-order variational equation, and the

process y1(·) is called the first order variational process. A very important step in Peng

[41], and Tang and Li [50] is in light of the Taylor expansion, to find a process y2(t) so

that xθ(t)−x(t)− θy1(t)− θ
2

2 y2(t) = o
(
θ2
)
, as θ → 0, and that the convergence is of an

appropriate order. The process y2(·) is called the second-order variational process. So

the estimates (4.7), (4.8) and (4.9) are obvious and standard, see also [50, Lemma 2.1].

Now, we start to prove the estimate (4.10). From (3.2), (4.4) and (4.5), we have

∣∣∣∣∣xθ(t)− x(t)− θy1(t)− θ2

2 y2(t)
∣∣∣∣∣
2k

=
∣∣∣∣∫ t

0
[δb (s)− θ [bx(s)y1(s) + bu(s)v(s)]

− θ2

2
[
bx(s)y2(s) + bxx(s)y1(s)2 + 2bxu(s)y1(s)v(s) + buu(s)v(s)2

]
]ds

+
∫ t

0
[δσ (s)− θ [σx(s)y1(s) + σu(s)v(s)]

− θ2

2
[
σx(s)y2(s) + σxx(s)y1(s)2 + 2σxu(s)y1(s)v(s)

+ σuu(s)v(s)2
]
]dW (s)

+
∫ t

0

∫
Z

{
η
(
s, xθ(s−), z

)
− η (s, x (s−) , z)− θ [ηx (s, z) y1 (s−)]

− θ2

2
[
ηx (s, z) y2 (s−) + ηxx (s, z) y1(s−)2

]}
Ñ (dz, ds)

∣∣∣∣∣
2k

.

A straightforward calculation by applying the Cauchy-Schwarz inequality, we shows

that

E

 sup
t∈[0,T ]

∣∣∣∣∣xθ(t)− x(t)− θy1(t)− θ2

2 y2(t)
∣∣∣∣∣
2k
 (4.11)

≤ I1 + I2,
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where

I1 = E
[
2 sup
t∈[0,T ]

∣∣∣∣∫ t

0
[δb (s)− θ [bx(s)y1(s) + bu(s)v(s)]

− θ2

2
[
bx(s)y2(s) + bxx(s)y1(s)2 + 2bxu(s)y1(s)v(s) + buu(s)v(s)2

]]
ds (4.12)

+
∫ t

0
[δσ (s)− θ [σx(s)y1(s) + σu(s)v(s)]

− θ2

2
[
σx(s)y2(s) + σxx(s)y1(s)2 + 2σxu(s)y1(s)v(s) + σuu(s)v(s)2

]]
dW (s)

∣∣∣∣∣
2k
 ,

and

I2 = E
[
2 sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
Z

{
η
(
s, xθ (s−) , z

)
− η (s, x (s−) , z)

− θ [ηx (s, z) y1 (s−)]− θ2

2
[
ηx (s, z) y2 (s−) + ηxx (s, z) y1(s−)2

]}
Ñ (dz, ds)

∣∣∣∣∣
2k
 .
(4.13)

Similar to Bonnans [7], Zhang and Zhang [58], by applying the Cauchy-Schwarz

inequality and the Burkhölder–Davis–Gundy inequality, we have

I1 ≤ Ckθ2k. (4.14)

Let us turn to estimate of I2. By using Proposition 1.3.1, then for all k ≥ 1 there

exists a positive constant C(k,µ(Z)) such that

I2 ≤ C(k,µ(Z))E
[∣∣∣∣∣
∫ T

0

∫
Z

{
η
(
s, xθ (s) , z

)
− η (s, x (s) , z)

− θ [ηx (s, z) y1 (s)]− θ2

2
[
ηx (s, z) y2 (s) + ηxx (s, z) y1(s)2

]}∣∣∣∣∣
2k

µ (dz) ds

 .
Then we have

I2 ≤ C(k,µ(Z))E
[∣∣∣∣∣µ(Z)

∫ T

0
sup
z∈Z

{
η
(
s, xθ (s) , z

)
− η (s, x (s) , z)

− θ [ηx (s, z) y1 (s)]− θ2

2
[
ηx (s, z) y2 (s) + ηxx (s, z) y1(s)2

]}∣∣∣∣∣
2k

ds

 .
Now, applying similar method developed in I1 for deterministic integral, we get

I2 ≤ C(k,µ(Z))θ
2k. (4.15)
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By combining (4.11), (4.14) and (4.15), the desired result (4.10) is fulfilled. Thus,

the proof of Proposition 4.2.1 is completed.

Define the Hamiltonian function H : [0, T ]× R× U × R× R× R by

H (t, x, u, p, q, r) := b (t, x, u) p+ σ (t, x, u) q − f(t, x, u) +
∫
Z
η (t, x, z) r (t, z)µ (dz) .

Now, we introduce the first adjoint equation

dp(t) = −
{
bx (t) p (t) + σx (t) q (t)− fx (t) +

∫
Z
ηx (t, z) r (t, z)µ (dz)

}
dt

+q (t) dW (t) +
∫
Z
r (t, z) Ñ (dz, dt) ,

p (T ) = −hx (x (T )) ,

(4.16)

and the second adjoint equation

dP (t) = −
{

2bx (t)P (t) + σx (t)2 P (t) + 2σx (t)Q (t)

+
∫
Z

[
ηx (t, z)2 P (t) + ηx (t, z)2R (t, z) + 2ηx (t, z)R (t, z)

]
µ (dz) +Hxx (t)

}
dt

+Q (t) dW (t) +
∫
Z
R (t, z) Ñ (dz, dt) ,

P (T ) = −hxx (x (T )) ,
(4.17)

where

Hxx (t) = bxx (t) p+ σxx (t) q − fxx (t) +
∫
Z
ηxx (t, z) r (t, z)µ (dz) .

It is easy to prove that under assumptions (B1)-(A2), Eqs-(4.16) and (4.17) are clas-

sical linear backward stochastic differential equations (BSDEs in short) admit a unique

strong solution such that

(p(t), q(t), r(t, ·)) ∈ L2
F ([0, T ] ;R)× L2

F ([0, T ] ;R)× L2 ([0, T ] ;R)

(P (t), Q(t), R(t, ·)) ∈ L2
F ([0, T ] ;R)× L2

F ([0, T ] ;R)× L2 ([0, T ] ;R)

Also, we define the functional H : [0, T ]× R× U × R× R× R× R× R× R by

H (t, x, u, p, q, r, P,Q,R) := Hxu (t, x, u, p, q, r) + bu (t, x, u)P (t) (4.18)

+ σu (t, x, u)Q(t) + σu (t, x, u)P (t)σx (t, x, u)
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To simplify our notation, we set

H (t) = H(t, x (t) , u (t) , p (t) , q (t) , r (t, ·) , P (t) , Q (t) , R (t, ·)), t ∈ [0, T ] .

Lemma 4.2.1
Let (p(t), q(t), r(t, ·)) be the solution of the adjoint equation (4.16),(P (t), Q(t), R(t, ·))

be the solution of adjoint equation (4.17), and y1 (t) , y2 (t) are the solution to the first

and second variational equations (4.4) and (4.5) respectively. Then the following

duality relations hold:

−E [p (T ) y1 (T )] = −E
[∫ T

0
{p (t) (bu (t) v (t)) + q (t) (σu (t) v (t))} dt

]
−E

[∫ T

0
fx (t) y1 (t) dt

]
,

(4.19)

−E [p (T ) y2 (T )] = −E
[∫ T

0
p (t)

{
bxx (t) y1 (t)2 + 2bxu (t) y1 (t) v (t) + buu (t) v (t)2

}
dt

]

− E
[∫ T

0
q (t)

{
σxx (t) y1 (t)2 + 2σxu (t) y1 (t) v (t) + σuu (t) v (t)2

}
dt

]

− E
[∫ T

0

∫
Z
r (t, z)

{
ηxx (t, z) y1 (t)2

}
µ (dz) dt

]
− E

[∫ T

0
fx (t) y2 (t) dt

]
,

(4.20)

and

−E
[
P (T ) y1 (T )2

]
= −2E

[∫ T

0
{P (t) y1 (t) (bu (t) v (t)) + P (t)σx (t) y1 (t) (σu (t) v (t))} dt

]

− 2E
[∫ T

0
{Q (t)σu (t) v (t) y1 (t)} dt

]
− E

[∫ T

0
P (t) (σu (t) v (t))2 dt

]

+ E
[∫ T

0
Hxx (t) y1 (t)2 dt

]
. (4.21)

Proof : The proof of this lemma follows directly from Itô’s formula to p (t) y1 (t) and taking

73



Pointwise second order necessary conditions for stochastic optimal control with jump
diffusions

expectation where y1(0) = 0, we have

−E [p (T ) y1 (T )] = −E
∫ T

0
p (t) dy1 (t)− E

∫ T

0
y1 (t) dp (t)

− E
∫ T

0
q (t) {σx (t) y1 (t) + σu (t) v (t)} dt

− E
∫ T

0

∫
Z
r (t, z) {ηx (t, z) y1 (t)}µ (dz) dt, (4.22)

where

− E
∫ T

0
p (t) dy1 (t) = −E

∫ T

0
p (t) [bx (t) y1 (t) + bu (t) v (t)] dt. (4.23)

Consequently,

− E
∫ T

0
y1 (t) dp (t) (4.24)

= E
∫ T

0
y1 (t)

[
bx (t) p (t) + σx (t) q (t)− fx (t) +

∫
Z
ηx (t, z) r (t, z)µ (dz)

]
dt,

substituting (4.23), (4.24), into (4.22), then the desired result (4.19) is fulfilled.

Now, applying Itô’s formula to p (t) y2 (t) and taking expectation where y2(0) = 0,

we have

−E [p (T ) y2 (T )] = −E
∫ T

0
p (t) dy2 (t)− E

∫ T

0
y2 (t) dp (t)

− E
[∫ T

0
q (t)

{
σx (t) y2 (t) + σxx (t) y1 (t)2

+ 2σxu (t) y1 (t) v (t) + σuu (t) v (t)2
}
dt
]

− E
[∫ T

0

∫
Z
r (t, z)

[
ηx (t, z) y2 (t) + ηxx (t, z) y1 (t)2

]
µ (dz) dt

]
, (4.25)

where

−E
∫ T

0
p (t) dy2 (t) = −E

∫ T

0
p (t)

{
bx (t) y2 (t) + bxx (t) y1 (t)2

+ 2bxu (t) y1 (t) v (t) + buu (t) v (t)2
}
dt, (4.26)

and

− E
∫ T

0
y2 (t) dp (t) (4.27)

= E
∫ T

0
y2 (t)

[
bx (t) p (t) + σx (t) q (t)− fx (t) +

∫
Z
ηx (t, z) r (t, z)µ (dz)

]
dt,
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substituting (4.26), (4.27), into (4.25), we obtain the desired result (4.20).

Next, applying Itô’s formula to P (t) y1 (t) , where y1(0) = 0, we have

[P (T ) y1 (T )] =
∫ T

0
P (t) dy1 (t) +

∫ T

0
y1 (t) dP (t)

+
∫ T

0
Q (t) {σx (t) y1 (t) + σu (t) v (t)} dt

+
∫ T

0

∫
Z
R (t, z) {ηx (t, z) y1 (t−)}N (dz, dt)

= I1 + I2 + I3 + I4, (4.28)

where

I1 =
∫ T

0
P (t) dy1 (t)

=
∫ T

0
P (t) {bx (t) y1 (t) + bu (t) v (t)} dt

+
∫ T

0
P (t) {σx (t) y1 (t) + σu (t) v (t)} dW (t)

+
∫ T

0

∫
Z
P (t) {ηx (t, z) y1 (t−)} Ñ (dz, dt) ,

by simple computations , we can prove

I2 =
∫ T

0
y1 (t) dP (t)

= −
∫ T

0
y1 (t)

{
2bx (t)P (t) + σx (t)2 P (t) + 2σx (t)Q (t)

+
∫
Z

[
ηx (t, z)2 P (t) + ηx (t, z)2R (t, z) + 2ηx (t, z)R (t, z)

]
µ (dz) +Hxx (t)

}
dt

+
∫ T

0
y1 (t)Q (t) dW (t) +

∫ T

0

∫
Z
y1 (t−)R (t, z) Ñ (dz, dt) ,

I3 =
∫ T

0
{Q (t)σx (t) y1 (t) +Q (t)σu (t) v (t)} dt,

and

I4 =
∫ T

0

∫
Z
R (t, z) {ηx (t, z) y1 (t−)}N (dt, dz)

=
∫ T

0

∫
Z
R (t, z) {ηx (t, z) y1 (t−)} Ñ (dz, dt)

+
∫ T

0

∫
Z
R (t, z) {ηx (t, z) y1 (t)}µ (dz) .
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Then we can write (4.28) as follows

[P (T ) y1 (T )] =
∫ T

0
[P (t) bu (t) v (t) dt+Q (t)σu (t) v (t)

− y1 (t) bx (t)P (t)− y1 (t)σx (t)2 P (t)− y1 (t)σx (t)Q (t)

−
∫
Z
y1 (t) ηx (t, z)2 (P (t) +R (t, z))µ (dz)

−
∫
Z
y1 (t) ηx (t, z)R (t, z)µ (dz)− y1 (t)Hxx (t)

]
dt

+
∫ T

0
[P (t)σx (t) y1 (t) + P (t)σu (t) v (t) + y1 (t)Q (t)] dW (t)

+
∫ T

0

∫
Z

[P (t) ηx (t, z) y1 (t−) + y1 (t−)R (t, z)

+ R (t, z) ηx (t, z) y1 (t−)] Ñ (dz, dt) . (4.29)

Now, we applying Itô’s formula to (P (T ) y1 (T )) y1 (T ) and taking expectation, we

obtain

− E
[
P (T ) y1 (T )2

]
= −E

∫ T

0
P (t) y1 (t) dy1 (t)− E

∫ T

0
y1 (t) d (P (t) y1 (t))

− E
[∫ T

0
{σx (t) y1 (t) + σu (t) v (t)} {P (t)σx (t) y1 (t) + P (t)σu (t) v (t) + y1 (t)Q (t)} dt

]

− E
[∫ T

0

∫
Z
{ηx (t, z) y1 (t)} {P (t) ηx (t, z) y1 (t) + y1 (t)R (t, z) +R (t, z) ηx (t, z) y1 (t)}µ (dz) dt

]

= J1 + J2 + J3 + J4, (4.30)

where

J1 = −E
∫ T

0
P (t) y1 (t) dy1 (t) = −E

∫ T

0
P (t) y1 (t) {bx (t) y1 (t) + bu (t) v (t)} dt, (4.31)

J2 = −E
∫ T

0
y1 (t) d (P (t) y1 (t))

= −E
∫ T

0
y1 (t) [P (t) bu (t) v (t) dt+Q (t)σu (t) v (t)

− y1 (t) bx (t)P (t)− y1 (t)σx (t)2 P (t)− y1 (t)σx (t)Q (t) (4.32)

−
∫
Z
y1 (t) ηx (t, z)2 (P (t) +R (t, z))µ (dz)

−
∫
Z
y1 (t) ηx (t, z)R (t, z)µ (dz)− y1 (t)Hxx (t)

]
dt, (4.33)
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and it is easy to show that

J3 = −E
[∫ T

0
{σx (t) y1 (t) + σu (t) v (t)} {P (t)σx (t) y1 (t) + P (t)σu (t) v (t) + y1 (t)Q (t)} dt

]

= −E
[∫ T

0

{
P (t) (σx (t) y1 (t))2 + 2P (t)σx (t) y1 (t)σu (t) v (t) + σx (t)Q (t) y1 (t)2

+ P (t) (σu (t) v (t))2 +Q (t)σu (t) y1 (t) v (t)
}
dt
]
. (4.34)

Similarly, we have

J4 = −E
[∫ T

0

∫
Z
{ηx (t, z) y1 (t)} {P (t) ηx (t, z) y1 (t)

+ y1 (t)R (t, z) +R (t, z) ηx (t, z) y1 (t)}µ (dz) dt]

= −E
[∫ T

0

∫
Z

{
(P (t) +R (t, z)) (ηx (t, z) y1 (t))2 + ηx (t, z)R (t, z) y1 (t)2

}
µ (dz) dt

]
.

(4.35)

Finally, substituting (4.31), (4.33), (4.34), (4.35), into (4.30), then (4.21) is fulfilled.

This completes the proof of Lemma 4.2.1.

To prove the main theorem we need the following technical result.

Proposition 4.2.2
Let (B1)-(A2) hold. Then, for any u(·) ∈ Uad we have

J(uθ(·))− J(u(·))

= −E
∫ T

0

[
θ {Hu (t) v (t)}+ θ2

2
{
Huu (t) v (t)2

}
+ θ2

2
{
P (t) (σu (t) v (t))2

}
+ θ2 {H (t) y1(t)v (t)}

]
dt+ o

(
θ2
)
,
(
θ → 0+

)
,

(4.36)

where

Hu(t) = Hu (t, x(t), u(t), p(t), q(t), r(t, ·)) ,

Huu(t) = Huu(t, x(t), u(t), p(t), q(t), r(t, ·)).
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Proof : By applying Taylor’s formula, we get

J
(
uθ (·)

)
− J (u (·))

= E
[∫ T

0
{δf (t)} dt

]
+ E

[
h(xθ (T )− h(x (T )

]
= E

[∫ T

0

{
fx (t)

(
xθ (t)− x (t)

)
+ fu (t)

(
uθ (t)− u (t)

)
+ 1

2fxx (t)
(
xθ (t)− x (t)

)2

+ fxu (t)
(
xθ (t)− x (t)

) (
uθ (t)− u (t)

)
+ 1

2fuu (t)
(
uθ (t)− u (t)

)2
}
dt

]
+ E

[
hx(x (T )

(
xθ (T )− x (T )

)
+ 1

2hxx (x (T ))
(
xθ (T )− x (T )

)2
]

+ o
(
θ2
)
.

Using Proposition 4.2.1 , we have

J
(
uθ (·)

)
− J (u (·))

= E
[∫ T

0

{
θfx (t) y1 (t) + θ2

2 fx (t) y2 (t) + θfu (t) v (t)

+ θ2

2
(
fxx (t) y1 (t)2 + 2fxu(t)y1 (t) v (t) + fuu (t) v (t)2

)}
dt

]

+ E
[
θhx(x (T ) y1 (T ) + θ2

2 hx (x (T )) y2 (T ) + θ2

2 hxx (x (T )) y1 (T )2
]

+ o
(
θ2
)
,
(
θ −→ 0+

)
.

(4.37)

Substituting (4.19), (4.20), and (4.21) into (4.37), we obtain

J(uθ(·))− J(u(·))

= −E
[∫ T

0
θ [p (t) (bu (t) v (t)) + q (t) (σu (t) v (t))− fu (t) v (t)] dt

]

− E
[∫ T

0

θ2

2
[
p (t) buu (t) v (t)2 + q (t)σuu (t) v (t)2 − fuu(t)v (t)2 + P (t) (σu (t) v (t))2

]
dt

]

− E
[∫ T

0
θ2 {p (t) bxu (t) y1 (t) v (t) + q (t)σxu (t) y1 (t) v (t)− fxu(t)y1 (t) v (t)

+ P (t) y1 (t) bu (t) v (t) + P (t)σx (t) y1 (t)σu (t) v (t) +Q (t)σu (t) v (t) y1 (t)} dt] + o
(
θ2
)
.
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Finally, we get

J(uθ(·))− J(u(·))

= −E
∫ T

0

[
θ (Hu (t) v (t)) + θ2

2
[
Huu (t) v (t)2

]
+ θ2

2
[
P (t) (σu (t) v (t))2

]
+ θ2 [H (t) y1(t)v (t)]

]
dt+ o

(
θ2
)
,

(
θ → 0+

)
,

Thus, the proof of Proposition 4.2.2 is completed.

Now, by Proposition 4.2.2 , we can establish the following second order necessary

condition in integral form for stochastic optimal control with jump diffusions (3.2)-(3.3).

Theorem 4.2.1
Let (B1)-(A2) hold. If u (·) is a singular optimal control in the classical sense for the

control problem (3.2)-(3.3). Then we have

E
∫ T

0
H(t)y1(t)(u (t)− u (t))dt ≤ 0, (4.38)

for any u (·) ∈ Uad, where the Hamiltonian H is defined by (4.18) and y1 (t) solution

of first order adjoint equation given by

y1 (t) =
∫ t

0
[bx (s) y1 (s) + bu (s) v (s)] ds+ [σx (s) y1 (s) + σu (s) v (s)] dW (s)

+
∫ t

0

∫
Z

[ηx (s, z) y1 (s−)] Ñ (dz, ds) .

Proof : The desired result (4.38) follows immediately from (3.1) and Proposition 4.2. 2.

This completes the proof of Theorem 4.2.1
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4.3 Pointwise second order maximum principle in terms

of the martingale with Jump Diffusions

In this section, by using the property of Itô’s integrals and the martingale representation

theorem, we establish the second order necessary condition for singular optimal controls,

which is pointwise maximum principle in terms of the martingale with respect to the time

variable t. The following lemma play an important role to establish our result.

Lemma 4.3.1
The first variational equation (4.4) admits a unique strong solution y1 (·), which is

represented by the following:

y1 (t) = Φ (t)
[∫ t

0
Ψ(s) (bu(s)− σx(s)σu(s)) v(s)ds

+
∫ t

0
Ψ(s)σu(s)v(s)dW (s)

]
, (4.39)

where Φ (t) is a defined by the following linear stochastic differential equation:
dΦ (t) = bx(t)Φ (t) dt+ σx(t)Φ (t) dW (t) +

∫
Z
ηx (t, z) Φ (t) Ñ (dz, dt) ,

Φ (0) = 1,
(4.40)

and Ψ(t) its inverse .

Proof : Equation (4.4) is linear with bounded coefficients, then it admits a unique strong

solution. Moreover, this solution is inversible and its inverse Ψ(t) = Φ−1 (t) given by the

following jump diffusion:

dΨ(t) =
[
σ2
x(t)Ψ(t)− bx(t)Ψ(t) +

∫
Z
η2
x (t, z) Ψ(t)µ (dz)

]
dt− [σx(t)Ψ(t)] dW (t)

−
∫
Z
ηx (t, z) Ψ(t)Ñ (dz, dt)

Ψ (0) = 1.
(4.41)
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Applying Itô’s formula to Ψ(t)y1 (t) we have

d [Ψ(t)y1 (t)] = y1 (t) dΨ(t) + Ψ(t)dy1 (t)

− [σx(t)Ψ(t)] [σx(t)y1(t) + σu(t)v(t)] dt

−
∫
Z
{ηx (t, z) y1 (t)} ηx (t, z) Ψ(t)µ (dz) dt.

= I1 + I2 + I3, (4.42)

where

I1 = y1 (t) dΨ(t) (4.43)

=
[
y1 (t)σ2

x(t)Ψ(t)− y1 (t) bx(t)Ψ(t) + y1(t)
∫
Z
η2
x (t, z) Ψ(t)µ (dz)

]
dt

− y1 (t)σx(t)Ψ(t)dW (t)

− y1 (t)
∫
Z
ηx (t, z) Ψ(t)Ñ (dz, dt) .

By simple computations, we obtain

I2 = Ψ(t)dy1 (t)

= [Ψ(t)bx(t)y1(t) + Ψ(t)bu(t)v(t)] dt

+ [Ψ(t)σx(t)y1(t) + Ψ(t)σu(t)v(t)] dW (t)

+ Ψ(t)
∫
Z
{ηx (t, z) y1 (t)} Ñ (dz, dt) , (4.44)

and

I3 = − [σx(t)Ψ(t)] [σx(t)y1(t) + σu(t)v(t)] dt (4.45)

−
∫
Z

(ηx (t, z) y1 (t)) ηx (t, z) Ψ(t)µ (dz) dt.

Substituting (4.42), (4.43), and (4.44) into (4.42), we get

Ψ(t)y1 (t)−Ψ(0)y1 (0)

=
[∫ t

0
Ψ(s) [bu(s)− σx(s)σu(s)] v(s)ds

+
∫ t

0
Ψ(s)σu(s)v(s)dW (s). (4.46)

Since y1(0) = 0 and Ψ−1(t) = Φ (t) , then from (4.46) the desired result (4.40) is fulfilled.

This completes the proof of Lemma 4.3.1

To prove the main theorem we need the following technical Lemma.
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Lemma 4.3.2
Let (B1)-(A2) hold. Then we have

(1) H (·) ∈ L2
F ([0, T ] ;R)

(2) For any v ∈ U , there exists φv (·, t) ∈ L2
F ([0, T ] ;R) , and γv (·, t, z) ∈ L2 ([0, T ] ;R)

such that

H(t)(v − ū(t)) = E [H(t)(v − u(t))] +
∫ t

0
φv (s, t) dW (s) +

∫ t

0

∫
Z
γv (s, t, z) Ñ(dz, ds)

(4.47)

a.e. t ∈ [0, T ], P − a.s.

Proof : The proof follows immediately from Lemma 3.9 in [58].

(2) The proof of (4.47) follows from Tang and Li [50, Appendix].

Now, we return to integral type of second order necessary condition and substituting

the explicit representation (4.39) of y1(·) into (4.38), we see that there appears a ”bad”

term in the form

E
∫ T

0

[
H (t) Φ(t)

∫ t

0
Ψ(s)σu(s)v(s)dW (s)

]
v(t)dt, (4.48)

For more details see [58, p.2278] for this type of integrals.

Now, in order to derive a pointwise second order necessary condition from the integral

form in (4.38), we need to choose the following needle variation for the optimal control

u(·):

u(t) =


v, t ∈ Aθ,

u(t), t ∈ [0, T ] | Aθ,
(4.49)

where τ ∈ [0, T ), v ∈ U , and Aθ = [τ, τ+θ) so that θ > 0 and τ+θ ≤ T . Denote by χAθ(·)

the characteristic function of the set Aθ. Then we have v(·) = u(·)−u(·) = (v − u(·))χAθ .

The following theorem constitutes the main contribution of this paper.

Theorem 4.3.1
Let (B1)-(A2) hold. If u(·) is a singular optimal control in the classical sense for the
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stochastic control (3.2)-(3.3), then for any v ∈ U , it holds that

E
(
H(τ)bu(τ)(v − u(τ))2

)
+ ∂+

τ

(
H(τ)(v − u(τ))2σu(τ)

)
≤ 0 a.e. τ ∈ [0, T ] , (4.50)

where

∂+
τ

(
H(τ)(v − u(τ))2σu(τ)

)
(4.51)

:= 2 lim
θ→0+

sup 1
θ2E

∫ τ+θ

τ

∫ t

τ
[φv(s, t)Φ (τ) Ψ (s)σu(s)(v − u(s))] dsdt,

φv(·, t) is determined by (4.47), Φ (·) is given by the following jump process

Φ (t) = Φ (0) +
∫ t

0
bx(s)Φ (s) ds+

∫ t

0
σx(s)Φ (s) dW (s)

+
∫ t

0

∫
Z
ηx (s, z) Φ (s) Ñ (dz, ds) .

and Ψ (·) is determined by

Ψ(t) = Ψ(0) +
∫ t

0

[
σ2
x(s)Ψ(s)− bx(s)Ψ(s) +

∫
Z
η2
x (s, z) Ψ(s)µ (dz)

]
ds

−
∫ t

0
[σx(s)Ψ(s)] dW (s)−

∫ t

0

∫
Z
ηx (s, z) Ψ(s)Ñ (dz, ds) .

Proof : From (4.49), we have v(·) = u(·) − u(·) = (v − u(·))χAθ(·) and the corresponding

solution y1(·) to (4.4) is given by

y1(t) = Φ (t)
∫ t

0
Ψ (s) (bu(s)− σx(s)σu(s)) (v − u(s))χAθ(s)ds (4.52)

+ Φ (t)
∫ t

0
Ψ (s)σu(s)(v − u(s))χAθ(s)dW (s).

Substituting v(·) = (v − u(·))χAθ(·) and (4.52) into (4.38), we have

0 ≥ 1
θ2E

∫ τ+θ

τ
[H (t) y1(t) (v − u(t))] dt

= 1
θ2E

∫ τ+θ

τ

[
H (t) Φ (t)

∫ t

τ
Ψ (s) (bu(s)− σx(s)σu(s)) (v − u(s))ds (v − u(t))

]
dt

+ 1
θ2E

∫ τ+θ

τ

[
H (t) Φ (t)

∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

= Jθ1 + Jθ2 . (4.53)
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From [58, Lemma 4.1], we obtain

lim
θ→0+

Jθ1 = lim
θ→0+

1
θ2E

∫ τ+θ

τ

[
H (t) Φ (t)

∫ t

τ
Ψ (s) (bu(s)− σx(s)σu(s)) (v − u(s))ds (v − u(t))

]
dt

= 1
2E
(
H (τ) (bu(τ)− σx(τ)σu(τ)) (v − u(τ))2

)
. (4.54)

On the other hand, by (4.40), it follows that

Jθ2 = 1
θ2

∫ τ+θ

τ
E
[
H (t) Φ (t)

∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

= 1
θ2

∫ τ+θ

τ
E
[
H (t) Φ (τ)

∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

+ 1
θ2

∫ τ+θ

τ
E
[
H (t)

∫ t

τ
bx(s)Φ (s) ds

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt (4.55)

+ 1
θ2

∫ τ+θ

τ
E
[
H (t)

∫ t

τ
σx(s)Φ (s) dW (s)

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

+ 1
θ2

∫ τ+θ

τ
E
{
H (t)

∫ t

τ

∫
Z
ηx (s, x (s−) , z) Φ (s) Ñ (dz, ds)

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

}
dt.

= Jθ2,1 + Jθ2,2 + Jθ2,3 + Jθ2,4.

By Lemma 4.3.2 , we get

lim
θ→0+

sup Jθ2,1

= lim
θ→0+

sup 1
θ2

∫ τ+θ

τ
E
[
H (t) Φ (τ)

∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

]
dt

= lim
θ→0+

sup 1
θ2

∫ τ+θ

τ
E
[∫ t

τ
Φ (τ) Ψ (s)σu(s)(v − u(s))dW (s)E [H (t) (v − u(t))]

]
dt

+ lim
θ→0+

sup 1
θ2

∫ τ+θ

τ
E
{∫ t

τ
Φ (τ) Ψ (s)σu(s)(v − u(s))dW (s)

∫ t

0
φv(s, t)dW (s)

}
dt

+ lim
θ→0+

sup 1
θ2

∫ τ+θ

τ
E
{∫ t

τ
Φ (τ) Ψ (s)σu(s)(v − u(s))dW (s)

∫ t

0

∫
Z
r (s, z) Ñ (dz, ds)

}
dt

= lim
θ→0+

sup 1
θ2

∫ τ+θ

τ

∫ t

τ
E {Φ (τ) Ψ (s)σu(s)(v − u(s))φv(s, t)} dsdt (4.56)

= 1
2∂

+
τ

(
H (τ) (v − u(τ))2σu(τ)

)
, ∀τ ∈ [0, T ).

It is crucial that, by the Martingale Representation Theorem in Lemma 4.3.2 , we only

know that φv(·, t) ∈ L2
F ([0, t] ;R) for any v ∈ U , and hence, for each τ ∈ [0, T ], the
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function

ϕt (s) = E [Φ (τ) Ψ (s)σu(s)(v − u(s))φv(s, t)] , s ∈ [0, t] , t ∈ [0, T ] ,

is in L1 ([0, t] ;R). See [58] for more details for the superior limit

lim
θ→0+

1
θ2

∫ τ+θ

τ

∫ t

τ
ϕt (s) dsdt.

By simple computations, the last term in (4.56) is in fact a process with zero expectation.

Now, by using similar method in [58], we get

lim
θ→0+

Jθ2,2 = lim
θ→0+

1
θ2

∫ τ+θ

τ
E
{
H (t)

∫ t

τ
bx(s)Φ (s) ds (4.57)

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

}
dt

= 0,

lim
θ→0+

Jθ2,3 = lim
θ→0+

1
θ2

∫ τ+θ

τ
E
{
H (t)

∫ t

τ
σx(s)Φ (s) dW (s) (4.58)

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

}
dt

= 1
2E
(
H (τ) (σx(τ)σu(τ)) (v − u(τ))2

)
,

and

lim
θ→0+

Jθ2,4 = lim
θ→0+

1
θ2

∫ τ+θ

τ
E
{
H (t)

∫ t

τ

∫
Z
ηx (s, x (s−) , z) Φ (s) Ñ (dz, ds) (4.59)

×
∫ t

τ
Ψ (s)σu(s)(v − u(s))dW (s) (v − u(t))

}
dt

= 0.

Finally, substituting (4.54), (4.56), (4.57), (4.58), (4.59) in (4.53), we obtain

E
(
H(τ)bu(τ)(v − u(τ))2

)
+ ∂+

τ

(
H(τ)(v − u(τ))2σu(τ)

)
≤ 0, a.e. τ ∈ [0, T ] .

This completes the proof of Theorem 4.3.1
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Conclusion

In this thesis, a second order necessary conditions for stochastic optimal control of jump

diffusions have been proved. Pointwise second order maximum principle in terms of

the martingale with respect to the time variable has been established. The control variable

is allowed to enter both drift and diffusion terms. The control domain is assumed to be

convex. When the coefficient η ≡ 0, our results coincides with pointwise second-order

maximum principle developed in Zhang and Zhang [58].

When the control enters into both diffusion and jump terms, and the system has the

form:
dx (t) = b (t, x (t) , u (t)) dt+ σ(t, x (t) , u (t))dW (t) +

∫
Z
η (t, x (t−) , u (t) , z) Ñ (dz, dt) ,

x(0) = x0,

(4.60)

the pointwise necessary conditions for optimal stochastic control problem (4.60)-(3.3)

becomes very complicated. It leads to many problems that we cannot solve now. But we

can only establish a second-order maximum principle in integral form.

Following the ideas considered in [58, 59], and in order to establish the second-order

necessary conditions, one needs to assume that the first order condition degenerates in

some sense. So we define a new argument of singularity in the classical sense associated to

control problem (4.60)-(3.3). An admissible control ũ(·) is called singular in the classical
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sense if satisfies

Hu (t, x̃ (t) , ũ (t) , p̃ (t) , q̃ (t) , r̃ (t, z)) = 0 a.s. a.e. t ∈ [0, T ] ,

Huu (t, x̃ (t) , ũ (t) , p̃ (t) , q̃ (t) , r̃ (t, z)) + P̃ (t) (σu (t, x̃ (t) , ũ (t)))2

+
∫
Z

(P̃ (t) (ηu (t, x̃ (t) , ũ (t) , z))2 + R̃ (t, z) (ηu (t, x̃ (t) , ũ (t) , z))2)µ (dz) = 0 a.e. a.s.,

(4.61)

where (p̃ (·) , q̃ (·) , r̃ (·)) and (P̃ (·) , Q̃ (·) , R̃ (·)) are the adjoint processes given respectively

by (4.16) and (4.17) associated to (x̃ (·) , ũ (·)) .

By using similar arguments developed above, and under the conditions (B1), (A2)

with some additional assumptions on the jump coefficient η, we can establish second-

order necessary conditions in integral form:

Theorem 4.3.2
If u (·) is a singular optimal control in the classical sense defined in (4.61), then we

have

E
∫ T

0
H(t)y1(t)v(t)dt ≤ 0, (4.62)

for any v (·) = u (·)− u (·) with u (·) ∈ Uad, where H has the form

H (t, x, u, p, q, r, P,Q,R) = Hxu (t, x, u, p, q, r) + bu (t, x, u)P (t) + σu (t, x, u)Q(t)

+ σu (t, x, u)P (t)σx (t, x, u) +
∫
Z
ηu (t, x, u, z)R (t, z)µ (dz)

+
∫
Z
ηu (t, x, u, z)P (t)ηx (t, x, u, z)µ (dz)

+
∫
Z
ηu (t, x, u, z)R (t, z) ηx (t, x, u, z)µ (dz) . (4.63)

and y1(t) is the solution of the first variational equation

dy1 (t) = {bx (t) y1 (t) + bu (t) v (t)} dt+ {σx (t) y1 (t) + σu (t) v (t)} dW (t)

+
∫
Z
{ηx (t, z) y1 (t−) + ηu (t, z) v (t)} Ñ (dz, dt) ,

y1(0) = 0,

(4.64)

The main difficulties to prove pointwise second order necessary conditions of optimality

arise due to the appearance of many new "bad" terms. The presence of control variable

in jump coefficient creates some new superior limits, which are difficult to obtain.

Moreover, our classical assumptions are not sufficient to ensure the existence of these
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superior limits. We hope to solve it in the near future. Another challenging problem

left unsolved is to derive a pointwise second order necessary conditions for such control

problems in the case where the control domain is not assumed to be convex.
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