الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement supérieur et de la recherche scientifique

Université Mohamed Khider – Biskra Faculté des Sciences et de la technologie Département de Génie civil et d'Hydraulique Ref :.....

جامعة محمد خيضر بسكرة كلية العلوم و التكنولوجي قسم : الهندسة المدنية والري المرجع:....

Thèse présentée en vue de l'obtention du Diplôme de

Doctorat en sciences

Spécialité : Hydraulique

Option : Sciences Hydrauliques

THÈME

Le ressaut hydraulique évoluant dans un canal rectangulaire de forme composée

Présentée par :

RIGUET FERHAT

Soutenue le : 09 /12 / 2021

Devant le jury composé de :

Président :	OUAMANE Ahmed
Rapporteur :	DEBABECHE Mahmoud

Examinateur : HOUICHI Larbi

Examinateur : KATEB Samir

Professeur	Université de Biskra
Professeur	Université de Biskra
Professeur	Université de Batna
Professeur	Université d'Ouargla

Résumé

Cette présente thèse a pour but d'analyser expérimentalement le ressaut hydraulique contrôlé et le ressaut de type, A forcé par seuil mince, par seuil épais et par marche positive évoluant dans un canal rectangulaire de section composée. L'objectif principal de cette étude est d'examiner expérimentalement l'effet de la section composée ainsi que l'influence du seuil et de la marche positive sur les caractéristiques du ressaut. En outre, plusieurs relations empiriques ont été obtenues, permettant le dimensionnement du bassin de dissipation pour les deux configurations du ressaut.

Mots clés: Ressaut hydraulique, canal rectangulaire composé, bassin de dissipation, nombre de Froude, Ressaut forcé, marche positive, Canal a ciel ouvert.

Abstract

The purpose of this thesis is to experimentally analyze the controlled hydraulic jump and the type A jump forced by a thin sill, by thick sill and by positive step evolving in a rectangular channel of compound section. The main objective of this study is to experimentally examine the effect of the compound section as well as the influence of the sill and the positive step on the characteristics of the jump. In addition, several empirical relationships have been obtained, allowing the dimensioning of the stilling basin for the two projection configurations of jump.

Keywords: hydraulic jump, rectangular channel of compound section, stilling basin, Froude number, Forced jump, positive step, Open-air canal.

ملخص

الهدف من هذه الأطروحة هو التحليل التجريبي للقفز ة الهيدروليكية المراقبة والقفزة الهيدروليكية المجبرة من النوع- أ-بعتبة رفيعة ، بعتبة سميكة وبعتبة إيجابية في قناة مستطيلة ذات مقطع مركب. الهدف الرئيسي من هذه الدراسة هو البحث عن مدى تأثير المقطع المركب للقناة وكذلك تأثير نوع العتبة على خصائص القفزة المائية. وقد تم الحصول على العديد من العلاقات التجريبية التي تسمح بتحديد أبعاد حوض التهدئة لنموذجي القفزة المائية.

الكلمات المفتاحية : قفزة هيدروليكية ، قناة مستطيلة مركبة ، حوض التهدئة ، عدد فرود ، قفزة مجبرة ، عتبة إيجابية ، قناة مفتوحة.

REMERCIEMENTS

Je tiens à remercier DIEU de m'avoir donné la force, la patience, la volonté et le courage de mener à bon terme ce modeste travail.

Je tiens à remercier vivement mon encadreur, monsieur Debabeche Mahmoud, professeur a l'université de Biskra, qui n'a, à aucun instant, cessé de prodiguer ses judicieux conseils ses aides et assistance scientifique et morale, afin de rendre plus facile mon travail pour l'achèvement de ma thèse.

Je remercie très chaleureusement monsieur Ouamane Ahmed, professeur a l'université de Biskra, qui m'a fait l'honneur de présider ce jury de soutenance.

J'exprime mes plus sincères remerciements a monsieur Houichi Larbi, professeur a l'université de Batna, qui ma fait l'honneur d'accepter de jugé cette thèse.

Je tiens encore à exprimer mes profondes gratitudes et mes vives reconnaissances a monsieur Kateb Samir, professeur a l'université d'Ouargla, d'avoir accepté de participé au jurer de soutenance.

Je remercie profondément monsieur Ghomri Ali, professeur a l'université d'El Oued, pour son aide permanente.

Mes plus vifs remerciements vont également à tous ceux qui ont participé de prés ou de loin à la réalisation de ce travail.

إهداء

أهدي هذا العمل المتواضع إلى روح والدي الكريم رحمه الله واسكنه فسيح جنانه حبا له وتقديرا لفضله إلى أمي برا و حنانا أطال الله في عمرها إلى رفيقة دربي وشريكتي في الحياة زوجتي على صبرها الجميل و مساندتها التي لا تقدر بثمن إلى أولادي قصي، منار، رزان و معاذ راجيا من الله تعالى أن يحفظهم و يوفقهم في دراستهم و في حياتهم

كما اهدي هذا العمل إلى كل من يفرح لفرحي و يحزن لحزني.

Sommaire

SOMMAIRE

Sommaire	i
Liste des photos et figures	viii
Liste des tableaux	xxiv
Principales notations	xxix
INTRODUCTION GÉNÉRALE	01
<u>Première partie</u>	
SYNTHESE BIBLIOGRAPHIQUE	
INTRODUCTION À LA PREMIÈRE PARTIE	04
Chapitre. I	
RESSAUT HYDRAULIQUE CONTROLE DANS UN CANAL	
RECTANGULAIRE	
I.1. Introduction	05
I.2. RESSAUT HYDRAULIQUE CLASSIQUE	05
I.2.1. Forme du ressaut classique	06
I.2.2. ÉTUDE DE HAGER ET AL (1990)	07
I.2.2.1. Rapport des hauteurs conjuguées du ressaut	08
I.2.2.2. Longueurs caractéristiques du ressaut	09
I.2.2.2.1. Longueur du rouleau	09
I.2.2.2.2. Longueur du ressaut	11
I.2.2.3. Rendement du ressaut	12
I.2.3. ETUDE DE HAGER (1992)	14
I.2.3.1. Procédure expérimentale	14
I.2.3.2. Analyse des données	15
I.3. RESSAUT HYDRAULIQUE CONTROLE PAR SEUIL MINCE	16
I.3.1. APPROCHE DE FORSTER ET SKRINDE (1950)	16
I.3.2. ETUDE DE ACHOUR ET AL (2002)	17
I.3.2.1. Essais pour $X \simeq Lr$	17
I.3.2.2. Essais pour $X \cong Lj$	19
I.4. RESSAUT HYDRAULIQUE CONTROLE PAR SEUIL EPAIS	21
I.4.1. APPROCHE DE FORSTER ET SKRINDE (1950)	21
I.4.2. APPROCHE DE ACHOUR ET AL (2002)	23

I.4.2.1. Configuration avec vanne de fond	23
I.4.2.2. Configuration avec déversoir standard	25
I.5. RESSAUT HYDRAULIQUE CONTROLE PAR MARCHE POSITIVE	27
I.5.1. APPROCHE DE FORSTER ET SKRINDE (1950)	27
I.6. Conclusion	28

Chapitre .II

RESSAUT HYDRAULIQUE FORCE DANS UN CANAL RECTANGULAIRE	
II.1. Introduction	30
II.2. RESSAUT HYDRAULIQUE FORCE PAR SEUIL MINCE	30
II.2.1. APPROCHE DE RAND (1957)	30
II.2.2. APPROCHE DE RAJARATNAM (1964)	32
II.2.3. APPROCHE DE RAJARATNAM ET MURAHARI (1971)	33
II.2.4. APPROCHE DE BRETZ (1988)	33
II.2.4. 1. Généralités	33
II.2.4.2. Procédure expérimentale	34
II.2.4.3. Hauteurs conjuguées du ressaut	35
II.2.4.4. Longueur relative du bassin	37
II.2.4.5. Approche de Hager et Li (1992)	39
II.2.4.5.1. Rapport des hauteurs conjuguées	39
II.2.4.5.2. Longueur du bassin	40
II.3. RESSAUT HYDRAULIQUE FORCE PAR MARCHE POSITIVE	41
II.3.1. TRAVAUX DE HAGER ET SINNIGER (1986)	42
II.3.2. TRAVAUX DE HAGER ET BRETZ (1987)	44
II.4. Conclusion	46

Chapitre III

RESSAUT HYDRAULIQUE DANS UN CANAL RECTANGULAIRE COMPOSE

III.1. Introduction	48
III.2. ETUDE DE KHATTAOUI ET ACHOURE (2012)	48
III.2.1. Rapport des hauteurs conjuguées	48
III.2.2. Rendement du ressaut	51
III.3. ETUDE DE BENABDESSELAM ET Al (2017)	52
III.3.1. Installation expérimental	52

III.3.2. Approche théorique pour les hauteurs conjuguées	53
III.4. La perte d'énergie relative	54
III.5. Résultats et discussions	55
III.5.1. Validation de la relation des hauteurs conjuguées	55
III.5.2. Validation de la relation de la perte d'énergie relative	57
III.6. Conclusion	58

RESSAUT HYDRAULIQUE CONTROLE DANS UN CANAL RECTANGULAIRE DE FORME COMPOSÉE

I.1. Introduction	65
I.2. RESSAUT HYDRAULIQUE CONTRÔLÉ PAR SEUIL MINCE	
EN CANAL RECTANGULAIRE DE FORME COMPOSÉE	65
I.2.1. Description du modèle	65
I.2.1.1. Description du canal	65
I. 2.1.2. Mesure du débit	68
I. 2.1.3. Limnimétrie	68
I.2.1.4. les Seuils mince	70
I.2.2. Résultats expérimentaux .	70
I.2.2.1. Position du problème	70
I.2.2.2. Procédure expérimentale :	71
I.2.3. Analyse des résultats expérimentaux	73
I.2.3.1. Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude	
F ₁	73
I.2.3.2. Longueurs caractéristiques du ressaut	80
I.2.3.2.1. Variation de la longueur relative Lj/h_1 du ressaut en fonction du nombre de	
Froude F ₁	80

I.2.3.2.2. Variation de la longueur relative Lr/h_1 du rouleau de surface en fonction du	
nombre de Froude F ₁	82
I.2.3.3. Variation du la hauteur relative s/h_1 en fonction du nombre de Froude F_1	83
I.2.3.4. Rendement du ressaut hydraulique	89
I.2.3.5. Profil de surface du ressaut	92
I.3. RESSAUT HYDRAULIQUE CONTRÔLÉ PAR SEUIL EPAIS	
EN CANAL RECTANGULAIRE DE FORME COMPOSÉE	94
I.3.1. Description du modèle	94
I.3.1.1. Description du canal	94
I.3.1.2. Les Seuils épais	94
I.3.2. Résultats expérimentaux	95
I.3.3. Analyse des résultats expérimentaux	96
I.3.3.1.Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude	
F ₁	96
I.3.3.2. Longueurs caractéristiques du ressaut	103
I.3.3.2.1. Variation de la longueur relative Lj/h_1 du ressaut en fonction F_1	103
I.3.3.2.2. Variation de la longueur relative Lr/h_1 du rouleau de surface en fonction du	
nombre de Froude F ₁	105
I.3.3.3. Variation du la hauteur relative s/ h_1 en fonction du nombre de Froude F_1	106
I.3.3.4. Rendement du ressaut hydraulique	111
I.3.3.5. Profil de surface du ressaut	113
I.4. RESSAUT HYDRAULIQUE CONTRÔLÉ PAR MARCHE POSITIVE	
EN CANAL RECTANGULAIRE DE FORME COMPOSÉE	115
I.4.1. Description du modèle	115
I.4.1.1. Description du canal	115
V.4.1.2. Les marches positives	115
I.4.2. Résultats expérimentaux	116
I.4.3. Analyse des résultats expérimentaux	117
I.4.3.1.Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude	
F ₁	117
I.4.3.2. Longueurs caractéristiques du ressaut	124
I.4.3.2.1. Variation de la longueur relative Lj/h_1 du ressaut en fonction du nombre de	
Froude F ₁	124

I.4.3.2.2. Variation de la longueur relative Lr/h_1 du ressaut en fonction du nombre de	
Froude F ₁	126
I.4.3.3.Variation du la hauteur relative s/h ₁ en fonction du nombre de Froude F_1	127
I.4.3.4. Rendement du ressaut hydraulique	132
I.4.3.5. Profil de surface du ressaut	134
I.5. ETUDE COMPARATIVE	136
I.5.1. Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude F_1	136
I.5.2. hauteur relative du seuil et de la marche positive	137
I.5.3. Longueur relatif du bassin	138
I.5.3. Rendement du ressaut hydraulique	138
I.6. Exemple d'application	139
I.6.1. Ressaut contrôlé par seuil mince	139
I.6.2. Ressaut contrôlé par seuil épais	140
I.6.3. Ressaut contrôlé par marche positive	140
I.7. Conclusion	141

CHAPITRE .II

RESSAUT HYDRAULIQUE FORCE TYPE A DANS UN CANAL RECTANGULAIRE DE FORME COMPOSEE

II.1. Introduction	143
II.2. RESSAUT HYDRAULIQUE FORCE PAR SEUIL MIN	
EN CANAL RECTANGULAIRE DE FORME COMPOSÉE	143
II.2.1 DESCRIPTION DU MODELE	143
II.2.1.1. Description du canal	143
II.2.1.2. Position du problème	144
II.2.2. Résultats expérimentaux	145
II.2.2.1. Procédure expérimentale	145
II.2.3 Analyse des résultats expérimentaux	147
II.2.3.1 Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude	
F ₁	147
II.2.3.2. position relative du seuil	148
II.2.3.3 Longueur relative $\lambda_B = L_B/h_1$ du bassin	150
II.2.3.4 Hauteur relatif du seuil	151

II.2.3.5 Rendement du ressaut hydraulique	160
II.3. RESSAUT HYDRAULIQUE FORCE PAR SEUIL E	
EN CANAL RECTANGULAIRE DE FORME COMPOSÉE	162
II.3.1 DESCRIPTION DU MODELE	162
II.3.1.1. Description du canal	162
II.3.2. Résultats expérimentaux	163
II.3.2.1. Procédure expérimentale	163
II.3.3 Analyse des résultats expérimentaux	164
II.3.3.1 Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude	
F ₁	164
II.3.3.2. position relative du seuil épais	165
II.2.2.3 hauteur relatif du seuil	167
II.2.3.4 Rendement du ressaut hydraulique	174
II.3. RESSAUT HYDRAULIQUE FORCE PAR MARCHE POSITIV	
EN CANAL RECTANGULAIRE DE FORME COMPOSÉE	175
II.3.1 DESCRIPTION DU MODELE	175
II.3.1.1. Description du canal	175
II.3.2 Résultats expérimentaux	177
II.3.2.1. Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude	
F ₁	177
II.3.2.2. position relative de la marche positive $\lambda s = Ls/h_1$	178
II.3.2.3 hauteur relatif de la marche positive	180
II.3.2.4. Rendement du ressaut hydraulique	187
II.4. INFLUENCE DU SEUIL SUR LE RESSAUT HYDRAULIQUE EN CANALE	
RECTANGULAIRE COMPOSE	189
II.4.1 Rapport des hauteurs conjuguées du ressaut	189
II.4.2. position relative du seuil et de la marche positive	191
II.4.3. Rendement du ressaut hydraulique	192
II.5. Exemple d'application	193
II.5. 1. Ressaut forcé par seuil mince	194
II.5. 1. Ressaut forcé par seuil épais	194
II.5. 1. Ressaut forcé par marche positive	195
II.6. Conclusion	195

CONCLUSION DE LA DEUXIEME PARTIE	197
CONCLUSION GÉNÉRALE	200
Référence bibliographique	207

LISTE DES PHOTOS ET FIGURES

PREMIERE PARTIE

CHAPITRE I

Figure I.1	Forme du ressaut classique selon la classification de Bradley et Peterka	
	(1957). a) Pré-ressaut, b) Ressaut de transition, c) Ressaut stable, d)	
	Ressaut agité	07
Figure I.2	Ressaut hydraulique classique	08
Figure I.3	Représentation graphique de l'équation de Bélanger(1828)	09
Figure I.4	Ressaut hydraulique avec: a) rouleau développé. b) rouleau non	
	développé	10
Figure I.5	Longueur du ressaut classique Lj/h_2 en fonction de F_1 (Peterka 1958).	
	Domaines du ressaut: 1 ressaut de transition, 2 ressaut bon, 3 ressaut	
	acceptable, 4 ressaut moins accepté	11
Figure I.6	() Ligne de charge totale le long du ressaut classique	12
Figure I.7	Rendement η du ressaut classique en fonction du nombre de Froude F_1	
	(
	la relation (I.14)	14
Figure I.8	Données expérimentales de Bakhmeteff et Matzke (1936); $F_1 = 1,99$	
	(▲); 2,92 (■); 4,10(•); 5,52 (♥) et 8,64(•); et pour Schröder (1963),	
	F_1 =3,85(Δ); 4,25(□); 4,8(○); 5,41 (∇) et 6,06(◊);(—) équation (I.16)	
	selon (Hager1992)	15
Figure I.9	ressaut contrôlé par seuil mince	16
Figure I.10	Variation expérimentale du nombre de Froude F1 en fonction de la	
	hauteur relative s/h1 du seuil a paroi mince pour quelques valeurs de	
	x/h ₂ , selon Forster et skrinde (1950)	17
Figure I.11	Variation expérimentale de la hauteur relative s/h1 du seuil a paroi	
	mince en fonction du nombre de Froude de l'écoulement incident, pour	
	quelques valeurs de x/h ₂	18
Figure I.12	Variation expérimentale de $C_{\rm o}$ en fonction de la position relative X/h_2	
	du seuil à paroi mince	18
Figure I.13	Contrôle du ressaut par un seuil à paroi mince pour X≅ Lj	19
Figure I.14	Variation expérimentale du rapport Y des hauteurs conjuguées du	
	ressaut en fonction de la hauteur relative s/h1 du seuil à paroi mince	

	Chanitre II	
	(1950)	28
	hauteur relative s/h1 de la marche positive, selon Forster et Skrinde	
Figure I.23	Variation du nombre de Froude F1, en fonction de h3/h1 et de la	
	pressions	27
	hachurées correspondent à la répartition supposée hydrostatique des	
Figure I.22	Ressaut forcé par marche positive de hauteur "s", les parties	
	standard. P.d.c : pertes de charge sur le parement aval du déversoir	26
Figure I.21	Ressaut contrôlé par un seuil à paroi épaisse à l'aval d'un déversoir	
	fond, selon Achour (1998)	23
Figure I.20	Ressaut contrôlé par un seuil à paroi épaisse à l'aval d'une vanne de	
	(1950). Courbe tracée selon la relation (I.33)	23
	hauteur relative s/h1 du seuil à paroi épaisse, selon Forster et Skrinde	
Figure I.19	Variation expérimentale du nombre de Froude IF1 en fonction de la	
	longueur L	22
Figure I.18	Ecoulement franchissant un seuil épais continu de hauteur s et de	
	rectangulaire(X \cong Lj). () courbe tracée selon la relation (I.31)	21
	mince en fonction de $(F_1 - 1)$ lors du contrôle du ressaut dans un canal	
Figure I.17	Variation expérimentale de la position relative X/h1 du seuil à paroi	
	ressaut dans un canal rectangulaire(X \cong Lj)	21
	mince en fonction du nombre de Froude incident F_1 lors du contrôle du	
Figure I.16	Variation expérimentale de la position relative X/h ₂ du seuil à paroi	
	$(X \cong Lj)$. () courbe tracée selon la relation (I.30)	20
	mince en fonction du nombre de Froude F ₁ de l'écoulement incident	
Figure I.15	Variation expérimentale de la hauteur relative s/h1 du seuil à paroi	
	$(X \cong Lj)$ () courbe tracée selon la relation (I.29)	20

<u>Chapitre II</u>

Figure II.1	Cas typiques d'écoulement divisés en trois classes :	
	0) ressaut classique; 1) classe 1, longueur L _S ,min; 2) classe 2, longueur	
	intermédiaire L_S ; 3) classe 3, longueur L_S ,max, et 4) ressaut classique	
	avec hauteurs conjuguées h_1 et h_2 . s : hauteur du seuil, s_c : hauteur	
	critique du seuil et s _{max} : hauteur maximale du seuil	31
Figure II.2	Hauteurs conjuguées $h_2/h_1 = f(S, K)$ pour $F_1 = 9$. Valeurs et courbes	
	expérimentales ; () limite d'influence de l'aval sur l'amont	32

Figure II.3	Variation du coefficient de traîné Cd en fonction de la position relative	
	du seuil λ_s =Ls/Lr dans l'écoulement Rajaratnam (1964); points	
	expérimentaux et courbe moyenne	33
Figure II.4	Ressaut forcé par seuil à paroi mince. Répartition des vitesses pour F_1	
	= 5,6 et s = 50 mm	33
Figure II.5	Ressaut forcé par seuil. Distribution des vitesses pour $IF_1=5,23$ et	
	S=1,42. a) ressaut type A; b) ressaut type B; c) ressaut type B	
	minimum; d) ressaut type C et e) onde. (Bretz, 1987)	34
Figure II.6	Ressaut forcé par seuil : définition des termes. H_1 charge amont, H_2	
	charge aval, ΔH perte de charge. H_1 hauteur d'eau amont, h_2 hauteur	
	d'eau aval, s hauteur du seuil, x_0 position du pied du ressaut, xs	
	position du seuil, x_{rf} position de la fin du rouleau de fond a l'aval, L_{rf}	
	position de la fin du rouleau de fond a l'aval, L_R longueur du rouleau	
	de surface, L_{RF} longueur du rouleau de fond aval, L_B distance entre le	
	pied du ressaut et la fin du rouleau aval	35
Figure II.7	Ressaut forcé type A. rapport des hauteurs conjuguées $YA = f(F1,S)$	
	avec $0.5 \le S \le 6.S = s/h_1$. () courbe selon l'équation de Bélanger. ()	
	courbe du ressaut classique selon l'équation (1.48)	36
Figure II.8	Ressaut forcé type B. Rapport des hauteurs conjuguées $Y_B = f(IF_1, S)$.	
	Même notation que la figure II.7	36
Figure II.9	Ressaut forcé type B-min. Rapport des hauteurs conjuguées $Y_{B-min} =$	
	f(IF ₁ ,S). Même notation que la figure II.7	37
Figure II.10	longueur relative $\lambda s = f(F_1)$ pour le ressaut forcé : a) type A, b) type B	
	et c) type B-min. (—) courbe selon l'équation : a) (II.6), b) (II.8) et c)	
	(II.10) respectivement. () courbe limite	38
Figure II.11	longueur relative $\lambda_B = f(F_1)$ pour le ressaut forcé : a) type A, b) type B	
	et c) type B-min. (—) courbe selon l'équation : a) (II.7), b) (II.9) et c)	
	(II.11) respectivement. () courbe limite	38
Figure II.12	Réduction de hauteur aval ΔY_s suite à la présence du seuil, fonction de	
	La position relative $(1-\Lambda)^2$ et de la hauteur relative S du seuil. S = (∇)	
	1, (o) 2, (Δ) 3 et (\Box) 4. () équation (II.13. () équation (II.14)	39
Figure II.13	Variation de δ en fonction de la position relative (1- Λ) pour S = (∇) 1,	

	(•) 2, (Δ) 3 et (\Box) 4	40
Figure II.14	I Longueur relative Φ du bassin en fonction de la position relative du	
	seuil (1- Λ). S = (∇) 1, (o) 2, (Δ) 3 et (\Box) 4 pour un ressaut du type B.	
	Les signes blancs correspondent aux ressauts des types A et B-	
	minimum. (—) équation (II.16)	41
Figure II.15	types de ressaut hydraulique évaluant dans un canal doté d'une marche	
	positive. (a) ressaut type A (b) ressaut type B. (c) ressaut type B-min	42
Figure II.16	a) zones de séparation d'écoulement pour une marche positive, (+) et	
	(-) indiquent respectivement les suppressions et les dépressions par	
	rapport à la pression hydrostatique. b) répartition de la pression autour	
	du volume de contrôle	43
Figure II.17	variation du rapport Y des hauteurs conjuguées en fonction du nombre	
	de Froude F ₁ pour différentes hauteurs relatives S de marche positive.	
	(-) courbes théorique pour divers S selon Hager et Sinniger (1986);	
	points expérimentaux de Froude et Forster Skrinde (1950) () la	
	limite théorique	43
Figure II.18	variation du rapport Y des hauteurs conjuguées en fonction du nombre	
	de FROUDE F_1 pour les marche positive et négative dans un canal	
	rectangulaire prismatique () ressaut type A, (-) ressaut type B et	
	Bmin , () la limite inférieure de l'apparition du ressaut sur marche	
	positive	44
Figure II.19	efficacité $\eta\text{=}$ ΔH /H1 en fonction de F1 et de S () ressaut type A	
	marche négative, (s= 0) ressaut type B sur marche positive () ressaut	
	type B-min sur marche négative	45
	CHAPITRE III	
Figure III.1	Schéma de définition du ressaut hydraulique en canal composé droit	48
Figure III.2	Variation de Y, calculé par (III.4), en fonction de F ₁ . () : $\beta = 1$	50
Figure III.3	Variation de Y en fonction de F_1 . (o) : équation (III.6), (+) : équation	
	(III.4)	51
Figure III.4	Variation de ε en fonction de F ₁ . () : $\beta = 1$. Y est calculé par	
	l'équation (III.3)	51
Figure III.5	Variation de η en fonction de F ₁ . (0) : équation (III.2), (+) : équation	
	(III.1)	52

Schéma de définition du ressaut hydraulique dans un canal composé	
rectangulaire droit	52
Rapport des hauteurs conjuguées en fonction du nombre de Froude	
incident pour $\tau y = 0.25$ (sans Fx)	56
Rapport des hauteurs conjuguées en fonction du nombre de Froude	
incident pour $\tau y = 0,333$ (sans Fx)	56
Rapport des hauteurs conjuguées en fonction du nombre de Froude	
incident pour $\tau y = 0.5$ (avec Fx)	56
Perte d'énergie relative en fonction du nombre de Froude incident ;	
Valeurs théoriques et expérimentales dans le canal composé	
rectangulaire droit et dans le canal rectangulaire	57
Evolution de la perte d'énergie relative (valeurs théoriques et	
expérimentales), entre les deux limites de \pm 5%	58
	Schéma de définition du ressaut hydraulique dans un canal composé rectangulaire droit Rapport des hauteurs conjuguées en fonction du nombre de Froude incident pour $\tau y = 0,25$ (sans Fx) Rapport des hauteurs conjuguées en fonction du nombre de Froude incident pour $\tau y = 0,333$ (sans Fx) Rapport des hauteurs conjuguées en fonction du nombre de Froude incident pour $\tau y = 0,5$ (avec Fx) Perte d'énergie relative en fonction du nombre de Froude incident ; Valeurs théoriques et expérimentales dans le canal composé rectangulaire droit et dans le canal rectangulaire Evolution de la perte d'énergie relative (valeurs théoriques et expérimentales), entre les deux limites de $\pm 5\%$

DEUXIEME PARTIE

CHAPITRE I

Figure I.1	Schéma simplifié du canal de mesure de section rectangulaire	
	composé, ayant servi à l'expérimentation	66
Photos I.1	Photographie du canal de mesure utilisé	66
Photos I.2	Photographie d'une série de convergent	67
Photos I.3	Photographie de la boite en charge	67
Photos I.4	Photographie d'une vanne de régulation du débit	67
Photos I.5	Photographie d'une Pompe centrifuge	67
Photos I.6	Photographie du bassin d'accumulation	67
Photos I.7	Photographie du déversoir rectangulaire	67
Photos I.8	pointe limnimétrique	69
Figure I.2	Mesure de la profondeur d'eau par pointe limnimétrique	69
Photos I.9	Photographie de la série de seuil	70
Figure I.3	configuration du ressaut en canal rectangulaire composé	70
Figure I.4	Schéma simplifié d'un ressaut hydraulique contrôlé par seuil mince	
	évoluant dans un canal rectangulaire composé	71
Photo I.10	Photographie d'un ressaut hydraulique contrôlé par seuil mince $F_1 = 5$,	
	58; s =6 cm; Lj =103 cm; h_2 =15,8 cm; h_1 =2,5cm	72

Photo I.11	Photographie d'un ressaut hydraulique contrôlé par seuil mince $F_1 = 8$,	
	24; s =15 cm; Lj =186 cm; h_2 =24,9 cm ; h_1 =2,5cm	72
Figure I.5	Variation du rapport Y des hauteurs conjuguées en fonction du nombre	
	de Froude F_1 pour les deux lits du canal, (o) points de mesures	
	expérimentales en lit majeur; (Δ) points de mesures expérimentales en	
	lit mineur. (—) Courbes d'ajustement	73
Figure I.6	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en	
	fonction de la hauteur relative $S=s/h_1$ du seuil. (o) points de mesures	
	expérimentales en lit majeur; (أ) points de mesures expérimentales	
	en lit mineur. (—) courbes d'ajustement	75
Figure I.7	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en	
	fonction de la hauteur relative S =s/h ₁ du seuil Pour h/h ₂ < 1. (\diamondsuit)	
	$h_1=2cm$; (\Box) $h_1=2,5cm$; (Δ) $h_1=3cm$; (\circ) $h_1=3,5cm$; (*) $h_1=4cm$	75
Figure I.8	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en	
-	fonction de la hauteur relative S $=$ s/h ₁ du seuil respectivement pour	
	$h_1/B=(0,03; 0,041; 0,05; 0,058; 0,066).$ (o) points expérimentaux.	
	(—) courbe d'équation	76
Figure I.9	Variation du paramètre 'b' en fonction de h ₁ /B	78
Figure I.10	Variation de Y exp en fonction de Y app. (o) Points expérimentaux.	
	() Première bissectrice d'équation : Yexp = Y app	79
Figure I.11	Variation du la longueur relative Lj/h1en fonction du nombre de	
	Froude F_1 , (o) points de mesures expérimentales en lit majeur; (Δ)	
	points de mesures expérimentales en lit mineur. () Courbes	
	d'ajustement	80
Figure I.12	Variation du la longueur relative Lr/h1en fonction du nombre de	
	Froude F_1 , (o) points de mesures expérimentales en lit majeur; (Δ)	
	points de mesures expérimentales en lit mineur. () Courbes	
	d'ajustement	82
Figure I.13	Variation du la hauteur relative s/h1en fonction du nombre de Froude	
	F_1 , (o) points de mesures expérimentales en lit majeur; (Δ) points de	
	mesures expérimentales en lit mineur. () Courbes	
	d'ajustement	84

Figure I.14	Variation du rapport S =s/h ₁ de la hauteur relative du seuil en fonction	
	du nombre de Froude F ₁ Pour $h_0/h_2 \ge 1$. (\diamondsuit) $h_1=2 \text{ cm}$; (\Box) $h_1=2,5 \text{ cm}$;	
	(Δ) h ₁ =3 cm ; (\circ) h ₁ =3,5 cm ; (*) h ₁ =4 cm	84
Figure I.15	Variation du rapport de la hauteur relative du seuil S $=s/h_1$ en fonction	
	du nombre de Froude F_1 du ressaut respectivement pour $h_1/B=$	
	(0,033; 0,041; 0,05; 0,058; 0,06). (o) points expérimentaux. ()	
	courbe d'équation	85
Figure I.16	Variation du paramètre 'a' en fonction de h ₁ /B	87
Figure I.17	Variation du paramètre 'b' en fonction de h_1/B	87
Figure I.18	Variation de la hauteur relative s/h_1 du seuil en fonction de la relation	
	f (F1, h1/B). (o) Points expérimentaux. () Première bissectrice	
	d'équation : $s/h_1 = f(F_1, h_1/B)$	88
Figure I.19	Variation du rendement η en fonction du nombre de Froude $F_{1}.$ (o)	
	points de mesures expérimentales en lit majeur; (0) points de mesures	
	expérimentales en lit mineur	90
Figure I.20	Profil de surface du ressaut	92
Figure I.21	Profil de surface du ressaut hydraulique dans un canal rectangulaire de	
	forme composée, h_1 : (◊) 2 ; (□) ; 2,5 ; (Δ) 3 ; (o) 3,5 ; (*) 4	92
Figure I.22	Schéma simplifié du canal de mesure de section rectangulaire	
	composé, ayant servi à l'expérimentation	94
Photo I.12	Photographie des seuils épais	95
Figure I.23	Schéma simplifié d'un ressaut hydraulique contrôlé par seuil épais	
	évoluant dans un canal rectangulaire composé	95
Photo I.13	Photographie d'un ressaut hydraulique contrôlé par seuil épais $F_1 = 5$,	
	34; s =5.4 cm; Lj =102 cm; h_2 =15,6 cm ; h_1 =2,5cm	95
Photo I.14	Photographie d'un ressaut hydraulique contrôlé par seuil épais $F_1 = 8$,	
	33; s =15 cm; Lj =183 cm; h_2 =25,2 cm ; h_1 =2,5cm	96
Figure I.24	Variation du rapport Y des hauteurs conjuguées en fonction du nombre	
	de Froude F_1 pour les deux cas du canal, (o) points de mesures en lit	
	majeur; (Δ) points de mesures en lit mineur. (—) Courbes	
	d'ajustement	96
Figure I.25	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en	
	fonction de la hauteur relative S =s/h ₁ du seuil. o) points de mesures en	

	lit majeur; (Δ) points de mesures en lit mineur. (—) courbe	
	d'équation	98
Figure I.26	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en	
	fonction de la hauteur relative S =s/h ₁ du seuil épais Pour $h_0/h_2 < 1$.	
	$h_1: (\Diamond) 2; (\Box) 2,5; (\Delta) 3; (o) 3,5; (*) 4$	98
Figure. I.27	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé par	
	seuil épais en fonction de la hauteur relative S $=s/h_1$ du seuil	
	respectivement pour $h_1/B = (0,03; 0,041; 0,05; 0,058; 0,066)$. (o)	
	points expérimentaux. (—) courbe d'équation	99
Figure. I.28	Variation du coefficient "a" en fonction de la hauteur relative "y1"	101
Figure. I.29	Variation du coefficient "b" en fonction de la hauteur relative " y_1 "	102
Figure. I.30	Variation de Y exp en fonction de Y app. (o) Points expérimentaux.	
	(—) Première bissectrice d'équation : Yexp = Y app	102
Figure. I.31	Variation du la longueur relative Lj/h1en fonction du nombre de	
	Froude F_1 , (o) points de mesures en lit majeur; (Δ) points de mesures	
	en lit mineur. (—) Courbes d'ajustement	104
Figure. I.32	Variation du la longueur relative Lr/h1en fonction du nombre de	
	Froude F_1 , (o) points de mesures en lit majeur; (Δ) points de mesures	
	en lit mineur. (—) Courbes d'ajustement	105
Figure. I.33	Variation de la hauteur relative s/h1en fonction du nombre de Froude	
	F_1 , (o) Points de mesures expérimentales en lit majeur; (\diamond) points de	
	mesures expérimentales en lit mineur. () Courbes	
	d'ajustement	107
Figure. I.34	Variation du rapport $S=s/h_1$ de la hauteur relative du seuil en fonction	
	du nombre de Froude F ₁ pour $h_0/h_2 \ge 1$. h_1 : (\Diamond) 2 ; (\Box) 2,5 ; (Δ) 3 ; (o)	
	3,5; (*) 4	107
Figure. I.35	Variation du rapport de la hauteur relative du seuil S $=s/h_1$ en fonction	
	du nombre de Froude F_1 du ressaut respectivement pour $h_1/B=$	
	(0,033; 0,041; 0,05; 0,058; 0,06). (o) points expérimentaux. ()	
	courbe d'équation	108
Figure 136	Variation du paramètre 'b' en fonction de h_1/B	110
-0		

Figure. I.37 Variation de la hauteur relative s/h_1 du seuil en fonction de la relation

	f (F ₁ , h ₁ /B). (o) Points expérimentaux. () Première bissectrice	
	d'équation : $s/h_1 = f(F_1, h_1/B)$	110
Figure. I.38	Variation du rendement η en fonction du nombre de Froude F ₁ . (o)	
	points de mesures expérimentales en lit majeur; (◊) points de mesures	
	expérimentales en lit mineur	112
Figure. I.39	Profil de surface du ressaut hydraulique dans un canal rectangulaire de	
	forme composé, h_1 : (◊) 2; (□) 2,5; (Δ) 3; (o) 3,5; (*) 4	113
Figure. I.40	Schéma simplifié du canal de mesure de section rectangulaire	
	composé, ayant servi à l'expérimentation	115
Photo I.15	Photographie des marches positives	116
Figure. I.41	Schéma simplifié d'un ressaut hydraulique contrôlé par marche positive	
-	évoluant dans un canal rectangulaire composé	116
Photo I.16	Photographie d'un ressaut hydraulique contrôlé par marche positive	
	$F_1 = 5,504$; s = 5,4 cm; Lj = 100 cm; $h_2 = 15,8$ cm; $h_1 = 2,5$ cm	116
Photo I.17	Photographie d'un ressaut hydraulique contrôlé par marche positive	
	$F_1 = 8, 56; s = 15 cm; Lj = 189 cm; h_2 = 25,4 cm; h_1 = 2,5 cm$	117
Figure. I.42	Variation du rapport Y des hauteurs conjuguées en fonction du nombre	
	de Froude F_1 pour les deux cas du canal, (o) points de mesures en lit	
	majeur; (Δ) points de mesures en lit mineur. (—) Courbes	
	d'ajustement	117
Figure. I.43	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en	
	fonction de la hauteur relative S =s/h ₁ du seuil. (o) Points de mesures	
	expérimentales en lit majeur; (◊) points de mesures expérimentales en	
	lit mineur. (—) courbe d'équation	119
Figure. I.44	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en	
	fonction de la hauteur relative S =s/h ₁ de la marche positive Pour h_0/h_2	
	< 1. h_1 : (◊) 2; (□) 2,5; (Δ) 3; (o) 3,5; (*) 4	119
Figure. I.45	Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé par	
-	marche positive en fonction de la hauteur relative $S = s/h_1$ de la marche	
	respectivement pour $h_1/B=(0,03; 0,041; 0,05; 0,058; 0,066)$. (o)	
	points expérimentaux. (—) courbe d'équation	120
	-	

Figure. I.46	Variation du coefficient "a" en fonction de la hauteur relative " y_1 "	122
Figure. I.47	Variation du coefficient "b" en fonction de la hauteur relative "y ₁ "	123
Figure. I.48	Variation de Yexp en fonction de Yapp. (o) Points expérimentaux. ()	
	Première bissectrice d'équation : Yexp = Yapp	123
Figure. I.49	Variation du la longueur relative Lj/h1en fonction du nombre de	
	Froude F_1 , (o) points de mesures en lit majeur; (Δ) points de mesures en lit	
	mineur. (—) Courbes d'ajustement	125
Figure. I.50	Variation du la longueur relative Lr/h1en fonction du nombre de	
	Froude F1, (o) points de mesures en lit majeur; (Δ) points de mesures en	
	lit mineur. (—) Courbes d'ajustement	126
Figure. I.51	Variation du la hauteur relative s/ h_1 en fonction du nombre de Froude	
	F_1 , (o) points de mesures en lit majeur; (Δ) points de mesures en lit mineur.	
	(—) Courbes d'ajustement	128
Figure. I.52	Variation du rapport S =s/h ₁ de la hauteur relative du seuil en fonction	
	du nombre de Froude F ₁ pour $h_0/h_2 \ge 1$. h_1 : (\Diamond) 2 ; (\Box) 2,5 ; (Δ) 3 ; (o)	
	3,5; (*) 4	128
Figure. I.53	Variation du rapport de la hauteur relative du seuil S $=s/h_1$ en fonction	
	du nombre de Froude F_1 du ressaut respectivement pour $h_1/B=(0,033,$	
	0,041; 0,05; 0,058; 0,06). (o) points expérimentaux. () courbe	
	d'équation	129
Figure. I.54	Variation du coefficient "a" en fonction de la hauteur relative " y_1 "	131
Figure. I.55	Variation du coefficient "b" en fonction de la hauteur relative " y_1 "	131
Figure. I.56	Variation de la de la hauteur relative s/h_1 du seuil en fonction de la	
	relation f (F1, y1). (o) Points expérimentaux. () Première bissectrice	
	d'équation : $s/h_1 = f(F_1, h_1/B)$	131
Figure. I.57	Variation du Rendement η en fonction du nombre de Froude F ₁ . (o)	
	points de mesures expérimentales en lit majeur; (◊) points de mesures	
	expérimentales en lit mineur	133
Figure. I.58	Profil de surface du ressaut hydraulique dans un canal rectangulaire de	
	forme composé, h_1 : (◊) 2; (□) 2,5; (Δ) 3; (o) 3,5; (*) 4	134
Figure. I.59	variation du rapport Y des hauteurs conjuguées du ressaut hydraulique	
	en fonction du nombre de Froude F ₁ , pour les trois configurations.	

	Contrôler par (\diamondsuit) seuil mince, (Δ) seuil épais, et (\circ) marche positive	136
Figure. I.60	variation du rapport Y des hauteurs conjuguées du ressaut hydraulique	
	en fonction du nombre de Froude F ₁ , pour les trois configurations.	
	Pour $h_0/h_2 \ge 1$. (\diamondsuit) seuil mince, (Δ) seuil épais, (\circ) marche positive	136
Figure. I.61	variation du rapport Y des hauteurs conjuguées du ressaut hydraulique	
	en fonction du nombre de Froude F ₁ , pour les trois configurations.	
	Pour $h_0/h_2 < 1$. (\diamondsuit) seuil mince, (Δ) seuil épais, (\circ) marche positive	137
Figure. I.62	variation de la hauteur relative S=s/h1 du seuil et de la marche positive	
	en fonction du nombre de Froude F ₁ , pour les trois configurations. (\diamondsuit)	
	seuil mince, (Δ) seuil épais, (\circ) marche positive	137
Figure. I.63	variation de la longueur relative Lj/h_1 du ressaut en fonction du	
	nombre de Froude F ₁ , pour les trois configurations. (\diamondsuit) seuil mince,	
	(Δ) seuil épais, (\circ) marche positive	138
Figure. I.64	variation du rendement η en fonction du nombre de Froude F ₁ , pour les	
	trois configurations. Contrôler par (\diamondsuit) seuil mince, (Δ) seuil épais, et	
	(°) marche positive	138
	<u>CHAPITRE II</u>	
Figure. II.1	Schéma simplifié du canal de mesure de section rectangulaire	
	composé, ayant servi à l'expérimentation	144
Figure. II.5	Variation du rapport Lr/h1 en fonction du nombre de Froude F1 pour	
	les deux lits du canal composé. (A) points de mesures expérimentales	
	en lit majeur ; (\diamondsuit) points de mesures expérimentales en lit mineur.	
	() courbes d'ajustements du ressaut contrôlé par seuil mince. ()	
	courbes d'ajustements	149
Figure II 2	Ressaut hydraulique forcé par seuil : a) ressaut type A b) Ressaut type	
1 15010. 11.2	B c) Ressaut type Brain	145
Figure II 3	Schéma simplifié d'un ressaut hydraulique forcé par seuil mince	110
1 190101 1115	évoluant dans un canal rectangulaire composé	146
Photos II.1	Photographie d'un ressaut hydraulique forcé par seuil mince type A	1.0
	$F_1 = 6, 16; s = 4 \text{ cm}; L_B = 107 \text{ cm}; h_2 = 16.3 \text{ cm}; h_1 = 2.5 \text{ cm}$	146
Photos II.2	Photographie d'un ressaut hydraulique forcé par seuil mince type A	
	$F_1 = 8, 38; s = 11 \text{ cm}; L_B = 171 \text{ cm}; h_2 = 23,5 \text{ cm}; h_1 = 2,5 \text{ cm}$	146
Figure. II.4	Variation du rapport des hauteurs conjuguées Y en fonction du nombre	

	de Froude F_1 pour les deux lits du canal composée. (Δ) points de mesures expérimentales en lit majeur; (\diamond) points de mesures expérimentales en lit mineur. () Courbes d'ajustements du ressaut	
	contrôlé par seuil mince. (—) Courbes d'ajustements	147
Figure. II.5	Variation du rapport Lr/h ₁ en fonction du nombre de Froude F ₁ pour les deux lits du canal composé. (Δ) points de mesures expérimentales en lit majeur ; (\diamondsuit) points de mesures expérimentales en lit mineur. () courbes d'ajustements du ressaut contrôlé par seuil mince. (—)	1 - 7
	courbes d'ajustements	149
Figure. II.6	Variation du rapport L_B/h_1 en fonction du nombre de Froude F_1 pour les deux lits du canal composée. (Δ) points de mesures expérimentales en lit majeur; (\diamondsuit) points de mesures expérimentales en lit mineur. ()	
	Courbes d'ajustements du ressaut contrôlé par seuil mince. ()	
	Courbes d'ajustements	150
Figure. II.7	Variation du rapport s/h_1 en fonction du nombre de Froude F_1 pour les deux lits du canal composée. (+) points de mesures expérimentales en	
	lit mineur; Pour $h_0/h_2 < 1. (\circ) h_1=2cm$, (\Box) $h_1=2.5cm$, (Δ) $h_1=3cm$, (\diamondsuit)	
	$h_1=3.5cm$, (*) $h_1=4cm$. () Courbes d'ajustements du ressaut	
	contrôlé par seuil mince. () Courbes d'ajustements	152
Figure. II.8	Variation du rapport S =s/h ₁ de la hauteur relative du seuil du ressaut	
	forcé en fonction de nombre de Froude respectivement pour $h_1/B=$	
	(0,03; 0,041; 0,05; 0,058; 0,066). (o) points expérimentaux. ()	
	courbe d'ajustement	153
Figure. II.9	Variation du paramètre 'b' en fonction de h_1/B	155
Figure. II.10	Variation de la hauteur relative s/h_1 du seuil en fonction de la relation	
	t (F_1 , h_1/B). (o) Points experimentaux. (—) Première bissectrice	155
Eigura II 11	d'équation : $s/n_1 = I(F_1, n_1/B)$	155
Figure. II.11	fonction de la hauteur relative $S = s/h_1$ du seuil (+) points de mesures	
	expérimentales en lit mineur: Pour $h_0/h_0 < 1$ (\circ) h_1-2 cm: (*)	
	$h_1=2.5$ cm: (\diamondsuit) $h_1=3$ cm: (\square) $h_1=3.5$ cm: (Λ) $h_1=4$ cm (\square) Courbe	
	d'aiustement	156
	a gastement	2.0

Figure. II.12	Variation du rapport Y de la hauteur conjuguée du ressaut forcé en	
	fonction de la hauteur relative du seuil S, respectivement pour $h_1/B=$	
	(0,03; 0,041; 0,05; 0,058; 0,066). (o) points expérimentaux. ()	
	courbe d'équation	157
Figure II.13	Variation du paramètre 'a' en fonction de h_1/B	159
Figure II.14	Variation du paramètre 'b' en fonction de h_1/B	159
Figure II.15	Variation de la hauteur conjugué Y du ressaut en fonction de la	
	relation f (h ₁ /B, s/h ₁). (o) Points expérimentaux. () Première	
	bissectrice d'équation : $Y = f (h_1/B, s/h_1)$	160
Figure II.16	Variation du rendement η en fonction du nombre de Froude F ₁ .	
	(\Delta) points de mesures expérimentales en lit majeur; (o) points de	
	mesures expérimentales en lit mineur. () Courbes d'ajustements du	
	ressaut contrôlé par seuil mince. () Courbes d'ajustements	161
Figure II.17	Schéma simplifié du canal de mesure de section rectangulaire	
	composé, ayant servi à l'expérimentation	162
Figure II.18	Schéma simplifié d'un ressaut hydraulique forcé par seuil épais	
	évoluant dans un canal rectangulaire composé	163
Photo II.5	Photographie d'un ressaut hydraulique force par seuil épais $F_1 = 5, 99;$	
	s =4,5 cm; Ls =58 cm; h_2 =15,7 cm ; h_1 =2,5cm	163
Photo II.6	Photographie d'un ressaut hydraulique forcé par seuil épais $F_1 = 8, 38$; s	
	=10.9 cm; Ls =115 cm; h_2 =23,4 cm ; h_1 =2,5cm	164
Figure II.19	Variation du rapport des hauteurs conjuguées Y en fonction du nombre	
	de Froude F_1 pour les deux lits du canal composée. (o) points de	
	mesures expérimentales en lit majeur; (Δ) points de mesures	
	expérimentales en lit mineur. () Courbes d'ajustements du ressaut	
	contrôlé par seuil épais. () Courbes d'ajustements	164
Figure II.20	Variation du rapport Ls/ h_1 en fonction du nombre de Froude F_1 pour	
	les deux lits du canal composée. (o) Points de mesures expérimentales	
	en lit majeur; (Δ) points de mesures expérimentales en lit mineur. ()	
	Courbes d'ajustements du ressaut contrôlé par seuil épais. ()	
	Courbes d'ajustements	166
Figure II.21	Variation du rapport s/h1 en fonction du nombre de Froude F1 pour les	
	deux lits du canal composée. (+) points de mesures expérimentales en	

	lit mineur; Pour $h_0/h_2 < 1$. (o) $h_1=2cm$; (\Box) $h_1=2,5cm$; (Δ) $h_1=3cm$;	
	(\diamond) h ₁ =3,5cm; (*) h ₁ = 4cm. () Courbes d'ajustements du ressaut	
	contrôlé par seuil mince. (—) Courbes d'ajustements	167
Figure II.22	Variation du rapport s/h1 en fonction du nombre de Froude F1 pour le	
	lit majeur du canal composée. (\circ) h ₁ =2cm; (\Box) h ₁ =2,5cm; (Δ) h ₁ =3cm;	
	(\diamondsuit) h ₁ =3,5cm; (*) h ₁ =4cm. (—) Courbes d'ajustements	168
Figure II.23	Variation du paramètre 'b' en fonction de h ₁ /B	169
Figure II.24	Variation de la hauteur relative s/h_1 du seuil en fonction de la relation	
	f (F1, h1/B). (o) Points expérimentaux. () Première bissectrice	
	d'équation : $s/h_1 = f(F_1, h_1/B)$	170
Figure II.25	Variation de la position relative du seuil λs en fonction de sa hauteur	
	relative s/. (+) points de mesures expérimentales en lit mineur; Pour	
	$h_0/h_2 < 1.$ (o) $h_1=2cm$; (*) $h_1=2,5cm$; (\diamondsuit) $h_1=3cm$; (\Box) $h_1=3,5cm$; (Δ)	
	h ₁ =4cm. (—) Courbe d'ajustement	171
Figure II.26	Variation de la position relative du seuil λs en fonction de sa hauteur	
	relative s/h ₁ , Dans le lit majeur. (o) h ₁ =2cm; (*) h ₁ =2,5cm; (\diamondsuit)	
	h_1 =3cm; (\Box) h_1 =3,5cm; (Δ) h_1 =4cm. (—) Courbe d'ajustement	171
Figure II.27	Variation du paramètre 'a' en fonction de h ₁ /B	172
Figure II.28	Variation de la position relative Ls/h_1 du seuil en fonction de la	
	relation f (s/h1, h1/B). (o) Points expérimentaux. () Première	
	bissectrice d'équation : Ls/h ₁ = f (s/h ₁ , h ₁ /B)	173
Figure II.29	Variation du rendement η en fonction du nombre de Froude F ₁ .	
	(Δ) points de mesures expérimentales en lit majeur; (o) points de	
	mesures expérimentales en lit mineur. () Courbes d'ajustements du	
	ressaut contrôlé par seuil épais. () Courbes d'ajustements	174
Figure II.30	Schéma simplifié du canal de mesure de section rectangulaire	
	composé, ayant servi à l'expérimentation	175
Figure II.31	Schéma simplifié d'un ressaut hydraulique forcé par marche positive	
	évoluant dans un canal rectangulaire composé	176
Photo II.7	Photographie d'un ressaut hydraulique force par marche positif $F_1 = 6$,	
	67; s =5, 4 cm; Ls =70 cm; h_2 =16, 9 cm; h_1 =2,5cm	176
Photo II.8	Photographie d'un ressaut hydraulique force par marche positif	
	$F_1 = 8, 52; s = 11,8 cm; Ls = 126 cm; h_2 = 23,1 cm; h_1 = 2,5 cm$	176

Figure. II.32	Variation du rapport des hauteurs conjuguées YA en fonction du	
	nombre de Froude F_1 pour les deux lits du canal composée. (\diamondsuit) points	
	de mesures expérimentales en lit majeur; (o) points de mesures	
	expérimentales en lit mineur. () Courbes d'ajustements du ressaut	
	contrôlé par marche positive. () Courbes d'ajustements	177
Figure. II.33	Variation du rapport Ls/h1 en fonction du nombre de Froude F1 pour	
	les deux lits du canal composée. (o) points de mesures expérimentales	
	en lit majeur; (Δ) points de mesures expérimentales en lit mineur. ()	
	Courbes d'ajustements du ressaut contrôlé par marche positive. ()	
	Courbes d'ajustements	179
Figure. II.34	Variation du rapport s/h1 en fonction du nombre de Froude F1 pour les	
	deux lits du canal composée. () points de mesures expérimentales en	
	lit mineur; Pour $h_0/h_2 < 1$. (o) $h_1=2cm$, (Δ) $h_1=2.5cm$, (\diamondsuit) $h_1=3cm$,	
	(*) $h_1=3.5$ cm, (+) $h_1=4$ cm. () Courbes d'ajustements du ressaut	
	contrôlé par seuil mince. (—) Courbes d'ajustements	180
Figure. II.35	Variation du rapport s/h1 en fonction du nombre de Froude F1 pour le	
	lit majeur du canal composée. (\circ) h ₁ =2cm; (Δ) h ₁ =2,5cm; (\diamondsuit) h ₁ =3cm;	
	(*) $h_1=3,5cm$; (+) $h_1=4cm$. () Courbes d'ajustements	181
Figure. II.36	Variation des paramètres 'a' et 'b' en fonction de h_1/B	182
Figure. II.37	Variation de la hauteur relative s/h_1 du seuil en fonction de la relation	
	f (F ₁ , h ₁ /B). (o) Points expérimentaux. (—) Première bissectrice	183
Figure. II.38	Variation de la position relative du seuil λs en fonction de sa hauteur	
	relative s/h1. (+) points de mesures expérimentales en lit mineur; Pour	
	$h_0/h_2 < 1.$ (\Box) $h_1=2cm$; (Δ) $h_1=2,5cm$; (o) $h_1=3cm$; (\diamondsuit) $h_1=3,5cm$; (*)	
	h_1 = 4cm. (—) Courbe d'ajustement	183
Figure II.39	Variation de la position relative du seuil λs en fonction de sa hauteur	
	relative s/h ₁ , Dans le lit majeur. (\Box) h ₁ =2cm; (Δ) h ₁ =2,5cm; (o) h ₁ =	
	3cm; (\diamondsuit) h ₁ =3,5cm; (\bigstar) h ₁ =4cm. (—) Courbe d'ajustement	184
Figure II.40	Variation du paramètre 'a' en fonction de h ₁ /B	185
Figure II.41	Variation de la position relative Ls/h_1 du seuil en fonction de la	
	relation f (s/h ₁ , h ₁ /B). (o) Points expérimentaux. () Première	
	bissectrice d'équation : Ls/h ₁ = f (s/h ₁ , h ₁ /B)	186

Variation du rendement η en fonction du nombre de Froude F ₁ .	
(Δ) points de mesures expérimentales en lit majeur; (o) points de	
mesures expérimentales en lit mineur. () Courbes d'ajustements du	
ressaut contrôlé par marche positive	188
Variation du rapport Y des hauteurs conjuguées en fonction du nombre	
de Froude F ₁ . a) en lit mineur, b) en lit majeur. Ressaut contrôlé : (\diamondsuit)	
Par seuil mince. (Δ) Par seuil épais (o) Par marche positive. Ressaut	
forcé de type A : (\Box) Par seuil mince. (*) Par seuil épais. (+) Par	
marche positive	189
Variation de la position relative du seuil en fonction du nombre de	
Froude F_1 . a) en lit mineur, b) en lit majeur. Ressaut contrôlé :(\diamondsuit) Par	
seuil mince. (Δ) Par seuil épais (o) Par marche positive. Ressaut forcé	
de type A : (□) Par seuil mince. (*) Par seuil épais. (+) Par marche	
positive	191
Variation du rendement η en fonction du nombre de Froude F_1 .	
Ressaut contrôlé :(\diamondsuit) Par seuil mince. (Δ) Par seuil épais (o) Par	
marche positive. Ressaut forcé de type A : (\Box) Par seuil mince. (*) Par	
seuil épais. (+) Par marche positive	193
	Variation du rendement η en fonction du nombre de Froude F ₁ . (Δ) points de mesures expérimentales en lit majeur; (o) points de mesures expérimentales en lit mineur. () Courbes d'ajustements du ressaut contrôlé par marche positive Variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F ₁ . a) en lit mineur, b) en lit majeur. Ressaut contrôlé : (\diamond) Par seuil mince. (Δ) Par seuil épais (o) Par marche positive. Ressaut forcé de type A : (\Box) Par seuil mince. (*) Par seuil épais. (+) Par marche positive Variation de la position relative du seuil en fonction du nombre de Froude F ₁ . a) en lit mineur, b) en lit majeur. Ressaut contrôlé :(\diamond) Par seuil mince. (Δ) Par seuil épais (o) Par marche positive. Ressaut forcé de type A : (\Box) Par seuil épais (o) Par marche positive. Ressaut contrôlé :(\diamond) Par seuil mince. (Δ) Par seuil mince. (*) Par seuil épais. (+) Par marche positive Variation du rendement η en fonction du nombre de Froude F ₁ . Ressaut contrôlé :(\diamondsuit) Par seuil mince. (Δ) Par seuil épais (o) Par marche positive

LISTE DES TABLEAUX <u>PREMIERE PARTIE</u>

CHAPITRE III

Tableau III.1	Gammes expérimentales des paramètres	53
Tableau III.2	Valeurs limites du nombre de Froude incident selon τz (Eq. (III.11))	54
Tableau III.3	Performances de chaque modèle selon les valeurs de τy (Eqs. (III.13)	
	et (III.15))	55

DEUXIEME PARTIE

CHAPITRE I

Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$	
pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	74
Valeurs expérimentales ayant servi au traçage des courbes $Y = f(s/h_1)$	
pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	77
Coefficients des relations expérimentales de type linéaire, issues de	
l'ajustement de la relation liant Y a la hauteur relative du seuil pour	
différentes hauteur h1 des ouvertures	78
Ecarts relatifs entre Y expérimental et Y de la relation	
(I.6)	79
Valeurs expérimentales ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$	
pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	81
Valeurs expérimentales ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$	
pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	82
Valeurs expérimentales ayant servi au traçage des courbes s/h1= f(F1)	
pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	86
Coefficients des relations expérimentales de type linéaire, issues de	
l'ajustement de la relation liant $S = s/h_1$ au nombre de Froude, pour	
différentes hauteur h1 des ouvertures	87
Ecarts relatifs entre S expérimental et S de la relation	
(I.14)	88
Mesures expérimentales ayant servi au traçage de la figure	
I.19	91
	Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$ Valeurs expérimentales ayant servi au traçage des courbes $Y = f(s/h_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$ Coefficients des relations expérimentales de type linéaire, issues de l'ajustement de la relation liant Y a la hauteur relative du seuil pour différentes hauteur h_1 des ouvertures Ecarts relatifs entre Y expérimental et Y de la relation (I.6) Valeurs expérimentales ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$ Valeurs expérimentales ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$ Coefficients des relations expérimentales de type linéaire, issues de l'ajustement de la relation liant S = s/h_1 au nombre de Froude, pour différentes hauteur h_1 des ouvertures Ecarts relatifs entre S expérimental et S de la relation (I.14)

Tableau I.11	Mesures expérimentales du profil de surface (y= f(X)) du ressaut	
	contrôlé par seuil mince dans un canal rectangulaire de section	
	composée	93
Tableau I.12	Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	97
Tableau I.13	Valeurs expérimentales ayant servi au traçage des courbes $Y = f(s/h_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	100
Tableau I.14	Coefficients des relations expérimentales, issues de l'ajustement de la	
	relation liant Y a la hauteur relative du seuil pour différentes hauteur	
	h ₁ des ouvertures	101
Tableau I.15	Ecarts relatifs entre Y expérimental et Y de la relation (I.27)	103
Tableau I.16	Valeurs expérimentales ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	104
Tableau I.17	Valeurs expérimentales ayant servi au traçage des courbes $Lr/h_1 =$	
	$f(F_1) \text{ pour } h_0/h_2 \ge 1 \text{ et } h_0/h_2 < 1$	106
Tableau I.18	Valeurs expérimentales ayant servi au traçage des courbes s/h1= f(F1)	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	109
Tableau I.19	Coefficients des relations expérimentales de type linéaire, issues de	
	l'ajustement de la relation liant $S = s/h_1$ au nombre de Froude, pour	
	différentes hauteurs h ₁ des ouvertures	109
Tableau I.20	Ecarts relatifs entre Y expérimental et Y de la relation	
	(I.34)	111
Tableau I.21	Mesures expérimentales ayant servi au traçage de la figure I.37	112
Tableau I.22	Mesures expérimentales du profil de surface (y= f(X)) du ressaut	
	contrôlé par seuil épais dans un canal rectangulaire de section	
	composée	114
Tableau I.23	Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	118
Tableau I.24	Valeurs expérimentales ayant servi au traçage des courbes $Y = f(s/h_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	121
Tableau I.25	Coefficients des relations expérimentales, issues de l'ajustement de la	
	relation liant Y a la hauteur relative du seuil pour différentes hauteur h_1	
	des ouvertures	122

Tableau I.26	Ecarts relatifs entre Y expérimental et Y de la relation (I.40)	124
Tableau I.27	Valeurs expérimentales ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	125
Tableau I.28	Valeurs expérimentales ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	127
Tableau I.29	Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	130
Tableau I.30	Coefficients des relations expérimentales de type linéaire, issues de	
	l'ajustement de la relation liant $S = s/h_1$ au nombre de Froude, pour	
	différentes hauteur h1 des ouvertures	130
Tableau I.31	Ecarts relatifs entre S expérimental et S de la relation (I.48)	132
Tableau I.32	Mesures expérimentales ayant servi au traçage de la figure I.56	133
Tableau I.33	Mesures expérimentales du profil de surface (y= $f(X)$) du ressaut	
	contrôlé par marche positive dans un canal rectangulaire de section	
	composée	135

<u>Chapitre II</u>

Tableau II.1	Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$	
	pour $h_0/h_2 \geq 1$ et $h_0/h_2 < 1 \ldots$	148
Tableau II.2	Valeurs expérimentales ayant servi au traçage des graphiques de	
	$Lr/h_1 = f(F_1) \text{ pour } h_0/h_2 \ge 1 \text{ et } h_0/h_2 < 1$	149
Tableau II.3	Valeurs expérimentales ayant servi au traçage des graphiques de λ_B =	
	$f(F_1) \text{ pour } h_0/h_2 \ge 1 \text{ et } h_0/h_2 < 1$	151
Tableau II.4	Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	154
Tableau II.5	Coefficients des relations expérimentales de type linéaire, issues de	
	l'ajustement de la relation liant s/h1 au nombre de Froude F1 pour	
	différentes hauteurs h1 des ouvertures	154
Tableau II.6	Mesures expérimentales ayant servi au traçage des graphique de Y =	
	$f(s/h_1) \text{ pour } h_0/h_2 \ge 1 \text{ et } h_0/h_2 < 1$	158
Tableau II.7	Coefficients des relations expérimentales, issues de l'ajustement de la	
	relation liant Y a la hauteur relative S, pour différents hauteur h1 des	
	ouvertures	158

Tableau II.8	Mesures expérimentales ayant servi au traçage de la figure II.16	161
Tableau II.9	Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	165
Tableau II.10	Valeurs expérimentales ayant servi au traçage des graphiques de	
	Ls/h ₁ = f(F ₁) pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	166
Tableau II.11	Coefficients des relations expérimentales, issues de l'ajustement de la	
	relation liant s/h1 au nombre de Froude F1, pour différentes hauteurs h1	
	des ouvertures	168
Tableau II.12	Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	169
Tableau II.13	Coefficients des relations expérimentales, issues de l'ajustement de la	
	relation liant λs a la hauteur relative S, pour différentes hauteurs h_1 des	
	ouvertures	172
Tableau II.14	Valeurs expérimentales ayant servi au traçage des courbes Ls/h1=	
	$f(s/h_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	173
Tableau II.15	Mesures expérimentales ayant servi au traçage de la figure II.29	174
Tableau II.16	Valeurs expérimentales ayant servi au traçage des courbes $Y_A = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	178
Tableau II.17	Valeurs expérimentales ayant servi au traçage des courbes $Ls/h_1 = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	179
Tableau II.18	Coefficients des relations expérimentales, issues de l'ajustement de la	
	relation liant s/h1 au nombre de Froude F1, pour différentes hauteurs h1	
	des ouvertures	181
Tableau II.19	Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$	
	pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	182
Tableau II.20	Coefficients des relations expérimentales, issues de l'ajustement de la	
	relation liant λs a la hauteur relative S, pour différentes hauteurs amont	
	h ₁	184
Tableau II.21	Valeurs expérimentales ayant servi au traçage des courbes Ls/h1=	
	$f(s/h_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	186
Tableau II.22	Mesures expérimentales ayant servi au traçage de la figure II.42	188
Tableau II.23	valeur des constantes a et b de l'équation (II.34) pour les six type de	
	ressaut	190

Tableau II.24	valeur des constantes a et b de l'équation (II.35) pour les six type de	
	ressaut	192

Principales notations

A_1	Aire de la section au pied du ressaut	$[m^2]$
A_2	Aire de la section à la fin du ressaut	[m ²]
В	largeur du lit majeur	[m]
b	largeur du lit mineur	[m]
F_1	Nombre de Froude incident	[-]
f_x	force de résistance	[N/m ²]
f_1	Les forces hydrostatiques au pied du ressaut	[N]
f_2	Les forces hydrostatiques à la fin du ressaut	[N]
g	Accélération de la pesanteur	$[m/s^2]$
h_0	Hauteur de plein bord du lit mineur	[m]
h_1*	Première hauteur conjuguée relative	[m]
h_2^*	Deuxième hauteur conjuguée relative	[m]
h_1	Hauteur initiale du ressaut	[m]
h_2	Hauteur finale du ressaut	[m]
h (x)	Profondeur de l'eau à la distance x du pied de ressaut	[m]
H_1	charge totale au pied du ressaut	[m]
H_2	charge totale a la fin du ressaut	[m]
ΔH	pertes de charge due au ressaut	[m]
k	coefficient	[-]
L _B	Longueur du bassin	[m]
Lm	Lit mineur	[-]
LM	Lit majeur	[-]
Ln	Logarithme népérien	[-]
Lr*	Longueur du rouleau classique	[m]
Lj*	Longueur du ressaut classique	[m]
Lr	Longueur du rouleau	[m]
Lj	Longueur du ressaut	[m]
L_{RF}	Longueur du rouleau de fond	[m]
Ls	Position du seuil ou d'une marche par rapport au début du ressaut	[m]
Q		$[m^3/s]$

S	Débit volume	[m]
S	Hauteur du seuil ou de la marche positive	[m]
V	Hauteur relative du seuil ou de la marche positive	[m ³]
ν_1	Le volume	[m/s]
v_2	La vitesse moyenne au pied du ressaut	[m/s]
Х	La vitesse moyenne a la fin du ressaut	[m]
Х	Position de seuil ou de la marche	[m]
Xrf	Position relative de seuil ou de la marche	[m]
Y*	Position de la fin du rouleau de fond à l'aval	[-]
Y	Rapports des hauteurs conjuguées du ressaut classique	[-]
\mathbf{Y}_{F}	Rapports des hauteurs conjuguées du ressaut contrôlé	[-]
YA	Rapports des hauteurs conjuguées du ressaut force	[-]
YB	Rapport des hauteurs conjuguées du ressaut de type A	[-]
YB-min	Rapport des hauteurs conjuguées du ressaut de type B	[-]
$Y=h_2/h_1$	Rapport des hauteurs conjuguées du ressaut de type B-min	[-]
W	Rapport des hauteurs conjuguées	[-]
$\tau_y = \beta = b/B$	Rapport d'aspect $W = h_0/b$	[-]
β_1	Rapport de l'élargissement	[-]
β_2	Coefficient de Boussinesq au pied du ressaut	[-]
$\tau_z = \tau = h_1/h_0$	Coefficient de Boussinesq à la fin du ressaut	[-]
η	rapport des hauteurs	[-]
ρ	Rendement du ressaut	[kg/m ³]
α	Masse volumique	[-]
យ	Facteur de correction de l'énergie cinétique	[N/m ³]
ξ	Poids spécifique du liquide	[-]
$\lambda j = Lj/h_1$	coefficient tenant compte des pertes par frottement	[-]
$\lambda r = Lr/h_1$	longueur relative du ressaut	[-]
	longueur relative du rouleau	

Introduction Générale
INTRODUCTION GENERALE

Pour éviter l'immersion des ouvrages hydrauliques tels que les barrages pendant les fortes crues, et par la suite leur rupture, il est nécessaire d'équiper la crête de ces ouvrages par un déversoir d'orage. Le volume d'eau déversé par ce dernier, va créer un écoulement torrentiel caractérisé par des forces tractrices présentant un caractère érosif à l'aval (*Debabeche 2003*). Pour cela, l'ouvrage hydraulique doit avoir un bassin amortisseur à son pied, dans lequel le ressaut hydraulique sera formé. Ce dernier permet de passer brusquement du régime d'écoulement torrentiel au régime fluvial sur une courte distance produisant une diminution des forces tractrices.

La forme du bassin d'amortissement est liée à la forme géométrique naturelle de la rivière, son dimensionnement est basé essentiellement sur l'étude des caractéristiques du ressaut hydraulique. Celles-ci sont principalement les hauteurs d'eau en amont et en aval du ressaut (hauteurs conjuguées), et les longueurs du ressaut hydraulique.

Récemment, ce phénomène a attiré l'attention de nombreux chercheurs. À titre d'exemple, nous citons les travaux de : *Hager et Bretz (1987)*, *Hager (1992)*, *Ead et Rajaratnam (2002)*, *Achour et al (2002)*, *Chanson (2009)*, qui ont étudié le ressaut hydraulique dans un canal rectangulaire horizontal. *Hager et Wanoschek (1987)*. *Achour et Debabeche (2003) et Debabeche et Achour (2007)*, ont examiné le ressaut hydraulique évoluant dans un canal triangulaire horizontal. *Debabeche et al. (2009)* ont étudié le ressaut hydraulique dans un canal triangulaire en pente, *Ghomri et al 2012* ont étudié le ressaut hydraulique dans un canal profilé en U, Kateb, *Debabeche et Riguet (2013)* qui ont étudié le ressaut hydraulique évoluant dans un canal trapézoïdal incline.

Par ailleurs, les chercheurs ont classifié le ressaut hydraulique en différentes catégories relatives à sa configuration. En effet, la modification des conditions à l'amont (débit, hauteurs, ...etc.) et à l'aval (type d'obstacle, sa position, son hauteur, la pente du canal,...etc.) peut conduire à différentes configurations du ressaut (*Debabeche et al, 2009*). Le ressaut est dit classique lorsqu'il se forme dans un canal rectangulaire de pente nulle ou faible, sans obstacle à l'aval (*Hager, Bremen et Kawagoshi, 1990*). Il est dit contrôlé lorsque sa formation est conditionnée par la mise en place d'un obstacle (*Hager et Bretz, 1988*). Il est dit forcé lorsqu'il se forme de l'obstacle (*Rand, 1957 ; Bretz, 1988*). Le rôle de l'obstacle (ou seuil) est uniquement de provoquer la formation du ressaut et le contrôle de sa position.

Tous les chercheurs dans ce domaine sont d'accord que le ressaut hydraulique est régi par l'équation de la quantité de mouvement appliquée entre ses sections initiale et finale. C'est en d'autres termes la seconde loi de Newton qui est appliquée, qui montre que la variation de la quantité de mouvement entre les sections initiale et finale du ressaut est égale à la résultante des forces extérieures agissant sur la masse liquide en mouvement (*Debabeche et al, 2009*).

L'application de l'équation de la quantité de mouvement a eu pour but d'évaluer le rapport Y des hauteurs conjuguées du ressaut en fonction du nombre de *Froude* F_1 caractérisant l'écoulement à l'amont. La relation la plus simple est celle obtenue par *Belanger* (1828) pour le cas du ressaut classique en canal de section droite rectangulaire de pente nulle ou faible et dont la validité a été vérifiée par plusieurs auteurs.

En ce qui concerne la longueur du ressaut L_j , la bibliographie montre qu'à ce jour aucun développement théorique ne peut conduire à la création d'une relation analytique permettant son évaluation; seuls les essais au laboratoire ont permis de la quantifier. C'est ainsi que *Bradley et Peterka (1957)* ont élaboré une courbe moyenne expérimentale, représentant la variation de la longueur relative L_j^*/h_2^* en fonction du nombre de *Froude* F₁ à l'amont du ressaut. La longueur du ressaut L_j prend sa place du pied du ressaut à la fin des bulles d'air où se termine la zone de risque.

Une autre caractéristique géométrique du ressaut est la longueur L_r sur laquelle s'étend son rouleau de surface. Comme pour la longueur L_j , L_r n'a pu être évaluée que par voie expérimentale, plusieurs auteurs ont quantifié cette longueur *Bradley et Peterka (1957)*, *Bakhmeteff et Matzke (1936)*, mais nous citerons surtout les travaux relativement récents de *Hager (1990)* qui montrent que la longueur relative L_r^*/h_1 dépend à la fois du nombre de *Froude* F₁ et du rapport d'aspect w = h₁/b ; h₁ et b sont respectivement la hauteur initiale du ressaut et la largeur du canal rectangulaire.

L'objectif de cette thèse est d'analyser expérimentalement deux types de ressaut hydraulique, à savoir le ressaut hydraulique contrôlé par seuil mince, par seuil épais et par marche positive, et le ressaut hydraulique forcé de type A, par seuil mince, par seuil épais et par marche positive dans un canal rectangulaire de section composée. Cette recherche fondamentale n'a jamais fait l'objet d'études antérieures, à l'exception l'étude théorique du ressaut hydraulique en lit composé de *Khattaoui et Achour (2012)*, la compacité du ressaut qui a été faite par *Benmalek (2018)*. Par ailleurs, l'étude la plus récente est celle de benabdesselam et Al (2017 et 2020), consacrée à l'étude théorique et la validation

expérimentale des relations obtenue. C'est dans le but de combler cette lacune que notre étude a été proposée.

Notre thèse comporte deux grandes parties principales : une première partie bibliographique, à travers laquelle, nous nous concentrons sur les travaux les plus importants accomplis dans ce domaine. Elle est à son tour divisée en trois chapitres, et à travers lesquels nous aborderons le ressaut hydraulique classique, le ressaut hydraulique dans un canal rectangulaire contrôlé par seuil mince, par seuil épais et par marche positive, ainsi que le ressaut forcé type A par seuil mince et par marche positive, en plus du ressaut hydraulique dans un canal rectangulaire composé.

Une deuxième partie concernant notre propre contribution dans cette étude, se proposera d'examiner par voie expérimentale, le ressaut contrôlé par seuil mince, par seuil épais et par marche positive et le ressaut de type A, forcé par seuil mince, par seuil épais et par marche positive dans un canal de section droite rectangulaire de section composée. Des relations fonctionnelles, en termes adimensionnels, liant les différentes caractéristiques du ressaut seront également proposées. Une étude comparative entre le ressaut hydraulique contrôlé et forcé type A par les trois types d'obstacles sera effectuée.

Première Partie

Synthèse bibliographique

INTRODUCTION A LA PREMIERE PARTIE

Dans cette partie de notre étude, nous ferons une brève présentation des travaux les plus importants accomplis dans le domaine du ressaut hydraulique dans un canal rectangulaire.

Cette partie bibliographique comprend trois chapitres :

Le premier chapitre présentera les travaux les plus importants relatifs au ressaut hydraulique évoluant dans un canal de section droite rectangulaire. Quatre types de ressaut seront alors cités:

- Le ressaut hydraulique classique, où nous rappellerons essentiellement les travaux de Bradley et Peterka (1957) concernant la forme du ressaut et ceux de Hager et al. (1990) relatifs aux caractéristiques du ressaut classique.
- Le ressaut hydraulique contrôlé par seuil mince, où nous citerons les travaux de Forster et Skrinde (1950) et l'étude de Achour et al (2002).
- Le ressaut hydraulique contrôlé par seuil épais, ou nous examinerons l'étude de Forster et Skrinde (1950) et celle de Achour et al (2002).
- Le ressaut hydraulique contrôlé par marche positive, la contribution de *Forster et Skrinde (1950)*.

Le deuxième chapitre de cette partie sera consacré aux travaux les plus importants concernant le ressaut hydraulique forcé type A dans un canal rectangulaire.

Deux types de ressaut seront alors étudiés:

- Le ressaut hydraulique forcé par seuil mince, où nous montrerons les travaux de *Rand* (1957), Nous présenterons également les travaux de *Rajaratnam* (1964). Nous présenterons ensuite l'étude de *Bretz* (1988), les travaux de *Hager et Li* (1992).
- Le ressaut forcé par marche positive, où nous présenterons les travaux de Hager et Sinniger (1986) et celles de Hager et Bretz (1987).

Le troisième et dernier chapitre de cette étude bibliographique évoquera les travaux de *Khattaoui et Achour (2012)* concernant l'étude théorique du ressaut hydraulique dans un canal rectangulaire composée, Nous présenterons également les travaux de benabdesselam et Al (2017 et 2020) relatif a l'étude théorique et expérimentale du ressaut hydraulique en canal rectangulaire composé.

Chapitre I

Ressaut hydraulique contrôlé dans un Canal rectangulaire

<u>CHAPITRE I</u>

Ressaut hydraulique contrôlé dans un canal rectangulaire

I.1. Introduction

Le model du canal rectangulaire prismatique de pente et de rugosité nulle, fait l'objet des premières investigations dans le domaine des recherches sur le ressaut hydraulique, qui s'appelle le ressaut hydraulique classique.

Dans ce chapitre nous allons donner un bref aperçu sur les travaux les plus intéressants entrepris sur le ressaut hydraulique évoluant dans un canal de section droite rectangulaire. Quatre types de ressaut, en canal rectangulaire, seront alors examinés:

Le ressaut hydraulique classique, où nous rappellerons essentiellement les travaux de *Bradley et Peterka (1957)* concernant la forme du ressaut et ceux de *Hager (1990) et (1992)* relatifs respectivement aux caractéristiques du ressaut classique, le développement d'une formule permettant de présenter le profil de surface du ressaut hydraulique.

Le ressaut hydraulique contrôlé par seuil mince, où nous donnerons un aperçu sur les travaux de *Forster et Skrinde (1950)* et ceux de *Achour (2002)*.

Le ressaut hydraulique contrôlé par seuil épais, où il sera question des travaux de *Forster et Skrinde (1950)* et ceux de *Achour (2002)*.

Le ressaut hydraulique contrôlé par marche positive. Nous soulignons enfin les travaux de *Forster et Skrinde (1950)*.

I.2. RESSAUT HYDRAULIQUE CLASSIQUE

Idiomatiquement, la transition soudaine du régime d'écoulement turbulent à un régime d'écoulement fluvial est connue sous le nom de ressaut hydraulique. Ce passage s'accompagne d'une perturbation de la surface libre de l'écoulement qui s'étend sur une longueur Lr appelée longueur du rouleau (*Hager 1990*). Le ressaut hydraulique est dit classique lorsqu' il se forme dans un canal de section droite rectangulaire de pente nulle ou faible.

Le ressaut hydraulique est caractérisé par les longueurs Lr et Lj, qui désignent respectivement la longueur du rouleau et la longueur du ressaut, les hauteurs h_1 et h_2 , appelées également hauteurs conjuguées. Le ressaut hydraulique est dit classique lorsqu' il se forme dans un canal de section droite rectangulaire de pente nulle ou faible. Une dissipation d'énergie est associée à la formation du ressaut hydraulique. Sa capacité peut être évaluée par le rapport de la perte de charge occasionnée entre ses sections initiale et finale.

Les paramètres essentiels pour déterminer le nombre de Froude sont le débit volumique Q, la hauteur initiale h_1 et la forme géométrique du canal. Si le nombre de Froude est supérieur a l'unité, on dit que l'écoulement est torrentiel, ce qui provoque la formation du ressaut hydraulique.

On s'accord à dire que le ressaut hydraulique est régi par l'équation de la quantité de mouvement dont l'application a pour objectif de définir la relation $Y=h_2/h_1$ des hauteurs conjuguées et le nombre de Froude F₁ (*Debabeche*, 2003).

Le ressaut hydraulique peut être contrôlé par un seuil à paroi mince ou épaisse, continu ou discontinu ainsi que par une marche positive ou négative. Le rôle de tous ces obstacles est d'assurer la formation et de contrôler sa position lors de changement des paramètres de l'écoulement.

I.2.1. Forme du ressaut classique

Les chercheurs *Bradley et Peterka (1957)* ont proposé une classification du ressaut hydraulique classique qui comprend quatre formes différentes :

- LE PRE-RESSAUT avec $1,7 < F_1 < 2,5$ (figure I.1,a): la surface du ressaut est composée d'une série de petits rouleaux pour $F_1 = 1,7$, les rouleaux s'intensifient au fur et à mesure que le nombre de Froude F_1 augmente. La répartition des vitesses dans la section amont du ressaut est pratiquement uniforme mais le rendement obtenu est très faible.

- LE RESSAUT DE TRANSITION avec 2,5<F₁<4,5 (figure I.1,b) : ce type de ressaut se manifeste sous forme de battements de larges vagues à des périodes très irrégulières, pouvant occasionner un effet érosif sur les parois latérales du canal.

- LE RESSAUT STABLE obtenu pour la gamme $4,5 < F_1 < 9$ (figure I.1,c) : c'est ce type de ressaut que l'on utilise souvent dans les bassin de dissipation d'énergie en raison notamment de son bon rendement (entre 45 et 70%), de sa compacité ainsi que de sa stabilité.

- LE RESSAUT AGITE OU CLAPOTEUX obtenu pour $F_1>9$ (figure I.1,d) : le jet entrant dans la section initiale du ressaut est caractérisé par une faible profondeur et une vitesse très élevée. Il présente une instabilité verticale et ne peut adhérer constamment au fond du canal. La surface libre du ressaut est irrégulière et très écumeuse.

Figure I.1 : Forme du ressaut classique selon la classification de Bradley et Peterka (1957). *a) Pré-ressaut, b) Ressaut de transition, c) Ressaut stable, d) Ressaut agité.*

I.2.2. ÉTUDE DE HAGER ET AL (1990)

Hager et al. (1990) ont étudié les caractéristiques du ressaut hydraulique classique. Ces caractéristiques sont essentiellement la hauteur initiale h_1 mesurée au pied du ressaut hydraulique et la hauteur finale h_2 mesurée à la fin du ressaut hydraulique où la profondeur est considérée maximale par rapport à la surface libre. Le rapport $Y = h_2/h_1$ est défini comme le rapport des hauteurs conjuguées.

Les longueurs caractéristiques du ressaut hydraulique qui sont : la longueur Lr du rouleau de surface mesurée dans la zone de tourbillon d'eau, et la longueur Lj du ressaut mesurée entre les hauteurs initiale h_1 et finale h_2 du ressaut.

La figure I.2 montre un ressaut classique évoluant entre ses sections initiale et finale 1 et 2.

Figure I.2 : Ressaut hydraulique classique.

I.2.2.1. Rapport des hauteurs conjuguées du ressaut

Le ressaut hydraulique est régi par l'équation de la quantité de mouvement dont l'application a pour objectif de définir la relation liant le rapport $Y = h_2/h_1$ des hauteurs conjuguées et le nombre de Froude F₁.

L'écoulement à l'amont du ressaut (à l'origine) est caractérisé par une profondeur h_1 et une vitesse moyenne V_1 . L'équation de continuité permet d'écrire :

$$\frac{1}{2}\rho g b h_1^2 + \rho Q v_1 = \frac{1}{2}\rho g b h_2^2 + \rho Q v_2$$
(I.1)

Dans cette équation, on suppose que la distribution de la pression est hydrostatique, la distribution de la vitesse est uniforme et le frottement sur les parois est négligeable.

Le nombre de Froude caractérisant l'écoulement à l'amont du ressaut peut s'écrire comme suit :

$$F_{1}^{2} = Q^{2} / (g.b^{2}.h_{1}^{3})$$
(I.2)

La division de l'équation (I.1) par $\left(\frac{2}{\rho g b h_1^2}\right)$ conduit à la relation suivante :

$$Y^* = \frac{h_2^*}{h_1} = 0,5 \left[\sqrt{1 + 8F_1^2} - 1 \right]$$
(I.3)

Cette relation (I.3) permet de calculer le rapport des hauteurs conjuguées Y en fonction du nombre de Froude F_1 . Elle est connue sous le nom d'équation de Bélanger.

Figure I.3 : Représentation graphique de l'équation de Bélanger(1828)

Pour des valeurs relativement grandes de nombre de Froude $F_1>2$, *Hager et Sinniger (1985)* ont développé une relation à partir de l'équation (I.3). Elle peut s'écrire comme suit :

$$Y = \frac{h_2}{h_1} = \sqrt{2}F_1 - \frac{1}{2} \tag{I.4}$$

I.2.2.2. Longueurs caractéristiques du ressaut

Les études ont montré que, parmi les caractéristiques du ressaut hydraulique qui ne peuvent être déterminées que par l'expérience, la longueur Lr de son rouleau ainsi que la longueur Lj sur laquelle il s'étend.

I.2.2.2.1. Longueur du rouleau

Hager, et al. (1990) ont distingué deux longueurs de rouleau: rouleau développé et non développé selon le type du ressaut étudié, La figure (I.4) montre ces deux types des longueurs de rouleau Lr.

Figure I.4 : ressaut hydraulique avec : a) rouleau développé. b) rouleau non développé.

Les ressauts avec un rouleau développé sont relativement lisses et quasi-stables, se localisant au pied du ressaut. L'écoulement en amont reste près du fond puis se diverge en aval. À la fin du rouleau, le point de stagnation est clairement déterminé.

Le rouleau non-développé est beaucoup plus dynamique, Il se déplace loin de pied du ressaut, une zone de rouleau se forme au fond de la masse liquide en mouvement. Des ondes de surface se sont produites à l'aval avec une réduction considérable de la longueur du rouleau par rapport à celle du rouleau développé.

Hager et al. (1990) ont découvert que le rapport $\lambda_r = Lr/h_1$ dépend principalement du nombre de Froude F₁ et le rapport w = h₁/b. D'après les essais effectués par *Hager et al. (1990)* les auteurs proposent les relations suivantes :

$$\lambda_r = \frac{L_r}{h_1} = -12 + 160 Tgh\left(\frac{F_1}{20}\right) \qquad \text{pour } w = h_1 / b < 0,1 \qquad (I.5)$$

$$\lambda_r = \frac{L_r}{h_1} = -12 + 160 Tgh\left(\frac{F_1}{12,5}\right) \qquad \text{pour } 0, 1 < w < 0,7 \qquad (I.6)$$

Tel que, « Tgh » désigne la tangente hyperbolique.

I.2.2.2.2. Longueur du ressaut

Plusieurs définitions ont été abordées pour la détermination de la longueur du ressaut Lj. D'une manière générale la longueur du ressaut Lj doit être mesurée dans la section finale à l'aval du ressaut en tenant compte de:

- la surface libre est pratiquement horizontale ;
- Une grande diminution de la surface de turbulence ;
- L'inexistante des grosses bulles d'air dues à la présence du rouleau de surface.
- L'apparition des conditions d'écoulement graduellement varié.

Toutes ces définitions ont pour but de spécifier la limite aval du ressaut et la turbulence d'écoulement, pour protéger le fond du canal contre l'érosion.

En pratique, une approche plus simple est généralement utilisée. La longueur du ressaut hydraulique est considérée comme distance nécessaire pour la protection du fond.

Selon les essais de *Bradley et Peterka (1957), Hager et al. (1990)* ont déterminé une relation permettant d'évaluer la longueur relative Lj/h_1 du ressaut en fonction du nombre de Froude F₁. Cette relation peut s'écrire comme suit:

$$\frac{L_j}{h_1} = 220 Tgh \left[\frac{F_1 - 1}{22} \right]$$
(I.7)

Une autre formule qui représente la longueur Lj du ressaut en fonction de la hauteur finale h_2 peut s'écrire comme suit:

$$Lj = 6 h_2 \tag{I.8}$$

La gamme de nombre de Froude pour ces formules varie entre : $4 < F_1 < 12$.

Figure 1.5: Longueur du ressaut classique Lj/h_2 en fonction de F_1 (Peterka 1958). Domaines du ressaut : (1) ressaut de transition, (2) ressaut bon, (3) ressaut acceptable, (4) ressaut moins accepté.

I.2.2.3. Rendement du ressaut

La figure I.6 montre la ligne de charge totale le long de la longueur Lj sur laquelle s'étend le ressaut classique.

Figure I.6 : (---) Ligne de charge totale le long du ressaut classique

Par l'application du théorème de *Bernoulli (1738)*, on peut déterminer la perte d'énergie, $\Delta H_{12} = H_1 - H_2$ produite par le ressaut en admettant que $Z_1 = Z_2$ (canal horizontal), (figure I.6), on obtient :

$$\Delta E_{12} = \Delta H_{12} = \left(\alpha_1 \frac{v_1^2}{2g} + h_1\right) - \left(\alpha_2 \frac{v_2^2}{2g} + h_2\right)$$
(I.9)

 $D\ensuremath{^\circ}\ensuremath{o}\ensuremath{\dot{u}}$: les charges totale dans les sections amont et aval sont respectivement :

$$H_1 = \alpha_1 \frac{v_1^2}{2g} + h_1 \tag{I.10}$$

$$H_2 = \alpha_2 \frac{v_2^2}{2g} + h_2 \tag{I.11}$$

 V_1 et V_2 désignent respectivement les vitesses moyennes correspondent aux sections amont et aval du ressaut et le facteur de correction de l'énergie cinétique « α » est admis égal à l'unité. Puisque l'écoulement est permanant l'équation de la quantité de mouvement donne :

$$Q = V_1 \cdot A_1 = V_2 \cdot A_2 \tag{I.12}$$

 $Ou: A_1 = b.h_1$ $A_2 = b.h_2$

En introduisant la relation (1.12) dans (1.9) on obtient :

$$\Delta H_{12} = \left(h_1 - h_2\right) + \left(\frac{1}{h_1^2} - \frac{1}{h_2^2}\right) \left(\frac{q^2}{2g}\right)$$
(I.13)

 $q = \frac{Q}{b}$, est le débit unitaire. Sont expression peut être déduite de l'expression de la quantité de mouvement définie par la relation (1.1).

$$\frac{q^2}{2g} = \frac{\left(h_1 h_2^2 + h_1^2 h_2\right)}{4}$$
(I.14)

En remplaçant la relation (I.14) dans (I.13) on obtient :

$$\Delta H_{12} = \frac{\left(h_2 - h_1\right)^3}{\left(4h_2 h_1\right)} \tag{I.15}$$

La capacité de dissipation du ressaut est représentée par η :

$$\eta = \frac{\Delta H_{12}}{H_1} = \frac{\left(H_1 - H_2\right)}{H_1} = 1 - \frac{H_2}{H_1} \tag{I.16}$$

Le rapport $\frac{H_2}{H_1}$ désigne l'efficacité du ressaut. Les relations (1.10) et (1.11) sont utilisées pour déterminer les charges totales dans les sections amont et aval. Tout en tenant compte de la relation (1.5) du nombre de *Froude* on obtiendra :

$$H_1 = h_1 \left(1 + \frac{F_1^2}{2} \right)$$
 (I.17)

$$H_2 = h_1 \left(Y + \frac{F_1^2}{2Y^2} \right)$$
 (I.18)

Où Y est le rapport des hauteurs conjuguées du ressaut classique défini par la relation (I.3) de *Bélanger (1828)*.

En remplaçant les relations (I.17) et (I.18) dans l'expression du rendement du ressaut (I.16) on obtiendra :

$$\eta = 1 - \left[\left(Y + F_1^2 / \left(2Y^2 \right) \right) / \left(1 + F_1^2 / 2 \right) \right]$$
(I.19)

Hager et Sinniger (1986) proposent une expression approchée pour calculer le rendement du ressaut hydraulique applicable pour $F_1 > 2$:

$$\eta = \left[1 - \frac{\sqrt{2}}{F_1}\right]^2 \tag{I.20}$$

L'équation (I.20) indique une petite efficacité pour les ressauts avec $F_1 < 3$. Pour $F_1 > 5$, plus de 50% d'énergie peut être dissipée.

Figure I.7 : Rendement η du ressaut classique en fonction du nombre de Froude F1 (—) Courbe tracée selon la relation (1.19), (-----) courbe tracée Selon la relation (1.20)

D'après l'analyse de la courbe $\eta = f(F_1)$ nous constatons que les rendements obtenus par l'application de la relation exacte (I.19) sont légèrement inferieurs à ceux calculés par la relation (I.20) d'autre part; l'écart maximum observé peut atteindre les 2 %.

I.2.3. ETUDE DE HAGER (1992)

Hager (1992) a développé une formule permettant de présenter le profil de surface libre pour un ressaut hydraulique classique. Le développement de cette formule a été basé sur des données des essais expérimentaux réalisés par Hager et d'autres auteurs. Cette approche tient compte de la longueur de rouleau et est basée sur la formule (I.5) présentée précédemment.

I.2.3.1. Procédure expérimentale

Les essais expérimentaux ont été réalisés dans un canal rectangulaire lisse de 0,50 m de largeur et une hauteur de 0,70 m, placée en aval d'un déversoir d'une pente de 30°. Une gamme de nombres de Froude obtenue varie entre 2 et 10.

Partie I

I.2.3.2. Analyse des données

La représentation des données est basée sur les coordonnées longitudinale X et verticale y qui sont présentées comme suit:

$$X = \frac{x}{Lr}$$
, $y = \frac{h - h_1}{h_2 - h_1}$ (I.21)

Où x est la coordonnée horizontale qui prend pour origine le pied du ressaut.

Le profil de surface libre du ressaut hydraulique classique est présenté dans la figure (I.8), selon l'équation (I.21).

Les données des essais expérimentaux réalisés par *Bakhmeteff et Matzke (1936)* pour $4 < F_1 < 9$ s'adaptent à la relation suivante :

$$y = tgh(1, 5.X) \tag{I.22}$$

La figure (I.8) montre que les données présentées pour les nombres de Froude donnent un raisonnable accord avec l'équation (I.22).

Figure I.8. Données expérimentales de Bakhmeteff et Matzke (1936); $F_1 = 1,99$ (▲) ;2,92 (■) ;4,10(•) ; 5,52 (♥) et 8,64(•) ; et pour Schröder (1963) ; $F_1=3$,85(△) ;4,25(□) ; 4,8(○) ; 5,41 (∇) et 6,06(◊) ; (—) équation (I.22) selon (Hager 1992).

La relation (I.22) peut s'écrire sous la forme suivante :

$$\frac{h-h_1}{h_2-h_1} = \tan gh\left(1,5\frac{x}{L_r}\right) \tag{I.23}$$

La comparaison des données de *Bakhmeteff et Matzke (1936)*, de *Schröder (1963)* avec l'équation (I.23), présentée dans La figure (I.8) montre un accord global entre les données et l'équation (I.23).

La relation (I.23) développée par *Hager* nous permet de tracer le profil de surface libre d'un ressaut hydraulique classique, Le profil de surface obtenu à partir de cette équation correspond bien aux données expérimentales pour un intervalle des nombres de Froude entre 2 et 10. L'équation (I.23) peut être considérée comme un profil de ressaut classique universel.

I.3. RESSAUT HYDRAULIQUE CONTROLE PAR SEUIL MINCE I.3.1. APPROCHE DE FORSTER ET SKRINDE (1950)

En admettant une répartition hydrostatique des pressions et une distribution uniforme des vitesses dans les sections de part et d'autre du ressaut, *Forster et Skrinde (1950)*, ont trouvé un diagramme, qui lie les trois paramètres adimensionnels suivants :

- 1. le nombre de Froude IF₁ de l'écoulement incident ;
- 2. la position relative du seuil x / h_2 ;
- 3. la hauteur relative du seuil s / h_1 .

L'étude de *Forster et Skrinde (1950)* vise à analyser expérimentalement la variation de la hauteur relative s/h_1 du seuil en fonction du nombre de Froude IF_1 de l'écoulement incident, pour des valeurs données de la position x/h_2 du seuil.

Pour chaque essai effectué, le rapport x $/h_2$ est maintenu constant tout en assurant la formation complète du ressaut. La longueur du bassin amortisseur est à la limite égale à la position x du seuil comptée à partir du début du ressaut (figure I.9).

Figure I.9: ressaut contrôlé par seuil mince

Le seuil de hauteur s est dénoyé et fonctionne comme un déversoir; la profondeur h_3 de l'écoulement à l'aval n'a ainsi aucune influence sur le débit franchissant le seuil. Cette condition est satisfaite lorsque :

$$h_3 < h_2 - 0.75.s$$
 (I.24)

La Figure 1.10 montre la variation expérimentale de la hauteur relative s/h_1 du seuil en fonction du nombre de *Froude* F_1 de l'écoulement incident, pour les valeurs de la position relative x/h_2 du seuil testé ($x/h_2 = 3$; 5 et 10).

Figure I.10: Variation expérimentale du nombre de Froude F_1 en fonction de la hauteur relative s/ h_1 du seuil à paroi mince pour quelques valeurs de x / h_2 , selon Forster et Skrinde (1950).

Trois courbes sont alors obtenues. Chaque courbe correspond a une valeur de x/h_2 bien déterminée. On peut remarquer que pour toutes la gamme des valeurs du nombre de Froude IF₁ testés, les courbes expérimentales obtenues se rapprochent les unes des autres au fur et à mesure que x/h_2 augmente. Certainement les courbes correspondant à x/h_2 compris entre 5 et 10, ce qui signifie que la hauteur relative s/h_1 du seuil ne subit pas de grandes variations. En pratique, on considère que la position relative x/h_2 du seuil est approximativement égale à 6. Le diagramme de la figure I.10 représente la méthode approuvée pour le dimensionnement des bassins d'amortissement contrôlé par seuil à paroi mince. Tous ces considérations ont incité *Achour et al (2002)* qui ont mené une étude expérimentale dans le but de compléter les

essaies de *Forster et Skrinde (1950)*, et ainsi de définir une relation explicite $f(F_1, S, x/h_2) = 0$.

I.3.2. ETUDE DE ACHOUR ET AL (2002)

I.3.2.1. Essais pour *X*≃*Lr*

La première configuration de *Achour et al (2002)* répond aux conditions expérimentales de *Forster et Skrinde (1950) (X =L*r).

La hauteur géométrique « s » du seuil ainsi que sa position « x » sont choisies de telle sorte que le rapport x/h_2 prenne des valeurs comprises entre 3 et 10 ; les essais sont exécutés avec un pas de variation Δ (x/h_2) \cong 0,5.

L'expérimentation a montré que la relation qui lie la hauteur relative $S=s/h_1$ du seuil au nombre de *Froude* F_1 est de type puissance :

Figure 1.11: Variation expérimentale de la hauteur relative s/h1 du seuil à paroi mince en fonction du nombre de Froude F1 de l'écoulement incident, pour quelques valeurs de x/h2.

Le résultat principal obtenu montre que l'exposant β figurant dans la relation (I.25) prend une valeur quasi constante d'environ 5/4 pour toute la gamme $3 \le X/h_2 \le 10$; En revanche, le paramètre C_0 varie en fonction de la position relative X/h_2 du seuil par la relation expérimentale $C_0 = \psi(X/h_2)$.

La figure (I.12), montre que la courbe de variation $C_0 = \psi (X / h_2)$ peut être assimilée à deux tronçons de droites D_1 et D_2 sur l'ensemble de l'intervalle $3 \le X/h_2 \le 10$.

Figure I.12: Variation expérimentale de C_o en fonction de la position relative X/h_2 du seuil à paroi mince.

Une analyse complémentaire a permis d'écrire :

$$= 0,0604 (x/h_2) + 0,1186 (F_1 - 1)^{1,25} \qquad \text{Pour } 3 \le x/h_2 \le 5.$$
 (I.26)

$$S = 0,0086(x/h_2) + 0,379(F_1 - 1)^{1,25}$$
 Pour $5 \le x/h_2 \le 10.$ (I.27)

I.3.2.2. Essais pour $X \cong Lj$

S

Dans cette partie le seuil à paroi mince est placé à une distance X environ égale à la longueur L_j du ressaut (figure I.13).

Figure I.13 : Contrôle du ressaut par un seuil à paroi mince pour $X \cong Lj$

Dans la gamme de valeurs $3 \le F_1 \le 9$, aucun effet de frottement n'a été montré et le rapport $Y=h_2/h_1$ des hauteurs conjuguées peut donc être évalué par application de la relation:

$$Y = \frac{1}{2} \left[\left(1 + 8F_1^2 \right)^{1/2} - 1 \right]$$
(I.28)

Au début, le but de cette étude est de déterminer expérimentalement la hauteur relative s/h_1 du seuil nécessaire à la formation du ressaut comme il est représenté sur la figure I.13 et pour la gamme pratique ci-dessus indiquée de F₁. Les figures I.14 et I.15 montrant respectivement la variation de ξ (Y, s/h_1) = 0 et ζ (F_1 , s/h_1) = 0. Ainsi, des courbes uniques sont obtenues et un ajustement basé sur la méthode des moindres carrés a permis de corréler avec une excellente approximation les paramètres Y, s/h_1 et F₁:

$$Y = 2,37 \left(s / h_1 \right)^{0.8} + 1 , R^2 = 0,996$$
 (I.29)

$$s/h_1 = 0,562 (F_1 - 1)^{1,225}$$
, $R^2 = 0,993$ (I.30)

Figure I.14: Variation expérimentale du rapport Y des hauteurs conjuguées du ressaut en fonction de la hauteur relative s/h_1 du seuil à paroi mince $(X \cong Lj)$ (- - -) courbe tracée selon la relation (I.29).

(igure 1.15 : Variation experimentale de la hauteur relative s/h₁ du seuil à paroi mince en fonction du nombre de Froude F_1 de l'écoulement incident ($X \cong Lj$). (- - -) courbe tracée selon la relation (I.30).

L'étude s'est enfin intéressée à l'évaluation de la position X du seuil nécessaire à la formation complète du ressaut. Lorsque le seuil est placé à une distance X = Lj, le ressaut peut être considéré comme un ressaut classique caractérisé par un rapport X/h₂ environ égal à 6 (*Peterka, 1983*). Cette tendance semble être confirmée par les mesures expérimentales représentées graphiquement sur la figure (I.16), notamment pour les valeurs élevées du nombre de Froude incident F₁.

La figure (I.16) indique que la position relative X / h_2 du seuil est indépendant de F (F_1 > 3). A ces valeurs élevées de F_1 , la perturbation de la surface libre rend la pression de la mesure limnimetrique de la profondeur h_2 très difficile ($\Delta h_2 = \pm 1,5$ cm).

Les mesures expérimentales obtenues se traduisent alors par un nuage de points réparti toutefois autour de la valeur moyenne $X/h_2 = 6$. La figure (I.16) montre la variation expérimentale de la fonction φ (F₁, X/h₁) = 0 le nombre de Froude F₁ est lié à la hauteur

(I.31)

relative $S = s/h_1$ par la relation (I.30). Un ajustement basé sur la méthode des moindres carrés a permis d'écrire :

Figure 1.16: Variation expérimentale de la position relative X/h_2 du seuil à paroi mince en fonction du nombre de Froude incident F_1 lors du contrôle du ressaut dans un canal rectangulaire($X \cong Lj$).

Figure 1.17: Variation expérimentale de la position relative X/h_1 du seuil à paroi mince en fonction de $(F_1 - 1)$ lors du contrôle du ressaut dans un canal rectangulaire $(X \cong Lj)$. (---) courbe tracée selon la relation (I.31).

I.4. RESSAUT HYDRAULIQUE CONTROLE PAR SEUIL EPAIS I.4.1. APPROCHE DE FORSTER et SKRINDE (1950)

Le seuil est considéré comme épais lorsque le profil liquide s'y écoulant est presque parallèle au fond, pour peu que la longueur L du seuil soit suffisante (figure I.18). La notion de seuil épais est également liée au caractéristiques de l'écoulement et suivant la classification de *Rao et Murlidhar (1963)*, le seuil est considéré comme étant épais lorsque :

Figure I.18 : Ecoulement franchissant un seuil épais continu de hauteur s et de longueur L.

Les parties hachurées correspondent à la répartition supposée hydrostatique des pressions. Dans la section 2, l'écoulement est en régime fluvial de profondeur h_2 . Le seuil est ensuite franchi par un écoulement en régime critique de profondeur k, suivi d'une tranche en régime torrentielle dont la profondeur finale hm est minimale (section m).

L'étude théorique basée sur l'équation de la quantité de mouvement, appliquée entre la section initiale du ressaut et la section au droit du seuil, a abouti à une relation fortement implicite liant la hauteur relative s/h_1 du seuil et le nombre de Froude F₁ (relation I.33). Le paramètre x/h_2 n'a ainsi théoriquement aucune influence sur le contrôle du ressaut.

$$\frac{21,33F_1^2}{\sqrt{1+8F_1^2}-1} = \frac{\left(\sqrt{1+8F_1^2}-1-2s/h_1\right)^3}{\left(\sqrt{1+8F_1^2}-1+2s/h_1\right)}$$
(I.33)

Contrairement au cas du seuil à paroi mince, une seule courbe est obtenue (figure I.19) traduisant la variation de s/h₁ en fonction du nombre de Froude F₁. Cette courbe peut être utilisée à condition que : $h_3 < (2.h_2 + s)/3$

Figure I.19 : Variation expérimentale du nombre de Froude IF1 en fonction de la hauteur relative s/h1 du seuil à paroi épaisse, selon Forster et Skrinde (1950). Courbe tracée selon la relation (I.33).

I.4.2. APPROCHE DE ACHOUR ET AL (2002)

I.4.2.1. Configuration avec vanne de fond

La configuration de base permettant l'analyse de *Achour (1997)* est représentée à la figure I.20, montrant un ressaut à l'aval d'une vanne de fond suivie d'un seuil à paroi épaisse de hauteur s et franchie par un écoulement en régime critique de profondeur k.

Les charges totales dans les sections initiale et finale du ressaut sont respectivement (en considérant le facteur de correction de l'énergie cinétique) égales à l'unité :

$$H_1 = h_1 + v_1^2 / (2g) \tag{I.34}$$

$$H_2 = h_2 + v_2^2 / (2g) \tag{I.35}$$

Figure I.20 : Ressaut contrôlé par un seuil à paroi épaisse à l'aval d'une vanne de fond, selon Achour (1998).

La figure I.20 permet d'écrire que :

$$H_2 = s + 1,5k$$
 (I.36)

La perte de charge ΔH due au ressaut est égale à la différence des charges H_1 et H_2 :

$$\Delta H = H_1 - H_2 \tag{I.37}$$

La combinaison des relations (I.36) et (I.37) donne :

$$\Delta H = H_1 - (s + 1, 5k)$$
 (I.38)

En introduisant les paramètres adimensionnels $\delta = \Delta H/k$, $\Phi_1 = H_1/k$ et $h = h_1/k$ la relation (I.38) s'écrit :

$$s/h_1 = \frac{\phi_1 - \delta - 3/2}{h_1}$$
 (I.39)

Le paramètre adimensionnel h_1 est identique au paramètre φ défini par *Lapray* (1967) par l'expression suivante :

$$\varphi_2 = \left[\varphi_1^2 / 4 + 2/\varphi_1\right]^{1/2} - \varphi_1 / 2 \qquad (I.40)$$

La variation de Φ_1 , liée à la charge totale H₁ peut aisément s'écrire :

$$\phi_1 = \phi_1 + 1/(2/\phi_1)$$
 (I.41)

De même, la variation adimensionnelle δ est liée à la perte de charge Δ H due au ressaut défini par (I.15) :

$$k.\delta = \Delta H = (h_2 - h_1)^3 / (4h_2h_1)$$
 (I.15)

Cette dernière relation s'écrit en fonction des paramètres φ_1 et φ_2 :

$$\delta = \frac{(\phi_2 - \phi_1)^3}{4\phi_1 \cdot \phi_2}$$
(I.42)

Ainsi, en tenant compte des relations (I.40), (I.41) et (I.42), on peut énoncer que la hauteur s/h₁ du seuil définie par (I.39) ne dépend que des paramètres φ_2/φ_1 . Il est donc possible d'exprimer la hauteur relative s/h₁ du seuil en fonction de Y et de F₁.

$$F_{1}^{2} = Q^{2} / (g.b^{2}.h_{1}^{3}) = k^{3} / h_{1}^{3} = \varphi_{1}^{-3}$$

Soit $\varphi_{1} = F_{1}^{-3/2}$ (I.43)

La variable φ_2 , liée à la charge totale finale H_2 à l'aval du ressaut, s'écrit comme pour le cas de φ_1 :

$$\varphi_2 = \varphi_1 + 1/(2.\varphi_2^2) \tag{I.44}$$

$$\varphi_1 = Y. \varphi_1 + 1/(2.Y^2.\varphi_2^2)$$
(I.45)

En tenant compte des variables ϕ_1 et ϕ_2 , la perte de charge relative δ due au ressaut s'écrit :

$$\delta = \phi_1 - \phi_2 \tag{I.46}$$

La relation (I.39) devient alors :

$$s/h_1 = (\phi_2 - 1, 5)/\phi_1$$
 (I.47)

La combinaison des relations (I.43), (I.45) et (I.47) permet d'exprimer la hauteur relative s/h_1 du seuil en fonction du nombre de Froude F₁ et du rapport Y des hauteurs conjuguées du ressaut :

$$s/h_1 = Y + \frac{1}{2} \left(\frac{F_1}{Y}\right)^2 - \frac{3}{2} F_1^{2/3}$$
 (I.48)

Cette relation présente trois paramètres adimensionnels : s/h_1 , IF₁ et Y; les deux derniers étant liés entre eux par l'équation de *Belanger (1928)*:

$$Y = h_2 / h_1 = 0.5 [(1 + 8.F_1^2)^{1/2} - 1] \quad (I.3)$$

Les relations (I.48) et (I.3) montrent que la hauteur relative s/h_1 n'est fonction que d'une seule variable, Y ou F₁.

Pour la valeur de $F_1 = 1$, représentant la condition d'un écoulement critique, la relation (I.3) indique que Y = 1. Par la suite, en vertu de (I.48), la hauteur relative s/h₁ du seuil est nulle.

La relation (I.48) proposée par *Achour* tient compte de la hauteur capable de la vitesse à l'aval du ressaut. Cette démarche paraît être plus rigoureuse que celle entreprise par *Forster et Skrinde (1950)* pour le cas d'un seuil à paroi épaisse. En outre, la hauteur relative s/h₁ du seuil épais peut être ainsi déterminée de manière explicite, contrairement à la relation (I.33) établie par *Forster et Skrinde (1950)*.

I.4.2.2. Configuration avec déversoir standard

Une autre configuration du ressaut prenant naissance au pied aval d'un obstacle tel qu'un déversoir standard (figure I.21), a également fait l'objet d'une étude proposée par *Achour* (1997).

L'écoulement à l'amont du seuil S_1 est en régime fluvial et torrentiel sur le parement aval. Le passage de l'écoulement fluvial à l'écoulement torrentiel se traduit par l'application d'une section de contrôle (ou section critique) au droit même du seuil.

Figure I.21: Ressaut contrôlé par un seuil à paroi épaisse à l'aval d'un déversoir standard. P.d.c : pertes de charge sur le parement aval du déversoir.

La mise en place à l'aval de l'écoulement d'un second seuil (mince ou épais) de hauteur s_2 provoque l'apparition d'un ressaut. Le seuil de hauteur s_2 est à son tour franchi par un écoulement critique, comme pour le cas de la configuration avec vanne de fond.

En négligeant toutes les pertes de charges autres que celles dues au ressaut, la figure I.21 permet alors d'écrire que :

$$H_{1} = s_{1} + 1,5.k$$

$$H_{2} = s_{2} + 1,5.k$$
(I.49)
Soit : H_{1} - H_{2} = s_{1} - s_{2} = \Delta H

Ainsi, la perte de charge due au ressaut s'exprime par la différence des hauteurs des seuils s_1 et s_2 . Le système d'équations (I.49) peut aisément s'écrire sous la forme adimensionnelle

$$s_{1} = (\phi_{1} - 1, 5).k (1)$$

$$s_{2} = (\phi_{2} - 1, 5).k (2)$$

$$\delta = (\phi_{1} - \phi_{2}) = (s_{1} - s_{2})/k (3)$$
(I.50)

et par suite :

 δ , ϕ_1 et ϕ_2 sont des paramètres identiques à ceux utilisés lors de l'étude du ressaut contrôlé par seuil en présence d'une vanne de fond. La combinaison des relations (I.50)₁, (I.50)₂ et (I.50)₃ permet d'écrire :

$$1 - \frac{s_2}{s_1} = \frac{\delta}{\phi_1 - 1.5} \tag{I.51}$$

avec $\delta = \Delta H/k$ et $\phi_1 = H_1/k$

Comme il a été montré, δ et Φ ne dépendent que de la variable $\varphi = h_1/k$ et le paramètre adimensionnel S = (1- s₂/s₁), lié à la hauteur géométrique des seuils situés à l'amont et à l'aval du ressaut, l'est donc aussi. Pour que le ressaut puisse se former, il est nécessaire que s₂ soit strictement inférieur à s₁ et l'on peut écrire alors que :

$$0 < \mathbf{S} < 1 \tag{I.52}$$

La relation (I.52) sert à évaluer la hauteur s_2 nécessaire à la formation du ressaut dans la position indiquée sur la figure I.20. Les paramètres connus du problème sont :

Q le débit volume évacué par l'ouvrage, b la largeur du canal rectangulaire, h_1 la hauteur initiale du ressaut et s_1 la hauteur du déversoir standard.

Les trois premiers paramètres ci-dessus indiqués permettent le calcul de la variable φ_1 , lié au nombre de Froude F₁ caractérisant l'écoulement à l'amont du ressaut par la relation (I.43).

A partir de la valeur calculée de φ_1 , l'application successive des équations (I.40), (I.43) et (I.46) donne le paramètre adimensionnel S et par suite la valeur recherchée de la hauteur s₂ nécessaire à la formation du ressaut.

La relation (I.51) est cependant fortement implicite et une relation approchée est proposée (relation I.53) dans laquelle S est fonction des hauteurs géométriques du déversoir standard et du seuil ainsi que la hauteur relative φ_1

$$S^{9/8} + \varphi_1^{9/8} = 1 \quad avec \ S = 1 - s_2 / s_1 \tag{I.53}$$

I.5. RESSAUT HYDRAULIQUE CONTROLE PAR MARCHE POSITIVE I.5.1. APPROCHE DE FORSTER et SKRINDE (1950)

La figure (I.22) montre un ressaut hydraulique contrôlé par marche positive de hauteur « s » franchi par un écoulement de profondeur h₃.

Figure (I.22): Ressaut forcé par marche positive de hauteur ''s'', les parties hachurées correspondent à la répartition supposée hydrostatique des pressions

Forster et Skrinde (1950), ont prouvé expérimentalement qu'il existe une relation entre le nombre de *Froude* F₁ de l'écoulement incident, et la hauteur relative h_3/h_1 , pour des différentes valeurs de la hauteur relative s/h_1 de la marche positive et pour x=5 ($s+h_3$). A cet effet, les auteurs ont élaboré un diagramme (figure (I.23)) qui permet de déterminer les paramètres caractéristiques du bassin d'amortissement tels que : la longueur et la hauteur du

bassin ainsi que la hauteur minimale de la marche positive nécessaire à la formation du ressaut.

Figure (1.23): Variation du nombre de Froude F1, en fonction de h3/h1 et de la hauteur relative s/h1 de la marche positive, selon Forster et Skrinde (1950)

I.6. Conclusion :

Ce premier chapitre a pour but de faire découvrir les principaux travaux entrepris dans le domaine du ressaut hydraulique évoluent en canal rectangulaire de pente nulle, quatre types de ressaut ont été présentés :

✓ Le ressaut hydraulique classique, où nous avons abordé les travaux de *Bradley et Peterka (1957)* concernant la forme du ressaut et ceux de *Hager (1990)* relatifs aux caractéristiques du ressaut classique. Ces caractéristiques sont : ses hauteurs initiale et finale, sa longueur ainsi que la longueur de son rouleau et le rendement.

Nous avons remarqué que le ressaut hydraulique est régi par l'équation de la quantité de mouvement. Afin de définir la relation reliant le rapport Y des hauteurs conjuguées et le nombre de Froude F1. *Bélanger (1828)*, a fait la première démarche pour déterminer cette relation, par l'application du théorème d'Euler, entre les deux sections du ressaut. Par la suite, *Hager (1992)* a développé une formule permettant de présenter le profil de surface libre pour un ressaut hydraulique classique.

✓ le ressaut hydraulique contrôlé par seuil mince, où nous avons présenté les travaux de *Forster et Skrinde (1950)*. Les auteurs ont défini la variation de la hauteur relative $S = s/h_1$ du seuil en fonction du nombre de Froude F₁ pour des valeurs données de x/h₂, dont trois courbes ont été établies expérimentalement. Ils ont constaté que les trois courbes se rapprochent les unes des autres au fur et à mesure que x/h_2 augmente. Par la suite, *Achour et al* (2002) ont conduit une étude expérimentale dans le but de compléter les essaies de *Forster et Skrinde (1950)*, Deux configurations du ressaut sont considérées. La première configuration répond aux conditions expérimentales de *Forster et Skrinde (1950)* (X =Lr). Ils ont défini la variation de la hauteur relative du seuil en fonction du nombre de Froude F₁ pour un grand nombre de valeurs de X/h₂. La deuxième configuration correspond à un ressaut contrôlé dont la longueur Lj coïncide avec la position X du seuil. L'analyse des mesures expérimentales a permis aux auteurs de corréler de manière plus significative la position relative X/h₁ du seuil au nombre de Froude incident F₁.

✓ Le ressaut hydraulique contrôlé par seuil à paroi épaisse, où nous avons examiné les travaux de *Forster et Skrinde (1950)*, qui ont montré que l'application de l'équation de quantité de mouvement est possible entre les sections initiale et finale du ressaut et la section au droit du seuil pour laquelle la hauteur de l'écoulement est minimale. Les auteurs proposent une relation analytique implicite qui lie la hauteur relative s/h₁ du seuil au nombre de Froude IF₁; Contrairement au cas du seuil mince, une seule courbe est alors obtenue.

L'étude du ressaut contrôlé par un seuil à paroi épaisse franchi par un écoulement en régime critique a été également effectuée par *Achour (2002)*. Deux configurations ont été examinées; l'écoulement torrentiel à l'amont du ressaut est crée d'abord par la mise en place d'une vanne de fond et enfin par un déversoir standard.

Concernant la configuration avec la vanne de fond, le développement théorique a mené à l'établissement d'une relation explicite permettant d'évaluer la hauteur relative s/h_1 du seuil en fonction du nombre de Froude F_1 .

Pour le cas du ressaut précédé d'un déversoir standard, l'étude théorique a montré que le nombre de Froude F_1 est lié implicitement au paramètre adimensionnel S=1- s_2/s_1 dans lequel s_2 représente la hauteur géométrique du seuil épais et s_1 celle du déversoir standard.

✓ Le ressaut hydraulique contrôlé par marche positive, où nous avons cité les travaux de *Forster et Skrinde (1950)*, ils ont élaboré un diagramme qui montre la variation du nombre de Froude F₁, en fonction du rapport h_3/h_1 , pour différentes valeurs des hauteurs relatives s/h₁ de la marche positive.

Chapitre II

Ressaut hydraulique forcé dans un canal rectangulaire

CHAPITRE II

Ressaut hydraulique forcé dans un canal rectangulaire

II.1. Introduction

Dans ce chapitre nous passerons en revue les recherches les plus récentes relatives au ressaut hydraulique forcé dans un canal de section droite rectangulaire. Deux types de ressaut seront alors étudiés :

Le ressaut forcé par seuil mince, où nous montrerons les travaux de *Rand (1957)*, particulièrement la classification du ressaut forcé par seuil en dix (10) cas typiques. Nous présenterons également les travaux de *Rajaratnam (1964)*, qui traite en détail six (06) cas typiques de ressaut forcé par seuil ; il rejoint ainsi la description de *Rand (1957)*. Nous présenterons ensuite l'étude de *Bretz (1988)* qui, à l'instar de *Rand*, donne trois (03) types de ressaut forcé par seuil, le type A, le type B et le type B_{min}. Ces résultats seront repris et confirmés par *Hager et Bretz (1988)*. Nous présenterons enfin les travaux de *Hager et Li 1992*.

Le ressaut forcé par marche positive, où nous présenterons les travaux de Hager et Sinniger (1986) et celles de Hager et Bretz (1987).

II.2. RESSAUT HYDRAULIQUE FORCE PAR SEUIL MINCE II.2.1. APPROCHE DE RAND (1957)

En 1957, Rand a établi une classification du ressaut forcé par seuil continu à son extrémité en 10 cas typiques, se rapportant aux effets de la hauteur du seuil et de sa position. Le ressaut classique sert de cas de référence.

Ces cas peuvent être groupés en trois classes se distinguant par la position du seuil par rapport au pied du ressaut (figure II.1) :

- 1. position minimale en amont L_s,min,
- 2. position intermédiaire L_s,
- 3. position maximale L_s,max.

Figure II.1 : Cas typiques d'écoulement divisés en trois classes :

0) ressaut classique ; 1) classe 1, longueur L_{s} min ; 2) classe 2, longueur intermédiaire L_{s} ; 3) classe 3, longueur L_{s} max, et 4) ressaut classique avec hauteurs conjuguées h_{1} et h_{2} , s: hauteur du seuil, s_{c} : hauteur critique du seuil et s_{max} : hauteur maximale du seuil.

Afin de décrire tous les cas, Rand (1957) définit un facteur de position :

$$K = \frac{(L_s/h_1) - (L_s/h_1)_{\min}}{(L_s/h_1)_{\max} - (L_s/h_1)_{\min}}$$
(II.1)

Variant entre K = 0 pour le ressaut dans la position minimale et K = 1 pour la position maximale. De plus, l'auteur en (1957) a réussi d'établir des diagrammes qui permettent d'exprimer le rapport des hauteurs conjuguées Y_F en fonction de IF_1 pour différentes hauteurs relatives de seuil S = s/h₁ et ceci pour 5 valeurs de K. La figure II.2 montre ce diagramme, qui montre que, l'augmentation de la hauteur relative du seuil, engendre la diminution de la hauteurs conjuguées et qu'une augmentation de F conduit à la disparition du rôle du seuil, ce

qui pourrait signifier que le seuil devient inutile, pour de très grands nombres de Froude IF₁!. La hauteur du seuil nécessaire à la formation d'un ressaut peut être tirée de ces diagrammes. *Rand (1957)* propose pour la première fois une classification des divers cas possibles du ressaut forcé par seuil et des diagrammes permettant le dimensionnement des bassins.

En 1965, Rand a de nouveau représenté ces cartes sous une autre forme. Cette fois II a utilisé un canal avec vanne plane : la détermination de h_1 est donc recommandée dans ce cas. Un diagramme pour une valeur de IF₁ est dressé $Y_F = h_2/h_1$ en fonction de $S = s/h_1$ pour diverses valeurs de K, arrangement plus pratique à utiliser pour le dimensionnement (figure II.2), mais avec l'inconvénient qu'il faut tracer un diagramme pour chaque nombre de Froude.

Figure II.2 : Hauteurs conjuguées $h_2/h_1 = f(S,K)$ pour $F_1 = 9$. Valeurs et courbes expérimentales ; (---) limite d'influence de l'aval sur l'amont.

II.2.2. APPROCHE DE RAJARATNAM (1964)

Rajaratnam (1964), exprime le coefficient de traîné C_d en fonction de IF_1 , du rapport des hauteurs conjuguées Y_F et de la hauteur relative du seuil S. A la suite d'essais, il établit un diagramme de la variation de C_d avec Ls/Lr où Ls est la position du seuil par rapport au pied du ressaut et Lr la longueur du rouleau (figure II.3). *Rajaratnam (1964)* propose une courbe moyenne et divise le domaine de Ls/Lr en quatre zones, choisies selon les cas typiques d'écoulement.

Figure II.3 : Variation du coefficient de traîné Cd en fonction de la position relative du seuil λ_s =Ls/Lr Rajaratnam (1964) ; points expérimentaux et courbe moyenne.

II.2.3. APPROCHE DE RAJARATNAM ET MURAHARI (1971)

Rajaratnam et Murahari (1971) ont poursuivi les recherches, à la lumière de Rand. Le coefficient de traînée est rendu dépendant de la hauteur relative du seuil $S = s/h_1$. Ils ont aussi établi des diagrammes de Cd en fonction de la position relative du seuil Ls/h₁ pour chaque point de S, puis les ont regroupés sur un seul avec $C_d S = f (Ls/h_1)$ pour que les courbes ne se chevauchent pas ; les profils des surfaces et des vitesses sont mesurés. La figure II.4 représente l'évolution des vitesses dans le ressaut forcé par un seuil à paroi mince.

Figure II.4 : Ressaut forcé par seuil à paroi mince. Répartition des vitesses pour $IF_1 = 5,6$ et s = 50 mm.

II.2.4. APPROCHE DE BRETZ (1988)

II.2.4. 1. Généralités

A l'instar de *Rand (1965), Bretz en 1988* a conduit une étude expérimentale sur l'effet du seuil sur le ressaut hydraulique. Ses résultats ont été confirmés par *Hager et Bretz (1988), Hager et Sinniger (1989), et Hager et Li (1991).*

Une description détaillée et une classification des différents types d'écoulements du ressaut forcé par seuil sont présentées (figure II.5).

Figure II.5: Ressaut forcé par seuil. Distribution des vitesses pour $IF_1=5,23$ et S=1,42. a) ressaut type A; b) ressaut type B; c) ressaut type B minimum; d) ressaut type C et e) onde. (Bretz, 1987).

En effet, trois types de ressaut forcé par seuil sont retenus et analysés dans quatre sections longitudinales. Trois paramètres sont étudiés, d'abord indépendamment les uns des autres, puis en combinaison : le nombre de Froude IF_1 , le niveau aval h_2 et la hauteur relative S du seuil. L'attention est portée particulièrement sur les hauteurs conjuguées caractérisant le ressaut forcé par seuil et les profils de surface.

II.2.4.2. Procédure expérimentale

Dans le but d'augmenter le nombre de Froude F_1 et de pouvoir simultanément contrôler la hauteur d'eau amont h_1 , une vanne plane est installée dans la partie horizontale du canal. La procédure des essais est la même que celle décrite pour le ressaut classique.

Figure II.6: Ressaut forcé par seuil : définition des termes. H_1 charge amont, H_2 charge aval, ΔH perte de charge. h_1 hauteur d'eau amont, h_2 hauteur d'eau aval, s hauteur du seuil, x_0 position du pied du ressaut, x_s position du seuil, x_{rf} position de la fin du rouleau de fond à l'aval, L_R longueur du rouleau de surface, L_s position du seuil par rapport au pied du ressaut, L_{RF} longueur du rouleau de fond aval, L_B distance entre le pied du ressaut et la fin du rouleau aval.

Les grandeurs suivantes sont relevées : charge à l'amont de la vanne H_0 , hauteur d'eau aval h_2 , position du pied du ressaut x_0 et position de la fin du rouleau de fond x_{rf} . Les essais sont répétés pour les hauteurs relatives de seuil S = 1, 2, 3 et 4 mm, dont l'emplacement est fixe.

Le pied du ressaut a été placé le plus près possible de la vanne, pour éviter l'effet du frottement dans cette frange de l'écoulement.

Un débit est amorcé pour provoquer un ressaut forcé (type A, B ou B_{min}). 45 essais pour chaque type de ressaut ont alors été effectués.

II.2.4.3. Hauteurs conjuguées du ressaut

Pour le cas du ressaut forcé de type A, la figure II.7 montre que plus la hauteur relative S du seuil est grande, plus la courbe correspondante s'éloigne de la courbe S = 0 correspondante au ressaut classique (sans seuil).

Pour les diverses hauteurs relatives S, les courbes ont été approchées à l'aide de l'équation suivante :

$$Y_{A} = 1,307.IF_{1} - 0,4.S^{0.85} - 0,142$$
(II.2)

Figure II.7: Ressaut forcé type A. Rapport des hauteurs conjuguées $Y_A = f(IF_PS)$ avec $0.5 \le S \le 6$. $S = s/h_P$ (---) courbe selon l'équation de Bélanger. (---) courbe du ressaut classique selon l'équation (1.48).

Pour le ressaut forcé type B des courbes analogues sont représentées sur la figure II.8, avec un décalage plus important vers le bas. Elles sont exprimées par l'équation :

$$Y_{R} = 1,307.F_{1} - 0,142 - 0,6.S^{0.75}$$
(II.3)

Figure II.8 : Ressaut forcé type B. Rapport des hauteurs conjuguées $Y_B = f(IF_I,S)$. Même notation que la figure II.7.

Finalement pour le cas du ressaut forcé type B-minimum (figure II.9), le décalage vers le bas devient encore plus grand. L'équation devient :

$$Y_{B-min} = 1,307.F_1 - 0,142 - 0,85.S^{0.65}$$
(II.4)

Figure II.9 : Ressaut forcé type B-min. Rapport des hauteurs conjuguées $Y_{B-min} = f(IF_1,S)$. Même notation que la figure II.7.

Autrement dit le rapport des hauteurs conjuguées du ressaut forcé par seuil est représenté en fonction du rapport des hauteurs conjuguées du ressaut classique par l'équation :

$$Y_F = Y_{RC} - \Delta Y_S \tag{II.5}$$

 Y_F est donnée par les équations (II.3), (II.4) et (II.5), Y_{RC} par les mêmes équations pour S = 0et ΔY_S est l'effet du seuil défini par $\Delta Y_S = \alpha \cdot Y_S^{\beta}$. Les valeurs des coefficients α et β sont données ci-après :

	Туре А	Туре В	Type B-min
α	0,4	0,6	0,85
β	0,85	0,75	0,65

II.2.4.4. Longueur relative du bassin

La variation de la position relative du seuil $\lambda_s = L_s/h_1$ et de la longueur relative du bassin $\lambda_B = L_B/h_1$, en fonction du nombre de Froude IF₁, sont représentées respectivement dans les figures (II.10) et (II.11).

Figure II.10 (*a*, *b*, *c*) : longueur relative $\lambda s = f(F_1)$ pour le ressaut forcé : a) type A, b) type B et c) type B-min. (—) courbe selon l'equ : a) (II.6), b) (II.8) et c) (II.10) respectivement. (---) courbe limite.

Figure II.11 (a, b, c): longueur relative $\lambda_B = f(F_1)$ pour le ressaut forcé : a) type A, b) type B et c) type B-min. (—) courbe selon l'equ : a) (II.7), b) (II.9) et c) (II.11) respectivement. (---) courbe limite.

Pour les trois types de ressauts forcés, λ_s augmente presque linéairement avec le nombre de Froude IF₁. Ainsi, la pente de la courbe est plus forte pour le type A et la moindre pour le type B-min. Quant à λ_B , les courbes présentent une pente plus forte que celle pour λ_s . Les courbes pour les divers types de ressaut forcé sont situées au-dessous de celles du ressaut classique. Ce fait indique la réduction nette de la longueur du ressaut forcé par rapport au ressaut classique. Pour les trois types de ressaut forcé, les courbes sont données par les équations suivantes, avec le domaine de validité $5 \le IF_1 \le 13$:

- 1. Ressaut forcé type A $\lambda_s = 6,27.IF_1 5,75$ (II.6), $\lambda_B = 8,68.IF_1 11,23$ (II.7)
- 2. Ressaut forcé type B $\lambda_s = 5,29.IF_1 5,37$ (II.8), $\lambda_B = 8,44.IF_1 12,96$ (II.9)
- 3. Ressaut forcé type B-min $\lambda_s = 4,64.IF_1 4,84$ (II.10), $\lambda_B = 6,93.IF_1 6,83$ (II.11)

:

II.2.4.5. APPROCHE DE HAGER ET LI (1992)

II.2.4.5.1. Rapport des hauteurs conjuguées

En 1992 Hager et Li analysent à nouveau les points de mesures de Bretz (1988) et montre que la réduction $\Delta Y_s = Y^* - Y$ du niveau aval due à la présence du seuil peut s'exprimer en fonction de la hauteur relative $S=s/h_1$ et de la position relative $\Lambda = L_s/Lr^*$ du seuil. La figure II.12 montre bien que la variation de la hauteur relative S et de la position relative du seuil, permet le passage d'un type de ressaut forcé à un autre.

Les auteurs établissent alors la relation suivante :

$$\Delta Y_{s} = 0,7.S^{0,7} + 3S.(1-\Lambda)^{2} \text{ pour } \Lambda > 0,5$$
(II.12)

Le rapport Y* des hauteurs conjuguées est donné par l'équation (1.3).

Figure II.12 : Réduction de hauteur aval ΔY_S suite à la présence du seuil, fonction de la position relative (1-Λ)² et de la hauteur relative S du seuil. S = (∇) 1, (o) 2, (Δ) 3 et (□) 4. (...) équation (II.13). (---) équation (II.14).
Selon Hager et Li (1992), les hauteurs relatives limites S_L de seuils peuvent être approchées à

$$S_L = \left[C_L \cdot (1 - \Lambda)\right]^{-2} \tag{II.13}$$

où $C_L = 4$ pour transiter du ressaut type A au ressaut type B

et $C_{I} = 2,5$ entre B et B-min

La limite supérieure S_{\perp} de l'apparition du ressaut type B-min est :

$$S_{+} = 1 \left/ \left[9 \left(1 - \Lambda \right)^{3} \right]$$
 (II.14)

La figure II.13 représente la variation de $\delta = (\Delta Y_s - 0, 7^{0.7})/(3.S)$ en fonction de 1-A.

D'après les mesures de *Basco (1971)* relatives au ressaut contrôlé par chicanes, *Hager et Li (1992)* proposent une équation permettant la détermination de la hauteur optimale du seuil en fonction du nombre de Froude IF_1 :

$$S_{opt} = 1 + \left(IF_1^{2,5} / 200 \right), \ 3 < IF_1 < 10$$
 (II.15)

Cette équation est valable pour le cas d'un seuil continu car la hauteur optimale du seuil est quelque peu inférieure à la hauteur optimale des chicanes.

Figure II.13: Variation de δ en fonction de la position relative $(1 - \Lambda)$ pour $S = (\nabla) 1, (\bullet) 2, (\Delta) 3$ et $(\Box) 4$.

II.2.4.5.2. Longueur du bassin

D'après *Hager et LI (1992)*, la longueur L_B du bassin doit être au moins égale à la distance qui sépare le début du ressaut de la fin du rouleau de fond.

Les auteurs analysent les résultats de *Bretz (1988)* et trouvent que la longueur relative $\Lambda_{\rm B} = L_{\rm B}/Lr^*$ est fonction de la position relative $\Lambda_{\rm S} = Ls/Lr^*$ et de la hauteur relative $S = s/h_1$ du seuil.

L'ajustement des points de mesures a permis aux auteurs l'établissement de la relation suivante :

$$\Lambda_{B} = (4/3) \Big[1 - 0.6. S^{1/3} (1 - \Lambda) \Big]$$
(II.16)

La figure II.14 montre le terme $\Phi = \left[1 - (3/4) \Lambda_B\right] (0, 6.S^{1/3})^{-1}$ fonction de la position relative du seuil.

Figure II.14 : Longueur relative Φ du bassin en fonction de la position relative du seuil (1- Λ). S = (♥) 1, (•) 2,
(▲) 3 et (■) 4 pour un ressaut du type B. Les signes blancs correspondent aux ressauts des types A et B-minimum. (—) équation (II.16).

La bibliographie a montré que :

d

où

$$Lr^* \cong 4,5 \ h_2 \ \text{et} \ Lj^* \cong 6 \ h_2$$

'où
$$Lr^*/Lj^* = 3/4$$
(II.17)

En introduisant Lj* dans l'équation (II.16) et en utilisant l'équation (II.17), l'équation (II.16) devient :

$$\Lambda_{j} = 1 - 0, 6. S^{1/3} (1 - \Lambda)$$
(II.18)
$$\Lambda_{j} = L_{B} / Lj^{*} \text{ et } \Lambda = L_{S} / Lr^{*}$$

II.3. RESSAUT HYDRAULIQUE FORCE PAR MARCHE POSITIVE

Très peu d'études ont été réalisées dans le domaine du ressaut hydraulique forcé par marche positive ; parmi ces études, on peut citer les travaux de *Forster et Skrinde* (1950), celles de *Hager et Sinniger* (1986) et celles de *Hager et Bretz* (1987).

La marche positive constitue l'un des moyens les plus simples pour réaliser la transition de l'écoulement torrentiel à l'écoulement fluvial, par un changement local du radier. La figure II.15 montre le développement d'un ressaut hydraulique forcé par marche positive dans un canal rectangulaire de pente nul.

Figure II.15 : types de ressaut hydraulique évaluant dans un canal doté d'une marche positive. (a) ressaut type A (b) ressaut type B.(c) ressaut type B-min

II.3.1. TRAVAUX DE HAGER ET SINNIGER (1986)

Dans cette étude *Hager et Sinniger (1986)* ont indiqué que des fluctuations importantes se produisaient à la surface de l'eau, ce qui a empêché de déterminer la longueur du ressaut Lj avec précision suffisante. C'est pour cette raison que seule la longueur du rouleau Lr est prise en considération.

Par comparaison avec le ressaut hydraulique dans un canal sans marche, on distingue divers types de ressauts. La transition d'un type à l'autre est normalement continue ; du point de vue du dimensionnement. Concernant la position limite amont, le ressaut hydraulique apparait de manière similaire avec ou sans marche. Cette limite est donc caractérisée par un ressaut pour lequel l'extrémité aval du rouleau se trouve au droit de la marche. La répartition des pressions est évidemment hydrostatique et les vitesses sont réparties presque uniformément dans les deux sections limitant le volume de contrôle. Ce type de ressaut est appelé ressaut type A (figure II.16.a).

Les paramètres F_1 Y et S peuvent être liés entre eux par l'application du théorème de la quantité de mouvement en négligeant les effets de frottement (*Hager et Bretz (1987)*).

$$F_1^2 = \frac{Y \left| (Y+S)^2 - 1 \right|}{2(Y-1)}$$
(II.19)

Figure II.16 ; a) zones de séparation d'écoulement pour une marche positive,(+) et (-) indiquent respectivement les suppressions et les dépressions par rapport à la pression hydrostatique. b) répartition de la pression autour du volume de contrôle

Comme il est montré à la (figure II.16.a), il existe deux zones de séparation autour de la marche positive, celle située à l'amont et caractérisée par une surpression et celle située à l'aval par une dépression par rapport à la pression hydrostatique.

Comme hypothèse de la dépression sur la marche positive, une distribution uniforme est admise égale la valeur (h_2 +s) où h_2 est la hauteur d'eau aval sur la marche (figure II.16.b).

La relation liant les paramètres F_1 , Y et S régissant le ressaut hydraulique forcé par marche positive type B s'écrit donc

$$F_1^2 = \frac{Y \left| (Y+S)^2 - 1 \right|}{2(Y-1)} , \ S \ge 0$$
 (II.20)

Les courbes correspondant montrent une bonne concordance avec les essais de *Forster Skrinde (1950)* (figure II.17).

Figure II.17 : variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F₁ pour différentes hauteurs relatives S de marche positive. (-) courbes théorique pour divers S selon Hager et Sinniger (1986) ; points expérimentaux de Forster et Skrinde (1950) (---) la limite théorique

Pour des valeurs de Y et S données, le nombre de Froude F_1 obtenu à partir de l'équation (II.20) est supérieur à celui obtenu à partir de l'équation (II.19). Autrement dit, la valeur de Y tirée de l'équation (II.20) est inférieure à celle tirée de l'équation (II.19). Pour une même

valeur de F_1 , les deux relations ne deviennent identiques que pour S = 0, correspondant au ressaut hydraulique dans un canal sans marche (classique).

Une formule simplifiée est développée pour la dissipation d'énergie relative à la charge amont pour le ressaut type B sur marche positive :

$$\eta = \left(1 - \frac{\sqrt{2}}{F_1}\right)^{\frac{1}{2}} \text{ pour } F_1 > 2,5$$
 (II.21)

Il faut dire que η est indépendant de S et correspond donc au cas S = 0.

La figure II.18 montre la variation du rapport Y des hauteurs conjuguées pour les marches positives et négatives en fonction du nombre de Froude amont F_1 et la hauteur relative S de la marche. Les courbes pointillées correspondent à la position extrême amont et les courbes pleines se référent à la position extrême aval de la marche. La courbe en trait discontinu correspond à la limite inférieure de l'apparition du ressaut sur une marche positive de la fonction Y(F₁) pour S fixe *Hager et Sinniger (1986)*.

Figure II.18 : variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F₁ pour les marches positives et négatives dans un canal rectangulaire prismatique (.....) ressaut type A, (-) ressaut type B et Bmin, (---)la limite inférieure de l'apparition du ressaut sur marche positive

II.3.2. TRAVAUX DE HAGER ET BRETZ (1987)

Comparé a un ressaut hydraulique dans un canal prismatique et à fond horizontale, le bassin amortisseur doit forcer l'apparition du ressaut quelques soient les conditions hydrauliques.

En particulier, le ressaut hydraulique ne doit pas sortir du bassin amortisseur. La stabilité d'un bassin amortisseur est la capacité de l'ouvrage de maintenir la position du ressaut sous des

Soit $\Delta Y=Y_A-Y_B$ le changement maximal admissible de la hauteur d'eau aval, où Y_A caractérise le ressaut type A et Y_B le ressaut type B. Une estimation de ΔY est selon *Hager et Bretz (1987)*.

$$\Delta Y = S/6 \text{ marche positive}$$
(II.22)

$$\Delta Y = 13.S/12 \text{ marche négative}$$
(II.23)

Hager et Bretz (1987) montrent que la stabilité des ressauts hydrauliques dans des bassins amortisseurs à marche positive est donc indépendante du nombre de Froude F_1 .

La dissipation relative d'énergie $\eta = \Delta H / H_1$ est définie par la perte de charge ΔH à travers le ressaut hydraulique comparée à l'énergie amont, soit $H_1 = h_1 + q^2 / (2gh_1^2)$.

La figure II.19 représente $\eta = \eta$ (F₁, S) pour les deux types de marche. On constate que η dépend fortement de S et F₁. Pour F₁ et S fixes. L'efficacité minimale est donnée par le ressaut hydraulique type A et celle la plus grande est obtenue pour le ressaut hydraulique type Bmin sur la marche négative.

Figure II.19 : efficacité $\eta = \Delta H / H_1$ en fonction de F_1 et de S(....) ressaut type A marche négative, (s=0) ressaut type B sur marche positive (---) ressaut type B-min sur marche négative

L'étude montre que l'efficacité relative minimale est donné par le ressaut hydraulique type A et celle la plus grande est obtenue pour le ressaut hydraulique type B.

La capacité de bassin amortisseur correspondant à son extension longitudinale à condition que le ressaut se trouve entièrement dans le dissipateur. Les indications suivantes se référent à la longueur du rouleau. La répartition de la vitesse à l'extrémité aval du rouleau est loin d'être uniforme. En ajoutant encore 20 à 40% de la longueur du rouleau Lr, cette répartition devient presque uniforme, la vitesse v₂ auprès du fond étant sensiblement égale à q/h_2 .

Les essais sur modèle réduit montre que la longueur relative $\lambda = Lr / (h_2+s)$ ne varie pas systématiquement avec F1. Pour les positions extrêmes, *Hager et Bretz (1987)* on obtient les valeurs moyennes suivantes :

$$\lambda = 4,75$$
 pour ressaut type A
 $\lambda = 4,25$ pour ressaut type B (II.24)

Pour le ressaut type A, la fin du rouleau se trouve par définition au niveau de la marche. Pour le ressaut de type B, le pied du ressaut se trouve à peu prés à une distance Lr/2 à l'amont de la marche. De plus, avec : $U = \sqrt{2}F_1 - \frac{1}{2}$, la longueur du fond protégée Lp se calcule par :

$$\lambda_p = 6 \left(U - \frac{6S}{5} \right) \tag{II.25}$$

Avec : $\lambda p = Lr/h_1$

II.4. Conclusion

A travers ce chapitre, nous avons examiné les principaux travaux concernant le ressaut hydraulique forcé dans un canal rectangulaire, où nous avons présenté en premier lieu les principaux travaux entrepris dans le domaine du ressaut forcé par seuil. Un aperçu sur les différents types de ressaut forcé. Une classification de ceux-ci est présentée en se basant sur celle de *Rand (1957)*. Trois types de ressaut forcé par seuil sont retenus, et traités en détail par *Bretz (1988)*. Il s'agit des ressauts type A, type B, et type B-min. Le premier correspond pratiquement au ressaut classique, les deux autres sont obtenus par diminution de la hauteur d'eau aval.

Des courbes, représentant le rapport des hauteurs conjuguées Y_F pour les trois types de ressaut, sont tracées et indiquent que le type A fournit les rapports Y_F les plus élevés, le type B-min les moins élevés et le type B des valeurs intermédiaires.

Le rapport Y_F des hauteurs conjuguées dépend du nombre de Froude IF_1 et de la hauteur relative S du seuil.

Les longueurs relatives du bassin et de la position du seuil par rapport au pied du ressaut, sont peu dépendantes de la hauteur relative S du seuil. Elles se ramènent à des fonctions linéaires $\lambda = f(IF_1)$ pour les trois types de ressaut forcé. Les longueurs sont maximales pour le type A, minimale pour le type B-min et intermédiaire pour le type B. La répartition transversale des vitesses du ressaut forcé par seuil montre la présence d'un rouleau de surface à l'amont du ressaut et un rouleau de fond à l'aval immédiat du seuil.

Nous avons enfin présenté les travaux de *Hager et Li (1992)* qui analysent les points de mesures de *Bretz (1988)* et montrent que la réduction $\Delta Y_s = Y^* - Y$ du niveau aval due à la présence du seuil peut s'exprimer en fonction de la hauteur relative $S=s/h_1$ et de la position relative $\Lambda = L_s/Lr^*$ du seuil. Ils définissent la longueur du bassin comme égale au moins à la distance qui sépare le début du ressaut de la fin du rouleau de fond. La longueur relative $\Lambda_B = L_s/Lr^*$ peut également s'exprimer en fonction de S et de Λ .

Les auteurs présentent le ressaut forcé par seuil, comparé au ressaut classique, comme plus avantageux par une hauteur aval moindre, un bassin plus court et une efficacité plus grande.

En second lieu nous avons présenté les principaux travaux entrepris pour l'étude du ressaut hydraulique forcé par marche positive évaluant dans un canal rectangulaire. Nous avons abordé, en premier lieu les travaux de *Hager et Sinniger (1986)*, les auteurs montrent que le rapport des hauteurs conjuguées varie pour la marche positive en fonction du nombre de Froude amont F₁ et de la hauteur adimensionnelle de la marche S=s/h₁. Par la suite *Hager* et *Bretz (1987)* montrent que la stabilité des ressauts hydrauliques dans des bassins amortisseurs à marche positive est donc indépendante du nombre de Froude F₁. La dissipation relative d'énergie $\eta = \Delta H / H_1$ est définie par la perte de charge ΔH à travers le ressaut hydraulique comparée à l'énergie amont, soit H₁=h₁+ q²/(2gh₁²). L'étude montre que l'efficacité relative minimale est donnée par le ressaut hydraulique type A et celle la plus grande est obtenue pour le ressaut hydraulique type B-min sur marche négative.

L'étude expérimentale, a permis aux auteurs de conclure enfin que la marche positive offre un bassin de dissipation plus courte.

Chapitre III

Ressaut hydraulique dans un canal rectangulaire composé

<u>CHAPITRE III</u>

Ressaut hydraulique dans un canal rectangulaire composé

III.1. Introduction

L'étude des écoulements uniformes, ou plus encore les écoulements non uniformes en lit composé sont très compliqués à cause du transfert de masse et de la quantité de mouvement entre le lit mineur et le lit majeur (*Bousmar et al. 2005*). Ces deux phénomènes, se manifestant de différentes façons et sont des sources de dissipation d'énergie supplémentaire de l'écoulement.

Dans ce chapitre, nous présenteront en premier lieu les travaux de *Khattaoui et Achour* (2012). En s'inspirant du développement théorique mené par *Achour* (2000) sur le ressaut hydraulique dans une galerie circulaire brusquement élargie, une approche théorique a été proposée par les auteurs pour déterminer le rapport des hauteurs conjuguées du ressaut en lit composé. Le rendement du ressaut est lui aussi quantifié.

En deuxième lieu nous examinerons en particulier les travaux de benabdesselam et Al (2017 et 2020), consacrée à l'étude théorique et la validation expérimentale des relations obtenue avec trois valeurs différentes ; (1/4, 1/3 et 1/2), du rapport τ_y de la largeur du lit mineur à la largeur du lit majeur.

III.2. ETUDE DE KHATTAOUI ET ACHOUR (2012)

III.2.1. Rapport des hauteurs conjuguées

Sur la figure (III.1) est représenté les différentes caractéristiques géométriques et hydrauliques du ressaut hydraulique en lit composé droit.

Figure III.1 : Schéma de définition du ressaut hydraulique en canal composé droit

Le transfert de masse et de quantité de mouvement se produit à l'interface entre le lit mineur et le lit majeur (*Bousmar et al. 2004*).

L'équation de la quantité de mouvement appliquée entre le pied et la fin du ressaut, défini par la figure (III.1), s'écrit comme suit :

$$\rho Q(\beta_2 V_2 - \beta_1 V_1) = f_1 - f_2 \tag{III.1}$$

En s'inspirant de l'article de *Achour (2000)*, par analogie à la relation de Borda-Carnot et au vue de la forme de la relation (III.1), *Khattaoui et Achour (2012)* ont conclu qu'il paraît admissible de rajouter une force de résistance dont la projection selon l'axe horizontal de l'écoulement aurait comme expression:

$$f_{x} = -k\varpi(h_{2} - h)^{x}h_{1}^{y}(B - b)^{z}$$
(III.2)

C'est une source de perte de charge liée nécessairement au transfert de masse et de la quantité de mouvement entre le lit mineur et le lit majeur. Les exposants x, y et z sont liés par la relation x + y + z = 3. Le coefficient k est tel que $k = \varphi$ (Lj ou Lr, h2, h1, h). En tenant compte de fx, l'équation d'Euler devient :

$$\rho Q^{2}(1/A_{2} - 1/A_{1}) = f_{1} - f_{2} + f_{x}$$
(III.3)

Analyse de l'équation pour la fonction $f_x = (1/2)\varpi(h_2 - h)h_1(B - b)$: L'hypothèse d'une distribution uniforme pour les vitesses dans les sections transversales correspondant au pied et à la fin du ressaut implique que $\beta_1 = \beta_2 = 1$. Les sections A_1 et A_2 sont données respectivement par : $A_1 = bh_1$ et $A_2 = B(h_2 - h) + bh$. En supposant également que la distribution des pressions est hydrostatique dans les sections 1 et 2 du ressaut, ce qui donne les expressions des forces :

$$f_1 = \varpi(h_1/2)bh_1 \ et \ f_2 = \varpi(h_2 - h/2)bh + \varpi[(h_2 - h)/2]B(h_2 - h)$$

En tenant compte de toutes ces hypothèses et informations ainsi que de l'équation de continuité, $V_1A_1 = V_2A_2 = Q$, les auteurs ont pu écrire l'équation finale (III.3), après l'avoir réarrangée, comme suit :

$$2F_{1}^{2}\left(\frac{\beta}{Y-(1-\beta)/\tau}-1\right)=1-\frac{(2Y-1/\tau)}{\tau}-\frac{(Y-1/\tau)^{2}}{\beta}-\left(Y-\frac{1}{\tau}\right)\left(\frac{1}{\beta}-1\right)$$
(III.4)

Où :

$$F_1 = Q / \sqrt{b^2 h_1^3 g}$$
(III.5)

En négligeant la force de résistance fx, l'équation résultante a été donnée sous la forme:

$$2F_{1}^{2}\left(\frac{\beta}{Y-(1-\beta)/\tau}-1\right)=1-\frac{(2Y-1/\tau)}{\tau}-\frac{(Y-1/\tau)^{2}}{\beta}$$
(III.6)

Les relations (III.3) et (III.4) sont des équations fonctionnelles de forme $\phi(F_1, Y, \beta, \tau) = 0$. Notez que les équations (III.4) et (III.6) peuvent être écrites sous la forme $Y^3 + aY^2 + bY + c = 0$.

En faisant le changement de variable Y = x - a/3, l'équation de troisième degré se présente sous la forme $Y^3 + pq + q = 0$, qui peut être facilement résolue à l'aide de la méthode trigonométrique.

La figure (III.2) illustre la variation de Y, calculé par l'équation (III.6), en fonction de F₁. L'une des variables, β ou τ , est fixée, l'autre varie avec un pas de 0,2. Pour que le ressaut se produise effectivement dans le canal composé (h₂ > h), les valeurs de F₁ à considérer doivent être strictement supérieures à la valeur minimale $F_{1\min} = \left\lceil \frac{1}{(2\sqrt{2})} \right\rceil \sqrt{(2/\tau+1)^2 - 1}$

correspondant à $(h_2 = h)$.

Compte tenu de ces figures et pour un β et τ données, Y augmente continuellement avec l'accroissement de F₁. L'augmentation du rapport Y en fonction de F₁ est plus rapide pour de grandes valeurs de β . Pour un F₁ fixé, Y croît avec l'accroissement de β et diminue avec l'augmentation de τ .

*Figure III.2 : Variation de Y, calculé par (III.4), en fonction de F*₁. (- - -) : $\beta = 1$.

Sur la figure (III.2) est représentée la variation de Y en fonction de F_1 pour $\beta = \tau = 0,5$. Les valeurs de Y calculées en tenant compte de la force de résistance rajoutée sont inférieures à celles calculées en la négligeant. La différence est plus claire au fur et à mesure que le nombre

de Froude F_1 augmente. La force fx traduit les pertes de charge dues à l'expansion de l'écoulement vers le haut.

Figure III.3: Variation de Y en fonction de F_1 . (o) : équation (III.6), (+) : équation (III.4).

III.2.2. Rendement du ressaut

En tenant compte des mêmes hypothèses précédentes, le rendement, $\eta = \Delta H/H_1$, peut être exprimé par :

$$\eta = 1 - \frac{Y + \frac{F_1^2}{2\left[Y / \beta - (1 / \beta - 1) / \tau\right]^2}}{1 + F_1^2 / 2}$$
(III.7)

Le rendement du ressaut hydraulique en lit composé peut être calculé explicitement à partir de l'équation (III.7), connaissant le nombre de Froude F₁, le rapport des hauteurs conjuguées Y ainsi que le rapport de l'élargissement β et le rapport des hauteurs τ . En considérant les valeurs de Y calculées avec la relation (III.6), la variation de η en fonction de F₁ est représentée sur la figure (III.4). Pour un τ et un β fixés, il est clairement illustré sur cette figure que le rendement η d'un ressaut hydraulique dans un lit composé, croît proportionnellement et continuellement avec l'accroissement de F₁.

Pour un τ connu, et un F₁ fixé, η diminue avec l'augmentation de β . Pour un β et un F₁ fixés, le η augmente avec l'accroissement de τ .

Figure III.4 : Variation de ε en fonction de F_1 . (- - - -) : $\beta = 1$. Y est calculé par l'équation (III.3).

La figure (III.5) représente la variation du rendement η en fonction de F₁ pour $\beta = \tau = 0,5$. Il est bien illustré que les η calculées en tenant compte de la force de résistance rajoutée sont supérieures à celles calculées en la négligeant.

Figure III.5 : Variation de η en fonction de F_1 . (0) : équation (III.2), (+) : équation (III.1)

III.3. ETUDE DE BENABDESSELAM ET Al (2017et 2020)

III.3.1. Installation expérimental

La figure III.6 montre un schéma du ressaut hydraulique évoluant dans un canal composé rectangulaire droit.

Figure III.6: Schéma de définition du ressaut hydraulique dans un canal composé rectangulaire droit

Les expériences de Benabdesselam et al (2017 et 2020) ont été réalisées dans un canal rectangulaire composé droit de 4 m de long, la largeur et la profondeur du canal principal (lit mineur) sont respectivement de 0,1 m et 0,15 m. Le lit majeur à une profondeur totale de 0,5 m et une largeur réglable. Les débits Q, sont compris entre 9,9 l/s et 19 l/s. L'expérimentation porte sur trois cas ; (1/4, 1/3 et 1/2) du rapport entre la largeur du lit mineur et celle du lit majeur, où chaque rapport correspond à cinq profondeurs initiales ; $h_1 = 2,5$ cm ; 3,0 cm ; 3,8 cm ; 4,3 cm et 5 cm. Tous les paramètres utiles sont décrits dans le tableau III.1.

Paramètres	Gammes
Première hauteur conjuguée (h_1)	2,5 - 5,0 cm
Deuxième hauteur conjuguée (h_2)	24,5 - 32,5 cm
Longueur du ressaut (Lj)	120 - 220 cm
Débit (Q)	9,9 - 19,0 l/s
Nombre de Froude Incident (F_1)	4,28 - 10,02
Rapport des largeurs (τy)	0,25 - 0,5
Rapport des profondeurs (τz)	0,167 - 0,333

Tableau III.1. Gammes expérimentales des paramètres

III.3.2. Approche théorique pour les hauteurs conjuguées

Après avoir analysé l'écoulement en utilisant l'équation de la quantité de mouvement, pour trouver la relation des profondeurs h_1 et h_2 du ressaut hydraulique, l'équation de l'énergie peut être utilisée pour trouver une fonction qui définit la perte d'énergie (Houichi et al., 2013).

Une équation théorique a été proposée par les auteurs, d'abord sans tenir compte de l'influence de Fx, et puis cette dernière est prise en considération en tenant compte d'une relation proposée supposée exprimée les valeurs de Fx.

Le premier cas permet d'écrire

$$F_{1}^{2} = \frac{1 - \frac{\left(Y - 1/\tau_{z}\right)^{2}}{\tau_{y}} - \frac{\left(2Y - 1/\tau_{z}\right)}{\tau_{z}}}{2\left(\frac{\tau_{y}}{Y - \left(1 - \tau_{y}\right)/\tau_{z}} - 1\right)}$$
(III.8)

Pour le deuxième cas, Fx est proportionnelle à (B-b) et à h_1 .

Selon Achour (2000), un cas analogue à l'expression de Borda-Carnot, est raisonnablement donné par :

$$Fx = \rho g \frac{h_1}{2} (h_2 - z) (B - b)$$
(III.9)

En rajoutant la force de résistance fx, l'équation résultante devient :

$$F_{1}^{2} = \frac{1 - \frac{\left(Y - 1/\tau_{z}\right)^{2}}{\tau_{y}} - \frac{\left(2Y - 1/\tau_{z}\right)}{\tau_{z}} - \left(\frac{1}{\tau_{y}} - 1\right)\left(Y - \frac{1}{\tau_{z}}\right)}{2\left(\frac{\tau_{y}}{Y - \left(1 - \tau_{y}\right)/\tau_{z}} - 1\right)}$$
(III.10)

Si $h_2 = z$ donc $Y = 1/\tau_z$

Les équations. (III.8) et (III.10) deviennent :

$$F_1^2 = \frac{(\tau_z + 1)^{0.5}}{\sqrt{2}\tau_z}$$
(III.11)

L'équation. (III.11) donne la valeur limite du nombre de Froude incident comme si le ressaut est dans un canal rectangulaire. Cette équation permet également de dessiner les courbes Y = f(*F*1), pour diverses valeurs de *F*1 conformément aux valeurs limites indiquées dans le tableau (III.2).

Tableau III.2. Valeurs limites du nombre de Froude incident selon $\tau_z(Eq. (III.11))$

τ_{z}	0,167	0,200	0,253	0,287	0,333
F_1	4,583	3,873	3,125	2,798	2,449

III.4. La perte d'énergie relative

Après développement mathématique, dans les cas où Fx est négligeable et non négligeable, la perte d'énergie relative est donnée par l'équation. (III.12)

$$\eta = 1 - \frac{Y + \frac{F_1^2}{2\left(Y/\tau_y - 1/\tau_z \left(1/\tau_y - 1\right)\right)^2}}{1 + F_1^2/2}$$
(III.12)

III.5. Résultats et discussions

III.5.1. Validation de la relation des hauteurs conjuguées

La performance de chaque modèle (avec Fx et sans Fx) est évaluée en utilisant les critères d'erreur quadratique moyenne (RMSE) et l'absolu de l'erreur relative maximale (ERMaxAb). Le RMSE est le critère de performance le plus couramment utilisé dans les processus de modélisation et la valeur idéale est zéro. Le RMSE est calculé sur la base du nombre des couples (n) des valeurs théoriques (Vth) et des valeurs expérimentales (Vexp) comme suit :

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} \left(V_{th} - V_{exp}\right)^2}{n}}$$
(III.13)

Aussi, ERMaxAb donnée en (%) :

$$ERMaxAb = Max\left[100\left|\frac{\left(V_{th} - V_{exp}\right)}{V_{th}}\right|\right]$$
(III.14)

La validation expérimentale des équations. (III.8) et (III.10), est donnée par les résultats de l'application des critères de performance adoptés définis par les équations. (III.13) et (III.15). Ces résultats sont présentés dans le Tableau III.3.

τ_z	RMSE sans Fx	RMSE avec Fx	ERMaxAb sans Fx	ERMaxAb avec Fx
0,25	0,3041	0,5250	6,9	11,11
0,333	0,2794	0,4159	6,6	9,56
0,5	0,3814	0,3054	8,7	6,47

Tableau III.3. Performances de chaque modèle selon les valeurs de τ_y (Eqs. (III.13) et (III.15))

Le Tableau III.3, montre que les performances du modèle sont minimales lorsque le rapport τ_y est égal à 0,5, en considérant la force Fx, donnée par l'approche de Borda-Carnot selon l'équation (III.9). Ce résultat est justifié par les valeurs minimales de RMSE et ERMaxAb qui sont respectivement de 0,3054 et 6,47. Compte tenu de cette déduction, les figures suivantes montrent l'ajustement des valeurs théoriques et expérimentales de Y en fonction de F₁.

La figure (III.6) montre la variation de Y en fonction de F_1 pour $\tau y = 0,25$ (sans Fx), la figure (III.7) montre la variation de Y en fonction de F_1 pour $\tau y = 0,333$ (sans Fx) et la figure (III.8) montre la variation de Y en fonction de F_1 pour $\tau y = 0,5$ (avec Fx).

Figure III.7 : Rapport des hauteurs conjuguées en fonction du nombre de Froude incident pour $\tau y = 0.25$ (sans Fx)

Figure III.8 : Rapport des hauteurs conjuguées en fonction du nombre de Froude incident pour $\tau y = 0.333$ (sans Fx)

Figure. III.9 : Rapport des hauteurs conjuguées en fonction du nombre de Froude incident pour $\tau y = 0.5$ (avec Fx)

III.5.2. Validation de la relation de la perte d'énergie relative

L'équation (III.12) permet de calculer explicitement la perte d'énergie relative du ressaut hydraulique dans le canal rectangulaire composé droit ; connaissant F_1 et Y pour les différentes valeurs des taux τy et τz . Il est à noter que les valeurs de Y sont calculées dans un premier temps avec l'équation (III.8) pour $\tau y = 0,25$ et 0,333 ; deuxièmement avec l'équation (III.10) pour $\tau y = 0,5$. Cette considération est requise par les conditions de validation des relations (III.8) et (III.10).

La perte d'énergie relative du ressaut hydraulique dans le canal rectangulaire composé droit est tracée en fonction du nombre de Froude incident. Dans la gamme expérimentale du nombre de Froude entre 4 et 10, la perte d'énergie relative est comprise entre 51,4 % et 76,01 %.

Sur la même figure et dans les mêmes conditions d'écoulement hydraulique, la perte d'énergie relative équivalente dans un canal rectangulaire (η_{REC}), selon l'équation. III.15 (Chow, 1981), est également donné à titre de comparaison.

$$\eta_{REC} = 1 - \frac{\left(8F_1^2 + 1\right)^{1.5} - 4F_1^2 + 1}{8F_1^2 \left(2 + F_1^2\right)}$$
(III.15)

De plus, la figure III.9 montre que la dissipation d'énergie dans le canal composé dépasse de loin le canal rectangulaire, en effet, pour la des nombres de Froude F_1 comprises entre 4 et 10, la perte d'énergie relative dans le canal rectangulaire est comprise entre 42,3% et 72,7%, ce qui reflète une dissipation améliorée de 6% en moyenne.

Figure. III.10 : Perte d'énergie relative en fonction du nombre de Froude incident ; Valeurs théoriques et expérimentales dans le canal composé rectangulaire droit et dans le canal rectangulaire

La figure III.10 montre l'évolution de la perte d'énergie relative théorique et expérimentale. Cette évolution est entourée de deux enveloppes (limites supérieure et inférieure) qui illustrent que la relation théorique ainsi établie est validée expérimentalement avec une erreur maximale ne dépassant pas 5%, soit exactement 4,83%.

Figure. III.11 : Evolution de la perte d'énergie relative (valeurs théoriques et expérimentales),
entre les deux limites de $\pm 5\%$

III.3. Conclusion

Dans ce chapitre, nous avons abordé, au premier lieu, les travaux de Khattaoui et Achour (2012). L'application de l'équation de la quantité de mouvement au ressaut hydraulique dans un canal composé droit a abouti à une équation fonctionnelle de la forme $\phi(F_1, Y, \beta, \tau) = 0$.

Une nouvelle approche a été proposée par *Khattaoui et Achour (2012)* en rajoutant une force de résistance liée à la forme composée du canal. L'expression générale de cette force est inspirée du développement théorique mené par *Achour (2000)* sur le ressaut hydraulique dans une galerie circulaire brusquement élargie. Après l'injection de cette force dans leurs développements, les valeurs de Y et η se sont révélées interdépendantes en augmentant ou en diminuant et se sont certainement rapprochées de la réalité.

Nous avons présenté par la suite l'approche de benabdesselam et Al (2017 et 2020), qui a été consacré à l'étude théorique et expérimentale du ressaut contrôlé par un seuil à paroi mince dans un canal rectangulaire composé droit. Les relations des hauteurs conjuguées ont été données avec et sans considération de la force volumique Fx, qui est assimilée par analogie à l'expression de Borda-Carnot. Des expériences ont été menées avec trois valeurs différentes du rapport τ_y : rapport entre la largeur du lit mineur et celle du lit majeur. L'investigation expérimentale a prouvé la validité des relations théoriques élaborées sans la force Fx lorsque le rapport τ_y est égal à 0,25 et 0,333 et avec la force Fx lorsque le rapport τ_y est égal à 0,5.

Cette classification est basée sur les valeurs minimales de l'erreur quadratique moyenne et de l'erreur relative maximale erreur relative absolue, qui sont respectivement égales à 0,3054 et 6,47. La validation expérimentale de la perte d'énergie relative est élaborée et ne dépasse pas 4,83% comme erreur maximale. L'étude révèle également l'utilité du canal composé en termes de capacité de dissipation d'énergie lorsqu'il est comparé au canal rectangulaire de référence.

CONCLUSION DE LA PREMIERE PARTIE

Cette partie bibliographique est dédiée à la présentation des travaux les plus importants, liés à notre thèse, relatifs au ressaut hydraulique évoluant dans les canaux prismatiques rectangulaire, à fond lisse horizontal.

A travers trois chapitres, on a essayé de présenter une synthèse bibliographique sur le ressaut hydraulique contrôlé et forcé par les trois types d'obstacle connue dans les canaux rectangulaire.

Le premier chapitre a eu pour but de présenter les principaux travaux entrepris sur le ressaut hydraulique classique et contrôler dans un canal de section droite rectangulaire de pente nulle.

Trois volets, ont été abordés :

Le premier volet concernant le ressaut hydraulique classique, nous avons examiné les travaux de *Bradley et Peterka (1957)* relatif à la forme du ressaut et ceux de *Hager et al. (1990)* liés aux caractéristiques du ressaut classique. Ces caractéristiques sont : sa hauteur conjuguée, sa longueur ainsi que la longueur de son rouleau. Il a été montré par la suite que le ressaut hydraulique est régi par l'équation de la quantité de mouvement appliquée entre ses sections initiale et finale. En négligeant les pertes de charges autres que celle dues au ressaut, cette équation mène à la relation de *Bélanger* qui exprime le rapport Y^{*} des hauteurs conjuguées en fonction du nombre de Froude F₁ à l'amont du ressaut. Ainsi, nous avons abordé l'étude de *Hager (1992)* concernant le profil de surface.

Le deuxième volet est consacré au ressaut hydraulique contrôlé par seuil à paroi mince, nous avons cité l'étude de *Forster et Skrinde (1950)*, vise à définir la variation de la hauteur relative s/h₁ du seuil en fonction du nombre de Froude IF₁ de l'écoulement incident, trois courbes expérimentales ont été obtenues correspondant chacune à une valeur de la position relative x/h₂ du seuil (x/h₂ = 3, 5 et 10), par la suite, on a examiné l'étude de *Achour et al* (2002), qui ont arrivé de proposer des relations empiriques permettant le calcul de la hauteur relative S du seuil connaissant sa position relative x/h₂ et le nombre de Froude F₁ de l'écoulement incident.

Dans le troisième volet, on a présenté l'approche de *Forster et Skrinde (1950)*, les auteurs proposent une relation analytique implicite qui lie la hauteur relative s/h_1 du seuil au nombre de Froude IF_1 ; Contrairement au cas du seuil mince, une seule courbe est alors obtenue. Ainsi que celle de *Achour et al (2002)*, Deux configurations ont été examinées, d'abord l'écoulement torrentiel à l'amont du ressaut est crée par la mise en place d'une vanne

de fond, le développement théorique a mené à l'établissement d'une relation explicite permettant d'évaluer la hauteur relative s/h_1 du seuil en fonction du nombre de Froude IF₁, et enfin par un déversoir standard, l'étude théorique a montré que le nombre de Froude IF₁ est lié implicitement au paramètre adimensionnel S=1- s_2/s_1 dans lequel s_2 représente la hauteur géométrique du seuil épais et s_1 celle du déversoir standard.

Le quatrième et dernier volet de ce chapitre a examiner l'étude de *Forster et Skrinde (1950)*, concernant le contrôle du ressaut par marche positive, une analyse a permis aux auteurs de mettre en place les conditions d'écoulement associées aux niveaux aval variable.

Le deuxième chapitre de la partie bibliographique a traité le ressaut hydraulique forcé dans un canal rectangulaire, Deux types de ressaut forcé ont été alors abordés.

Le ressaut hydraulique forcé par seuil mince, Nous avons présenté en premier lieu les travaux de *Rand (1957)*, lié a la classification de ceux-ci, Trois types de ressaut forcé par seuil sont retenus, et traités en détail par *Bretz (1988)*. Il s'agit des ressauts type A, type B, et type B-min. Des courbes, représentant le rapport des hauteurs conjuguées Y_F pour les trois types de ressaut, sont tracées et indiquent que le type A fournit les rapports Y_F les plus élevés, le type B-min les moins élevés et le type B des valeurs intermédiaires. Le rapport Y_F des hauteurs conjuguées dépend du nombre de Froude IF₁ et de la hauteur relative S du seuil.

Les longueurs relatives du bassin et de la position du seuil par rapport au pied du ressaut, sont peu dépendantes de la hauteur relative S du seuil. Elles se ramènent à des fonctions linéaires $\lambda = f(F_1)$ pour les trois types de ressaut forcé. Les longueurs sont maximales pour le type A, minimales pour le type B-min et intermédiaire pour le type B. Nous avons enfin présenté les travaux de *Hager et LI (1992)* qui analysent les points de mesures de *Bretz (1988)* et montre que la réduction $\Delta Y_s = Y^* - Y$ du niveau aval due à la présence du seuil peut s'exprimer en fonction de la hauteur relative S=s/h₁ et de la position relative $\Lambda = L_s/Lr^*$ du seuil. Ils définissent la longueur du bassin comme égale au moins à la distance qui sépare le début du ressaut de la fin du rouleau de fond. La longueur relative $\Lambda_B = L_B/Lr^*$ peut également s'exprimer en fonction de S et de Λ .

Les auteurs présentent le ressaut forcé par seuil, comparé au ressaut classique, comme plus avantageux par une hauteur aval moindre, un bassin plus court et une efficacité plus grande.

Le ressaut hydraulique forcé par marche positive, Nous avons abordé, en premier lieu les travaux de *Hager et Sinniger (1986)*, les auteurs montrent que le rapport des hauteurs conjuguées varie en fonction du nombre de Froude amont F_1 et de la hauteur adimensionnelle

de la marche S=s/h₁ ; par la suite *Hager et Bretz (1987)* montre que la stabilité des ressauts hydrauliques dans des bassins amortisseurs à marche positive est donc indépendante du nombre de Froude F₁. La dissipation relative d'énergie $\eta = \Delta H / H_1$ est définie par la perte de charge ΔH à travers le ressaut hydraulique comparée à l'énergie amont, soit H₁=h₁+ $q^2/(2gh_1^2)$. Les auteurs montrent que l'efficacité relative minimale est donnée par le ressaut hydraulique type A est celle la plus grande est obtenue pour le ressaut hydraulique type B-min sur marche négative.

L'étude expérimentale, a permis aux auteurs de conclure enfin que la marche positive offre un bassin d'amortissement plus court.

Le troisième et dernier chapitre de la partie bibliographique a traité le ressaut hydraulique dans un canal rectangulaire de section composé. La première étude est celle de *Khattaoui et Achour (2012)*, qui ont montré que l'application de l'équation de la quantité de mouvement au ressaut hydraulique dans un canal rectangulaire droit composé à aboutit à une équation fonctionnelle de la forme ϕ (F₁, Y, β , τ) = 0.

En se basons sur du développement théorique supervisé par *Achour (2000)* sur le ressaut hydraulique dans une galerie circulaire brusquement élargie, et en rajoutant une force de résistance liée à la forme composée du canal, les auteurs ont pu développer une nouvelle approche.

Après l'injection de cette force dans leurs développements, les valeurs du rapport des hauteurs conjuguées Y et du rendement η se sont révélées interdépendantes en augmentant ou en diminuant et se sont certainement rapprochées de la réalité.

La deuxième étude intéressante dans ce contexte est celle de benabdesselam et Al (2017 et 2020). Les auteurs proposent une relation théorique des hauteurs conjuguées avec et sans considération de la force volumique Fx, qui est assimilée par analogie à l'expression de Borda-Carnot. Des expériences ont été menées avec trois valeurs différentes du rapport τ_y : rapport entre la largeur du lit mineur et celle du lit majeur. L'investigation expérimentale a prouvé la validité des relations théoriques élaborées sans la force Fx lorsque le rapport τ_y est égal à 0,25 et 0,333 et avec la force Fx lorsque le rapport τ_y est égal à 0,25 et 0,333 et avec la force Fx lorsque le rapport τ_y est égal à 0,25 et 0,333 et avec la force Fx lorsque le rapport τ_y est égal à 0,25 et 0,334 et avec la force Fx lorsque le rapport τ_y est égal à 0,25 et 0,335 et avec la force Fx lorsque le rapport τ_y est égal à 0,25 et 0,333 et avec la force Fx lorsque le rapport τ_y est égal à 0,25 et 0,333 et avec la force Fx lorsque le rapport τ_y est égal à 0,25. Cette classification est basée sur les valeurs minimales de l'erreur quadratique moyenne et de l'erreur relative maximale erreur relative absolue, qui sont respectivement égales à 0,3054 et 6,47. La validation expérimentale de la perte d'énergie relative est élaborée et ne dépasse pas 4,83% comme erreur maximale. L'étude révèle également l'utilité du canal composé en termes de capacité de dissipation d'énergie lorsqu'il est comparé au canal rectangulaire de référence.

62

Deuxième Partie

Etude expérimentale du ressaut hydraulique évoluant dans un canal rectangulaire de section composée

INTRODUCTION A LA DEUXIEME PARTIE

La deuxième partie de notre étude, concernera notre propre contribution à l'étude du ressaut hydraulique dans un canal rectangulaire de section composée, par voie expérimentale.. L'objectif de notre étude est de déterminer les caractéristiques essentielles intervenant dans le ressaut hydraulique contrôlé et forcé dans le canal rectangulaire composé. Ces caractéristiques sont formulées sous forme de rapport adimensionnel, afin de déterminer les dimensions des ouvrages annexes des barrages tel que les bassins d'amortissement dans le domaine pratique.

Deux chapitres seront alors nécessaires. Le premier chapitre abordera l'étude expérimentale de ressaut hydraulique contrôlé, tandis que le dernier chapitre s'intéressera au ressaut hydraulique forcé de type A.

 \checkmark Le premier chapitre de cette partie de notre étude sera consacré à l'étude des caractéristiques de ressaut hydraulique contrôlé. Cette étude aura pour objectif de déterminer l'effet du lit majeur sur le ressaut hydraulique dans le canal rectangulaire composé et de trouver les relations expérimentales exprimant la variation des paramètres adimensionnels intervenant dans ce type de ressaut.

Quatre volets seront alors étudiés :

- Le premier volet correspondra à l'étude expérimentale du ressaut contrôlé par seuil mince.
- Le deuxième volet s'intéressera à l'étude expérimentale du ressaut contrôlé par seuil à paroi épaisse.
- Le troisième volet sera consacré à l'étude expérimentale du ressaut contrôlé par marche positive.
- Le quatrième et dernier volet de ce chapitre sera consacré à l'étude comparative des trois types de ressaut hydraulique expérimenté.

✓ Le deuxième et dernier chapitre de cette partie s'intéressera à l'étude expérimentale de ressaut hydraulique forcé type A. De même que pour le ressaut contrôlé, des relations fonctionnelles, en termes adimensionnels, liant les différentes caractéristiques du ressaut seront également proposées. Une étude comparative entre les deux types de ressaut hydraulique précités sera effectuée. Egalement quatre volets seront alors nécessaires :

- Le premier volet examinera le ressaut forcé type A par seuil mince.
- Le deuxième volet s'intéressera à l'étude du ressaut forcé type A par seuil a paroi épaisse.
- Le troisième volet sera consacré à l'étude du ressaut forcé type A par marche positive.
- Le quatrième et dernier volet de ce chapitre sera consacré à l'étude comparative entre les caracteristiques de ressaut controlé et forcé type A.

Chapitre I

Ressaut hydraulique contrôlé dans un canal rectangulaire de section composée

<u>CHAPITRE I</u>

Ressaut hydraulique contrôlé dans un canal Rectangulaire de section composée

I.1. Introduction

Le ressaut hydraulique peut être contrôlé par un seuil à paroi mince ou épaisse (*Forster et Skrinde, 1950; Achour, 1997*), continu ou discontinu ainsi que par une marche positive ou négative (*Hager et Sinniger, 1985*). La mise en place d'un seuil n'a pas d'effet réducteur significatif sur le rapport des hauteurs conjuguées du ressaut (*Achour et Al, 2002*).

A travers cette étude, nous voulons examiner par vois expérimentale le contrôle du ressaut hydraulique par un seuil à parois mince, à parois épaisse et par une marche positive dans un canal rectangulaire de section composée d'une pente nulle. L'étude a pour objectif de faire une étude comparative entre les caractéristiques des trois types de ressaut expérimentés.

Trois sous chapitres seront abordés dans ce chapitre, à savoir : le ressaut contrôlé par seuil mince, le ressaut contrôlé par seuil épais et le ressaut contrôlé par marche positive.

I.2. RESSAUT HYDRAULIQUE CONTRÔLÉ PAR SEUIL MINCE EN CANAL RECTANGULAIRE DE FORME COMPOSÉE

I.2.1. Description du modèle

I.2.1.1. Description du canal

Le model expérimental (figures I.1 et photo I.1 (a, b, c)) est constitué d'un grand canal métallique de section droite rectangulaire, relier à un bassin d'accumulation (photo I.6), par le moyen d'une conduite en PVC de 115 mm de diamètre, dans lequel est insérée une pompe axiale (photo I.5) débitant jusqu'à 44 l/s. La conduite de PVC est reliée à une boite métallique fermée (photo I.3), sur laquelle est inséré un convergent en tôle de section rectangulaire (photo I.2) débouchant dans le canal de mesure. Le rôle de ce dernier est de générer un écoulement incident à grande vitesse. La section de sortie de celle-ci est variable et sa hauteur correspondra à la hauteur initiale h_1 du ressaut.

Le canal de mesure (photo I.1) qui nous a servi de banc d'essai est de section droite rectangulaire. Il est constitué essentiellement par une structure métallique rigide de 12 m de longueur, ayant une hauteur de 0,6 m et une largeur de 0.6 m. Ces parois latérales sont en verre, sur lesquelles sont fixés latéralement, des deux cotés des panneaux transparents en plexiglas permettant les prises de vue et l'observation d'une forme rectangulaire, Ces panneaux constituent d'un coté les parois latérales du canal rectangulaire et de l'autre coté le

65

radier de la partie composée. Elle est caractérisée par une largeur de lit mineur b=20 cm, de hauteur h= 20 cm et de lit majeur B=60 cm, de longueur 5m, , permettant la mesure directe du débit. Le réglage des débits volumes s'effectue par manipulation de la vanne (photo IV.4) et sont mesurés à l'aide d'un déversoir rectangulaire sans hauteur de pelle avec contraction latérale (photo I.7) placé à l'aval du canal rectangulaire. Le tout fonctionne en circuit fermé.

Figure I.1 : Schéma simplifié du canal de mesure de section rectangulaire composé, ayant servi à *l'expérimentation.*

Photos I.1 (a, b, c): Photographie du canal de mesure utilisé.

Photo I.2: Photographie d'une série de convergents.

Photo I.3 : Photographie de la boite en charge.

Photo I.4 : Photographie d'une vanne de régulation du débit.

Photo I.5 : Photographie d'une Pompe centrifuge.

Photo I.6: Photographie du bassin d'accumulation.

Photo I.7: Photographie du déversoir rectangulaire.

I. 2.1.2. Mesure du débit

Comme il a été cité précédemment, un déversoir rectangulaire sans hauteur de pelle avec contraction latérale (photo I.7), réalisé et testé par *Hachemi Rachedi (2006)* est placé à l'aval du canal rectangulaire de largeur 0.6m et de hauteur 0.6 m, permettant la détermination du débit volume Q par l'injection des hauteurs déversantes (h) dans la formule (I.1), en assurant la condition d'application de celle ci qui est :

 $\beta < 0.45$; avec $\beta = b/B$.

$$Q = 0,3794B\sqrt{2g\beta} \left(1+0,16496.B^{2,0716}\right)^{3/2} h_{dev}^{3/2}$$
(I.1)

Avec :

Q : le débit en (m^3/s) ;

B: la largeur du canal en (m) ;

g : l'accélération de la pesanteur (m/s²) ;

 β : Rapport de forme ;

b : largeur de l'échancrure ;

h : la hauteur de la lame d'eau.

I. 2.1.3. Limnimétrie

A l'exception de la hauteur initiale du ressaut, dont la valeur est assimilée à la hauteur due à la section de la sortie du convergent en charge, les profondeurs d'eau dans le canal de mesure ont été évaluées par un limnimétre.

L'outil est constitué d'une règle métallique mobile qui se termine à sa partie inférieure d'une pointe verticale (pointe limnimétrique) dont le rôle est d'affleurer la surface de l'eau (figure I.2 et photo I.8).

La lecture sur le limnimétrie s'effectue en deux étapes :

On procède d'abord à la lecture de la graduation sur la règle, située immédiatement en haut du zéro du vernier, puis on effectue la lecture du nombre de cinquantième en face de la division qui coïncide ou qui est la plus proche d'une division de la règle.

Photo. I.8 : pointe limnimétrique.

Fond du canal de mesure Figure 1.2 : Mesure de la profondeur d'eau par pointe limnimétrique.

I.2.1.4. les Seuils minces

Une série de 19 seuils métalliques de forme rectangulaire (photo I.9) utilisés dans notre dispositif expérimental, de différentes hauteurs: s = 2 cm ; 3 cm ; 4 cm ; 5 cm ; 6 cm ; 7 cm ; 8 cm ; 9 cm ; 10 cm ; 11 cm ; 12 cm ; 13 cm ; 14 cm ; 15 cm ; 16 cm ; 17 cm ; 18 cm ; 19 cm et 20 cm, fixé à l'aval du canal rectangulaire composé. Dont le but est d'obtenir un nombre important de points de mesures.

Photo I.9 : Photographie de la série de seuils.

I.2.2. Résultats expérimentaux

I.2.2.1. Position du problème

L'augmentation de débit engendre le déplacement du ressaut vers l'aval. Pour maintenir le ressaut à sa place en amont du canal on augmente la hauteur de seuil à l'aval du canal. Celle-ci engendre l'augmentation de la hauteur final h_2 .

Dans notre canal l'écoulement s'effectue en deux catégories ; le premier cas où l'écoulement s'effectue au niveau de la partie rectangulaire où $(h_0/h_2 \ge 1)$, le deuxième cas quand le niveau d'eau dépasse la partie rectangulaire et l'écoulement se produit au niveau de la partie composée du canal où $(h_0/h_2 < 1)$. (Figure I.3).

L'objectif de cette distinction est de découvrir l'effet de la partie supérieure élargie du canal composé sur les caractéristiques de l'écoulement.

Figure I.3 : configuration du ressaut en canal rectangulaire composé.

I.2.2.2. Procédure expérimentale

Les caractéristiques étudiées dans un ressaut hydraulique contrôlé par seuil à paroi mince sont: le débit volume (Q), la hauteur initiale h_1 , mesurée au pied de ressaut, la hauteur finale h_2 , mesurée au droit de la longueur du ressaut, la hauteur (s) du seuil, la longueur (Lr) du rouleau, mesurée à la fin de la formulation du ressaut et la longueur (Lj) du ressaut, mesurée dans le même endroit de la hauteur finale (h_2).

Celles-ci sont formulées sous forme adimensionnelle pour composer les rapports suivants : le nombre de Froude F₁ de l'écoulement incident, le rapport $Y = h_2/h_1$ des hauteurs conjuguées du ressaut, la hauteur relative $S = s/h_1$ du seuil, la longueur relative du ressaut $\lambda j = Lj/h_1$ du ressaut et la longueur relative du rouleau $\lambda r = Lr/h_1$.

L'étude expérimentale a été menée sous cinq hauteurs initiales : $h_1 (mm) = 20$; 25 ; 30 ; 35 et 40mm. Une gamme assez pratique de nombres de Froude incident a été ainsi obtenue : 2,64 < $F_1 < 11,58$.

L'accroissement du nombre de Froude F_1 entraîne à la fois le déplacement du ressaut vers l'aval ainsi que l'augmentation des longueurs Lr du rouleau et (Lj) du ressaut. Pour ramener le pied du ressaut à sa position d'origine (à la sortie de l'écoulement), il est nécessaire d'augmenter la hauteur du seuil se trouvant à l'extrémité aval du canal.

Les photos I.10 et I.11 illustrent deux configurations typiques de ressaut contrôlé par seuil mince en canal rectangulaire de section composée, pour la même hauteur initiale h_1 = 25 mm et à débit volume croissant.

Figure I.4 : Schéma simplifié d'un ressaut hydraulique contrôlé par seuil mince évoluant dans un canal rectangulaire composé.

Photo I.10: Photographie d'un ressaut hydraulique contrôlé par seuil mince $F_1 = 5, 58; s = 6 \text{ cm}; Lj = 103 \text{ cm}; h_2 = 15,8 \text{ cm}; h_1 = 2,5 \text{ cm}$

Photo I.11 : Photographie d'un ressaut hydraulique contrôlé par seuil mince $F_1 = 8, 24; s = 15 \text{ cm}; Lj = 186 \text{ cm}; h_2 = 24,9 \text{ cm}; h_1 = 2,5 \text{ cm}$

Pour obtenir les résultats expérimentaux, nous avons suivi les étapes suivantes :

Mesure de la hauteur géométrique s du seuil ;

Mesure de la longueur Lr du rouleau ;

Mesure de la longueur Lj du ressaut ;

Mesure de la hauteur conjuguée aval h₂ du ressaut ;

Mesure de la lame d'eau au-niveau du déversoir rectangulaire à paroi latérale;

Calcul du débit volume correspondant, par application de la relation (I.1) ;

Calcul du nombre de Froude F1 de l'écoulement incident, par application de la relation :

$$F_{1} = \sqrt{\frac{Q^{2}}{gb^{2}h_{1}^{3}}};$$

I.2.3. Analyse des résultats expérimentaux

L'objectif principal de cette étude est d'examiner l'influence de la section composée, sur les caractéristiques hydrauliques du ressaut hydraulique.

I.2.3.1. Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude F₁

La représentation graphique des résultats expérimentaux, des paramètres de la fonction $Y = f(F_1)$, est donnée par la Figure (I.5). Ces paramètres adimensionnels sont le rapport des hauteurs conjuguées Y et le nombre de Froude F_1 de l'écoulement incident.

Figure. I.5. Variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F_1 pour les deux lits du canal, (o) points de mesures expérimentales en lit majeur; (Δ) points de mesures expérimentales en lit mineur. (—) Courbes d'ajustement.

Cette figure montre que le rapport Y des hauteurs conjuguées augmente progressivement avec l'augmentation du nombre de Froude F_1 pour les deux lits du canal.

L'ajustement des valeurs expérimentales, a montré que la loi de variation de Y en fonction de F_1 est de type linéaire, telle que : Y = f(F).

Les mesures expérimentales que nous avons réalisées montrent clairement un décalage entre les valeurs de Y du ressaut contrôlé par seuil mince, pour les mêmes nombres de Froude F_1 , pour les deux lits du canal.

En effet, pour des nombres de Froude F_1 inferieure à 8,15, le rapport des hauteurs conjuguées Y du ressaut contrôlé par seuil dans le lit mineur est nettement inférieur à celui du ressaut contrôlé par seuil dans le lit majeur du canal.

Tel que :

- Pour
$$h_0/h_2 \ge 1$$
: $Y = 1,258 F_1 - 0,573$; $R^2 = 0,995$ (I.2)
 $2.64 < F_1 < 8.14$

- Pour
$$h_0/h_2 < 1$$
: $Y = 1,165 F_1 + 0,328$; $R^2 = 0,995$ (I.3)
 $4,27 < F_1 < 11,58$

Les valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$ pour les deux cas, sont regroupées dans le tableau (Tableau I.1) :

Tableau I.1. Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

h ₀ /h	$n_2 \ge 1$	$h_0/h_2 < 1$				
Y	F_1	Y	F_1	Y	F_1	
2,9	2,6400014	5,1	4,2797932	8,7333333	7,2072352	
3,1428571	2,8927873	5,525	4,514485	8,88	7,2885611	
3,35	3,0249997	5,7	4,6572917	8,9	7,3925056	
3,3	3,073473	5,875	4,7774245	9,12	7,5118986	
3,6857143	3,3471708	6,05	4,9229237	9,1	7,6168893	
3,875	3,4487047	6,1714286	5,0312454	9,36	7,6469757	
3,64	3,4703719	6,2	5,0207284	9,3666667	7,8814813	
3,8666667	3,4703719	6,325	5,1191723	9,56	7,8283222	
4	3,7338767	6,45	5,2182513	9,76	8,0110801	
4,225	3,7561242	6,55	5,292975	9,96	8,2414955	
4,2571429	3,8231304	6,4285714	5,3143896	10,2	8,3226541	
4,4	4,0401851	6,675	5,4182987	10,16	8,4273896	
4,5333333	4,0037325	6,6	5,4867399	10,36	8,6146607	
4,65	4,0493155	6,825	5,5445963	10,6	8,8506707	
4,6571429	4,1870921	6,7714286	5,6026546	10,85	8,9100047	
4,85	4,4672131	6,8857143	5,7193742	10,84	9,0887975	
5	4,4357908	7,0571429	5,8663974	11,2	9,1486577	
5,08	4,5619224	7,3	5,8516392	11,08	9,3290223	
5,1142857	4,5619224	7,2285714	5,9849082	11,55	9,5105569	
5,6285714	4,8916229	7,4	6,1042066	11,9	9,8156941	
5,5333333	4,8176949	7,6333333	6,129159	12,05	10,000312	
5,68	5,0256354	7,5714286	6,254429	12,3	10,248247	
5,7	5,1438827	7,9333333	6,3400938	12,55	10,498197	
6,1333333	5,2763391	7,7142857	6,4362955	12,85	10,813446	
6,32	5,5852159	8,1	6,482033	13,2	11,195825	
6,4	5,5953862	7,8571429	6,5585016	13,55	11,582608	
6,6333333	5,6803786	8,2333333	6,5891727			
7,15	6,1641494	8,0571429	6,7432415			
7,04	6,1641494	8,24	6,8052006			
7,6	6,5891727	8,3666667	6,7329333			
8,15	6,8052006	8,2571429	6,8673483			
8,85	7,3553262	8,5	6,9140825			
9,85	8,1490681	8,5666667	7,0601517			

La figure I.6. Montre la variation de Y en fonction de la hauteur relative du seuil $S=s/h_1$.

Figure. 1.6. Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en fonction de la hauteur relative $S = s/h_1$ du seuil. (0) points de mesures expérimentales en lit majeur; (\diamondsuit) points de mesures expérimentales en lit mineur. (\longrightarrow) Courbes d'ajustements.

Cette figure montre la variation du rapport Y en fonction du seuil relatif S. On remarque en premier lieu que tous les points de mesure dans le lit mineur $(h_0/h_2 \ge 1)$ sont alignés par une seule allure, sans effet de l'ouverture. Ainsi l'ajustement par la méthode des moindres carrés de ces mesures est de type linéaire tel que : Y= a $(s/h_1) + b$

$$Y = 1,684 \ s/h_1 + 2,226 \ ; R^2 = 0,997 \tag{I.4}$$

En deuxième lieu la figure montre cinq allures distinctes chacune correspond à une ouverture bien déterminée, qui reflète l'écoulement qui se manifeste dans le lit majeur ($h_0/h_2 < 1$). La figure I.7 montre la variation de Y en fonction de la hauteur relative S=s/h₁ du seuil.

Figure. 1.7. Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en fonction de la hauteur relative $S = s/h_1$ du seuil Pour $h/h_2 < 1$. (\diamondsuit) $h_1 = 2cm$; (\square) $h_1 = 2,5cm$; (Δ) $h_1 = 3cm$; (\bigcirc) $h_1 = 3,5cm$; (\bigstar) $h_1 = 4cm$.

La figure montre une série de cinq allures superposées chaque allure correspond à une hauteur h_1 d'une ouverture bien déterminée. On remarque que le rapport Y augmente avec l'augmentation du rapport S. Ainsi, pour la même valeur de seuil relative S, le rapport Y diminue avec l'augmentation des ouvertures.

Les figures I.8. (a, b, c, d, e) montrent la variation de Y en fonction de la hauteur relative s/h₁ du seuil, pour les cinq ouvertures, tels que : $h_1/B = 0,033, 0.041, 0.05, 0.058, 0.066$.

Figure. I.8. (a, b, c, d, e). Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en fonction de la hauteur relative S =s/h₁ du seuil respectivement pour h₁/B= (0,03 ; 0,041 ; 0,05 ; 0,058 ; 0,066).
 (o) points expérimentaux. (—) courbe d'équation.

Selon les figures I.8. (a, b, c, d, e), l'ajustement des mesures expérimentales a montré que la variation du rapport Y en fonction de la hauteur relative du seuil suit une loi de type linéaire de la forme $Y=a (s/h_1) + b$.

h ₀ /h	$_2 \geq 1$		h ₀ /h	₂ < 1	!		
Y	s/h ₁	Y	s/h ₁	Y	s/h ₁		
2,9	0,5	5,525	2	9,12	4,4		
3,14285714	0,57142857	5,7	2,25	9,1	6,33333333		
3,35	0,75	5,875	2,5	9,36	4,8		
3,3	0,66666667	6,05	2,75	9,36666667	6,66666667		
3,68571429	0,85714286	6,17142857	2,28571429	9,56	5,2		
3,875	1	6,2	3	9,76	5,6		
3,64	0,8	6,325	3,25	9,96	6		
3,86666667	1	6,45	3,5	10,16	6,4		
4	1	6,55	3,75	10,36	6,8		
4,225	1,25	6,42857143	2,57142857	10,6	7,2		
4,25714286	1,14285714	6,675	4	10,85	5,5		
4,4	1,2	6,6	2,85714286	10,84	7,6		
4,53333333	1,33333333	6,825	4,25	11,2	6		
4,65	1,5	6,77142857	3,14285714	11,08	8		
4,65714286	1,42857143	6,88571429	3,42857143	11,55	6,5		
4,85	1,5	7,05714286	3,71428571	11,9	7		
5	1,66666667	7,22857143	4	12,05	7,5		
5,08	1,6	7,4	4,28571429	12,3	8		
5,11428571	1,71428571	7,63333333	3,33333333	12,55	8,5		
5,62857143	2	7,57142857	4,57142857	12,85	9		
5,53333333	2	7,93333333	3,66666667	13,2	9,5		
5,68	2	7,71428571	4,85714286	13,55	10		
5,7	2	8,1	4				
6,13333333	2,33333333	7,85714286	5,14285714				
6,32	2,4	8,23333333	4,33333333				
6,4	2,5	8,05714286	5,42857143				
6,63333333	2,66666667	8,36666667	4,66666667				
7,15	3	8,25714286	5,71428571				
7,04	2,8	8,5	5				
7,6	3,2	8,56666667	5,33333333				
8,15	3,5	8,73333333	5,66666667				
8,85	4	8,88	4				
9,85	4,5	8,9	6				

Les données ayant servi au	traçage des figures	s I.8 (a, b, c, d, e)	sont groupées au tableau I.2.

Tableau I.2. Valeurs expérimentales ayant servi au traçage des courbes $Y = f(s/h_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

Le tableau I.3 regroupe les différents coefficients des droites d'ajustement de la relation expérimentale liant le rapport $Y = h_2/h_1$ des hauteurs conjuguées à la hauteur relative du seuil s/h_1 , pour différentes hauteurs h_1 des ouvertures.

<i>h</i> ₁ / <i>B</i>	а	b	Équations des droites	Coefficients de corrélation R ²
0,033	0,569	7,784	$Y = 0,569 \text{ s/}h_1 + 7,784$	0,993
0,041	0,536	6,752	$Y = 0,536 \text{ s/}h_1 + 6,752$	0,998
0,05	0,476	6,139	$Y = 0,476 \text{ s/}h_1 + 6,139$	0,991
0,058	0,581	4,905	$Y = 0,581 \ s/h_1 + 4,905$	0,998
0,066	0,563	4,458	$Y = 0,563 \text{ s/}h_1 + 4,458$	0,992

 Tableau I.3. Coefficients des relations expérimentales de type linéaire, issues de l'ajustement de la relation liant

 Y à la hauteur relative du seuil pour différentes hauteurs h1 des ouvertures

Selon le tableau I.3, l'ajustement des relations expérimentales liant le rapport $Y = h_2/h_1$ des hauteurs conjuguées à la hauteur relative du seuil s/h₁, pour différentes hauteurs h₁ des ouvertures, sont de type linéaire, telle que : Y = a X + b.

Les valeurs des paramètres 'a' sont presque égales, et leur moyenne arithmétique est a = 0,545. tandis que la figure I.9 montre l'ajustement statistique des couples de valeurs (b, h_1/B) par la méthode des moindres carrés.

Figure I.9 : Variation du paramètre 'b' en fonction de h_1/B .

Les figures I.9 montrent clairement que la variation de b en fonction du coefficient d'élargissement Y_1 (h₁/B) suit une loi linéaire, selon la relation suivante:

$$b = -102, 3 h_1 / B + 11, 08; R^2 = 0,982$$
 (I.5)

En remplaçant les paramètres (a) et (b) par leurs expressions respectives dans la relation $Y=a(s/h_1) + b$, on obtient la relation générale suivante :

$$Y = 0,545 s / h_1 - 102,3 h_1 / B + 11,08$$
(I.6)
$$4,27 \le F_1 \le 11,58 \ et \ 0,033 \le h_1 / B \le 0,066$$

La figure I.10 confirme que la relation (I.6) représente un bon ajustement pour la détermination de la hauteur relative Y du ressaut, connaissant la hauteur du seuil et le coefficient d'élargissement h_1/B .

Figure I.10. Variation de Yexp en fonction de Yapp. (o) Points expérimentaux. (—) Première bissectrice d'équation : Yexp = Yapp.

La figure I.10 montre que les points issus de l'équation (I.6) se répartissent de manière quasi uniforme autour de la première bissectrice.

Les écarts relatifs entre les mesures expérimentales du rapport des hauteurs conjuguées et celles issues de l'équation globale d'ajustement (I.6) sont mentionnés au tableau I.4, en vue de justifier la fiabilité de cette dernière. Le tableau I.4, montre clairement que les erreurs relatives sont en majorité inférieures à 5%.

Y exp	Y relation	$\Delta Y/Y$ en %	Y exp	Y relation	$\Delta Y/Y$ en %
5,525	5,35	3,16742081	8,5	8,69	-2,23529412
5,7	5,48625	3,75	8,56666667	8,87166667	-3,56031128
5,875	5,6225	4,29787234	8,73333333	9,05333333	-3,66412214
6,05	5,75875	4,81404959	8,88	8,9975	-1,3231982
6,17142857	6,35821429	-3,02662037	8,9	9,235	-3,76404494
6,2	5,895	4,91935484	9,12	9,2155	-1,04714912
6,325	6,03125	4,64426877	9,1	9,41666667	-3,47985348
6,45	6,1675	4,37984496	9,36	9,4335	-0,78525641
6,55	6,30375	3,75954198	9,36666667	9,59833333	-2,47330961
6,42857143	6,51392857	-1,32777778	9,56	9,6515	-0,95711297
6,675	6,44	3,52059925	9,76	9,8695	-1,12192623
6,6	6,66964286	-1,05519481	9,96	10,0875	-1,28012048
6,825	6,57625	3,64468864	10,16	10,3055	-1,43208661
6,77142857	6,82535714	-0,7964135	10,36	10,5235	-1,57818533
6,88571429	6,98107143	-1,38485477	10,6	10,7415	-1,33490566
7,05714286	7,13678571	-1,12854251	10,85	10,6675	1,68202765

Tableau I.4. Ecarts relatifs entre Y expérimental et Y de la relation (I.6).

Y exp	Y relation	$\Delta Y/Y$ en %	Y exp	Y relation	$\Delta Y/Y$ en %
7,22857143	7,2925	-0,88438735	10,84	10,9595	-1,10239852
7,4	7,44821429	-0,6515444	11,2	10,94	2,32142857
7,63333333	7,78166667	-1,94323144	11,08	11,1775	-0,8799639
7,57142857	7,60392857	-0,42924528	11,55	11,2125	2,92207792
7,93333333	7,96333333	-0,37815126	11,9	11,485	3,48739496
7,71428571	7,75964286	-0,58796296	12,05	11,7575	2,42738589
8,1	8,145	-0,55555556	12,3	12,03	2,19512195
7,85714286	7,91535714	-0,74090909	12,55	12,3025	1,97211155
8,23333333	8,32666667	-1,13360324	12,85	12,575	2,14007782
8,05714286	8,07107143	-0,17287234	13,2	12,8475	2,67045455
8,36666667	8,50833333	-1,69322709	13,55	13,12	3,17343173
8,25714286	8,22678571	0,36764706			

Tableau I.4. (suite et fin) Ecarts relatifs entre Y expérimental et Y de la relation (I.6).

I.2.3.2. Longueurs caractéristiques du ressaut

I.2.3.2.1. Variation de la longueur relative Lj/h_1 du ressaut en fonction du nombre de Froude F_1

La longueur Lj a été considérée comme étant la distance séparant la section initiale du ressaut et la section finale (où s'effectue la mesure de h_2). L'objectif principal de cette partie de l'étude est de quantifier la longueur relative Lj/h₁ dans la gamme de valeurs testées.

La figure (I.11) montre la variation de la longueur relative Lj/h_1 en fonction du nombre de Froude F_1 de l'écoulement incident.

Figure 1.11. Variation du la longueur relative Lj/h_1 en fonction du nombre de Froude F₁, (o) points de mesures expérimentales en lit majeur; (Δ) points de mesures expérimentales en lit mineur. (—) Courbes d'ajustement.

Deux nuages de points pour les deux lit du canal composé, tel que :

- Pour
$$h_0/h_2 \ge 1$$
: $Lj/h_1 = 10,41F_1 - 16,23; R^2 = 0,993$ (I.7)

- Pour
$$h_0/h_2 < 1$$
: $Lj/h_1 = 9,378F_1 - 4,211; R^2 = 0,985$ (I.8)

Le tableau I.5, regroupe les valeurs ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$, pour les deux sections du canal.

h/h	$_2 \geq 1$	$h/h_2 < 1$			$h/h_2 < 1$	
F_1	Lj/h_1	F_1	Lj/h_1	F_1	Lj/h_1	
2,64000139	12	4,2797932	30	7,20723523	63,3333333	
2,89278727	12,8571429	4,51448497	33,75	7,28856105	61,6	
3,02499968	15,25	4,65729169	37,5	7,3925056	65	
3,07347297	16	4,77742453	40	7,51189861	65,2	
3,34717079	18,2857143	4,92292369	42,5	7,61688926	66,6666667	
3,44870473	20,5	5,03124541	40	7,6469757	68,4	
3,47037195	18	5,02072835	44,25	7,88148131	68,6666667	
3,47037195	19,3333333	5,11917227	45,5	7,82832224	70	
3,7338767	23	5,21825133	46,5	8,01108007	72	
3,75612419	24,5	5,29297498	48	8,24149553	74,4	
3,82313038	23,4285714	5,31438957	43,1428571	8,32265409	72,5	
4,04018514	24	5,41829872	49,25	8,4273896	76,8	
4,00373248	24,66666667	5,48673989	46,5714286	8,61466069	79,2	
4,0493155	27,5	5,54459625	51,25	8,8506707	81,2	
4,18709214	28,2857143	5,60265456	48,5714286	8,91000468	77	
4,46721311	29	5,71937421	51,1428571	9,08879746	82,8	
4,43579082	31	5,86639738	52,5714286	9,1486577	81,5	
4,5619224	31,2	5,85163915	47,66666667	9,32902232	85,6	
4,5619224	32,2857143	5,98490824	54,2857143	9,5105569	85	
4,89162293	35,4285714	6,10420656	55,7142857	9,81569415	88	
4,81769491	35	6,12915902	50,6666667	10,0003124	90	
5,0256354	36	6,25442898	57,1428571	10,248247	92	
5,14388265	35	6,34009385	53,3333333	10,4981975	93,5	
5,27633913	40	6,4362955	58,5714286	10,8134457	96	
5,5852159	41,2	6,48203299	55	11,1958248	98,5	
5,59538625	42	6,55850162	59,7142857	11,5826077	101	
5,68037856	43,3333333	6,58917268	56			
6,16414941	46,5	6,74324146	61,1428571			
6,16414941	47,2	6,80520056	57,2			
6,58917268	52,4	6,73293332	57,6666667			
6,80520056	57	6,86734827	62,8571429			
7,35532624	61	6,91408248	60			
8,14906808	67,5	7,06015166	61,6666667			

Tableau I.5.	Valeurs	expérimentales	ayant servi au	traçage des	courbes Lj/	$n_1 = f(F_1)$) pour $h_0/$	$h_2 \ge l$	et h_0/h_2 ·	< 1.
--------------	---------	----------------	----------------	-------------	-------------	----------------	---------------	-------------	----------------	------

I.2.3.2.2. Variation de la longueur relative Lr/h_1 du rouleau de surface en fonction du nombre de Froude F_1

La longueur Lr est considérée comme étant la distance séparant la section initiale et la section finale du rouleau de surface.

La figure (I.12) montre la variation de la longueur relative Lr/h_1 en fonction du nombre de Froude F_1 de l'écoulement incident.

Figure I.12. Variation du la longueur relative Lr/h_1 en fonction du nombre de Froude F1, (0) points de mesures expérimentales en lit majeur; (Δ) points de mesures expérimentales en lit mineur. (—) Courbes d'ajustement.

La figure (I.12) montre que l'augmentation du nombre de Froude de l'écoulement incident, engendre celle de la longueur relative du rouleau pour le lit mineur et le lit majeur. Par ailleurs, l'ajustement des points expérimentaux a permis d'aboutir également à une relation linéaire d'équation :

- Pour
$$h_0/h_2 \ge 1$$
 $Lr/h_1 = 7,907F_1 - 14,85; R^2 = 0,991$ (I.9)

Pour
$$h_0/h_2 < 1$$
 $Lr/h_1 = 7,599F_1 - 7,788; R^2 = 0,987$ (I.10)

h ₀ /h	$e_2 \ge 1$		$h_0/h_2 < 1$			
$\overline{F_1}$	Lr/h_1	$\overline{F_1}$	Lr/h_1	$\overline{F_1}$	Lr/h_1	
2,64000139	7	4,2797932	21,25	7,20723523	47,3333333	
2,89278727	7,71428571	4,51448497	23,75	7,28856105	46	
3,02499968	9,75	4,65729169	26,5	7,3925056	48,6666667	
3,07347297	9,66666667	4,77742453	28,25	7,51189861	48,4	
3,34717079	11,1428571	4,92292369	29,5	7,61688926	50	
3,44870473	13,75	5,03124541	27,1428571	7,6469757	50,4	
3,47037195	12	5,02072835	30,75	7,88148131	51,3333333	
3,47037195	12,6666667	5,11917227	32	7,82832224	52	

Tableau I.6. Valeurs expérimentales ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

h ₀ /h	$_2 \geq 1$	$h_0/h_2 < 1$				
F_1	Lr/h_1	F_1	Lr/h_1	F_1	Lr/h_1	
3,7338767	13,5	5,21825133	33	8,01108007	53,6	
3,75612419	16,5	5,29297498	34	8,24149553	55,2	
3,82313038	15,1428571	5,31438957	30,2857143	8,32265409	51,5	
4,04018514	16,8	5,41829872	35	8,4273896	56,8	
4,00373248	15,6666667	5,48673989	32,5714286	8,61466069	58	
4,18709214	18,8571429	5,60265456	34,5714286	8,91000468	57	
4,46721311	18	5,71937421	36,5714286	9,08879746	62	
4,43579082	19,6666667	5,86639738	38	9,1486577	62	
4,5619224	21,6	5,85163915	34,3333333	9,32902232	64,4	
4,5619224	21,1428571	5,98490824	39,7142857	9,5105569	65	
4,89162293	24	6,10420656	40,8571429	9,81569415	67,5	
4,81769491	23,3333333	6,12915902	37,3333333	10,0003124	69	
5,0256354	24,8	6,25442898	42,2857143	10,248247	70,5	
5,14388265	25	6,34009385	40	10,4981975	72	
5,27633913	26,6666667	6,4362955	43,4285714	10,8134457	74	
5,5852159	30	6,48203299	41,3333333	11,1958248	76	
5,59538625	27	6,55850162	44,5714286	11,5826077	78	
5,68037856	30	6,58917268	42			
6,16414941	33	6,74324146	46			
6,16414941	34,4	6,80520056	42,8			
6,58917268	38,8	6,73293332	43,3333333			
6,80520056	39	6,86734827	47,4285714			
7,35532624	44,5	6,91408248	44,6666667			
8,14906808	49,5	7,06015166	46			

Tableau I.6. (suite et fin) Valeurs expérimentales ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

I.2.3.3. Variation de la hauteur relative s/h1en fonction du nombre de Froude F1

La figure (I.13) montre la variation de la hauteur relative du seuil $S=s/h_1$ en fonction de nombre de Froude de l'écoulement incident.

Figure. I.13. Variation du la hauteur relative s/h₁en fonction du nombre de Froude F1,
 (0) Points de mesures expérimentales en lit majeur; (◊) points de mesures expérimentales en lit mineur.
 (--) Courbes d'ajustement.

Cette figure montre que :

pour le lit mineur ($h_0/h_2 \ge 1$) l'ajustement des points expérimentaux a abouti à une courbe unique de type linéaire telle que :

$$s/h_1 = 0,743F_1 - 1,645; R^2 = 0,989$$
 (I.11)

tandis que pour le lit majeur ($h_0/h_2 < 1$) l'ajustement des points expérimentaux montrent une série de cinq allures chacune correspond à une ouverture bien déterminée.

La figure I.14 montre la variation de S=s/h₁ en fonction de nombre de Froude F₁ pour $h_0/h_2 < 1$.

Figure. 1.14. Variation du rapport $S = s/h_1$ de la hauteur relative du seuil en fonction du nombre de Froude F_1 Pour $h_0/h_2 \ge 1$. (\diamond) $h_1=2 \text{ cm}$; (\Box) $h_1=2,5 \text{ cm}$; (Δ) $h_1=3 \text{ cm}$; (\circ) $h_1=3,5 \text{ cm}$; (*) $h_1=4 \text{ cm}$.

Cette figure montre une série de cinq allures adjacentes. Chaque allure correspond à une hauteur h_1 d'une ouverture bien déterminée. On remarque que la hauteur relative du seuil

augmente linéairement avec l'augmentation du nombre de Froude. D'ailleurs, pour la même valeur de seuil relative, le nombre de Froude augmente avec la diminution de la hauteur des ouvertures.

Les figures (I.15. a, b, c, d, e) montrent la variation de la hauteur relative du seuil S $=s/h_1$ en fonction du nombre de Froude F₁ pour les cinq ouvertures, tels que :

 $h_1/B = 0.033$; 0.041; 0.05; 0.058; 0.066.

Figure. 1.15. (a, b, c, d, e). Variation du rapport de la hauteur relative du seuil $S = s/h_1$ en fonction du nombre de Froude F_1 du ressaut respectivement pour $h_1/B = (0,033; 0,041; 0,05; 0,058; 0,06)$. (o) points expérimentaux. (—) courbe d'équation.

Selon les figures I.15. (a, b, c, d, e), l'ajustement des mesures expérimentales a montré que la variation du rapport s/h₁ en fonction du nombre de Froude F₁ de l'écoulement incident suit une loi de type linéaire de la forme s/h₁= a F₁ + b.

Les données ayant servi au traçage des figures I.19 (a, b, c, d, e), sont groupées au tableau I.7.

Tableau I.7. Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

h ₀ /h	$e_2 \ge 1$	$h_0/h_2 < 1$				
s/h ₁	F_1	s/h ₁	F_1	s/h ₁	F_1	
0,5	2,6400014	1,75	4,2797932	5,6666667	7,2072352	
0,5714286	2,8927873	2	4,514485	4	7,2885611	
0,75	3,0249997	2,25	4,6572917	6	7,3925056	
0,6666667	3,073473	2,5	4,7774245	4,4	7,5118986	
0,8571429	3,3471708	2,75	4,9229237	6,3333333	7,6168893	
1	3,4487047	2,2857143	5,0312454	4,8	7,6469757	
0,8	3,4703719	3	5,0207284	6,6666667	7,8814813	
1	3,4703719	3,25	5,1191723	5,2	7,8283222	
1	3,7338767	3,5	5,2182513	5,6	8,0110801	
1,25	3,7561242	3,75	5,292975	6	8,2414955	
1,1428571	3,8231304	2,5714286	5,3143896	5	8,3226541	
1,2	4,0401851	4	5,4182987	6,4	8,4273896	
1,3333333	4,0037325	2,8571429	5,4867399	6,8	8,6146607	
1,5	4,0493155	4,25	5,5445963	7,2	8,8506707	
1,4285714	4,1870921	3,1428571	5,6026546	5,5	8,9100047	
1,5	4,4672131	3,4285714	5,7193742	7,6	9,0887975	
1,6666667	4,4357908	3,7142857	5,8663974	6	9,1486577	
1,6	4,5619224	3	5,8516392	8	9,3290223	
1,7142857	4,5619224	4	5,9849082	6,5	9,5105569	
2	4,8916229	4,2857143	6,1042066	7	9,8156941	
2	4,8176949	3,3333333	6,129159	7,5	10,000312	
2	5,0256354	4,5714286	6,254429	8	10,248247	
2	5,1438827	3,6666667	6,3400938	8,5	10,498197	
2,3333333	5,2763391	4,8571429	6,4362955	9	10,813446	
2,4	5,5852159	4	6,482033	9,5	11,195825	
2,5	5,5953862	5,1428571	6,5585016	10	11,582608	
2,6666667	5,6803786	4,3333333	6,5891727			
3	6,1641494	5,4285714	6,7432415			
2,8	6,1641494	3,6	6,8052006			
3,2	6,5891727	4,6666667	6,7329333			
3,5	6,8052006	5,7142857	6,8673483			
4	7,3553262	5	6,9140825			
4,5	8,1490681	5,3333333	7,0601517			

Le tableau I.8 regroupe les différents coefficients des droites d'ajustement de la relation expérimentale liant le rapport $S = s/h_1$ des hauteurs relative du seuil au nombre de Froude de l'écoulement incident, pour différentes hauteurs h_1 des ouvertures.

Tableau I.8. Coefficients des relations expérimentales de type linéaire, issues de l'ajustement de la relationliant $S = s/h_1$ au nombre de Froude, pour différentes hauteurs h_1 des ouvertures

<i>h</i> ₁ / <i>B</i>	а	b	Équations des droites	Coefficients de corrélation R ²
0,033	1,657	-9,085	$s/h_1 = 1,657 F_1 - 9,085$	0,990
0,041	<mark>1,882</mark>	<mark>-9,519</mark>	$s/h_1 = 1,882 F_1 - 9,519$	0,990
0,05	1,956	-8,565	$s/h_1 = 1,956 F_1 - 8,565$	0,991
0,058	1,969	-7,812	$s/h1 = 1,969 F_1 - 7,812$	0,994
0,066	2,095	-7,432	$s/h_1 = 2,095 F_1 - 7,432$	0,984

Le tableau I.8 montre clairement que les paramètres a et b sont en fonction de la hauteur des ouvertures et augmentent progressivement avec l'augmentation de h_1/B .

Les figures I.16 et I.17 montrent l'ajustement statistique des couples de valeurs (a, h_1/B) et (b, h_1/B) par la méthode des moindres carrés.

Les figures I.16 et I.17 montrent clairement que la variation du paramètre 'a' et 'b' en fonction de h_1/B , suit parfaitement une loi linéaire pour les deux paramètres, que l'on peut écrire comme suit :

$$a = 12,85 h_1 / B + 1,254$$
; $R^2 = 0,952$ (I.12)

$$b = 51,28 h_1 / B - 10,87; R^2 = 0,948$$
 (I.13)

En remplaçant les paramètres (a) et (b) par leurs expressions respectives, on obtient la relation générale suivante :

$$s/h_{1} = (12,85 h_{1}/B + 1,254) F_{1} + 51,28 h_{1}/B - 10,87$$

$$4,27 \le F_{1} \le 11,58 \ et \quad 0.033 \le h_{1}/B \le 0.066$$
(I.14)

La figure I.18 confirme que la relation (I.14) représente un assez bon ajustement pour la détermination de la hauteur relative s/h_1 du seuil, connaissant le nombre de Froude incident F_1 , et la hauteur relative (h_1/B) de l'ouverture.

Figure I.18: Variation de la hauteur relative s/h_1 du seuil en fonction de la relation $f(F_1, h_1/B)$. (o) Points expérimentaux. (—) Première bissectrice d'équation : $s/h_1 = f(F_1, h_1/B)$.

La figure I.18 montre que les points issus de l'équation (I.14) se répartissent de manière quasi uniforme autour de la première bissectrice.

Les écarts relatifs entre les mesures expérimentales de la hauteur relative du seuil et celles issues de l'équation globale d'ajustement (I.14) sont mentionnés au tableau I.9, qui montre clairement que les erreurs relatives ne dépassent guère les 5%.

s/h ₁ th	<i>s/h</i> ₁	$\Delta S/S \ en \ \%$	$s/h_1 th$	<i>s/h</i> ₁	$\Delta S/S$ en %
4,84081173	5	-3,28846223	5,08357763	5,33333333	-4,91299088
5,8289312	5,5	5,64307919	5,36252161	5,66666667	-5,67167974
6,23042513	6	3,69838534	5,71388688	6	-5,00732912
6,83926023	6,5	4,96048135	6,13943049	6,33333333	-3,15831975
7,35260279	7	4,79561858	6,6412293	6,66666667	-0,38302198
7,66319216	7,5	2,12955845	2,20185279	2,28571429	-3,80867853
8,0803009	8	0,99378598	2,76915569	2,57142857	7,1403397
8,50080086	8,5	0,00942099	3,11447393	2,85714286	8,2624249
9,03115345	9	0,34495533	3,34671863	3,14285714	6,09138402
9,67444251	9,5	1,80312725	3,58057617	3,42857143	4,24525925

Tableau 1.9 : Ecarts relatifs entre S expérimental et S de la relation (1.14).

$h_1 th$	s/ h 1	$\Delta S/S$ en %	<i>s/h</i> ₁ th	s/ h 1	$\Delta S/S$ en %
10,3251403	10	3,1490158	3,87514935	3,71428571	4,15115962
3,44400596	3,6	-4,5294358	4,11259574	4	2,73782651
4,30893929	4	7,1697295	4,35161987	4,28571429	1,51450691
4,70858324	4,4	6,55363248	4,652603	4,57142857	1,74470992
4,95029244	4,8	3,03603154	5,01698773	4,85714286	3,18607266
5,27479695	5,2	1,41800631	5,26183788	5,14285714	2,26120113
5,60182686	5,6	0,03261182	5,63197953	5,42857143	3,61166265
6,01413613	6	0,23504834	5,88063787	5,71428571	2,82881134
6,34677807	6,4	-0,83856617	1,58188352	1,75	-10,6276146
6,68188408	6,8	-1,76770389	2,0772396	2	3,7183771
7,10420432	7,2	-1,34843642	2,37865698	2,25	5,40880778
7,53031232	7,6	-0,92542883	2,63221738	2,5	5,02304184
7,96017469	8	-0,50030694	2,93931761	2,75	6,44086942
2,79163365	3	-7,46395751	3,14575065	3	4,63325495
3,31795008	3,33333333	-0,46363735	3,35353295	3,25	3,0872798
3,71798798	3,666666667	1,38035173	3,5626558	3,5	1,75868231
3,98717556	4	-0,32164219	3,72037253	3,75	-0,79635756
4,190366	4,33333333	-3,41181025	3,98488917	4	-0,3792033
4,46300804	4,66666667	-4,56325927	4,25146115	4,25	0,03436827
4,80655743	5	-4,02455544			

Tableau I.9. (suite et fin) Ecarts relatifs entre S expérimental et S de la relation (I.14)

I.2.3.4. Rendement du ressaut hydraulique

Le rendement η du ressaut est défini par le rapport de la perte de charge ΔH qu'il occasionne à la charge totale dans sa section initiale :

$$\eta = \Delta H / H_1 \tag{I.15}$$

avec : $\Delta H = H_1 - H_2$

 H_1 et H_2 représentent respectivement, la charge totale dans les sections initiale et finale du ressaut. Celles-ci sont définies par les relations suivantes :

$$H_1 = h_1 + \frac{V_1^2}{2g}$$
(I.16)

$$H_2 = h_2 + \frac{V_2^2}{2g}$$
(I.17)

En prenant appui sur l'équation de continuité (Q=V.A), ces deux dernières relations s'écrivent :

$$H_1 = h_1 + \frac{Q^2}{2gA_1^2}$$
(I.18)

$$H_2 = h_2 + \frac{Q^2}{2gA_2^2}$$
(I.19)

Où : $A_1 = bh_1 et A_2 = bh + B (h_2 - h_0)$

Le nombre de Froude de l'écoulement incident dans un canal de section droite rectangulaire est défini par la relation :

$$F_1^2 = \frac{Q^2}{g b^2 h_1^3}$$
(I.20)

En tenant compte des relations précédentes, le rendement du ressaut hydraulique dans un canal rectangulaire de section composée, s'écrit comme suit :

Figure 1.19: Variation du rendement η en fonction du nombre de Froude F_{τ} (o) points de mesures expérimentales en lit majeur; (δ) points de mesures expérimentales en lit mineur.

La figure I.19 montre la variation du rendement « η » en fonction du nombre de Froude F₁, pour les deux parties du canal, On remarque que le rendement augmente avec l'accroissement du nombre de Froude.

En effet, pour des nombres de Froude F_1 comprise entre 4 et 6, les points de mesure du canal composé se trouvent légèrement décalé au dessous du canal rectangulaire. Au delà de 6 tous les points de mesures se rejoignent pour former un seul nuage de points.

Le tableau I.10 regroupe les valeurs du rendement η pour les nombres de Froude correspondants.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$			
η	F_1	η	F_1	η	F_1
0,260979	2,6400014	0,4658529	4,2797932	0,6703924	7,2072352
0,3120409	2,8927873	0,4852036	4,514485	0,6692995	7,2885611
0,3260124	3,0249997	0,5006291	4,6572917	0,6803858	7,3925056
0,3476089	3,073473	0,5108497	4,7774245	0,6803405	7,5118986
0,3792459	3,3471708	0,5248798	4,9229237	0,691797	7,6168893
0,3851773	3,4487047	0,529644	5,0312454	0,6838308	7,6469757
0,4168847	3,4703719	0,53172	5,0207284	0,7033862	7,8814813
0,39197	3,4703719	0,5399784	5,1191723	0,6918404	7,8283222
0,4435167	3,7338767	0,5480188	5,2182513	0,6995364	8,0110801
0,4263662	3,7561242	0,553537	5,292975	0,71007	8,2414955
0,4390589	3,8231304	0,5597413	5,3143896	0,7051006	8,3226541
0,4737169	4,0401851	0,5649552	5,4182987	0,7170847	8,4273896
0,4538693	4,0037325	0,57546	5,4867399	0,7238461	8,6146607
0,4532613	4,0493155	0,5745543	5,5445963	0,732197	8,8506707
0,4817354	4,1870921	0,582494	5,6026546	0,7271834	8,9100047
0,5195672	4,4672131	0,5921922	5,7193742	0,7401765	9,0887975
0,5023561	4,4357908	0,6024443	5,8663974	0,7333364	9,1486577
0,5192509	4,5619224	0,5842746	5,8516392	0,747808	9,3290223
0,5167173	4,5619224	0,6087271	5,9849082	0,7455785	9,5105569
0,5367002	4,8916229	0,6148589	6,1042066	0,7540274	9,8156941
0,5309543	4,8176949	0,6037784	6,129159	0,7599811	10,000312
0,554505	5,0256354	0,6242515	6,254429	0,7667147	10,248247
0,5708155	5,1438827	0,6152885	6,3400938	0,7731637	10,498197
0,5641139	5,2763391	0,6377633	6,4362955	0,7810504	10,813446
0,595688	5,5852159	0,6240213	6,482033	0,7901294	11,195825
0,5927638	5,5953862	0,6444211	6,5585016	0,7986541	11,582608
0,5914406	5,6803786	0,6300364	6,5891727		
0,6238881	6,1641494	0,6546479	6,7432415		
0,6288033	6,1641494	0,6462683	6,8052006		
0,6487744	6,5891727	0,6395544	6,7329333		
0,6481691	6,8052006	0,6586854	6,8673483		
0,675466	7,3553262	0,6521814	6,9140825		
0,7020135	8,1490681	0,663246	7,0601517		

Tableau I.10. Mesures expérimentales	s ayant servi au traçage	de la figure I.19
--------------------------------------	--------------------------	-------------------

I.2.3.5. Profil de surface du ressaut

L'expérimentation nous a permis de définir le profil de la surface libre du ressaut depuis son origine jusqu'à sa section finale dans un canal rectangulaire de forme composée.

Figure I.20: Profil de surface du ressaut

Comme le montre le schéma simplifié de la Figure (I.20), la coordonnée longitudinale x est telle que $0 \le x \le Lj$, tandis que la profondeur h(x) est telle que $h_1 \le h(x) \le h_2$; h_1 et h_2 sont les hauteurs conjuguées du ressaut.

Les paramètres x et h(x) peuvent servir à composer les variables adimensionnelles y et X, en écrivant que $y = (h(x)-h_1) / (h_2-h_1)$ et X = x/Lj variables adimensionnelles y et X sont limitées telles que : $0 \le X \le 1$ et $0 \le y \le 1$.

La variation du rapport y en fonction du rapport X est représentée à la Figure (I.21), cette figure montre les points de mesures expérimentales pour le canal rectangulaire de forme composé.

Figure I.21: Profil de surface du ressaut hydraulique dans un canal rectangulaire de forme composée, h_1 : (\Diamond) 2; (\Box) 2,5; (Δ) 3; (o) 3,5; (\star) 4.

La figure I.21 montre un nuage de points issu de l'expérimentation. Le rapport y se stabilise à la valeur 1.

Les mesures expérimentales de X = xi/Lj, et de y = $(h(x) - h_1) / (h_2 - h_1)$ sont regroupées dans le tableau I.11.

Xi/Lj	$(hi-h_1)/(h_2-h_1)$	Xi/Lj	$(hi-h_1)/(h_2-h_1)$	Xi/Lj	$(hi-h_1)/(h_2-h_1)$
0,17241379	0,46753247	0,35114504	0,75151515	0,546875	0,9787234
0,48275862	0,87012987	0,67938931	0,97575758	0,26829268	0,63157895
0,20238095	0,48148148	0,17532468	0,46192893	0,64634146	0,98245614
0,45238095	0,81481481	0,4025974	0,8071066	0,2020202	0,5546875
0,31182796	0,67479675	0,32748538	0,68899522	0,49494949	0,9453125
0,72043011	0,98373984	0,62573099	0,99521531	0,40322581	0,83950617
0,24590164	0,52258065	0,19444444	0,47488584	0,60483871	0,96296296
0,42622951	0,82580645	0,51111111	0,94063927	0,25827815	0,63684211
0,2	0,41040462	0,11458333	0,28820961	0,59602649	0,96315789
0,4962963	0,8150289	0,36979167	0,69432314	0,20588235	0,57425743
0,2987013	0,56345178	0,31527094	0,57083333	0,38823529	0,84653465
0,66233766	0,97969543	0,64039409	1,025	0,32608696	0,75943396
0,28235294	0,62085308	0,45833333	0,94202899	0,58152174	0,97169811
0,53529412	0,91469194	0,21621622	0,52830189	0,25128205	0,58482143
0,38068182	0,73394495	0,45945946	0,90566038	0,42564103	0,80803571
0,76704545	0,99082569	0,36190476	0,81617647	0,19672131	0,45744681
0,15555556	0,32126697	0,63809524	1,00735294	0,52459016	0,94680851
0,45555556	0,84162896	0,19230769	0,52071006	0,2244898	0,57364341
0,46192893	0,78278689	0,51538462	0,92307692	0,41836735	0,86046512
0,68527919	1,02868852	0,29605263	0,68844221	0,425	0,82926829
0,23762376	0,51792829	0,66447368	0,9798995	0,70833333	0,9695122
0,4950495	0,94023904	0,17575758	0,46153846	0,12666667	0,39361702
0,2	0,54545455	0,44242424	0,86057692	0,34666667	0,76595745
0,51111111	0,92424242	0,38150289	0,75115207	0,44705882	0,84653465
0,30769231	0,67647059	0,70520231	1,00921659	0,68235294	0,97524752
0,67948718	0,98039216	0,28108108	0,60792952	0,31318681	0,70892019
0,19417476	0,4962406	0,61081081	0,99559471	0,57692308	0,96713615
0,36893204	0,81954887	0,1875	0,4893617		

Tableau I.11: Mesures expérimentales du profil de surface (y = f(X)) du ressaut contrôlépar seuil mince dans un canal rectangulaire de section composée.

I.3. RESSAUT HYDRAULIQUE CONTRÔLÉ PAR SEUIL EPAIS EN CANAL RECTANGULAIRE DE FORME COMPOSÉE

I.3.1. Description du modèle

I.3.1.1. Description du canal

Le même dispositif expérimental, sauf pour le contrôle du ressaut au lieu de mettre un seuil mince on place un seuil à paroi épaisse.

Figure I.22 : Schéma simplifié du canal de mesure de section rectangulaire composée, ayant servi à *l'expérimentation.*

I.3.1.2. Les Seuils épais

Une série de 16 seuils métalliques de forme rectangulaire de longueur 20 cm (photo I.12) utilisés dans notre dispositif expérimental, de différentes hauteurs: s = 3.4 cm ; 4.5 cm ; 5.4 cm ; 6,5 cm ; 8 cm ; 9 cm ; 10,1 cm ; 10,9 cm ; 12,1 cm ; 13,9 cm ; 15 cm ; 16,2 cm ; 17 cm ; 17,9 cm ; 18,9 cm et 20,3 cm, fixés à l'aval du canal rectangulaire composé, dont le but est d'obtenir un nombre important de points de mesures.

Photo I.12 : Photographie des seuils épais.

I.3.2. Résultats expérimentaux

Les photos I.13 et I.14 illustrent deux configurations typiques de ressaut contrôlé par seuil épais en canal rectangulaire de section composée, pour la même hauteur initiale h_1 = 25 mm et à débit volume croissant.

Figure I.23 : Schéma simplifié d'un ressaut hydraulique contrôlé par seuil épais évoluant dans un canal rectangulaire composé.

Photo I.13 : Photographie d'un ressaut hydraulique contrôlé par seuil épais $F_1 = 5,34$; s = 5,4 cm; Lj = 102 cm; $h_2 = 15,6$ cm ; $h_1 = 2,5$ cm

Photo I.14: Photographie d'un ressaut hydraulique contrôlé par seuil épais $F_1 = 8,33$; s = 15 cm; Lj = 183 cm; $h_2 = 25,2$ cm; $h_1 = 2,5$ cm

I.3.3. Analyse des résultats expérimentaux

I.3.3.1.Rapport des hauteurs conjuguées du ressaut en fonction de Froude F1

La Figure (I.24) montre la représentation graphique des résultats expérimentaux de la variation du rapport des hauteurs conjuguées Y et le nombre de Froude F_1 de l'écoulement incident.

Figure. 1.24. Variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F_1 pour les deux cas du canal, (o) points de mesures en lit majeur; (Δ) points de mesures en lit mineur. (—) Courbes d'ajustement.

L'ajustement des valeurs expérimentales par la méthode des moindres carrés, a montré que la loi de variation de Y en fonction de F_1 est de type linéaire.

Cette figure montrent clairement deux allures superposées de Y du ressaut contrôlé par seuil épais, en fonction de nombre de Froude F_1 , pour les deux lits du canal composé. En effet Y augment progressivement avec le nombre de Froude F_1 selon les relations suivantes:

- Pour
$$h_0/h_2 \ge 1$$
:
 $Y = 1,200 F_1 - 0,255$ (I.22)
 $3,12 < F_1 < 8,26$
- Pour $h_0/h_2 < 1$:
 $Y = 1,143 F_1 + 0,429$ (I.23)
 $4,18 < F_1 < 11,71$

Les valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$ pour les deux sections du canal, sont regroupées dans le tableau (I.12) :

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$			
Y	F_1	Y	F_1	Y	F_1
3,625	3,1291846	5,15	4,1870921	8,6	7,155641
4,1	3,5574917	5,55	4,4908283	8,7666667	7,2811552
3,9428571	3,5699961	5,675	4,6333877	8,96	7,4222941
4,2666667	3,8231304	5,875	4,7774245	8,9	7,4297474
4,4571429	3,9259915	6,025	4,8985729	9,0333333	7,5793369
4,65	3,9583218	6,15	5,0452796	9,2	7,5568351
4,8333333	4,2488177	6,2	5,1721716	9,1666667	7,8055765
4,84	4,3357378	6,475	5,3179615	9,48	7,7828529
5,1142857	4,4537374	6,4	5,3143896	9,4333333	8,0723111
5,5	4,7533164	6,6	5,4434806	9,88	8,1029848
5,3	4,7533164	6,8	5,6718601	10,08	8,3342698
5,48	4,7919089	6,6	5,4867399	10,28	8,5208536
5,5714286	4,8916229	6,7714286	5,6026546	10,7	8,6146607
6,1	5,1438827	6,9	5,5784391	10,48	8,7560116
6,24	5,3429871	6,9142857	5,7780342	10,68	8,9932939
6,05	5,4939609	7,3333333	5,9206168	11,15	9,0290684
7	6,0802842	7,3714286	6,0743084	10,88	9,1846367
7	6,0593777	7,5666667	6,129159	11,2	9,4741568
7,8	6,6429617	7,5428571	6,254429	11,4	9,3894042
7,8	6,7618093	7,6571429	6,3754804	11,85	9,8156941
9	7,6921794	7,7666667	6,3400938	12,15	10,124027
9,75	8,2646566	7,8	6,4973028	12,4	10,498197
		8	6,5533944	12,6	10,750148
		7,9428571	6,6198914	12,8	11,004082
		8,3333333	6,8777245	13,1	11,324266
		8,5666667	7,0601517	13,45	11,712505

Tableau I.12. Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

La figure (I.25) montre la variation de Y en fonction de la hauteur relative du seuil $S=s/h_1$.

Figure. I.25. Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en fonction de la hauteur relative $S = s/h_1$ du seuil. (o) Points de mesures expérimentales en lit majeur; (\Diamond) points de mesures expérimentales en lit mineur. (—) courbe d'équation.

Cette figure montre la variation du rapport Y en fonction du seuil relatif S. On remarque que :

- pour $h_0/h_2 \ge 1$:

tout les mesures sont classées par une seule allure qui convient à l'écoulement réalisé dans le lit mineur, sans effet de l'ouverture. Ainsi l'ajustement par la méthode des moindres carrés de ces mesures est de type linéaire ;

$$Y = 1,672 (s/h_1) + 2,409$$
(I.24)

- pour $h_0/h_2 < 1$:

la figure montre cinq allures distinctes chacune correspond à une ouverture bien déterminée, qui reflète l'écoulement qui se manifeste dans le lit majeur ($\beta < 1$).

La figure (I.26) montre la variation de Y en fonction de la hauteur relative du S=s/h₁ du seuil.

Figure. 1.26. Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en fonction de la hauteur relative $S = s/h_1$ du seuil épais Pour $h_0/h_2 < 1$. h_1 : (\Diamond) 2; (\Box) 2,5;(Δ) 3; (o) 3,5; (\star) 4.

Cette figure montre une série de cinq allures superposées qui refletent l'effet des ouvertures h_1 . On remarque que pour la même valeur de seuil relative, le rapport Y diminue avec l'augmentation de h_1 .

Les figures (I.27. a, b, c, d, e) présentent la variation de Y en fonction la hauteur relative s/h₁ du seuil, pour les cinq ouvertures, tels que : $h_1/B = 0.033$; 0.041; 0.05; 0.058; 0.066.

Figure. I.27. (*a*, *b*, *c*, *d*, *e*). Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé par seuil épais en fonction de la hauteur relative $S = s/h_1 du$ seuil respectivement pour $h_1/B = (0,03; 0,041; 0,05; 0,058; 0,066)$. (*o*) points expérimentaux. (—) courbe d'équation.

Les figures I.27 (a, b, c, d, e) montrent que l'ajustement des mesures expérimentales du rapport Y en fonction de la hauteur relative du seuil suit une loi de type linéaire de la forme $Y=a(s/h_1)+b$.

Les données ayant servi au traçage des figures I.27 (a, b, c, d, e) sont assemblées au tableau I.13.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$			
Y	s/h1	Y	<i>s/h</i> 1	Y	s/h ₁
3,625	0,85	5,15	1.625	8,6	3,6
4,1	1,125	5,55	2	8,7666667	5,4
3,9428571	0,9714286	5,675	2,25	8,96	4,04
4,2666667	1,1333333	5,875	2,525	8,9	5,6666667
4,4571429	1,2857143	6,025	2,725	9,0333333	5,9666667
4,65	1,35	6,15	3,025	9,2	4,36
4,8333333	1,5	6,2	2,2857143	9,1666667	6,3
4,84	1,36	6,475	3,475	9,48	4,84
5,1142857	1,5428571	6,4	2,5714286	9,4333333	6,7666667
5,5	1,8	6,6	3,75	9,88	5,56
5,3	1,7	6,8	4,05	10,08	6
5,48	1,8	6,6	2,8857143	10,28	6,48
5,5714286	1,8571429	6,7714286	3,1142857	10,7	5,05
6,1	2,1666667	6,9	2,6666667	10,48	6,8
6,24	2,16	6,9142857	3,4571429	10,68	7,16
6,05	2,25	7,3333333	3	11,15	5,45
7	2,6	7,3714286	3,9714286	10,88	7,56
7	2,7	7,5666667	3,3666667	11,2	8,12
7,8	3,25	7,5428571	4,2857143	11,4	6,05
7,8	3,2	7,6571429	4,6285714	11,85	6,95
9	4	7,7666667	3,6333333	12,15	7,5
9,75	4,5	7,8	4,8571429	12,4	8,1
		8	4,0333333	12,6	8,5
		7,9428571	5,1142857	12,8	8,95
		8,3333333	4,6333333	13,1	9,45
		8,5666667	5	13,45	10,15

Tableau I.13. Valeurs expérimentales ayant servi au traçage des courbes $Y = f(s/h_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

Les différents coefficients des droites d'ajustement de la relation expérimentale liant le rapport $Y = h_2/h_1$ des hauteurs conjuguées à la hauteur relative du seuil s/h₁, pour différentes hauteurs h₁ des ouvertures, sont rassemblés dans le tableau I.14.

h_1/B	a	b	Équations des droites	Coefficients de corrélation R ²
0,033	0,511	8,266	$Y = 0,511 \text{ s/}h_1 + 8,266$	0,994
0,041	0,551	6,741	$Y = 0,551 \ s/h_1 + 6,741$	0,995
0,05	0,584	5,567	$Y = 0,584 \text{ s/}h_1 + 5,567$	0,987
0,058	0,620	4,813	$Y = 0,620 \text{ s/}h_1 + 4,813$	0,994
0,066	0,643	4,167	$Y = 0,643 \ s/h_1 + 4,167$	0,992

Tableau I.14. Coefficients des relations expérimentales, issues de l'ajustement de la relation liant Y à la hauteurrelative du seuil pour différentes hauteurs h_1 des ouvertures.

L'ajustement des relations expérimentales liant le rapport $Y = h_2/h_1$ des hauteurs conjuguées à la hauteur relative du seuil s/h₁, pour différentes hauteurs h₁ des ouvertures, sont de type linéaire, telle que : Y = a X + b.

Le tableau I.14 montre clairement l'augmentation progressive des paramètres 'a' avec la hauteur relative amont y_1 . L'ajustement statistique des couples des valeurs (a, y_1) par la méthode des moindres carrées donne une relation de type linéaire d'équation :

$$a = 4,012 h_1 / B + 0,382 \tag{I.25}$$

Celle-ci est représentée dans la figure I.28

Figure I.28: Variation du coefficient "a" en fonction de la hauteur relative "y₁".

Inversement du coefficient 'a', le coefficient 'b' diminue progressivement avec la hauteur relative amont y_1 . L'ajustement statistique des couples des valeurs (b, y_1) par la méthode des moindres carrées donne une relation de type puissance d'équation :

$$b = 0,292.(h_1/B)^{-0.98}$$
(I.26)

Celle-ci est représentée dans la figure I.29.

Figure I.29: Variation du coefficient "b" en fonction de la hauteur relative "y₁".

En remplaçant les paramètres (a) et (b) par leurs expressions respectives, on obtient la relation générale suivante :

$$Y = (4,012(h_1/B) + 0,382) \cdot s/h_1 + 0,292(h_1/B)^{-0.98}$$
(I.27)
$$4,18 \le F_1 \le 11,71 \quad et \qquad 0,033 \le h_1/B \le 0,066$$

La figure (I.29) montre aussi que la relation $Y=f(S, y_1)$ ajuste avec une bonne corrélation les points de mesures expérimentales, qui suivent parfaitement la première bissectrice.

Figure I.30 : Variation de Y exp en fonction de Y app. (o) Points expérimentaux. (—) Première bissectrice d'équation : Yexp = Y app.

Les écarts relatifs entre les mesures expérimentales du rapport des hauteurs conjuguées et celles issues de l'équation globale d'ajustement (I.27) sont mentionnés au tableau I.15. Le tableau I.15, montre clairement que les erreurs relatives sont en majorité inférieures à 5%.
Yexp	Y relation	$\Delta Y/Y(en\%)$	Yexp	Y relation	$\Delta Y/Y(en\%)$
10,7	10,7883791	-0,82597284	8,33333333	8,19975434	1,60294794
11,15	10,9946724	1,3930724	8,56666667	8,41337434	1,78940462
11,4	11,3041124	0,84111906	8,76666667	8,64641434	1,37169957
11,85	11,7682724	0,68968416	8,9	8,80177434	1,10365912
12,15	12,0519258	0,80719539	9,03333333	8,97655434	0,62854976
12,4	12,3613658	0,31156645	9,16666667	9,17075434	-0,04459278
12,6	12,5676591	0,25667386	9,43333333	9,44263434	-0,09859722
12,8	12,7997391	0,00203833	6,2	6,13724039	1,01225176
13,1	13,0576058	0,32362015	6,4	6,31324991	1,35547008
13,45	13,4186191	0,23331529	6,6	6,50686039	1,41120619
8,6	8,55342495	0,54157035	6,77142857	6,64766801	1,82768761
8,96	8,79505828	1,84086737	6,91428571	6,85887944	0,80133043
9,2	8,97079162	2,49139547	7,37142857	7,17569658	2,65527893
9,48	9,23439162	2,59080573	7,54285714	7,36930706	2,3008534
9,88	9,62979162	2,53247351	7,65714286	7,58051849	1,00069141
10,08	9,87142495	2,06919692	7,8	7,72132611	1,00863967
10,28	10,135025	1,41026313	7,94285714	7,87973468	0,79470731
10,48	10,3107583	1,61490188	5,125	5,20446789	-1,55059291
10,68	10,5084583	1,60619585	5,5	5,44801789	0,94512933
10,88	10,728125	1,39591039	5,625	5,61038455	0,25983016
11,2	11,0356583	1,46733676	5,825	5,78898789	0,6182337
6,9	7,05397434	-2,23151214	5,975	5,91888122	0,93922644
7,33333333	7,24817434	1,16125903	6,1	6,11372122	-0,22493803
7,56666667	7,46179434	1,38597791	6,425	6,40598122	0,29601214
7,766666667	7,61715434	1,92505144	6,55	6,58458455	-0,52800845
8	7,85019434	1,87257078	6,75	6,77942455	-0,43591931

Tableau I.15 : Ecarts relatifs entre Y expérimental et Y de la relation (I.27)

I.3.3.2. Longueurs caractéristiques du ressaut

I.3.3.2.1. Variation de la longueur relative Lj/h_1 du ressaut en fonction du nombre de Froude F_1

La figure (I.31) présente la variation de la longueur relative Lj/h_1 en fonction du nombre de Froude F_1 de l'écoulement incident.

Figure I.31. Variation de la longueur relative Lj/h_1 du ressaut en fonction du nombre de Froude F_1 , (o) points de mesures en lit majeur; (Δ) points de mesures en lit mineur. (—) Courbes d'ajustement.

Deux allures distinctes pour les deux lits du canal composé, telles que :

- pour $h_0/h_2 \ge 1$: $Lj/h_1 = 10,39F_1 16,17$; $R^2 = 0,998$ (I.28)
- pour $h_0/h_2 < 1$: $Lj/h_1 = 9,482F_1 6,313$; $R^2 = 0,995$ (I.29)

Le tableau I.16 récapitule les valeurs ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$, pour les deux lits du canal.

Tableau I.16. Valeurs expérimentales ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
F_1	Lj/h_1	F_1	Lj/h_1	F_1	Lj/h_1	
3,1291846	17	4,1870921	31,25	7,155641	58,4	
3,5574917	22,5	4,4908283	35	7,2811552	62,666667	
3,5699961	18,857143	4,6333877	37	7,4222941	62,8	
3,8231304	20	4,7774245	39,5	7,4297474	64,333333	
3,9259915	24	4,8985729	41,5	7,5793369	66	
3,9583218	27	5,0452796	42,75	7,5568351	64,4	
4,2488177	27,333333	5,1721716	40	7,8055765	67,666667	
4,3357378	32	5,3179615	45,5	7,7828529	66,4	
4,4537374	30,571429	5,3143896	42,857143	8,0723111	70	
4,7533164	31,666667	5,4434806	47,5	8,1029848	70,4	
4,7533164	32,5	5,6718601	49,5	8,3342698	72,4	
4,7919089	35,2	5,4867399	45,142857	8,5208536	75,2	
4,8916229	34,285714	5,6026546	47,142857	8,6146607	73,5	
5,1438827	37,333333	5,5784391	43,333333	8,7560116	76,8	
5,3429871	40,8	5,7780342	49,142857	8,9932939	78,8	
5,4939609	40	5,9206168	48,666667	9,0290684	80,5	
6,0802842	46	6,0743084	52,857143	9,1846367	80,4	
6,0593777	47,5	6,129159	51,333333	9,4741568	83,6	

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
F_1	Lj/h_1	F_1	Lj/h_1	F_1	<i>Lj/h</i> 1	
6,6429617	54	6,254429	54,857143	9,3894042	84,5	
6,7618093	52	6,3754804	56,571429	9,8156941	87,5	
7,6921794	64	6,3400938	54,333333	10,124027	90,5	
8,2646566	70	6,4973028	58	10,498197	93	
		6,5533944	56,333333	10,750148	95,5	
		6,6198914	59,714286	11,004082	98	
		6,8777245	59	11,324266	100,5	
		7,0601517	61,333333	11,712505	103,5	

Tableau I.16. (suite et fin) Valeurs expérimentales ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

I.3.3.2.2. Variation de la longueur relative Lr/h_1 du rouleau de surface en fonction du nombre de Froude F_1

La variation de la longueur relative Lr/h_1 en fonction du nombre de Froude F_1 de l'écoulement incident est indiquée par La figure (I.32).

Figure 1.32. Variation de la longueur relative Lr/h1en fonction du nombre de Froude F1,
(0) Points de mesures expérimentales en lit majeur; (Δ) points de mesures expérimentales en lit mineur.
(--) Courbes d'ajustement.

L'ajustement montre deux allures. Chacune correspond à une section du canal rectangulaire composée. , telle que :

- pour
$$h_0/h_2 \ge 1$$
: $Lr/h_1 = 7,655F_1 - 14,21; R^2 = 0,986$ (I.30)

pour
$$h_0/h_2 < 1$$
: $Lr/h_1 = 7,574F_1 - 8,566$; $R^2 = 0,990$ (I.31)

Le tableau I.17 regroupe les valeurs ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$, pour les deus sections du canal.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
F_1	Lr/h_1	F_1	Lr/h_1	F_1	Lr/h_1	
3,1291846	10,5	4,1870921	21	7,155641	41,6	
3,5574917	15	4,4908283	23,75	7,2811552	48,333333	
3,5699961	11,714286	4,6333877	25,75	7,4222941	46	
3,8231304	13,333333	4,7774245	27,5	7,4297474	50	
3,9259915	15,428571	4,8985729	28,75	7,5793369	51	
3,9583218	18,25	5,0452796	29,75	7,5568351	47,6	
4,2488177	17,666667	5,1721716	28	7,8055765	53	
4,3357378	18	5,3179615	32,5	7,7828529	49,6	
4,4537374	20	5,3143896	29,714286	8,0723111	54,666667	
4,7533164	21,666667	5,4434806	34	8,1029848	52	
4,7533164	21	5,6718601	35,5	8,3342698	54,4	
4,7919089	23,2	5,4867399	31,714286	8,5208536	56	
4,8916229	24	5,6026546	33,142857	8,6146607	55	
5,1438827	26,333333	5,5784391	31,333333	8,7560116	57,6	
5,3429871	28,8	5,7780342	34,857143	8,9932939	59,6	
5,4939609	26	5,9206168	36,666667	9,0290684	59,5	
6,0802842	32	6,0743084	37,714286	9,1846367	61,2	
6,0593777	31	6,129159	39	9,4741568	64	
6,6429617	36,5	6,254429	39,714286	9,3894042	62	
6,7618093	36,8	6,3754804	41,142857	9,8156941	65,5	
7,6921794	45	6,3400938	40,666667	10,124027	68	
8,2646566	50	6,4973028	42,571429	10,498197	70,5	
		6,5533944	42,333333	10,750148	72,5	
		6,6198914	43,714286	11,004082	74,5	
		6,8777245	45	11,324266	76,5	
		7,0601517	46,666667	11,712505	78,5	

Tableau I.17. Valeurs expérimentales ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

I.3.3.3. Variation de la hauteur relative s/h1en fonction du nombre de Froude F1

La variation de la hauteur relative du seuil $S=s/h_1$ en fonction de nombre de Froude de l'écoulement incident est indiqué par La figure (I.33).

Cette figure illustre deux configurations :

Pour (h₀/h₂ ≥ 1) l'ajustement des points expérimentaux par la méthode des moindre carré est de type linéaire tel que :

$$s/h_1 = 0,713F_1 - 1,57$$
; $R^2 = 0,988$ (I.32)

- pour $(h_0/h_2 < 1)$ l'ajustement des points expérimentaux montre une série de cinq allures qui reflètent l'effet de la hauteur des ouvertures.

Figure. I.34. Variation du rapport $S = s/h_1 de$ la hauteur relative du seuil en fonction du nombre de Froude F_1 Pour $h_0/h_2 \ge 1$. h_1 : (\Diamond) 2; (\Box) ;2,5; (Δ) 3; (o) 3,5; (\bigstar) 4.

Cette figure montre que la hauteur relative du seuil augmente linéairement avec l'augmentation du nombre de Froude F_1 . Ainsi pour la même valeur de seuil relative, le nombre de Froude augmente avec la diminution de la hauteur relative des ouvertures.

Les figures (I.35. a, b, c, d, e) expriment la variation de la hauteur relative du seuil S =s/h₁ en fonction du nombre de Froude F₁ pour les cinq ouvertures testés, tels que : $h_1/B = 0.033$; 0.041; 0.05 ; 0.058 ; 0.066.

Figure. 1.35. (a, b, c, d, e). Variation du rapport de la hauteur relative du seuil S =s/h1 en fonction du nombre de Froude F1 du ressaut respectivement pour h1/B= (0,033; 0,041; 0,05; 0,058; 0,06).
(o) points expérimentaux. (-) courbe d'équation.

Les figures (I.35. a, b, c, d, e), montrent que l'ajustement des mesures expérimentales de la variation du rapport s/h₁ en fonction du nombre de Froude F₁ de l'écoulement incident suit une loi de type linéaire de la forme s/h₁= a F₁ + b.

h ₀ /h	$a_2 \geq 1$		$h_0/h_2 < 1$			
s/h_1	$\overline{F_1}$	s/h_1	F_1	s/h_1	F_1	
0,85	3,1291846	1,625	4,1870921	5,4	7,2811552	
1,125	3,5574917	2	4,4908283	5,6666667	7,4297474	
0,9714286	3,5699961	2,25	4,6333877	5,9666667	7,5793369	
1,1333333	3,8231304	2,525	4,7774245	4,36	7,5568351	
1,2857143	3,9259915	2,725	4,8985729	6,3	7,8055765	
1,35	3,9583218	3,025	5,0452796	4,84	7,7828529	
1,5	4,2488177	2,2857143	5,1721716	6,7666667	8,0723111	
1,36	4,3357378	3,475	5,3179615	5,56	8,1029848	
1,5428571	4,4537374	2,5714286	5,3143896	6	8,3342698	
1,8	4,7533164	3,75	5,4434806	6,48	8,5208536	
1,7	4,7533164	4,05	5,6718601	6,8	8,7560116	
1,8	4,7919089	2,8857143	5,4867399	6,8	8,7560116	
1,8571429	4,8916229	3,1142857	5,6026546	7,16	8,9932939	
2,1666667	5,1438827	3,4571429	5,7780342	5,45	9,0290684	
2,16	5,3429871	3	5,9206168	7,56	9,1846367	
2,25	5,4939609	3,9714286	6,0743084	8,12	9,4741568	
2,6	6,0802842	3,3666667	6,129159	6,05	9,3894042	
2,7	6,0593777	4,2857143	6,254429	6,95	9,8156941	
3,25	6,6429617	4,6285714	6,3754804	7,5	10,124027	
3,2	6,7618093	3,6333333	6,3400938	8,1	10,498197	
4	7,6921794	4,8571429	6,4973028	8,5	10,750148	
4,5	8,2646566	4,0333333	6,5533944	8,95	11,004082	
		5,1142857	6,6198914	9,45	11,324266	
		4,6333333	6,8777245	10,15	11,712505	
		5	7,0601517			

Le tableau I.18 regroupe Les données ayant servi au traçage des figures I.35 (a, b, c, d, e).

Tableau I.18. Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$:1.
---	-----

Le tableau I.19 regroupe les différents coefficients des droites d'ajustement de la relation expérimentale liant le rapport $S = s/h_1$ des hauteurs relative du seuil au nombre de Froude de l'écoulement incident, pour différentes hauteurs h_1 des ouvertures.

Tableau I.19. Coefficients des relations expérimentales de type linéaire, issues de l'ajustement de la relationliant $S = s/h_1$ au nombre de Froude, pour différentes hauteurs h_1 des ouvertures

h_1/B	а	b	Équations des droites	Coefficients de corrélation R ²
0,033	1,743	- 10,24	$s/h_1 = 1,743 F_1 - 10,24$	0,998
0,041	1,935	- 10,24	$s/h_1 = 1,935 F_1 - 10,24$	0,995
0,05	1,782	- 7,594	$s/h_1 = 1,782 F_1 - 7,594$	0,999
0,058	1,929	- 7,703	$s/h1 = 1,929 F_1 - 7,703$	0,998
0,066	1,708	- 5,613	$s/h_1 = 1,708 F_1 - 5,613$	0,996

Les valeurs des paramètres 'a' sont presque égales, et leur moyenne arithmétique est a= 1,819.

Cependant, les paramètres b sont en fonction de la hauteur des ouvertures et augmentent progressivement avec l'augmentation de h_1/B . La figure I.36 montre l'ajustement statistique des couples de valeurs (b, h_1/B) par la méthode des moindres carrés.

Figure. I.36. Variation du paramètre 'b' en fonction de h_1/B .

Le figure I.36 montre que la variation du paramètre 'b' en fonction de h_1/B , suit parfaitement une loi linéaire que l'on peut écrire comme suit :

$$b = 141,6 h_1 / B - 15,29; R^2 = 0,902$$
 (I.33)

En remplaçant les paramètres (a) et (b) par leurs expressions respectives on aboutit à la relation générale suivante :

$$s/h_1 = 1,819 F_1 + 141,6 (h_1/B) - 15,29$$
 (I.34)
 $4,18 \le F_1 \le 11,71 \ et \quad 0,033 \le h_1/B \le 0,066$

La figure I.37 certifie que la relation (I.33) représente un assez bon ajustement pour la détermination de la hauteur relative s/h_1 du seuil, connaissant le nombre de Froude incident F_1 , et la hauteur relative (h_1/B) de l'ouverture.

Figure I.37: Variation de la de la hauteur relative s/h_1 du seuil en fonction de la relation $f(F_1, h_1/B)$. (o) Points expérimentaux. (—) Première bissectrice d'équation : $s/h_1 = f(F_1, h_1/B)$.

La figure I.37 montre que tous les points issus de l'équation (I.34) tournent autour de la première bissectrice.

Les écarts relatifs entre les mesures expérimentales de la hauteur relative du seuil et celles issues de l'équation globale d'ajustement (I.34) sont cités au tableau I.20, qui montre clairement que les erreurs relatives sont en majorité inferieures à 10%.

s/h ₁ th	s/h ₁	$\Delta S/S$ en %	s/h ₁ th	s/h ₁	$\Delta S/S \ en \ \%$
5,85748696	5,45	6,95668574	5,03733383	5,4	-7,19956593
6,51308205	6,05	7,11002942	5,30768242	5,6666667	-6,76348454
7,28867393	6,95	4,64657815	5,57984547	5,9666667	-6,93247209
7,84965416	7,5	4,45438936	5,99146592	6,3	-5,14955912
8,53042046	8,1	5,04571213	6,47676279	6,7666667	-4,47606188
8,98881847	8,5	5,43807255	2,38024903	2,2857143	3,97163191
9,45082601	8,95	5,29928294	2,63900038	2,5714286	2,56050664
10,0333688	9,45	5,81428642	2,95257455	2,8857143	2,26447288
10,7397322	10,15	5,49112575	3,1634697	3,1142857	1,55474857
4,35890582	4,36	-0,02510217	3,48255537	3,4571429	0,72970757
4,77012251	4,84	-1,46489927	4,02159678	3,9714286	1,24746917
5,35257059	5,56	-3,8753232	4,34930809	4,2857143	1,46215878
5,77337047	6	-3,9254285	4,56954898	4,6285714	-1,29164651
6,11284112	6,48	-6,00635405	4,7911927	4,8571429	-1,37648816
6,54068754	6,8	-3,96460553	5,01423043	5,1142857	-1,99542625
6,97239901	7,16	-2,69062327	1,76799543	1,625	8,08799772
7,32052794	7,56	-3,2712403	2,32061302	2	13,8158761
7,84728079	8,12	-3,47533391	2,57998565	2,25	12,7902126
2,56197016	3	-17,0973826	2,84204619	2,525	11,1555608
2,94139192	3,3666667	-14,4582834	3,06246354	2,725	11,0193488
3,32516674	3,6333333	-9,26770247	3,32938164	3,025	9,14228745
3,71324581	4,0333333	-8,62015354	3,82549909	3,475	9,16217941
4,30333198	4,6333333	-7,66850714	4,05386854	3,75	7,49576699
4,63523994	5	-7,86928109	4,4693823	4,05	9,38345104

Tableau I.20: Ecarts relatifs entre Y expérimental et Y de la relation (I.34).

I.3.3.4. Rendement du ressaut hydraulique

Le rendement du ressaut hydraulique dans un canal rectangulaire de section composée, s'écrit comme suit :

$$\eta = 1 - \frac{Y + \frac{F_1^2}{2\left[Y / \beta - (1 / \beta - 1) / \tau\right]^2}}{1 + F_1^2 / 2}$$

Figure 1.38: Variation du rendement η en fonction du nombre de Froude F_{τ} (o) points de mesures expérimentales en lit majeur; (δ) points de mesures expérimentales en lit mineur.

La figure I.38 montre la variation du rendement « η » en fonction du nombre de Froude F₁. Pour les deux sections du canal, la figure montre que le rendement augmente avec l'accroissement du nombre de Froude.

En conséquence, pour des nombres de Froude F_1 comprise entre 4 et 6, le rendement dans le canal composé se trouve légèrement inferieur à celle du canal rectangulaire. Au delà de 6 tous les points de mesure se rejoignent pour former un seul nuage de points.

Le tableau I.21 motionne les valeurs du rendement η pour les nombres de Froude correspondants.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
η	F_1	η	F_1	η	F_1	
0,32197316	3,1291846	0,44243348	4,1870921	0,66669026	7,155641	
0,38912224	3,5574917	0,47869508	4,4908283	0,67556892	7,2811552	
0,40958968	3,5699961	0,4978322	4,6333877	0,67796029	7,4222941	
0,43812897	3,8231304	0,51084971	4,7774245	0,68341614	7,4297474	
0,44352369	3,9259915	0,52231122	4,8985729	0,69098556	7,5793369	
0,43262094	3,9583218	0,53900677	5,0452796	0,68151345	7,5568351	
0,47939417	4,2488177	0,55062448	5,1721716	0,7038329	7,8055765	
0,49600113	4,3357378	0,56182121	5,3179615	0,69073759	7,7828529	
0,49683777	4,4537374	0,56129522	5,3143896	0,71475672	8,0723111	
0,52236719	4,7533164	0,57294023	5,4434806	0,70272843	8,1029848	
0,53629602	4,7533164	0,59328561	5,6718601	0,71309085	8,3342698	
0,53030788	4,7919089	0,57546	5,4867399	0,71999599	8,5208536	
0,54050741	4,8916229	0,58249396	5,6026546	0,71255483	8,6146607	
0,5463352	5,1438827	0,56600618	5,5784391	0,72947486	8,7560116	
0,56745542	5,3429871	0,59832918	5,7780342	0,73848293	8,9932939	

Tableau I.21: Mesures expérimentales ayant servi au traçage de la figure I.37.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
η	F_1	η	F_1	η	F_1	
0,59840944	5,4939609	0,59158311	5,9206168	0,72761564	9,0290684	
0,62138718	6,0802842	0,61267173	6,0743084	0,74449644	9,1846367	
0,61903903	6,0593777	0,60670054	6,129159	0,75272603	9,4741568	
0,64609359	6,6429617	0,62552644	6,254429	0,74226947	9,3894042	
0,65735948	6,7618093	0,63375039	6,3754804	0,75496713	9,8156941	
0,69379427	7,6921794	0,62229367	6,3400938	0,7638303	10,124027	
0,71241516	8,2646566	0,6405161	6,4973028	0,77567011	10,498197	
		0,63562704	6,5533944	0,78254924	10,750148	
		0,64710437	6,6198914	0,78911608	11,004082	
		0,65490605	6,8777245	0,79618795	11,324266	
		0,66324597	7,0601517	0,80434892	11,712505	

Tableau I.21 (suite et fin): Mesures expérimentales ayant servi au traçage de la figure I.37.

I.3.3.5. Profil de surface du ressaut

La variation du rapport y en fonction du rapport X est représentée à la Figure (I.39). Cette figure montre les points de mesures expérimentales pour différentes hauteurs h_1 .

Figure I.39: Profil de surface du ressaut hydraulique dans un canal rectangulaire de forme composée, $h_l: (\Diamond) 2; (\Box); 2,5; (\varDelta) 3; (o) 3,5; (*) 4.$

La figure I.39 représente un nuage de points issu de l'expérimentation. Le rapport y se stabilise à la valeur 1.

Le tableau I.22, regroupe Les mesures expérimentales de X = x/Lr, et de y = (h(x) - h₁)/(h₂ - h₁) .

Xi/Lj	$(hi-h_1)/(h_2-h_1)$	Xi/Lj	$(hi-h_1)/(h_2-h_1)$	Xi/Lj	$(hi-h_1)/(h_2-h_1)$
0,13846154	0,40697674	0,30769231	0,67647059	0,33846154	0,9787234
0,17894737	0,43333333	0,67948718	0,98039216	0,72307692	0,63157895
0,37894737	0,81666667	0,19417476	0,4962406	0,13636364	0,98245614
0,3203125	0,68125	0,36893204	0,81954887	0,58441558	0,5546875
0,515625	0,9	0,20945946	0,75151515	0,35502959	0,9453125
0,0875	0,26041667	0,66891892	0,97575758	0,63313609	0,83950617
0,45	0,89583333	0,30588235	0,46192893	0,43617021	0,96296296
0,25	0,58035714	0,58823529	0,8071066	0,63829787	0,63684211
0,63636364	1,00892857	0,32972973	0,68899522	0,24242424	0,96315789
0,20869565	0,54666667	0,51351351	0,99521531	0,55555556	0,57425743
0,52173913	0,91333333	0,14285714	0,47488584	0,13571429	0,84653465
0,2	0,41836735	0,40816327	0,94063927	0,53571429	0,75943396
0,41666667	0,86734694	0,24271845	0,28820961	0,26582278	0,97169811
0,30526316	0,62962963	0,54854369	0,69432314	0,56962025	0,58482143
0,61052632	0,97777778	0,30821918	0,57083333	0,41860465	0,80803571
0,1969697	0,48543689	0,54794521	1,025	0,6627907	0,45744681
0,5	0,89320388	0,31288344	0,94202899	0,41666667	0,94680851
0,26190476	0,61157025	0,72392638	0,52830189	0,640625	0,57364341
0,64285714	0,97520661	0,11797753	0,90566038	0,16	0,86046512
0,28037383	0,69444444	0,50561798	0,81617647	0,384	0,82926829
0,46728972	0,90277778	0,31052632	1,00735294	0,29054054	0,9695122
0,2111111	0,48387097	0,65789474	0,52071006	0,60810811	0,39361702
0,56666667	0,9516129	0,33165829	0,92307692	0,38554217	0,76595745
0,51111111	0,92424242	0,60301508	0,68844221	0,69277108	0,84653465

Tableau I.22: Mesures expérimentales du profil de surface (y = f(X)) du ressaut contrôlé
par seuil épais dans un canal rectangulaire de section composée.

I.4. RESSAUT HYDRAULIQUE CONTRÔLÉ PAR MARCHE POSITIVE EN CANAL RECTANGULAIRE DE FORME COMPOSÉE

I.4.1. Description du modèle

I.4.1.1. Description du canal

Dans le même dispositif expérimental, le contrôle du ressaut se fait par la mise en place d'une marche positive.

Figure I.40 : Schéma simplifié du canal de mesure de section rectangulaire composé, ayant servi à l'expérimentation.

V.4.1.2. Les marches positives

Une série de 15 marches positives métalliques, de forme rectangulaire de longueur 100 cm (photo I.15) utilisés dans notre dispositif expérimental, de différentes hauteurs: s = 3,5 cm ; 4,2 cm ; 5,3 cm ; 6,3 cm ; 7,8 cm ; 9,8 cm ; 10,7 cm ; 11,8 cm ; 13,2 cm ; 14 cm ; 15 cm ; 16,1 cm ; 17,8 cm ; 18,8 cm et 20,3 cm, fixé a l'aval du canal rectangulaire composé. Dont le but est d'obtenir un nombre important de points de mesures.

Photo I.15 : Photographie des marches positives.

I.4.2. Résultats expérimentaux

Les photos I.16 et I.17 illustrent deux configurations typiques de ressaut contrôlé par marche positive en canal rectangulaire de section composée, pour la même hauteur initiale h_1 = 25 mm et à débit volume croissant.

Figure I.41: Schéma simplifié d'un ressaut hydraulique contrôlé par marche positive évoluant dans un canal rectangulaire composé.

Photo I. 16 : Photographie d'un ressaut hydraulique contrôlé par marche positive $F_1 = 5, 504; s = 5,4 \text{ cm}; Lj = 100 \text{ cm}; h_2 = 15,8 \text{ cm}; h_1 = 2,5 \text{ cm}$

Photos I.17 : Photographie d'un ressaut hydraulique contrôlé par marche positive $F_1 = 8, 56; s = 15 \text{ cm}; Lj = 189 \text{ cm}; h_2 = 25,4 \text{ cm}; h_1 = 2,5 \text{ cm}$

I.4.3. Analyse des résultats expérimentaux

I.4.3.1.Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude F1

La Figure (I.42) montre la représentation graphique des hauteurs conjuguées Y en fonction des nombres de Froude F_1 de l'écoulement incident.

Figure. I.42. Variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F₁ pour les deux cas du canal, (o) points de mesures en lit majeur; (Δ) points de mesures en lit mineur.
(—) Courbes d'ajustement.

L'ajustement des valeurs expérimentales par la méthode des moindres carrés est de type linéaire.

Nos mesures expérimentales montrent un décalage entre les deux allures obtenues pour les deux largeurs de bases du canal rectangulaire composé.

- Pour $h_0/h_2 \ge 1$: $Y = 1,206 F_1 - 0,305$ $R^2 = 0,991$ (I.35) $3.29 < F_1 < 7.91$ - Pour h₀/h₂ < 1 : $Y = 1,113 F_1 + 0,540 R^2 = 0,993$ (I.36) $4.49 < F_1 < 12.03$

Les valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$ pour les deux sections du canal, sont regroupées dans le tableau (I.23) :

h ₀ /h	$e_2 \ge 1$	$h_0/h_2 < 1$			
Y	F_1	Y	F_1	Y	F_1
3,8	3,2983075	5,425	4,4908283	8,6	7,2441638
4,1714286	3,7211836	5,75	4,7774245	8,7666667	7,4297474
4,25	3,7338767	5,8571429	4,9194425	9,08	7,5118986
4,4	3,9734395	6,05	4,9962171	9	7,6545035
4,75	4,0950702	6,225	5,1686327	9,36	7,8283222
4,6857143	4,1344247	6,375	5,2680278	9,2	7,9195254
5	4,3419688	6,4	5,3716358	9,64	8,0569888
5,2	4,4537374	6,5	5,4182987	9,4333333	8,1490681
5,04	4,5619224	6,65	5,4939609	9,84	8,2414955
5,6333333	4,8176949	6,775	5,6463304	10	8,4273896
5,68	5,0256354	6,8285714	5,6609141	10,16	8,5677144
5,5	5,1438827	7,1333333	5,8516392	10,6	8,5559912
6,4	5,4771168	7,0571429	5,895951	10,32	8,7560116
6,32	5,5040756	7,2	6,0146592	10,68	9,0887975
6,35	5,5445963	7,3714286	6,194194	11,25	9,1486577
7,15	6,1641494	7,5142857	6,314858	10,88	9,2808104
7,24	6,3330244	7,6666667	6,3400938	11,2	9,5713271
8,2	7,023539	7,6285714	6,4362955	11,6	9,6322262
9,4	7,9195254	8,16	6,6321922	11,9	10,062106
		7,8285714	6,6198914	12,1	10,248247
		8	6,6250158	12,3	10,560998
		7,9428571	6,7432415	12,55	10,876868
		8,1666667	6,7690348	12,9	11,324266
		8,0857143	6,929684	13,15	11,647496
		8,3333333	6,9505043	13,4	12,039354
		8,4666667	7,0968277		

Tableau I.23. Valeurs expérimentales ayant servi au traçage des courbes $Y = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

La figure (I.43) représente la variation de Y en fonction de la hauteur relative du seuil $S=s/h_1$.

Figure. 1.43. Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en fonction de la hauteur relative $S = s/h_1$ du seuil. (0) Points de mesures expérimentales en lit majeur; (\Diamond) points de mesures expérimentales en lit mineur. (—) courbe d'équation.

D'après cette figure on constate que :

- Pour $h_0/h_2 \ge 1$:

La figure montre que l'ajustement des mesures expérimentales par la méthode des moindres carrés est de type linéaire ;

$$Y = 1,794 (s/h_1) + 2,427 \qquad R^2 = 0,993 \tag{I.37}$$

- Pour $h_0/h_2 < 1$:

La figure montre cinq allures différentes chacune correspond à une ouverture bien déterminée, qui reflète l'écoulement qui se forme dans le lit majeur ($\beta < 1$).

La figure (I.44) montre la variation de Y en fonction de la hauteur relative du S=s/h₁ du seuil.

Figure. I.44. Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé en fonction de la hauteur relative $S = s/h_1$ de la marche positive Pour $h_0/h_2 < 1$. $h_1: (\diamondsuit) 2; (\Box) 2,5; (\varDelta) 3; (o) 3,5; (*) 4$.

Cette figure montre une série de cinq allures superposées. Chaque allure correspond à une hauteur h_1 d'une ouverture bien déterminée. On remarque que pour la même valeur de la marche positive, le rapport Y diminue avec l'augmentation des ouvertures.

Les figures I.45 (a, b, c, d, e) montrent la variation de Y en fonction la hauteur relative s/h₁ de la marche positive, pour les cinq ouvertures, tels que : $h_1/B = 0,033$; 0.041; 0,05; 0,058; 0,066.

Figure. I.45 (a, b, c, d, e). Variation du rapport Y des hauteurs conjuguées du ressaut contrôlé par marche positive en fonction de la hauteur relative $S = s/h_1$ de la marche respectivement pour $h_1/B = (0,03; 0,041; 0,05; 0,058; 0,066)$. (o) points expérimentaux. (—) courbe d'équation.

Les figures I.45 (a, b, c, d, e) montrent que l'ajustement des mesures expérimentales du rapport Y en fonction de la hauteur relative du seuil suit une loi de type puissance de la forme $Y=a S^b$.

Les données ayant servi au traçage des figures I.45 (a, b, c, d, e) sont assemblées au tableau I.24.

h ₀ /h	$_2 \geq 1$	$h_0/h_2 < 1$			
Y	s/ h 1	Y	<i>s/h</i> ₁	Y	s/h ₁
3,8	0,875	11,25	5,35	8,4666667	4,6666667
4,1714286	1	11,6	5,9	8,6	5
4,25	1,05	11,9	6,6	8,7666667	5,3666667
4,4	1,1666667	12,1	7	9	5,9333333
4,75	1,35	12,3	7,5	9,2	6,2666667
4,6857143	1,2	12,55	8,05	9.4333333	6,7666667
5	1,4	12,9	8,9	6,4	2,2571429
5,2	1,5428571	13,15	9,4	6,8285714	2,7142857
5,04	1,4	13,4	10,15	7,0571429	3,0571429
5,6333333	1,8	9,08	3,8	7,2	3,3714286
5,68	1,68	9,36	4,28	7,3714286	3,7714286
5,5	1,75	9,64	4,72	7,5142857	4
6,4	2,1666667	9,84	5,28	7,6285714	4,2857143
6,32	2,16	10	5,6	7,8285714	4,6
6,35	2,1	10,16	6	7,9428571	5,0857143
7,15	2,7	10,32	6,44	8,0857143	5,3714286
7,24	2,6	10,68	7,12	5,75	1,975
8,2	3,25	10,88	7,52	6,05	2,375
9,4	3,95	11,2	8,12	6,225	2,675
		7,6666667	3,1666667	6,375	2,95
		8	3,5666667	6,5	3,3
		8,1666667	3,9333333	6,65	3,5
		8,3333333	4,4	6,775	3,75

Tableau 1.24. Valeurs expérimentales ayant servi au traçage des courbes $Y = f(s/h_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

Le tableau I.25 regroupe les différents coefficients des droites d'ajustement de la relation expérimentale liant le rapport $Y = h_2/h_1$ des hauteurs conjuguées à la hauteur relative du seuil s/h₁, pour les différentes hauteurs h₁ des ouvertures testées.

<i>h</i> ₁ / <i>B</i>	а	b	Équations des droites	Coefficients de corrélation R ²
0,033	7,144	0,271	$Y = 7,144 \text{ s/h}_1^{0,271}$	0,998
0,041	6,338	0,266	$Y = 6,338 \ s/h_1^{-0,266}$	0,992
0,05	5,706	0,258	$Y = 5,706 \ s/h_1^{-0,258}$	0,991
0,058	5,236	0,259	$Y = 5,236 \ s/h_1^{-0,259}$	0,993
0,066	4,864	0,248	$Y = 4,864 \ s/h_1^{-0,248}$	0,996

 Tableau I.25. Coefficients des relations expérimentales, issues de l'ajustement de la relation liant Y à la hauteur relative du seuil pour différentes hauteurs h₁ des ouvertures.

L'ajustement des relations expérimentales liant le rapport $Y = h_2/h_1$ des hauteurs conjuguées à la hauteur relative du seuil s/h₁, sont de type puissance, tel que : $Y = a X^b$, pour toutes les hauteurs h₁ des ouvertures testées,

Le tableau I.25 montre que les paramètres 'a' et 'b' diminuent progressivement avec l'augmentation des hauteurs relatives amont y_1 . L'ajustement statistique des couples des valeurs (a, y_1) par la méthode des moindres carrées donne une relation de type puissance d'équation :

$$a = 1,084 (h_1 / B)^{-0.55}$$
 $R^2 = 0.999$ (I.38)

Celle-ci est représentée dans la figure (I.46)

Figure 1.46: Variation du coefficient "a" en fonction de la hauteur relative "y₁".

Cependant, l'ajustement des couples des valeurs (b, y_1) par la méthode des moindres carrées donne une relation de type linéaire d'équation :

$$b = -0,638 (h_1 / B) + 0,292 ; R^2 = 0,921$$
(I.39)

Celle-ci est représentée dans la figure (I.47)

Figure 1.47: Variation du coefficient "b" en fonction de la hauteur relative "y₁".

En remplaçant les paramètres (a) et (b) par leurs expressions respectives on obtient la relation générale suivante :

$$Y = (1,084 \ (h_1 / B)^{-0.55}) \cdot s / h_1^{(-0.638 \ (h_1 / b) + 0.292)}$$
(I.40)
$$4,49 \le F_1 \le 12,03 \ et \quad 0,033 \le h_1 / B \le 0,066$$

La figure (I.48) montre que l'ajustement des points expérimentaux avec la relation (I.40) suit parfaitement la première bissectrice.

Figure I.48 : Variation de Yexp en fonction de Yapp. (o) Points expérimentaux. (—) Première bissectrice d'équation : Yexp = Yapp.

Le tableau I.26, regroupe les écarts relatifs entre les mesures expérimentales du rapport des hauteurs conjuguées et celles issues de l'équation globale d'ajustement (I.40). Les erreurs relatives sont inférieures à 5%.

Yexp	Y relation	$\Delta Y/Y(en\%)$	Yexp	Y relation	$\Delta Y/Y(en\%)$
<u> </u>	11 173049	0 68400875	8 46666667	8 47298259	-0.07459755
11,25	11 4722246	1 10151168	86	8 62429055	-0 2824482
11,0	11,7722210	0 63141084	8 76666667	8 78230155	-0 1783447
12.1	12,0142467	0 70870504	9,70000007	9.01140312	-0 12670137
12,1	12,0112107	0.48638505	92	9 1386567	0.66677505
12,5	12,2401740	0,40030303	<i>9,2</i> 0 <i>4</i> 3333333	9,1500507	1 10700845
12,55	12,4705550	0,50070175	6A	6 13536752	0 55261753
12,9	12,0191309	1,06656011	0, 4 6 82857143	6 73870323	1 31474346
13,13	12 2022200	0.8788148	7.05714286	6.04204257	1,51474540
15,4	13,2022300	0,0700140	7,03714280	0,94204237	1,03097371
9,08	8,949/80/4	1,434000/4	7,2	/,11383331	1,190/3902
9,36	9,23452114	1,34058614	7,37142857	7,3158928	0,75339231
9,64	9,47553651	1,70605278	7,51428571	7,42422219	1,19856395
9,84	9,75941952	0,81890728	7,62857143	7,55328765	0,98686604
10	9,91179178	0,88208223	7,82857143	7,68800731	1,7955271
10,16	10,0934872	0,65465345	7,94285714	7,88322575	0,75075496
10,32	10,2833213	0,35541374	8,08571429	7,99160253	1,16392636
10,68	10,5587225	1,1355572	5,75	5,76471998	-0,25599968
10,88	10,7117728	1,54620579	6,05	6,02902395	0,34671155
11,2	10,9304746	2,40647659	6,225	6,20588717	0,30703348
7,666666667	7,67064983	-0,05195434	6,375	6,35526666	0,30954252
8	7,90834441	1,14569485	6,5	6,53084177	-0,47448876
8,16666667	8,10939576	0,70127642	6,65	6,62491808	0,37717166
8,333333333	8,34603898	-0,15246774	6,775	6,73695387	0,56156651

Tableau I.26 : Ecarts relatifs entre Y expérimental et Y de la relation (I.40).

I.4.3.2. Longueurs caractéristiques du ressaut

I.4.3.2.1. Variation de la longueur relative Lj/h_1 du ressaut en fonction du nombre de Froude F_1

Figure (I.49) montre la variation de la longueur relative Lj/h_1 en fonction du nombre de Froude F_1 de l'écoulement incident.

Figure 1.49. Variation de la longueur relative Lj/h_1 en fonction du nombre de Froude F_1 , (0) points de mesures en lit majeur; (Δ) points de mesures en lit mineur. (—) Courbes d'ajustement.

Cette figure montre deux allures de points de mesure pour les deux lits du canal composé, telles que :

- pour $h_0/h_2 \ge 1$:

$$Lj / h_1 = 10,13 F_1 - 15,66$$
 (I.41)
 $R^2 = 0,998$

- pour $h_0/h_2 < 1$:

$$Lj / h_1 = 9,267 F_1 - 5,144$$
 (I.42)
 $R^2 = 0,991$

Les valeurs ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$, pour les deux sections du canal sont rassemblées au tableau I.27.

h/h	$_2 \geq 1$	$h/h_2 < 1$			
F_1	Lj/h_1	F_1	Lj/h_1	F_1	Lj/h_1
3,2983075	17,5	4,4908283	33,75	7,2441638	63,333333
3,7211836	20,857143	4,7774245	37,25	7,4297474	65,333333
3,7338767	22	4,9194425	34,285714	7,5118986	61,6
3,9734395	24,666667	4,9962171	41,5	7,6545035	67,333333
4,0950702	27,5	5,1686327	43,25	7,8283222	66,4
4,1344247	25,714286	5,2680278	45	7,9195254	70
4,3419688	30	5,3716358	41,428571	8,0569888	70
4,4537374	31,142857	5,4182987	46,25	8,1490681	72
4,5619224	28	5,4939609	47,75	8,2414955	72
4,8176949	34	5,6463304	48,75	8,4273896	74
5,0256354	36	5,6609141	47,142857	8,5677144	75,6
5,1438827	34	5,8516392	46,666667	8,5559912	73.5
5,4771168	40	5,895951	49,428571	8,7560116	77,6
5,5040756	40	6,0146592	51,142857	9,0887975	80

Tableau I.27. Valeurs expérimentales ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

$1 \ e \ n_0 \ n_2 < 1.$						
5,5445963	41,5	6,194194	52,857143	9,1486577	79.5	
6,1641494	47,5	6,314858	54,285714	9,2808104	81,6	
6,3330244	46	6,3400938	53,333333	9,5713271	84	
7,023539	56	6,4362955	55,714286	9,6322262	84	
7,9195254	65	6,6321922	53,2	10,062106	88	
		6,6198914	57,142857	10,248247	90,5	
		6,6250158	56,666667	10,560998	<i>93</i>	
		6,7432415	58,571429	10,876868	95,5	
		6,7690348	58	11,324266	98	
		6,929684	60,571429	11,647496	100,5	
		6,9505043	60	12,039354	103	
		7,0968277	61,666667			

Tableau 1.27 (suite et fin). Valeurs expérimentales ayant servi au traçage des courbes $Lj/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

I.4.3.2.2. Variation de la longueur relative Lr/h₁ du ressaut en fonction du nombre de Froude F₁

La figure (I.50) montre la variation de la longueur relative Lr/h_1 en fonction du nombre de Froude F₁ de l'écoulement incident.

Figure 1.50. Variation de la longueur relative Lr/h_1 en fonction du nombre de Froude F₁, (o) Points de mesures expérimentales en lit majeur; (Δ) points de mesures expérimentales en lit mineur. (—) Courbes d'ajustement.

L'ajustement des points de mesure expérimentales montre deux allures chacune correspond à une section du canal rectangulaire composé, telle que :

- pour $h_0/h_2 \ge 1$:

$$Lr / h_1 = 7,225 F_1 - 12,59$$
 (I.43)
 $R^2 = 0.984$

- pour $h_0/h_2 < 1$:

$$Lr / h_1 = 7,375F_1 - 7,591$$
 (I.44)
 $R^2 = 0,986$

Le tableau I.28 regroupe les valeurs ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$, pour les deus sections du canal.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$			
F_1	Lr/h_1	F_1	Lr/h_1	F_1	Lr/h_1
3,2983075	12	4,4908283	24,25	7,155641	7,2441638
3,7211836	13,428571	4,7774245	27	7,2811552	7,4297474
3,7338767	15	4,9194425	23,428571	7,4222941	7,5118986
3,9734395	15,666667	4,9962171	29,75	7,4297474	7,6545035
4,0950702	19	5,1686327	31	7,5793369	7,8283222
4,1344247	16,571429	5,2680278	32,25	7,5568351	7,9195254
4,3419688	19	5,3716358	29,142857	7,8055765	8,0569888
4,4537374	20,285714	5,4182987	33,5	7,7828529	8,1490681
4,5619224	18,8	5,4939609	34,5	8,0723111	8,2414955
4,8176949	22,666667	5,6463304	35,5	8,1029848	8,4273896
5,0256354	24,4	5,6609141	33,714286	8,3342698	8,5677144
5,1438827	21,5	5,8516392	33,666667	8,5208536	8,5559912
5,4771168	28	5,895951	35,714286	8,6146607	8,7560116
5,5040756	27,6	6,0146592	37,142857	8,7560116	9,0887975
5,5445963	26,5	6,194194	38,571429	8,9932939	9,1486577
6,1641494	32	6,314858	40	9,0290684	9,2808104
6,3330244	33,2	6,3400938	38,333333	9,1846367	9,5713271
7,023539	38,5	6,4362955	41,428571	9,4741568	9,6322262
7,9195254	45	6,6321922	38,4	9,3894042	10,062106
		6,6198914	42,857143	9,8156941	10,248247
		6,6250158	41	10,124027	10,560998
		6,7432415	44,285714	10,498197	10,876868
		6,7690348	42	10,750148	11,324266
		6,929684	45,714286	11,004082	11,647496
		6,9505043	44,333333	11,324266	12,039354
		7,0968277	46	11,712505	

Tableau I.28. Valeurs expérimentales ayant servi au traçage des courbes $Lr/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

I.4.3.3.Variation de la hauteur relative s/h₁en fonction du nombre de Froude F_1

La figure (I.51) montre la variation de la hauteur relative du seuil $S=s/h_1$ en fonction de nombre de Froude de l'écoulement incident.

Figure. 1.51. Variation de la hauteur relative s/h₁en fonction du nombre de Froude F1, (0) Points de mesures expérimentales en lit majeur; (◊) points de mesures expérimentales en lit mineur. (—) Courbes d'ajustement.

Cette figure montre deux configurations :

Pour $(h_0/h_2 \ge 1)$ l'ajustement des points expérimentaux a donné une courbe unique de type linéaire telle que :

$$s/h_1 = 0,667F_1 - 1,496$$
 (I.45)
 $R^2 - 0.982$

Cependant, pour ($h_0/h_2 < 1$) l'ajustement des points expérimentaux montre une série de cinq allures chacune correspond à une ouverture bien déterminée.

Figure. I.52. Variation du rapport $S = s/h_1$ de la hauteur relative du seuil en fonction du nombre de Froude F_1 Pour $h_0/h_2 \ge 1$. h_1 : (\Diamond) 2; (\Box); 2,5; (Δ) 3; (o) 3,5; (\star) 4.

Cette figure montre que la hauteur relative du seuil augmente linéairement avec l'augmentation du nombre de Froude. Ainsi pour la même valeur de seuil relative, le nombre de Froude augmente avec la diminution de la hauteur relative des ouvertures.

Les figures I.53. (a, b, c, d, e) regroupe la variation de la hauteur relative du seuil S $=s/h_1$ en fonction du nombre de Froude F₁ pour les cinq ouvertures testées, telles que : $h_1/B = 0.033$; 0.041; 0.05; 0.058; 0.066.

Figure. I.53. (a, b, c, d, e). Variation du rapport de la hauteur relative du seuil S =s/h1 en fonction du nombre de Froude F1 du ressaut respectivement pour h1/B= (0,033; 0,041; 0,05; 0,058; 0,06).
(o) points expérimentaux. (-) courbe d'équation.

Selon les figures I.51. (a, b, c, d, e), l'ajustement des mesures expérimentales de la variation du rapport s/h₁ en fonction du nombre de Froude F₁ de l'écoulement incident suit une loi de type linéaire de la forme s/h₁= a F_1 + b.

h ₀ /h	$_2 \geq 1$	$h_0/h_2 < 1$			
s/h ₁	F_1	s/h ₁	F_1	s/h ₁	F_1
0,875	3,2983075	5,35	9,2687704	4,6666667	7,0968277
1	3,7211836	5,9	9,6322262	5	7,2441638
1,05	3,7338767	6,6	10,062106	5,3666667	7,4297474
1,1666667	3,9734395	7	10,248247	5,9333333	7,6545035
1,35	4,0950702	7,5	10,560998	6,2666667	7,9195254
1,2	4,1344247	8,05	10,876868	6,7666667	8,1490681
1,4	4,3419688	8,9	11,324266	2,2571429	5,3716358
1,5428571	4,4537374	9,4	11,647496	2,7142857	5,6609141
1,4	4,5619224	10,15	12,039354	3,0571429	5,895951
1,8	4,8176949	3,8	7,5118986	3,3714286	6,0146592
1,68	5,0256354	4,28	7,8283222	3,7714286	6,194194
1,75	5,1438827	4,72	8,0569888	4	6,314858
2,1666667	5,4771168	5,28	8,2414955	4,2857143	6,4362955
2,16	5,5040756	5,6	8,4273896	4,6	6,6198914
2,1	5,5445963	6	8,5677144	5,0857143	6,7432415
2,7	6,1641494	6,44	8,7560116	5,3714286	6,929684
2,6	6,3330244	7,12	9,0887975	1,975	4,7774245
3,25	7,023539	7,52	9,2808104	2,375	4,9962171
3,95	7,9195254	8,12	9,5713271	2,675	5,1686327
		3,1666667	6,3400938	2,95	5,2680278
		3,5666667	6,6250158	3,3	5,4182987
		3,9333333	6,7690348	3,5	5,4939609
		4,4	6,9505043	3,75	5,6463304

Le tableau I.31 regroupe les données ayant servi au traçage des figures I.51 (a, b, c, d, e).	
Tableau I.29. Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$	1.

Le tableau I.30 regroupe les différents coefficients des droites d'ajustement de la relation expérimentale liant le rapport $S = s/h_1$ des hauteurs relatives du seuil au nombre de Froude de l'écoulement incident, pour différentes hauteurs h_1 des ouvertures.

Tableau I.30. Coefficients des relations expérimentales de type linéaire, issues de l'ajustement de la relationliant $S = s/h_1$ au nombre de Froude, pour différentes hauteurs h_1 des ouvertures.

<i>h</i> ₁ / <i>B</i>	a	b	Équations des droites	Coefficients de corrélation R ²
0,033	1,743	- 10,87	$s/h_1 = 1,743 F_1 - 10,87$	0,999
0,041	<mark>2,171</mark>	<u>– 12,63</u>	$s/h_1 = 2,171 F_1 - 12,63$	0,997
0,05	2,049	- 9,882	$s/h_1 = 2,049 F_1 - 9,882$	0,995
0,058	2,060	- 8,961	$s/h1 = 2,060 F_1 - 8,961$	0,991
0,066	2,112	- 8,161	$s/h_1 = 2,112 F_1 - 8,161$	0,994

Le tableau I.33 montre que les paramètres 'a' et 'b' augmentent progressivement avec l'augmentation de la hauteur relative amont y_1 .

Les figures I.54 et I.55 montre l'ajustement statistique des couples de (a, y_1) et (b, y_1) par la méthode des moindres carrées.

Selon les figures I.54 et I.55, l'ajustement des mesures expérimentales a montré que la variation des paramètres 'a' et 'b' en fonction de y_1 , suit parfaitement une loi de type linéaire que l'on peut écrire comme suit :

$$a = 11,23 h_1 / B + 1,409$$
; $R^2 = 0,893$ (I.46)

$$b = 81,78 h_1 / B - 13,70 ; R^2 = 0,973$$
 (I.47)

En remplaçant les paramètres (a) et (b) par leurs expressions respectives on obtient la relation générale suivante :

$$s/h_{1} = (11,23 h_{1}/B + 1,409)F_{1} + 81,78 h_{1}/B - 13,70$$
(I.48)
$$4,49 \le F_{1} \le 12,03 \ et \quad 0,033 \le h_{1}/B \le 0,066$$

La figure I.56 confirme que la relation (I.48) représente un assez bon ajustement pour la détermination de la hauteur relative s/h_1 du seuil, connaissant le nombre de Froude incident F_1 , et la hauteur relative (h_1/B) de l'ouverture.

Figure I.56 : Variation de la de la hauteur relative s/h_1 du seuil en fonction de la relation $f(F_1, y_1)$. (o) Points expérimentaux. (—) Première bissectrice d'équation : $s/h_1 = f(F_1, h_1/B)$.

La figure I.56 montre que les points issus de l'équation (I.48) se répartissent de manière quasi uniforme autour de la première bissectrice.

Les écarts relatifs entre les mesures expérimentales de la hauteur relative du seuil et celles issues de l'équation globale d'ajustement (I.48) sont mentionnés au tableau (I.31), qui montre clairement que les erreurs relatives sont en majorités inferieures à 5%.

s/h ₁ th	s/h ₁	$\Delta S/S \ en \ \%$	s/h ₁ th	s/h ₁	$\Delta S/S \ en \ \%$
5,55530723	5,35	-3,83751837	4,37329904	4,66666667	6,28644912
6,2034701	5,9	-5,14356099	4,66362477	5	6,7275045
6,97008929	6,6	-5,60741353	5,02931726	5,36666667	6,28601386
7,30204051	7	-4,31486447	5,47219912	5,93333333	7,77192486
7,85978001	7,5	-4,79706685	5,99442485	6,26666667	4,34428435
8,42308046	8,05	-4,63453983	6,44673866	6,76666667	4,7280001
9,22094025	8,9	-3,60607019	2,15800398	2,25714286	4,39222863
9,7973681	9,4	-4,22732024	2,75509846	2,71428571	-1,50362742
10,4961819	10,15	-3,41065865	3,24023416	3,05714286	-5,98896785
3,8067077	3,8	-0,17651848	3,48525781	3,37142857	-3,37629103
4,40060848	4,28	-2,81795521	3,85583253	3,77142857	-2,23798387
4,8297965	4,72	-2,32619701	4,10489312	4	-2,62232801
5,17610032	5,28	1,96779698	4,35555028	4,28571429	-1,62950644
5,52500799	5,6	1,33914305	4,73450752	4,6	-2,92407659
5,7883859	6	3,52690171	4,9891123	5,08571429	1,89947716
6,14180414	6,44	4,63037044	5,37394529	5,37142857	-0,04685385
6,76641543	7,12	4,96607542	2,06008967	1,975	-4,30833755
7,12680768	7,52	5,22862124	2,53217109	2,375	-6,61773001
7,67208339	8,12	5,51621439	2,90418641	2,675	-8,56771619
2,88215492	3,16666667	8,98458139	3,11864789	2,95	-5,71687778
3,44359368	3,56666667	3,45064447	3,44288254	3,3	-4,32977401
3,72738305	3,93333333	5,23602408	3,60613623	3,5	-3,03246362
4,08496871	4,4	7,159802	3,93489887	3,75	-4,93063661

Tableau I.31: Ecarts relatifs entre S expérimental et S de la relation (I.48)

I.4.3.4. Rendement du ressaut hydraulique

La relation qui nous a permis de calculer le rendement du ressaut hydraulique dans un canal rectangulaire de section composée, s'écrit comme suit :

$$\eta = 1 - \frac{Y + \frac{F_1^2}{2[Y / \beta - (1 / \beta - 1) / \tau]^2}}{1 + F_1^2 / 2}$$

Figure 1.57: Variation du rendement η en fonction du nombre de Froude F_{i} . (o) points de mesures expérimentales en lit majeur; (δ) points de mesures expérimentales en lit mineur.

La figure I.57 montre la variation du rendement « η » en fonction du nombre de Froude F₁, pour les deux fractions du canal, On remarque que le rendement augmente progressivement avec l'augmentation du nombre de Froude.

En effet, pour des nombres de Froude F_1 comprise entre 4 et 6, les points de mesure du canal composé se trouvent légèrement décalé au dessous du canal rectangulaire. Au delà de 6 tous les points de mesures se rejoignent pour former un seul nuage de points.

Le tableau I.32 regroupe les valeurs du rendement η pour les nombres de Froude correspondants.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$			
η	F_1	η	F_1	η	F_{I}
0,35138671	3,2983075	0,48744047	4,4908283	0,67807764	7,2441638
0,42332829	3,7211836	0,51924246	4,7774245	0,68773967	7,4297474
0,41839404	3,7338767	0,52842755	4,9194425	0,68154906	7,5118986
0,45944527	3,9734395	0,53728494	4,9962171	0,69775102	7,6545035
0,45426376	4,0950702	0,5540626	5,1686327	0,69754803	7,8283222
0,46840644	4,1344247	0,56025662	5,2680278	0,71093222	7,9195254
0,48428206	4,3419688	0,56966491	5,3716358	0,70606195	8,0569888
0,49012248	4,4537374	0,5750586	5,4182987	0,71986727	8,1490681
0,52219458	4,5619224	0,57727306	5,4939609	0,71323025	8,2414955
0,52407907	4,8176949	0,59124475	5,6463304	0,7211435	8,4273896
0,554505	5,0256354	0,58738716	5,6609141	0,72588156	8,5677144
0,58275152	5,1438827	0,59182671	5,8516392	0,71111294	8,5559912
0,57709698	5,4771168	0,60610396	5,895951	0,73327605	8,7560116
0,58512071	5,5040756	0,61364152	6,0146592	0,74374144	9,0887975
0,58884028	5,5445963	0,62646501	6,194194	0,73228411	9,1486577

Tableau I.32: Mesures expérimentales ayant servi au traçage de la figure I.56.

0,62388811	6,1641494	0,63342083	6,314858	0,74957207	9,2808104
0,63794439	6,3330244	0,6264289	6,3400938	0,75755077	9,5713271
0,66620673	7,023539	0,64139534	6,4362955	0,75075302	9,6322262
0,69854531	7,9195254	0,63180779	6,6321922	0,76550418	10,062106
		0,65173375	6,6198914	0,77019447	10,248247
		0,64294048	6,6250158	0,77988652	10,560998
		0,65913212	6,7432415	0,7882091	10,876868
		0,65075598	6,7690348	0,79908688	11,324266
		0,67087071	6,929684	0,80635038	11,647496
		0,6616625	6,9505043	0,81520276	12,039354
		0,67002296	7,0968277		

Tableau I.32 (suite et fin): Mesures expérimentales ayant servi au traçage de la figure I.56.

I.4.3.5. Profil de surface du ressaut

La variation du rapport y en fonction du rapport X est représentée à la Figure (I.58). Cette figure montre les points de mesures expérimentales pour différentes ouvertures.

Figure I.58: Profil de surface du ressaut hydraulique dans un canal rectangulaire de forme composée, $h_1: (\Diamond) 2; (\Box) 2,5; (\varDelta) 3; (o) 3,5; (*) 4.$

La figure I.58 montre un nuage de points issu de l'expérimentation. Le rapport y se stabilise à la valeur 1.

Le tableau I.33 regroupe les mesures expérimentales de X = x/Lr, et de y = $(h(x) - h_1)/(h_2 - h_1)$.

Xi/Lj	$(hi-h_1)/(h_2-h_1)$	Xi/Lj	$(hi-h_1)/(h_2-h_1)$	Xi/Lj	$(hi-h_1)/(h_2-h_1)$
0,17647059	0,38888889	0,65662651	1,00478469	0,15555556	0,42635659
0,63235294	0,97777778	0,11666667	0,33031674	0,57777778	0,94573643
0,26506024	0,57009346	0,4444444	0,85067873	0,22018349	0,55782313
0,56626506	0,93457944	0,34920635	0,66375546	0,65137615	0,96598639
0,35714286	0,67361111	0,74074074	1,03930131	0,15833333	0,42941176
0,60714286	0,96527778	0,45	0,80578512	0,34166667	0,76470588
0,14615385	0,36904762	0,65	0,99173554	0,21818182	0,50490196
0,46923077	0,86309524	0,18918919	0,56862745	0,46060606	0,84803922
0,27777778	0,56097561	0,62162162	1,00980392	0,38728324	0,87264151
0,49382716	0,85853659	0,2745098	0,66906475	0,68208092	1
0,32222222	0,63302752	0,54901961	0,94964029	0,29050279	0,69124424
0,61111111	1,00917431	0,19166667	0,51234568	0,53631285	0,92165899
0,4	0,78318584	0,45833333	0,91358025	0,31052632	0,65789474
0,63157895	1,02212389	0,29285714	0,67934783	0,58421053	0,93421053
0,21428571	0,42741935	0,64285714	0,89130435	0,32	0,64853556
0,55238095	0,92741935	0,34117647	0,73809524	0,6	0,89121339
0,08571429	0,24752475	0,58235294	0,97619048	0,19318182	0,44615385
0,54285714	0,91089109	0,09444444	0,31818182	0,56818182	0,91538462
0,22	0,5112782	0,35	0,71818182	0,21481481	0,55367232
0,5	0,90225564	0,43157895	0,78947368	0,54814815	0,9039548
0,2406015	0,58659218	0,67894737	1,01315789	0,34939759	0,73267327
0,48120301	0,89385475	0,27227723	0,58333333	0,69277108	0,98019802
0,38554217	0,80382775	0,75742574	1		

Tableau I.33: Mesures expérimentales du profil de surface (y = f(X)) du ressaut contrôlépar marche positive dans un canal rectangulaire de section composée.

I.5. ETUDE COMPARATIVE

Cette présente étape de notre étude expérimentale, comporte une étude comparative entre les différentes caractéristiques du ressaut hydraulique contrôlé par seuil mince, par seuil épais et par marche positive.

I.5.1. Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude F1

La figure (I.59) montre la variation du rapport Y des hauteurs conjuguées du ressaut en fonction du nombre de Froude pour les trois configurations du ressaut citées précédemment.

Figure 1.59 : variation du rapport Y des hauteurs conjuguées du ressaut hydraulique en fonction du nombre de Froude F₁, pour les trois configurations.

Contrôlé par : (\diamondsuit) *seuil mince,* (Δ) *seuil épais et* (\circ) *marche positive.*

Figure 1.60: variation du rapport Y des hauteurs conjuguées du ressaut hydraulique en fonction du nombre de Froude F_1 , pour les trois configurations. Pour $h_0/h_2 \ge 1$. (\diamondsuit) seuil mince, (Δ) seuil épais, (\bigcirc) marche positive.

Cette figure montre que toutes les courbes sont presque quasi-confondues ce qui montre que le type d'obstacle n'a pas d'influence sur la variation de la hauteur relative du ressaut en fonction du nombre de Froude.

Figure 1.61: variation du rapport Y des hauteurs conjuguées du ressaut hydraulique en fonction du nombre de Froude F_1 , pour les trois configurations. . Pour $h_0/h_2 < 1$. (\diamondsuit) seuil mince, (Δ) seuil épais, (\circ) marche positive.

Cette figure montre que les courbes des ressauts contrôlés par seuil mince et épais sont presque quasi-confondues pour pratiquement toute la gamme des nombres de Froude. Cependant un léger effet de la marche positive sur le rapport des hauteurs conjuguées apparaît à partir du nombre de Froude F_1 supérieur à 6 environ. Cette influence s'accroît avec l'augmentation du nombre de Froude.

I.5.2. hauteur relative du seuil et de la marche positive

La figure (I.62 a et b)) montre la variation de la hauteur relative $S=s/h_1$ du seuil et de la marche positive en fonction du nombre de Froude pour les trois configurations du ressaut dans les deux sections du canal composé.

Figure I.62 a et b: variation de la hauteur relative $S=s/h_1$ du seuil et de la marche positive en fonction du nombre de Froude F_1 , pour les trois configurations. (\diamond) seuil mince, (Δ) seuil épais, (\circ) marche positive.

Un décalage est visible entre les courbes des ressauts contrôlé par seuil mince, par seuil épais et par marche positive. En effet, pour le même nombre de Froude F_1 , la formation d'un ressaut

hydraulique contrôlé par seuil nécessite une hauteur relative du seuil plus élevée que son homologue utilisant un seuil épais ou une marche positive.

I.5.3. Longueur relative du bassin

Les figure (I.63 a et b) montre la variation de la longueur relative $\lambda j=Lj/h_1$ du ressaut en fonction du nombre de Froude pour les trois configurations du ressaut dans les deux lits du canal composé.

Figure 1.63 (a et b) : variation de la longueur relative Lj/h_1 du ressaut en fonction du nombre de Froude F_1 , pour les trois configurations. (\diamondsuit) seuil mince, (Δ) seuil épais, (\circ) marche positive.

Les résultats présentés sur les figures I.62 a et b, ont montré que les points de mesure du ressaut contrôlé par marche positive sont légèrement inferieur, par rapport à leurs homologues contrôlés par seuil mince et par seuil épais.

I.5.3. Rendement du ressaut hydraulique

La figure (I.64 a et b) montre la variation du rendement η en fonction du nombre de Froude F₁ dans les deux parties du canal pour les trois configurations du ressaut testé.

Figure I.64 (a et b) : variation du rendement η en fonction du nombre de Froude F_1 , pour les trois configurations. Contrôlés par (\diamond) seuil mince, (Δ) seuil épais, et (\circ) marche positive.
Cette figure montre que tous les points de mesure forment un seul nuage de points dans le lit mineur du canal rectangulaire composé. Cependant dans le lit majeur les points de mesure du ressaut contrôlé par marche positive se présentent légèrement au dessus de ceux contrôlés par seuil mince et par seuil épais.

Ce qui montre ainsi que quelque soit la forme du seuil, l'effet de dissipation de la charge hydraulique est le même pour les trois configurations de ressaut dans les deux lits du canal. Alors, on peut dire que le rendement du ressaut hydraulique contrôlé dans un canal rectangulaire de section composée est indépendant de S.

I.6. Exemple d'application

Un exemple d'application des relations obtenues, afin de déterminer les caractéristiques d'un ressaut hydraulique contrôlé par seuil mince, par seuil épais et par marche positive, dans un canal rectangulaire composé.

Soient :

- Q = 16 m³/s, le débit volume passant par le bassin d'amortissement de section droite rectangulaire composée.

- $h_1 = 0,4$ m, la hauteur initiale du ressaut.
- la largeur du lit mineur de canal b = 3 m.
- la largeur du lit majeur de canal B = 6 m.
 - Le nombre de Froude F₁ de l'écoulement incident est :

$$F_1 = \sqrt{\frac{Q^2}{gb^2h_1^3}} = \sqrt{\frac{16^2}{9,81.3^2.0,4^3}} = 6,73$$

I.6.1. Ressaut contrôlé par seuil mince

Pour $h_0/h_2 \ge 1$

Pour $h_0/h_2 < 1$

- Rapport des hauteurs conjuguées Y

$$Y = \frac{h_2}{h_1} = 1,258F_1 - 0,573 = 7,89$$

d'où la profondeur conjuguée à l'aval du ressaut $h_2 \cong 3,16$ m.

 Longueur relative du ressaut est : Lj/h1

$$\frac{Lj}{h_1} = 10,41.F_1 - 16,23 = 53,829$$

d'où : Lj = 21,53 m

$$Y = \frac{h_2}{h_1} = 1,165.F_1 + 0,328 = 8,168$$

d'où la profondeur conjuguée à l'aval du ressaut $h_2 \cong 3,27$ m.

$$\frac{Lj}{h_1} = 9,378.F_1 - 4,211 = 58,9$$

d'où : Lj \approx 23,56 m

- Hauteur relative du seuil

$$\frac{s}{h_1} = 0,743.F_1 - 1,645 = 3,35$$

d'où : s = 1,34 m

I.6.2. Ressaut contrôlé par seuil épais

Pour $h_0/h_2 \ge 1$

- Rapport des hauteurs conjuguées Y

$$Y = 1,200 F_1 - 0,255 = 7,82$$

d'où $h_2 = 3,12$ m.

- Longueur relative du ressaut :

$$\frac{Lj}{h_1} = 10,39.F_1 - 16,17 = 53,75$$

d'où Lj = 21,5 m.

- Hauteur relative du seuil

$$\frac{s}{h_1} = 0,713.F_1 - 1,57 = 3,048$$

d'où : s = 1,21 m

I.6.3. Ressaut contrôlé par marche positive

Pour $h_0/h_2 \ge 1$

- Rapport des hauteurs conjuguées Y

$$Y = 1,206 F_1 - 0,305 = 7,81$$

d'où $h_2 = 3,12$ m.

- Longueur relative du ressaut :

$$\frac{Lj}{h_1} = 10,13.F_1 - 15,66 = 52,51$$

d'où Lj = 21 m.

- Hauteur relative du seuil

$$\frac{s}{h_1} = 0,667.F_1 - 1,496 = 2,99$$

d'où : s = 1,2 m

$$\frac{s}{h_1} = \left(12,85.\frac{h_1}{B} + 1,254\right) \cdot F_1 + 51,28.\frac{h_1}{B} - 10,87$$
$$= 6,75$$

d'où : s = 2,7 m

Pour
$$h_0/h_2 < 1$$

$$Y = 1,143.F_1 + 0,429 = 8,12$$

d'où h₂ = 3,24 m.

$$\frac{Lj}{h_1} = 9,482.F_1 - 6,313 = 57,5$$

d'où Lj = 23 m.

$$\frac{s}{h_1} = 1,819.F_1 + 141, 6.\frac{h_1}{B} - 12,29 = 6,39$$

d'où : s = 2,55 m

Pour $h_0/h_2 < 1$

$$Y = 1,113.F_1 + 0,540 = 8,03$$

d'où h₂ = 3,21 m.

$$\frac{Lj}{h_1} = 9,267.F_1 - 5,144 = 57,22$$
d'où Lj = 22,88 m.

$$\frac{s}{h_1} = \left(11, 23\frac{h_1}{B} + 1, 409\right) \cdot F_1 + 81, 78 \cdot \frac{h_1}{B} - 13, 7 = 6, 27$$

d'où : s = 2,5 m

I.7. Conclusion

Ce chapitre a été consacré à l'étude expérimentale du ressaut hydraulique contrôlé par seuil mince, par seuil épais et par marche positive.

Nous avons décrit dans un premier temps, le modèle physique qui nous a servi de banc d'essai, ainsi que les instruments et l'appareillage utilisé pour la mesure des caractéristiques du ressaut hydraulique, moyennant quelques schémas et des photographies. Nous avons expliqué ainsi la procédure expérimentale suivie pendant les essais.

Passons en deuxième temps aux résultats expérimentaux, 5 hauteurs initiales h_1 ont été testées. Une large serie des hauteurs de seuil et de la marche positive ont eté testée. Une large gamme des nombres de Froude incidents a été ainsi obtenue.

Par la suite, on a effectué une étude comparative entre les caracteristiques du ressaut controlé par seuil mince, par seuil épais et par marche positive.

L'étude expérimentale s'est intéressée, dans un premier temps, à la variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F_1 de l'écoulement incident. L'expérimentation montre un décalage entre les valeurs de Y pour les mêmes nombres de Froude F_1 . Pour les deux lits du canal, le rapport Y dans le lit mineur est nettement inférieur à celui dans le lit majeur du canal. L'analyse statistique des résultats expérimentaux, a montré que la loi de type linéaire présente la meilleure loi qui suit la variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F_1 de l'écoulement incident. Pour les trois types de ressaut testé, toutes les courbes sont presque quasi-confondues ce qui montre que le type d'obstacle n'a pas d'influence sur la variation de la hauteur relative du ressaut en fonction du nombre de Froude. L'expérimentation a montré ainsi l'influence de la hauteur amont h_1 dans le lit majeur sur la variation du rapport Y en fonction de la hauteur relative du seuil.

Dans un deuxième temps, nous avons étudié la variation de la longueur relative du ressaut Lj/h₁. Ainsi la variation de longueur relative Lr/h₁ du rouleau de surface en fonction de nombre de Froude F₁. L'étude a montré que les points de mesure dans le lit mineur sont en dessous de celui dans le lit majeur, et que l'ajustement est de type lineaire pour les trois type de ressaut experimenté. Ainsi la longeur relative du bassin est presque le même pour les trois configurations de ressaut.

L'expérimentation à etudié dans un troisieme temps, la variation de la hauteur relative s/h_1 du seuil en fonction du nombre de Froude F_1 , pour les trois type de ressaut analysé, cette

étude montre l'apparition de l'influence de la hauteur amont h_1 dans le lit majeur. L'ajustement des mesures expérimentales a montré que la variation du rapport s/ h_1 en fonction du nombre de Froude F_1 de l'écoulement incident suit une loi de type linéaire.

Enfin, nous avons étudié, la variation du rendement η en fonction du nombre de Froude F₁ de l'écoulement incident, et ceci pour trois types de ressaut hydraulique. L'étude a montré que tous les points de mesure forment un seul nuage de points dans le lit mineur du canal rectangulaire composé. Cependant dans le lit majeur les points de mesure du ressaut contrôlé par marche positive se présentent légèrement au dessus de ceux contrôlés par seuil mince et par seuil épais. L'effet de dissipation de l'énergie, pour les trois configurations de ressaut, est alors le même.

Chapitre II

Ressaut hydraulique forcé de type A dans un canal rectangulaire de section composée

CHAPITRE II

Ressaut hydraulique forcé de type A dans un canal rectangulaire de section composée

II.1. Introduction

Ce chapitre de notre étude vise essentiellement dans un premier temps l'étude expérimentale du ressaut hydraulique forcé type A par seuil mince, par seuil épais et par marche positive en canal rectangulaire de section composée.

La bibliographie montre que, pour un nombre de Froude F_1 et une hauteur s de seuil donné, la variation du niveau d'eau de la hauteur d'eau aval est conditionnée par le déplacement vertical d'un deuxième seuil à paroi mince situé à l'extrémité aval du canal. Selon la position verticale de ce dernier, trois cas de figure de la surface libre à l'aval apparaissent et correspond au ressaut forcé type A, type B ou type B-min (*Bretz 1988*). En effet, le ressaut hydraulique est dit contrôlé lorsque le rouleau de surface se présente à l'amont de l'obstacle. Il est dit forcé de type A, lorsque l'extrémité aval du rouleau de surface coïncide verticalement avec l'extrémité amont de l'obstacle.

Ce chapitre abordera, dans un deuxième temps, une étude comparative entre le ressaut contrôlé et forcé par les trois types d'obstacles.

II.2. RESSAUT HYDRAULIQUE FORCE PAR SEUIL MINCE EN CANAL RECTANGULAIRE DE FORME COMPOSÉE

II.2.1 DESCRIPTION DU MODELE

II.2.1.1. Description du canal

C'est le même dispositif expérimental, sauf pour créer le ressaut forcé de type A. Nous mettons un deuxième seuil mince à l'extrémité aval du canal. Figure II.1.

Figure II.1 : Schéma simplifié du canal de mesure de section rectangulaire composé, ayant servi à l'expérimentation.

II.2.1.2. Position du problème

Pour créer un ressaut hydraulique forcé de type A, deux seuils sont nécessaires. Le premier est installé à une distance Ls du pied du ressaut, cela permet la formation de celui-ci. Le deuxième seuil est installé a l'extrémité aval du canal, l'accroissement de la hauteur de ce dernier conditionne la variation de la hauteur d'eau aval.

La bibliographie montre que l'augmentation du nombre de Froude F_1 de l'écoulement incident et de la hauteur s du premier seuil implique une longueur relative Lr/Ls de plus en plus grande. Si ce dernier rapport est égal à l'unité, le ressaut forcé est de type A (figure II.2.a), et s'il est supérieur a l'unité, le ressaut est soit du type B (figure II.2.b) soit du type Bmin (figure II.2.c). Ces types de ressaut ont été définis ainsi en vertu de la classification de *Hager et Bretz (1987)*.

Figure II.2 : Ressaut hydraulique forcé par seuil : a) ressaut type A. b) Ressaut type B. c) Ressaut type B_{min}

L'expérimentation s'est intéressé à développer des relations liant les caractéristiques du ressaut telles que la hauteur relative du ressaut $Y = h_2/h_1$, la position relative du seuil $\lambda s = Ls/h_1$ et la hauteur relative de celui-ci $S=s/h_1$ au nombre de Froude F_1 de l'écoulement incident qui nous permettra de calculer la position et la hauteur nécessaire du seuil pour forcer le ressaut dans les deux lits du canal rectangulaire composé.

II.2.2. Résultats expérimentaux

II.2.2.1. Procédure expérimentale

Les caractéristiques étudiées dans un ressaut hydraulique forcé par seuil à paroi mince sont : le débit volume (Q), la hauteur initiale h_1 , mesurée au pied de ressaut, la hauteur finale h_2 , mesurée au droit de la longueur du rouleau de fond, la hauteur (s) du seuil, la longueur (Lr) du rouleau de surface, et la longueur (L_B) du ressaut, mesurée dans le même endroit de la hauteur finale (h_2).

L'étude expérimentale a été menée sous cinq hauteurs initiales : $h_1 (mm) = 20$; 25 ; 30 ; 35 ; 40mm. Une gamme assez pratique de nombres de Froude incident a été ainsi obtenue : 3,64 < $F_1 < 12,03$.

L'accroissement du nombre de Froude F_1 entraîne à la fois le déplacement du ressaut vers l'aval ainsi que l'augmentation de la longueur Lr du rouleau, pour ramener le pied du ressaut à sa position d'origine (à la sortie de l'écoulement), il est nécessaire d'augmenter la hauteur du premier seuil s tout en le déplacent vers l'aval ainsi du deuxième seuil qui se trouve à l'extrémité aval du canal.

Les photos II.1 et II.2 illustrent deux configurations typiques de ressaut forcé par seuil mince en canal rectangulaire composé, pour la même hauteur initiale h_1 = 25 mm et à débit volume croissant.

Figure II.3 : Schéma simplifié d'un ressaut hydraulique forcé par seuil mince évoluant dans un canal rectangulaire composé.

Photos II.1 : Photographie d'un ressaut hydraulique forcé par seuil mince type A $F_1 = 6, 16; s = 4 \text{ cm}; L_B = 107 \text{ cm}; h_2 = 16,3 \text{ cm}; h_1 = 2,5 \text{ cm}$

Photo II.2 : Photographie d'un ressaut hydraulique forcé par seuil mince type A $F_1 = 8, 38; s = 11 \text{ cm}; L_B = 171 \text{ cm}; h_2 = 23,5 \text{ cm}; h_1 = 2,5 \text{ cm}$

Pour obtenir les résultats expérimentaux, nous avons suivis les étapes suivantes :

Mesure de la hauteur géométrique s du seuil ;

Mesure de la longueur Lr du rouleau de surface ;

Mesure de la longueur LRF du rouleau de fond ;

Mesure de la hauteur conjuguée aval h₂ du ressaut ;

Mesure de la lame d'eau au-niveau du déversoir rectangulaire à paroi latéral;

Calcul du débit volume correspondant, par application de la relation (I.1) ;

Calcul du nombre de Froude F₁ de l'écoulement incident, par application de la relation :

$$F_{1} = \sqrt{\frac{Q^{2}}{gb^{2}h_{1}^{3}}};$$

II.2.3 Analyse des résultats expérimentaux

II.2.3.1 Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude F₁

La figure II.4 représente la variation du rapport Y_A des hauteurs conjuguées en fonction du nombre de Froude de l'écoulement incident.

Figure. II.4. Variation du rapport des hauteurs conjuguées Y_A en fonction du nombre de Froude F₁ pour les deux lits du canal composée. (Δ) points de mesures expérimentales en lit majeur; (◊) points de mesures expérimentales en lit mineur. (---) Courbes d'ajustements du ressaut contrôlé par seuil mince. (—) Courbes d'ajustements

Les mesures expérimentales que nous avons réalisées en laboratoire montrent clairement un décalage entre les valeurs de Y_A du ressaut forcé et celles de Y du ressaut contrôlé par seuil mince pour les mêmes nombres de Froude F dans les deux lits du canal composé.

La figure II.4 montre deux allures l'une au lit mineur et l'autre au lit majeur et que le rapport Y_A augmente progressivement avec l'augmentation du nombre de Froude. Ainsi, pour une valeur du nombre de Froude F_1 , le rapport Y_A au lit majeur est au-dessus de celui au lit mineur. L'ajustement des points de mesure expérimentale est de type linéaire. Telle que :

- Pour $h_0/h_2 \ge 1$: $Y_A = 1,11F_1 - 0,26$; $R^2 = 0,999$ (II.1) $3,64 < F_1 < 9,05$

- Pour $h_0/h_2 < 1$: $Y_A = 1,107 F_1 + 0,01$; $R^2 = 0,998$ (II.2) $4,84 < F_1 < 12,03$

Les valeurs expérimentales ayant servi au traçage des courbes $Y_A = f(F_1)$ pour les deux cas, sont regroupées dans le tableau II.1:

Tableau II.1. Valeurs expérimentales ayant servi au traçage des courbes $Y_A = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

h ₀ /h	$_2 \ge 1$	$h_0/h_2 < 1$			
Y _A	F ₁	YA	F ₁	Y _A	F ₁
3,775	3,6453286	5,375	4,8499922	8,3333333	7,6168893
4,325	4,0950702	5,6	5,0207284	8,4666667	7,8055765
4,2857143	4,1344247	5,775	5,1686327	8,84	7,8738798
4,9	4,514485	5,9	5,2680278	9,04	8,0569888
4,7	4,4987093	5,8571429	5,3143896	9,24	8,2414955
4,8	4,5619224	6,05	5,4182987	9,4	8,3807866
5,08	4,7919089	6,2	5,569972	9,6	8,6146607
5,2	4,9473147	6,2285714	5,6609141	9,84	8,8981273
5,2857143	5,0032162	6,325	5,7230346	10,04	9,1366752
5,8333333	5,4771168	6,4	5,8074389	10,24	9,3290223
5,85	5,4434806	6,5428571	5,9255541	10,6	9,4499158
5,8	5,5040756	6,8	6,1042066	10,4	9,5227006
6,3333333	5,8860943	6,9714286	6,254429	10,6	9,7666566
6,52	6,1641494	7	6,3400938	11	9,8156941
6,8	6,3754804	7,1428571	6,4362955	11,25	10,062106
7,12	6,675305	7,2571429	6,6198914	11,5	10,310546
7,6	7,1335671	7,3333333	6,6250158	11,8	10,560998
7,76	7,1998571	7,6	6,8414305	12,05	10,876868
8,4	7,8055765	7,7666667	6,9869898	12,4	11,131788
9,05	8,3807866	7,9666667	7,2072352	12,65	11,388669
9,9	9,0887975	8,1666667	7,4297474	12,9	11,712505
		8,48	7,5118986	13,3	12,039354

II.2.3.2. position relative du seuil

La figure II.5 représente la variation de la position relative du seuil λ s en fonction de nombre de Froude F₁. Il ressort que l'effet réducteur est perceptible dans le lit mineur que dans le lit majeur. Ainsi le ressaut forcé par seuil mince évoluent dans un bassin rectangulaire composé est plus court que celui contrôlé par seuil mince.

Figure. II.5. Variation de la position Ls/h₁ en fonction du nombre de Froude F₁ pour les deux lits du canal composé. (Δ) points de mesures expérimentales en lit majeur; (◊) points de mesures expérimentales en lit mineur. (---) Courbes d'ajustements du ressaut contrôlé par seuil mince. (---) Courbes d'ajustements

En outre, l'ajustement des valeurs expérimentales a montré que la relation $Ls/h_1 = f(F_1)$ est de la même forme pour les deux lits du canal. Celle-ci s'écrit comme suit :

- Pour
$$h_0/h_2 \ge l$$
: $Ls/h_1 = 7,929 F_1 - 20,34$ $R^2 = 0,981$ (II.3)

- Pour $h_0/h_2 < 1$: $Ls/h_1 = 7,922 F_1 - 15,90$ $R^2 = 0,991$ (II.4)

Les points de mesure expérimentale qui ont servi au traçage de la figure II.5 sont consignés dans le tableau II.2.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
F ₁	Ls/h ₁	F ₁	Ls/h ₁	F ₁	Ls/h ₁	
3,6453286	10,25	4,8499922	21,5	7,6168893	43,333333	
4,0950702	13,75	5,0207284	24	7,8055765	45	
4,1344247	11,428571	5,1686327	25,75	7,8738798	47,6	
4,514485	18,25	5,2680278	26,75	8,0569888	49,2	
4,4987093	13,333333	5,3143896	24,285714	8,2414955	50,8	
4,5619224	15,714286	5,4182987	28	8,3807866	52,4	
4,7919089	16,8	5,569972	29,5	8,6146607	54,4	
4,9473147	18,333333	5,6609141	27,142857	8,8981273	56	
5,0032162	20,285714	5,7230346	30,75	9,1366752	58	
5,4771168	23,333333	5,8074389	29,428571	9,3290223	60	
5,4434806	20	5,9255541	31,142857	9,4499158	56,5	
5,5040756	21,6	6,1042066	32,857143	9,5227006	61,6	
5,8860943	26,666667	6,254429	34,285714	9,7666566	64	
6,1641494	28,8	6,3400938	30	9,8156941	60	
6,3754804	27,5	6,4362955	36,571429	10,062106	63,5	

Tableau II.2. Valeurs expérimentales ayant servi au traçage des graphiques de $Ls/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

6,675305	34,4	6,6198914	38,571429	10,310546	65,5
7,1335671	35	6,6250158	34,333333	10,560998	67
7,1998571	40	6,8414305	37	10,876868	69,5
7,8055765	41,5	6,9869898	38,333333	11,131788	72
8,3807866	46	7,2072352	40	11,388669	74
9,0887975	52	7,4297474	41,666667	11,712505	76
		7,5118986	44,4	12,039354	78

Tableau II.2. (suite et fin) Valeurs expérimentales ayant servi au traçage des graphiques de $Ls/h_1 = f(F_1)$, pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

II.2.3.3. Longueur relative $\lambda_B = L_B/h_1$ du bassin

A partir des résultats présentés sur la figure II.6, nous pouvons observer qu'il ya un décalage entre les valeurs de λ_B du ressaut forcé et celles du ressaut contrôlé par seuil mince pour les mêmes nombre de Froude F₁ dans les deux lits du canal composé. De plus, la longueur relative du bassin est plus compacte dans le lit mineur que son homologue dans le lit majeur.

Figure. II.6. Variation du rapport L_{B}/h_{1} en fonction du nombre de Froude F_{1} pour les deux lits du canal composé. (Δ) points de mesures expérimentales en lit majeur; (\diamond) points de mesures expérimentales en lit mineur. (---) Courbes d'ajustements du ressaut contrôlé par seuil mince. (--) Courbes d'ajustements

L'analyse des résultats expérimentaux a également montré, que la fonction $L_B/h_1=f(F_1)$ est de type linéaire.

- Pour $h_0/h_2 \ge 1$ $\lambda_B = L_B/h_1 = 9,306 F_1 - 17,30$ $R^2 = 0,973$ (II.5)

• Pour
$$h_0/h_2 < 1$$
 $\lambda_B = L_B/h_1 = 9,371F_1 - 13,01$ $R^2 = 0,993$ (II.6)

Les résultats des essais qui nous ont permis de tracer la figure II.6 sont récapitulés dans le tableau II.3.

h₀/h	₂ >1	$h_0/h_2 < 1$			
F ₁	$\lambda_{\rm B}$	F ₁	λ _B	F ₁	λ _B
3,6453286	17	4,8499922	30	7,6168893	57,333333
4,0950702	21,25	5,0207284	32,5	7,8055765	59
4,1344247	19,428571	5,1686327	35	7,8738798	62,4
4,514485	25,5	5,2680278	36,25	8,0569888	64,4
4,4987093	21,666667	5,3143896	35,714286	8,2414955	66,4
4,5619224	24,857143	5,4182987	38,25	8,3807866	68,4
4,7919089	29,6	5,569972	40	8,6146607	70,4
4,9473147	27,666667	5,6609141	39,142857	8,8981273	72,4
5,0032162	30	5,7230346	42	9,1366752	74,4
5,4771168	33,333333	5,8074389	41,428571	9,3290223	76,4
5,4434806	29	5,9255541	42,857143	9,4499158	71,5
5,5040756	36,8	6,1042066	44,857143	9,5227006	77,6
5,8860943	38	6,254429	46,285714	9,7666566	80,4
6,1641494	42,8	6,3400938	43,333333	9,8156941	76
6,3754804	39	6,4362955	48,571429	10,062106	80
6,675305	48,8	6,6198914	50,571429	10,310546	83
7,1335671	48	6,6250158	47,333333	10,560998	85,5
7,1998571	54	6,8414305	50,666667	10,876868	88
7,8055765	53,5	6,9869898	52,333333	11,131788	91,5
8,3807866	59	7,2072352	54	11,388669	93,5
9,0887975	66,5	7,4297474	56	11,712505	96
		7,5118986	58	12,039354	98

Tableau II.3. Valeurs expérimentales ayant servi au traçage des graphiques de $\lambda_{\rm B} = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

II.2.3.4. Hauteur relatif du seuil

La représentation graphique des points expérimentaux dans la figure II.7, montre la variation du rapport du seuil relatif $S=s/h_1$ du ressaut hydraulique en fonction du nombre de Froude F_1 , pour les cinq ouvertures dans la section composée du lit mineur et celui majeur.

Figure. II.7. Variation du rapport s/h_1 en fonction du nombre de Froude F_1 pour les deux lits du canal composé. (+) points de mesures expérimentales en lit mineur; Pour $h_0/h_2 < 1$. (\odot) $h_1=2cm$; (\square) $h_1=2,5cm$; (Δ) $h_1=3cm$; (\checkmark) $h_1=4cm$. (--) Courbes d'ajustements du ressaut contrôlé par seuil mince. (\longrightarrow) Courbes d'ajustements du ressaut forcé par seuil mince.

En premier lieu on constate que l'augmentation du seuil relatif S entraîne celle du nombre de Froude F_1 et que l'influence de la hauteur amont h_1 est perceptible dans la section composée. La figure ci-dessus montre que les valeurs de rapport S du ressaut forcé sont au dessous de son homologue du ressaut contrôlé par seuil mince.

En second lieu la figure II.7 montre que l'ajustement des points de mesure expérimentale dans le lit mineur est de type linéaire. Ainsi la figure indique cinq allures, correspondant chacune à une valeur bien déterminée de y_1 pour le lit majeur. Les traits continus représentent l'ajustement des points de mesures par la méthode des moindres carrés du ressaut contrôlé dans le canal rectangulaire de forme composée.

- Pour
$$h_0/h_2 \ge 1$$
 $s/h_1 = 0,543 F_1 - 1,662$ $R^2 = 0,962$ (II.7)
- Pour $h_0/h_2 < 1$

Les figures dont les ajustements sont montrées dans la page suivante, pour les différentes ouvertures h1 en lit majeur.

Figure. II.8. (a, b, c, d, e). Variation du rapport $S = s/h_1$ de la hauteur relative du seuil du ressaut forcé en fonction de nombre de Froude respectivement pour $h_1/B = (0,03; 0,041; 0,05; 0,058; 0,066)$. (o) points expérimentaux. (—) courbe d'ajustement.

Les figures II.8 (a, b, c, d, e), montrent que l'ajustement des mesures expérimentales de la hauteur relative du seuil s/h₁ en fonction de nombre de Froude F₁ suit une loi de type linéaire de la forme s/h₁= a (F₁) + b.

Les données ayant servi au traçage des figures II.7 et II.8 (a, b, c, d, e) sont groupées au tableau II.4.

h ₀ /h	$2 \ge 1$	$h_0/h_2 < 1$			
F ₁	s/h ₁	F ₁	s/h ₁	F ₁	s/h ₁
3,6453286	0,5	4,8499922	1,25	7,8055765	4,3333333
4,0950702	0,75	5,0207284	1,5	7,8738798	3,2
4,1344247	0,5714286	5,1686327	1,75	8,0569888	3,6
4,514485	1	5,2680278	2	8,2414955	4
4,4987093	0,6666667	5,4182987	2,25	8,3807866	4,4
4,5619224	0,8571429	5,569972	2,5	8,6146607	4,8
4,7919089	0,8	5,6609141	1,7142857	8,8981273	5,2
4,9473147	1	5,7230346	2,75	9,1366752	5,6
5,0032162	1,1428571	5,8074389	2	9,3290223	6
5,4771168	1,3333333	5,9255541	2,2857143	9,4499158	4
5,4434806	1	6,1042066	2,5714286	9,5227006	6,4
5,5040756	1,2	6,254429	2,8571429	9,7666566	6,8
5,8860943	1,6666667	6,3400938	2	9,8156941	4,5
6,1641494	1,6	6,4362955	3,1428571	10,062106	5
6,3754804	1,5	6,6198914	3,4285714	10,310546	5,5
6,675305	2	6,6250158	2,3333333	10,560998	6
7,1335671	2	6,8414305	2,6666667	10,876868	6,5
7,1998571	2,4	6,9869898	3	11,131788	7
7,8055765	2,5	7,2072352	3,3333333	11,388669	7,5
8,3807866	3	7,4297474	3,6666667	11,712505	8
9,0887975	3,5	7,5118986	2,8	12,039354	8,5
		7,6168893	4		

Tableau II.4. Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$ pour $h_2/h_2 > 1$ et $h_2/h_2 < 1$

Le tableau II.5 regroupe les différents coefficients des droites d'ajustement de la relation expérimentale liant le rapport $S = s/h_1$ des hauteurs relatives du seuil au nombre de Froude F_1 , pour différentes hauteurs h_1 des ouvertures.

h ₁ /B	a	b	Équations des droites	Coefficients de corrélation R ²
0,033	1,790	-12,97	S= 1,790 F ₁ - 12,97	0,998
0,041	1,826	-11,02	S = 1,826 F ₁ - 11,02	0,995
0,050	1,622	-8,36	$S = 1,622 F_1 - 8,36$	0,996
0,058	1,785	-8,345	$S = 1,785 F_1 - 8,345$	0,996
0,066	1,759	-7,305	$S = 1,759 F_1 - 7,305$	0,997

 Tableau II.5. Coefficients des relations expérimentales de type linéaire, issues de l'ajustement de la relation liant s/h1 au nombre de Froude F1 pour différentes hauteurs h1 des ouvertures

Le tableau (II.5) montre que les valeurs des paramètres 'a' sont presque égaux, et leur moyenne arithmétique est **a= 1,7564**, tandis que l'ajustement statistique des couples de valeurs (b, h_1/B) par la méthode des moindres carrés donne une relation de type logarithmique d'équation :

$$b=8,239\ln(h_1/B)+15,39$$
 avec $R^2=0,949$

Celle-ci est illustrée à la figure II.9.

Figure II.9 : Variation du paramètre 'b' en fonction de h_1/B .

En effet, en remplaçant les coefficients a et b par leurs expressions dans la relation $s/h_1 = aF_1 + b$, l'équation liant le rapport des hauteurs relatif du seuil s/h_1 au nombre de Froude F_1 et à la hauteur relative amont yıdevient :

$$s/h_1 = 1,7564 F_1 + 8,239 \ln(h_1/B) + 15,39$$
 (II.8)
 $0,033 < y_1 < 0,066.$

La figure (II.10) indique que la relation $S = f(F_1, y_1)$ ajuste avec une bonne corrélation les points de mesures expérimentales. Ces derniers tournent en majorités autour de la première bissectrice, ce qui fiabilise la relation globale obtenue.

Figure II.10 : Variation de la hauteur relative s/h_1 du seuil en fonction de la relation $f(F_1, h_1/B)$. (o) Points expérimentaux. (—) Première bissectrice d'équation : $s/h_1 = f(F_1, h_1/B)$.

Parallèlement à ce que nous avons fait dans le ressaut contrôlé par seuil, on peut déduire une relation empirique liant la hauteur relative du seuil S et le rapport des hauteurs conjuguées Y_A du ressaut forcé par seuil dans chaque section du canal composé.

La figure ci-dessous résume la variation de Y_A en fonction de S dans les deux sections du canal rectangulaire de forme composée.

Figure II.11: Variation du rapport Y_A des hauteurs conjuguées du ressaut forcé en fonction de la hauteur relative $S = s/h_1$ du seuil. (+) points de mesures expérimentales en lit mineur; Pour $h_0/h_2 < 1$. (\odot) $h_1=2cm$; (\bigstar) $h_1=2cm$; (\bigstar) $h_1=3,5cm$; (\bigtriangleup) $h_1=4cm$. (\longrightarrow) Courbe d'ajustement.

Au regard de cette figure on peut conclure que :

Pour $h_0/h_2 \ge 1$

Toutes les mesures se combinent pour former un nuage de points unique. L'ajustement des valeurs expérimentales donne une loi de type linéaire.

$$Y_A = 1,973 \, s/h_1 + 3,245;$$
 $R^2 = 0,966$ (II.9)

- Pour $h_0/h_2 < 1$

La figure représente cinq nuages de points. Chaque nuage correspond à une ouverture h_1 bien déterminée. Pour la même hauteur relative du seuil S, Y_A augment inversement à la hauteur h_1 .

Figure. II.12. (a, b, c, d, e). Variation du rapport Y_A de la hauteur conjuguée du ressaut forcé en fonction de la hauteur relative du seuil S, respectivement pour h₁/B= (0,03 ; 0,041 ; 0,05 ; 0,058 ; 0,066).
 (o) points expérimentaux. (--) courbe d'équation.

Les figures II.12. (a, b, c, d, e), montrent en effet que les points expérimentaux obtenus suivent, dans les cinq ouvertures h_1 , la variation d'une courbe unique de type puissance. Les points de mesures expérimentales qui ont servi au traçage des courbes des figures II.11 et II.12. (a, b, c, d, e) sont présentés dans le tableau II.6.

h ₀ /h	₂ ≥1		h ₀ /h	2<1	
YA	s/h ₁	Y _A	s/h ₁	Y _A	s/h ₁
3,775	0,5	5,375	1,25	8,3333333	4
4,325	0,75	5,6	1,5	8,4666667	4,3333333
4,2857143	0,5714286	5,775	1,75	8,84	3,2
4,9	1	5,9	2	9,04	3,6
4,7	0,6666667	5,8571429	1,4285714	9,24	4
4,8	0,8571429	6,05	2,25	9,4	4,4
5,08	0,8	6,2	2,5	9,6	4,8
5,2	1	6,2285714	1,7142857	9,84	5,2
5,2857143	1,1428571	6,325	2,75	10,04	5,6
5,8333333	1,3333333	6,4	2	10,24	6
5,85	1	6,5428571	2,2857143	10,6	4
5,8	1,2	6,8	2,5714286	10,4	6,4
6,3333333	1,6666667	6,9714286	2,8571429	10,6	6,8
6,52	1,6	7	2	11	4,5
6,8	1,5	7,1428571	3,1428571	11,25	5
7,12	2	7,2571429	3,4285714	11,5	5,5
7,6	2	7,3333333	2,3333333	11,8	6
7,76	2,4	7,6	2,6666667	12,05	6,5
8,4	2,5	7,7666667	3	12,4	7
9,05	3	7,9666667	3,3333333	12,65	7,5
9,9	3,5	8,1666667	3,6666667	12,9	8
		8,48	2,8	13,3	8,5

Tableau II.6. Mesures expérimentales ayant servi au traçage des graphique de $Y_A = f(s/h_1)$ pour $h_d/h_2 \ge l$ et $h_d/h_2 < l$.

Le tableau II.7 regroupe les équations des droites d'ajustement, pour différentes hauteurs h_1 des ouvertures.

Tableau II.7. Coefficients des relations expérimentales, issues de l'ajustement de la relation liant Y_A à la hauteur relative S, pour différentes hauteurs h₁ des ouvertures.

h_1/B	a	b	Équations des droites	Coefficients de corrélation R ²
0,033	7,057	0,29	$Y = 7,057 \text{ s/h}_1^{0,29}$	0,992
0,041	6,599	0,244	$Y = 6,599 \text{ s/h}_1^{-0,244}$	0,994
0,05	5,954	0,242	$Y = 5,954 \text{ s/h}_1^{-0,242}$	0,996
0,058	5,412	0,24	$Y = 5,412 \text{ s/h}_1^{0,24}$	0,993
0,066	5,144	0,202	$Y = 5,144 \text{ s/h}_1^{-0,202}$	0,998

Au vu de ces résultats, il semble d'une façon claire que les coefficients « a » et « b » diminuent progressivement avec la progression du paramètre h_1/B . L'ajustement statistique des couples des valeurs (a, h_1/B) par la méthode des moindres carrés donne une relation de

type logarithmique d'équation : $a = -2,88.\ln(h_1/B) - 2,712$ avec $R^2 = 0,99$. Celle-ci est illustrée par la figure ci-dessous

Figure II.13: Variation du paramètre 'a' en fonction de h_1/B .

Et l'ajustement des couples des valeurs (b, h_1/B) par la méthode des moindres carrés donne une relation aussi de type linéaire d'équation : $b = -2,484.\ln(h_1/B)+0,372$ avec $R^2 = 0,944$. Comme il est indiqué sur la figure II.14.

Figure II.14: Variation du paramètre 'b' en fonction de h_1/B .

En remplaçant les coefficients a et b par leurs expressions dans la relation $Y_A = aF_1^{(b)}$, l'équation liant le rapport des hauteurs conjuguées Y_A à la hauteur relative du seuil s/h₁ et à la hauteur relative amont y₁ devient :

$$Y_{A} = (-2,88\ln(h_{1}/B) - 2,712) \cdot (s/h_{1})^{(-2,484(h_{1}/B) + 0,372)}$$
(II.10)
0,033 < y_{1} < 0,066.

La figure (II.15) indique que la relation trouvée $Y_A = f(h_1/B, s/h_1)$ ajuste avec une excellente corrélation les points de mesures expérimentales. Ces points suivent en totalité la première bissectrice, ce qui par conséquent explique la fiabilité des mesures obtenues au laboratoire.

Figure II.15: Variation de la hauteur conjuguée Y_A du ressaut en fonction de la relation $f(h_1/B, s/h_1)$. (o) Points expérimentaux. (—) Première bissectrice d'équation : $Y_A = f(h_1/B, s/h_1)$.

II.2.3.5. Rendement du ressaut hydraulique

Rappelons que le rendement η du ressaut hydraulique est défini par :

 $\eta = \Delta H/H_1$ Avec : $\Delta H = H_1-H_2$

Avec H_1 la charge amont, H_2 la charge aval et ΔH la différence de charge.

L'expression du rendement s'écrit dans ce cas :

$$\eta = 1 - \frac{Y_A + \frac{F_1^2}{2\left[Y_A / \beta - (1 / \beta - 1) / \tau\right]^2}}{1 + F_1^2 / 2}$$

La variation du rendement en fonction du nombre de Froude est présentée sur la figure II.16.

Figure II.16: Variation du rendement η en fonction du nombre de Froude F₁.
 (Δ) points de mesures expérimentales en lit majeur; (ο) points de mesures expérimentales en lit mineur. (---)
 Courbes d'ajustements du ressaut contrôlé par seuil mince. (---)

A partir de cette figure, les points de mesure du ressaut contrôlé par seuil mince sont légèrement au dessous de ceux forcé type A. Ainsi dans le canal composé le décalage entre le lit mineur et le lit majeur n'est pas perceptible.

Le tableau II.8 accumule les valeurs du rendement η pour les différents nombres de Froude correspondants.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
η	F ₁	η	\mathbf{F}_1	η	\mathbf{F}_1	
0,44516964	3,6453286	0,55423501	4,8499922	0,7151988	7,6168893	
0,49138499	4,0950702	0,56831545	5,0207284	0,72425559	7,8055765	
0,50233907	4,1344247	0,58042862	5,1686327	0,71498783	7,8738798	
0,52419287	4,514485	0,58765709	5,2680278	0,7219614	8,0569888	
0,53610936	4,4987093	0,58790961	5,3143896	0,72863445	8,2414955	
0,53955554	4,5619224	0,60003815	5,4182987	0,73321505	8,3807866	
0,5573423	4,7919089	0,6118202	5,569972	0,74212908	8,6146607	
0,57300168	4,9473147	0,61623579	5,6609141	0,75222985	8,8981273	
0,57578719	5,0032162	0,62430385	5,7230346	0,76018971	9,1366752	
0,60785214	5,4771168	0,62609027	5,8074389	0,76545542	9,3290223	
0,60274234	5,4434806	0,63333056	5,9255541	0,76077626	9,4499158	
0,61292401	5,5040756	0,64181172	6,1042066	0,77134143	9,5227006	
0,63078151	5,8860943	0,65033211	6,254429	0,7783896	9,7666566	
0,65162604	6,1641494	0,65201435	6,3400938	0,77050739	9,8156941	
0,66048905	6,3754804	0,66149295	6,4362955	0,77688704	10,062106	

Tableau II.8: Mesures expérimentales ayant servi au traçage de la figure II.16.

1 4010444 11							
0,67527738	6,675305	0,674313	6,6198914	0,78297299	10,310546		
0,6959407	7,1335671	0,66766758	6,6250158	0,78799172	10,560998		
0,69573793	7,1998571	0,67785636	6,8414305	0,79590761	10,876868		
0,71930219	7,8055765	0,68466339	6,9869898	0,79971787	11,131788		
0,73756631	8,3807866	0,69600913	7,2072352	0,80484282	11,388669		
0,75601285	9,0887975	0,70671873	7,4297474	0,81181366	11,712505		
		0,69889378	7,5118986	0,81649037	12,039354		

Tableau II.8. (suite et fin) Mesures expérimentales ayant servi au traçage de la figure II.16

II.3. RESSAUT HYDRAULIQUE FORCE PAR SEUIL EPAIS EN CANAL RECTANGULAIRE DE FORME COMPOSÉE

II.3.1. DESCRIPTION DU MODELE

II.3.1.1. Description du canal

Dans le même dispositif expérimental, le premier seuil à parois mince est remplacé par un seuil à paroi épaisse. *Figure II.17*.

Figure II.17: Schéma simplifié du canal de mesure de section rectangulaire composé, ayant servi à l'expérimentation.

II.3.2. Résultats expérimentaux

II.3.2.1. Procédure expérimentale

L'étude expérimentale s'est intéressée au ressaut hydraulique provoqué par seuil épais, dans un canal rectangulaire de section composée, L'expérimentation a été menée sous cinq hauteurs initiales : $h_1 (mm) = 20$; 25 ; 30 ; 35 ; et 40. Une large gamme des nombres de *Froude* incident a été ainsi obtenue : $3 < F_1 < 12$.

La formation du ressaut est conditionnée par la mise en place d'un seuil à parois épaisse au travers de l'écoulement. Pour cela 16 seuil épais ont été confectionnées et testées, de hauteur géométrique allant de 3,4 à 20,3 cm et d'une longueur $L_0 = 20$ cm.

Un échantillon d'une cinquantaine de points de mesure expérimentaux, pour chaque caractéristique, a permis d'obtenir des résultats assez importants.

Les photos II.5 et II.6 illustrent deux configurations typiques de ressaut forcé par seuil à paroi épaisse en canal rectangulaire de section composée, pour la même hauteur initiale h_1 = 25 mm et à débit volume croissant.

Figure II.18 : Schéma simplifié d'un ressaut hydraulique forcé par seuil épais évoluant dans un canal rectangulaire composé.

Photo II.5: Photographie d'un ressaut hydraulique forcé par seuil épais $F_1 = 5, 99; s = 4,5 \text{ cm}; Ls = 58 \text{ cm}; h_2 = 15,7 \text{ cm}; h_1 = 2,5 \text{ cm}$

Photo II.6 : Photographie d'un ressaut hydraulique forcé par seuil épais $F_1 = 8, 38; s = 10,9 \text{ cm}; Ls = 115 \text{ cm}; h_2 = 23,4 \text{ cm}; h_1 = 2,5 \text{ cm}$

II.3.3. Analyse des résultats expérimentaux

II.3.3.1.Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude F₁

La présente graphique de la variation du rapport Y_A des hauteurs conjuguées en fonction du nombre de Froude de l'écoulement incident a abouti à une courbe unique pour les deux lits du canal composé, comme il est indiqué sur la figure II.19.

Figure. II.19. Variation du rapport des hauteurs conjuguées Y_A en fonction du nombre de Froude F₁ pour les deux lits du canal composée. (o) points de mesures expérimentales en lit majeur; (Δ) points de mesures expérimentales en lit mineur. (---) Courbes d'ajustements du ressaut contrôlé par seuil épais. (---) Courbes d'ajustements

A partir des résultats obtenus, nous avons pu observer que le rapport Y_A des hauteurs conjuguées du ressaut forcé est moindre en lit mineur que celui en lit majeur. Ainsi la

réduction du rapport Y_A est remarquable au ressaut forcé qu'au ressaut contrôlé dans les deux lits du canal composé.

Un ajustement linéaire a permis d'écrire :

- Pour $h_0/h_2 \ge 1$: $Y_A = 1,022 F_1 + 0,214$ $R^2 = 0,996$ (II.11) $3,95 < F_1 < 8,38$ - Pour $h_0/h_2 < 1$: $Y_A = 1,081 F_1 + 0,09$ $R^2 = 0,998$ (II.12) $4,75 < F_1 < 11,64$

Les valeurs expérimentales ayant servi au traçage des courbes $Y_A = f(F_1)$ pour les deux lits, sont récapitulés dans le tableau II.9:

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
Y _A	F ₁	Y _A	F ₁	Y _A	F ₁	
4,25	3,9583739	5,225	4,753379	8,0333333	7,3183057	
4,6285714	4,3464785	5,45	4,9718113	8,3333333	7,6546042	
4,75	4,373226	5,675	5,1687007	8,6	7,6922807	
5,0333333	4,753379	5,825	5,2930446	8,84	7,9653637	
5,1428571	4,7809348	5,925	5,41837	8,6	7,9959018	
5,7142857	5,2289733	6,05	5,5446692	9,04	8,1491753	
5,6	5,2631123	6,0571429	5,6027283	9,28	8,3808969	
5,5666667	5,2764086	6,2	5,7231099	9,48	8,6147741	
6,1666667	5,8173281	6,3428571	5,8369701	9,84	9,0889171	
6,28	5,9968816	6,5714286	6,0147384	10,05	9,0889171	
6,55	6,3755643	6,7142857	6,1342343	10,08	9,3774409	
7,04	6,6753928	6,7666667	6,1992877	10,28	9,5714531	
7,3	7,0236314	6,8857143	6,3149411	10,6	9,632353	
7,68	7,1999518	7,0571429	6,4973883	10,9	9,9387764	
8,15	7,6922807	7,2666667	6,625103	11,1	10,12416	
8,8	8,3808969	7,5333333	6,8415205	11,35	10,373108	
		7,7	7,0236314	11,75	10,750289	
		7,8666667	7,133661	12,05	11,131934	
				12.45	11.647649	

Tableau II.9. Valeurs expérimentales ayant servi au traçage des courbes $Y_A = f(F_1)$ pour $h_d/h_2 \ge l$ et $h_d/h_2 < l$.

II.3.3.2. position relative du seuil épais

La figure II.20 représente la variation de la position relative du seuil λ s en fonction du nombre de Froude F₁ de l'écoulement incident.

Figure. II.20. Variation du rapport Ls/h_1 en fonction du nombre de Froude F_1 pour les deux lits du canal composé. (o) points de mesures expérimentales en lit majeur; (Δ) points de mesures expérimentales en lit mineur. (---) Courbes d'ajustements du ressaut contrôlé par seuil épais. (---) Courbes d'ajustements

Au vu des résultats que nous avons obtenus, il semble clairement que la position relative λ s du ressaut forcé est plus compacte dans le lit mineur que dans le lit majeur, ainsi un décalage et très claire entre les valeurs de la longueur relative du rouleau de surface du ressaut forcé par seuil épais et celles du ressaut contrôlé pour le même nombre de Froude F₁. De plus un ajustement de type linéaire est possible pour les deux lits du canal composé.

- Pour
$$h_0/h_2 \ge 1$$
: $Ls/h_1 = 7,655 F_1 - 14,21$ $R^2 = 0,986$ (II.13)

- Pour $h_0/h_2 < 1$: Ls/ $h_1 = 7,574 F_1 - 8,566$ R² = 0,990 (II.14)

Les points de mesure expérimentale qui ont permis le traçage de la figure II.20 sont enregistrés dans le tableau II.10.

Tableau II.10. Valeurs expérimentales ayant servi au traçage des graphiques de $Ls/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
F ₁	Ls/h ₁	$\mathbf{F_1}$	Ls/h ₁	$\mathbf{F_1}$	Ls/h ₁	
3,9583739	10,5	4,753379	17,75	7,3183057	40	
4,3464785	12,285714	4,9718113	20,25	7,6546042	43,333333	
4,373226	13,5	5,1687007	22,5	7,6922807	37,6	
4,753379	15	5,2930446	24,25	7,9653637	41,6	
4,7809348	15,142857	5,41837	25,5	7,9959018	46,666667	
5,2289733	19,714286	5,5446692	26,75	8,1491753	44,8	
5,2631123	19,6	5,6027283	22,571429	8,3808969	46	
5,2764086	18	5,7231099	28	8,6147741	48,8	
5,8173281	23,333333	5,8369701	25,714286	9,0889171	52,4	
5,9968816	23,2	6,0147384	28	9,0889171	49	

6,3755643	21,5	6,1342343	29,714286	9,3774409	55,2
6,6753928	28,8	6,1992877	26,666667	9,5714531	57,2
7,0236314	28	6,3149411	31,142857	9,632353	56
7,1999518	33,2	6,4973883	32,571429	9,9387764	58,5
7,6922807	34,5	6,625103	30	10,12416	60
8,3808969	41	6,8415205	34	10,373108	62
		7,0236314	36	10,750289	65
		7,133661	38	11,131934	67,5
				11,647649	70,5

Tableau II.10. (suite et fin) Valeurs expérimentales ayant servi au traçage des graphiques de $Ls/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

II.2.2.3. hauteur relatif du seuil

Sur la figure II.21 sont représentées les valeurs expérimentales obtenues de la hauteur relative du seuil en fonction du nombre de Froude F_1 et la courbe expérimentale en trait pointillé exprime la variation de la hauteur relative du seuil du ressaut contrôlé par seuil épais.

Figure. II.21. Variation du rapport s/h₁ en fonction du nombre de Froude F₁ pour les deux lits du canal composé. (+) points de mesures expérimentales en lit mineur; Pour $h_0/h_2 < 1$. (o) $h_1=2cm$; (\square) $h_1=2,5cm$; (\triangle) $h_1=3,5cm$; (\checkmark) $h_1=4cm$. (--) Courbes d'ajustements du ressaut contrôlé par seuil épais. (\longrightarrow) Courbes d'ajustements.

Les valeurs expérimentales que nous avons effectuées ont montrées, une autre fois, un décalage entre les valeurs de la hauteur relative du seuil forcé et celle contrôlé par seuil épais, pour les même nombre de Froude F_1 dans les deux lit du canal composé.

La figure montre clairement que tous les points se rassemblent pour construire un seul nuage de points en lit mineur et que l'augmentation du nombre de Froude F_1 entraîne celle du rapport de la hauteur du seuil S. Un ajustement linéaire a permis d'écrire:

$$s/h_1 = 0,522 F_1 - 1,268$$
 R² = 0,984 (II.15)
3,95 < F_1 < 8,38

Tandis que l'influence de la hauteur amont h_1 est très perceptible dans le lit majeur, L'analyse des points de mesures expérimentales, montre que pour chaque valeur de y_1 , un ajustement de type linéaire est possible de la forme : s/h_1 = a F_1 +b.

Figure. II.22. Variation du rapport s/h₁ en fonction du nombre de Froude F₁ pour le lit majeur du canal composé. (\circ) h₁=2cm ; (\square) h₁=2,5cm ; (Δ) h₁=3cm; (\diamond) h₁=3,5cm; (\star) h₁=4cm. (-) Courbes d'ajustements.

La figure ci-dessus montre que les mesures expérimentales présentent cinq allures différentes, pour différentes hauteurs amont h_1 . En outre, l'augmentation de nombre de Froude F_1 entraîne l'augmentation de la hauteur relative S du seuil. On remarque que pour la même valeur du seuil relative, la valeur de nombre de Froude F_1 augmente avec la diminution de h_1 . Les résultats obtenus de l'ajustement sont mentionnées dans le tableau ci-dessous.

Tableau II.11 Coefficients des relations expérimentales, issues de l'ajustement de la relation liant s/h_1 au nombre de Froude F_1 , pour différentes hauteurs h_1 des ouvertures.

h ₁ /B	a	b	Équations des droites	Coefficients de corrélation R ²
0,033	1,754	- 12,18	s/h ₁ = 1,754 F ₁ - 12,18	0,981
0,041	1,712	- 9,976	s/h ₁ = 1,712 F ₁ - 9,976	0,997
0,05	1,688	- 8,423	s/h ₁ = 1,688 F ₁ - 8,423	0,987
0,058	1,788	- 8,155	s/h ₁ = 1,788 F ₁ - 8,155	0,996
0,066	1,773	- 7,115	s/h ₁ = 1,773 F ₁ - 7,115	0,993

Le tableau II.11 montre clairement que les valeurs des paramètres a sont presque égaux et leur moyen arithmétique est a=1,743. Cependant les valeurs du coefficient b augmentent progressivement avec l'augmentation de la hauteur relative amont y₁. L'ajustement statistique des couples de valeurs (b, y₁) par la méthode des moindres carrés donne une relation de type logarithmique : $b = 7,01.\ln(h_1/B)+12,09$; R² = 0,963.

Celle- ci est schématisée par la figure ci-dessous

Figure II.23 : Variation du paramètre 'b' en fonction de h_1/B .

En remplaçant les paramètres (a) et (b) par leurs expressions respectives on obtient la relation générale suivante :

$$s/h_1 = 1,743F_1 + 7,01.\ln(h_1/B) + 12,09$$
 (II.16)

$$4,75 \le F_1 \le 11,64$$
 et $0,033 \le h_1/B \le 0,066$

Les données ayant servi au traçage des figures II.21 et II.22 sont groupées au tableau II.12.

Tableau II.12. Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$				
s/h ₁	F ₁	s/h ₁	F ₁	s/h ₁	\mathbf{F}_1	
0,85	3,9583739	1,375	4,753379	4,0333333	7,3183057	
0,9714286	4,3464785	1,375	4,9718113	4,6333333	7,6546042	
1,125	4,373226	2	5,1687007	3,2	7,6922807	
1,1333333	4,753379	2,3	5,2930446	3,6	7,9653637	
1,2857143	4,7809348	2,525	5,41837	5	7,9959018	
1,5428571	5,2289733	2,725	5,5446692	4,04	8,1491753	
1,36	5,2631123	1,8571429	5,6027283	4,36	8,3808969	
1,5	5,2764086	3,025	5,7231099	4,84	8,6147741	
1,8	5,8173281	2,2857143	5,8369701	5,56	9,0889171	
1,8	5,9968816	2,5714286	6,0147384	4	9,0889171	
2,16	6,6753928	2,8857143	6,1342343	6	9,3774409	

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$			
s/h ₁	F ₁	s/h ₁	F ₁	s/h ₁	F ₁
2,25	7,0236314	2,1666667	6,1992877	6,48	9,5714531
2,6	7,1999518	3,1142857	6,3149411	4,5	9,632353
2,7	7,6922807	3,4571429	6,4973883	5,05	9,9387764
3,25	8,3808969	2,6666667	6,625103	5,45	10,12416
		3	6,8415205	6,05	10,373108
		3,3666667	7,0236314	6,95	10,750289
		3,6333333	7,133661	7,5	11,131934
				8,1	11,647649

Tableau II.12. (suite et fin) Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$ pour $h/h_2 \ge 1$ et $h/h_2 < 1$.

La figure (II.24) montre également que la relation trouvée $s/h_1 = f(F_1, y_1)$ ajuste avec une très bonne corrélation les points de mesures. Ces points suivent en totalité la première bissectrice, ce qui justifie la fiabilité de la relation trouvée.

Figure II.24 : Variation de la hauteur relative s/h_1 du seuil en fonction de la relation $f(F_1, h_1/B)$. (o) Points expérimentaux. (—) Première bissectrice d'équation : $s/h_1 = f(F_1, h_1/B)$.

L'expérimentation a également montré, qu'un ajustement est possible entre la position relative λ s du seuil et la hauteur relative S de celle-ci. Les résultats sont indiqués sur la figure II.25.

Figure II.25: Variation de la position relative du seuil λs en fonction de sa hauteur relative s/h_1 . (+) points de mesures expérimentales en lit mineur; Pour $h_0/h_2 < 1$. (o) $h_1=2cm$; (\star) $h_1=2,5cm$; (\diamond) $h_1=3cm$; (\square) $h_1=3,5cm$; (\triangle) $h_1=4cm$. (\longrightarrow) Courbe d'ajustement.

La représentation graphique de la relation $Ls/h_1 = f(S)$ dans le lit mineur a abouti à une courbe unique, comme l'indique la figure II.25. Un ajustement linéaire a permis d'écrire:

$$Ls/h_1 = 12,78(s/h_1) - 0,058$$
 R² = 0,989 (II.17)
3,95 < F₁ < 8,38

Tandis que dans le lit majeur, cinq allures distinctes chacune correspond à une hauteur h_1 bien déterminée. Cela indique l'effet de ce dernier. Comme le montre la figure II.26.

Figure II.26: Variation de la position relative du seuil λs en fonction de sa hauteur relative s/h₁, Dans le lit majeur. (o) $h_1=2cm$; (\bigstar) $h_1=2,5cm$; (\diamondsuit) $h_1=3cm$; (\square) $h_1=3,5cm$; (\triangle) $h_1=4cm$. (—) Courbe d'ajustement.

Un ajustement de type logarithmique est possible pour chaque valeur de y_1 , de la forme : $s/h_1=a Ln(s/h_1) +b$. le tableau ci-dessous résume les résultats obtenus de l'ajustement et les valeurs des coefficients a et b.

h ₁ /B	a	b	Équations des droites	Coefficients de corrélation R ²
0,033	26,84	13,91	$Ls/h_1 = 26,84 Ln(s/h_1) + 13,91$	0,968
0,041	26,98	6,578	$Ls/h_1 = 26,98 Ln(s/h_1) + 6,578$	0,996
0,05	23,48	7,783	$Ls/h_1 = 23,48 Ln(s/h_1) + 7,783$	0,989
0,058	16,36	12,39	$Ls/h_1 = 16,36 Ln(s/h_1) + 12,39$	0,998
0,066	12,80	13,75	$Ls/h_1 = 12,80 Ln(s/h_1) + 13,75$	0,997

Tableau II.13. Coefficients des relations expérimentales, issues de l'ajustement de la relation liant λs à la hauteur relative S, pour différentes hauteurs h_1 des ouvertures.

Au vue des résultats présenté dans le tableau ci-dessus, les valeurs des paramètres b sont approximativement égales et leur moyen arithmétique est **b=10,8822**. Tandis que, les valeurs du coefficient a diminué progressivement avec l'augmentation de la hauteur relative amont y_1 . Un ajustement de type linéaire est possible des couples de valeurs (a, y_1) :

 $a = -465, 5(h_1/B) + 44, 38$; $R^2 = 0.908$.

Comme il est présenté sur la figure II.27.

Figure II.27: Variation du paramètre 'a' en fonction de h_1/B .

En remplaçant les paramètres (a) et (b) par leurs expressions respectives on obtient la relation générale suivante :

$$Ls/h_{1} = (-465, 5(h_{1}/B) + 44, 38) \cdot Ln(s/h_{1}) + 10,8822$$
(II.18)
$$4,75 \le F_{1} \le 11,64 \text{ et } 0,033 \le h_{1}/B \le 0,066$$

La figure (II.28) montre que la relation $\lambda s = f(s/h_1, h_1/B)$ ajuste avec une très bonne corrélation les points de mesures expérimentales. Ces derniers tournent en majorité autour de la première bissectrice ce qui justifie la fiabilité de la relation globale obtenue.

Figure II.28 : Variation de la position relative Ls/h_1 du seuil en fonction de la relation $f(s/h_1, h_1/B)$. (*o*) Points expérimentaux. (—) Première bissectrice d'équation : $Ls/h_1 = f(s/h_1, h_1/B)$.

Les données ayant servi au traçage des figures II.25 et II.26 sont réunies au tableau II.14.

Tableau II.14.	Valeurs expérimentales ayant servi au traçage des courbes Ls/h ₁ = f(s/h ₁)
	<i>pour</i> $h_0/h_2 \ge l$ <i>et</i> $h_0/h_2 < l$.	

$h_0/h_2 \ge 1$		$h_0/h_2 < 1$			
Ls/h ₁	s/h ₁	Ls/h ₁	s/h ₁	Ls/h ₁	s/h ₁
10,5	0,85	17,75	1,375	40	4,0333333
12,285714	0,9714286	20,25	1,375	43,333333	4,6333333
13,5	1,125	22,5	2	37,6	3,2
15	1,1333333	24,25	2,3	41,6	3,6
15,142857	1,2857143	25,5	2,525	46,666667	5
19,714286	1,5428571	26,75	2,725	44,8	4,04
19,6	1,36	22,571429	1,8571429	46	4,36
18	1,5	28	3,025	48,8	4,84
23,333333	1,8	25,714286	2,2857143	52,4	5,56
23,2	1,8	28	2,5714286	49	4
21,5	1,7	29,714286	2,8857143	55,2	6
28,8	2,16	26,666667	2,1666667	57,2	6,48
28	2,25	31,142857	3,1142857	56	4,5
33,2	2,6	32,571429	3,4571429	58,5	5,05
34,5	2,7	30	2,6666667	60	5,45
41	3,25	34	3	62	6,05
		36	3,3666667	65	6,95
		38	3,6333333	67,5	7,5
				70,5	8,1
II.2.3.4. Rendement du ressaut hydraulique

L'expression du rendement s'écrit :

$$\eta = 1 - \frac{Y_A + \frac{F_1^2}{2[Y_A / \beta - (1 / \beta - 1) / \tau]^2}}{1 + F_1^2 / 2}$$

La variation du rendement en fonction du nombre de Froude est représentée sur la figure II.29.

Figure II.29: Variation du rendement η en fonction du nombre de Froude F₁.
 (Δ) points de mesures expérimentales en lit majeur; (ο) points de mesures expérimentales en lit mineur.
 (---) Courbes d'ajustements du ressaut contrôlé par seuil épais. (---) Courbes d'ajustements

Au vu de cette figure, les points de mesure du ressaut contrôlé par seuil épais sont trouves légèrement décalés au dessous de ceux forcé de type A. Ainsi dans le canal composé, le décalage entre le lit mineur et le lit majeur n'est pas sensible.

Le tableau II.15 réunit les valeurs du rendement η pour les nombres de Froude correspondants.

h ₀ /h	$_2 \geq 1$	$h_0/h_2 < 1$					
η	$\mathbf{F_1}$	η	\mathbf{F}_1	η	\mathbf{F}_1		
0,47207456	3,9583739	0,54784847	4,753379	0,70353792	7,3183057		
0,5169026	4,3464785	0,57042511	4,9718113	0,718813	7,6546042		
0,51211399	4,373226	0,58722292	5,1687007	0,70980649	7,6922807		
0,55665963	4,753379	0,59649885	5,2930446	0,72211716	7,9653637		
0,55335284	4,7809348	0,60791874	5,41837	0,73380553	7,9959018		
0,58362921	5,2289733	0,61758706	5,5446692	0,72885411	8,1491753		
0,59542373	5,2631123	0,61769281	5,6027283	0,73710537	8,3808969		
0,59866747	5,2764086	0,63167716	5,7231099	0,74586208	8,6147741		
0,63265077	5,8173281	0,633161	5,8369701	0,76290703	9,0889171		

Tableau II.15: Mesures expérimentales ayant servi au traçage de la figure II.29.

h ₀ /h	$_2 \ge 1$	$h_0/h_2 < 1$					
η	\mathbf{F}_1	η	F ₁	η	\mathbf{F}_1		
0,64692621	5,9968816	0,64314337	6,0147384	0,75204991	9,0889171		
0,67261917	6,3755643	0,64982975	6,1342343	0,77182695	9,3774409		
0,67978679	6,6753928	0,64676434	6,1992877	0,77670976	9,5714531		
0,69923811	7,0236314	0,66113032	6,3149411	0,77017191	9,632353		
0,69969669	7,1999518	0,67184292	6,4973883	0,77845485	9,9387764		
0,72042616	7,6922807	0,67110415	6,625103	0,78284168	10,12416		
0,74505042	8,3808969	0,68125013	6,8415205	0,78871692	10,373108		
		0,69100286	7,0236314	0,79665629	10,750289		
		0,69447383	7,133661	0,80555853	11,131934		
				0,81652502	11,647649		

Tableau II.15 (suite et fin): Mesures expérimentales ayant servi au traçage de la figure II.29.

II.3. RESSAUT HYDRAULIQUE FORCE PAR MARCHE POSITIVE EN CANAL RECTANGULAIRE DE FORME COMPOSÉE

II.3.1. DESCRIPTION DU MODELE

II.3.1.1. Description du canal

C'est le même dispositif expérimental utilisé dans notre expérimentation, dans ce cas on à utiliser une marche positive pour forcer le ressaut. *Figure II.30*.

Figure II.30 : Schéma simplifié du canal de mesure de section rectangulaire composé, ayant servi à *l'expérimentation.*

Figure II.31 : Schéma simplifié d'un ressaut hydraulique forcé par marche positive évoluant dans un canal rectangulaire composé.

Photo II.7: Photographie d'un ressaut hydraulique forcé par marche positive $F_1 = 6, 67; s = 5, 4 \text{ cm}; Ls = 70 \text{ cm}; h_2 = 16, 9 \text{ cm}; h_1 = 2,5 \text{ cm}$

Photo II.8: Photographie d'un ressaut hydraulique forcé par marche positive $F_1 = 8, 52; s = 11,8 \text{ cm}; Ls = 126 \text{ cm}; h_2 = 23,1 \text{ cm}; h_1 = 2,5 \text{ cm}$

II.3.2. Résultats expérimentaux

II.3.2.1. Rapport des hauteurs conjuguées du ressaut en fonction du nombre de Froude F₁

Sur la figure II.32 est représentée la variation du rapport Y_A des hauteurs conjuguées en fonction du nombre de Froude de l'écoulement incident, tel que $Y_A = (h_2+s) / h_1$ représente le rapport des hauteurs conjuguées du ressaut hydraulique forcé type « A ». La courbe en trait discontinu représente le ressaut contrôlé par marche positive.

Figure. II.32. Variation du rapport des hauteurs conjuguées Y_A en fonction du nombre de Froude F₁ pour les deux lits du canal composé. (◊) points de mesures expérimentales en lit majeur; (o) points de mesures expérimentales en lit mineur. (---) Courbes d'ajustements du ressaut contrôlé par marche positive. (---) Courbes d'ajustements

A travers cette figure, la hauteur relative Y_A du ressaut est moindre au lit mineur que celui au le lit majeur, ainsi le rapport Y_A du ressaut forcé type A est nettement inferieur à celui du ressaut contrôlé par marche positive.

La représentation graphique des mesures expérimentales des rapports Y_A en fonction du nombre de Froude a abouti à une courbe unique pour les deux lits du canal composé.

- Pour
$$h_0/h_2 \ge l$$
: $Y_A = 1,014 F_1 + 0,057$ $R^2 = 0,998$ (II.19)
 $3,86 < F_1 < 9,08$
- Pour $h_0/h_2 < l$: $Y_A = 1,064 F_1 + 0,073$ $R^2 = 0,998$ (II.20)
 $3,86 < F_1 < 9,08$

Les mesures expérimentales ayant servi au traçage des courbes $Y_A = f(F_1)$ pour les deux lits, sont regroupées dans le tableau II.16:

h ₀ /h	₂ ≥1	$h_0/h_2 < 1$				
Y _A	F ₁	YA	F ₁	YA	F ₁	
4,05	3,868071	5,1	4,6812982	8	7,5045166	
4,4285714	4,2931479	5,325	4,8743265	8,44	7,6922807	
4,5	4,3264538	5,475	5,0699374	8,4666667	8,0341292	
4,7	4,6254897	5,65	5,2680971	8,68	8,0570948	
4,9714286	4,8362054	5,825	5,4435522	9,04	8,3343795	
5,3	5,2100391	5,9142857	5,4868121	9,24	8,5209658	
5,32	5,2631123	6	5,6209131 9,64		8,9934123	
5,5714286	86 5,3430575	6,2571429	5,7487549	9,92	9,3291451	
6	5,8517162	6,4	5,984987	10,28	9,7178289	
6,1	5,9552849	6,6285714	6,1942755	10,5	9,7545384	
6,08	6,0385748	6,8285714	6,3755643	10,9	10,062239	
6,5	6,304856	7	6,6199785	11,15	10,373108	
6,76	6,6753928	7,1	6,5534807	11,55	10,750289	
6,95	6,8052901	7,3333333	6,7691239	11,85	11,004226	
7,28	7,1116095	7,5333333	6,9870818	12,15	11,388819	
7,7	7,5794366	7,7666667	7,2073301	12,55	11,77779	
8,4	8,2647654					
9,4	9,0889171					

Tableau II.16. Valeurs expérimentales ayant servi au traçage des courbes $Y_A = f(F_1)$ pour $h_d/h_2 \ge 1$ et $h_d/h_2 < 1$.

II.3.2.2. position relative de la marche positive $\lambda s = Ls/h_1$

La figure II.33 représente la variation de la position relative de la marche positive λ s en fonction du nombre de Froude F₁ de l'écoulement incident. Pour le ressaut forcé de type A, la position Ls de la marche correspond à la longueur Lr du rouleau de surface. La courbe expérimentale en trait pointillée exprime la variation de la hauteur relative du seuil du ressaut contrôlé par marche positive. Les résultats présentés sur la figure II.33 ont montré que l'augmentation du nombre de Froude engendre l'augmentation de la position relative de la marche positive. Ainsi pour le même nombre de Froude la position de la marche Ls est plus longue dans le lit majeur. Également le décalage est perceptible entre le ressaut forcé type A et le ressaut contrôlé.

Figure. II.33. Variation du rapport Ls/h_1 en fonction du nombre de Froude F_1 pour les deux lits du canal composé. (o) points de mesures expérimentales en lit majeur; (Δ) points de mesures expérimentales en lit mineur. (---) Courbes d'ajustements du ressaut contrôlé par marche positive. (—) Courbes d'ajustements

L'ajustement des valeurs expérimentales a montré que la relation $Ls/h_1 = f(F_1)$ est de type linéaire pour les deux lit du canal. Celle-ci s'écrit pour chaque lit comme suit :

- Pour
$$h_0/h_2 \ge 1$$
: $Ls/h_1 = 6,367 F_1 - 14,52$ $R^2 = 0,992$ (II.21)
 $3,86 < F_1 < 9,08$
- Pour $h_0/h_2 < 1$: $Ls/h_1 = 7,286 F_1 - 13,84$ $R^2 = 0,984$ (II.22)
 $3,86 < F_1 < 9,08$

Les mesures expérimentales ayant servi au tracé des courbes $Ls/h_1 = f(F_1)$ pour les deux lits du canal composé, sont regroupées dans le tableau II.17:

h ₀ /h	$_2 \geq 1$	$h_0/h_2 < 1$						
Ls/h ₁	\mathbf{F}_1	F ₁	Ls/h ₁	F ₁	Ls/h ₁			
11	3,868071	4,6812982	17,5	7,6922807	39,2			
12,571429	4,2931479	4,8743265	20,5	7,7300187	44,666667			
13,75	4,3264538	5,0699374	23	8,0341292	46,666667			
15,666667	4,6254897	5,2680971	25,5	8,0570948	44,8			
15,714286	4,8362054	5,4435522	27,25	8,3343795	48			
19	5,2100391	5,4868121	22	8,5209658	50,4			
18,2	5,2631123	5,6209131	28,75	8,7561269	52,8			
19,428571	5,3430575	5,7487549	26,857143	8,9934123	54			
22	5,5736736	5,984987	29,142857	9,3291451	56			
22,333333	5,8517162	6,1942755	31,142857	9,7178289	58			
22,5	5,9552849	6,3755643	32,857143	9,7545384	52,5			
24	6,0385748	6,6199785	34,857143	10,062239	57,5			

Tableau II.17. Valeurs expérimentales ayant servi au traçage des courbes $Ls/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

26,333333	6,304856	6,5534807	32	10,373108	60,5
28	6,6753928	6,7691239	36,666667	10,750289	63,5
27	6,8052901	6,9870818	38,333333	11,004226	66
31,2	7,1116095	7,2073301	40,333333	11,388819	68,5
33,5	7,5794366	7,5045166	42,666667	11,77779	71
37,5	8,2647654				
45	9,0889171				

Tableau II.17(suite et fin). Valeurs expérimentales ayant servi au traçage des courbes $Ls/h_1 = f(F_1)$ pour $h_d/h_2 \ge 1$ et $h_d/h_2 < 1$.

II.3.2.3. hauteur relative de la marche positive

La figure II.34 représente la variation de la hauteur relative de la marche positive en fonction du nombre de Froude F_1 dans le canal composé.

L'analyse des mesures expérimentales a également montré que dans le lit mineur, la fonction $s/h_1=f(F_1)$ est de type linéaire de la forme

 $s/h_1 = 0,570 F_1 - 1,53$; R² = 0,971 (II.23)

Figure. II.34. Variation du rapport s/h₁ en fonction du nombre de Froude F₁ pour les deux lits du canal composé. (\Box) Points de mesures expérimentales en lit mineur; Pour h₀/h₂ < 1. (o) h₁=2cm ; (Δ) h₁=2,5cm ; (\diamond) h₁=3cm ; (\star) h₁=3,5cm ; (+) h₁=4cm. (---) Courbes d'ajustements du ressaut contrôlé par marche positive. (-) Courbes d'ajustements.

Cependant, l'effet de la hauteur relative amont Y_I dans le lit majeur se traduit par l'apparition des cinq allures, un ajustement de type linéaire est possible de la forme : s/h₁= a F₁+b.

Figure. *II.35*: Variation du rapport s/h_1 en fonction du nombre de Froude F_1 pour le lit majeur du canal composé. (\circ) $h_1=2cm$; (Δ) $h_1=2,5cm$; (\diamond) $h_1=3cm$; (\star) $h_1=3,5cm$; (+) $h_1=4cm$. (—) Courbes d'ajustements.

La figure II.35 montre cinq allures différentes, pour différentes hauteurs amont h_1 . Pour la même hauteur relative du seuil, la valeur de nombre de Froude F_1 augmente avec la diminution de h_1 . Les résultats obtenus de l'ajustement sont récapitulées dans le tableau II.18.

h ₁ /B	a	b	Équations des droites	Coefficients de corrélation R ²
0,033	1,631	- 11,05	Y = 1,631 s/h1 - 11,05	0,994
0,041	1,674	- 9,613	Y = 1,674 s/h1 - 9,613	0,983
0,05	<mark>1,578</mark>	<mark>- 7,54</mark>	Y = 1,578 s/h1 - 7,54	0,982
0,058	1,708	- 7,532	Y = 1,708 s/h1 - 7,532	0,999
0,066	1,749	- 6,868	Y = 1,749 s/h1 - 6,868	0,997

Tableau II.18 Coefficients des relations expérimentales, issues de l'ajustement de la relation liant s/h_1 au nombre de Froude F_1 , pour différentes hauteurs h_1 des ouvertures.

Le tableau II.18 montre que les valeurs des paramètres « a » et « b » augmentent progressivement avec l'augmentation de la hauteur relative amont y₁. L'ajustement statistique des couples de valeurs (a, y₁) par la méthode des moindres carrés donne une relation de type linéaire d'équation : $a=3,245(h_1/B)+1,529$; R² = 0,962.

Et l'ajustement des couples des valeurs (b, h₁/B) par la méthode des moindres carrés donne une relation aussi de type logarithmique d'équation : $b=6,044\ln(h_1/B)+9,625$ avec R² = 0,998. Celle- ci est schématisée par la figure II.35.

Figure II.36 (a et b): Variation des paramètres 'a' et 'b' en fonction de h_1/B .

En remplaçant les paramètres (a) et (b) par leurs expressions respectives, on obtient la relation générale suivante :

$$s = (3,245(h_1/B) + 1,529).F_1 + 6,044\ln(h_1/B) + 9,625$$
(II.24)
$$4,68 \le F_1 \le 11,77 \text{ et } 0,033 \le h_1/B \le 0,066$$

Les données ayant servi au traçage des figures II.34 et II.35 sont groupées au tableau II.19.

h ₀ /h	₂ ≥1	$h_0/h_2 < 1$					
F ₁	s/h ₁	F ₁	s/h ₁	F ₁	s/h ₁		
3,868071	0,875	4,6812982	1,35	7,6922807	3,16		
4,2931479	1	4,8743265	1,625	7,7300187	4,6666667		
4,3264538	1,05	5,0699374	1,975	8,0341292	5		
4,6254897	1,1666667	5,2680971	2,375	8,0570948	3,8		
4,8362054	1,2	5,4435522	2,675	8,3343795	4,28		
5,2100391	1,4	5,4868121	1,8571429	8,5209658	4,72		
5,2631123	1,4	5,6209131	2,95	8,7561269	5,28		
5,3430575	1,5428571	5,7487549	2,2571429	8,9934123	5,6		
5,5736736	1,8571429	5,984987	2,7142857	9,3291451	6		
5,8517162	1,8	6,1942755	3,0571429	9,7178289	6,44		
5,9552849	1,75	6,3755643	3,3714286	9,7545384	4,75		
6,0385748	1,68	6,6199785	3,7714286	10,062239	5,35		
6,304856	2,1666667	6,5534807	2,6333333	10,373108	5,9		
6,6753928	2,16	6,7691239	3,1666667	10,750289	6,6		
6,8052901	2,1	6,9870818	3,5666667	11,004226	7		
7,1116095	2,6	7,2073301	3,9333333	11,388819	7,5		
7,5794366	2,7	7,5045166	4,4	11,77779	8,05		
8,2647654	3,25						
9,0889171	3,95						

Tableau II.19. Valeurs expérimentales ayant servi au traçage des courbes $s/h_1 = f(F_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

La figure II.37 confirme que la relation (II.24) représente un assez bon ajustement pour la détermination de la hauteur relative s/h_1 du seuil, connaissant le nombre de Froude incident F_1 , et la hauteur relative amont h_1/B .

Figure II.37: Variation de la hauteur relative s/h_1 du seuil en fonction de la relation $f(F_1, h_1/B)$. (o) Points expérimentaux. (—) Première bissectrice.

Encore une fois, nous pouvons déduire une relation empirique reliant la hauteur relative du seuil S et sa position relative λ s dans chaque section du canal composé. Les résultats sont présentés sur la figure II.38.

Figure II.38: Variation de la position relative du seuil λs en fonction de sa hauteur relative s/h₁. (+) points de mesures expérimentales en lit mineur; Pour $h_0/h_2 < 1$. (\Box) $h_1=2cm$; (Δ) $h_1=2,5cm$; (\circ) $h_1=3cm$; (\diamond) $h_1=3,5cm$; (\star) $h_1=4cm$. (-) Courbe d'ajustement.

La figure II.38 montre que l'ajustement par la méthode des moindres carrés des points de mesure dans le lit mineur est de type linéaire de la forme :

$$Ls/h_1 = 10,96 s/h_1 + 2,906$$
; $R^2 = 0,986$ (II.25)

Par ailleurs cinq nuages de points distincts, correspondent chacun à une hauteur h_1 fixée. L'analyse des points de mesures expérimentales du ressaut au lit majeur, montre qu'à chaque hauteur h_1 , correspond une courbe de type puissance de la forme Ls/ h_1 =a s/ h_1^b . Comme le montre la figure II.39.

Figure II.39: Variation de la position relative du seuil λs en fonction de sa hauteur relative s/h₁, Dans le lit majeur. (\Box) h₁=2cm; (Δ) h₁=2,5cm; (o) h₁=3cm; (\diamond) h₁=3,5cm; (\star) h₁=4cm. (\longrightarrow) Courbe d'ajustement.

Le tableau II.20 regroupe les résultats obtenus de l'ajustement et les valeurs des coefficients a et b.

h ₁ /B	a	b	Équations des droites	Coefficients de corrélation R ²
0,033	22,40	0,554	Ls/h ₁ = 22,40 (s/h ₁) 0,554	0,993
0,041	21,84	0,529	Ls/h ₁ = 21,84 (s/h ₁) 0,529	0,987
0,05	18,76	0,562	Ls/h ₁ = 18,76 (s/h ₁) 0,562	0,992
0,058	17,59	0,512	Ls/h ₁ = 17,59 (s/h ₁) 0,512	0,997
0,066	14,87	0,619	Ls/h ₁ = 14,87 (s/h ₁) 0,619	0,992

Tableau II.20. Coefficients des relations expérimentales, issues de l'ajustement de la relation liant λs à la hauteur relative S, pour différentes hauteurs amont h_1 .

D'après les résultats du tableau II.13, nous remarquons que les valeurs des paramètres b sont presque égales et leur moyen arithmétique est b = 0,5552.

Nous avons observé aussi que les valeurs du coefficient ont diminuent progressivement avec l'augmentation de la hauteur relative amont y_1 .

Un ajustement des couples de valeurs (a, y₁) du tableau II.13, donne avec une bonne corrélation, la relation linéaire suivante : $a = -232,9(h_1/B)+30,64$, R² = 0,966

Cette équation est issue par la figure II.40.

Figure II.40: Variation du paramètre 'a' en fonction de h_1/B .

La relation définitive représentant la position relative du seuil en fonction de sa hauteur relative et de la hauteur relative amont est la suivante :

$$Ls / h_{1} = (-232.9 (h_{1} / B) + 30.64) (s / h_{1})^{0.5552}$$
(II.26)
$$4,68 \le F_{1} \le 11.77 \text{ et } 0.033 \le h_{1} / B \le 0.066$$

La Figure II.41 illustre encore que la relation $Ls/h_1=f(h_1/B, s/h_1)$ ajuste avec une très bonne corrélation les points de mesures expérimentales et ces derniers suivent également la première bissectrice.

Figure II.41 : Variation de la position relative Ls/h_1 du seuil en fonction de la relation $f(s/h_1, h_1/B)$. (o) Points expérimentaux. (—) Première bissectrice d'équation : $Ls/h_1 = f(s/h_1, h_1/B)$.

Les données qui nous ont permis le traçage des figures II.38 et II.39 sont réunies au tableau II.21.

h ₀ /h	₂ ≥1	$h_0/h_2 < 1$				
Ls/h ₁	s/h ₁	Ls/h ₁	s/h ₁	Ls/h ₁	s/h ₁	
11	0,875	52,5	4,75	38,333333	3,5666667	
12,571429	1	57,5	5,35	40,333333	3,9333333	
13,75	1,05	60,5	5,9	42,666667	4,4	
15,666667	1,1666667	63,5	6,6	44,666667	4,6666667	
15,714286	1,2	66	7	46,666667	5	
19	1,4	68,5	7,5	26,857143	2,2571429	
18,2	1,4	71	8,05	29,142857	2,7142857	
19,428571	1,5428571	39,2	3,16	31,142857	3,0571429	
22	1,8571429	44,8	3,8	32,857143	3,3714286	
22,333333	1,8	48	4,28	34,857143	3,7714286	
22,5	1,75	50,4	4,72	17,5	1,35	
24	1,68	52,8	5,28	20,5	1,625	
26,333333	2,1666667	54	5,6	23	1,975	
28	2,16	56	6	25,5	2,375	
27	2,1	58	6,44	27,25	2,675	
31,2	2,6	32	2,6333333	28,75	2,95	
33,5	2,7	36,666667	3,1666667			
37,5	3,25					
45	3,95					

Tableau II.21. Valeurs expérimentales ayant servi au traçage des courbes $Ls/h_1 = f(s/h_1)$ pour $h_0/h_2 \ge 1$ et $h_0/h_2 < 1$.

II.3.2.4. Rendement du ressaut hydraulique

Le rendement η du ressaut est défini par le rapport de la perte de charge ΔH qu'il occasionne à la charge totale dans sa section initiale :

$$\eta = \Delta H/H_1 \tag{II.27}$$

avec : $\Delta H = H_1 - H_2$

 H_1 et H_2 représentent respectivement, la charge totale dans les sections initiale et finale du ressaut. Celles-ci sont définies par les relations suivantes :

$$H_1 = h_1 + \frac{V_1^2}{2g}$$
(II.28)

$$H_2 = h_2 + \frac{V_2^2}{2g}$$
(II.29)

En appuyant sur l'équation de continuité (Q=V.A), ces deux dernières relations s'écrivent ainsi :

$$H_1 = h_1 + \frac{Q^2}{2gA_1^2}$$
(II.30)

$$H_2 = h_2 + \frac{Q^2}{2 g A_2^2}$$
(II.31)

Où :

 $A_1 = bh_1 \text{ et } A_2 = b (h_0-s) + B (h_2-(h_0-s))$

Le nombre de Froude de l'écoulement incident dans un canal de section droite rectangulaire est défini par la relation :

$$F_1^2 = \frac{Q^2}{gb^2 h_1^3}$$
(II.32)

En tenant compte des relations précédentes, le rendement du ressaut hydraulique dans un canal rectangulaire de section composée, s'écrit comme suit :

$$\eta = 1 - \frac{Y_A + \frac{F_1^2}{2[Y_A / \beta - (1 / \beta - 1)(1 / \tau - S)]^2}}{1 + F_1^2 / 2}$$
(II.33)

 Figure II.42: Variation du rendement η en fonction du nombre de Froude F₁.
 (Δ) points de mesures expérimentales en lit majeur; (ο) points de mesures expérimentales en lit mineur. (---) Courbes d'ajustements du ressaut contrôlé par marche positive. (---) Courbes d'ajustements

Au vu de cette figure, dans le canal composé les points de mesure du lit mineur et majeur sont quasiment confondus. Par ailleurs, le décalage est important pour le cas du ressaut forcé ; pour le même nombre de Froude, le rendement du ressaut forcé type A est trouvé au dessus de ceux contrôlés par seuil épais.

Le tableau II.22 réunit les valeurs du rendement η pour les nombres de Froude correspondants.

h ₀ /h	$_2 \geq 1$	$h_0/h_2 < 1$					
Ν	F ₁	Ν	F ₁	Ν	F ₁		
0,46868349	3,868071	0,5591632	4,6812982	0,7321465	7,7300187		
0,52049033	4,2931479	0,57571479	4,8743265	0,74355221	8,0341292		
0,52098375	4,3264538	0,59613449	5,0699374	0,73745565	8,0570948		
0,55680804	4,6254897	0,61339033	5,2680971	0,74448828	8,3343795		
0,57110373	4,8362054	0,62600977	5,4435522	0,75012805	8,5209658		
0,60313824	5,2100391	0,6222436	5,4868121	0,75814775	8,7561269		
0,60880166	5,2631123	0,63793282	5,6209131	0,76570123	8,9934123		
0,60513114	5,3430575	0,63623363	5,7487549	0,77568802	9,3291451		
0,64265287	5,8517162	0,65611964	5,984987	0,78552763	9,7178289		
0,6489265	5,9552849	0,66712491	6,1942755	0,7816208	9,7545384		
0,65821839	6,0385748	0,67595135	6,3755643	0,78706831	10,062239		
0,66609693	6,304856	0,6786239	6,6199785	0,79499553	10,373108		
0,6886844	6,6753928	0,69121887	6,5534807	0,8022518	10,750289		
0,69244083	6,8052901	0,68904239	6,7691239	0,80633605	11,004226		
0,70491152	7,1116095	0,69995308	6,9870818	0,81450136	11,388819		
0,72465064	7,5794366	0,70902784	7,2073301	0,82076153	11,77779		
0,74727658	8,2647654	0,72309272	7,5045166				
0,76675006	9,0889171	0,72009858	7,6922807				

 Tableau II.22: Mesures expérimentales ayant servi au traçage de la figure II.42.
 II.22: Mesures expérimentales ayant servi au traçage de la figure II.42.

II.4. ETUDE COMPARATIVE

Sur la base des résultats obtenus, nous effectuerons une étude comparative entre le ressaut hydraulique contrôlé et le ressaut forcé type A par seuil mince, par seuil épais et par marche positive.

II.4.1 Rapport des hauteurs conjuguées du ressaut :

Les figures II.43 (a et b) montrent respectivement la variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F_1 dans le lit mineur et le lit majeur d'un canal rectangulaire de section composée, pour les six types de ressauts testés.

Figure II.43 (a et b): Variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F_1 . a) en lit mineur, b) en lit majeur.

Ressaut contrôlé :(\Diamond) Par seuil mince. (\Delta) Par seuil épais (o) Par marche positive. Ressaut forcé de type A : (\Box *) Par seuil mince. (* \star *) Par seuil épais. (+) Par marche positive.*

L'analyse des résultats de la figure II.43, nous a permis de constater que dans le lit mineur les points de mesure des trois types du ressaut contrôlé sont pratiquement trouvés confondus, a part une légère influence de la marche positive apparait à des nombre de Froude supérieur à 6,5 environ, mais elle n'est pas significative. Nous pouvons observer ainsi que le décalage est assez important entre les courbes des ressauts forcés et contrôlés. Pour le même nombre de Froude Froude F₁, le rapport des hauteurs conjuguées du ressaut forcé par marche positive est nettement inferieur à celui par seuil épais et par seuil mince respectivement.

Par ailleurs, dans le lit majeur le décalage est perceptible entre le ressaut forcé et son homologue contrôlé pour toute la gamme des nombres de Froude F_1 testé, ainsi un léger décalage qui apparait entre les trois types du ressaut forcé. Ce décalage s'accroit avec l'augmentation de F_1 . En effet le ressaut forcé par marche positive présente la moindre hauteur relative.

un ajustement des valeurs expérimentales a montré que la variation de $Y=f(F_1)$ est de type lineaire pour les six configurations étudiées, d'équation :

$$Y = a F_1 + b$$
(II.34)

		Ressaut contrôlé			Ressaut forcé type A		
		Seuil mince	Seuil épais	Marche positive	Seuil mince	Seuil épais	Marche positive
	a	1,258	1,200	1,206	1,11	1,022	1,014
Lit mineur	b	-0,573	-0,255	-0,305	-0,26	0,214	0,057
	R ²	0,995	0,995	0,991	0,999	0,996	0,998
	a	1,165	1,143	1,113	1,107	1,081	1,064
Lit majeur	b	0,328	0,429	0,54	0,01	0,09	0,073
	R ²	0,995	0,995	0,993	0,998	0,998	0,998

Tableau II.23 : valeur des constantes a et b de l'équation (II.34) pour les six type de ressaut.

II.4.2. position relative du seuil et de la marche positive

Les figures II.44 (a et b) représentent respectivement la variation de la position relative du seuil Ls/h₁ en fonction du nombre de Froude F_1 dans les deux lits du canal rectangulaire de section composée, pour les six types de ressauts testé.

A partir des resultats présentés sur les figure II.44 (a et b), nous pouvons observer un léger décalage entre les droites d'ajustement des trois types de ressaut controlés pour les deux lits du canal composé, il apparait que l'écart est très perceptible entre les courbes des ressauts controlés et des ressauts forcés. En effet, le ressaut forcé par seuil épais et par marche positive

présente un rouleau de surface plus court que son homologue forcé par seuil mince et controlés.

En outre, l'ajustement des valeurs expérimentales par la méthode des moindres carrés a abouti à une relation de la même forme pour les six configurations experimentées de la forme :

$$\lambda r = a F_1 + b \tag{II.35}$$

tableau II.24 : valeur des constantes a et b de l'équation (II.35) pour les six types de ressaut.

		Ressaut contrôlé			Res	ssaut forcé	type A
	SeuilSeuilMarcheminceépaispositive		Seuil mince	Seuil épais	Marche positive		
	a	7,907	7,655	7,225	7,929	7,655	6,367
Lit mineur	b	-14,85	-14,21	-12,59	-20,34	-14,21	-14,52
	R ²	0,991	0,986	0,984	0,981	0,986	0,992
	a	7,599	7,574	7,375	7,922	7,574	7,286
Lit majeur	b	-7,788	-8,566	-7,591	-15,90	-8,566	-13,84
	R ²	0,987	0,990	0,986	0,991	0,990	0,984

II.4.3. Rendement du ressaut hydraulique

La variation du rendement en fonction de nombre de Froude incident F_1 dans les deux lits du canal pour les six configurations est présentée sur la figure II.45.

Figure II.45: Variation du rendement η en fonction du nombre de Froude F_1 . Ressaut contrôlé :(\diamond) Par seuil mince. (Δ) Par seuil épais (o) Par marche positive. Ressaut forcé de type A : (\Box) Par seuil mince. (\star) Par seuil épais. (+) Par marche positive.

Au vu des résultats que nous avons obtenus, il semble clairement que pour la gamme des nombres de *Froude* incident $4 < F_1 < 10$, les points de mesure du ressaut forcé de type A, par marche positive sont trouvés au-dessus de ceux forcé par seuil à paroi épaisse, par seuil mince et contrôlé. Cependant pour des nombres de *Froude* $F_1>10$, tous les points de mesures se rejoignent pour former un seul nuage de points,

II.5. Exemple d'application

On prend les mêmes données de l'exemple I.6.

- $h_1 = 0,4$ m, la hauteur initiale du ressaut.
- la largeur du lit mineur de canal b = 3 m.
- la largeur du lit majeur de canal B = 6 m.
 - Le nombre de Froude F₁ de l'écoulement incident est :

$$F_1 = 6,73$$

II.5. 1. Ressaut forcé par seuil mince

Pour $h_0/h_2 \ge 1$

- Rapport des hauteurs conjuguées Y

$$Y = \frac{h_2}{h_1} = 1,11F_1 - 0,26 = 7,21$$

d'où la profondeur conjuguée à l'aval du ressaut $h_2 \cong 2,88$ m.

- Position relative du seuil Ls/h1

$$\frac{Ls}{h_1} = 7,929.F_1 - 20,34 = 40,16$$

d'où Ls \cong 16,06 m.

- Longueur relative du bassin L_B/h_1

$$\frac{L_B}{h_1} = 9,306.F_1 - 17,30 = 45,33$$

 $d'o\dot{u}$: $L_B = 18,13 \text{ m}$.

II.5. 1. Ressaut forcé par seuil épais

Pour $h_0/h_2 \ge 1$

- Rapport des hauteurs conjuguées Y

$$Y = 1,022.F_1 + 0,214 = 7,1$$

d'où la profondeur conjuguée à l'aval du ressaut $h_2 \cong 2,84$ m.

- Position relative du seuil Ls/h1

$$\frac{Ls}{h_1} = 7,655.F_1 - 14,21 = 37,31$$

d'où Ls \cong 14,92 m.

Pour $h_0/h_2 < 1$

$$Y = \frac{h_2}{h_1} = 1,107.F_1 + 0,01 = 7,46$$

d'où la profondeur conjuguée à l'aval du ressaut $h_2 \cong 2,98$ m.

$$\frac{Ls}{h_1} = 7,922.F_1 - 15,90 = 44,54$$

d'où Ls \approx 17,81 m.

$$\frac{L_B}{h_1} = 9,371.F_1 - 13,01 = 50,05$$

d'où : L_B \approx 20,02 m

Pour $h_0/h_2 < 1$

 $Y = 1,081.F_1 + 0,09 = 7,36$ d'où la profondeur conjuguée à l'aval du ressaut $h_2 \cong 2,94$ m.

$$\frac{Ls}{h_1} = 7,574.F_1 - 8,566 = 42,41$$

d'où Ls ≅ 16,96 m.

II.5. 1. Ressaut forcé par marche positive

Pour $h_0/h_2 \ge 1$

- Rapport des hauteurs conjuguées Y

$$Y = 1,014.F_1 + 0,057 = 6,88$$

d'où la profondeur conjuguée à l'aval du ressaut $h_2 \cong 2,75$ m.

- Position relative du seuil Ls/h₁

$$\frac{Ls}{h_1} = 6,367.F_1 - 14,52 = 28,33$$

Pour $h_0/h_2 < 1$

 $Y = 1,064.F_1 + 0,073 = 7,23$

d'où la profondeur conjuguée à l'aval du ressaut $h_2 \cong 2,89$ m.

$$\frac{Ls}{h_1} = 7,286.F_1 - 13,84 = 35,2$$

d'où Ls \cong 11,33 m.

d'où Ls \cong 14,1 m.

II.6. Conclusion

Au cours de ce deuxième chapitre de notre contribution, nous avons étudié le ressaut hydraulique forcé type A dans un canal rectangulaire de section composée. Ce chapitre comprend quatre volets, le premier volet concernant le ressaut hydraulique forcé par seuil mince, le deuxième est le ressaut forcé par seuil épais, le troisième c'est le ressaut forcé par marche positive et le dernier volet une étude comparative entre les différentes caractéristiques des ressauts étudiés. Nous avons essayé de trouver par voie de l'expérimentation des relations fonctionnelles liant les différentes caractéristiques du ressaut hydraulique.

Commençons par l'analyse statistique de la variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F_1 de l'écoulement incident qui a montré que l'ajustement suit une loi de type linéaire, et que la hauteur relative est moindre dans le lit mineur, et ceci pour les trois ressauts étudiés. La comparaison montre que le rapport des hauteurs conjuguées Y du ressaut forcé est nettement inferieur a celui du ressaut contrôlé. Ainsi l'influence de la marche positive est perceptible pour les deux lits du canal composé, et ceci pour toute la gamme des nombres de Froude étudiés. L'augmentation de F_1 accroit cette influence.

Passant ensuite à la position relative du seuil qui correspond à la longueur relative λr du rouleau de surface. L'expérimentation montre que ce dernier augmente progressivement avec l'augmentation du nombre de Froude F₁. La longueur relative λr est plus compacte au lit mineur qu'au lit majeur pour les trois ressauts analysés, l'ajustement des points expérimentaux par la méthode des moindres carrés est de type linéaire. La comparaison montre que les courbes des ressauts forcés par seuil épais et par marche positive sont quasi-

confondues pour, pratiquement, toute la gamme des nombres de Froude. Ceci indique que le ressaut forcé de type A par seuil épais et par marche positive présente une longueur du bassin amortisseur la plus courte.

Nous avons, par la suite, consacré notre étude expérimentale à la variation de la hauteur relative du seuil en fonction du nombre de Froude F_1 , pour les trois configurations étudiées. Dans le lit mineur, l'étude statistique des valeurs expérimentales a montré que la meilleure loi qui suit la variation de la hauteur relative S du seuil et de la marche positive en fonction du nombre de *Froude* F_1 , est une loi de type logarithmique. Par contre, l'influence de la hauteur amont h_1 est perceptible dans le lit majeur de la section composée, et cela pour les trois types de ressauts analysés. D'une facon générale, le ressaut forcé type A nécessite une hauteur relative de seuil moins élévée que son homologue controlé.

Enfin, nous avons étudié, la variation du rendement η en fonction du nombre de Froude F₁ de l'écoulement incident, et ceci pour les trois types de ressaut hydraulique, à savoir : le ressaut forcé type A par seuil mince, par seuil épais et le ressaut forcé type A par marche positive. L'étude a montré que les points de mesure expérimentales du ressaut forcé type A, se présente au dessus de ceux contrôlés, pour les deux lits du canal composé. L'etude comparative entre les points de mesure experimentale a montré que le ressaut forcé par marche positive se présente, pour la gamme pratique des nombres de *Froude* F₁ de l'écoulement incident, au dessus de ceux forcés par seuil mince et par seuil épais. On peut dire que l'effet de dissipation de l'énergie est très important pour le ressaut forcé par marche positive.

CONCLUSION DE LA DEUXIEME PARTIE

Cette deuxième et dernière partie de notre étude a été consacrée à notre propre contribution à l'étude du ressaut hydraulique contrôlé et forcé de type A, dans un canal de section droite rectangulaire composée, par voie expérimentale.

Cette partie a été divisée en deux chapitres. Le premier chapitre c'est intéressé à l'étude expérimentale du ressaut hydraulique contrôlé, tandis que le dernier chapitre a été consacré à l'étude expérimentale du ressaut hydraulique forcé de type A. Il a été termine par une comparaison avec le ressaut contrôlé.

• Le premier chapitre c'est focalisé l'étude expérimentale du ressaut hydraulique contrôlé par seuil mince, par seuil épais et par marche positive dans un canal de section droite rectangulaire composée.

Nous avons abordé dans ce chapitre en premier lieu, la description du modèle et des essais. Nous avons entamé par la suite la procédure à suivre lors des expérimentations.

En effet, le ressaut est généré sous cinq hauteurs initiales h_1 . Chaque hauteur initiale h_1 fixé produit une série de mesures. Une large game des hauteurs des seuils et de la marche positive qui ont eté testés, correspond à une large gamme de nombres de Froude.

L'étude a montré que la variation du rapport Y des hauteurs conjuguées en fonction du nombre de *Froude* F_1 de l'écoulement incident suit une loi de type linéaire pour les deux lits du canal. Ainsi les points de mesure au lit mineur sont au dessous de celui au lit majeur. Cela est valable pour les trois types de ressaut étudié. Par ailleurs, une étude comparative a montré que dans le lit mineur les courbes d'ajustement sont confondues, tandit que dans le lit majeur les courbes des ressauts contrôlés par seuil mince et par seuil epais sont quasi-confondues pour pratiquement toute la gamme des nombres de *Froude*. Cependant un léger décalage est remarquable pour le ressaut controlé par marche positive à partir des valeurs du nombre de *Froude* F_1 supérieurs à 7 environ. Cette influence s'accroît avec l'augmentation de F_1 .

En deuxième lieu, l'étude a entamé la variation de la longueur relative $X = x/h_1$ du bassin en fonction du nombre de *Froude* F₁ de l'écoulement incident. Un décalage assez important est perceptible entre les courbes des ressauts dans le lit mineur et leur homologue dans le lit majeur. En effet, l'étude a montré que la longueur du bassin dans le lit mineur est plut compacte que celui dans le lit majeur. L'analyse des resultats experimentaux a permis d'aboutir à une relation unique de type lineaire pour chaque lit du canal et cela pour les trois types des ressauts analysés. L'étude comparative montré que les trois courbes son presque confondues.

En troisième lieu, L'étude a abordé la variation de la hauteur relative s/h₁ du seuil et de la marche positive en fonction du nombre de *Froude* F_1 de l'écoulement incident, pour les trois types de ressaut étudié, l'ajustement des points de mesure par la méthode des moindres carré dans le lit mineur présente une seule équation de type linéaire, tandis que dans le lit majeur l'influence de la hauteur amont est perceptible.

L'étude expérimentale s'est intéressée ensuite à la dissipation de l'énergie cinétique. Celle-ci étant représentée par la variation du rendement η en fonction du nombre de *Froude* F₁ de l'écoulement incident, pour les trois types de ressaut hydarulique. L'analyse a montré que les points de mesure au lit majeur présentent la continuité des points de mesure au lit mineur. Ainsi les trois courbes du rendement son pratiquement confondues.

L'étude a abordé enfin le profil de la surface généralisé libre du ressaut. En effet, pour trois types de ressaut et dans les deux lits du canal la variation du rapport adimensionnel vertical y en fonction du rapport adimensionnel horizontal X montre que les points de mesure sont confondus.

• Le deuxième et dernier chapitre de cette partie a été consacré à l'étude expérimentale du ressaut hydraulique forcé type A par seuil mince, par seuil épais et par marche positive dans un canal de section droite rectangulaire composé.

Dans un premier temps nous nous sommes intéressés à la variation du rapport Y des hauteurs conjuguées en fonction de nombre de *Froude* F_1 de l'écoulement incident, dans les deux lits du canal pour les trois types de ressaut forcé étudié. En effet, pour les trois types de ressaut forcé étudié, l'augmentation du rapport Y engendre l'augmentation de nombre de Froude, un décalage est perceptible entre le lit mineur et le lit majeur, ainsi un décalage important est perceptible entre le ressaut forcé type A et le ressaut contrôlé. En outre, l'ajustement statistique des points de mesures, a permis d'aboutir, avec une assez bonne corrélation, à une équation linéaire liant Y et F₁.

Par ailleurs, une étude comparative avec le ressaut contrôlé a montré l'influence de la marche positive sur le rapport des hauteurs conjuguées, Cette influence s'accroît avec l'augmentation de F_1 .

Dans un second temps, nous avons abordé la variation de la longueur relative du bassin en fonction du nombre de Froude incident. Il a été obtenu que la longueur relative du bassin augmente avec l'augmentation du nombre de Froude. Ainsi le lit mineur présente un bassin plus court, aussi le ressaut forcé est au dessous de celui contrôlé. En outre, l'ajustement statistique des points de mesures, a permis d'aboutir, avec une assez bonne corrélation, à une équation linéaire liant Y, F₁, pour les deux lits du canal et pour les trois ressauts analysés. La comparaison avec le ressaut contrôlé montre que les courbes de ressaut forcé de type A par seuil épais et par marche positive sont confondues, et présentent le bassin le plus court dans les deux lits du canal composé.

Dans un autre temps, une analyse de la variation de la hauteur relative s/h_1 du seuil et de la marche positive en fonction du nombre de *Froude* F_1 de l'écoulement incident, dans les deux lits du canal, pour les trois configurations de ressaut a été effectuée. En effet, il ressort que le rapport de la hauteur relative du seuil augmente avec l'augmentation du nombre de Froude. En outre, l'ajustement statistique des points de mesures dans le lit mineur, a permis d'aboutir, avec une bonne corrélation, à une équation de type linéaire liant s/h_1 et F_1 . Tandis que dans le lit majeur l'influence de la hauteur amont est perceptible. Il ressort que le ressaut contrôlé nécessite une hauteur de seuil plus élevé.

Finalement, l'étude expérimentale s'est intéressée à la dissipation de l'énergie cinétique En effet, la variation du rendement du ressaut hydraulique en fonction du nombre de Froude incident indique que pour une gamme pratique des nombres de *Froude* incident, les points de mesure du ressaut forcé type A par marche positive se présentent au-dessus de ceux forcé par seuil épais et par seuil mince et ceux contrôlé. L'effet de dissipation de la charge hydraulique est plus important pour le ressaut forcé par marche positive.

Conclusion Générale

CONCLUSION GÉNÉRALE

Notre thèse de doctorat porte sur le ressaut hydraulique contrôlé et forcé type A dans un canal rectangulaire de section composée. Cette thèse comporte deux parties fondamentales: une première partie bibliographique et une seconde partie expérimentale ayant concerné notre propre contribution.

La première partie a été divisée en trois chapitres :

• Le premier chapitre de cette partie bibliographique a eu pour but de présenter les principaux travaux entrepris sur le ressaut hydraulique classique et contrôlé par seuil mince, par seuil épais et par marche positive évoluant dans un canal de section droite rectangulaire.

• Le deuxième chapitre, a permis d'examiner les principaux travaux concernant le ressaut hydraulique forcé type A dans un canal de section droite rectangulaire.

• Dans le troisième et dernier chapitre, nous avons abordé les travaux de *Khattaoui et Achour (2012)* dans un canal rectangulaire composé droit.

Le premier chapitre est consacré au ressaut hydraulique classique et contrôlé en canal rectangulaire. Dans le premier volet, nous avons donné, un aperçu général sur la classification du ressaut classique proposé par *Bradley et Peterka (1957)* et ceux de *Hager et Al (1990)* relatifs aux caractéristiques du ressaut classique, en se basant sur l'équation de la quantité de mouvement. L'étude conduit à l'équation de *Belanger (1928)* qui exprime le rapport des hauteurs conjuguées en fonction du nombre de Froude F₁ de l'écoulement incident. L'étude confirme que la détermination des longueurs caractéristiques du ressaut, (Lj et Lr) n'est possible que par la voie de l'expérimentation. Ainsi la longueur de rouleau peut être développé et/ou non développé. Le rendement de ressaut classique est exposé, en comparant la formule trouvée avec celle de *Hager et Sinniger (1989)*. Par la suite, *Hager et Al (1992)* sont réussis à développer une formule permettant de présenter le profil de surface.

Le deuxième volet de ce premier chapitre de notre étude bibliographique, a été consacré aux principaux travaux entrepris dans le domaine de ressaut hydraulique contrôlé par seuil mince dans un canal de section rectangulaire. Nous avons abordé dans ce volet, les travaux de *Forster et Skrinde (1950)*. L'étude montre que, la hauteur relative du seuil n'est fonction que du nombre de Froude F₁ et de la position relative x/h_2 . Pour des valeurs constantes de x/h_2 , *Forster et Skrinde (1950)* ont établi des courbes expérimentales montrant la variation de la hauteur relative s/h_1 en fonction de F₁. Trois courbes expérimentales ont été obtenues

200

correspondant chacune à une valeur de la position relative x/h_1 du seuil ($x/h_1 = 3$, 5 et 10). Dans un second temps, on a examiné l'étude *Achour et Al (2002)*, dans le but de compléter les travaux de *Forster et Skrinde (1950)*, Deux configurations du ressaut sont considérées. La première configuration répond aux conditions expérimentales de *Forster et Skrinde (1950)* (x =Lr). Les auteurs sont arrivés à proposer des relations empiriques permettant le calcul de la hauteur relative S du seuil en fonction de la position relative x/h_2 de celui-ci et du nombre de Froude F₁ de l'écoulement incident. La deuxième configuration correspond à un ressaut contrôlé dont la longueur Lj coïncide avec la position x du seuil. L'analyse des mesures expérimentales a permis aux auteurs de corréler de manière plus significative la position relative x/h_1 du seuil au nombre de Froude incident F₁.

Le troisième volet est dédié au ressaut hydraulique contrôlé par seuil à paroi épaisse dans un canal rectangulaire, nous avons examiné les travaux de *Forster et Skrinde (1950)* et ceux de *Achour (2002)*. L'étude de *Forster et Skrinde (1950)* a montré que l'application de l'équation de quantité de mouvement est possible. Une relation analytique implicite a été proposée, qui lie la hauteur relative s/h₁ du seuil au nombre de Froude F₁ ; Contrairement au cas du seuil mince, une seule courbe est alors obtenue.

Achour (2002) propose une relation explicite au calcul de la hauteur relative s/h_1 du seuil épais en fonction du nombre de Froude F₁, les valeurs calculées par application de cette relation sont supérieures à celles données par *Forster et Skrinde*; l'écart observé peut atteindre les 10%.

Deux configurations ont été examinées; l'écoulement torrentiel à l'amont du ressaut est crée d'abord par la mise en place d'une vanne de fond et enfin par un déversoir standard.

Concernant la configuration avec la vanne de fond, le développement théorique a mené à l'établissement d'une relation explicite permettant d'évaluer la hauteur relative s/h_1 du seuil en fonction du nombre de Froude F₁.

Pour le cas du ressaut précédé d'un déversoir standard, l'étude théorique a montré que le nombre de Froude F_1 est lié implicitement au paramètre adimensionnel $S=1-s_2/s_1$ dans lequel s_2 représente la hauteur géométrique du seuil épais et s_1 celle du déversoir standard.

Le dernier volet de ce chapitre a trait à l'approche de *Forster et Skrinde (1950)* et concerne le ressaut hydraulique contrôlé par marche positive. Ils ont élaboré un diagramme qui exprime la variation du nombre de Froude F_1 , en fonction du rapport h_3/h_1 , pour différentes valeurs des hauteurs relatives s/h_1 de la marche positive.

Le second chapitre de cette partie bibliographique, a concerné le ressaut hydraulique forcé type A en canal rectangulaire, le premier volet a trait au ressaut hydraulique forcé par seuil mince. Nous avons présenté en premier lieu les différents types du ressaut forcé proposé par *Rand (1957)*. En se basant sur cette étude, *Bretz (1988)* a classifié le ressaut forcé par seuil en trois types. Il s'agit des ressauts type A, type B et type B-min. Le premier correspond pratiquement au ressaut classique, les deux autres sont obtenus par diminution de la hauteur d'eau aval.

Des courbes, représentant le rapport des hauteurs conjuguées Y_F en fonction de nombre de Froude pour les trois types de ressaut, sont tracées et indiquent que le type A fournit les rapports Y_F les plus élevés, le type B-min les moins élevés et le type B des valeurs intermédiaires.

L'étude a montré que le rapport Y_F des hauteurs conjuguées dépend du nombre de Froude F_1 et de la hauteur relative S du seuil.

Les longueurs relatives du bassin et de la position relative du seuil par rapport au pied du ressaut, varient linéairement en fonction du nombre de Froude, pour les trois types de ressaut forcé. Les longueurs sont maximales pour le type A, minimales pour le type B-min et intermédiaire pour le type B.

Par la suite, les travaux de *Hager et Li (1992)* montrent que la réduction $\Delta Y_S = Y^* \cdot Y$ du niveau aval due à la présence du seuil peut s'exprimer en fonction de la hauteur relative $S=s/h_1$ et de la position relative $\Lambda = Ls/Lr^*$ du seuil. Ils définissent la longueur du bassin comme égale au moins à la distance qui sépare le début du ressaut de la fin du rouleau de fond. La longueur relative $\Lambda_B = L_B/Lr^*$ peut également s'exprimer en fonction de S et de Λ . Les auteurs présentent le ressaut forcé par seuil, comparé au ressaut classique, comme plus avantageux par une hauteur aval moindre, un bassin plus court et une efficacité plus grande.

Le dernier volet de ce deuxième chapitre s'est intéressé aux principaux travaux entrepris dans le domaine de ressaut hydraulique forcé par marche positive dans un canal de section rectangulaire. Nous avons mis l'accent sur les travaux de *Forster et Skrinde (1950)* et ceux de *Hager et Sinniger (1986)*. Dans un premier lieu, L'étude a montré que, le rapport des hauteurs conjuguées Y varie en fonction du nombre de Froude F₁ et de la hauteur relative de la marche positive S = s/h₁.

Dans un second temps, l'étude montre à travers les travaux de *Hager et Bretz (1987)* que la stabilité des ressauts hydrauliques dans des bassins amortisseurs à marche positive est donc indépendante du nombre de Froude F₁. L'étude montre que l'efficacité relative minimale est donnée par le ressaut hydraulique forcé de type A. La plus grande est obtenue pour le ressaut hydraulique forcé type B. L'étude expérimentale, a permis aux auteurs de conclure enfin que la marche positive offre une meilleure compacité, et la zone de dissipation est plus courte.

202

Le dernier chapitre de la partie bibliographique a mis l'accent en un premier lieu sur l'approche théorique de *Khattaoui et Achour (2012)* qui ont montré que l'application de l'équation de la quantité de mouvement au ressaut hydraulique dans un canal rectangulaire composé droit a abouti à une équation fonctionnelle de forme $\phi(Fr1, Y, \beta, \tau) = 0$.

En s'inspirant du développement théorique mené par *Achour* (2000) sur le ressaut hydraulique dans une galerie circulaire brusquement élargie, les auteurs ont proposée une nouvelle approche en rajoutant une force de résistance liée à la forme composée du canal. Après l'injection de cette force dans leur développements théoriques, les valeurs du rapport des hauteurs conjuguées Y et de η se sont révélées interdépendantes en augmentant ou en diminuant et se sont certainement rapprochées de la réalité.

En second lieu, l'étude trait les travaux de benabdesselam et Al (2017 et 2020). Qui ont développé une approche théorique avec et sans considération de la force volumique Fx, assimilée par analogie à l'expression de Borda-Carnot. Des expériences ont été menées avec trois valeurs différentes du rapport τ_y . La validité expérimentale des relations théoriques élaborées avec et sans la force Fx. La validation expérimentale de la perte d'énergie relative est élaborée et ne dépasse pas 4,83% comme erreur maximale. L'étude révèle également l'utilité du canal composé en termes de capacité de dissipation d'énergie lorsqu'il est comparé au canal rectangulaire de référence.

La deuxième partie de notre travail a concerné notre propre contribution à l'étude expérimentale du ressaut hydraulique contrôlé et le ressaut forcé de type A, par seuil mince, par seuil épais et par marche positive dans un canal de section droite rectangulaire de section composée. Cette partie a été divisée en deux chapitres :

- Le premier chapitre de cette présente partie, a été consacré au ressaut hydraulique contrôlé, par seuil mince, par seuil épais et par marche positive.
- Le deuxième chapitre a concerné le ressaut hydraulique forcé type A, par seuil mince, par seuil épais et par marche positive.

Le premier chapitre de cette deuxième partie a concerné l'étude expérimentale du ressaut hydraulique contrôlé par seuil mince, par seuil épais et par marche positive dans un canal de section droite rectangulaire composé.

Nous avons abordé dans ce chapitre en premier lieu, la description du modèle et des essais. Nous avons entamé par la suite la procédure suivie lors des expérimentations.

En effet, le ressaut est généré sous cinq hauteurs initiales h_1 , chaque hauteur initiale h_1 fixe produit une série de mesures. Une large gamme des hauteurs des seuils et de la marche positive testée, correspond à une large gamme de nombres de Froude.

L'étude a montrée que la variation du rapport Y des hauteurs conjuguées en fonction du nombre de Froude F_1 de l'écoulement incident suit une loi de type linéaire pour les deux lits du canal, ainsi les points de mesure au lit mineur sont au dessous de celui au lit majeur. Cela pour les trois types de ressaut étudié. Par ailleurs, une étude comparative à montré que dans le lit mineur les courbes d'ajustement sont confondues, tandis que dans le lit majeur les courbes des ressauts contrôlés par seuil mince et par seuil épais sont quasi-confondues pour pratiquement toute la gamme des nombres de Froude. Cependant un léger décalage est remarquable pour le ressaut contrôlé par marche positive à partir des valeurs du nombre de Froude F_1 supérieures à 7,0 environ. Cette influence s'accroît avec l'augmentation de F_1 .

En deuxième lieu, l'étude a entamé la variation de la longueur relative $X = x/h_1$ du bassin en fonction du nombre de Froude F₁ de l'écoulement incident, Un décalage assez important est visible entre les courbes des ressauts dans le lit mineur et leur homologue dans le lit majeur. En effet, l'étude a montré que la longueur du bassin dans le lit mineur est plus compacte que celle dans le lit majeur. L'analyse des résultats expérimentaux a permis d'aboutir à une relation unique de type linéaire pour chaque lit du canal et cela pour les trois types de ressaut analysés, l'étude comparative a montré que les trois courbes sont presque confondues.

En troisième lieu, l'étude a abordé la variation de la hauteur relative s/h_1 du seuil et de la marche positive en fonction du nombre de Froude F_1 de l'écoulement incident, pour les trois types de ressaut étudiés. L'ajustement des points de mesure par la méthode des moindres carrés dans le lit mineur présente une seule équation de type linéaire, tandis que dans le lit majeur l'influence de la hauteur amont est perceptible.

L'étude expérimentale s'est intéressée ensuite à la dissipation de l'énergie cinétique. Celle-ci étant représentée par la variation du rendement η en fonction du nombre de Froude de l'écoulement incident, pour les trois types de ressaut hydraulique. L'analyse a montré que les points de mesure au lit majeur présentent la continuité des points de mesure au lit mineur. Ainsi les trois courbes de rendement sont pratiquement confondues.

L'étude a abordé enfin le profil de la surface généralisé libre du ressaut. En effet, pour trois types de ressaut et dans les deux lits du canal, la variation du rapport adimensionnel

vertical y en fonction du rapport adimensionnel horizontal X montre que les points de mesure sont confondus.

Le deuxième et dernier chapitre de cette partie a été consacré à l'étude expérimentale du ressaut hydraulique forcé type A par seuil mince, par seuil épais et par marche positive dans un canal de section droite rectangulaire composé.

Dans un premier temps nous nous sommes intéressés à la variation du rapport Y des hauteurs conjuguées en fonction de nombre de Froude F_1 de l'écoulement incident, dans les deux lits du canal pour les trois types de ressaut forcé étudié. En effet, l'augmentation du rapport Y engendre l'augmentation de nombre de Froude. Un décalage est perceptible entre le lit mineur et le lit majeur. Ainsi un décalage important est perceptible entre le ressaut forcé type A et le ressaut contrôlé. En outre, l'ajustement statistique des points de mesures, a permis d'aboutir, avec une assez bonne corrélation, à une équation linéaire liant Y et F_1 .

Par ailleurs, une étude comparative avec le ressaut contrôlé a montré l'influence de la marche positive sur le rapport des hauteurs conjuguées. Cette influence s'accroît avec l'augmentation de F_1 .

Dans un second temps, nous avons abordé la variation de la longueur relative du bassin en fonction du nombre de Froude incident. Il a été obtenu que la longueur relative du bassin augmente avec l'augmentation du nombre de Froude. Ainsi le lit mineur présente un bassin plus court. Aussi le ressaut forcé est au dessous de celui contrôlé. En outre, l'ajustement statistique des points de mesures, a permis d'aboutir, avec une assez bonne corrélation, à une équation linéaire liant Y, F_1 , pour les deux lits du canal et pour les trois ressauts analysés. La comparaison avec le ressaut contrôlé montre que les courbes de ressaut forcé type A par seuil épais et par marche positive sont confondues, et présentent le bassin le plus court dans les deux lits du canal composé.

Dans un autre temps, une analyse de la variation de la hauteur relative s/h₁ du seuil et de la marche positive en fonction du nombre de Froude F_1 de l'écoulement incident, dans les deux lits du canal, pour les trois configurations de ressaut a été effectuée. En effet, il ressort que le rapport de la hauteur relative du seuil augmente avec l'augmentation du nombre de Froude. En outre, l'ajustement statistique des points de mesures dans le lit mineur, a permis d'aboutir, avec une bonne corrélation, à une équation de type linéaire liant s/h₁ et F_1 . Tandis que dans le lit majeur l'influence de la hauteur amont est perceptible. Il ressort que le ressaut contrôlé nécessite une hauteur de seuil plus élevé.

205

Finalement, l'étude expérimentale s'est intéressée à la dissipation de l'énergie cinétique. En effet, la variation du rendement du ressaut hydraulique en fonction du nombre de Froude incident indique que pour une gamme pratique des nombres de Froude incidents, les points de mesure du ressaut forcé type A par marche positive se présentent au-dessus de ceux forcés par seuil épais et par seuil mince et ceux contrôlés. L'effet de dissipation de la charge hydraulique est plus grand pour le ressaut forcé type A par rapport aux autres configurations du ressaut étudié.

REFERENCES BIBLIOGRAPHIQUES

REFERENCES BIBLIOGRAPHIQUES

Achour, B., (1997). Dissipateurs d'énergie par ressaut, Thèse de Doctorat d'état, Institut de Génie Civil, Université de Tizi-ouzou.

Achour, B., (2000). Ressaut hydraulique dans une galerie circulaire brusquement élargie, JHR, 38(4), 307-311.

Achour, B., Debabeche, M., (2003). Ressaut hydraulique contrôlé par seuil en canal triangulaire. Journal of Hydraulic Research 41(3), 319-325.

Andersen, J, V. M., (1978). Undular hydraulic jump, Proc, ASCE, j, Hydraulics Division, Vol. 104, pp. 1185-1188.

Bakhmeteff, B. A., Matzke, A E, (1936). The Hydraulic Jump terms of dynamic similarity, Transactions, American society of civil engineers, Vol.101, pp, 630-647.

Belanger, J.B., (1828). Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes, Carilian-Goeury, Paris.

Benabdesselam, A., Achour, B. and HOUICHI, L. (2017). Hydraulic jumps in a straight rectangular compound channel: theoretical approach and experimental study. Larhyss Journal, 29 (2017), 323-340.

Benabdesselam, A., (2020). Approches théoriques et expérimentales du ressaut hydraulique dans un profil de canal compose. Thèses de doctorat, Université Mohamed Khider Biskra.

Benmalek, A., (2018). Étude de la compacité du ressaut hydraulique dans quelques profils de canaux à ciel ouvert. Thèses de doctorat, Université Mohamed Khider Biskra.

Bidone, G., (1819). Observations on the Height of the Hydraulic Jump, a Report Presented in Meeting of Royal Academy of Science of Turin, pp. 21-80, 1819.

Bousmar, D., (2002). Flow modelling in compound channels / Momentum transfer between main channel and prismatic or non-prismatic floodplains, Ph-D thesis, Université catholique de Louvain, Faculté des Sciences Appliquées.

Bousmar, D., Rivière, N., Proust, S., Paquier, A., Morel, R., and Zech, Y., (2005). Upstream discharge distribution in compound-channel flumes, J.H.Eng, ASCE, 131(5), 408-412.
Bradley, J. N., Peterka, A. J., (1957). The hydraulic design of stilling basins, Hydraulic jumps on a horizontal apron (Basin I), paper 1401; High dams, earth dams, and large canal structures (Basins II), paper 1402; short stilling basins for canal structures, small outlet works, and small spillways (Basin III), paper 1403; stilling basin and wave suppressors for canal structures, outlet works and diversion dams (Basin IV), paper 1404; stilling basin with sloping ; apron (Basin V), paper 1405; small basins for pipe or open channel outlets no tailwater required (Basin VI), paper 1406, Proceedings, American Society of Civil Engineers, J. Hydraulics division, vol.83, No. HY5.

Bretz, N., V., (1988). Ressaut Hydraulique Forcé par seuil, Laboratoire de constructions Hydrauliques, Ecole Polytechnique fédérale de Lausanne, Département de Génie Civil, Communication No. 2.

Carlier, M., (1980). Hydraulique Générale et Appliquée 1er édition.

Debabeche, M., (2003). Ressaut hydraulique dans les canaux prismatiques. Thèse de doctorat d'état, Département d'Hydraulique, Université de Biskra, Algérie.

Debabeche, M., Achour, B., (2005). Effet du seuil sur le ressaut hydraulique en canal profilé en U. Colloque International sur l'Eau dans le bassin méditerranéen 'Watmed2' – Marrakech – Maroc.

Debabeche, M., Lakehal, M., Mansri, N. and Achour B., (2006). Ressaut hydraulique forcé par marche positive. The third international conference on the 'Water Resources in the Mediterranean Basin', Watmed 3 – Tripoli – Lebanon.

Debabache, M., Achour, B., (2007). Effect of sill in the hydraulic jump in a triangular channel. Journal of Hydraulic Research, Vol. 45(1), pp. 135 – 139.

Debabeche, M., Lakehal, M., Mansri, N. and Achour B., (2008). Theoritical study of the forced hydraulic jump by positive step in a triangular channel. Journal of fluid mechanics research, Vol. 35(4), pp. 318 – 326.

Doeringsfeld, H.A., Barker, C.L. (1941). Pressure-momentum theory applied to the broadcrested weir, Transactions, ASCE, Vol. 106, pp. 934-946.

Forster ,J. W. and Skrinde, R. A., (1950). Control of Hydraulic jump by sills, Trans. ASCE, 115,973-1022.

Hachemi, R, L., (2006). Analyse d'un écoulement au travers d'une contraction latérale, Mémoire de magistère en sciences hydrauliques, Département d'Hydraulique, Université de Biskra, Algérie.

Hager, W.H., Sinniger, R., (1985). Flow characteristics of the hydraulic jump in a stilling basin with an abrupt bottom rise, Journal of Hydraulic Research, Vol. 23, pp.101-113.

Hager, W.H., Sinniger, R., (1986). Flow Characteristics of the Hydraulic jump in Stilling Channel with an abrupt bottom rise, J. Hydraulic Research Vol. 23, 1985, No. 2 pp. 101-113; Vol. 24(3), pp. 207-215.

Hager, W., H., (1987). Der Ablufss im U-Profil. Korrespondenz Abwasser 34(5): 468-482.

Hager, W.H., Bretz N.V., (1987). Hydraulic Jump at Positive and Negative Step; J. Hydraulic Research 24(4),237-253.

Hager, W.H., Bremen, R., (1989). Classical Hydraulic Jump : Sequent depths, J.H.R., 27(5), 565-585.

Hager, W.H., Sinniger, R., (1989). Construction hydraulique, Ecoulement stationnaire, Edition suisse romande.

Hager, W.H., Hydraulic jump in U-shaped channel, Journal of Hydraulic Engineering, 115 (5): 667–675, 1989.

Hager, W., Bremen R., H., et Kawogoshi N. (1990). Classical Hydraulic jump; length of roller, J. Hydraulic Research 28(5),591-608.

Hager, W.H., LI, D., (1992). Sill-controlled energy dissipater, Journal of Hydraulic Research, Vol. 30, pp.165-181.

Kateb, S., M. Debabeche, A. Benmalek (2013). Étude expérimentale de l'effet de la marche positive sur le ressaut hydraulique évoluant dans un canal trapézoïdal. Canadian Journal of Civil Engineering, 2013, 40(10): 1014-1018, 10.1139/cjce-2013-0359.

Kateb, S., (2014). Etude théorique et expérimentale de quelques types de ressauts hydrauliques dans un canal trapézoïdal. Thèse de Doctorat, Université Mohamed Khider Biskra.

Khattaoui, M., (2007). Contribution à l'étude des écoulements brusquement variés à faible nombre de Froude, thèse de doctorat, université Med Khider de Biskra, décembre, 2007, Algérie.

Khattaoui, M., Achour, B., (2012). Ressaut hydraulique en lit composé droit, J.H.Eng, LJEE N°20. Juin 2012.

Knight D.W., Demetriou J.D., (1983), Flood plain and main channel interaction, J. Hydraulic. Eng.

Knigh,t D.W., Shiono, K., (1990). Turbulence measurements in shear layer region of a compound channel, J.Hydraul.

Lakehal, M., Debabeche, M., Mansri, N., (2008). Effet de la marche positive sur le ressaut hydraulique dans un canal triangulaire. Larhyss Journal (Article accepté pour publication).

Lane, E.W., Kindsvater, C.E., Hydraulic jump in enclosed conduits, Engineering News-Records: 121 (26), 1938.

Lapray, G., (1967). Hauteurs conjuguées du ressaut, Communication No. 19, Ecole Nationale Polytechnique d'Alger.

Mansri, N., Debabeche, M., Lakehal, M., (2008). Ressaut hydraulique contrôlé par marche positive dans un canal triangulaire. Séminiare national d'hydraulique, Université de Chlef.

Mc Corcodal, (1994), Journal of Hydraulic Research, VOL. 32, 1994, NO.1; 119-130.

Moore, W. L., (1943), Energy loss at the base of a free overfall. Trans. ASCE 108, 1343-1392.

Muto, Y., Shiono, K., Imamoto, H., Ishigati, T., (1998). Three-dimensional structure flow in meandering channels for overbank flow, J. Hydroscience and Hydr. Engrg.

Myers W.R.C (1978). Momentum transfer in compound channel, International association for hydraulic research.

Naot, D., Nezu, I., and Nakagawa, H., (1993). Calculation of Compound-Open-Channel Flow, J.H.E., Asce, 119(12), 1418-1426

Negm et Abdel-Azim M. (2000). Semi-theoretical Approach for Detection of Cavitation at Steps in Sloping Stilling Basins Under Hydraulic Jump Conditions", Faculty of Engineering, Zagazig University, Egypt. Ohashi et al. (1973). Design of Combined Hydraulic Jump and Ski-Jump Energy Dissipator of Flood Spillway. XIII ICOLD Congress Madrid Q.41, R.19: 311-333.

Ohtsu. I., (1976). Free hydraulic jump and submerged hydraulic jump in trapezoidal and rectangular channels. Trans. JSCE 8, 122-125.

Peterka, A.J. (1983). Hydraulic design of stilling basins and energy dissipator, US Department of the Interior, Bureau of Reclamation, Engineering Monograph, No. 25, Denver, Col.

Proust, S., (2005). Ecoulements non-uniformes en lit composé : effets de variations de largeur du lit majeur, Thèse de doctorat de l'INSA de Lyon, spécialité : mécanique des fluides, INSA de Lyon, Lyon.

Rajaratnam, N., (1964). Discussion, Proc. ASCE, J.H.D., 90(4), 341-350.

Rajaratnam, N., (1964). Discussion to Silvester (1964), Journal of Hydraulic Division, ASCE 90(HY4), 341-350.

Rajaratnam, N., (1964). The forced Hydraulic jump, Water Power 16 (jan):14-19, 16 (feb) : 61-65.

Rajaratnam, N., (1965). Hydraulic Jump in horizontal conduit, Water Power, 17, pp. 80-83.

Rajaratnam, N., (1967). Hydraulic jumps, Advances in Hydroscience, 4 : 197-280, ed. V.T. Chow, Academic Press, New York.

Rajaratnam, N., (1964). Discussion of [2], J. Hyd. Div., ASCE, 90 (4): 341-350.

Rajaratnam, N., (1965). Hydraulic jump in horizontal conduits, Water Power, 17: 80-83.

Rajaratnam, N., Subramania, K., (1967). Flow equation for the sluice gate, Proc. ASCE, J. Irrigation and Drainage Division, 93, IR3, 167-186.

Rajaratnam, N., Subramania, K., (1968, 1969, 1970). Profile of the hydraulic jump, Proc. ASCE, J. Hydraulic Division, vol. 94, 1968, HY3 663-673; vol. 95, 1969, HY1 546-557, HY2 725-727; vol. 96, 1970, HY2 579-581.

Rajaratnam, N., Murahari, V., (1971). A contribution to forced hydraulic jumps, J. Hydraulic Research, vol. 9, 217-239.

Rand, W., (1957). An approach to generalized design of stilling basins, Trans. New York Academy of Sciences, Vol. 20 (2), 173-191. 7

Rand, W., (1965). Flow over vertical sill in an open channel. proc. ASCE, J. Hydraulic Division 91, Hy4 97-121.

Rao N.S.G., Muralidhar D. (1963). Discharge characteristics of weirs of limit crest width, La houille Blanche, Vol. 18,537-545.

Riguet, F., étude théorique et expérimentale du ressaut hydraulique évoluant dans un canal trapézoïdal incliné. Mémoire de magister en hydraulique, Département d'hydraulique, Université de Biskra, Algérie.

Riguet F, Debabeche M and Ghomri A. Experimental study of the sequent depth ratio of the hydraulic jump in a straight compound rectangular channel. J. Fundam. Appl. Sci., 2020, *12(1S)*, *56-65*.

Sellin, R. H. J., (1964). A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain, La Houille Blanche(7), 793-802.

Shiono, K., Knight, D. W., (1990). Two dimensional analytical solution for a compound channel, Proc., 3rd Int. Symp on refined flow modeling and turbulence measurements, Tokyo, Japan, 591-599.

Silvester, R., (1964). Hydraulic jump in all shapes of horizontal channels, Proc. ASCE, J. Hyd. Div., 90, (HY1): 23–55.

Tominaga, A., et al. (1989). Three dimensional turbulent structure in straight open channel flows. J.hydraul. Eng

Tominaga, A., Nezu I., (1991). Turbulent structure in compound open channel flows. J.hydraul. Eng

Zahiri, A., Dehghani, A. A., (2009). Flow Discharge Determination in Straight Compound Channels Using ANNs. International Journal of Computer, Electrical, Automation, Control and Information Engineering Vol:3, No:10.