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Abstract

In the last few years, human age estimation from face images attracted the attention of
many researchers in computer vision and machine learning fields. This is due to its numerous

applications.

In this thesis, we propose a two new architectures for age estimation based on facial
images.The first one is mainly based on a cascade of classification trees ensembles, which are
known recently as a Deep Random Forest (DRF). This first proposed architecture is composed
of two types of DRF. The first type extends and enhances the feature representation of a given
facial descriptor. The second type operates on the fused form of all enhanced representations
in order to provide a prediction for the age while taking into account the fuzziness property of
the human age. While the proposed methodology is able to work with all kinds of image
features, the face descriptors adopted in this work used off-the-shelf deep features allowing to
retain both the rich deep features and the powerful enhancement and decision provided by the
proposed architecture. Experiments conducted on six public databases prove the superiority of

the proposed architecture over other state-of-the-art methods.

The seconde method extends and improves the previous scheme for fusing multiple deep face
features for age estimation. This scheme was based on Deep Random Forests (DRF). We
propose a new pipeline that integrates tensor based subspace learning before applying the
DRFs. Deep face features of a training set are represented as a 3D tensor. Multi-linear
Whitened Principal Component (MWPCA) and Tensor Exponential Discriminant (TEDA) are
used to extract the most discriminant information. The features of the tensor subspace are
then fed to DRFs in order to predict the age. Experiments conducted on five public face

databases show that the method can compete with many state-of-the art methods.
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Résumé

Au cours des dernieres années, I’estimation de 1’age humain a partir d’images de visage
a attiré I’attention de nombreux chercheurs dans les domaines de la vision par ordinateur et de

I’apprentissage automatique. Cela est di & ses nombreuses applications.

Dans cette thése, nous proposons deux nouvelles architectures pour 1’estimation de 1’age
basées sur des images faciales. La premiére est principalement basée sur une cascade
d’ensembles d’arbres de classification (Random Forest), qui sont connus récemment comme
une forét au hasard profond (DRF). Cette premiére architecture proposée est composée de
deux types de DRF. Le premier type étendre et améliore la représentation des caractéristiques
d’un descripteur facial donné. Le deuxieme type fonctionne sur la forme fusionnée de toutes
les représentations déja améliorées afin de fournir une prédiction de 1’age tout en tenant
compte de la propriété ambiguité de 1’dge humain. Bien que la methodologie proposée soit en
mesure de fonctionner avec toutes sortes de caractéristiques d'image, les descripteurs de visage
adoptés dans ce travail ont utilisé des caractéristiques profondes disponibles permettant de
conserver a la fois les riches fonctionnalités profondes et la puissante amélioration et la
décision fournies par 1’architecture proposée. Les expériences menées sur six bases de données
publiques prouvent la supériorité de ’architecture proposée par rapport a d’autres méthodes

de pointe.

La deuxieme méthode s’étend et améliore le schéma précédent, par fusionner plusieurs
caractéristiques profondes du visage pour 1’estimation de 1’age. Ce schéma était basé sur les
foréts aléatoires profondes (DRFs). Nous proposons un nouveau pipeline qui intégre
I’apprentissage subspatial basé sur des tenseurs avant d’appliquer les DF. Les caractéristiques
profondes d’un ensemble de formation sont représentées comme un tenseur 3D. Multi-linéaire
Whitened Principal Component (MWPCA) et Tensor Exponential Discriminant (TEDA) sont
utilisés pour extraire les informations les plus discriminantes. Les caractéristiques du sous-

espace tenseur sont ensuite alimentées aux DRFs afin

de prédire I’age. Des expériences menées sur cing bases de données publiques montrent que

la méthode peut rivaliser avec de nombreuses méthodes dans la littérature scientifique.



Mots-clés :

Estimation d’age, caractéristiques profondes, arbres de décision, Apprentissage profond,
forét aléatoire, forét aléatoire profonde, fusion de caractéristiques, composant principal

blanchi multi-linéaire, les tenseurs, MWPCA, TEDA, sousespace basé sur un tenseur.
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Chapter 1

Overall introduction

1.1 Introduction

In recent years, the researchers’ main area of inclination is towards biometric
authentication owing to its possible use in surveillance systems, social security.
Biometrics consists of technologics that arc utilized in measuring and analysing
the particular and unique features of an individual. Tow kinds of biometrics
can be counted: behavioral and physical. The behavioral on is basically used
for verification where physical biometrics may be employed for both verification
identification. Human being, have certain features that are unique and can
be used as biometrics, such as the fingerprint, the eye retina and many more.
Biometrics technologics consist of several varicties of methods used in order
to identify individuals in addition to automate the authentication of identity
by making use of either the physical or behavioral charachters of the person
involved. Among the many biometric techniques. Biometric methods involve
the use of fingerprints, voice, iris, or face... Etc. They each have their advantages

and limitations. Some methods are rigorous but are also very restrictive (high
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cost, the collaboration of the indispensable person in the majority of cases.
etc.) while others are more user-friendly face from precision problems. For
the characteristics, specific to each individual, to be classified as biometric
modalities, they must be:

e Universal (exist in all individuals.),

Unique (possibility of differentiating one individual from another),

e Pcermancnt (may cvolve over time),

e Recordable (possibility to record the characteristics of an individual with
his agreement ),
e Measurable (possibility of future comparisons).

Study on the numerical analysis of human faces (including object identification,
face recognition, gender classification, recognition of facial expression and age
estimation) has drawn attention in the machine vision and pattern recogni-

tion communities, with a growing interest in social robotics and video-based

surveillance systems [2

1.2 Age estimation : Motivation

The quality of interactions with an individual can be improved through a
prior-knowledge of his\her age. This was a major reason for researchers to take
part in the age estimation research field. The facial age estimation via face
images considered a new-born field in the recent years. Duc to its importance
and wide applicability in the modern society, this subject flourishes and grows,

year by year, to be a salient one.
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Automatic age estimation in face images has proven to he of a great value.
It was thus adopted in many areas like Human Computer Interaction (HCI),
security and management applications. IFurthermore, many companies and
advertisers rely on age categories when they recommend products and services
to their clients.

A set of utilitics can be offered by automatic age cstimation. It can boost

surveillance systems and facilitate the investigations made by the police

1.3 Age Estimation: Main challenges

Age estimation in face images encounters a varicty of challenges, some of which
arc caused by human aging process itself that cannot be governed by the control
process (see Figure . Where the advancement of aging is uncontrollable and
no one is able to age whenever and wherever, it is also exceedingly laborious to
obtain enough training data for age estimation. While a few other challenges
can be grouped in two different categories of factors: intrinsic and extrinsic
factors [—1] Intrinsic factors are rclated to health conditions. However, the
extringic factors are external to the health conditions. These factors can be
related to the living style and the working environment. Other challenges
include the sample origin (i.e., society and region) which can influence the
estimation precision.

Furthermore, the automatic age estimation should overcome the challenge of
close cross age corrclation, i.c., a man of 40 years of age looks almost the same

as in his 39 and 41 years of age. The latter encouraged a lot of researchers to

lean toward the regression solutions [5].[6],[7]. Other works view age estimation
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cither as a multi-class classification problem [8],[9], or as a combination of

regression and multi-class classification [10],[11].

Figure 1.1: Example of aging effect on a subject from FG-NET database. The appearance
of the subject’s face was affected considerably by aging.

1.4 Proposed Methods

the work in the third Chapter 3 : Feature Fusion via Deep Random Forest
For Facial Age Estimation encouraged by the proposed method by Zhou et al.
[12]. The authors in the mentioned work come up with a new decision trees
ensembles Approach to a wide variety of classification tasks. The interest with
this method is its nearest performance and accuracy with those ol Deep Neural
Networks. The gclorest or Deep Random Forest is the named of this method.
the principal of gcForest is the sequence structure generated by an ensemble of
forests, started by the Multi Grained Scaning as a feature extraction. As in
the deep neural networks, layer-by-layer processing is the manner of learning
representation for the raw features. The authors asserted that the training of
these models is a lot simpler than training deep CNNs. They applied their
examples to classic recognition problems. the original gcForest doesn't suit the
age estimation problems. In gcForest structure, the first layer takes as input
rawbrightness patches (obtained by sliding windows as it appears in Figure
in the original image. The patches are fed to the random forests to get an
encoding. While this stunt delivered astounding outcomes for classic object

recognition and classification problems, it neglected the issue of age estimation

4
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in a satisfactory way. Which motivated us to propose a method that can be more
adequate with the concerned problem. We introduce two main modifications:
(1) we use image descriptors that can be either hand-crafted or provided by a
pretrained deep CNN, and (ii) we propose a novel architecture for the deep
random forests allowing to fuse any types of image descriptors. In the current
work, although we use the DEX Chalearn pretrained CNN modcl to extract
image’s features, any other types of image features can be used and fused. For
each type of image features, we create an ensemble of Random Forests as in

[12] (that will be later called Deep Random Forest-Fusion (DRF-Fusion)) to
extract a representation vector with more information. In a first phase, we
arried out a fusion on the ouputs of cach type to get one fused representation
vector. In a final stage, we applied a different form of DRF, namely fd-DRF
(final Decision-Deep Random Forest) to the fused representation vector and
generated the predicted age. In [d-DRF, a modified decision function is adopted
by imitating some deep learning based models. This decision concerns the final
output of the proposed architecture and uses the N,,,, probabilities parameter
(provided by the user), to sclect the Ny, ages having the largest probabilities.

It then caleulates the final prediction age through their arithmetic mean. The

main contributions of this work are summarized as follows:

e A novel deep architecture for Random Forests that is applied to the facial
age estimation problem.
e The architecture contains two main parts:
1. The first part encodes and fuses the features of data representations.

2. The second part is a Deep Random Forest structure that provides

final age prediction using the largest N,,,. probabilities.

o
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e The proposed architecture allows the integration and fusion of different

tvpes of image descriptors.

In the Fourth chapter we propose a novel approach able to reduce many of
the above limitations. In our proposed second approach we use pre-trained
CNN models in order to extract features from face images. These features
provided by different nets will be used as input features to our estimator. The
latter is composed of tensor transformations and Deep Random Forests.
Thus far, subspace transformation is the furthermost utilized dimensional
reduction techniques [13,[14]. Various reduced dimensional algorithms have been
proposed in the preceding period that have suited the feature extraction. The
Principal Component Analysis (PCA) [_15] and Linear Discriminant Analysis
LDA [l()] are frequently used. They are linear subspace techniques. Mainly,
an image face is a matrix of m by n pixels, which is treated as a 1-D featurc
vector of size m x n. Unfortunately, this process involves losing the pixels’
position information [17]. Recently, multilinear subspace techniques based on
tensor analysis of data in high dimensional spaces is regarded as a remarkable
multi-linear technique [18]. These approaches authorize the conservation of the
important face structure information. Multilinear transformations analyze the
multifactor structure of image face sets over n different index number.

The common linear subspace methods PCA and LDA are extended to Multi-
linear PCA (MPCA) [17] and Multilinear Discriminant Analysis (MDA) [19]
that allow the mathematical of tensors to be manipulated. The high tensor
order (i.e.,  2) are presented in a normal form to show the set of face images
without collapsing the initial structure and corrclation of data [2(]] In [l] the

authors propose a new usc of an adopted MPCA, this latter is named Multilincar
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Whitened Principal Component Analysis (MWPCA), which can deal with the
small sample size issue in high dimensional space and can enhance the tough
discrimination obtained by classical MPCA. The multilinear varied analysis
MDA was also extended to Tensor Exponential Discriminant analysis TEDA
50 as to improve the discriminant data included in the null space of the within
class scatter matrix of cach tensor’s mode. TEDA increases the margin amidst
samples belonging to multiple classes by distance diffusion mappings. The

main contributions of this work are the following;:

e We propose a multiview feature fusion that enhances the performance of

our previous proposed method in [.z lj and the techniques in [l]

o We fuse the deep features using the Whitened principal component anal-
ysis (MWPCA) and Tensor exponential discriminant analysis (TEDA),
respectively.

e Once the face image features are represented in the tensor subspace, the

final age is estimated using our recent Deep Random Forests (DRF) [21].

1.5 Benchmark databases

1.5.1 MORPH

This database contains images of 13,618 individuals (males and females).
It contains more than 55000 unique images. Each facial image is annotated
with chronological age. Ages are between 16 and 77 years. MORDPH can he

divided into more than ethnicity: African, European, and others. Following
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,[24], we use the Caucasian subset, which contains 5492 images from the
original MORPH database. We use the random split evaluation protocol on the
Caucasian images. The 5,492 images are randomly partitioned to 80% training
set and the other 20% testing set. It is repeated five times. The average of the

five different splits will be the final performance.

1.5.2 FG-NET

This is a widely known database in age estimation. This database has a large
variation in lighting conditions, pose and expression. FG-NET contains 1002
facial images associated with 82 individuals. Fach individual has more than 10
photos taken at different ages. The FG-NET age range is from zero to 69. As
in [2'") '()] we use the “Leave One Person Out” cross-validation on FG-NET. We
leave one individual image out for testing and the other 81 individuals images

for training.

1.5.3 PAL

The Predictive Aging Lab face is another database from Texas university.
It contains 1046 frontal face images (430 males, 616 females). PAL contains

faces with different expressions. We perform the random partition as in [2

where we randomly partition images in 80% training and the other 20% for
testing. Tt ig repeated five times. The average of the five dillerent splits will be

the final performance.
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1.5.4 LFW+

The MSU LFW+4 database [27] was created by extending the LFW database
to study the joint attribute learning/estimation (age, gender, and race) from
unconstrained face images “the images were taken in different positions and
conditions and that what makes this databasc hard in the test.” The extended
LFW database (LEW+) contains 15,699 unconstrained face images of about
8,000 subjects. For each [ace image, three MTurk workers were asked (o provide
their estimates of age, gender, and race. The apparent age is determined as the

average of the three estimates. we use the five-fold cross validation used in [27]

1.5.5 FACES

The FACES database contains 2052 face images from 171 persons. For
each person, there are 6 expressions: neutral, sad, disgust, fear, angry, and
happy. For evaluation, we used the five random split protocol as in MORPH,

Caucasian, and PAL. We conducted the experiments on image subset having

the same facial expression [2

1.5.6 APPA-REAL

into train, test, and validation. We used the same setting that is described in
[28]. This database contains two types of age labels: Real Age and Apparent
Age label. The Apparent Age labels are gathered from around 300,000 votes.

On average, around 38 votes per each image, and this makes the average

apparent age very stable.
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1.6 Evaluation Metric

To cvaluate the performance of the proposed age estimation method, we used
the Mecan Absolute Error (MAE). It is one of the most known indicators for age
estimator performance evaluation in literature. MAE calculates the average of

absolute error between the predicted and the ground truth ages. It is given by:

i s
MAE = = Dy — 4. 1.1
__n;jm el (1.1)

where n is the number of tested images, p; is the predicted age of image ¢, and

gy is the ground-truth age of this image.

1.7 Thesis structure

The rest of this thesis was organized as follows: Chapter 2 is brief presentation
of facial age estimaion exisiting techniques by order of appearence of this field.
In Chapter 3 we present a literature review to facial age estimation, firstly we
introduce the deep learning methods and their importance to biometrics. Then
we summarize the performance terms for facial age estimation. Moreover, we
give a briel of existing and a comparison between the latest works is given.
Chapter 4 and 5 are the description of every methods and steps used in our
approach. The last chapter is a general conclusion about our work and an

envision for some future works.
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Chapter 2

Overview of existing techniques

2.1 Introduction

Estimating the age automatically via facial images process is considered as
an age guesstimate (age approximation) that is based on the numerical person’s
facial image analysis. The age approximation is done by estimating the exact
age value of the given face image of an individual or by determining the age
group.

Our work focuses on the estimation of the exact age value, in which a face
image was automatically labeled with the estimated age through a learning
process. The figure 2.1] shows the automatic facial age estimation system from

a face image.

2.2 Overview of existing techniques

Pioneering works on facial age estimation faced a lot of challenges due to the

scarcity of annotated image databases. The scientific community has put a

11
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Age
estimation
Algorithms

Face image

Figurc 2.1: Flow chart presents the automatic age cstimation systems.

great deal of work into developing models of age estimation based on the human
face. For age estimation, the Image characterization can be warped up using

several varied state-of-the-art models.

2.2.1 Anthropometric Models

This model was build on the individual faces measurements and proportions
as presented in Figure The first work that showed interest in the
subject was done by Kown and Lobo . They classified subjects into babices,
adults and senior adults. Their method utilizes the analysis of skin wrinkles

and craniofacial shape evolution.

2.2.2 Active Appearnance Models

Lanitis et al. , later, used the Active Appearance Model (AAM) by
considering both face anthropometrics and texture as presented in Figure

Many methods exploited hand-crafted features such as: Local Binary Pattern

12
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Tn-gn L \ e 9
. . - -
gn :

Figure 2.2: anthropometric models which based as illustrated on the measurements and
proportions of the human faces |31

(LBP) , Biologically Inspired Feature (BIF) and Haar-like features [33).
Encouraged by the cfficiency of gait representation and Gait Encrgy Image

(GEI) [37], Gabor features were utilized in [38]. A different approach that can

be found in Gen et al. [39]. The authors considered each facial image as an

instance linked with an age label distribution.

Labelled image Points Shape-free patch

Figure 2.3: Tustration of the face active appearance example
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2.2.3 Aging Patterns Subspaces models (AGES)

[n this model the data structure | or the so called Aging pattern, deals with
the sequence of a person aging face images as a whole instead of dealing with
it @, it is based on the presentation of the sequence of facilal individual
images which sorted in time order as illustrated in Figure 2.4 The main
challenge in the aging pattern subspaces models is missing values, the aging
patterns are always incomplele, there are many missing values in the aging

pattern vector.

Y

Aging Pattern X

Feature Extractor

Ll
4

0 1 7 3

m m b, m

5 6 7 8

b m m by

Aging Pattern Vector

Figure 2.4: Presentation of the aging pattern subspace (AGES) where it presents as an
sequence of individual face images sorted in time order .41'

2.2.4 Age manifold

Age manifold deals with age cstimation problems as a special case of su-

pervised manifold embeddind problems. Assume that the aging face images

14
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are distributed on an intrinsic low-dimensional manifold (faces with close ages

locate closely on the manifold)set in time order. Common approaches: Orthogo-

nal Locality Preserving Projections (OLPP) [ 44], Synchronized Submanifold

fE ]

Embedding (SSE)[45]

2.2.5 Hybrid Methods

Hybrid modecls arc designed to achicve better age cstimation accuracics as a
combination of two distinct models. Many of the well-used facial features of
human aging modeling extraction techniques are mentioned as Gabor filters
[46], Linear Discriminant Analysis (LDA) [47], Local Binary Patters (LBP)

[48], Local Directional Patterns (LDP) [49],Grassmann Manifold [50] and Bio-

logically Inspired Features (BIFs) [m



Chapter 3

State-of-the-Art

3.1 Introduction

The need to develop more accurate age estimation models is rendered
necessary due to all of its recent various application arcas. Numerous rescarch
works have been donce in this arca. Howceve, more cfficient and accurate
results are achieved through the use of artificial neural networks for facial age
estimation. In this chapter, a briel presentation of the deep learning methods
that have recently been developed, their enhancement and evolution will be
given, also their applications in the field of facial age estimation as in the work

age cstimation based on facial image.

3.2 Deep Learning

In the last decade, Deep Learning (DL), a sub-field of machine learning,

has witnessed a great interest within the artificial intelligence community.

16



Chapter 3. State-of-the-Art

Figure depicts how the term 'Deep learning’ has been traded in the last
decade reaching its trending popularity peak. DL is based on layer-by-layer
cascade structure, each layer consists of several nonlinear modules, which are
called neurons. (i.e. neurons ). Through the network layers, the information
is passed from where the information at each hidden layer is hierarchically
transformed to rcach a higher abstraction level at the output layer. The multiple

"Deep Learning" on GoogleTrends
Interest over time (2004-2019)
100

0
2004-01 2005-09 200705 2009-01 201009 201205 2014-01 201509 201705 201901

Figure 3.1: Trending of the term "Deep Learning” over the time period (2004-
2019) estimated using Google Trends.

levels in the cascade structure make these deep models more generalized giving
them the ability to automatically generate powerful features that can be applied
directly on new domains without previous knowledge of them. Each level of
deep models has a considerable number of trainable weights which can be
learned using supervised, semi-supervised, or unsupervised learning procedurc.
. in which a large training dataset is required for the training. ([iﬂﬂ)

Even though the origin of DL backs to ([p4l [55L [56]) , it has started

attracting more attention by ([57, [58. [59]). Also, one of the key factors

that have revived the research in DL is when the training of deep network

architectures was accelerated using Graphics Processing Units (GPUs) in late

17
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2006. Next, the CUDA programming platform was launched by NVIDIA

company , which allowed for an enhanced exploitation of GPUs capabilities for

parallel processing. ([60, [61]).

Next, Deep Learning has seen an exponential growth starting by 2012 when
[62] have won the annual contest of ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) for the year of 2[]12ﬂ They proposed a Deep Learning ap-
proach based on a convolutional neural network model that is named "AlexNet'.
In the purpose of the classification task for a large hand-labelled image data-set
(ImageNet ([63])), they drastically reduced the error rate to 17% compared
to 27% of error rate using handcrafted engineered features. In the next year,
only three teams proposed non-Deep Learning methods from a total of 24
participated teams in ILSVRC-2013, which was an omen sign to the imminent
rise of Deep Learning techniques.
In summary, the success of Deep Learning is a consequence of its observable
results. Where Deep Learning had outperformed the traditional handcrafted
feature methods. This breakthrough was the result of three main factors:
Firstly. the availability of large-scale datasets used to train the models used
to train millions of the models parameters. Secondly, the great advancement
of computational power hardware (Graphics Processing Units (GPUs)), which
become faster. Finally, the considerable number of the open-source libraries
and frameworks that are supported the Deep Learning technologies, but still

there are many challanges to overcome such as the computations costs and the

expensive hardware used.

Thttp://www.image-net.org/challenges/LSVRC/2012/
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3.2.1 Artificial neural networks

Neural networks are defined as a structure that can copy and imitate how
the human brain learns, in other words it perfectly works as the biological
diagram of human neural system. As displayed in Figure 3.2] these systems
include input layers, output layers and some scts of hidden layers which make
appropriate connection between input and output lavers. Each connection
reports a welght associated with it and alterations in these weights directs the
learning process. The latter comes in two types, supervised or unsupervised.
As the name suggests, in supervised learning the output of the network is
compared to the ground-truth (output labels) in the training phase. ANN
comparcs its guess answers with correet answers to make modifications in the
weights. In contrast, the unsupervised learning process is done in the absence
of any supervision. Herein, clustering works best in which we divide the set of
samples into groups based on some unknown pattern. There are essentially two

types of Artificial neural networks named as Feed-forward and Feedback ANN.

Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

O Output 1

Input 4

Input 5

Figure 3.2: Basic architecture of Artificial Neural Networks. 164J

Both these types are depicted in Figure 3.9 a and b. As shown in this fgures,
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feed-forward ANNs does not contain any feedback loops and are unidirectional
in nature. They contain fixed number of inputs and outputs. On the other
hand, Feed-back ANNs are made up of feedback loops which act as memory

elements.

Figure 3.3: a) Feedforward ANN. b) Feedback ANN. @

X

3.2.2 Deep Neural Networks

Deep Neural Network (DNN) is a neural network with several layers. Fach
layer is comprised of several neurons, which form the basic of a computational
unite in the network, with a specific activation function and parameters © =
{W,~} ( E(E)ﬂ) The term "deep” is referred to using multiple hidden layers
instead of one hidden layer. Generally, most of DNN architectures are hased
on feed-forward neural network in which there are no loops between units (no
feedback connections). where the information is propagated from the input
layer to the output via the hidden layers, where the network learns progressively
the high-order features. More precisely, cach hidden layer aims to learn from the
outputs of the previous layer, and it generates an output to be the input of the
next layer. Generally, the weights of the parameters in each layer are learned

using a learning algorithm by optimizing by optimizing an objective function.
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The network output is relative to the addressed task such as classification or
regression.

Several deep neural network architectures have been proposed for different
tasks. In this this section, we introduce the common Deep Learning architec-

tures.

Convolutional Neural Network Convolutional Neural Network (CNN)
is onc of the most cffective and important DNN architectures [67]. They have
been shown an impressive performance on a wide range of applications such as
image analysis and recognition, voice recognition, natural language processing,
and recommendation systems.

The CNN architecture is typically composed of several successive layers
(Figure ). There arc three main types of layers that arc generally observed
in the CNNs architectures: Convolutional Layers (Conv), the Pooling Layer
(Pool), and the Fully-Connected Layers (FCLs):

1) The Convolutional Layer: performs a specific function of transforma-
tion on local regions in the input (receipt field) to obtain a useful representation.
It functions as a feature extractor. An input image is passed through a series of
sliding learnable convolution kernels (filters), creating as result 3-dimensional
convolution feature maps (Fmaps) (see Figure . The feature maps values

are produced using the neuron activation function that can be defined as:

E

Pl Z wyx; + b (3.1)

where x; ,u; and b are the convolutional input values (receipt field), the weights

(filter values), and the bias, respectively. s represents the filter size.
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Figure 3.4: Principle of filter sliding in the convolution layer over an image ﬂ‘@

In addition, a correction operation called Rectified Lincar Unit (ReLU) is
also applied to the obtained feature maps. ReLU is an element-wise operation

defined by (Equation 3.2)). The output feature maps have non-negative values.

f(z) = Maz(0,z) (3.2)

2) The Pooling Layer: performs a sub-sampling operation, by shrinking
the spatial dimensions (i.e the height and the width) of the intermediate
feature maps and retaining the most important information. The pooling is an
important concept for the CNNs since it aims to reduce the size of the feature
maps in order to minimize the number of parameters and the computation
operations in the network. The pooling is generally operated as a max, average,
or sum function on every depth slice of the input feature maps independently.
Whereas the depth dimension d is still unchanged, the height and the width
dimensions of the depth slice are down-sampled using pooling filters (Figure ‘

The output of this layer produces typically a 3-dimensional feature maps of
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Figure 3.5: Pooling layer principle: example of performing Max pooling function

the dimensions (w x h x d) which can be defined by:

A B
w = ”lf 4l (3.3)

o }h — F
S

h + 1 (3.4)

Were w, by, and d are the input width, height, and depth respectively, S
ig the stride, and F is the spatial extent. For the two pooling hyper-parameters
F and S, they are commonly used in two variations: F' =2 and S = 2 as well
as the overlapping pooling in which /' =3 and § = 2.

3) Fully-Connected Layers (FCLs): as its name indicates, is a feed-
forward neural network in which all neurons are connected to all the neurons
of the next layer and have connections with all previous layer neurons (Fig-
ure 3.6l As showed in Equation the FCLs neuron activation function can
be computed using matrix multiplication adding to bias offset.

Adding FCLs able the CNN model for end-to-end learning ([70]). More
precisely, after feature generation, we need to classify the data into various
classes. Thus, the obtained high-level features from the convolutional layer are

fed into the FCLs structurce that learns the non-linecar combinations in that
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Input Layer Hidden Layers Output Layer

e @
@ @

o @
o @

D
O
O

Figure 3.6: MMlustration of Fully-Connected Layers sl.rl_lct.l_lre.ﬂ@

feature space. Over a series of back-propagation epochs, the weights of the
neurons arc updated progressively for optimising the loss function. Finally, the

last FCL output the final classification decision.

VGG-16 Simonyan and Zisserman [7__1}| designed the VGG-16 archi-
tecture which is a very uniform architecture consisting of 16 convolutional
layers, 5 Max-pooling layers, 3 fully connected layers and a SoftMax layer at
the output. A ReLU layer is provided after all hidden layers. The essential
engineering of VGG-16 is introduced in Figure of the article. Perhaps the
most engaging point about this engincering is its cffortlessness. An ageregate
of 138 boundariecs are utilized in this enormous organization design and still
it is generally utilized for research works in view of its straightforwardness
and consistency. Top 5 mistake of VGG-Net is 7.32% which is tremendously

decreased in contrast with that of Alex-Net.

Pre-trained Convolutional Neural Network The successtul results
of CNNs on image recognition tasks have motivated further the research in net-

work architecture design. Since 2012, several CNN architectures are proposed
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Figl.lre 3.7 VGEE-16 architecture ﬁ@]

achieving the stat-of-the-art performance on ImageNet data-set for different
ILSVRC competition tasks, whereby cach CNN architecture has tried to ad-
dress the shortcomings of previous CNN architectures adding new structural
reformulations or by exploring different strategies for parameter optimization
in order to improve the CNNs performance and reduce the computational cost.
Figure summarizes the history of the CNN architectures evolutionﬂ'_?_‘jﬂ‘
The full training of CNN models is a computationally expensive process
and requires a huge amount of labelled data. Thus, several studies have
examined the generalization power of the CNN architecture, demonstrating the
transferability of the CNN models that are trained upon ImageNet data-set.
In which these pre-trained CNN models are able to serve as the backbone for
other recognition tasks on other datasets. In the literature, the most cited CNN

networks are belonging to the three families: VGG, Resnet, and Inception @H
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Figure 3.8: History of The CNN architectures evolution .
3.2.3 Decision Trees

Decision tree is a classifier in the form ol a tree structure, where each
node is either: Decision node specifies some test to be carried out on a single
attribute-value, with one branch and sub-tree for each possible outcome of the
test Leaf node indicates the value of the target attribute (class) of examples
Decision trees attempt to classify a pattern through a sequence of questions.

CART (Classification And Regression Trees)
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3.2.4 Random forest

Combination of the bagging (random selection of examples) and random selec-
tion of features. Random Forest grows many classification trees. Each tree gives
a classification, i.c., it -votes- for that class. The forest chooses the classification
having the most votes (over all the trees in the forest). More details will on

random forest will be presented in Chapter 4.

3.3 Recent advances on neural networks based

facial age estimation

We have done an intensive examination of moste necural networks based
facial age estimation methods proposed in the literature. This section gives a

briel summary of the examined works in a chronological order

3.3.1 Feed-forward back propagation artificial neural net-
work (FFBPANN)

Dchshibi et al. [73] proposed the first work of FFBPANN in face age
estimations tasks in 2010. The proposed algorithm based in general on the
anthropometric model, their method classifies the input images of frontal face in
four age groups. Authors gathered for their proposed method a database named
the [ranian Face Database. Their algorithm based on a Neural Network, the
later use the computed facial features and rankles densities for the classification.
Dchshipi et al. technique obtains an accuracy of 82.28%. Izhadpanahi ot al.

[74] designed an age classification system based on the same geometric ratio

and rankles analysis but they used an SVC (support vectors classification) and
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they obtain an accuracy of 92.62% better than Dehshibi ﬂ?_dﬂ without using any
ANN. In general classifying face images in age groups is considered a limited

goal for the real word applications.

(b)

Figure 3.9: a) Feedforward ANN. b) Feedback ANN.

3.3.2 Deep learned Ageing Pattern

Deep Learned Ageing (DLA) Pattern is structure created by Wang et
a.l.ﬂ@ for age estimation.They created six layers which make up the entire
architecture of the Convolutional Neural Network (CNN). Three convolutional
layers, two sub-testing (pooling) layers, one fully connected layer with Multiple
Logic Perception (MLP) arc utilized. Training of the CNN is trailed by
features extraction. Dimensionality decrease of features is accomplished utilizing
Principle Component Analysis (PCA), which improves significantly the training
speed of the the model. ageing patern is made by connecting thege features
extracted from different layers. Authors have utilized Manifold Learning for
catching the aging example and face maturing structure. They have compared
the Marginal Fisher Examination (MFA) @], Locality Sensitive Discriminant
Analysis (LSDA) [77] and Orthogonal Locality Preserving Projections (OLPP)

@ in their work. Results are assessed on MORPH and FG-NE'T datasets.
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Support vector regression (SVR) proves to be the best among all the classifcation
and regression schemes. The proposed DLA pattern has likewise outperformed
all the existing state-of-the-art methods. The values of MAE obtained from

MORPH and FG-NET database are 4.77 and 4.26 years respectively.

3.3.3 AgeNet

In (78], Liu ct al. used the score fusion of regression and classification
models to handle the age estimation tasks. AgeNets are Enormous scale deep
convolutional neural networks trained on age regression model and age classi-
fication depending on real-value, Gaussian label distribution respectively. A
general deep transfer learning plan is likewise conveyed by the authors which
comprised of two phases. This plan firstly pre-trains the multi-class face classifi-
cation network and conveys it into fine-tuned apparent age estimation network.
Thus, this procedure overcomes the overfitting issue. This methodology of
apparent age estimation has indicated its accomplishment in ICCV-2015 look
for apparent age estimation challengeIn a part of the evaluations, authors
compared age classification and age regression, the comparison of those different
transfer learning stages and the performance in the final evaluation. The cight
models fusion revealed in the research paper plays out the best. For this best

outcome, MAE is 3.33.

3.3.4 VGG-16 Architecture and the Fine-Tuning Meth-
ods

In such techniques researchers have ameliorated a multiple CNN models

which where already trained for the sake of enhancing a better efficiency in
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age estimation task using the fine tuning procedure. In fine tuning techniques
the research are generally based on weights tuning based in general on weights
tuning, the pre-trained CNN model weights are kept constant in some layers
while the others are trained. Mostly, the layer that preserve their weight are the
first layers, this latter features are generic and can be acceptable to other tasks.
A more specific features that can benefit from the fine tuning approach in the
last layers. For the age estimation issue, the CNN model are fine tuned on the
individual age. Several works take a part in this techniques. Mali et al. in [79]
used a multiple labels for image instead of using average age of the annotated
face image. They employed and fine-tuned a CNN model that were based on
VGG-16 architecture [71] and pre-trained on the IMDb-WIKI database [8?)1
In [SL]J authors presented another method named Decp Expectation (DEX) of
apparent age to tackle the estimation of apparent age in face images. Their
proposed DEX method uses also CNNs based VGG-16 architecture pre-trained
on ImageNet. Also authors gathered face images with the available age in the
internet, they created the moste largest age estimation database IMDb-WIKI.
The proposed model was fine-tuned on the IMDb-WIKI which they created
it, after that the authors fine-tuned in addition the resulting network on 20
different splits of the Chalearn LAP dataset, which is a famous competition
and DEX win the first place in 2015 LAP challange [81] against 115 registered
tearns.

other technique under the axe of Deep Age Distribution Learning was taken
a part in this ficld. In genceral, there are two types of Age Estimations:
Chronological Age Estimation and Apparent age estimation.

Apparent age Estimation diflers from actual chronological age in the way it is
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decided. The description of each face picture is finished by numerous people
and the estimation of the relative multitude of ages is taken as the right age and
standard deviation is utilized to foresee the uncertainty in this age. Deep Age
Distribution Learning (DADL) is the used algorithm by Huo et al. (2016) they
presented their work and they utilized again the idea of multiple output CNN
introduced hy Malli ct al. (2016). VGGFace is deployed for pre-training of deep
convolutional neural network (DCNN) and for the fine-tuning of the age dataset.
Instead of a single age, the authors used embraced Gaussian age distribution
of a facial image as the training set. This Gaussian age distribution is created
from the mean age and standard deviation. Datasets utilized for estimation are
IMDB-WIKI datasct, ICCV ChaLearn taking a gander at individuals workshop
2015 and 2016 datascts. DADL technique is positioned sccond out of 105
contending members in track 1 of ChaLearn taking a look at People 2016:
Age estimation. Deep Age Distribution Learning (DADL) is a combination
of deep learning (Geng and Ji 2013) and label distribution learning (Geng
2016). Engineering of the presented profound CNN contains five convolutional
layers, two fully connected and ReLU layers and one output layer. For intrigued
analysts, measurements, pixel size and number of neurons for each layer are
clarified in detail in the research paper. Various graphical interpretations, mean
absolute error (MAE) and € error are used for evaluation and validation of
the proposed study. € error and MAE result values for the proposed method

are 0.1341 and 1.7569.
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3.3.5 CNN for age estimation
Cascaded CNN

Age estimation utilizing proposed cascaded CNN is intended to manage
unconstrained face images of Adience dataset, FG-NET dataset and ICCV
2015 Chalcarn challenge [80] datasct. The methodology utilized by Chen et
into an age range utilizing age group classifier. In stage two, apparent age
is agsessed by caleulating the average age anticipated from the mean of each
age gathering. This is done by utilizing apperent age regressor. In the final
stage, an age correcting system is followed to address any of the anticipated
age mistakes. The authors portrayed a clear pipeline of the whole methodology
by explaining an example of a toy. The results indicated a better execution
ol this techniques compared to state-ol-the-art methods. The Mean absolute
error and Gaussian error was chosen as the evaluation metrics. Experiments
show the value of Gaussian error as 0.297, Exact accuracy as 52.88 + 6 and

1-OFF accuracy as 88.45 + 2.2.

CNN for age estimation with age difference

Motivated by the issue of weakly labeled and non-labeled training samples,
which can be found in social media platforms as Puniany et al. declared in

suits the montioned issue. Age diference can be determined from a couple

LBQ , Hu et @1[83] ameliorated a Deep Convolutional Neural Network model

of pictures of a particular individual. This CNN is first intended for ageing
datasct with age labels and afterward finally improved to work for non-labeled

againg dataset calculation utilized for implanting age data is Kullback—Teibler
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(K-L) divergence algorithem. Three sorts of loss functions are planned on

top of the SoftMax layer. The mentioned functions are named as entropy

loss, cross entropy loss and Kullback Leibler (K L) divergence loss [84]. CNN

models attempt to decipher the right age range from the combination of the
loss functions. Right age range is set apart by the single peak estimation of the
probabhility distribution of the age classcs. This modecl has demonstrated its
benefits in real time applications to make successful age estimation of human

face images with arbitrary age, arbitrary ethnicity and arbitrary poses. All the

tests are done of FG-NET, MORPH and year labeled LEW [83]

dataset.

The authors have also developed a dataset that contains approximately one
faced images marked with the dates on which they are clicked. Each face image
is marked with the people identity and timestamp. Cumulative score and mean
absolute error are used as the evaluation metrics. The authors intend to exploit
other soft biometric traits like gait, height and hair style for the or a similar
assignment in the coming future. MAE acquired for FG-NET data set is 2.8
and that for MORPH is 2.78. Cumulative curve for the proposed technique

shows significantly better outcomes than that for kNN, SVR and SVM.

3.3.6  Other facial age estimation methods

Aside [rom the previously mentioned different models of Neural Networks
for facial age estimation proposed by researchers, there are numerous other
classifications, regression and hybrid techniques used for age estimation.
Several works on facial age estimation have been proposed. The age estimation
crror in terms of mean absolute crror (MAE) metric has been decrcased by
a massive margin from the appearance of this task. where, In [SU] the au-

H
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thors proposed to predict age category in images where three categories were

congidered: babies, adults, and senior adults. In [32], the authors used both

| used hand-crafted features, and achieved modest results.

and ]
In recent times, deep learning has bloomed significantly and gained popularity
after being validated experimentally in a variety of ficlds in artificial intel-
ligence, mainly in image recognition. Researchers have used Convolutional
Neural Networks (CNN) extensively in different image-based tasks. The ex-
cellent performances in pose invariant face recognition tasks have led to its
adoption in many demographic attributes estimation studies dealing with eth-
nicity, gender, and age estimation. In r86] the problem of age estimation
through deep learning techniques was investigated. The diagnosis included
three different kinds of formulations for the age estimation problem. They used
the live most representative loss [unctions. In the work done by Huerta et al.
[9] a deep learning scheme have been proposed to upgrade the state-of-the-art.
A robust deep feature encoding-based discriminative model for age-invariant
face recognition has been suggested in [ré%ﬁf’] Rescarchers in this paper used a
pre-trained Deep CNN model to extract high-level deep features. The extracted
features were then encoded by learning a codebook, which converts each of the
features into a discriminant S-dimensional code-word for image representation.
They used canonical correlation analysis to fuse the pair of training features.
For the recognition purposes, they uses a linear regression-based classifier. The
authors in [8@] used a multitask CNN model to extract features corresponding
to attributes in images before the application of the SVM models. In

other studies, an end-to-end solutions have also emerged in age estimation. For
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instance, the works described in [89] and [6] relied on the use of a CNN and
decision trees. Tree-based models treated as a chart-topping model due to its

natural interpretability property. It is considered as a powerful method in deci-

sion tasks. In [8 ] presented Deep Neural Decision Forests as a novel approach,
which brings a DNN representation learning functionality together with classifi-
cation trees by training them in an end-to-end manner. This model differs from
conventional deep networks hecause the final predictions are provided by a
decision forest. In [6] an approach for age estimation under the name of Deep
Regression Forest (DRFs) was implemented. In this endeavour, researchers
connected the split nodes of a decision tree to a fully connected layer of a CNN,
and dealt with heterogenecous data by jointly learning input-dependent data
partitions at the split nodes and data abstractions at the leaf nodes. A new
deep ranking framework for age estimation was proposed by Chen et al. in [90].
in which they presented a model that included a set of basic CNNs, where each
of these CNNs was initialized with the pre-trained base CNN and fine-tuned
with ordinal labels. In order to provide the final age prediction, the authors
aggregated the binary output of the basic CNNs. Standing on the fact
that age labels are chronologically correlated, the age estimation is an ordinal
learning problem. In [91] the authors has presented a method to learn feature
descriptors for face representation directly from raw pixels. Their method is
termed Ordinal Deep Learning approach (ODFL). In ODFL, two criteria were
enforced on the descriptors, which were learned at the top of the deep networks.
These criteria are: topology-preserving ordinal relation, which was used to
exploit the order of information in the learned feature space and age difference

cost information.
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In [25], the authors have also considered age estimation as an ordinal
learning problem. They exploited the label correlation among face samples in
the transformed subspace. Their approach was named Label Sensitive Deep
Metric Learning (LSDML) for facial age estimation. LSDML differs from the
recent deep metric methods [92] and [93], which used hand-crafted feature to
feed deep network, LSDML leverages deep residual network to learn scries of
nonlinear features transformation, where the feature similarity is smoothly
sensitive to the degree ol age difference.

In [9_1] the authors have introduced a new graphical model where age
is jointly learnt with expression, in comparison to expression-independent
age estimation. The proposed model aims to learn the relationship, which
ties the age and the expression, by including a latent layer between the age
expression’s labels and features. The efforts in [27] have been focused on
the attribute correlation and heterogeneity. The authors included an estimation
of the multiple face attributes, in the form of deep multi-task learning approach
in age estimation problem. They allowed shared feature learning among all
attributes. and category-specific feature learning for heterogencous attributes,
by modeling all attributes in a single network.

Fusion strategies were considered as a popular technique in biometrics.
They were used in some facial age estimation works. The basic idea is to

fuse decisions or features in a hierarchical learning system. A typical example

e

95]. The

is given by the Deep EXpectation (DEX) of apparent age method [
authors detected the facial images first prior to the extraction of CNN prediction

from a network ensemble as a fusion method. In 2015 DEX won the apparent

age Chalearn LAP competition.
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Age estimation using linear binary patterns (LBP) was introduced
by Gunay and Nabiyev [48]. The authors worked on FERET dataset images,
and accomplished 80% precision using LBP. An assigned label by LBP operator
for every pixel of the image was done by thresholding the middle pixel basing
on all surrounding neighboring pixels. LBP histograms so created are utilized
as pixels for classifcation. Multi-level local binary Pattern (MLBP) was clari-
fied by Nguyen et al[%] MLBP gives better outcomes contrasted with LBI?
for human age estimation. Thig multi-level structure ig comprised of several
single level LBPs. These several LBPs have different estimations of radius,
encompassing pixels and different number of sub-blocks. Each LBP histogram
is finally connected together to get both local and global texture informations.
Age ranking basced Lincar Binary Patterns (arLBP) are another type of LBP

highlight which have signifcantly outperformed the traditional LBP strategy.

It was tested by Onifade and Akinyemi [97] on FERET and FACE database. A
reference set of numerous people was considered to make a reference image set.
Age groupings in this reference image set is done based on the ages of diferent
people in the reference set. At last, the age ranks arc obtained from these age
gatherings. Age-rank based local Binary Pattern (arLBP) features are built
from this reference set. arLBP along with age ranks are utilized to anticipate
the age of an individual using age estimation function LBP. MLBP and arLBP
have performed very well for age estimation tasks.

Speed Up Robust Features (SURF) have additionally acquired a lot of consider-
ation in the age estimation tasks. SURF was clarified by Bay ct al. [98] in his
research paper. SURF descriptor comprises of a couple steps. Initially, some in-

terest points like T-junctions, corners and blobs are located. Secondly a feature
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vector is assighed to neighborhood of every interest point. Finally, matching
of these feature vectors is done between different images. SURF descriptor is
remarkable in terms of its robustness, repeatability and distinctiveness. Another
notable descriptor, which has been pursued for age estimation, is Histogram of
Oriented Gradients (IIOG) [99]. The image window is partitioned into small
special regions called "cell” and afterward edge orientations arc adjusted over
the pixels of these cells. Contrast normalization is done by directing a small
amount of local histogram energy over larger special regions called “blocks”.
Final normalized blocks are Histogram of Oriented Gradients (HOG).

Guo et al.[10} [100] explained linear Support vector machine (SVM) and Support
Vector Regressor (SVR). Direct SVM can be utilized in the event that the
quantity of training samples arc extremely restricted. SVR can be used for
global age prediction however it doesn’t function well for exact age predic-
tion. Support Vector Machines (SVM) is found to outperform Support Vector
Regressor (SVR) for age prediction when tried regarding MAE on FG-NET
information base. One reason behind this could be the varieties in the age
hecause of different elements. Another explanation could be the tendency of
SVR to find a fat curve inside a small fube. Cumulative scores which appeared

with Pure SVM was lower less than pure SVR.
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Chapter 4

Feature Fusion Via Deep
Random Forest for Facial Age

Estimation

4.1 General introduction

In this chaper, we propose a new architecture for age estimation based on
facial images. It is mainly based on a cascade of classification trees ensembles,
which are known recently as a Deep Random Forest. Our architecture is
composed of two types of DRF. The first type extends and enhances the feature
representation of a given facial descriptor. The second type operates on the
fused form of all enhanced representations in order to provide a prediction
for the age while taking into account the fuzziness property of the human
age. While the proposed methodology is able to work with all kinds of image
features, the face descriptors adopted in this work used ofl-the-shelf deep features

allowing to retain both the rich deep features and the powerful enhancement
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and decision provided by the proposed architecture. Experiments conducted
on six public databases prove the superiority of the proposed architecture over

other state-of-the-art methods.

4.2 Introduction

Convinced by the advantages of the classification and regression trees,
Zhou et al. [12] have proposed a new approach (named geForest) for image
classification. Their method consists of a decision tree ensemble arranged in a
cascade of layers where each layer (level) is composed of several random forests.
The resulting performance is highly competitive to that of deep neural networks

in a broad range of classification tasks [1_; .

The differences between our proposed method and the existing works are
that we use deep [eatures from pre-trained models as input features, and we
integrate the paradigm of deep learning that is similar to the deep neural
networks, by cascading a simple machine learning tool that is provided by
Random Forests (RF).

The work described in [12] was dedicated to generic classification problems.
The proposed classifier is a cascade of tree ensembles.

The major differences between the approach of [12] and the CNN methods
concern the hyper-parameters and the training process. Indeed, the approach
of [12] needs much fewer hyper-parameters than deep neural networks, and its
model complexity can be automatically determined in a data-dependent way.
The applications shown in [12] targeted classical recognition problems.

The main similarity between our work and the work described in [12]

regards the use of Random Forests that generate feature representations. But,
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our proposed approach contains several novel modules which are different from
[12] These are as follows: the use of different deep feature vectors as input,
the use of a mid-level fusion module, and the targeted application (facial age
estimation), which is different from the classic classification tasks. In detail,
we were inspired by the main idea of [12] to create random forest ensembles
with a cascade structure. However, this structure will be used twice in our
proposed architecture. First, it is used for encoding and fusing the individual
input features (i.c., generating a fused-representation). Second, the proposed
architecture exploits the generated vector (fused-representation) for the final
decision. More importantly, the work in [12] does not contain a fusion module,
and its input is composed of raw brightness of a sliding window (Multi-Grained-
scanning). Random forest ensembles with cascade structures are then used for
the final classification.

Table summarizes the similaritics and differences between our proposed

method and the one presented in [12] .

Table 4.1: A comparison between our work and the method in [12]

Phases Method in [19] Our moethod
Multi-Grained Scanning of raw images | v X
Ensembles of random forests v v

Cascade structure using random forests | v

Fusion representations using « v

random forest ensembles.

Final decision hased

on the max probabilities class v ¥

Final decision using the average % v

of first largest probabilities

Problem tackled Classic classification  Facial age estimation

[t is worth noting that our proposed method and the work presented in

are not similar. In [EJ the authors proposed a method where the split nodes of

a regression tree are directly linked to a fully connected layer of a convolution
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neural network,

In their work, DRF refers to Deep Regression Forest and the deep concept
is tied to the use of deep Convolutional Neural Networks.

they used trees model conditional probability over the ages where each leaf
node can store a given trainable probability distribution.

They described how to learn a single differentiable regression tree. Also,
they described how to learn an ensemble of trees to form a forest. In our
work, for facial image features, we use adequate deep features (retrieved via
some pre-trained CNNs) and integrate the deep concept by deploying a cascade
ol classic Random Forests ensembles. Furthermore, our architecture allows
the fusion of different types of features. We created many RFs with different
settings. Those random forests (the ensemble) will be constructed layer by layer
(level). The training in b] alternates between learning a CNN and learning a
sct of differentiable trees, which inereases the computational complexity of the
algorithm.

Moreover, the major difference between our proposed method and the meth-
ods that use Deep CNNs (e.g., [6],[91).[25],[95]) is the training time complexity.
Indeed, our proposed method has less computational cost than that of the CNN

based approaches.

4.3 Review of Deep Random Forest

Some recent works used a Probabilistic Random Forest to tackle the age
estimation problem [6]. They showed some interesting results. The method

based on Random Forests RF [12] was considered as a good competitor to Deep
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Neural Networks for classic classification problems. Deep Random Forests have
many advantages such as the implementation simplicity and the reasonable
time complexity associated with the training phase. These have encouraged us
to explore and to adopt this strategy to the facial age estimation problem. To
the best of our knowledge, our work, which is partially inspired by the idea
presented in [12], is the first work that addresses the age estimation task using
deep Random Forests.

The specific characteristic that makes RF suitable for such applications
is the reasonable cost of training and the robustness to over-fitting. Besides,
RF has the advantage that it’s [ew parameters are easy to set. We can use
many RFs with different parameters. Diversity enhances the final performance.
We can create a cascade structure with RF to create more layers like in deep

neural networks where each layer can produce a piece of different information.

4.3.1 Random Forest

Random Forest (RF) is a method that provides predictive models for
classification and regression operations. RI uses binary decision trees that
include CART trees proposed by Breiman et al. [101]. The general idea behind
the RF method is to generate several predictors before pooling their different
predictions instead of trying to get an optimized procedure at once (sce Figurce

4.1). More details about Random Forests can be found in [102].

4.3.2 Deep Random Forest for classification
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Figure 4.1: Ilustration of Random Forest classifier. Each class vector is generated by
counting the percentage of different classes of training examples at the leal node where the
concerned instance falls and then averaging across all trees in the same forest [12].

Relying on the advantages of random forest, Zhou et al. |[12] have introduced
a new approach that included many ensembles of random forests. By creating
more than one level, the ensembles of random forests act as a cascade structure.
In this work, we will not distinguish between “level” and "layer”. In this
structure, cach level is composed of an ensemble of random forests as illustrated
in Figure 5.2

This structure was partially inspired by the layer-by-layer (or level-by-level)
processing of a learning representation in the deep neural networks. Each level
(or layer) of the Deep Random Forest is an ensemble of forests, precisely an
cnsemble of decision trees cnsembles. The first level receives the feature vector
as a given input, each forest of the same level will generate a class probability
distribution as in Figure [5.2] Suppose there are C classes to predict, then a
C-dimensional class vector will be the output of every single forest. The input
vector for the next levels is obtained by concatenating the original input vector
with the generated class vectors of each forest (resulting from the previous

level). The dimension of the representation vector will be given by Eq. (4.1)).

Dim=D+ FxC (4.1)
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where;

e [): the original feature size.
e F: the number of forests.

e (': the number of classes.
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Figure 4.2: Tlustration of the deep random forest (DRF) structure where each level of
the cascade receives feature information processed by its preceding level and outputs its
processing results to the next level. Assume that each level of the cascade consists of three
forests, and that there are three classes to predict. Thus, each forest will output a three-
dimensional class vector, which is then concatenated for re-representation of the original
input.
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In the L-level (the last level), the RF generated class vectors will be
averaged via arithmetic mean to produce the final class vector, the max value

index of which, will be the prediction class.
1 —
FinalClass = Ja ; Class(f) (4.2)

where:

e FinalClass: the final probabilitics class vector.
o Class (f): the probabilities class vectors of a single forest f.

e F': the number of forests.
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Figure 4.3: Tlustration of Multi-grained scanning in both case sequence data and image
style data ﬂl?ﬂ.

The capability of treating feature relationships using Decp neural networks
encouraged the authors in[12] to create a procedure for feature re-representation.
This procedure aims to replace the convolution operation applied to the pixels
of an image. It also aims to enhance the cascade forest and is named Multi-
grained scanning (MGS) (see Figure ‘ The MGS uses a sliding window to
scan the raw feature of sequence data or image style data, and it creates an
cnsemble of instances that have the same scan window size, those instances
will be used to train two different types of forests to generate a class vector
(for each) as elucidated before. The resulting class vectors will be concatenated

to be transformed features.
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4.4 Proposed approach

The DRF introduced in {12] was proposed and used for the classic recognition
and clagsification tasks. It was used for identity discrimination and object

identification. The method in [l

inspired us to develop an approach that will
be applied to the problem of age estimation. The original method might face
some difficulties if the human age nature is not taken into account. Indeed,
the human age follows a uni-modal distribution, and the associated classes (if
each year is considered as a class) can be fuzzy. We included an arithmetic
function to improve the original final decision. This function influences the
final decision to be more suitable to the nature of the human age. Although
the DRF has proved its good results |lU§ lU—l] in classic recognition problems,
we think that there is still a room for better results. The estimation can be
improved through the enhancement of either the prediction criteria, the initial
input features, and the intermediate fusion scheme, We propose a method that
uses all these three items and applies the resulting architecture to the problem
of age estimation. Figure 5 illustrates the overall architecture of our proposed
model. This architecture is composed of two principal parts in addition to the
pre-processing and feature extraction phases. The first part is represented by
several individual DRI whose output is fused and handed out to the second
part represented in the bloc fd-DRF (final decision-Deep Random Forest).

First, a process that serves as an enrichment of the initial input vectors should
be added. We propose a different use of the original DRF that aims, in addition
to final class prediction, to extract a vector through the previously explained
concatenation of the original input vector with the random forest generated

class vectors of a chosen level. The resulting vector will be larger and richer in
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information than the original one.
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To enrich the input feature vector, even more, we took advantage of the
cfficiency of the feature fusion, which is considered as a popular technique in
biometric that attracted the focus of rescarchers. We opted to fuse feature
vectors obtained from several original descriptors in the DRF architecture
arithmetically. Thus, for each type of original features, one DRI is designed to
process it and to produce its DRF representation. Those original descriptors
can be of any type: hand-crafted, deep features, and scanned windows like in

3

gceForest [1 Algorithm 1 and Figurc 6 show how the new input vector is
computed.

v
1
Fused — representalion = — Z DRFF(v) (4.3)
V p=1
where:

e DRFF(v) is the output of each individual DRF.
e Fused-representation is the output of the DRF-Fusion.

e I/ is the number of original input feature vectors.

The proposed fusion (average of all DRF representations) assumes that the
original features input in DRF has the same dimension. To overcome the case
of different sizes of input vectors, we use zero paddings for the shortest vectors
before the averaging process. The proposed fusion scheme aims to provide an
averaged input vector for the final prediction process to minimize the influence
of extreme values.

Algorithm [I| takes as input the face descriptor vectors FV(v)(v = 1,..., V)
(the feature vectors), the number of cascade levels (layers) L (level or a layer
contains several random forests), the number of input feature vectors V' and

the number of forests £ in a given level. For the first level or if the number

57



Chapter 4. Feature Fusion Via Deep Random Forest for Facial
Age Estimation

of levels is set to one, the input feature vectors to this level are the original
feature vectors, else it will be another vector generated by the previous level as
follows: Each forest f € 1,..., F' in the current level level € 1, ..., L will gencrate
a probabilities class vector; those class vectors will be concatenated with the
original input vector, as illustrated in Figure [I.5] Each original feature vector
has been encoded using the deep Random Forests. We call this generated
code DRFF. The V DRFF representations will be fused using the arithmetic
average. Other fusion schemes can be adopted. In our work, we have tested
two fusion schemes: the average and the concatenation. We have found that
the average fusion has provided almost the same performance that is obtained
with the concatenation (see section 5.3.4.), yet the average scheme provided

much more compact representations.
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Algorithm 1 DRF-Fusion

Input:
Face descriptors: FV,FV,, ... . FVy;

Number of input feature vectors V;
Number of levels [:
Number of forests .

Output:
Fusion: Fused-representation

Forv=1:V

e For level=1:L
if (level=1) input=FV(v)
Else input=current-input

End if

— For each FOREST in level f =1:F
class (f) =generate-class-probabilities (FOREST (f), input)
End for

current-input = concatenate (FV(v), class(1), ...., class(F))

End for

¢ DRFF(v)= current-input
End For

Fused-representation = E}:J DRFF(v)
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Figure 4.5: An illustration of the DRF-Fusion scheme. Many DRFs with various input
feature vectors are used to produce richer representations, which are later fused to obtain
the Fused-representation.
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Second, another process that enhances the prediction criteria is also in-
tegrated and is called fd-DRF. This one is similar to the cascade structure
presented in the section of Random forest only in the last level (level L) which
contains the final class vectors probabilities. We propose two ways [or the
final decision (Ages having the largest probability and Ages with Npe, highest
probabilities). Ages with N,,.. highest probabilities considered as new decision
function | distinguished from the original work. Instead of picking the age
having the highest probability, the new decision function takes in consideration
the other ages having high probability (chosen in descending order) values. The
new decision function uses the N, probabilities and their associated ages to
produce the final age prediction (The mathematical process is the arithmetic
mean of the N, ages having the highest probabilities where N, is a given

paramcter.). Figure 7 illustrates the fd-DRF.

4.5 Experiments

In this section, we will present the details of the algorithm implementation.
We also provide a comparison against other similar studies. Our implementation
contains many parts in which our main goal is to test various methods on a few
given feature vectors. This allows us to assess the performance of the proposed
model. We used the original Deep Random [orest algorithm. We then compare
its results with both the proposed method and the SVM classifier after the

fusion phase. More explanation will be provided in the following subsections.
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Figure 4.6: Hlustration of the final decision method fd-DRF.

4.5.1 Implementation Details
Preprocessing

In this work, we localized the facial landmarks using the Ensemble of
Regression Trees (ERT) algorithm [105] which is a robust and very efficient
algorithm [or facial landmarks localization. Facial landmarks help us to get
eyes coordination, building on those points, we applied the face alignment,
which is considered an important step in image-based age estimation. After

performing the alignment, the face region should be cropped (aligned face).
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Face Features Extraction

For face feature, we use the Deep Expectation (DEX) —Chalcarn ICCV2015.
DEX-Chalearn ICCV2015 is the winner (1st place) of the Chalearn LA 2015
challenge on apparent age estimation. More than 500,000 images of celebrities
from IMDb and Wikipedia labeled with age were assembled by authors of
DEX-Chalearn to fine-tune the VGG-16 architecture used in DEX, the VGG-16
pre-trained on ImageNet for image classification. DEX-Chalearn is a powerful
deep learning model for age estimation. It provides tools to gencrate deep
features suitable for age characteristics due to the large data used to fine-tune
it. We extract the last two fully connected layer vectors ol DEX-Chalearn
pre-trained model FC6 and FC7 of the input preprocessed images with a size of
224 %224, The vectors FC6 and FCT are later considered as the input features

to the proposed architecture.

Parameter Setting

Each level of the Deep Random Forest (DRF) (in both DRF-Fusion
and [d-DRF) contains 10 forests. To encourage diversity, we used two types
of forests. Thus, we used 5 completely random trees forests and 5 random
forests. For both types, the five forests contain 500, 1000, 1500, 2000, 2500 trees,

respectively. Selecting a feature at each tree node was randomly generated.

Evaluation Metric

To evaluate the performance of the proposed age estimation method, we
used the Mean Absolute Error (MAE). Tt is one of the most known indicators

for age estimator performance evaluation in literature. MAE calculates the
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average of absolute error between the predicted and the ground truth ages. It

is given by:

1 Tl
MAE = — — G, 4.4
5 52;1: 1P — gul, (4.4)

where n is the number of fested images, p; is the predicted age of image #, and

g, 1s the ground-truth age of this image.

4.5.2 Experimental Results
Performance evaluation

In this section, we will quantify the performance of the proposed method as a
function of different factors. These include: (i) fused and non-fused features, (ii)
type of features, (iii) number of layers, and (iv) number of highest probabilities.
Table 4.2: MAE (years) obtained with two different hand-crafted features (HOG and LBP)

using DRF on the MORPIT Caucasian dataset. We used Lo normalization for LBP vector in
the fusion part.

DescriptorNumber of layvers | 1 layer | 2 lavers
LBP 7.56 7.98
HOG 5.20 41.93
LBP+HOG 6.11 5.23
LBP+HOG+FC6 H.24 5.13
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Table 4.3: MAE obtained with two different hand-crafted foature using the DRF method
with Npe = 5 (Vg 18 the munber of the ages having the highest probabilities) of MORPH
Caucasian dataset. We used Lo normalization for LBP vector in the [usion part.

DescriptorNumber of layers | 1 layer | 2 layers
LBP 6.23 6.12
HOG 5.83 8,27
LBP+HOG 5.12 5.98
LBP+HOG+FC6 4.86 5.37

We have used the hand-crafted features (LBP and HOG) as presented in
Tables B2l and B3 with the MORPH Caucasian dataset. We relied on the same
fusion strategy presented in our work. Tables [£.2] and show the results of
LBP, HOG, a fusion of HOG and LBP (LBP+HOG) and finally the fusion
of HOG, LB and FC6 feature vectors. The results presented in Table
correspond to the use of the age associated with the largest probability. The
results in Table were obtained using the mean of the five ages associated
with the largest probabilities. The third row presents the fusion of the two
hand-crafted features (LBP+HOG). In the fourth row, we included the deep
feature vector FCG6 of the DEX-Chalearn pre-trained model. The use of the deep
feature aims to demonstrate its impact on the results when performing such
tasks. As it can be seen, the MAFEs depicted in Tables and }1.3] are different.
This is not surprising since the image feature type and the number of layers
all affect the final performance. We remind that the proposed architecture
is composed of two modules (fusing process and final decision process) that
cannot be separated. The depicted architecture in Figure 5 presents the general
case where we have more than one type of features. The fusion module has
several DRF's whose output are fused. The resulting fused vector feeds another

DRF (named fd-DRF) for the final decision (see Figure [1.4).
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Table 4.4: MAE (vears) obtained by the proposed architeeture on seven datasets.

DescriptorDatabases FG-NET DAL '\;IOB'_P'B' LEW API)A,_REAL %PPA_RL'%L FACES
Caucasian Real Age Apparent Age
TCa 3.80 3.54 | 4.50 6.00 5.2h 3.11 1.49
FCT 1.00 180 | 1.26 6.16 2.71 3.60 277
Fused-representation]  3.77 307 | 407 5.9 2.39 347 1.35
TC6 3.5 3.08 | 5.80 612 | 5.0 312 .30
FCT7 1.20 1.71 | 6.66 6.16 .30 316 267
Fused-representation?  3.90 3.00 6.11 6.11 6.52 3.57 1.85

Table 4.5: MAE (years) obtained by the proposed architecture on the FACES datasct.

DescriptorFace Expression | Neutralilty = Happiness Disgust | Fear | Sadness  Angry | Average
PG 1.10 1.26 1.92 1.52 | 1.34 1.82 1.49
FCT 2.21 | 2.54 3.38  2.87 | 265 30l | 20T
Fused-representationl .86 1.15 1.73 1.47 | 1.18 1.71 1.35
FCE 0.90 1.14 1l 1.29 | 1.16 1.60 1.30
FCT 2.11 2.43 3.25 2.83 | 2.51 2.91 2.67
Irused-representation2 .88 1.69 2.63 2.10 | 1.51 220 | 1.8

We emphasize that the presented comparisons in Tables and aim at
studying several cases (fused features vs. individual features) as well as several
types of features. The presented comparison aims to observe the advantages of
the fusion process itself in the final stage (fd-DRF). This comparison clucidates
what we can gain with such fusion processes. In some cases in which the decision
ig based on the highest probability (see ’T‘a.l:ale: the fusion has not given an
MAE that is better than the best one obtained by the individual features. This
is the case where the LBP and HOG descriptors were used. The explanation
can be as follows. Since the used LBP descriptor is not very relevant to the
problem of age cstimation, its fusion with HOG and FC6 features was not
able to get a better result than what can be obtained by HOG alone. On the
other hand, when the decision is based on the use of the highest probabilities
(Table [1.3), the fusion of LBP and HOG gave better results than that of the

individual features. Moreover, as it will be shown in Table [1.4] the fusion
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scheme of FC6 and FC7 features has not given the best results for some datasets.
Based on the above observations, we can sec clearly that the performance of
the fusion depends on many factors that include the image feature type, the
number of layers, the decision scheme, and the dataset. Thus, future work
would investigate the fusion of many types of features as well as automatic
feature weighting,.

We have used the deep features FC6 and FC7 as input vectors to the DRFs
(first part of Figure . We perform two groups of experiments. In the first
group, the DRF adopts one layer. In the second group, the DRF adopts two
layers. The final output vector of this process is named Fused—representationl
when using DRI with one layer and Fused — representation2 when using the
output DRF with two layers.

For the representations Flused—representation] and Fused—representation?,
we evaluated two solutions: (i) the first one is given by the DRF (i.c., the
predicted age is estimated by the full architecture of Figure ,_ the second
one uses the SVM multi-class classifier which is applied on the representation
generated by the DREF module. We emphasize that, for the individual features,
the SVM is applied to the output of the DRF module.

We compare them with the original FC6 and FC7, which allowed us to
evaluate the possible benefits offered by the fused representations gencrated by

the proposed architecture.

Tables[d.4 and [4.5] summarize the results obtained with the proposed architecture
using the deep features FC6 and FC7. Table [4.4] contains all used datasets and
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Table 4.6: MAE (vears) obtained by the proposed architecture (without the fd-DRF) and
the SVM multi class classification on seven datasets.

] P APPA_ AT. | APPA_RE
DescriptorDatabases | FG-NET | PAL [\‘I ORI H LEW—+ Al [A, REAL | APPA-REAL FACES
Claucasian Real Age Apparent Age
FCa 3.80 3.54 | 4.50 .00 5.25 311 1.49
FC7 4.00 4.80 | 4.26 G.16 S 3.60 STT
Fused-representationd | 4.67 311 | 1.99 8.02 6.80 4.30 1.08
FC6 3.84 | 3.68 | 5.80 | 6.12 5.96 312 1.30
FC7 1.20 | AT | 6.66 | 6.6 G.30 3.16 2.67
Fused-representation? | 4.33 2,99 | 4.05 5.95 .51 3.20 103

Table 4.7: MAE (vears) obtained by the proposed architecture (without the fd-DRF) and
the SVM multi class classilication on the FACES dataset.

DescriptorFace expression | Neutrality | Happiness Disgust | Fear | Sadness  Angry | Average
FCa L.10 1.26 1.92 1.52 | 1.34 1.582 1.49
FCOT 2.21 2.54 3.38 287 | 2.63 3.01 277
Fused-representation | | 0.90 1.07 1.25 1.17 | 1.05 1.09 1.08
FC6 0.90 1.14 1.71 1.29 | 1.16 1.60 1.30
FOT 2.11 2.43 3.25 2.83 | 2.51 2.91 2.67
Fused-representation? (L85 1.01 1.20 1.06 | 0.96 1.15 1.03

Table presents the detailed results on the FACES datascet with all facial
expressions. The first three rows of each table present the results obtained with
DRFs adopting one layer (one level), where the remaining three rows present
results obtained with DRI's adopting two layers (2 levels) . In those two tables,
we can see that the best results were obtained by Fused — representationl.

Tables and summarizes the results obtained by the SVM multi-class
classifier. For the five datasets, the use of SVM with Fused — representation?
gives better results than the other representations. The SVM classifier with
Fused — represenlation2 gives more accurate results than the SVM classifier
that used the DRI representation of the individual FC6 or FCT except for the
FG-NET database.

Using SVM with the fused representations (provided by the first part of
the proposed architecture) can reduce the final MAE in particular when two
layers are used. This demonstrates the efficiency of the fusion method.

Tables [4.4] and [4.6] summarize the results of three types of comparisons:

68



Chapter 4. Feature Fusion Via Deep Random Forest for Facial
Age Estimation

(1) individual feature vs. fused features; (ii) one layer vs. two layers for the
individual DRFs, and (iii) SVM classifier on fused representations versus the
proposcd architecture.

The results have shown that whenever SVM is used the fusion has not
improved the results compared with individual features (in particular in the
case of one layer). On the other hand, when the proposed architecture is used,
the fusion scheme adopting one layer for the individual DRFs has improved
the performance with respect to the individual features.

Actnally, the effectiveness of DRF depends on the number of layers. There
18 no evidence thal by increasing the number of layers in the individual DRFs
the final performance would necessarily increase. Ag in the original work that
proposed the DRF for object recognition and classification the nmunber of layers
should be determined by a cross-validation scheme, and adopt the one that
provides the hest performance.

Thus, it is normal that results can be influenced by the number of layers
and by the final classifier that output the predicted age (SVM or DRF). We
recall that our method that we compared its results with the state of the art
results (Table is the fd-DRF (averaged predictions of several ages).

In the remainder of this section, we will present the results of the proposed
architccture when the predicted age is set to the mean of ages having N0
highest probabilitics. We used the full proposed architecture with Fused —
representation] and Fused—representalion2. The final age prediction is given
as the average of Ny, ages that have the N,,., highest probabilities in the final
output as explained in Figure We studied the effect of several values of

Npaw. Tables 8 and .9 illustrate the MAEs obtained by the DRF estimator on
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the vector Fused — representationl. Tables and illustrate the MALs

obtained by the fd-DRF estimator on the vector Fused — representation?.

The results depicted in Tables .8 and [.9] shows the benefit of using N,,.. ages

with the highest probabilities. We can observe that the MAE decreases in all

datasets as N,,.. increases from one to six. In our work, the best results were,

in general, obtained with the six highest probabilities.

Table 4.8: MAT obtained with the DRF using the highest probabilities method with

TFused-representationl.

Databases V., Probabilities | 1 2 3 4 5) 0
FG-NET 3.77 1 3.90 3.81 | 3.72 | 3.70 | 3.67
PAL 3.07 | 279 2.78[2.80 | 2.73 | 2.80
MORPH Caucasian 6.11 | 5.51 5.16 | 4.98 | 4.86 | 4.78
LFW+ 5.99 | 586 5.82 | 5.82 | 5.82 | 5.83
APPA'REAL 539 | 525 5.28 | 5.30 | 5.33 | 5.34
Real Age

QPPA__'R‘EAL‘ 3.47 | 3.36 3.37 | 3.39 | 3.40 | 3.43
pparent Age

FACES 1.35 [ 1.24 121124124 1.24

Table 4.9: MAE obtained with the DREF using the highest probabilities method on FACES

database with I'nsed-representationl.

Face expressionN,,,, Probabilities 1 2 3 4 5 6

Neutrality 0.86 0.75 |0.73 0.73 0.72 | 0.72
Happiness 1.15 1.02 | 0.98 1.01 1.03 | 1.02
Disgust 1.73 1.637 | 1.58 1.62 1.65| 1.64
Fear 1.47 138 | 143 146 1.45|1.44
Sadness 1.1I8 1.07 | 1.00 098 1.02 ] 1.04
Angry 1.71 1 160 | 1.56 1.57 | 1.57 | 1.57
Average 1.3 1 124 | 121 124 124|1.24
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Table 4.10: MAE obtained with the DRF using the highest probabilitics method with

Fused-representation?2.

DatabasesN,,,, Probabilities | 1 2 3 4 5 6
FG-NET 3.90 3.80 | 3.79 3.78 | 3.79  3.86
PAL 3.09 286|285 286|285 | 2.86
MORPH Caucasian 4.07 398 | 3.93 3.89 | 3.88 | 3.88
LEW+ 6.11 5.96 | 5.92 5.90 | 5.89 | 5.89
AP_PA‘]?‘E'AL 6.52 6.45 | 6.45 6.50 | 6.60  6.63
Real Age

AEER-REAL 357 | 3580 | 3.53 | 3.53 | 3.56 | 3.60
Apparent Age

FACES 1.85 1.63 | 1.59 1.58 | 1.56 | 1.55

Table 4.11: MAF obtained with the DRF using the highest probabilities method on FACTES

dataset with Fused-representation2.

Face expressionV,,,, Probabilities 1 2 3 4 5 6

Neutrality 0.88 0.76 0.75  0.73 | 0.72 | 0.70
Happiness 1.69 1.35 1.35 1.34 | 1.29 | 1.27
Disgust 2.63 242 225 220 2.16 | 2.15
Fear 210 1.86 1.88 1.89  1.88 | 1.88
Sadness 151 1.34 1.32 129 1.30 | 1.30
Angry 2,29 2.02 2.01 2.01 2.02] 2.00
Average 1.85 1.63 1.59 | 1.58 | 1.56 | 1.55

Figures [1.7(a), .7 (b), 1.7 (c), and [1.7}(d) illustrate graphically the MAE
as a function of Ny, (the results were also depicted in Tables 11, 12, 13, and
14). Using the average of N, ages allowed the reduction of the final MAE by
oxploiting the strength of decision trees that can provide a distribution of the
estimates. Thus, this scheme helped to get more accurate age prediction.

In Tables and the obtained MAEs are better than those obtained

by many existing methods. In Tables and we can observe a constant

decrease of the MAE as N, increases. However, in Tables 4.10] and [4.11},

there is no constant decrease. Nevertheless, the averaging process show that the
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optimal N, s either 5 or 6. For the PAL database, results obtained with Fused-

representation? were better than those obtained with Fused-representationd.
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Figure 4.7: Performance as a function of Nyee. (a): MAE variation with DRF
using the input Fused-representationl on six databases,(b): Six subsets of
the FACES dataset,(¢c) MAE variation with fd-DRF using the input Fused-
representationl on six databases, (d): Six subsets of the FACES dataset.

Fusion schemes

We have also used the concatenation method in the intermediate fusion
stage to show the diflerences between various fusion strategies. The MAE

obtained by the concatenation (concatenation of FC6 and FC7) vectors with

DRF and SVM are shown in Tables 4.12[ and |4.13] respectively. The fused-
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representation] and the fused-representation? refer to the fusion of FC6 and FCT
obtained by DRF with onc level and two levels, respectively. Results indicate
that the intermediate fusion by concatenation or by average gives almost the
same results. However, using the average method leads to less memory space
use and less computational cost since the size of the fused vectors is half that

obtained with the concatenation.

Table 4.12: MAE with DRF of fused representation vectors obtained using two
fusion strategies.

Concatenation method Average method

SchemeDatasets PAL [FG-NET PAL | 'G-NET
Fused-representationl | 2.92  3.81 3.07 | 3.77
Fused-representation2 | 3.35  4.11 3.09 | 3.90

Table 4.13: MAE with SVM of fused representation vectors obtained using two
fusion strategies.

Concatenation method Average method

SchemeDatasets PAL FG-NET PAL | FG-NET
Fused-representationl | 3.08  4.73 3.11 | 4.67
Fused-representation2 | 3.14  4.52 2.99 | 4.33

4.5.3 Comparison with state-of-art methods

We compared our method, in term of the MAE, with the state-of-the-art
methods depicted in Table This table presents the results associated with
MORPH Caucasian, FG-NET, PAL, LFW+ , FACES and the APPA-REAL
database with both label types (real age and apparent age). Table shows
the comparison of our method with state of the art with FACES database in
detail of expression folds. Our work outperforms all the state of the arts in

FACES and PAL with a large difference and in FG-NET too. Table shows
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that our method is better than the compared methods in any face expression

fold.
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Table 4.14: Comparison of our method with some of state-of-the-art method using six
datascets PG-NET, MORPH Caucasian, PAL, LEW+, FACES and APPA-REAL.

MethodDatabase pa-NET MORPH o tkwy | Fages  APPA-RBAL Y APPA-REAL
Caucasian Real Age Apparent Age

Human workers [106] 4.70 (.30 / / ! i
Rank|107] 5.70 i [/ J ] / /
DIF [106] 4.80 / / 7.8 / / /
ACGES J41] 6.77 838 ! / / / /
TIS-T.LDRY] 5.77 / / / / /
CPNN [30] 476 / / / / / /
CASVE [23] 1.67 5.85 7 7 / / /
OHRank [22| 4.48 6.07 / i 7.14 / /
Pontes et al. ElUEi! 4.50 / / / / / /
CAM flog] 1.12 / / / / 7 /
Rothe ot al. [24] 3.01 3.45 / / /
Linet al. [110] 3.93 / / / / / /
LSDML 23] 3.02 J / / 114 / ]
Liu et al. [LL1] 3.92 ! / / / /
DRFs [6] 383 2.91 / / / / /
Gunay and Nabiyev EZF;E / / 510 / / / /
Nguyen et al [112] / / .50 / / / /
Lun et al [109§ / / | 6.00 / / / i
Bekhouche et al. [113] / / 5.00 / / / /
Dornaika el al. |7 / / 3.79 / / / /
(DMTL) Tlun o al. |27 / / 4.50 /
Structured learning |94 3.80 / |/ J] a0 / /
?T;’]‘_“j:;“’““ et al. [28] / / / / / 5.46 4.08
Apnstsson et al. [28] ; 5 i : ; i ;
(Fz_t:\'ic_lual DEX) E_E / ! / / / Ra0 L5
Proposced method 3.65 67 273 482 | 1.24 5.25 3.36

LFW and LEW+ exist in [22 27]. The work done by Chang et al. [22], they
used just the frontal face iimages (4211 images) of the LFW. The other work
authors create the LFW+ and they find the best results due to the many

advantages offered by their Multi-task learning approach in which the age

method requires more auxiliary attributes in addition to the age labels. They
proposed Deep Multi-Task Learning (DMTL) network and they use a modified
layer, with batch normalization (BN) layer inserted after each Convolution layer
for shared feature learning. In @ the authors introduced the APPA-REAL

database that contains both rcal and apparent age labels. We emphasize that
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the work of [28] presented for each type of ages two solutions: (1) Fine-tuned
DEX (DEX), and (ii) Fine-tuned DEX followed by a network-based residual
estimation (Residual DEX). Experimental results in the two last columns, in
table have shown that our proposed method outperforms the work of
[28] on both types of ages. It also outperforms the two solutions. For the

APPA-REAL dataset, although the DEX CHALEARN was fine-tuned, the

final performance is still inferior to that obtained by our proposed scheme.

It is obvious that our proposed method is neither a CNN-based approach
nor a hand-cralted approach. This improvement is determined by various

factors in our architecture.

Table 4.15: Comparison of our method with some state-of-the art. methods on FACES
database detailed in facial expression.

MethodFace expression  NEUTRAL | HAPPY | DISQUST | FEARFUL | SAD | ANCRY  Average
BIF+OHRANK [22] 5.16 7.64 8.31 7.00 | 687 787 7.14
LBP+OHRANK 6.36 8.88 9.20 7.30 0 9.09 8.86 8.28
BIF [114] - 9.50 10.70 13,26 12,65 10.78 1326 11.69
BIF+MFA [114] 81| 1032 12.21 10.73 1066 [ 1096 1050
C'S-LBFL |11 5.06 6.53 7.15 6.32 | 627 6.4 6.46
CS-LBMEL [113] 1.81 5.85 5.70 6.10 1.98 5.50 5.19
DEEPRANK][I16] 5.99 7.12 8.15 6.35 | 1.77 6.68 7.01
DEEPRANKER=[116] 5.86 7.87 7.80 666 7.19 6.59 7.0
LSDML [25] ey 3.88 3.49 441 510 4.09 3.87 414
MLSDMI, [25] 3.83 311 116 501 | 367 316 3.82
Structured learning [94] 5497 6G.77 B17 825 | T.07 §.21 7.40
FProposed method 0.72 1.02 1.64 1.44 | 1.04 1.57 1.23

Table 4.16: Comparison of our method with the results obtained using the
well-known DEX-CHALEARN network. The comparison is carried out with
six databases.

APPA-REAL | APPA-IREAL |
MethodDatabase FG-NET MORPH Cancasiau | PAL | LFW | FACES {Average) e ] B _h\l
i * | Real Age Apparent Age |
DEX-CHALEARN 412 4.54 6.71 T4l 7.7 9.457 a8l
Proposed method 3.65 3.88 2.73 | B.B2 1.24 5.25 3.36

Since our proposed method uses the pre-trained DEX-Chalearn network

for extracting two types of image features, it would be interesting to compare
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the performance of our proposed approach with that obtained by the direct use
of this network. Table presents the results obtained from a direct use of
the DEX-Chalearn network. The pre-trained CNN model is used for a direct
age prediction of the face images. The comparison results show that our method
provides better results than those obtained by the DEX-Chalearn estimator.
Special attention can be drawn to PAL and FACES databases, where we get a

significant difference in performance.

4.6 Complexity and running time

The computational complexity for training the proposed architecture which
is composed of two parts based DRF will be split in two parts. The first
part corresponds to the computational complexity of the DRF Fusion part.
This is VFE*L*O(n?d nyees) where: n is the number of face images, d is
the average number of features, n,.., i3 the number of trees per forest,V
is the number ol original input feature vectors, [ is the levels number in
the DRF and F/ is the number of forests in each level. The second part
corresponds to the computational complexity of the fd-DRF part (in our
work it contains one single level) is given by F*O(n?d nypees). Finally, for
the training phasc, the computational complexity of the total architecture is
VAFP*L*O(n%d nerecs) + F * O(n2d nyees)-

For the test phase, the computational complexity is VF*L*O(d nypees) +
N s )s

Our experiments use a PC equipped with Intel(R) Core(TM) i7-4702MQ

cpu ©@2.20GHz and 8Go of RAM. Table depicts the running times (in
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ms) associated with the extraction and age estimation for one face image. It
offers a good guess for the total running time of the proposed method with any
complete database. Table also details the running time of every sub-process
using DRIE-Fusion with one layer.

As can be seen, the running time of the DRF-Fusion with one laver is 10.6
ms. We note that V' is equal to two corresponding to the use of the input
vectors FC6 and FC7 in our experiments. Table depicts the total running
time when the DRF-Fusion used 2 layers. The running time associated with the

DRF fusion increased due to the use of more than one layer, that influence

the prediction running time. In Table {4.17] and [4.18] feature extraction

running time has the highest running time compared with other processes,
especially when we compared it with the DRF-Fusion running time. The deep
feature extraction influences the total time of the proposed architecture. That
fact encourages to envision the use of other types of features that arc much
faster to extract.
This can be given by the hand-crafted features.

Table 4.17: Running time (in ms) of the different phases of the proposed
approach (extraction and age prediction) for one face image. Two types of

features were used FC6 and FCT7. The architecture adopted one layer for
DRF-Fusion.

Phasc Pre-processing | Feature cextraction | DREF-IFusion 1 layer  Prediction | Total time

Time ms | 11.0 5701 10.6 0.30702 | 392.60

Table 4.18: Running time (in ms) of the different phases of the proposed
approach for onc face image. Two types of features were used FC6 and FCT.
The architecture adopted two layers for DRF-Fusion.

Phase Pre-processing | Feature extraction DRF-Pusion 2 lavers | Prediction | Total time

The main advantage of the proposed method is its training’s cheap com-
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putational cost, even when deep features, like DEX-Chalearn, are used. The
complexity of the training stage is lower than that of classic deep learning
approaches. Table shows the running time for the training phase using the
overall PAL dataset witch contains 1046 images. When dealing with such tasks,
the computational toll of the training phase is lighter than the commonly used
deep learning method.

Table 4.19: Running time (in seconds) when the PAL dataset is used as a
training set. It includes the feature extraction (using the pre-trained model
DEX-Chalearn) and the learning phase of the DRF in both cases one layer and
two layers.

| Phase | Feature extraction | Training (1 layer) | Training (2 layers) |
‘ Time (s) ‘ 493.865 ‘ 169.0506 ‘ 186.947 ‘

4.7 Conclusion

Throughout this work, we have proposed a new architecture for age
estimation based on facial images. This architecture stands on a recently
proposed classification method, currently known as Deep Random Forest. Our
architecture is mainly built on a cascade of classification forests ensembles
similar to those found in the DRF method and is composed of two types of
DRFs. One seeking the enrichment of the feature representation of a given
facial descriptor followed by a fusion of the enriched (high level) feature vectors.
The other operates on the fused form of all of the enhanced representations
in order to estimate the age. Experiments were conducted on different public
databases: FG-NET, MORPH Caucasian, PAL, LFW+, FACES, and APPA-
REAL. These experiments demonstrate the outperformance of the proposed

architecture over many existing state-of-the-art methods. The main limitation
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of the proposed method is the space complexity, where we will include space

reduction techniques in the future work.
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Chapter 5

Facial Age Estimation Using
Tensor Based Subspace Learning

and Deep Random Forests

5.1 General introduction

scheme [21] for fusing multiple deep face features for age estimation. This
scheme was based on Deep Random Forests. We propose a new pipeline that
integrates tensor based subspace learning before applying the DRFs. Deep face
features of a training sct are represented as a 3D tensor. Multi-linear Whitened
Principal Component (MWPCA) and Tensor Exponential Discriminant (TEDA)
are used to extract the most discriminant information. The features of the
tensor subspace are then fed to DRFs in order to predict the age. Experiments
conducted on five public face databases show that the method can compete

with many state-of-the art methods.
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5.2 Introduction

In this chapter, we propose a novel approach able to reduce many of the
above limitations. In our proposed approach we use pre-trained CNN models in
order to extract features from face images. These features provided by different
nets will be used as input features to our estimator. This latter is composed of
tensor transformations and Deep Random Forests.

Thus far, subspace transformation is the furthermost utilized dimensional
reduction techniques [133, lil] Various reduced dimensional algorithms have been
proposed in the preceding period that have suited the feature extraction. The
Principal Component Analysis (PCA) [l')] and Lincar Discriminant Analysis
LDA [l(]J are frequently used. They are linear subspace techniques. Mainly,
an image [ace is a matrix of m by n pixels, which is treated as a 1-D feature
vector of size m x n. Unfortunately, this process involves losing the pixels’
position information [17]. Recently, multilinear subspace techniques based on
tensor analysis of data in high dimensional spaces is regarded as a remarkable
multi-lincar technique [18] These approaches authorize the conservation of the
important face structure information. Multilinear transformations analyze the
multifactor structure of image face sets over n diflerent index number.

The common linear subspace methods PCA and LDA are extended to
Multilinear PCA (MPCA) [17] and Multilinear Discriminant Analysis (MDA)
[l‘)] that allow the mathematical of tensors to be manipulated. The high
tensor order (i.c., § 2) are presented in a normal form to show the set of face
images without collapsing the initial structure and correlation of data [20] In
[1], the auhors propose a new use of an adopted MPCA, this latter is named

Multilinear Whitened Principal Component Analysis (MWPCA), which can

82



Chapter 5. Facial Age Estimation Using Tensor Based Subspace
Learning and Deep Random Forests

deal with the small sample size issue in high dimensional space and can enhance
the tough discrimination obtained by classical MPCA. The multilincar varied
analysis MDA was also extended to Tensor Exponential Discriminant analysis
TEDA so as to improve the discriminant data included in the null space of the
within class scatter matrix of each tensor’s mode. TEDA increases the margin
amidst samples belonging to multiple classes by distance diffusion mappings.
In [1] authors present The MWPCA as an extension of MPCA to improve
the data representation in the tensorial space. To achicve this, the training
tensor data set are centered by subtracting the average tensor from the training
sample in a preprocessing slep. Subsequently, in an initialization step, the
covariance matrix and its eigen-decomposition are computed, this allows for
the whitening to be performed on each of tensors, which consists of normalizing
each eigenvector by the square root of its corresponding eigenvalue. As a
consequence, the data become less correlated and with a uniform variance on
all directions. After the initialization whitening of each mode of the tensor
sample, an iterative local optimization step of the projection matrices is carried
out until the maximum number of iterations is reached or the difference of the
projected tensors between two successive iterations becomes less a predefined
threshold. Less than a predefined threshold. The process is taken as input upon
the set of tensor sample A; € RU<2%bm (=1 ... N) , The number ny, of
selected eigenvectors for each k-mode, the itr,,,,, which is the maximal number
of iterations and the threshold . MWPCA produce the projection tensor A
€ RIxI2x-TmxN por the TEDA presented in the samme work of ouamane et al.
[l] it takes as an input a tensor produced by the previous MWPCA which is

defined as A € R 2x-LuwxN of the N training samples belonging to L classes,

83



Chapter 5. Facial Age Estimation Using Tensor Based Subspace
Learning and Deep Random Forests

each class KJ contains n; samples, the itr,., is maximal number of iterations
and the final lower dimensions,which is I;xI;...T . We obtained as a final
output the projections U/,. TEDA includes the null space of the within-class
scatter matrices of each tensor’s mode. Additionally, TEDA enlarges the margin
between samples belonging to different classes via distance diffusion mappings.

The main contributions of this work are the following:

e We propose a multiview feature fusion that enhances the performance of

our previous proposed method in [21] and the techniques in [1].

e We fuse the deep features using the Whitened principal component anal-
vsis (MWPCA) and Tensor exponential discriminant analysis (TEDA)

respectively.

e Once the face image features are represented in the tensor subspace, the

final age is estimated using our recent Deep Random Forests (DRF) [21].

5.3 Building Blocks of the Proposed Method

This scction describes the main modules of our pipeline. The latter is
composed of two parts (sce Figure . The first onc consists of a Multilincar
whitened PCA (MWPCA) followed by a Tensor Exponential Discriminant
Analysis (TEDA) [1] The second part performs regression-by-classification
using Deep Random Forests [21] that map the Tensor space features to a

predicted age.
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5.3.1 DMultilinear Whitened PCA (MWPCA)[H

A tensor A € Rivd2Xxlu i5 defined as a multidimensional array [117]

#_order tensor. I,

|l ]8] m is the order of the tensor and A is called an m
1 < k < m, is the dimension of the k** mode. Each element of the tensor A
is denoted as A;,..4, . where 1<ip <Ii, 1<k<m. A number of mathematical
operations on tensors used in this work are presented hereafter.

The inner product of two tensors, A, B € RIxloxxln ' with the same order

and dimensions is given by:

(A,B) =S A LB

i1=1-ip=1 SUREL P B

The norm of a tensor A is defined as:

[Allp = v/ (A, A).

The difference between two tensors A, B € Rixl2x-xln i3 defined by
D(A,B) = ||[A—-BJ;.

The k-mode unfolding of a tensor A € R 2l t6 5 matrix AR e R [T I

is denoted by A=, A®  where:

m

‘AEEi):Ail“'im: j - ]‘+ Z (il_l) H J-f_‘] (5-1)
I=1, &k o=Il+1,0%k

The unfolding operation on a 3"%order tensor is illustrated by Fig.

’
The k-mode product of a tensor A € RIxl2xIn and a matrix U€ R! k¥l

(le=1,2,. ...m)iganlixlyx: L X1 XLy X+ - -1, tensor denoted by B=A x U,
and:
T
Bl il pird =Y Kol 88 vt T (5.2)
=1
where j = 1,... Iy and U denotes the (i, j)'h clement of the matrix U.Ll]
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Figure 5.1: Example of tensor unfolding Il_l_TI]

MPCA is regarded as an extension of PCA to a tensorial space. It permits the
projection of tensors samples into a lower subspace, such that the maximum
variance present in the original tensor set is captured.

Let AR <X Im he an mt-order tensor representing a data sample that is
feature vectors of a face image. The (m + 1)*-order tensor, Ac RIxz2x L XN
is the set of all training samples denoted N. Accordingly, the MPCA algorithm

consists of the following computational steps [117

1. Center the input samples: A=A - A, i=1,...,N. where A =

N . . .
Il]_Zizl A; is the tensor mean of the training tensors.

2. Calculate the the eigenvalue decomposition of the co-variance matrix for

each mode k:
Coy = Xt Aigo-Alfyy = Vi AoV,
with fﬂli(k) is the k-mode unfolding matrix of tensor A;, Vi) is the eigenvec-
tor matrix and A is the eigenvalues matrix, let: Upyy = {'u] J o, ':’Un{m} ¢
and Uy contains the selected eigenvectors that corresponds to the largest
ng cigenvalucs.
3. Finally, the dimensionality reduction of a given tensor A; is then achieved
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as follows:

a JT i B
Y= AixaUgy XaUp -+ - XmUgy).

Whitening: The whitening is a preprocessing step that consists of a
linear transformadtion of the data such that its covariance madtrix is the identity
matrix. This step makes the data less correlated with a uniform variation
in all directions by normalizing each eigenvector by the square root of its
corresponding cigenvalue. Consequently, the feature discrimination of data
with high noise is improved.

To improve the data representation using tensors, the MPCA is extended to
whitened MPCA (MWPCA). For each mode in the tensor data, the whitening

is performed as follows:

o il i
I’I’{k) o o _’fl(k} ] [”Il(k}_'. -‘/]'(k}: [12- 3 .n(k)} (55)

where Uy are the selected eigenvectors that correspond to the ng largest
eigenvalues. After the initialization whitening of each mode of the tensor sample.
The projection matrices Wiy are iteratively optimized until a maximum number
of iterations is reached or the difference of the projected tensors between two
successive iteration becomes less than a predefined threshold 7. A detailed
description of the MWPCA algorithm is found in Algorithm

After the initial whitening of each mode of the tensor, the projection
matrices W) are iteratively optimized until a number max of iterations is
reached or the difference of the norm of the projected tensor between two
iterations is less than a prescet threshold . The MWPCA is detailed in

Algorithm [2] as in [1).
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Algorithm 2 Multilincar Whitened PCA (MWPCA) [1]
Inputs:

e A set of tensor samples A; € Rlt<l2xlm (5 =1 . N)
e The number ny of selected eigenvectors for each k-mode
e itr,.. 18 the maximal number of iterations and the threshold 7.

Outputs: The projection matrices i-:ff’(k)

1. Preprocessing: Center the input training samples A; = A; —
A, i=T;. N, and A= %EI\JA]

2. Initialization: Compute the covariance matrix Cyy. its ecigen-
decomposition, and the whitened eigenvectors as: Wy = ;’1“{} éU(k},
sort the ng eigenvectors Wy according to jy in decreasing order for
k=1 ...,m.

3. Local optimization:

e Compute: By = A; xq W 52 Wl -+ x W i=1,--+ N,

s (v [
e Compute: g, = S0, HB]H :

¢
e For t=1 to itr.«

— For k=1 to m
Compute the covariance matrix Cjy, its eigen-decomposition,

. . . g
then the whitened eigenvectors as: Wy = A 20Uy, sort

(k)
the ngy eigenvectors Wy according to i in decreasing order.

— Compute: B, i=1,...,N and p,.

— If g, — B,_, <17, break and go to step 4.

4. Projection: The projected tensor is B; = A;x I-if"ﬂ} xgl-f-"'g) oo Xm I-:I'f’(tﬂ,

=T v N
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5.3.2 MDA [i]

MDA is created to detect a set of multiple interralted projection matrices
U x mathrm#k that maximizes inter-class scatter while minimizing it in cach
mode of the training tensor:

Let the training samples represented as an m'-order tensors A €RIL*12xIm
belonging to L different classes and each class j contains n; samples. MDA seeks
m interrelated projection matrices U by maximizing the inter-class scatter
while minimizing the intra-class scatter in cach mode of the training tensor:

m

k=1 — argn:la.x
Uk |k= 1

Uy

k

. = :: ks = o )
Z\%:l njHAJ- XUy e XU — AUy e e ><m{--"mH (5.4)

T T Tk - r 2 2.
le HAiX'JL'Il HimR mem == Anix'l [f’l1 e Xm['"m

where N is the number of training samples, A; is the average tensor of each
class j, and A is the average tensor of all the training data.

Eq. is cquivalent to a higher order nonlincar constraint. Hence,
finding a a closed-form solution is challenging if not difficult. Alternatively,
an iterative optimization approach to estimate the interrelated discriminative
subspaces can be applied []18] Considering the optimization problem from

each k-mode, the following objective function can be formulated:

|2

T#

L T r
E P 1; HAJ Xk{ik - Axkbk
/e = argmax

= N i T
U Zi:l HA1 X Uy — Anixkbk

: (5.5)

The optimization problem is a special discriminant analysis where the sample

tensors are unfolded into matrices in the k-mode and the column vector of the
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unfolded matrices are labeled with the same class label as the original tensor
is unfolded in the k-mode and the column vectors of the unfolded matrices
arc labeled with the tensor’s original label. The problem in Eq. is then

reformulated as a special discriminant analysis as:

L Tl T
. Tr (["k S}_, !TJ k)
Uy = argmax

Tr (U SuU) 5.6
e Tr ( U};F Sw Uk ) ( )

T T
. L T k) gk gk % _ b ok Y (ak AR
where S¥ =3 o1 1y (Aj - A ) (zj — A7) and S =5 i1 > e VA4S = A7) (45 — 4
are the between and within class scatter matrices, respectively. AJ}‘]- is the k-

. —k . . —lk .
mode unfolded matrix of tensor A;, A; the average matrix on class j and A" is

the average matrix of the whole training ddtd[lltﬂ

5.3.3 Tensor Exponential Discriminant Analysis (TEDA)

[

To address the problem of small sample size (SSS) as well as preserving
the discrimination achieved by the null space of the within-class scatter matrix
in LDA, the exponential discreminant analysis (EDA) has been proposed
[llg] Taking advantage of this method, MDA LllS] is extended to TEDA,
by introducing the exponentiation for tensor dimensionality reduction and
discrimination improvement. In what comes next a brief desceription of the

MDA will be firstly given, belore presenting its extension to TEDA.
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TEDA

Lh

Using the cigenvalue decomposition, the k*-mode the projection matrix,

Uf in Eq. (5.0, is rewritten as:

Tr (U (TE A 1) Th)

Ui = aremax i (P74, 1) U (5:7)
where 73, = (vp,, Uby, -, Up,) 18 the cigenvector matrix of S, and A, =
diag (1, s bys - - - » by, ) YEPresent the corresponding eigenvalues. Ty = (Uy,, Uy, - - -
is the eigenvector matrix of S, and A, = diag (w,,we: - - -+ w,,) represent the

corresponding eigenvalues.

Sy 18 not full-rank matrix under the small sample size situation. In this
case, the discriminant data related to the null eigenvalues of S, has the best
discriminant power [l] Howcever, in MDA, this data is discarded by the
projection. To prevent this issue, in TEDA, we introduce the expectational by

changing y, the eigenvalues of S, by exp(, ). Hence, the objective function in

Eq. (5.7) become:

T = argmax Tr (U (1 exp(Ay) Thy) Us)

5.8
v o (UF (TXexp(Ay) 1) Ui) (58)

Applying the property 8 in [1] of experiential matrix, Eq. (5.7) become:

U? — argmax DUk (©x2(50)) Ui)
k Lk Tr (L-L:r‘ (Cxp(sw)) {/Tk)

(5.9)

1
! ?’Wm )

Based on property 2 in [1], the matrix exp(S,) is a full-rank matrix.

Consequently, the discriminant data included in the null space ol S, can
be preserved by equation FEq. (5.9). The optimal projection matrix U} for

each k-mode and iteration comprises to the first leading ng, eigenvectors of
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exp (Sp) T = Aexp (Sy) T, where ; >4 > ... >

iy
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5.3.4 Deep Random Forests for age estimation [21]:

Our proposed method [21] targets the age estimation problem, it predicts
the age from a single facial image. It performs regression-by-classification. In
this subsection, we will briefly describe its principle.

The aim behind the RIF method is the production of several predictors
before combining their various predictions rather than attempting to get an
optimized procedure at once. More details in relation to Random Forests can
be found in LLQ(J] In [21] we have brought into practice a new approach able
to resolve the age estimation problem from face image. It showed a good
performance compared with the state of the art. It consists ol ensembles of
Random Forests. The ensembles of Random Forests create a cascade structure
by making more than one layer. An ensemble of Random Forests forms a layer
in the structure. The feature vector is received by the first layer as a given
input. A class probability distribution will be produced by cvery forest of the
similar level. A C-dimensional class vector will be the output of every forest if
there are C classes to predict. Concatenating the original input vector with
the produced class vectors of every forest (coming from prior level) helps in

obtaining the input vector for the subsequent layers.

5.4 Proposed approach

In this section, we will shed the light on the proposed architecture. It
is composed of two main stages: the tensor dimensional reduction and Deep
Random Forest for final age estimation. These two main parts are performed

during a training stage in which the first part (tensor transformations) is
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determined first, then the second part (DRFs) is estimated. We assume that
cach face images has several types of deep descriptors. These feature vectors
form a 2D matrix that is considered as a feature matrix of one face image.
Thus, a training set of face images can be represented by a 3D tensor. Next, the
3D tensor will be treated by the MWPCA and TEDA techniques successively
to reduce the dimension with preserving the essential component. The output
of TEDA will be the input to the Deep Random Forests method for the final
estimation. We will present the details of the implementation of the proposed
method in the next section.

We collect multiple types ol descriptors for each face image. The purpose of
using those different features types is to exploit the diverse types of information
in order to enhance the age estimation process. After extracting the multiple
face image feature vectors we will gather them in a 2D matrix of size I; x Iy,
where /) 18 the number of used feature vectors and I, is the dimension of the
feature vectors.

The optimal multi-linear projection matrices are estimated in the training
stage. After the model is computed, any new face image could be projected
by the aforementioned tensor transformations in the test stage. The training
3" order Tensor X € R'"*2*1s ig constructed using the feature vectors, which
arc extracted from the pre-processed face image of the training database. The
feature vectors can be of different tyvpes. However, they should have the same

dimension 1. The tensor X € R"*2xTs ;mades are :

e I, denotes the ensemble of descriptors.
e |, denotes the feature vector dimension.

e I; denotes the number of training face samples.
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The transformation of the input 3D tensor X are estimated based on the
MWPCA/TEDA methods. According to I} and Iy modes which are projected
into another subspace. Hence, a new reduced tensor Y € R”Xl;xh, where
I; x I, < T; x Ip. For further processing, these transformed features are
reshaped into a vector of dimension I x I,. The same process will be applied
to the test samples without any change.

After that we proceed through the Deep Random Forests proposed by [21
1 21] where an ensemble of random forests interacts in a form of a cascade
structure. The input is a feature vector. It will be processed by multiple
random forests. This collection of RFs is considered as a [lirst layer, and the
deep random forest consists of multiple layers.

Every RF of the same layer will generate a class probabilities vector. The
generated class probabilities vectors will be concatenated with the input vector
in order to form the input vector of the next layer. This aims to create a new

feature vector with more information. The dimension of the new vector (at

first layer) is given by:

Dim = Dy + (F x C) (5.10)

where Dy denotes the original feature size, I denotes the number of forests,
and C is the number of classes.

The out of the first layer will be the input of the second layer, until the
final layer (the number of layers is a parameter chosen by the user). In the
final layer, the vectors of probabilitics will be averaged, to get one final class
probabilities vector. The final estimated class will be the averaged over the N

biggest class probabilities. This suits the age estimation problem. For more
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details see [21]

5.5 Experiments and implementation details

We used five datasets to test the performance of our proposed architecture:
MORPH II (with 55,608 images and 5 random split protocol), FG-NET (with
1002 images and LOPO protocol), PAL (1,046 images with 5 fold random split),
LEW+ (with 15,699 images and 5 fold cross validation), APPA-REAL (real

age labels of 7591 images and 5 fold cross validation protocol).

5.5.1 Pre-processing

We used the ensemble of regression trees (ERT) algorithm [122] to localize
the facial landmarks. This algorithin considered a good one for facial landmarks
detection. The landmarks points serve for aligning the 2D face image by using
the eyes coordination. After performing the 2D alignment, the face region is

cropped.

5.5.2 Feature extraction

We used the pre-trained IMBD-WIKI and DEXchalearn models for
deep facial feature extraction [80]. We extract the last two fully connected
layer vectors of the mentioned pre-trained models FC6 and FCT of the input
preprocessed images with a size of 224 x 224. For each input face image, the
vectors FC6 and FC7 of both models are later extracted as mentioned above

to create a 2D matrix feature of size 4096 x 4.
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5.5.3 Implementation

After we get the features vectors from the pre-trained model, we extract
them to create a matrix of 4096 x 4. We then extract the matrices of all training
samples to from a 3™ order tensor. Each database’s training data is used to
estimate the matrices for subspace projection. There are two matrices for the
MWPCA method and two matrices for the TEDA method. The dimension was
automatically determined by retaining 97% of the eigenvalues’ energy. Used to
monitor the 3rd order tensor projection convergence, the maximum number of
iterations is empirically set. to 16. We set the convergence threshold to 10° for
the MWPCA algorithm as done in [I]. For the TEDA method, we modified
the class labels by gathering the closest labels (ages) in a unique class, which
can be considered as grouping the ages. This was repeated several time times
where at any time we try a new class interval, for example for the first run we
used a class interval of one year. In the next run, we took 2 years as a class
interval and we regenerate the labels and so on. The used class widths were
set from {1,2,3.4,5}. Note that the DRI part uses the normal labels (i.e., the
class is given by one year), and it used two layers (including the decision layer).

The remaining settings of the DRF's are similar to those described in [21]

5.5.4 Results

Figure shows all experimental results obtained with the five databases.
Subplots (a),(b),(c),(d), and (e) depict the MAE in years as a [unction ol two
hyper-parameters: the number of highest probabilities and the class width in
the TEDA method. The X axis corresponds to the number of the highest

probabilities used by the final layer of the DRFs. The Y axis corresponds
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Figure 5.3: MAE of the proposed method as a function of two hyper-parameters:
(i) the number of highest probabilitics used by the last layer in the Deep Random
Forest and (ii) the class width used by the TEDA method.

to the class width (in years) in the TEDA method. Each integer of this axis
presents the number of yvears used for forming the age groups in the TEDA

method. For instance, a value of 2 means that the groups of ages are formed
by classcs having a width of two years.
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In Figure we can see, In general, that TEDA works better when the
class width is sct to 2 years. We also observe that, in general, the best MAE
was obtained when the number of highest probabilitics was greater than one.
In (a), it can be appreciated that the best MAE for APPA-REAL (real age)
dataset was 1.89. This was obtained with a number N of probabilities equal
to 5 and the original labels. For the LEFW+ dataset, the best MAE was 5.21,
obtained with N number of probabilities equal to 6. For the FG-NET dataset,
the best MAE was 3.05 obtained by N probabilitics number equal to 2 and a
clags step of 2 years. For the PAL dataset, the best MAE was 2.39, obtained
with the original labels and number probabilities equal to 4. For the MORPH
IT, the best MAE was 2.89 obtained with a number probabilities N = 2 and a
class width of 2 years.

In Table we compared our method, in terms of MAE, with some
statc-of-the-art methods. This table presents the results associated with the
FG-NET, PAL, LFW+, APPA REAL (real ages), and MORPH II databases.
Our work outperforms most of the state-ol-the-art methods. The proposed
method outperformed our previous DRI method. This is due to the use of

tensor transformations applied to the deep features.

5.6 Conclusion

We enhanced our previous DRF method for facial age estimation. The
current, work combines two totally different methods: the first one is based
on tensor subspace learning, and the second one is based on Deep Random
Forests that performs regression-by-classification. Performances obtained on

five public face databases are very promising. These results pave the way to
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Table 5.1: Comparison of our method with some of state-of-the-art methods
using five datascts FG-NET, MORPH II, PAL, LFW+ and APPA-REAL rcal

age
B — APPA REAL | .,
MethodDatabase FG-NET PAL | LFW+ REAL ACE MORPH II
Liu et al. [110] 3.93 / /
LSDML[ZS] 3.92 / 3.08
DRFs [6] 3.85 / BT
Gunay and N abiyg}-f___[i%] / 5.40 /
Bekhouche et al. [113] / 5.00 /

:-,'_}'( E.'_.‘l““*x“‘x‘“&h“‘*x“m““ax«

L I B B B T ) B B B B B

Dornaika ct al. [7] f 3.79 3.67
(DMTL) Hun et al.[27] / / 50 3.0
Structured learning [§f1] 3.89 / /
Agustsson et al.[28] ) / 46 3.25
Agustsson ct al.[28] (Residual DEX) | / / 35 2.68
Olatunbosun et al []}23“ 3.56 / 5.31 2.72
Guehairia et al EZ]H 3.65 2.73 82 5.25 3.98
Proposed Approach 3.05 2.39 21 4.92 2.89

morc investigation about enriching the face descriptors and integrating featurc

selection paradigms in the main parts of the proposed pipeline.
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6.1 Conclusion and future work

In this research, we shed light on one of the biometrics tasks, the age
estimation via face images. The latter is considered influential and valuable
in several nowadays applications. We also discussed the most and well-known
difficulties and challenges facing this field. Particular mention must be made
that during our research in this field, we faced several valuable and important
kinds of researchers, We have summarized and mentioned only what contributes
to the enrichment of our research and what helps to understand it more.

Qur work aims to take a part in such field, it focus on minimizing the Mean
Absolute Error, using two original architectures, we have provide through the
chapters of this thesis two contributions that have been combined to design

an overall scheme to solve the estimation of the exact age value [rom face images.

we proposed a new architecture for age estimation based on facial iinages.
It is mainly based on a cascade of classification trees ensembles, which are
known recently as a Deep Random Forest, and the Multi-linear Whitened Prin-
cipal Component (MWPCA) and Tensor Exponential Discriminant (TEDA).
Throughout this work, we have proposed two new architectures for age estima-
tion based on facial images.The first one in chapter three, This architecture
stands on a recently proposed classification method, currently known as Deep
Random Forest. Our architecture is mainly built on a cascade of classification
forests ensembles similar to those found in the DRF method and is composed
of two types of DRFs. One secking the enrichment of the feature representation
of a given facial descriptor followed by a fusion of the enriched (high level)

feature vectors. The other operates on the fused form of all of the enhanced
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representations in order to estimate the age.

Experiments were conducted on different public databases: FG-NET, MORPH
Caucasian, PAL, LFW+, FACES, and APPA-REAL. These experiments demon-
strate the outperformance of the proposed architecture over many existing
state-of-the-art methods. Some of the highlights of the work can be summed

up in the following points:

e The reduction of the mean absolute error shows the efficiency of the DRF
based extended feature along with the fusion representation, compared

to the original feature.

e An even [urther reduction of the age error was obtained by using the
concept of Ny, probabilities function that was a natural output of the
proposed architecture. This concept has shown its superiority over the

original decision process.

e The computational complexity of the training stage is cheaper than that

of classic deep learning approaches.

In the fourth chapter We enhanced our previous DRF method for facial age
estimation. The current work combines two totally different methods: the
first one is based on tensor subspace learning, and the second one is based on
Deep Random Forests that performs regression-by-classification. Performances
obtained on five public [ace databases are very promising. These results pave the
way to more investigation about enriching the face descriptors and integrating

feature selection paradigms in the main parts of the proposed pipeline.
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6.2 Perspective

In order to improve our proposal, we may pursue a number of research
avenues in the future. Despite the proposed age estimation through facial
images’ good results, it aims to reduce the error gaps between the real and
estimated ages.

Future work will focus on the fusion enrichment phase, which will make
use of a variety of input features from both (deep features and hand-crafted
features). Other new proposals can look into the decision-making process.
To achieve this, all individual forests in the last layer can be subjected to a

reighted average of ages using the highest abilitics.
weighted average of ages using the highest probabilitics
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