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Abstract 

 

 

 

The assessment of slope stability is attributed to various critical conditions; one of which is the self-

weight sliding stimulus, and the other one induces failure caused by a surface load condition (shallow 

foundation). In the particular case of a shallow foundation situated on a slope crest, the bearing capacity 

is significantly reduced. Therefore in practice, anti-slide piles are used to enhance the performance of the 

nearby footing. Whereas, the studies tend to rely on the hypothesis of purely vertical surface load 

condition. The present dissertation aims to contribute to the numerical and stochastic analyses by 

inducing vertical retaining structures, in order to deal with the group problem of slope stability and 

bearing capacity of an adjacent combined loaded strip footing. Firstly, a bibliographical research is 

presenting the most common deterministic and probabilistic methods, pertaining to slope stability 

assessment and bearing capacity of a shallow foundation. Followed by a presentation of bibliographical 

synthesis concerning studies published in the literature. The second part furnishes a contribution to the 

numerical analysis using the finite element software OptumG2. The investigation of the factor of safety 

is conducted under various conditions of a pile row, using elastoplastic shear strength reduction method. 

Thence after, a conducted study is done on the effect of reinforcing a cohesive slope by a row of multiple 

number of piles and a sheet pile wall on the undrained bearing capacity of a rigid strip footing, using the 

limit analysis. 

  

Key words: 

Factor of safety, Pile-stabilized slope, Sheet pile wall, Shallow foundation, Bearing capacity 

improvement, Inclined loading. 
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Résumé 

 

 

 

La stabilité des pentes dépend du poids propre et les conditions de chargement surfacique. Dans le cas 

particulier d’une fondation superficielle située au bord d’une pente, la capacité portante est réduite 

significativement. En conséquence, l’utilisation des pieux comme une technique de renforcement peut 

montrer une excellente amélioration. Dans ce cas, les études ont tendance de s’appuyer sur l’hypothèse 

d’une fondation soumise à un chargement vertical centré. La présente thèse, vise à contribuer à l’analyse 

numérique et stochastique, concernant le problème combiné de la stabilité des pentes et la capacité 

portante d’une semelle filante sous chargement incliné. En considérant, le renforcement par des structures 

de soutènement verticales. Tout d’abord, une recherche bibliographique est consacrée à la présentation 

des méthodes déterministes et probabilistes, pour la détermination de la stabilité du talus et la capacité 

portante d’une fondation superficielle; ainsi que les travaux publiés sur ce sujet.  La deuxième partie, 

présente des contributions à l’analyse numérique en utilisant le code en éléments finis OptumG2. Des 

investigations du facteur de sécurité sont appliquées sous diverses conditions d’une rangée de pieux, en 

utilisant la méthode élastoplastique de la réduction de la résistance au cisaillement. Egalement, une 

analyse limite est adoptée pour évaluer les facteurs influençant la capacité portante d’une semelle filante 

rigide, située au bord d’un talus purement cohérent renforcé par une rangée de pieux ou un rideau de 

palplanche. 

 

Mots clés : 

Facteur de sécurité, Pente renforcée par pieux, Rideau de palplanche, Fondation superficielle, 

Amélioration de la capacité portante, Chargement incliné.
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 ملخص

 

 

 

ة زائدة إن تقييم استقرار المنحدرات يعود الى عدة شروط حرجة، من بينها الوزن الذاتي المتسبب في إنزلاق التربة؛ و الآخرمتمثل في تواجد حمول

سطحية )أساس سطحي(. الأساسات التي تقع عادة على قمم المنحدرات؛ قدرة تحملها تنقص بشكل ملحوظ. عمليا، استعمال الأعمدة المضادة 

نزلاق التربة يرفع كثيرا من قدرة التحمل. في حين أن الدراسات التي أجريت تعتمد على فرضية كون الحمولة عمودية بحتة، هذه الأطروحة لإ

جود  تهدف إلى المشاركة في التحليل العددي والعشوائي لمجموعة من المشاكل، المتمثلة في استقرارية المنحدر و قدرة تحمل الأساس المجاور بو

م ولة مائلة. و ذلك يتم عن طريق استعمال أعمدة و جدران تدعيمية. في الجزئية الأولى، بحث يعرض أشهر الطرق الحتمية و الافتراضية لتقييحم

ية لعلماستقرارية المنحدر و قدرة تحمل الأساس السطحي، متبوعا بملخص بيبليوغرافيكي للدراسات المنجزة. الجزئية الثانية تتمثل في المشاركة ا

في التحليل العددي بواسطة برنامج العنصرالنهائي. دراسة فحص معامل الأمان تمت من خلال استعمال طريقة تخفيض  قوة القص. ثم بعد ذلك، 

دراسة أجريت باستعمال طريقة التحليل الحدي، حول العوامل المؤثرة في قدرة تحمل الأساس السطحي المجاور لمنحدر مدعم و مكون من تربة 

سكة. متما  

 

 الكلمات المفتاحية

 معامل الأمان، منحدر مدعم بأعمدة تثبيتية ، جدار تدعيمي، أساس سطحي، تحسين قدرة التحمل، حمولة مائلة.
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We provide below the main notations used in this dissertation: 

Fs: factor of safety. 

φ: friction angle. 

c: cohesion (cu: undrained shear strength). 

Ø: pile diameter. 

S: centre-to-centre pile spacing. 

L: embedded pile length. 

d: location of pile relative to the slope crest. 

β: Slope angle. 

Z: slope height. 

B: footing width. 

λ: relative distance between the footing and the slope crest. 

Ncu: undrained bearing capacity factor. 

qu: undrained bearing capacity (qus: undrained limit load of the stabilized slope). 

BCI: bearing capacity improvement factor. 

icβ: load inclination factor relevant to the slope. 

θ: load inclination angle. 

σcu: standard deviation of the undrained cohesion. 

μcu: mean value of the undrained cohesion. 

ϴ: isotropic correlation length. 

COVcu: coefficient of variation of the undrained cohesion. 

CDF: cumulative distribution function. 

CCDF: complementary cumulative distribution function. 

FELA: finite element limit analysis. 

RFEM: random finite element method. 
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 General introduction  

 

 

 

The slope failure is likely developed in loose materials or generally cohesive soils, due to the 

insufficiency of soil characteristics in upholding its own weight. Although the action of gravity is the 

prime force for a landslide to take place, there is another contributing factor identified as a surface load 

action (i.e. nearby shallow foundations). The failure surface can be significantly stopped from prolonging 

to the sloping ground by dint of using discrete retaining structures (pile row) within the slope (Chen & 

Poulos, 1997; Ito et al., 1981; Li & Liang, 2014; Nimityongskul et al., 2018; Poulos, 1995; Qin et al., 

2017; Won et al., 2005) or continues structures (sheet pile wall) (Ahmed, 2004; El Sawwaf, 2005; 

Gazetas et al., 2016; Lin et al., 2018). Beyond which the displacements are significantly limited to 

acceptable values. Numerical methods are quite effective in the consideration of the pile behavior, soil-

pile interaction and the description corresponding to lateral load distributions along the pile row (Chow, 

1996; Jeong et al., 2003; Kourkoulis et al., 2012; Pirone & Urciuoli, 2018; Sanping & Robert, 2002; 

Xiao, 2020; Yamin & Liang, 2010; Yang & Zhang, 2020). It should be mentioned that the investigation 

of the slope surface load action, necessitates a good understanding of the theory of bearing capacity. In 

practice, the bearing capacity is determined based on the classical equation of (Terzaghi, 1943). 

However, the effect of inclined loading on the bearing capacity is investigated through several methods; 

one of which is the kinematic approach integrated in limit analysis (Chen, 2013; Georgiadis, 2010; 

Michalowski, 1997).  

In geotechnical engineering, the soil is accounted for as anisotropic and heterogeneous field with variable 

characteristics. The combination of both the theory of random fields and the deterministic finite element 

method gives the ability to consider the probability distributions for more than one soil parameter. This 

is done by the generation of random fields relevant to spatial variables. Stochastic analyses were firstly 

developed by (Griffiths and Fenton ; 1993) using the random finite element method (RFEM). Hence, this 

latter had been combined with the limit analysis by several researchers in the current decade (Ali et al., 
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2016; Ali et al., 2017; Huang et al., 2013). However, the random finite element analysis might be 

executed by virtue of Monte-Carlo simulations to conduct a statistical analysis of the results; whereas, 

the generation of many random fields relevant to the soil domain leads to repeated executions. 

The objective of this dissertation, is to contribute to numerical and stochastic analyses treating the 

problem relevant to slope failure caused by the self-weight, as well as a surface load condition. 

 The first part of this thesis represents a bibliographical synthesis devoted to the presentation of 

computation methods concerning the common problem of slope stability assessment; thusly, the problem 

of bearing capacity of an adjacent shallow foundation. Whereas, deterministic and probabilistic studies 

published in the literature are mentioned in three chapters.  

The first chapter represents basic concepts on the deterministic and probabilistic theories of slope 

steadiness under various circumstances; namely, sliding generated by the self-weight, sliding generated 

by a surface load condition (shallow foundation near the slope crest) and spatial variability of soil 

properties. 

The second chapter is regarding the presentation of a bibliographical synthesis of previously conducted 

studies on the slope stability. We are concerned particularly about studies on mechanical and structural 

behaviour of a pile row used to reinforce unstable slopes; as well as, several pile conditions affecting the 

factor of safety. Hence, this chapter represents in particular the principles of OptumG2 code used to 

elaborate the numerical simulations, as well as, the corresponding yield criterions. 

The third chapter is dedicated at the presentation of basic concepts pertaining to the determination of 

the bearing capacity of shallow footings using classical deterministic and probabilistic methods. The 

chapter particularly focuses on studies addressing the mechanical behaviour of shallow foundations, 

subjected to combined loading, situated near a slope crest before and after reinforcement.  

The second part of this thesis, represents numerical contributions to deterministic and probabilistic 

studies, devoted to the assessment of slope stability and bearing capacity of a strip footing adjacent to a 

slope. The computations consider both slope cases before and after reinforcement using the software 

OptumG2.  
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The fourth chapter represents the results pertaining to a deterministic study on the stability of a slope 

reinforced by a row of piles; the effects of pile spacing, head conditions and rigidity on the factor of 

safety are investigated. 

Chapter five, aims to presenting the pile row technique of reinforcement to help improving the bearing 

capacity of a strip footing subjected to a combined loading. The study relates the enhancement in the 

bearing capacity to various pile parameters for various load inclinations. The deterministic analysis is 

conducted using the finite element limit analysis with its upper and lower bounds. Thus, a probabilistic 

study combined with the theory of random fields is conducted to examine the effect of stochastic 

parameters on the undrained bearing capacity. 

Finally, the sixth chapter, investigates the rate of enhancement in the undrained bearing capacity when 

adopting the sheet pile wall reinforcement technique; as well as, capturing the alterations in the 

corresponding load inclination factor. The limit analysis based on the finite element method is employed 

to investigate the effect of load inclinations on the size and shape of failure envelopes under several 

geometric and mechanical conditions.  
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Chapter 1: Principle of different slope analyses by virtue of the sliding 

stimulus 

 

 

 

 

1.1 Introduction 

The subject of analyzing the stability of slopes has received a great attention in the literature according 

to its importance related to safety and economy. The hazard of sliding increases under various conditions 

applied on slopes. Specifically, self-weight of slopes with great depths measured from the stratum to 

ground surface and surface load condition near the slope crest that is generally represented by a nearby 

shallow foundation undergoing horizontal and vertical loadings. As well as, the soil heterogeneity 

defined by variable physical and mechanical characteristics, inducing uncertainty to the slope factor of 

safety or bearing capacity of an adjacent footing.  

Nevertheless, the principle of calculating the slope stability using equilibrium methods is based on the 

determination of the minimum factor of safety; in which it relies on balancing the driving forces with 

resisting forces. Scholars have developed lots of methods to investigate the safety factor; (Huang, 2014) 

presented a summary on the most common analytical methods previously developed in the literature. It 

is important to mention that the case where the slope is subjected to a surface load is one of the important 

subjects in the geotechnical engineering. This is due to the consistent relationship between the bearing 

capacity and the subject of safety. In other words, the slope stability increases with the increase of the 

bearing capacity and the vice -versa. The delve into fundamental theories of bearing capacity pertaining 

to shallow foundations situated on horizontal grounds (Prandtl, 1920; Terzaghi, 1943) leads to the ability 

of analyzing problems where footings are near slopes. Thusly proposing solutions to enhance the bearing 
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capacity and improve the overall stability. In geotechnical practice, the deterministic approach is reported 

to serve at providing conservative solutions, due to the neglect of the effect of soil uncertainty caused by 

the variability of parameters and test techniques. Therefore, probabilistic analyses are essential to be side 

by side with the deterministic estimations.  

This chapter, presents different deterministic theories and methods serving at the determination of the 

slope safety factor; as well as, the bearing capacity pertaining to shallow foundations. Hence, basic 

concepts of probabilistic theories in describing geotechnical uncertainty are introduced. 

1.2 The principle of calculating the factor of safety based on the self-weight failure stimulus 

It should be emphasized that the factor of safety is an indicator of the slope mechanical stability. It is 

defined as a coefficient by which the shear resistance parameters are reduced until reaching a state of 

limit equilibrium (Fs≥1.5). The objective of determining the slip surface, is to repair the most likely 

failure plane pertaining to this specific value of Fs. Slope stability analysis focuses on locating the slip 

surface, computing normal and tangential stresses and finally estimating the safety factor with respect to 

the failure criterion using equilibrium equations. It is important to mention that the slip surface is 

determined numerically using softwares like, Nixwin, Nixes or Talren, or else analytically using charts. 

Biarez (1965) has developed a chart for the determination of the circular sliding surface that intersects 

the slope toe.  

1.3 Classical methods of estimating the factor of safety 

The equilibrium equations are developed following two methods: 

1) Method of single body (Method of TAYLOR (1937), CAQUOT (1954), and BIAREZ (1960)): it is 

based on the investigation of the force equilibrium corresponding to the failure zone. It is worthy to 

mention that usually the slip surface is assumed circular. 

2) Method of slices (FELLENIUS (1927) and BISHOP (1955)): the method decomposes the slope into 

slices, where the individual equilibrium should be studied before globalizing the results. Thus, certain 

simplifications are introduced.  
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1.3.1 Single body method 

The method assumes homogeneous and isotropic conditions defined by the unit weight γ, friction angle 

φ, cohesion c and pore pressure u for the case of a nearby water table. The calculations are carried out 

with admitting that the massive soil is in limit equilibrium and indeformable. The hypothesis relies on 

assimilating the slip surface to a circle with the centre O, as shown in Figure 1.1. Consequently, the 

equilibrium of moments is given by eq. (1.1). 

 𝑊.𝑂𝐻 −
2𝑐′𝛼𝑅2

𝐹𝑠
−

𝑅𝑁  𝑡𝑎𝑛𝜑′ 𝑅

𝐹𝑠
+ �⃗� = 0, (1.1) 

where W, OH, c′, α, R, RN, φ′ and u⃗  are respectively the soil weight, lever arm, effective cohesion, the 

angle located at the centre O connecting the top of slope with the centre of the slip circle, radius, normal 

force, effective friction angle and pore pressure (u⃗ =γw(ZM-ZP)). 

(a) (b) 

Figure 1.1: Single body method: (a) forces acting on soil massif, and (b) method of evaluation of the pore pressure 

u. 

1.3.2 Method of slices 

It is also called the Swedish method, named after the Swedish founder Paterson (1916). Thus, Fellenius 

(1927) and Bishop (1955) adopted the method to account for the circular failure type. Thenceforth, 

Nonveiller (1965) extended the method to the noncircular failure type. In nature, the slip surface is rarely 

formed as a circle and the soil massive is not homogeneous. Therefore, it was necessary to divide the soil 

massive into vertical and relatively thin slices, as shown in Figure 1.2. Each slice owns its simple slip 

surface and homogeneous soil. 

1.3.2.1 Method of Fellenius 

The definition of Fellenius (1927) is commonly recognised in the literature. The method assumes that 

the limit equilibrium pertaining to the unstable layer (above the slip surface) is obtained when the system 
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of applied mobilized forces mobilizes the ratios corresponding to the true values of soil friction angle 

tanφ/Fs and cohesion c/Fs: 

 𝐹𝑠 =
∑𝑐𝑏 + (𝑊𝑐𝑜𝑠2 𝜃 − 𝑢𝑏)

𝑡𝑎𝑛𝜑
𝑐𝑜𝑠𝜃

∑ 𝑊 𝑠𝑖𝑛𝜃
, (1.2) 

where b and θ are the slice width and angle between the centre of the slice to its edge.  

 

Figure 1.2: Slice details implemented in the method of slices. 

1.3.2.2 Method of Bishop 

It is important to mention that the maximal value of the shear stress τ distributed along the slip surface is 

referred to as the shear resistance τf. Consequently, prior to failure the system of force applied on the 

stable layer brings down τ compared to τf. Therefore, Bishop (1955) defines the factor of safety as 

follows: 

 𝐹𝑠 =
𝜏𝑓

𝜏
, (1.3) 

 

𝐹𝑠 =

∑[𝑐′𝑏 + (𝑊 − 𝑢𝑏) 𝑡𝑎𝑛 𝜑′]
1

𝑐𝑜𝑠 𝛼 (1 + 𝑡𝑎 𝑛𝜑′/𝐹𝑠

∑𝑊 𝑠𝑖𝑛 𝛼
. 

(1.4) 

1.4 Principle of calculating the bearing capacity of shallow foundations by virtue of loading 

failure stimulus 

1.4.1 Basic concepts 

In geotechnical engineering, the foundation represents the bottom part of the structure, where the contact 

with soil takes place. Its role is to transmit loads induced by the structure to soil. They are generally 

classified into different categories based on the footing embedment depth D; beyond which it depends 

on the nature of soil and the type of structure. There are semi-deep foundations, deep foundations (i.e. 

pile rows and sheet pile wall) and shallow foundations. The last two types together are the subject of 
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interest of this thesis. The shallow foundations are basically used when the soil layer that is supporting 

the construction loads is of small depths based on the target structure.  The footing is generally called 

shallow when the embedment length D is less than 1.5 B. Shallow foundations are three categories, 

isolated foundation (Figure 1.3(a)), with a rectangular shape of identical length L and width B or circular 

shape with diameter B; strip footing (Figure 1.3(b)), generally of higher length L comparing to the width 

B (L/B>10); also, raft foundation (Figure 1.3(c)), with important dimensions of L and B. 

(a) (b) (c) 

Figure 1.3: Types of shallow foundations (Frank, 1999). 

The bearing capacity (limit load) has been widely investigated based on the classical equation of Terzaghi 

(1943). Shallow foundations has been accounted for using the laboratory based tests known as classical 

methods relevant to c and φ, or another analytical and numerical methods, namely: 

- The limit equilibrium method (Meyerhof, 1951; Terzaghi, 1943; Vesic, 1973). This method is based on 

assuring a static equilibrium of external and internal forces. 

- The characteristic method based on slip surfaces (Bolton & Lau, 1993; Hansen, 1970; Martin, 2003). 

This method comprises the equity of equilibrium equation with the condition imposed by the soil 

resistance. 

- The elastoplastic analyses based on finite element or finite difference methods (Erickson & Drescher, 

2002; Frydman & Burd, 1997). The method provides the ability to follow the elastoplastic development 

from the state of initial stresses till the plastic failure during process of loading. This feature provides the 

ability to dress load-displacement curves. 

- Kinematic approach integrated in limit analysis (Chen, 2013; Michalowski, 1997). This method 

considers the kinematic principles relevant to deformations in the failure analysis; as well as, the 

boundary conditions of displacements. Following Chatzigogos (2007), the upper bound of limit analysis 
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refers to that the external loading is equal or higher than the limit load, whenever this condition is 

applicable for an admissible cinematic velocity field: “potency of external loads ≥ rate of dissipation of 

internal energy”. In contrast, the static approach furnishes inferior bounds than the limit load forming a 

stress field that is admissible statistically and plastically. It is of interest to know that this method is 

limited at furnishing the field relevant to real applied stresses and deformations; nonetheless, it only 

bounds the limit load. 

It is worthy to note that the use of limit analysis conducted with finite elements combines the power of 

finite element discretization relevant to complex geotechnical modes with limit plasticity theorem 

corresponding to bounding the exact limit load (Krabbenhoft et al., 2005). This method is adopted in the 

current dissertation using OptumG2 code. Further details concerning the method are mentioned in 

Chapter 2. 

1.4.2 Theories of bearing capacity for strip footings  

1.4.2.1 Theory of Prandtl  

Prandtl (1920) suggested a theory of bearing capacity based on analyzing the strip footing with a smooth 

base driven towards the bottom. Figure 1.4, indicates the failure surface of a shallow footing; by which, 

zone I forms a corner situated below the footing and pushing laterally zone II, causing by that zone III to 

upheave. Both zones II and III are in plastic equilibrium; where the slip surface pertaining to zone II is 

log-spiral.  

 

Figure 1.4: Failure plane of a shallow footing (Prandtl, 1920). 

Based on the theory of plasticity, Prandtl (1920) derived the following expression of ultimate bearing 

capacity: 
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 𝑞𝑢 =
𝑐

𝑡𝑎𝑛𝜑
[{𝑡𝑎𝑛2(45 + 𝜑/2)𝑒𝜋 𝑡𝑎𝑛𝜑} − 1]. (1.5) 

For purely cohesive soil (φ=0), the log-spiral takes the shape of an arc of circle with an ultimate bearing 

capacity of qu= (π+2) cu. 

1.4.2.2 Theory of Terzaghi 

Terzaghi (1943) derived a general expression for the limit load of strip footings assuming a two 

dimensional problem. The suggested bearing theory is based on the previous theory of Prandtl (1920). 

The footing base is assumed rough, thus the corner abc shown in Figure 1.5 doesn’t undergo any lateral 

displacement. The ultimate limit load is reached when the footing is undergoing the pressure qu. 

 

Figure 1.5: Failure plane of a shallow foundation (Terzaghi, 1943). 

The expression of limit load (eq. (1.6)) considers group factors; namely, the forces acting on abc, 

superposition technique to combine the effects of cohesion, overload, and soil weight.  

 
𝑞𝑢 =

𝑄𝑢𝑙𝑡

𝐵
+ 𝑐 𝑁𝑐 + 𝛾𝐷𝑁𝑞 +

1

2
𝛾𝐵𝑁𝛾 , 

(1.6) 

where Qult and D are respectively the ultimate load per unit length and embedded depth of footing; hence, 

Nc, Nq and Nγ are the factors of bearing capacity depending on the angle φ, as follows: 

 

𝑁𝑐 = 𝑐𝑜𝑡𝜑 [
𝑎2

2 𝑐𝑜𝑠2(45° +
𝜑
2)

− 1] 

(1.7) 

 
𝑁𝑞=

𝑎2

2 𝑐𝑜𝑠2(
𝜋
4 +

𝜑
2)

, 
 

 
𝑎 = 𝑒[(

3𝜋
4

−
𝜑
2
) 𝑡𝑎𝑛𝜑], 

(1.8) 

 
𝑁𝛾 =

𝑡𝑎𝑛𝜑

2
(

𝐾𝑝𝛾

𝑐𝑜𝑠2𝜑
− 1). 

(1.9) 
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where  Kpγ is obtained from tables. Nevertheless, the determination of bearing capacity factors has been 

widely addressed. Sieffert and Bay-Gress (2000) presented various studies conducted on the 

determination of bearing capacity of shallow foundations in Europe. A large diversity in the estimation 

of multiplicative factors is presented in Table 1.1. 

Table 1.1: Different expressions of bearing capacity factors. 

Author Nc Nq Nγ 

Vesic (1975) (𝑁𝑞 − 1) 𝑐𝑜𝑡𝜑 𝑡𝑎𝑛2 (
𝜋

4
+

𝜑

2
) 𝑒𝜋 𝑡𝑎𝑛𝜑 2(𝑁𝑞 − 1) 𝑡𝑎𝑛𝜑 

Hansen (1970) (𝑁𝑞 − 1) 𝑐𝑜𝑡𝜑 𝑡𝑎𝑛2 (
𝜋

4
+

𝜑

2
) 𝑒𝜋 𝑡𝑎𝑛𝜑 1.5(𝑁𝑞 − 1) 𝑡𝑎𝑛𝜑 

Meyerhof (1963) (𝑁𝑞 − 1) 𝑐𝑜𝑡𝜑 𝑡𝑎𝑛2 (
𝜋

4
+

𝜑

2
) 𝑒𝜋 𝑡𝑎𝑛𝜑 (𝑁𝑞 − 1) tan  (1.4 𝜑) 

Meyerhof (1963) developed a general expression inducing correction factors of load inclination, footing 

shape and embedment depth: 

 𝑞𝑢 = 0.5 𝐵 𝑁𝛾𝑆𝛾𝑑𝛾𝑖𝛾 + 𝑐𝑁𝑐𝑆𝑐𝑑𝑐𝑖𝑐 + 𝑞𝑁𝑞𝑆𝑞𝑑𝑞𝑖𝑞 , (1.10) 

where Sγ, Sc and Sq are the footing shape factors; dγ, dc and dq are the footing embedment factors, and iγ, 

ic and iq are the load inclination factors. 

Several researchers have extended the classical expression of Terzaghi (1943) to account for 

homogeneous soil (Green, 1954; Hansen, 1961; Meyerhof, 1963; Vesic, 1975) and nonhomogeneous soil 

(Ouahab et al., 2017) with developing load inclination factors. Table 1.2 shows load correction factors 

for purely cohesive soil (φ=0). Nevertheless, other researchers have developed expressions that are 

function of load interaction diagrams (Bransby & Randolph, 1998; Gourvenec, 2007; Loukidis et al., 

2008; Taiebat & Carter, 2002; Ukritchon et al., 1998). The limit bearing capacity is computed in terms 

of combined loading. The interaction of load components (vertical V and horizontal H forces) is explicitly 

taken into consideration in the determination of the limit load by means of failure envelopes. However, 

this latter is defined as ultimate surfaces in the loading surface V-H. The approach of failure envelopes 

assumes that the stability field is inside the failure envelope. It is worthy to mention that  two loading 

techniques are available in geotechnical engineering; following Loukidis et al. (2008) they are known as, 

‘Swipe’ and ‘Probe’. The Probe technique consists of loading the footing progressively until collapse 

under specific inclined loads. Each Probe analysis aims to estimating a unique limit load corresponding 
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to failure; thus, the failure curves are plotted point by point. The Swipe technique consists of two steps 

to plot the failure curves in terms of V-H. First step is based on the application of a vertical displacement 

on all the nodes of footing until the mobilization of the vertical bearing capacity. Thence after, a 

horizontal displacement is applied until failure, with blocking the vertical displacement of the footing. 

The second step consists of a direct application of horizontal loads on the footing nodes, until reaching 

the ultimate horizontal stress. The advantage of Swipe technique over Probe is that the failure curves are 

dressed rapidly as the Swipe technique permits the determination of several points of failure curves V-H 

at a time. 

Table 1.2: Load inclination factors for purely cohesive soil. 

Author ic 

Green (1954) 0.5 + (1/𝑁𝑐) [𝑐𝑜𝑠−1(𝐻/𝐵𝑐𝑢) + √1 − (𝐻/𝐵𝑐𝑢)2] 

Meyerhof (1963) [1 − (𝜃°/90°)]2 

Hansen (1961) 0.5 + 0.5√1 − (𝐻/𝐵𝑐𝑢) 

Vesic (1975) 1 − (2𝐻/𝐵𝑐𝑢𝑁𝑐) 

Ouahab (2017) 130.23/[(𝑘 + 6.37)𝜃 + 130.23] 

Nevertheless, it is worthwhile to mention that, Footings near slopes require the definition of correction 

factors pertaining to load inclinations in order to estimate the limit load properly. Table 1.3 represents 

available expressions of ic factors in the literature for purely cohesive soil in terms of the inclination of 

slope β and sloping ground factor gc. 

Table 1.3: load inclination factors by virtue of the sloping ground. 

Author icβ 

Hansen (1961) [0.5 + 0.5√1 − (𝐻/𝐵𝑐𝑢)] − 𝑔𝑐,   , with 𝑔𝑐 = 2𝛽/(𝜋 + 2) 

Vesic (1975) [1 − (2𝐻/𝐵𝑐𝑢𝑁𝑐)]. [1 − 𝑔𝑐] 

Furthermore, Hansen (1970) derived an expression (eq. (1.11)) relevant to slope factors λγβ, λcβ and λqβ: 

 𝑞𝑢 = 0.5 𝐵 𝑁𝛾𝜆𝛾𝛽 + 𝑐𝑁𝑐𝜆𝑐𝛽 + 𝑞𝑁𝑞𝜆𝑞𝛽 , (1.11) 

where λγβ, λqβ= (1-0.5 tanβ)2, λcβ= (Nq λqβ-1)/(Nq-1) for φ>0, and λcβ= 1-gc for φ=0. 
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1.5 Concept of slope stability by virtue of random variable soil parameters 

The uncertainty in geotechnical field may be generated by the variability of soil characteristics or 

different test techniques. Practical experiences show that deterministic analyses are conducted to resolve 

problems based on the classical definition of safety giving conservative solutions without considering 

soil uncertainty. This may lead to a deficiency in the accuracy of estimation of the system stability. 

Therefore, the accurate estimation of uncertainty related to geotechnical problems is accomplished using 

a variety of probabilistic methods. It is important to mention that the concept of probabilistic methods 

rely on the statistic theory. In which, a base of theories is obtained to quantify the uncertainty 

consistently; Thence after, they are defined in a mathematical way to obtain a logical frame capable of 

analyzing the reliability and risks. 

1.5.1 Key factors of uncertainty and spatial variability of soil properties 

Understanding the soil history leads to the causes of geotechnical uncertainty attributed to soil. The soil 

composition is considered complex as it is formed by various processes that are continuous and may 

make changes to soil in situ; namely, chemical, physical, geological and environmental processes. Due 

to these natural processes, all the soil in situ properties will vary horizontally and vertically, as shown in 

Figure 1.6.  

 

Figure 1.6: Inherent spatial variability of soil (Phoon & Kulhawy, 1999). 

The spatial variability is defined as ξ(z)= t(z)+ w(z). In which, ξ(z), t(z) and w(z) are respectively the 

soil property at depth z, deterministic function that gives the mean value soil property at depth z, and 

fluctuation component at z (the residual) that represents the inherent variability of soil; it is also referred 
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to as homogenous random field (Vanmarcke, 1983). The key factors of soil uncertainty are classified by 

Phoon and Kulhawy (1999) with respect to the following order, as indicated in Figure 1.7: 

 

Figure 1.7: Factors influencing the uncertainty pertaining to soil (Phoon & Kulhawy, 1999). 

- Inherent variability of soil; the principal factor is the natural geological process causing continues 

modifications to the soil in situ. This evolutionary process was extended by Tang (1984) to account for 

a variation in terms of small scale of environmental conditions during deposit, mineral compositions, 

variation in water content and the history of past stresses. 

- Measurement errors due to, equipment, operation procedures and random tests effect. Combining these 

measurement errors with the inherent variability are described as data dispersion. However, in situ 

measurements are influenced by statistical uncertainty or sampling errors resulting out of an unlimited 

number of informations. 

- Transformation uncertainty; the measures in the field or laboratory may be transformed to soil 

properties for the concept of introducing correlation models empirically or else with introducing 

simplifications and idealizations. 

1.6 Concept of probabilistic soil parameters attributed to the spatial variability 

Popescu et al. (1997) used the random field theory to define various probabilistic characteristics 

pertaining to spatial variability of soil parameters: 

1.6.1 The mean value or centre of gravity pertaining to the probability density function 

The mean value of the random variable (soil parameter) follows an increase or decrease tendency (Figure 

1.8). In general, it is defined as the sum of probabilities of each possible result of experience multiplied 

by its value. It represents the steady mean of all the experimental data by virtue of the corresponding 
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frequency of occurrence. The mean value of a random soil parameter (i.e., X) with the corresponding 

probability density functions fX(X) are given as follows: 

 
𝜇𝑋 = ∫ 𝑋𝑓𝑋(𝑋) 𝑑𝑋

+∞

−∞

. 
(1.12) 

 
Figure 1.8: Two different distributions of the mean value and standard deviation (Fenton & Griffiths, 2008). 

1.6.2 The variance and standard deviation 

The variance (Var) measures the degree of dispersion in the fluctuations around the mean value of the 

parameter (eq. (1.13)). Consequently, the mean value is called the first central moment and the variance 

is called the second central moment. 

 
𝑉𝑎𝑟(𝑋) = 𝜎𝑋

2 = ∫ (𝑋 − 𝜇𝑋)2𝑓𝑋(𝑋)𝑑𝑋,
+∞

−∞

 
(1.13) 

where σX is the standard deviation; it is obtained by the square root of Var(X). Following Fenton and 

Griffiths (2008), this probabilistic characteristic refers to the possible deviations around the mean value, 

as illustrated in Figure 1.8. 

However, the coefficient of variation COV describes the size of dispersion of the random variable based 

on the standard deviation. Basically, the role of this non-dimensional coefficient is to specify small and 

large dispersions. It is defined as the ratio of the standard deviation to the mean value: 

 𝐶𝑂𝑉𝑋 =
𝜎𝑋

𝜇𝑋
. (1.14) 

Phoon and kulhawy (1999) presented approximated values of COV for each soil parameter. This was 

executed using Cone Penetration Tests (CPT), Vane Shear Tests (VST) and tests made in laboratory (i.e., 

unconfined compression tests (U-C), triaxial compression tests (unconsolidated-undrained U-U) and 
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undrained triaxial compression tests (consolidated-isotropic C-I)). As a result, the soil undrained 

cohesion cu furnished typical values of COV as high as 10-55%. 

1.6.3 Correlation structure 

Basically, the rate of linear dependency between two random variables X and Y is expressed by the 

covariance (eq.(1.15)). This expression may be replaced by that of the normalized covariance (correlation 

coefficient), shown in eq. (1.16). 

 
𝐶𝑂𝑉(𝑋, 𝑌) = ∫ ∫ (𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)𝑓𝑋𝑌(𝑥, 𝑦),

+∞

−∞

+∞

−∞

 
(1.15) 

 
𝜌𝑋𝑌 =

𝐶𝑂𝑉(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
,    − 1 ≤ 𝜌𝑋𝑌 ≤ +1. 

(1.16) 

It is worthwhile noting that, for statistically independent X and Y, the covariance is zero. Hence, ρXY=±1 

signifies a linear relation between X and Y that is perfectly positive and respectively negative. While, 

ρXY=0 signifies uncorrelated random variables. 

Nevertheless, the correlation structure representing the inherent variability, highlights the similarity in 

fluctuations measured at two adjacent points following a similar tendency with respect to a certain degree 

of consistency. In other words, a function of auto-correlation is developed to account for the consistency 

of each soil property at two different locations. The function is defined in terms of a correlation distance 

or scale of fluctuations that represents a significant consistency pertaining to the length between two 

constant points. Vanmarcke (1983) developed a rational method to asses a group of random and 

correlated variables pronounced by w(z) assuming a homogeneous random field to analyze the inherent 

variability. Moreover, the suggested correlation structure of a random field is defined by the function of 

covariance. The application of random field starts by the choice of distribution of field probability. 

Fenton and Griffiths (2008) defined the correlation function (covariance function) exponentially in two 

dimensions as follows: 

 
𝜌((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 𝑒𝑥𝑝 (−

|𝑥1 − 𝑥2|

𝜃𝑥
)  𝑒𝑥𝑝 (−

|𝑦1 − 𝑦2|

𝜃𝑦
), 

(1.17) 

where, θx and θy are respectively the horizontal and vertical correlation lengths. Phoon and kulhawy  

(1999) presented approximated values for the correlation lengths of soil undrained cohesion cu using 

laboratory and in situ tests with respect to the fact that the soil properties vary vertically more than the 
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horizontal direction. Accordingly, θx is in the interval of 40-60 m and θy is of 0.5-6 m (generally taken 

as 1-2 m). However, the isotropic random field is defined as, ϴ=θv=θh. 

1.6.4 Continuous probability distribution of random soil parameters  

Understanding the parameters of the probability density function helps remarkably describing the 

principal characteristics of the random variable. In practice, the distribution function is unknown, 

therefore, various approximate distributions are suggested to fill this gap such as normal and lognormal 

distributions: 

1.6.4.1 Normal and standard normal distributions 

Also known as the Gaussian distribution; it is widely used in practice for reasons of mathematical 

simplifications and symmetry. The probability density function for this type is defined as follows: 

 
𝑓𝑋(𝑋) = 𝑁(𝜇𝑋 , 𝜎𝑋

2) =
1

√2𝜋𝜎𝑋

𝑒𝑥𝑝 [−
1

2
(
𝑋 − 𝜇𝑋

𝜎𝑋
)
2

] , −∞ < 𝑋 < +∞. 
(1.18) 

Figure 1.9 shows the density function of the normal distribution. It is noted that, as the mean value is 

maintained constant, the standard deviation governs the spread out of the plots. Generally, the standard 

normal distribution is used for reasons of simplifications (Figure 1.9(b)). It is based on replacing the 

normal variable X by the standard normal variable Z with a corresponding mean value of 0 and standard 

deviation of 1, pronounced by N(0,1): 

 
𝑍 =

𝑋 − 𝜇𝑋

𝜎𝑋
. 

(1.19) 

 

Figure 1.9: Density functions (Russeli, 2008) attributed to: (a) normal distribution, and (b) lognormal distribution. 

The corresponding probability density function is given by: 
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𝛷𝑍(𝑍) =

1

√2𝜋
𝑒𝑥𝑝 (−

𝑍2

2
) ,−∞ < 𝑋 < +∞. 

(1.20) 

Furthermore, the Gaussian distribution admits negative values for soil properties, noting that they are 

considered physically unrealistic. Therefore, this distribution could only be a rigorous approximation. 

1.6.4.2 Standard lognormal and shifted distributions 

The lognormal distribution is used to model the soil and rocks properties with simplicity, as it is derived 

from a simple non-linear transformation of the classical normal distribution (Gaussian distribution). In 

addition, this type of distribution maintains the random variable always positive. The general form of the 

probability density function pertaining to the shifted lognormal distribution is given by eq. (1.21) for a 

random variable X by virtue of a natural algorithm that is normally distributed Y=ln(X). 

 
𝑓𝑥(𝑋) =

1

√2𝜋(𝑋 − 𝑋0)𝜎𝑙𝑛 (𝑋)

𝑒𝑥𝑝 {−
1

2
[
𝑙 𝑛(𝑋 − 𝑋0) − 𝜇𝑙𝑛 (𝑋)

𝜎𝑙𝑛 (𝑋)
]

2

} ,      𝑋0 < 𝑋 < +∞, 
(1.21) 

where X0 is the shift parameter of the random variable X. For X0=0, the function is that of the standard 

lognormal distribution. Hence, the mean value and standard deviation are defined accordingly: 

 
𝜇𝑙𝑛 (𝑋) = 𝑙 𝑛(𝜇𝑋 − 𝑋0) −

1

2
𝑙𝑛 [1 + (

𝜎𝑋

𝜇𝑋 − 𝑋0
)
2

], 
(1.22) 

 

𝜎𝑙 𝑛(𝑋) = √𝑙𝑛 [1 + (
𝜎𝑋

𝜇𝑋 − 𝑋0
)
2

], 

(1.23) 

The emplacement parameter X0 is obtained from the equation of asymmetry (third central moment) vX, 

which measures the degree of asymmetry of the probability density function: 

 
𝑣𝑋 = 3

𝜎𝑋

𝜇𝑋 − 𝑋0
+ (

𝜎𝑋

𝜇𝑋 − 𝑋0
)
3

 
(1.24) 

Furthermore, Figure 1.10 shows the transformation of the lognormal distribution to the standard normal 

distribution. The lognormal distribution provides a realistic modelling of many properties of soil in the 

space at a time as it is strictly positive. Consequently, the cumulative distribution function CDF is 

obtained as follows:  

 
𝐹(𝑋) =

1

2
𝑒𝑟𝑓𝑐 (−

𝑙𝑛(𝑋 − 𝑋0 − 𝜇𝑙𝑛𝑋

𝜎𝑙𝑛𝑋√2
) , 

(1.25) 

where erfc is the complementary error function. 
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Figure 1.10: The function transformation from the lognormal distribution to its corresponding standard normal 

distribution (Russeli, 2008). 

1.7 Stochastic analysis and random field generation 

1.7.1 Types of stochastic analyses based on the sought purpose 

Following Schweckendiek (2006), the uncertainty analyses may be conducted based on the sought 

reason. 

- Analysis based on uncertainty: its purpose is to estimate the dispersion of results with introducing the 

principle static moments (mean value and standard deviation).  

- Analysis based on reliability: this type of analysis is conducted by introducing a failure criterion that 

describes the unfavourable occurrences. The resulting data are in terms of reliability index β (eq. (1.26)) 

or probability of failure Pf. 

 
𝛽 =

𝜇𝐹𝑠
− 1

𝜎𝐹𝑠

. 
(1.26) 

- Analysis based on risk determination: this analysis is related to the decision making; it analyzes the 

possible consequences of the problem. 

- Analysis based on the probabilistic concept: this analysis addresses basically all the principle 

methods with considering a rational economic criterion. 

1.7.2 The Monte Carlo simulation method adopted for the random field generation in OptumG2 

software 

The numerical software (Krabbenhoft, 2017) implements the Monte Carlo (MC) simulation due to its 

simplicity in tackling complex problems analytically. Basically, this method consists of combining all 
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possible random variable combinations (Kayser & Gajan, 2014). First of all, the problem model has to 

be identified in order to obtain a deterministic solution. Thenceforth, the type of probability distribution 

needs to be specified for the input data. The frequency estimation is required with an estimated 

correlation of input data in order to make the probability distribution reliable. Thus, the MC simulation 

is conducted for each unique combination of the input and output data of the problem, in order to estimate 

the mean value, standard deviation, probability distribution function PDF and cumulative distribution 

function CDF. It is clear that, the function CDF (Fx (X)) is obtained from the sum of all resulting 

probabilities; in other words, it is obtained from deriving PDF (Figure 1.11): 

 
𝐹𝑋(𝑋) =

𝑑𝑓𝑥(𝑋)

𝑑𝑋
. 

(1.27) 

The MC simulation results in the predicted probability of failure for the output data pertaining to each 

overtaken probability.  

 

Figure 1.11: PDF and CDF pertaining to a continuous random variable (Russeli, 2008). 

1.7.2.1 Karhunen- Loeve expansion integrated in OptumG2 software 

According to Zhang and Lu (2004), this method is effective as it identifies analytical solutions for the 

exponential function of covariance. Generally, the covariance is defined as a measure of linear 

dependence between two continuous random variables (S,t) or more. For cases where the random 

variables are completely independent of each other, the covariance is equal to zero. The function of 

covariance is given based on the theorem of Mercer: 

 
𝐶𝑋(𝑠, 𝑡) = ∑𝜆𝑖𝑓𝑖(𝑆)𝑓𝑖(𝑡),

∞

𝑖

 
(1.28) 

where λi and fi are respectively the eigenvalues and the corresponding function of Cx. The derived 

function in eq. (1.29) is segmented into an infinite number of terms n with a reduced simulated variance. 
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The eigenvalues are classified from highest to lowest until reaching the sought diminution of the 

corresponding functions that satisfies the following condition: 

 𝜆𝑛

𝜆1
≤ 𝑇𝑂𝐿, 

(1.29) 

where, TOL=10-5. The equation is resolved using the solution provided by Zhang and Lu (2004). It is 

indicated that an increasing tendency is relevant to the number of terms with the decrease in the 

correlation lengths. 

1.8 Conclusion 

This chapter presents in brief the methods of analyzing the slope stability under different conditions; for 

instance, sliding caused by the self-weight, and sliding caused by a surface load condition (shallow 

foundation at the slope surface); as well as, spatial variability of soil properties. 

The classical stability estimation goes through different stages; firstly, locating the slip surface, 

determining normal and tangential stresses and eventually computing the factor of security.  Furthermore, 

the bearing capacity is function of mechanical soil properties and footing geometry; this is taken into 

account by means of correction factors. Various analytical expressions have been derived to provide an 

accurate estimation for the case of homogeneous soil. To rigorously consider the uncertainty of various 

soil parameters, the spatial variability is considered in different methods. The probabilistic approach 

considers each uncertain parameter in the probability distribution, in order to give a factor of safety or 

limit load by means of mean value, variance, reliability index and probability of failure. 
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Chapter 2: Stability assessment of pile-stabilized slope based on 

analytical and numerical methods 

 

 

 

 

2.1 Introduction 

Among deterministic methods of analyzing pile-stabilized slopes, several analytical methods have been 

adopted. One of which is the pressure based method (Broms, 1964; Dong-ping et al., 2017; Ito & Matsui, 

1975; Randolph & Houlsby, 1984; Viggiani, 1981); its main objective is to focus on the passive part of 

piles exposed to horizontal soil pressure. In addition, the displacement based methods have proved 

accuracy in estimating the pile resistance in terms of soil movements (Chen et al., 2020; Lee et al., 1995; 

Poulos, 1995). The method estimates the lateral soil movement above the slip surface to be used in 

evaluating the active pile behavior. Numerical methods have become innovational over the last few 

decades. They are used to account for complex geometries in 3D analysis and to enhance the description 

of lateral load distribution along the pile row. This is due to the consideration of both the pile behavior 

and soil-pile interaction (Chow, 1996; Jeong et al., 2003; Kourkoulis et al., 2012; Pirone & Urciuoli, 

2018; Sanping & Robert, 2002; Xiao, 2020; Yamin & Liang, 2010; Yang & Zhang, 2020).  Nevertheless, 

the probabilistic analyses should be conducted side by side with deterministic analyses, as they are a 

complementary process to enhance the conservative deterministic solutions. The spatial variability of 

soil parameters based on random field concept are widely taken into consideration by various scholars in 

the last decade for the case of a slope stabilized by a row of piles (Gong et al., 2019; Jiang et al., 2016; 

Li & Liang, 2014). 

This chapter represents analytical and numerical methods available in the literature, as well as the 

reliability assessment of a slope stabilized with piles. The numerical simulation of slope stability using 
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piles necessitates a well adopted numerical tool. For this purpose, the computation code OptumG2 is 

enlightened in this chapter. The elastoplastic and rigid plastic theorems are represented as the current 

software permits the use of shear strength and limit analyses in finite elements with their upper and lower 

bounds. Therefore, the direct determination of the slope stability and the ultimate reaction force induced 

by piles is furnished. 

2.2 Analytical methods for the stability assessment of pile-stabilized slope based on the limit 

equilibrium method 

The slope reinforcement allows the transfer of lateral mobilized loads (active pressure) to greater depths 

of higher mechanical characteristics (stable layer) by producing passive resistance as shown in Figure 

2.1(a). 

(a)  (b) 

Figure 2.1: Soil-pile system (Won et al., 2005): (a) driving forces acting on a pile row, and (b) reaction forces 

induced by piles. 

The analysis is achieved by extending classical methods used for the slope without reinforcement to the 

reinforced case, with incorporating the effect of force resistance, as indicated in Figure 2.1(b). However, 

the piles are subject to two types of solicitations; namely, solicitations generated by a superstructure and 

others generated by the surrounding soil (breaking action, horizontal pressure, earthquakes, etc.). 

2.2.1 Theoritical background 

Table (2.1) summarizes the most famous methods published in the literature for the stability assessment 

of piled slopes. The pressure based methods, rely on the assumption of lateral pressure acting on passive 

piles following Ito and Matsui (1975). The method assumes rigid piles of an infinite length, yielding to 

a plastic flow between piles (plastic deformation) during sliding. Thus, the surrounding soil is in a state 
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of plastic equilibrium, following Mohr-Coulomb yield criterion. It is of interest to mention that the 

resistance induced by each pile is quite affected by the soil mechanical characteristics, width of single 

slide and geometrical properties of piles. The pile spacing, overburden pressure, and soil characteristics 

are considered the key factors to the estimation of the ultimate pressure generated by the soil flow. In 

contrast, the pile stiffness has no effect at all. Hence, the lateral soil-pile pressure rises with the decreasing 

trend of pile spacing. It is noted that the pressure-based approach doesn’t consider the effect of soil 

arching between piles, which makes it a limitation for the study of the actual response of flexible piles. 

Table 2.1: Limit equilibrium based methods for the assessment of pile-stabilized slope stability. 

Author Condition of piles Type of soil Method 

Ito et al. (1981) Laterally loaded piles of Fixed, 

hinged, unrotated and free head. 

c-φ slope Limit equilibrium 

Broms (1964) Laterally loaded single pile and 

pile group 

Sandy slope Pressure based 

Viggiani (1981) Laterally loaded pile group Cohesive slope Pressure based 

Hassiotis et al. (1997) Laterally loaded drilled piers c-φ slope Pressure based 

Dong-Ping et al. (2017) Laterally loaded micropiles c-φ slope Pressure based 

Poulos (1995) Laterally loaded single pile Cohesive slope Boundary element/ 

Displacement based 

Lee et al.  (1995) Laterally loaded pile row Cohesive slope Boundary element/ 

Displacement based 

Chen et al. (2020) Soil arch force applied on piles c-φ slope Displacement based 

The approach of displacement based methods relies on the determination of the relative soil-pile 

movement. It is based on an uncoupled analysis; in which, the piles behaviour and slope failure are 

computed separately. The prevalence of this method over the pressure based one is that, it depicts the 

accurate soil-pile interaction; thusly, the mobilized resistance of piles is calculated using the lateral 

sliding. However, the lateral sliding soil may be directly computed using inclinometer data or with the 

contribution of other numerical methods and empirical correlations. It is worthwhile noting that this 

method doesn’t account for centre-to-centre spacing in the evaluation of soil-pile pressure. Basically, the 

pile and soil are assumed to be respectively as elastic beam and its corresponding continuum. Hence, a 
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large soil mass is considered to be sliding as a block towards the downslope forming a drag zone 

tolerating vigorous shearing right below. The method computes the lateral behaviour of each pile and the 

induced maximum shear force with respect to the condition of a free-field soil movement and pile lateral 

displacement.  

2.3 Numerical computations for the stability estimation of pile-stabilized slope 

Numerical methods are much more accurate compared to analytical methods, as they rely on conducting 

coupled analyses by considering both soil and pile interaction. The computations may be carried out 

without necessarily locating the failure surface previously. The soil-pile interaction has been investigated 

by several scholars in the last few decades (Jeong et al., 2003; Sanping & Robert, 2002; Yamin & Liang, 

2010). The power of numerical methods is in the consideration of complex models; namely, 3D analysis 

of pile-stabilized slopes, pile group behavior and nonlinearity of pile rows and soil. The only 

inconvenience is in the time consumption, as usually many calculation stages are required to analyze the 

soil-pile behavior accurately. 

2.3.1 Shear strength reduction method SSR 

Cai and Ugai (2000) used the elastoplastic finite element method to predict the piles response, as shown 

in Figure 2.2: 

(a)  (b) 

Figure 2.2: Comparison of the finite element method with Bishop’s simplified method: (a) optimal pile position, 

and (b) most effective pile spacing. 

The advantage of the adopted method over classical limit equilibrium methods is the ability to account 

for pile bending stiffness and head condition in the calculations of the factor of safety. Nevertheless, 

Bishop’s simplified method (Bishop, 1955) assumed that the best pile location is near the top of the slope 

contrasting with numerical methods, where the piles showed higher factors of safety when they are at the 



Chapter 2                      Stability assessment of pile-stabilized slope based on analytical and numerical methods 

 

 

 

 

26 | P a g e  

 

middle of the slope Lx/L=0.5 (Figure 2.2(a)). Hence, the factor of safety resulted from Bishop has shown 

slightly an over estimation for relatively small spacings, as shown in Figure 2.2(b). 

The same model geometry was adopted by Won et al. (2005);  the coupled effects has been addressed to 

compute the safety factor of a pile-stabilized slope using the finite difference analysis. It was deduced 

that the best stability is obtained for piles with restrained head conditions that are driven at the middle of 

the sloping ground. Wei and Cheng (2009) found that the slip surface is quite affected by the pile centre-

to- centre spacing. This tendency is pronounced by an integral failure surface for relatively high spacings, 

or might be divided into two parts for relatively smaller spacings. Furthermore, the failure surface for 

pile-stabilized slope is reported to be shallower compared to that of the unstabilized one. Thus, the 

optimal pile position is found to be centring the failure surface.  Yang et al. (2011) used the finite element 

elastoplastic analysis to account for the effect of the embedded pile length on the overall stability of the 

slope.  

 

Figure 2.3: Effect of the embedded pile length on Fs for: (a) free head condition, and (b) fixed head condition. 

For the free head condition (Figure 2.3(a)), the pile length keeps rising with the raise of Fs independently 

of the spacing S/D (spacing/pile diameter), until reaching the critical state beyond which the safety factor 

remains constant. In contrast, for the fixed head condition (Figure 2.3(b)), Fs follows a steady tendency 

independently of the pile lengths and S/D. In both head conditions, the increase in the spacing S/D leads 

to the factor of safety to decrease. However, Pirone and Uriuoli (2018) focused on the determination of 

the ultimate limit load acting on continuous or discrete piles, used to reinforce infinite slopes. It was 

found that the distribution of stress under ultimate limit state conditions is investigated accurately using 
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the coefficients of Ranking earth pressure, in spite of the friction pertaining to pile row/wall and soil 

interface. 

2.3.2 Limit analysis LA 

Recently, several researchers (Li et al., 2020; Xiao, 2020; Yang & Zhang, 2020) adopted the limit 

analysis kinematic approach to analyze the stability of a slope reinforced by pile rows. The method served 

at the purpose of locating the potential failure plane by accounting for the stabilizing force induced by 

piles. It is important to mention that the principle of the Kinematic approach has been extended from 

Ausilio et al. (2001) to develop expressions for the sought value of the force used to raise the factor of 

safety. Furthermore, Yang and Deng (2019) used the upper bound of limit analysis to determine the 

lateral resisting force with respect to unsaturated flow under vertical and steady conditions. A numerical 

analysis was conducted to investigate the influence of the ultimate reaction force induced by piles. Nian 

et al. (2008) made use of both techniques strength reduction and limit analysis to propose analytical 

expressions for the resisting force induced by piles. This was to raise Fs pertaining to a slope with 

nonhomogeneous and anisotropic soil strength. Hence, the minimum factor of safety pertaining to the 

critical slip surface was obtained numerically using the program Fortran 90.  

2.4 Demonstration of the employed methodology integrated in OptumG2 and finite element 

modelling 

Technically, OptumG2 is a software of finite elements in 2D based on modern numerical optimizations. 

The software provides the full ability of modelling a row of piles following Sluis et al. (2014). It is 

executed by the integration of two independent layers for the piles and the soil, where the soil-pile 

interaction is simulated by means of axial, base and tangential springs.  It is worthwhile to mention that 

the used numerical code is specially developed for geotechnical applications. The finite element 

modelling is rapidly realized by dint of user graphical interface. Even though the software have similar 

characteristics with other finite element programmes, it addresses as well another feature resulting in 

direct solutions for direct problems without having to get through quite longer analyses. For instance, the 

shear strength reduction analysis that offers a rapid estimation of the factor of safety pertaining to 

geostructures and the limit analysis for the direct evaluation of the limit load without having to get 

through lengthy elastoplastic analyses.  
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2.4.1 General notions 

Elasticity and plasticity are two important definitions in geomaterials, as the characteristics of strain and 

strength are determined accordingly.  

2.4.1.1 The yield and stress state 

The limit state is defined in terms of stresses; by which, a threshold is located at a specific point pertaining 

to the case of σ=0. The yield surface defining stresses permissibility is given by a convex (Figure 2.4). 

 

Figure 2.4: Convex of the yield plane. 

 It is shown that, the yield function defining the limit state F(σ) is pronounced for several cases: 

- The zone where stresses are permissible inside the yield surface F(σ)≤0. 

- The zone pertaining exactly to the yield surface F(σ)=0. 

- The zone of inadmissible stresses outside the yield surface F(σ)>0. 

For a structure of volume V yielding to surface tractions αt (α is the load multiplier) on Sσ, and at the 

same time sustained on Su (Figure 2.5), infinite displacements are generated at collapse. Therefore, it is 

important to define a quantity of relevant work or velocity scaling. The equilibrium and limit state 

conditions are expressed as follows: 

 𝛻𝑇𝜎 + 𝑏 = 0     𝑖𝑛 𝑉,  

 𝑃𝑇𝜎 = 𝑡     𝑖𝑛 𝑆𝜎 , (2.1) 

where  

 

𝛻𝑇 =

[
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0
   

𝜕

𝜕𝑦
𝜕

𝜕𝑥]
 
 
 

, 

(2.2) 



Chapter 2                      Stability assessment of pile-stabilized slope based on analytical and numerical methods 

 

 

 

 

29 | P a g e  

 

 
𝑃𝑇 = [

𝑛𝑥 0 𝑛𝑦

0 𝑛𝑦 𝑛𝑥
]. 

(2.3) 

Furthermore, the failure is assured with respect to the following condition: 

 𝐹(𝜎) ≤ 0. (2.4) 

 

Figure 2.5: Applied traction on the material boundary S. 

2.4.1.2 Classic decomposition of strains 

The strains ε are given in terms of displacements u: 

 𝜀 = 𝛻𝑢. (2.5) 

The total strain principle ε, relies on combining two essential parts, elastic strains εe and plastic strains 

εp: 

 𝜀 = 𝜀𝑒 + 𝜀𝑝 . (2.6) 

The Stresses define the elastic strains with inducing a compliance modulus to account for elasticity ₵ as 

follows: 

 𝜀 = ℂ𝜎. (2.7) 

A flow rule defines the plastic strains changing ratio in terms of a flow potential G and plastic multiplier 

�̇� (�̇�≥0): 

 
𝜀̇𝑝 = �̇�

𝜕𝐺

𝜕𝜎
. 

(2.8) 

The exact value of �̇� is undetermined, therefore it is defined with respect to the yield condition of stresses 

F(σ)=0: 

 �̇� 𝐹(𝜎) = 0. (2.9) 

In practice, the potential flow G is obtained based on mathematical experiments, with taking into 

consideration that G takes the same functionality as F but with another special material properties. 
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However, G is considered as high as F (G=F) for the associated flow rule, consequently when the opposite 

tendency happens (G≠F) the non-associativity takes place.  

2.4.2 Elastoplasticity 

The general definition of thermomechanical formulation to account for elastoplasticity relies on the first 

and second laws of thermodynamics. The central formulation is expressed by the rate of internal work Ƥ 

under the condition of isotherm: 

 Ƥ = 𝜎𝑇𝜀̇ = �̇� + 𝐷, 

𝜎𝑇 = (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧, 𝜏𝑥𝑦 , 𝜏𝑦𝑧, 𝜏𝑧𝑥), 

 

 ∅ = ∅(𝜀𝑒 , 𝜂), 

�̇� = 𝛻𝜀𝑒∅(𝜀𝑒 , 𝜂)𝜀̇𝑒 + 𝛻𝛼∅(𝜀𝑒 , 𝜂)�̇�, 

(2.10) 

 

where σT and Ø are respectively the transposed stress vector and free energy function of Helmholtz that 

depends on elastic strains ε and strain-like hardening variables η; also, D is the function of dissipation 

(D≥0). Nevertheless, the finite step formulation may approximates the energy function in time with 

inducing an initial recognised state Ø0: 

 Ƥ = �̇� + 𝐷 ≈ ∅ − ∅0 + 𝐷. (2.11) 

Although, the majority of simple materials involve a steady yield surface; recently developed materials 

tend to introduce hardening mechanisms. The finite-step version is derived with respect to an implicit 

determination of deformation power; inducing both terms of variable pertaining to stress-like hardening 

k and stress σ: 

 Ƥ(𝜎, 𝑘) = 𝜎𝑇∆𝜀 − Ƥ̂(𝜎, 𝑘),  

 Ƥ̂(𝜎, 𝑘) = (𝜓 − 𝜓0) − ∆𝜎𝑇𝛻𝜎𝜓0
− 𝛥𝑘𝑇𝛻𝑘𝜓0

. (2.12) 

The code of material point is expressed with respect to the formulation of finite-step, as follows: 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒     𝜎𝑇∆𝜀 − Ƥ̂(𝜎, 𝑘)  

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝐹(𝜎, 𝑘) ≤ 0. (2.13) 

2.4.2.1 The principle of the lower bound: 

The governing equations are expressed in terms of lower bound theorem in an equivalent way with 

assuming a linear elastic perfectly plastic material: 

 
�̂� =

1

2
∆𝜎𝑇ℂ∆𝜎, 

 

 ∆𝜎 = (𝜎 − 𝜎0). (2.14) 
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There by: 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒     𝛼 −

1

2
∫ �̂�    𝑑𝑉 

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝛻𝑇𝜎 + 𝑏 = 0          𝑖𝑛 𝑉, (2.15) 

 𝑝𝑇𝜎 = 𝛼𝑡          𝑖𝑛 𝑆𝜎 ,  

 𝐹(𝜎) ≤ 0.  

2.4.2.2 The principle of the upper bound 

The upper bound induces governing equations derived as follows: 

 
𝑀𝑎𝑛𝑖𝑚𝑖𝑧𝑒     ∫𝐾𝑇∆𝜆 𝑑𝑉 − ∫𝑏𝑇𝛥𝑢 𝑑𝑉 + ∫

1

2
𝜀𝑒𝑇𝔻𝜀𝑒  𝑑𝑉 

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝛻 ∆𝑢 = ∆𝜀𝑒 + 𝐹∆𝜆,    ∆𝜆 ≥ 0, (2.16) 

 
∫𝑡𝑇∆𝑢 𝑑𝑆 = 1. 

 

where εe, λ, u and 𝔻 are respectively, the elastic strains, plastic multiplier, displacements and the 

modulus depicting the rigid plastic behaviour (𝔻 = ∞, εe = 0). 

2.4.2.3 Elastoplastic strength reduction analysis 

Strength reduction analysis is conducted by a group of realistic loads that address the determination of 

the actual strength to be used in the final decision of the failure mechanism. The process is achieved by 

calculating the factor of shear strength reduction, pertaining to the reduced parameters of soil at the stage 

of initial failure. A strength reduction factor less than 1.5 for slopes implies an unstable ground with the 

necessity of supplementary strength to prevent failure; also a factor more than 1.5 implies the attaint of 

stability. The parameters in question are those who may affect the stability of the soil. For instance, 

Mohr-Coulomb criterion implies a similar rate of reduction to the cohesion c and friction angle φ. Thus, 

the factor of safety is defined in terms of reduced parameters: 

 
𝐹𝑠 =

𝑐

𝑐𝑟𝑒𝑑
=

𝑡𝑎𝑛𝜑

𝑡𝑎𝑛𝜑𝑟𝑒𝑑
. 

(2.17) 

The computation of rigorous lower and upper bounds conducted for the analysis are of huge interest as 

the accurate factor of safety will fall in the interval of both bounds. In other words, it falls exactly at the 

average value that is greater than the lower bound and lower than the upper bound. 
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2.4.3 Rigid plastic Limit analysis 

The limit analysis assumes rigid plastic materials, by which the maximum magnitude of tractions is 

investigated at the point before collapse. In other words, the minimum magnitude of tractions causing 

failure should be well determined. The condition of yielding is given by: 

 𝐹𝑇𝜎 − 𝐾 ≤ 0, (2.18) 

where F and K are contributors of linear restrictions defined as fi and ki (i=1,…,n): 

 𝑓𝑖
𝑇𝜎 − 𝑘𝑖 ≤ 0. (2.19) 

Thus, introducing indolent variables in the yield condition leads to the following: 

 𝐹𝑇𝜎 − 𝐾 + 𝑠 = 0,    𝑠 ≥ 0. (2.20) 

The compatibility of the flow rule associated with strains and displacements is given by: 

 𝛻�̇� = 𝐹�̇�, (2.21) 

with respect to the scaling, the rate of work induced by the incipient tractions t is satisfied: 

 
∫ 𝑡𝑇

𝜎𝑆

�̇� 𝑑𝑆 = 1. 
(2.22) 

Under complemental constrains: 

 𝑆𝑇 �̇� = 0,    𝑠 ≥ 0, �̇� ≥ 0. (2.23) 

The result of the above governing functions is derived in terms of the load multiplier α. Nevertheless, it 

was reported that the collapse multiplier is targeted by a group of fields of velocity and distributions of 

stress. Variational principles may be induced to the above equations to serve the initiation of lower and 

upper bounds comprising the average solution.  

2.4.3.1 Lower bound theorem 

The lower bound theorem defines the governing equation with respect to the optimized problem as below: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒     𝛼  

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝛻𝑇𝜎 + 𝑏 = 0                𝑖𝑛 𝑉,  

 𝑃𝑇𝜎 = 𝛼𝑡          𝑜𝑛 𝑆𝜎 , (2.24) 

 𝐹𝑇𝜎 − 𝑘 + 𝑠 = 0,    𝑠 ≥ 0.  

The solution of the above problem presents multipliers of Lagrange to represent the kinematic principle 

that is not defined in the above. The lower bound principle relies on the establishment of a stress field 

with respect to the conditions. 
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2.4.3.2 Upper bound theorem 

 The upper bound theorem defines the governing equation with respect to the optimized problem as 

below: 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∫ 𝐾𝑇 �̇� 𝑑𝑉 − ∫𝑏𝑇�̇�  𝑑𝑉

𝑉𝑉

 
 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝛻�̇� = 𝐹�̇�,    �̇� ≥ 0, (2.25) 

 
∫ 𝑡𝑇

𝑆𝜎

�̇� 𝑑𝑆 = 1. 
 

The upper bound principle relies on the establishment of a velocity field with respect to the flow rule. By 

which, the rate of work induced by incipient tractions equals unity. The sough value of the collapse 

multiplier is given by subtracting the forces induced by the body from the rate of work. 

2.4.4 Definition of yield criterions 

2.4.4.1 Mohr-Coulomb criterion  

The Mohr-coulomb criterion is pretty much used to depict the failure by soil shear assuming elastic 

perfectly plastic model. The developed yield function is given in terms of cohesion c (kPa) and friction 

angle φ (°). Addressing by that, both frictional (sandy soil) and cohesive (clay and limon) soils at short 

and long terms. The yield envelope is plotted according to the following: 

 𝜏 = 𝑐 + 𝜎𝑛 𝑡𝑎𝑛𝜑, (2.26) 

where τ and σn are respectively the shear and normal stresses. Three types of elasticity are accounted for 

linear isotropic, linear anisotropic and nonlinear isotropic. However, this dissertation only addresses the 

linear isotropy, in which the parameters are defined in two ways: 

- Group A involves the young’s modulus E (MPa) and poisson’s ratio ν: 

- Group B involves the Bulk K (MPa) and shear G (MPa) modulus. 

 
𝐾 =

𝐸

3(1 − 2𝜈)
,        𝐺 =

𝐸

2(1 + 𝜈)
, 

(2.27) 

 
𝐸 =

9𝐾𝐺

3𝐾 + 𝐺′
,         𝜈 =

3𝐾 − 2𝐺

2(3𝐾 + 𝐺)
. 

(2.28) 

The load function (yield function) of Mohr-Coulomb is expressed in terms of both principal stresses, 

major σ1 and minor σ3 as follows: 

 𝐹 = |𝜎1 − 𝜎3| + (𝜎1 + 𝜎3)𝑠𝑖𝑛𝜑 − 2𝑐 𝑐𝑜𝑠𝜑. (2.29) 
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All possible representations of the yield surface pertaining to Mohr-Coulomb in the stress plane are 

shown in Figure 2.6. 

 
Figure 2.6: Load surfaces of Mohr-Coulomb criterion. 

2.4.4.2 Tresca criterion 

Tresca criterion is part of Mohr-Coulomb under purely cohesive soils (φ=0), namely saturated soils (clay 

and limon). The undrained condition is applied under total stresses that are captured at short term with 

invalid volume changes. Under plane strain conditions, the effective stresses are constants. They may be 

summed to represent the major and minor effective stresses, inducing the yield function of Mohr-

Coulomb: 

 |𝜎1 − 𝜎3| = 2𝑐 𝑐𝑜𝑠𝜑 − (𝜎′
1 + 𝜎′

3)0 𝑠𝑖𝑛𝜑  

 = 2𝑐 𝑐𝑜𝑠𝜑 − (𝜎′
𝑥 + 𝜎′

𝑦)
0
 𝑠𝑖𝑛𝜑 (2.30) 

 = 2𝑐 𝑐𝑜𝑠𝜑 − (1 + 𝐾0) 𝜎′𝑣,0 𝑠𝑖𝑛𝜑 

= 2Su, 

 

where the initial vertical effective stress σ՛v,0=-σy,0 is positive in compression, also the initial coefficient 

of soil pressure is induced by K0 = σx,0/σy,0. Two models are extracted from the Tresca model; standard 

Tresca model and a generalized model. This latter develops a yield function in terms of total stresses 

following the effective stress model of Mohr-Coulomb with respect to the general stress condition. It is 

important to mention that under undrained constrains the shear strength is expressed by the cohesion in 

the Tresca yield function with inducing undrained elastic parameters Eu or G. Two options of Tresca 

criterion are applicable by virtue of the shear strength: 
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* Standard Tresca model 

The shear strength is expressed under undrained conditions su (kPa), where the collapse criterion is 

defined as: 

 𝐹 = |𝜎1 − 𝜎3| − 2𝑠𝑢 . (2.31) 

The physical significance of su is related to the experiments conducted for plane strain conditions or 

direct simple shear. It is important to respect the direct estimation of su in the criterion function without 

referring to the characteristics. The tenacity of Tresca model with the Mohr-Coulomb reveals for a shear 

strength developed as below with respect to the condition of initial stresses σ՛x/σ՛y=σ՛z/σ՛y=K0: 

 
𝑠𝑢 = 𝑐 𝑐𝑜𝑠𝜑 +

1

2
(1 + 𝐾0) 𝜎′𝑣,0 𝑠𝑖𝑛𝜑. 

(2.32) 

The standard Tresca model works under plane strain conditions with the ability of the shear strength to 

increase in deeper graduations of soil. This is due to the dependence of the pertaining vertical stresses. 

In other words, the shear strength is independent of the collapse stress path and determined directly.  

* Generalized Tresca model 

The key factors to plotting the behaviour of stress with strain are the major soil properties. Therefore, 

models of total stress are equivalent to that of effective stresses. This is referring to the equivalence of 

Mohr-Coulomb with standard Tresca model under plane strain, without considering other states of 

general stress. The shear strength is expressed under undrained conditions differently for triaxial 

compression suc (kPa) and triaxial extension sue (kPa). By which, it depends on the collapse corresponding 

stress track. However, the yield function is expressed as follows: 

 𝐹 = |𝜎1 − 𝜎3| + 𝛼(𝜎3 − 𝜎2) − 𝑘,  

 
𝛼 =

2 𝑠𝑖𝑛𝜑

3 − 𝑠𝑖𝑛𝜑′
 ,          𝑘 =

6

3 − 𝑠𝑖𝑛𝜑
[
1

3
(1 + 2𝑘0)𝜎

′
𝑣,0𝑠𝑖𝑛𝜑 + 𝑐 𝑐𝑜𝑠𝜑], 

(2.33) 

where the major stresses are directive as of σ1≤σ2≤σ3 and the compressive stresses are given with negative 

values. It is important to mention that, the relationship between the initial effective stresses is expressed 

by σ՛x,0/σ՛y,0=σ՛z,0/σ՛y,0=k0, with referring to the asymmetry of σ՛x,0/σ՛y,0=σ՛θ,0/σ՛y,0=k0. Nevertheless, α and 

k may be expressed by the experimental undrained shear strengths pertaining to triaxial compression (suc) 

and extension (sue). 

 𝛼 =
𝑠𝑢𝑐

𝑠𝑢𝑒
− 1,      𝑘 = 2𝑠𝑢𝑐 . 

(2.34) 
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Figure 2.7 shows the generalized Tresca model with the yield surface; the nodes indicated in the figure 

are referring to the triaxial compression TC and triaxial extension TE. The admissible shear strength 

range required to keep the failure surface convex and assure the proceeding of computations is given by: 

 1

2
≤

𝑠𝑢𝑐

𝑠𝑢𝑒
≤ 1. 

(2.35) 

(a)  (b) 

Figure 2.7: Failure surface pertaining to generalized Tresca model: (a) deviatoric plane, and (b) principal stress 

plane for a value as high as sue/suc. 

2.5 Reliability analyses for the determination of failure probability of a reinforced slope 

Technically, the factor of safety given by deterministic methods doesn’t depict accurately the slope status 

for naturally heterogeneous soils. This is because several slopes have been reported as having high factors 

of safety, but in reality they failed many times. For this reason, the soil inherent variability has been 

widely addressed by several methods to give better estimation of failure probability: 

- The first and second order reliability method FOSM; also called, first order reliability method FORM, 

and second order reliability method SORM. 

- Sampling methods; such as, Monte Carlo simulation MC, and importance sampling method 

- Latin hypercube sampling method. 

- Stochastic expansion methods; such as, Karhunen-Loeve expansion KL, polynomial chaos expansion 

PCE, and Stochastic Finite element method (SFEM or RFEM). This latter is categorized as follows, 

perturbation method, Neumann expansion method, Weighted integral method and Spectral stochastic 

finite element method. 
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 However, Table (2.2) shows some methods conducted for the reliability analysis of reinforced slopes. 

In which, parametric studies were conducted for the optimal and critical reinforcement conditions within 

the slope: 

Table 2.2: Some studies conducted for the reliability analysis of reinforced slopes. 

Author Type of 

reinforcement 

Method of 

generation 

Type of 

distribution 

Spatial variable shear strength 

characteristics 

 

Bougouffa et al. 

(2019) 

Row of piles MC Lognormal COVc=10-40%, COVφ=5-15% 

Sayed et al. (2010) Pile wall FOSM Normal μφ=22°, σφ=4.4°, COVφ=20% 

Li and Liang 

(2014b) 

Drilled shaft MC Lognormal μc= 0.96-7.42 kPa, μφ=11-35° 

COVc=20%, COVφ=10% 

Jiang et al. (2016) Row of piles FORM Normal, 

Lognormal 

_ 

Zhang et al. (2017) Row of piles SORM Lognormal μc= 10-60 kPa, σc= 3-18 kPa 

μφ=0-20°, σφ=2-4° 

Chen et al. (2019) Row of piles Latin 

hypercube 

sampling 

Lognormal μc= 10 kPa, μφ=30° 

COVc=30%, COVφ=20% 

θh=5-80 m, θv=2-10 m 

Gong et al. (2019) Row of piles MC Lognormal μc= 12 kPa, COVc=10-70% 

μφ=20°, COVφ=10-40% 

θh=50 m , θv=0.25-32 m 

Chen et al. (2019) investigated the variation of the horizontal and vertical scales of fluctuation δ on the 

probability of failure, corresponding to a pile-stabilized slope. Figure 2.8 shows that, the soil properties 

are distributed uniformly and appear to be more consistent with the increase of correlation lengths. The 

probability of failure is pronounced better for the case where δv is varying compared to δh. This is 

explained by the fact that, the geotechnical properties of the soil vary significantly in vertical directions. 

Zhang et al. (2017) proved that, small pile spacings (D1/D) may lead to larger reliability indexes β as 

indicated in Figure 2.9(a).  When the piles are placed closer to each other they provide a noticeable 
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resistance to failure. Thus, the optimal pile location (s) is where the maximum reliability index is 

obtained. 

 

Figure 2.8: Variation of the probability of failure with: (a) horizontal correlation lengths, and (b) vertical 

correlation lengths. 

However, Figure 2.9(b) shows that, the critical pile location when considering special variability depends 

on the basis that we are comparing to. Which means that the maximum mean value of the factor of safety 

doesn’t necessary refer to the optimal location as the maximum reliability index is captured for a slightly 

different location. Therefore, the best location is at the interval of s=10-12m. 

(a) (b) 

Figure 2.9: Variation of the reliability index with different pile locations: (a) effect of various spacings, and (b) 

comparison between the factor of safety and β with D1/D=3. 

2.6 Conclusion 

This chapter aimed at representing various methods of analyzing pile-stabilized slopes. One of which, is 

the pressure based methods, focusing on the passive part of piles, exposed to horizontal soil pressure. 

The analysis is basically assuming that, the pile surrounding soil is undergoing a plastic equilibrium state. 
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This leads to the equations to be limited over very specific center-to-center spacings and few model piles; 

such as rigid beams with great lengths. The displacement based methods rely on the estimation of pile 

resistance by virtue of soil movements. The piles are modeled as elastoplastic beams and the soil as an 

elastic continuum, in order to estimate the lateral soil movement above the slip surface to use it in 

evaluating the active pile behavior. Nevertheless, analytical methods don’t account for the effect of 

spacing on soil-pile interaction; therefore, it is well studied in 3D numerical methods. These methods 

have shown great estimations for pile group behavior and nonlinearity of pile rows.  Technically, the 

numerical code OptumG2 gives the possibility of conducting deterministic and probabilistic 

computations, with respect to the possibility of modelling homogenous and spatial variable soil 

parameters. This is executed based on the combination of the random field theory with the finite element 

method. The generation of the random field is conducted by stochastic inputs in OptumG2; namely, 

probabilistic distribution, mean value, coefficient of variation and correlation lengths. Thusly, the results 

may be given in terms of reliability index or probability and cumulative distribution functions. 
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Chapter 3: Bearing capacity assessment of shallow foundations near 

slopes before and after reinforcement 

 

 

 

 

3.1 Introduction 

Inclined loading developed at slope surface may be captured in foundations with respect to two load 

components, vertical V and horizontal H. Generally, the inclination of the load lead to a reduction in soil 

bearing capacity, comparing to the slope under purely vertical load condition (Bransby & Randolph, 

1998; Gourvenec, 2007; Houlsby & Puzrin, 1999; Taiebat & Carter, 2002; Ukritchon et al., 1998). This 

tendency amplifies under specific conditions related to the slope angle and height; as well as, the footing 

position relatively to the crest. To enhance the limit load of slopes susceptible to surface load excitations, 

the effectiveness of continues and discrete vertical retaining structures was widely reported (Ahmed, 

2004; El Sawwaf, 2005; Esser & Dingeldein, 2007; Hon & Demcsak, 2010; Sharafi & Sojoudi, 2016; 

Sudani et al., 2015). This is due to their remarkable dynamic response, leading to the overall stability to 

raise with the raise in the lateral stabilizing forces. 

For reasons of study simplifications, the assumption of homogeneous soil underneath the footing permits 

bounding the variation of the corresponding characteristics. This approach adopts representative values 

of the mechanical soil properties to account for deterministic methods. Recently, the subject of soils that 

are spatially random has received a great deal of attention in the foundation engineering as it reflects the 

natural soil status; consequently, the probabilistic analyses are required to study the slope response. 

This chapter, firstly introduces deterministic and stochastic methods for the bearing capacity of shallow 

footings near unreinforced slopes, under both vertical and inclined loading conditions. Then a synthesis 

is made out of studies in the literature addressing anti-slide piles and sheet pile walls within slopes. 
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3.2 Evaluation of the bearing capacity of shallow footings near unreinforced slopes 

3.2.1 Deterministic methods for the bearing capacity of shallow footings near unreinforced slopes 

under vertical and inclined loading condition 

The sloping ground has a significant impact on the bearing capacity of vertical loaded strip footings. For 

this reason several theoretical and experimental investigations were conducted as summarized below: 

Table 3.1: Theoretical and experimental methods conducted for the limit load of strip footings susceptible to 

purely vertical loading. 

Author Type of soil Employed method Slope angle 

Meyerhof (1957) Clayey and sandy Limit equilibrium 30° and 40° 

Hansen (1970) Clayey and sandy Limit equilibrium 30°,35°, 40° 45° 

Giroud (1971) Sandy Small-scale tests 26° 

Lebegue (1973) sandy Small-scale tests 40°,35° 

Dembicki (1974) Sandy Small-scale tests 26°,31.3°,43° 

Shields et al. (1977) Sandy Small-scale tests 37°,41° 

Kusakabe et al. (1981) Clayey and sandy Limit equilibrium 

and Limit analysis 

0°, 30° 

Bauer et al. (1981) Sandy Full-scale tests 45° 

Kimura et al. (1985) Sandy Centrifugal test 49° 

Graham et al. (1988) Sandy Analytical method 30°,35°, 40°,45° 

Shields and Garnier (1989) Sandy Centrifugal test 30,5°, 35,5° 

Saran et al. (1989) Clayey and sandy Limit equilibrium 

and Limit analysis 

10°,15°,20°; 25, 30°, 35°     

and 40° 

Choudhury and Rao (2006) Clayey and sandy Limit equilibrium 30°, 40° 

Mabrouki et al. (2010) Sandy Finite difference 

method 

35°, 40°, 45° 

Keskin and Laman (2013) Sandy Experimental and 

FEM 

40.6°, 41.8°, 43.5° 

Castelli and Motta (2010) Sandy Limit equilibrium 0° up to 40° 

    



Chapter 3      Bearing capacity assessment of shallow foundations near a slope before and after reinforcement 

 

 

 

 

42 | P a g e  

 

It is important to mention that the elastoplastic approach helps keeping up with the history of 

deformations and stresses; in contrast, the static and kinematic approaches of the limit analysis provide 

a precise evaluation of the bearing capacity, which minimizes the computation timing.  

In practice, footings adjacent to slopes are accounted for by correction factors of load inclinations. In 

order to determine the exact bearing capacity, numerous methods have been employed; for instance, the 

centrifuged scale model by Marechal (1999), finite difference method by Baazouzi et al. (2016); as well 

as, the finite element limit analysis (upper bound) and the stress field methods conducted by Georgiadis 

(2010). However, the failure envelopes are defined by means of two types of loading space (Bransby & 

Randolph, 1998; Gourvenec, 2007; Houlsby & Puzrin, 1999; Taiebat & Carter, 2002; Ukritchon et al., 

1998). The first type presents the absolute size of failure envelopes; it is defined in terms of bearing 

capacity factors in horizontal H/Bcu and vertical V/Bcu directions. The second type represents the shape 

of failure envelopes, as it plots the space of loading parameters normalized by their ultimate horizontal 

and vertical values respectively, H/Hu and V/Vu. Georgiadis (2010) studied the effect of footing 

undrained inclined loading on slope geometry and properties of the corresponding soil (Figure 3.1). The 

methods of stress field and upper bound, integrated in finite element analysis were employed.  

 

Figure 3.1: Problem definition (Georgiadis, 2010). 

Two failure modes were predicted by Georgiadis (2010); a failure mechanism pertaining to the bearing 

capacity (Figure 3.2(a)) and a failure affecting the overall stability of the slope (Figure 3.2(b)). In 

addition, an empirical equation was derived for the load interaction diagram of the bearing capacity, for 

purely cohesive soil slope (eq. (3.1)) with considering different slope angles. Thus, the influence of the 

strip footing position relatively to the crest was considered in Figure 3.3. It is noted that the plotted curves 

using the upper bound method agree well with those obtained from the suggested equation. 
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𝑣 =

1

2
+

𝑐𝑜𝑠−1(𝜉. ℎ) + √1 − (𝜉. ℎ)2 − 𝛽

𝜋 + 2 − 2𝛽
, 

 

 𝜉 = 1 − 𝛽(1 − 𝑒−𝜆). (3.1) 

 

Figure 3.2: Types of failure mechanism assumed by Georgiadis (2010). 

 

Figure 3.3: Comparison of the developed equation pertaining to the load interaction diagram with the upper bound 

solutions (Georgiadis, 2010). 

3.2.2 Stochastic analyses for the determination of the bearing capacity of shallow footings  

The new innovation in geotechnical engineering, relies on extending the concept of reliability for the 

analysis of slopes to the case of nearby footings. The bearing capacity and footing settlement have 

received a great attention in the literature. Basically, uncertain parameters were modelled as random 

procedure with conducting analyses on the effect of spatial variability. Table (3.2) recapitulate several 

studies conducted to analyze the bearing capacity of a shallow footing, situated on both horizontal and 

sloping grounds, with employing different probabilistic methods. In the majority of studies, the isotropic 

correlation length ϴ (θh=θv) is considered with the normalization by the footing width B. 
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Table 3.2: Various probabilistic methods conducted for the bearing capacity of shallow foundations. 

Author Ground 

surface 

Type of 

loading 

Probabilistic 

method 

Type of 

distribution 

Spatial variable 

Shear strength 

characteristics 

Griffiths et al 

(2002) 

Cohesive 

horizontal  

Vertical RFEM and  

MC 

Lognormal COVcu= 0.125-8 

ϴcu= 0.125-8 

Srivastava and 

Babu  (2009) 

Cohesive 

horizontal  

Vertical MC Normal μNc= 5.03 

COVNc= 24% 

Abdel Massih and 

Soubra (2010) 

c-φ 

horizontal 

ground 

Vertical MC Lognormal 

for c and 

beta for φ 

μcu= 20kPa 

COVcu= 10-40% 

μϕ= 30° 

COVφ= 5-15% 

ϴ= 2 

Zhalehjoo et al. 

(2012) 

Cohesive 

horizontal  

Vertical RFDM and  

MC 

Lognormal μcu= 25-100 kPa 

COVcu= 10-75% 

Cassidy et al. 

(2013) 

Cohesive 

horizontal  

Inclined RFEM Lognormal COVcu= 10-50% 

 

Huang et al. (2016) Cohesive 

horizontal  

Inclined RFELA (limit 

analysis) and 

MC 

Lognormal μcu= 10 kPa 

COVcu= 50% 

ϴ= 0.125-4 

Luo and Buthurst 

(2017) 

Cohesive 

slope 

Vertical  RFEM and  

MC 

Lognormal μcu=  20 kPa 

COVcu= 10-50% 

ϴcu= 0.125-8 

Brahmi et al. 

(2018) 

Cohesive 

slope 

Inclined MC Lognormal μcu= 20 kPa 

COVcu= 10-50% 

ϴcu= 0.125-8 

Brahmi et al. (2018) investigated the effect of spatial variability on the mean bearing capacity 

corresponding to a strip footing, situated at a slope crest (Figure 3.4). The random finite element limit 

analysis RFELA integrated in OptumG2 software was conducted. The study accounted for the Monte 

Carlo simulation, with respect to the Karhunen-Loeve expansion. The load inclination effect on the mean 
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failure envelopes was calculated for Lognormally distributed undrained shear strength with a mean value 

of μcu= 20 kPa. 

 

Figure 3.4: Definition of the problem (Brahmi et al., 2018). 

Figures 3.5 and 3.6 represented the size and shape of failure envelopes in terms of coefficient of variation 

and normalized correlation lengths, respectively. It was found that, the failure envelopes plotted in terms 

of bearing capacity factors H/Bcu-V/Bcu describing the size (Figure 3.5(a)) are following a decreasing 

trend with the increase of the COV from 10% to 50%. However, the shape of spatial variable failure 

envelopes is much more conservative than the deterministic one (Figure 3.5(b)). 

 
Figure 3.5: The variation of COV with: (a) surfaces of normalized failure loads, and (b) curves of load interaction. 

Furthermore, Figure 3.6(a) showed that the size of failure envelopes is enhanced significantly with the 

increase of the isotropic correlation length; the resulting failure envelopes lie all in the same shape (Figure 

3.6(b)). 
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Figure 3.6: The variation of ϴ with: (a) surfaces of normalized failure loads, and (b) curves of load interaction. 

3.3 Bearing capacity of shallow footings near stabilized slopes 

3.3.1 Deterministic analyses for stabilized slopes under purely vertical surface loads 

Recently, the effect of pile response used to stabilize slopes on the soil bearing capacity under purely 

vertical surface load was widely investigated, with respect to a model of serialized centrifuge tests applied 

to estimate the lateral pile behaviour (Wang & Zhang, 2014). It was indicated that, the pile strength 

properties and optimal position near the top of slope are the key factors of a positive soil limit load 

response. The failure mechanism is captured by the displacement localization of the soil around the load 

surface. Nevertheless, researchers addressed the estimation of quantitative and qualitative correlations 

pertaining to the bearing capacity and the position of both footing and piles within the slope. Several 

methods were used; for instance, finite element method (Munawir et al., 2013; Raee et al., 2019), limit 

equilibrium method (Haghbin & Ghazavi, 2013), finite difference analysis (Sharafi & Sojoudi, 2016) 

and upper bound limit analysis (Jin et al., 2020). All of these analyses agreed on the fact that, the 

improvement in bearing capacity is attributed to the increase in the reinforcement rigidity and decrease 

in the centre-to-centre spacing. This is due to the effect of soil arching between reinforcement columns 

and the enhancement in the footing response corresponding to the load-settlement relation. 

Sharafi and Sojoudi (2016) adopted a small-scale physical modelling technique and numerical finite 

difference analysis, to account for a loose sandy slope under surface loading (Figure 3.7(a)) with the 

presence of an interlayer of soft soil bound (Figure 3.7(b)).  
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(a)  (b) 

Figure 3.7: Definition of the problem (Sharafi & Sojoudi, 2016). 

It is important to mention that the raise in the distance between piles may develop higher failure volume 

of the slope and lower soil-arching. It was deduced from Figure 3.8 that the slope factor of safety before 

reinforcement decreases with the increase of the soil interlayer; hence, an opposite tendency was captured 

for the reinforced slope. Figure 3.9 showed that the optimal pile location is where the improvement in 

bearing capacity is maximum referring to the case of piles driven closer to the slope crest.  

 

Figure 3.8: Effect of soil interlayer on Fs (Sharafi & Sojoudi, 2016). 

Nevertheless, slopes under surface vertical loading cause an increase in lateral displacements and 

decrease in the confining pressure of soils. Therefore, the sheet pile walls have shown an excellent 

performance to improve the situation (Ahmed, 2004; Esser & Dingeldein, 2007; Hon & Demcsak, 2010; 

Sudani et al., 2015). El Sawwaf (2005) investigated the efficiency of adopting a pile row or a sheet pile 

wall in enhancing the bearing capacity of a strip footing near a sandy slope. Figure 3.10 shows that the 

strip footing and both retaining structures are placed at the crest of the slope (b/B=0 and d/B=0, 

respectively). It was noted that the best enhancement of bearing capacity is attributed to the sheet pile 
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wall; hence, it is noticeable for heights h/B of relatively larger values. This happens due to the increase 

in the sheet pile resistance with the increase in the embedded height in the stable soil.  

 

Figure 3.9: Effect of pile location on the bearing capacity improvement (Sharafi & Sojoudi, 2016). 

 

Figure 3.10: Comparison of the best performance between sheet pile walls and pile rows (El Sawwaf, 2005). 

3.4 Conclusion 

This chapter furnishes a representation of experimental, analytical and numerical methods conducted for 

the deterministic evaluation of the bearing capacity near slopes. In particular, the effect of inclined 

loading condition was addressed with respect to several mechanical and geometrical parameters. 

Furthermore, the failure envelopes are computed to account for the absolute size, which is defined in 

terms of horizontal and vertical bearing capacity factors in the load space. Thus, the shape of failure 

envelopes is plotted by loading space parameters, normalized by their ultimates horizontally and 

vertically.  
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The traditional deterministic methods assume that the soil properties are the same alongside the field, 

with providing determined values of soil parameters. Therefore, probabilistic analyses are addressed to 

give an accurate estimation for the load inclination effect on the generated failure envelopes, with respect 

to normal and Lognormal distributions of soil shear parameters. According to the published results, the 

deterministic methods overestimate the limit load. The mean value of this latter, has shown a decreasing 

trend with the raise in COVcu, whenever ϴ is as high as the footing width. The interaction curves showed 

that, probabilistic curves all fall inside the deterministic one. This is explained by the reduction of the 

limit load caused by the heterogeneity of the soil. 

It is worthwhile noting that, the subject of investigating the response of anti-slide piles to an adjacent 

foundation, has been widely investigated in the literature. However, the studies addressed only one 

condition, where the footing load is purely vertical,  which gives the opportunity to this thesis to make a 

step forward in the scientific research and address the case of inclined loading in chapter five.
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Chapter 4: Strength reduction analysis on the safety factor of a slope 

reinforced with one row of piles 

 

 

 

 

4.1 Introduction 

Reinforcing slopes with piles to extensively improve the stability has become an innovational technique 

in geotechnical engineering. In the last few decades, several pressure or displacement based methods 

have been used to analyze the response of piles, undergoing lateral soil deformations (Ashour & Ardalan, 

2012; Ito & Matsui, 1975; Nimityongskul et al., 2018). It should be mentioned that the limit equilibrium 

based methods don’t account for the soil-pile interaction (Laora et al., 2017; Hassiotis et al., 1997; Ito et 

al., 1981; Poulos, 1995; Yamin & Liang, 2009). Therefore to serve this purpose, numerical computations 

were highly recommended. The behavior of soil-pile system was studied with considering the effect of 

3D sets of pile-soil forces using the FE analysis (Jeong et al., 2003; Kim & Jeong, 2011; Taheri et al., 

2015). The kinematic approach of limit analysis has shown that, the optimal location of piles within the 

slope is where the stabilizing force has a minimum value (Ausilio et al., 2001; Nian et al., 2008; Qin et 

al., 2017). Nevertheless, the shear strength reduction method SSR has shown accurate solutions for 

analyzing slopes without reinforcement (Cheng et al., 2007; Griffiths & Lane, 1999; Wei & Cheng, 

2009). Thusly, it was extended to study the pile-stabilized slopes by many researchers. Won et al. (2005), 

as well as Cai and Ugai (2000) used 3D finite difference (SSRFD) and finite element (SSRFE) methods, 

to locate the slip surface by the maximum shear force developed in piles. Hence, Wei and Cheng (2009) 

and Yang et al. (2011) used the SSRFD method in 3D to locate the slip surface by the maximum shear 

strain rate and  the maximum pressure on piles, respectively. It was deduced that the method of locating 
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the slip surface influences significantly the resulting factor of safety of identical slopes analyzed with 

identical methods.  

In this chapter, we investigate the factor of safety of a c-𝜑 slope reinforced with one row of piles using 

the SSRFE method through OptumG2 code. The utilized method is based on extending the method of 

analyzing piles suggested by Sluis et al. (2014) to investigate the stability of the slope under various pile 

center-to-center spacings. It is worthwhile noting that the present study is subject of an oral presentation 

in an international conference (Bougouffa et al., 2019). 

4.2 Principle of Sluis integrated in OptumG2 software 

The modeling of piles as plates or node-to-node anchors in plane strain analyses, leads to unavoidable 

gaps in the soil-pile interaction behavior, as it is supposed to be a 3D problem. The classical 3D 

methodology relies on, accounting for plate elements according to the equivalent pile row properties per 

unit width. In which, the interface elements are meant to represent the soil-pile interaction with separating 

the soil mesh from that of the piles. This leads to small interaction in all sides of the pile, resulting in a 

limited range of spacings S in terms of the pile diameter Ø (S/Ø < 2 to 3). Moreover, the use of node-to-

node anchors assures continues mesh of soil without any soil-pile interaction. This is shown by the 

independent flow of the soil; in which, it doesn’t reflect the real behavior.  

 

Figure 4.1: The 2D interaction between soil and piles in a row (Sluis et al., 2014). 

Sluis et al. (2014) came out with a solution to permit the estimation of the slope stability in 2D with 

considering unlimited pile spacings. This technique joined both methods to model the piles, with 

eliminating the drawback to the maximum. The pile properties are taking after the plate element, and a 
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continuous mesh is inspired from node-to-node connectors. Two different layers are considered for the 

soil and beam representing the piles. By which the mesh of the beam element is superimposed on the 2D 

mesh corresponding to the soil. The soil-pile interaction is represented by the connection of the beam 

with the soil nodes, as shown in Figure 4.1. Therefore, the mesh is duplicated in all the edges and nodes 

of the pile element along the geometry line pertaining to the soil, representing the elements of interface. 

Moreover, the loads are transmitted from the pile to the soil through the generation of an elastic semicircle 

at the pile base of a width Deq/2 in order to represent all possible elastic stress points.  

4.2.1 The pile row properties by virtue of the out of plane direction 

The actual pile properties are expanded into the out of plane spacing, as represented bellow:  

�̂� = 𝐸𝐴/𝐷𝑒𝑞𝑆 [𝐾𝑁/𝑚/𝑚1],  

 𝐷𝑒𝑞 = √12𝐼/𝐴 [𝑚], 
(4.1) 

 �̂� =
𝛾𝐴

𝑆
 [𝐾𝑁/𝑚/𝑚1], (4.2) 

where, E, A, Deq, I, γ are respectively the young’s modulus, area of pile, semicircle with a radius of half 

the equivalent pile width, moment of inertia and unit weight.  

4.2.2 The properties pertaining to the soil-pile interface 

The interface elements are represented by axial A, lateral L and base B springs, with a finite strength to 

represent the bearing capacity of piles. Thusly, they are characterized by stiffness K properties as 

follows: 

𝐾𝐴 = 𝐼𝐹𝑆𝐴

𝐺𝑠𝑜𝑖𝑙

𝑆
 ,  

𝐾𝐿 = 𝐼𝐹𝑆𝐿

𝐺𝑠𝑜𝑖𝑙

𝑆
, (4.3) 

𝐾𝐵 = 𝐼𝐹𝑆𝐵

𝐺𝑠𝑜𝑖𝑙

𝑆

𝐷𝑒𝑞

2
,  

where Gsoil and IFSx are respectively the soil shear modulus and corresponding interaction factors that 

are defined as follows: 
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𝐼𝐹𝑆𝐴 = 2.5 (
𝑆

𝐷𝑒𝑞
)

−0.75

 ,  

𝐼𝐹𝑆𝐿 = 2.5 (
𝑆

𝐷𝑒𝑞
)

−0.75

, (4.4) 

𝐼𝐹𝑆𝐵 = 25(
𝑆

𝐷𝑒𝑞
)

−0.75

,  

4.3 Study on the factor of safety pertaining to a pile- stabilized slope 

4.3.1 Presentation of the studied problem 

In order to avoid the occurrence of a landslide, a factor of strength reduction Fs needs to be evaluated. 

Following, the shear strength reduction method, the Mohr-Coulomb parameters are reduced; i.e. cohesion 

c and friction angle 𝜑, as shown in eq. (4.5). 

 Fs =  
c

cred
= 

φ

tan φred
, (4.5) 

where cred and φred are the reduced shear strength parameters. Figure 4.2 visualizes the problem geometry; 

in which, the slope gradient is of 1 vertical:1.5 horizontal and height of 10 m. Two symmetric boundaries 

are used to represent a row of three adjacent piles at the middle of the slope Lx= 7.5m. A boundary 

condition of full fixity at the base and tangential fixity at the sides is adopted. Table (4.1) represents the 

parameters pertaining to the soil, pile, and interface. 

 
Figure 4.2: The problem geometry associated with FE mesh. 
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Table 4.1: Material properties. 

Material Elastic 

modulus E 

(MPa) 

Poisson’s 

ratio 𝜈 

Cohesion c 

(kPa) 

Friction angle 

𝜑 (°) 

Unit weight 

γ (KN/m3) 

Dilation 

angle 𝜓 

(°) 

Soil 200 0.25 10 20 20 0 

Interface 200 0.25 10 20 - 0 

Pile 60000 0.2 - - - - 

4.4 Numerical procedures  

The 2D finite element software OptumG2 is adopted to reach the average value of Fs corresponding to 

upper and lower bounds of SSR method. The piles are modeled as linear elastic steel tube with an outer 

diameter Ø of 0.8m and a center-to-center spacing of S/Ø=2 to 6. Various pile head conditions are taking 

into account; namely, fixed (neither rotation nor displacements are permitted), hinged (permissible 

rotation without displacements), free (permissible rotations and displacements) and non-rotated 

(permissible horizontal displacement without the vertical nor the rotation). Hence, the soil is considered 

to be elastic perfectly plastic, following the failure criterion of Mohr-Coulomb. A mesh adaptivity of 

2000 lower and upper triangular elements is adopted, with three adaptive shear dissipation control. 

4.5 Results and discussion 

4.5.1 Comparison of the factor of safety 

Figure 4.3 shows that, the lower the pile spacing is, the higher the slope steadiness will be. This is 

explained by the tendency of the reinforcing system to behave similarly as a continuous barrier.  

 

Figure 4.3: Comparison of Fs for various pile head conditions (Ep= 60 GPa). 
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For both of the free and hinged head piles, Fs increases with the decrease of pile spacing. It should be 

mentioned that the regularity of the maximum shear force developed by piles for the free head pile differs 

from the hinged one. Consequently, the best stability is attributed to the hinged head pile by dint of the 

increase in the corresponding lateral bearing capacity. For both pile head conditions, Fs obtained from 

Yang et al. (2011) agrees well with the present study, regardless of the underestimation of Cai and Ugai 

(2000).  

4.5.2 Effect of pile rigidity for various head conditions 

It is noted from Figure 4.4 that the pressure undergoing on piles is more pronounced for the fixed and 

hinged head conditions independently of the bending stiffness.  

 

 

(a) E= 60 GPa 
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(b) E= 200 GPa 

Figure 4.4: Pile behaviour for different pile head conditions and bending stiffnesses (S/Ø=3). 

Thus, the negative pressure (directed away from the sloping ground) is reduced to give possibility for the 

piles to generate the sought reaction force and transmit the lateral mobilized forces from the unstable to 

the stable layer. Nevertheless, both Free and non-rotated head piles show negative pressure over certain 

depths (exceeding 5m). This is explained by the fact that, the unconstrained pile movement exceeds the 

surrounding soil movement, generating an extra thrust to the soil. This phenomenon leads to a noteworthy 

drop in the stability of the overall system due to the mobilized shear strength of the soil-pile interface. 

The bending moment is smallest in the hinged head pile; followed in order by those pertaining to the 

fixed, non-rotated and free conditions.  
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This note gives the advantage to adopt restrained head conditions rather than the free head piles, because 

piles are more likely to yield by their bending moment than by their shear force. The increase in the 

bending stiffness leads to smaller shear forces; therefore, it is important to adopt rigid unrestrained head 

piles rather than flexible ones in case of the inability to obtain restrained flexible head piles. The 

deflection is more important in the free head piles followed by the non-rotated case for both bending 

stiffnesses. However, flexible piles tend to have smaller deflection, which enlightens the necessity of 

increasing the pile length with the increase in the corresponding stiffness. 

4.5.3 Effect of pile spacing for various head conditions 

Figure 4.5 shows the behavior of a row of flexible piles (Ep=60 GPa) for various pile spacings and head 

conditions. It is worthy to mention that, intense pressure on piles leads to the generation of higher 

resisting forces to failure induced by piles.  

 

 

(a) Free 
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(b) Hinged 

Figure 4.5: Pile behaviour for various head conditions and centre-to-centre spacings. 

Moreover, the negative pressure reflects the incapability of piles to supply the sought reaction forces to 

stop the sliding. This tendency increases with the increase in S/Ø. For free head piles, the maximum 

shear force is attaint at deeper depths corresponding to relatively smaller spacings and the vice versa. In 

contrast, hinged head piles reach the maximum shear force at the same depth independently of their 

corresponding spacing. Consequently, free head piles supply maximum bending moments, reached at 

quite deeper depths comparing with those corresponding to maximum shear forces. Hence, the hinged 

head piles furnish maximum bending moment at shallower depths. It is noted that, at collapse the pile 

deflection is more pronounced for relatively smaller spacings (S/Ø=2 to 3). This is due to the act of piles 
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as a barrier that continues to lean; however, the limit state is not reached before the occurrence of the full 

deformation and deflection. Moreover, hinged head piles act similarly as rigid piles, due to the generation 

of insignificant lateral deflections. 

4.6 Conclusion  

This chapter introduced a method of calculating the stability of a c-𝜑 slope reinforced with one row of 

piles, based on an earlier study conducted by Sluis et al. (2014). The soil-pile interaction is an important 

data that should be accounted for; to serve this purpose OptumG2 software is used herein. The pile center-

to-center spacing effect on the resulting factor of safety was investigated and compared with those 

available in the literature. 

The study focused on studying the behavior of piles in a row under several conditions; namely, pile head 

conditions, bending stiffness and pile spacings. The piles in a row tend to act similarly as a continuous 

wall for relatively small spacings leading to Fs to increase. It should be mentioned that, restrained head 

conditions are recommended due to the corresponding small bending moments, as the piles tend to yield 

by their bending moment rather than their shear force. However, the adoption of rigid unrestrained head 

piles rather than flexible ones is a good choice, by dint of the decrease in shear forces with the increase 

in pile stiffness. Spacings in the range of 2≤S/Ø≤3, provide higher deflection due to the stages the limit 

state takes to reach the full deformation. 
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Chapter 5: Probabilistic analysis on pile-stabilized slope under purely 

vertical loading 

 

 

 

 

5.1 Introduction 

The subject of enhancing the bearing capacity and the slope stability, may be applicable with the 

construction of pile rows. This is due to their role in limiting horizontal deformations underneath the 

footing and redirecting the failure surface away from the slope (Munawir et al., 2013; Haghbin & 

Ghazavi, 2013; Sharafi & Sojoudi, 2016; Wang & Cao, 2013). The limit analysis used for this purpose 

has shown a very sufficient degree of accuracy. Several scholars studied the admissible diameter and 

spacing between piles (Li et al., 2012; Nian et al., 2008; Rao et al., 2017; Xiao et al., 2016). It was 

found that the pile location is governed by the choice of the corresponding diameter, and the 

maximum spacing is related to the minimum interaction between piles. It should be mentioned that 

the natural soil heterogeneity (inherent variability) is the main source of uncertainty pertaining to soil 

properties that generates randomly. This definitely requires further probabilistic analyses in order to 

take into account the theory of random fields in the soil variation. The bearing capacity of a strip 

footing has been widely addressed in the literature (Ali et al., 2016; Cassidy et al., 2013; Griffiths et 

al., 2002). The effect of vertical loading on a strip footing situated at the slope crest, has been 

investigated by (Luo & Bathurst, 2017), using the RFEM. It was concluded that the bearing capacity 

may be quite affected by the correlation length and coefficient of variation pertaining to the undrained 

cohesion. 

This study investigates a practical range of coefficients of variatioan COV and isotropic correlation 

lengths ϴ pertaining to the soil shear strength. The limit analysis is employed for this purpose, through 

the finite element code OptumG2 (Krabbenhoft, 2017). 
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5.2 Definition of the numerical problem 

The study considers a cohesive slope (cu=20 kPa, =20 KN/m3) with an adjacent rough strip footing 

of B= 1m, situated at the crest (Figure 5.1). Random distribution of the shear strength is applied, in 

order to reach an accurate solution in terms of probability distributions rather than a unique value of 

bearing capacity. The undrained shear strength is accounted for as a random field with a lognormal 

distribution. The stochastic parameters that define the domain are, the mean value μcu, standard 

deviation σcu, coefficient of variation COVcu (describes the dispersion of cohesion around the mean), 

and the isotropic correlation length ϴ=δh/B=δv/B (refers respectively to the horizontal and vertical 

distances between two points where the soil properties are strongly related, normalized by the footing 

width). 

This study makes use of Monte Carlo simulations implemented in OptumG2; thusly, the method of 

Krahunen-Loeve is used to resolve the exponential correlation function (Zhang & Lu, 2004).  

At each random field, the limit load is calculated as follows: 

𝑞𝑢𝑖 = 𝜇𝑐𝑢𝑁𝑐𝑖 ,           𝑖 = 1,2, …1000. (5.1) 

The limit analysis is adopted using the finite element code OptumG2 (Krabbenhoft, 2017). 

An associated flow rule is simulated for a Tresca perfectly plastic soil material. Herein, the 

average undrained bearing capacity is given with respect to theories of plasticity limit 

integrated in the corresponding upper and lower bounds. Accurate computations are assured 

for an initial mesh adaptivity of 1000 elements up to a final mesh of 2000 elements. Three 

adaptive iterations are conducted for the shear dissipation control.  

 

 

Figure 5.1: Model slope and reinforcing system. 
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5.3 Comparison of various correlation lengths 

Figure 5.2 furnishes a comparison between the plots obtained from the present study and those of Luo 

and Bathurst (2017).  

 

 

Figure 5.2: Comparison of various correlation lengths, for COVcu=50%: (a) μNc, and (b) COVNc. 

The curves are dressed for d/B=0, λ=0 and Z/B=2.5 and 3. A good agreement with the literature is 

noted for the unreinforced case pertaining to Z/B=2.5. However for Z/B=3 (Figure 5.2(a)), an 

underestimation of μNc is captured; this is due to the raise in the slope instability that follows the 

increase in its height. Therefore, piles tend to significantly enhance the mean value of the bearing 

capacity, around 42.19% for ϴ=0.125, and 36.12% for ϴ=8.  

5.4 Stochasttic computations 

It is seen from Figure 5.3(a) that μNc decreases in value with the increase in ϴ, until reaching a critical 

value of ϴ=1 that corresponds to a maximum reduction of μNc=2.11 (unreinforced slope) and 3.24 

(reinforced slope). Beyond this unfavourable value of ϴ, an opposite tendency takes place. Figure 
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5.3(b) shows that, the spatial correlation length has a great influence on the resulting COVNc; as this 

latter, tends to raise with the raise of ϴ. It is worthwhile to mention that for higher values of ϴ, the 

coefficient of variation tend to provide constant values.  

 

Figure 5.3: Effect of ϴ on: (a) μNc, and (b) COVNc. 

The influence of COVcu is captured for ϴ=1 (Figure 5.4). It is shown from Figure 5.4(a) that, the 

increase in COVcu tends to decrease μNc. However, the alterations in the reinforced slope are more 

pronounced, as for COVcu=10% the mean bearing capacity factor is 33.12% higher than that of the 

unreinforced case, and 53.55% for COVcu=50%. Furthermore, the effect of COVcu on COVNc (Figure 

5.4(b)) becomes more pronounced for larger values. In contrast, both slope cases tend to give identical 

COVNc for COVcu= 10%. 

The distributions of the complementary cumulative probabilities pertaining to the random bearing 

capacity Nc,rand are dressed for various ranges of COVcu and ϴ, as shown in Figure 5.5. The random 

factors of bearing capacity are calculated using the upper and lower bounds. It is seen that, the 

unreinforced case provides significantly lower probabilities and conservative random variables X. 
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This is explained by the noticeable tendency of the reinforced slope to give higher factors Nc,random. 

Furthermore, All plots end up to give mean bearing capacity factors that are quite lower than the 

deterministic results (Nc,det=4.15 (reinforced), and Nc,det=3.15 (unreinforced)). Lower values of 

COVcu tend to approach the deterministic Nc, and the vice versa.  

 

 

Figure 5.4: Effect of COVcu on: (a) μNc, and (b) COVNc. 

It is of interest to mention that, before the crossover happens, the increase in spatial variability lowers 

the corresponding probabilities, and the opposite is observed beyond this point. This critical reference 

where all the curves meet refers to the weakest path (zones) within the slope could be obtained from 

the RFEM. These zones depict the potential failure mechanism as they inevitably pass through lower 

elements in the distribution of strength values. It is of interest to mention that the shear strength 

distributions spread out in Figure 5.6 indicates the weak and strong regions, respectively corresponding to the 

dark blue and shiny colors. Small correlation lengths (i.e. ϴ=1) imply a high degree of variability in the soil 

shear strength; whereas bigger lengths imply more uniformity. 
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Figure 5.5: Distributions of the complementary cumulative probabilities pertaining to the random bearing 

capacity Nc,rand. 

 

Figure 5.6: Shear strength distribution: (a) ϴ=1, and (b) ϴ=8. 

(a) (b) 
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5.5 Conclusion 

The random limit analysis was employed herein, using the finite element code OptumG2 

(Krabbenhoft, 2017). The objective was to investigate the response of a row of piles to a strip footing 

under vertical loading, located near a cohesive slope. Random distributions were applied for the shear 

strength in order to obtain the limit load in terms of lognormal distributions rather than a unique 

deterministic one. It was found that, the critical spatial variability parameters are attributed to ϴ=1 

and COVcu=50%; in which, the pertaining μNc is minimum. The piles tend to enhance μNc by 33.12% 

for COVcu=10%, and 53.55% for COVcu=50%. Furthermore, values of COVNc pertaining to the 

unreinforced case were seen to be upgrading with the raise of COVcu. It was found from the 

distributions of the complemetry cumulative probabilities pertaining to the random bearing capacity 

Nc,rand that, the unreinforced case provides significantly lower probabilities and conservative random 

variables X. Also, before the crossover, the increase in spatial variability lowers the corresponding 

probabilities. Small correlation lengths (i.e. ϴ=1) imply a high degree of variability in the soil shear 

strength; whereas bigger lengths imply more uniformity. 
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Chapter 6: Numerical analysis on sheet pile wall reinforcement of a 

slope with an adjacent inclined loaded strip footing 

 

 

 

 

6.1 Introduction 

In terms of limit load pertaining to a footing situated at the crest of a slope, a stability number should 

be verified. Taylor (1948) proposed an expression for this purpose to reach an accurate estimation of 

the overall stability. Furthermore, to depict the inclined loaded footing behaviour, load correction 

factors have been addresses by Hansen (1961) and Vesic (1975). Georgiadis (2010) proposed an 

analytical equation for failure envelopes by means of normalized loads. This motion accounted only 

for a quite limited cases, where the slope is undergoing a bearing capacity failure mode. The bearing 

capacity of a footing at a slope crest may show a significant reduction compared to the case of a 

horizontal ground (Kusakabe et al., 1981; Meyerhof, 1957; Saran et al., 1989). Therefore, to 

contribute at the purpose of enhancing the limit load, sheet pile walls have proved a great response to 

footing settlement and overall steadiness (El Sawwaf, 2005; Esser & Dingeldein, 2007; Sudani et al., 

2015). This is due to their effective dynamic response (Gazetas et al., 2016; Lin et al., 2018; Qu et 

al., 2017). 

This chapter aims to presenting a conducted study by Bougouffa et al. (2020). In which, a sheet pile 

wall is employed to reinforce a slope with an adjacent strip footing, in order to provide a new 

estimation of the bearing capacity. As well as, another accepted study for publication made on load 

inclination factors under various slope conditions. Computational series of two dimensional FE limit 

analysis are conducted, using OptumG2 code (Krabbenhoft, 2017).  
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6.2 Problem definition 

The undrained bearing capacity of a footing situated on a sheet pile reinforced slope, is calculated as 

follows: 

 
𝑞𝑢 = 𝑁𝑐

∗𝐵𝑐𝑢, 

𝑁𝑐
∗ = 𝑁𝑐𝑖𝑐𝛽, 

(6.1) 

where Nc, B and cu are respectively the factor of bearing capacity, width of strip footing, and 

undrained shear strength. It should be emphasized that the load inclination icβ is obtained from 

dividing the limit load of inclined loaded footing on a slope qu(θ≠0, β≠0), by that of the vertical loaded 

footing on a horizontal ground qu(θ=0, β=0):  

 𝑖𝑐𝛽 = 𝑞𝑢(𝜃≠0,𝛽≠0)/𝑞𝑢(𝜃=0,𝛽=0), (6.2) 

where θ and β are respectively, the load and slope inclination angles. The bearing capacity 

improvement is expressed by a non-dimensional factor BCI: 

 𝐵𝐶𝐼 =
𝑞𝑢𝑠

𝑞𝑢
⁄ , (6.3) 

 where qus and qu are respectively, the undrained limit load of the stabilized slope and the unstabilized 

one. The slope domain is shown in Figure 6.1(a), with a footing of width B=1m. The parametric study 

investigates the influence of various parameters. Specifically, the relative footing distances of λ=0-2 

(measured from its edge to the slope crest), slope height ratios of Z/B=0.5-4, slope angles of β=15-

45°, height of sheet pile wall ratios of L/B=1-5 and sheet pile wall distance ratios of d/B=0-2 

(measured from the reinforcement to the slope edge).  

 

Figure 6.1: Definition of the problem: (a) geometry, and (b) mesh adaptivity. 

6.3 Numerical approach 

The plane strain FE code OptumG2 (Krabbenhoft, 2017) is adopted to model the entire slope domain, 

due to the absence of both geometry and load symmetry. The soil is simulated as rigid plastic material, 

following the failure criterion of Tresca, with associated flow rule. The sheet pile wall reinforcement 

(a) (b) 
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and the rough strip footing are simulated as rigid beam elements. Figure 6.1(a) shows that, the base 

of the model is fully fixed, while the sides are only of a horizontally fixity. 

The accurate estimation of the limit load is furnished by dint of the average corresponding to the 

upper (UB) and lower (LB) bounds of the limit analysis. An initial mesh of 2000 triangle elements is 

employed; thusly, it is increased up to a final mesh of 8000 elements (Figure 6.1(b)). Four adaptive 

iterations are used for the shear dissipation control. The probe loading technique is used for the 

assessment of the limit load qu.  This is done by amplifying a load multiplier qmult from its initial state 

until attaining failure, by dint of a failure multiplier η: 

 𝑞𝑢 = 𝜂𝑞𝑚𝑢𝑙𝑡 . (6.4) 

6.4 Numerical analysis of load inclination factors under various slope angles 

The investigations of load inclination factors of a strip footing using limit analysis should be verified 

using further elastoplastic calculations, in order to assure the credibility of the adopted method. For 

this reason, Figure 6.2 presents the load-displacement curves plotted for a slope angle, soil Young’s 

modulus, and shear strength ratio respectively of, β=40°, Eu=30 MPa and cu/γB=2.5 (γ=20 KN/m3). 

The curves represent normalized applied loads V/Bcu in terms of the pertaining displacements U/B, 

for L/B=3. The ultimate failure load is generated when the pressure below the strip footing is 

stabilized. It is shown that, the average plots of limit analysis are in an excellent agreement with those 

corresponding to the elastoplastic analysis. The ultimate failure load is remarkably affected by the 

load inclination angle θ and the ratio d/B. For d/B=0, the resistance to the lateral soil displacement 

heading towards the sloping ground is maximum. This is interpreted by the noteworthy improvement 

in failure loads. For purely vertical loading, the failure load of d/B=0 (V/Bcu=4.7) is witnessing a 

raise of 29.83% compared to the unstabilized case, where V/Bcu=3.62. However, when the sheet pile 

wall is driven farther from the crest (i.e., d/B=1), the bearing capacity doesn’t show any enhancement. 

This is interpreted by the corresponding failure loads that are indistinguishable from those of the 

unstabilized case. Consequently, the limit load is reached at minor ratios of U/B. 

Figure 6.3 shows the disparity in the bearing capacity factors Nc* in terms of different load 

inclinations. The plots corresponding to the case before reinforcement are computed for reasons of 

comparison with the literature. It is noted that, the current plots (unreinforced case) agree well with 

Hansen’s solution (1961); in contrast, Vesic (1975) represents a notable underestimation of Nc
*. The 

effectiveness of locating the sheet pile wall at the crest d/B=0, is pronounced by the high tendency of 

Nc*. This latter is showing an improvement that is only 8.56% lower than Prandtl’s (1920). 
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Figure 6.2: Effect of d/B ratios on load-displacement plots, for β=40°, and θ=0° and 10°. 

Furthermore, an analytical expression (eq. (6.4)) is derived for icβ pertaining to the case without 

reinforcement. The expression is showing an excellent agreement with the average limit analysis, as 

shown in Figure 6.3.  

 𝑖𝑐𝛽 =
4.47𝜋

0.28𝛽 + 𝜃 + 4.09𝜋
. (6.5) 

 

Figure 6.3: Variation of Nc* factors with θ, for β=40°. 

6.4.1 Effect of sheet pile wall location on icβ 

Figure 6.4(a-b-c-d) illustrates the disparity in icβ with respect to different locations of the sheet pile 

wall. The plots are captured for slope angles varying from 15° to 45°. It is noted that icβ drops with 

the raise of θ, β, and d/B ratios until crossing over a specific angle of θ=30°. Beyond which (θ≥30°), 

icβ acts similarly as the slope before reinforcement, irrespectively of d/B ratios. This is explained by 

the existence of a substantial active earth pressure, where the mobilized passive resistance generated 

by the sheet pile wall is nil. However, the passive resistance attains its maximum at θ=0° for d/B=0; 

thus, icβ undergoes a decreasing trend from 1 (β=15°) to 0.88 (β=45°). Subsequently, icβ raises by 
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11.11% (β=15°) to 29.41% (β=45°) compared to their respective cases of the unreinforced slope. 

Thereafter, an original expression of icβ is derived for d/B≤0.5 and 15°≤β≤45°: 

 𝑖𝑐𝛽 =
3.2𝑑/𝐵 + 20

0.3𝛽𝑑/𝐵 + 0.08𝛽 + 𝜃 + 18.7
. (6.6) 

It is worthwhile to mention that it is indicated in Figure 6.4 that the plots obtained from eq. (6.5) are 

almost identical to those of the current analysis (limit analysis).  

 

 

Figure 6.4: Effect of various ranges of θ and d/B on icβ, captured for various slope angles. 

6.4.2 Failure mechanism 

Figure 6.5 shows that the incremental shear strains below the footing are captured to define the failure 

mechanisms. It is clear that for θ=0°, the wedge-shaped elastic zone that is directly underneath the 

strip footing is quite deeper compared to θ>0°. By dint of the presence of slope reinforcement at 

d/B=0, a noteworthy passive resistance is generated to dominate the spreading of the active earth 

pressure. The failure surface is not even crossed for the case of d/B=1. It is noted that, the shear zone 
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is shallower for θ>0°, as well as its width that narrows with the drop of d/B ratios. This is interpreted 

by the steadiness of the lower soil layer that repulses the failure plane. 

 

 

Figure 6.5: Pattern of failure captured for β=40°, 0°≤θ≤10°, and d/B=0 and 1. 

6.5 Numerical analysis of the load inclintion effect on  failure loads under various 

reinforcement conditions 

Figure 6.6 shows a comparison of the ultimate bearing capacity between the employed method of 

limit analysis and the classical elastoplastic analysis, for reasons of reliability. The soil undrained 

shear strength ratio, unit weight and young’s modulus are respectively of cu/(γB) =2.5, γ=20 KN/m3, 

and Es=30 MPa. Hence, the thickness and young’s modulus of the sheet pile wall are respectively of 

t=0.2 m, E=30 and 200 GPa. It is noted from Figure 6.6(a) that, the ultimate bearing capacity is not 

possibly influenced by the flexural rigidity of the reinforcement. This is due to the similar normalized 

failure loads resulting from various reinforcement stiffnesses. The failure load corresponding to the 

average of UB and LB of the limit analysis falls exactly at that of the elastoplastic analysis. It is 

indicated in Figure 6.6(b) that, the increase of L/B from 1 to 5 leads to an increase of the bearing 

capacity factors (V/Bcu). Beyond this interval (L/B>5) failure loads are undergoing a constant trend. 

It is indicated that the UB and LB solutions in Figure 6.7(a) provide factors of bearing capacity as 

high as Nc(UB)=5.198 and Nc(LB)= 5.082. This signifies that, the average value Nc= 5.14 is similar to 

the exact one provided by Prandtl (1920). Regardless the underestimation of failure loads resulted 

from Vesic’s equation (1975), the present study is in good agreement with solutions of Meyerhof and 

Hansen, especially for small horizontal loads. Figure 6.7(b) shows failure envelopes of a footing at 

the slope crest. 

(a) (b) (c) 

(d) (f) (e) 
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Figure 6.6: Load-displacement plots captured for β=45°, θ=0°, λ=0 and d/B=0: (a) effect of the flexural 

rigidity of the reinforcement, (b) effect of various ratios of L/B. 

 
Figure 6.7: Failure plane captured for a footing situated on (a) horizontal ground surface, and (b) slope of 

β=30°. 

It is shown that regardless the solutions of Vesic, the current average results of the unreinforced slope 

agree well with Hansen for relatively high load angles. It is of interest to mention that, the employed  
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Analysis is conducted for a sheet pile wall of L/B=5. The corresponding ultimate vertical load is of 

V0=5.11Bcu, which it is about 28.72% greater than the unstabilized case (V0=3.97Bcu) and only 

0.58% lesser than that of Prandtl (1920). 

6.5.1 Effect of various sheet pile wall locations d/B within the slope 

Figure 6.8 addresses the relation between BCI and θ, for various ranges of d/B. It is noted that, the 

bearing capacity is quite enhanced for 0.2 ≤d/B≤ 0.4, which drives the factor BCI to increase. Thus, 

BCI drops with the increase of θ, specifically for 0°<θ<30°. For θ≥30°, BCI tends to stabilize 

regardless the range of d/B; this is due to the large active earth pressure that influences Nc factors, 

and drive them to be equal to those of the unstabilized case. The failure mechanism might be quite 

enhanced for d/B=0.2 as shown in Figure 6.9(a-b). The elastic wedge shape below the footing gets 

narrower, and the shear zone headed to the slope is stopped by dint of the reinforcement passive 

resistance. However, d/B>0.4 might increase the stability of the slope but wouldn’t cross the failure 

plane generated by the footing. 

 

Figure 6.8: Bearing capacity improvement in terms of various normalized sheet pile locations, for cu/γB=1, 

λ=0, and β=40°. 

 

Figure 6.9: The pattern of failure captured for β=40°, θ=0° and λ=0: (a) unreinforced slope and (b) reinforced 

slope, with L/B=5. 

The normalized failure load surfaces are shown in Figure 6.10(a). The unstabilized slope has Nc as 

high as 3.17, which is similar to the result obtained by Georgiadis (2010). For negative θ, vertical and 
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horizontal failure loads raise the pertaining size, until reaching θ=-15° (V/Bcu=3.26 and H/Bcu=-

0.87). Beyond which, they come across the unstabilized curve; leading to a failure mechanism to 

construct at the crest without being affected by the reinforcement. In contrast, Figure 6.10(b) shows 

that the load interaction curves are conservative for d/B=0.2 and 0.4; while for d/B> 0.4 they tend 

towards the unstabilized slope. Thereafter, a simple expression is derived for load interaction curves 

pertaining to a=d/B≤1 and θ≥0°: 

 ℎ = (0.11𝑎 + 0.96)𝑣(−1.47𝑎2+3.75𝑎+2) − 0.01𝑎 + 1.02 (6.7) 

 
Figure 6.10: Effect of various sheet pile positions, captured for cu/γB=1 and β=45°: (a) normalized failure 

load planes, and (b) load interaction surfaces. 

6.5.2 Effect of various sheet pile wall heights 

Both bearing capacity and overall failure types are function of angle θ° and a slope angle less than 

45°. Figure 6.11 indicates that at θ=10°, a sheet pile of L/B=5 leads to an improvement of 1.41 times 

that of the slope without reinforcement. This occurs by dint of the raise in the embedded portion 

within the stable layer. Consequently, minus lateral deformations of soil and rotation of sheet pile 

wall are assured. Mostly, the extreme BCI comes around 10°≤θ≤20°. After the peak, the bearing 

capacity failure mode takes place at relatively great θ values; the overall failure mode happens for 
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lower values of θ°. It is illustrated in Figure 6.12(a) that, L/B=5 raises the vertical load to the 

maximum (4.18Bcu), by which, the reinforcement passive resistance returns to be utmost. 

Nevertheless, the vertical load that leads to failure is as high as 2.73Bcu, almost 65.45% greater than 

the unreinforced slope (1.65Bcu). A noteworthy drop is noted from the failure envelopes expansion 

pertaining to L/B=1 and 2. Figure 6.12(b) shows that, the shape of failure envelopes for both positive 

and negative angles is undergoing a contradictory trend. This tendency indicates the extent of shear 

surface within the slope that gets far down for shorter sheet pile walls. But then again, shear zones 

are restricted and shallower for L/B=5. 

 
Figure 6.11: Bearing capacity improvement in terms of various sheet pile heights L/B, captured for cu/γB=1, 

λ=0, and β=40°. 

 
Figure 6.12: Effect of various sheet pile heights, captured for cu/γB=1 and β=45°: (a) normalized failure load 

planes, and (b) load interaction surfaces. 

6.5.3 Effect of various normalized footing distances  

Figure 6.13 shows that, BCI reaches its maximum when the footing is right at the crest, since the 

passive resistance is quite increased at this stage. For λ=0, the angle θ exerts a critical effect in a wider 

range 0°≤θ≤20°, compared to λ>0 (0°≤θ≤10°). Therefore, the ultimate BCI is related to θ=10° for 

λ=0, and to θ<10° for λ=1 and 2; this indicates the existence of an overall failure type. However, this 

latter, is considered quite limited for λ=0 (unstabilized slope) as shown in Figure 6.9. Furthermore, 

Figure 6.14(a) indicates that high values of λ raise the size of failure envelopes. 
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Figure 6.13: Bearing capacity improvement in terms of various normalized footing distances, captured for 

cu/γB=1, d/B=0, and β=40°. 

 

 

Figure 6.14: Effect of various normalized footing distances, captured for cu/γB=1 and β=45°: (a) normalized 

failure load surfaces, and (b) load interaction curves. 

The bearing capacity factor pertaining to the stabilized slope with λ=0 is of 4.18, which is 81.32% 

close to the horizontal ground surface; whereas for λ=2 (Nc=4.68) it is 91.05%. Nevertheless, the 

shape of failure envelopes is affected by the sheet pile wall, as shown in Figure 6.14(b); whereas, 

positive and negative loads are leaning in a tight band, dissimilarly to the unstabilized slope. Hence, 

higher λ values of the unstabilized case tend to lean load interaction curves towards lower λ for the 

stabilized case. 
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6.5.4 Effect of various shear strength ratios cu/γB 

It is illustrated in Figure 6.15(a-b-c) that, three ratios are considered cu/γB= 1, 2.5 and 5 for β=15°, 

30° and 45°. The overall failure mode tend to reduce the normalized failure loads for cu/γB=1. Thusly, 

the reduction persists with the increase of β. For β=15°, the footing ultimate vertical load capacity 

pertaining to the stabilized slope raises by 15.65% from the unstabilized one. Nevertheless, for β=30°, 

the enhancement is up to 24.06% relevant to cu/γB=1, and 26.98% relevant to cu/γB=2.5 and 5. As 

well as for the case of β=45°, a raise of 31.86% is captured for cu/γB=1 and 42.86% relevant to 

cu/γB=2.5 and 5. 

 
 

 

Figure 6.15: Effect of various cu/γB ratios on normalized failure surfaces, captured for: (a) β=15°, (b) β=30°, 

and (c) β=45°. 

It is noted from Figure 6.16(a-b-c) that β=15° leads to a unique shape of failure envelopes regardless 

of cu/γB ratios, as the bearing capacity is not affected by the reinforcement. In contrast, failure 

envelopes lean similarly for β=30° and 45° (cu/γB=2.5 and 5). However, the raise in β leads to an 

increase in load interaction curves of cu/γB=1. 
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Figure 6.16: Effect of various cu/γB ratios on load interaction curves, captured for: (a) β=15°, (b) β=30°, and 

(c) β=45°. 

6.5.5 Effect of various slope heights 

The stability number Ns obtained from Taylor (1948), is defined by means of the slope ultimate height 

Z0 and safety factor Fs (Ns= FsγZ0/cu). In the current study Ns is of 5.52 (β<54°), which is slightly 

conservative compared to Taylor’s (Ns=5.33). Figure 6.17(a-b) shows that the computed curves 

decrease with the raise in Z/B ratios.  

  

Figure 6.17: Effect of various Z/B ratios on normalized failure surfaces, captured for λ=1: (a) β=30°, and (b) 

β=45°. 
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A bearing capacity failure mode is developed for the case relevant to Z/B<3 and β=30°, regardless of 

the inclination angle θ. Hence, an overall mode happens for Z/B≥3 pertaining to θ<10°. β=45° may 

generate an overall mode for all cases independently of Z/B and θ. Figures 6.18(a) and 6.19(a) show 

an overall failure mechanism for β=30° and Z/B=3, at exactly θ=0°. Figures 6.18(b) and 6.19(b) show 

a bearing capacity failure mechanism relevant to θ=10°.  

 
Figure 6.18: The pattern of failure pertaining to the unstabilized slope for Z/B=3, λ=1, cu/γB=1 and β=30°: 

(a) overall failure at θ=0°, and (b) bearing capacity failure at θ=10°. 

 

Figure 6.19: The patter of failure pertaining to the stabilized slope for Z/B=3, λ=1, cu/γB=1 and β=30°: (a) 

overall slope failure at θ=0°, and (b) bearing capacity failure at θ=10°. 

 

Figure 6.20: Effect of various Z/B ratios on load interaction curves, captured for λ=1: (a) β=30°, and (b) 

β=45°. 
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Figure 6.20(a-b) indicates that, the shape of failure envelopes of Z/B<3 is undistinguishable for β=30° 

and 45°. Z/B≥3 assures greater normalized failure loads, even though the corresponding size of failure 

envelopes shown in Figure 6.17 is lower. It is noted that the safest estimation of load interaction 

curves is related to the stabilized slope. 

6.6 Conclusion 

The 2D finite element limit analysis implemented in  OptumG2 code (Krabbenhoft, 2017) was 

adopted to consider a rough strip footing subjected to a combined loading at a crest of a cohesive 

slope. In order to serve at the purpose of enhancing the corresponding limit load, a sheet pile wall 

reinforcement technique was employed. The factors of load inclination icβ and improvement in 

bearing capacity BCI were captured for each load inclination angle θ°. Thusly, failure envelopes were 

dressed to predict the relevant size and shape, as well as the type of failure mechanism. 

The factor icβ drops with the raise of θ, d/B and β until reaching failure at θ=30°. Beyond which, a 

crossover takes place independently of β, due to the attaint of a similar footing failure with that of the 

unstabilized case. Quite original expressions of icβ were derived for the slope before and after 

reinforcement. The ratios of d/B, L/B, cu/γB and Z/B showed a significant influence on the ultimate 

vertical load capacity, as well as on the size and shape of failure envelopes. This results in great 

failure load surfaces pertaining to cases where the overall stability is assured. A sheet pile of L/B=5 

and λ=0 leads to the maximum improvement in the bearing capacity. Nevertheless, the type of failure 

mechanism is governed by the footing location, load inclination and slope angle. This happens for 

β<45°  due to the reveal of overall and bearing capacity failure types that are in terms of θ°. For 

θ<10°, the failure mode pertaining to Z/B≥3 and cu/γB=1 is that of the overall. This latter happens for 

all cases of Z/B pertaining to β=45°, independently of the load inclination. In contrast, β<45° 

associates the bearing capacity mode for θ≥10° and Z/B<3 regardless the inclination angle θ°.
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The prediction of the behaviour and safety factors of slopes reinforced with a row of piles or sheet 

pile wall, relies on the accurate consideration of the soil-pile interaction. The sliding induced pressure 

exerted on the passive part of piles is function of the pertaining properties; namely, soil-pile stiffness 

and strength. The criteria that defines the structural failure is attributed to the strength of the pile 

material itself. By which, failure is governed by the pile centre-to-centre spacing, diameter, location 

within the slope,  length, soil mechanical properties, and the presence of a surface load condition. 

The main objective of this thesis, is to contribute to the deterministic and probabilistic studies of the 

subject pertaining to the steadiness and safety of slopes, subjected to an inclined loading condition at 

the surface. This is done by considering the reinforcement technique of discrete and continues vertical 

structures. The numerical contributions are addressing several problems; namely, safety improvement 

of a c-φ slope, combined effect of surface inclined loading and purely cohesive sloping ground, 

bearing capacity enhancement of an inclined loaded strip footing, as well as, the influence of spatial 

variability of soil parameters on the pile response.  

The first Chapter of this thesis, is mainly addressing a bibliographical synthesis of already 

conducted studies in the literature. Foremost, chapter one is presenting basic notions and principles 

of slope analyses based on the sought purpose; might be safety problems, bearing capacity problems 

or random field generation. The slope failure is induced by different causes; for instance, the self-

weight, surface loading (shallow foundation at the slope crest) or soil spatial variability. It was found 

that, all the approaches are relying on the same principle of stability estimation. Basically, they 

depend on locating the slip surface firstly, then determining the active stresses in order to compute 

the factor of safety. The bearing capacity of shallow foundations is taken into consideration by means 

of Terzaghi’s superposition principle (1943). Whereas, the bearing capacity is determined by virtue 

of correction factors. In addition, the accuracy of probabilistic level is determined by dint of the 

generation of a rigorous random field. Therefore, the Monte-Carlo simulation addresses quite 
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complex problems by combining all random combinations of soil parameters. Thusly, the resulting 

data are of the form of probability distribution and cumulative distribution functions.  

Analytical and numerical methods reported in the literature for the stability assessment of a slope 

stabilized by a row of piles, are presented in Chapter two. The limit equilibrium method is primarily 

consisting of two sections: pressure and displacement based methods. The advantage of numerical 

methods (shear strength and limit analyses) over the classical method of equilibrium is that, the soil-

pile interaction is fully considered. Moreover, the calculations are carried out without necessarily 

locating previously the slip surface. In addition, the pile bending stiffness and head conditions are 

taken into account in the assessment of the factor of safety. 

The third chapter presents the deterministic and stochastic studies performed earlier for the 

determination of the limit load with combining two effects, sloping ground and surface load 

condition. It should be mentioned that, the case of a reinforced slope was considered by different 

scholars only under purely vertical loading condition. The elastoplatic approach provides the ability 

of tracking the history of deformations and stresses. In contrast; the limit analysis is concentrated on 

the accurate estimation of the limit load based on the corresponding static and kinematic approaches. 

Furthermore, this chapter presented the most influencing parameters on the bearing capacity under 

soil spatial variability condition; for instance, mean value, correlation length and coefficient of 

variation. 

The second part is addressing the presentation of numerical contributions conducted within the 

objective of this dissertation. The problem of reinforcing a slope with/without an adjacent shallow 

footing to ensure an overall enhancement in slope stability, is considered as a complex problem. 

Whereas, a robust numerical tool to conduct either deterministic or probabilistic analyses is necessary. 

This thesis relies on the efficiency of OptumG2 code (Krabbenhoft, 2017), as it permits the simulation 

of pile rows in two dimensional finite element analyses, following the principle of Sluis (2014). 

Thusly, it permits to depict the full failure process, by tracking the effect of all possible load 

inclinations applied on the slope surface. It is of interest to mention that, the simulation of soil spatial 

variability following random field theories is one of the concepts of OptumG2 code.  

First of all, Chapter four provides a study conducted on the stability enhancement of a c-φ slope 

with a row of piles. The finite element shear strength reduction method integrated in OptumG2 was 

used. The elastoplastic approach was adopted by dint of taking into consideration the pile head 

conditions, bending stiffness and pile spacing. The computations were conducted to determine the 
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maximum mobilized pressure acting on piles; as well as, the distribution of the shear force, deflection 

and bending moment along the pile row. It was found that the shear force pertaining to the case of 

restrained head piles, is larger and the deflection is lower compared to the free head condition. In 

which, it leads by its turn to a maximum factor of safety. Hence, pile rigidity doesn’t really show an 

influence on Fs, due to the similar resulting reaction force for both cases. The slip surface undergoes 

a decreasing trend in depth with the increase of pile spacing under the free head condition; while it 

leans similarly under the hinged head condition. 

Chapter five is representing an original study on the problem of bearing capacity pertaining to 

shallow footings. The limit analysis integrated in OptumG2 is employed to analyze the behaviour of 

a rigid strip footing on a cohesive slope, under the condition of vertical and inclined loading. This 

study considered the effect of reinforcing the slope by a row of anti-slide piles to improve the 

undrained bearing capacity. The failure envelopes are dressed in terms of the average of upper and 

lower bound solutions. The bearing capacity improvement and both size and shape of failure 

envelopes were detected for each pile spacing, length, diameter and location. The plots were captured 

under positive and negative load inclinations, with different footing locations. It was found that, piles 

driven at the slope crest raise significantly the bearing capacity improvement factor BCI, specifically 

at 5°≤θ≤10°, pertaining to S/B=0.5 (BCI=1.39). Thenceforth, the failure through piles in a row is 

significantly limited for Ø=0.2B and L=5B. In which, it refers to the best case with an improvement 

of the factor of load inclination icβ as high as 32.79%, compared to the reference case (slope without 

piles). The failure loads, indicate that the critical bearing capacity factor is attributed to θ=30°. This 

leads to a minimum bearing capacity factor improvement of 14.97%. It was concluded that, 

conservative failure envelopes are corresponding to a footing setback of λ=0, as the pertaining factor 

icβ drops remarkably. 

The effect of special variability of soil characteristics on the bearing capacity of a rigid strip footing 

subjected to purely vertical loading, is studied using the probabilistic analysis. The study showed that, 

the stochastic parameters influencing Nc and the probability of failure Pf are the shear strength mean 

value, coefficient of variation and isotropic correlation length. The software OptumG2 serves at the 

purpose of, simulating the spatial variability of soil following the theory of random fields using the 

limit analysis, in order to obtain direct limit load computations. This is considered as an advantage 

over the elastoplastic analysis where the time criteria is much extended. It was found that, the critical 

correlation length and coefficient of variation that attributes maximum reduction in the mean bearing 

capacity, are respectively of ϴ=1 and COVcu=50%. It is important to mention that, the pile 



General conclusion and perspectives 

 

 

 

 

85 | P a g e  

 

reinforcement tends to enhance remarkably the bearing capacity factor by 53.55% compared to the 

reference case (without reinforcement). 

Furthermore, A two dimensional deterministic study was conducted and represented in Chapter six, 

to depict the behaviour of a sheet pile wall, under various slope angles. The sheet pile wall has shown 

a great effect in dominating the extent of failure surface towards the sloping ground and improve the 

overall stability. A new evaluation of the undrained bearing capacity was determined in terms of most 

efficient pile wall parameters; as well as, the slope geomechanic and geometric parameters. It was 

found that, the maximum slope stability is related to larger failure load surfaces. In which, they are 

attributed to L/B=5, d/B=0 and λ=2. The slope angle is the one responsible to define the failure 

pattern. Whereas, β<45° indicates an overall failure pattern relevant to θ<10°, pertaining to a slope 

height of Z/B≥3 and shear strength ratio of cu/γB=1. In contrast, the bearing capacity failure type is 

relevant to cases where θ≥10° and all cases of Z/B<3. It should be mentioned that, for the case 

corresponding to a slope angle of β=45°, the overall failure type is independent of the ratio Z/B. 

Another study was carried out in the same perspective, to investigate the rate of improvement in the 

factor icβ for various slope angles. The rigid strip footing is situated exactly at the slope crest imitating 

the case of bridge abutments. The study investigated the suitable pile wall position under various 

degrees of β. It was concluded that the load inclination factor is function of d/B, θ and β. Thusly new 

expressions of icβ were derived to take into consideration the slope before and after reinforcement. It 

was noted that, icβ drops remarkably with the raise in its influencing parameters till the point where θ 

is of 30° (the critical state). d/B=0 is the optimal position that assures maximum passive resistance. 

This is explained by the improvement in the ultimate vertical load capacity that is 91.44% (β=40°) 

close to the case of the horizontal surface provided by Prandtl (1920).  
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