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Abstract

In this thesis, we use the Malliavin calculus to derive the Pontryagin’s stochastic maximum

principle under the form of necessary and sufficient optimality conditions. In the introductory chapter 1,

we state and build the framework that we use in the following chapters. We introduce the necessary tools

from the Malliavin calculus, the Russo & Vallois integral, and apply the Doss-Sussmann transformation

to our system, which is governed by backward doubly stochastic dynamics driven by standard Wiener

and fractional Brownian motions. At the end of this chapter, we present important Girsanov theorems

and uniqueness and existence result. In chapter 2, we derive the Pontryagin stochastic maximum

principle for a system driven by standard and fractional Brownian motions, with Hurst parameter

H ∈
(
1

2
, 1

)
. In chapter 3, we solve a stochastic optimization problem for backward stochastic differential

equations driven by fractional Brownian motions, using the Malliavin calculus, where we minimize the

cost functional, which is in the risk-sensitive type, with respect to the admissible control. In addition,

we present the necessary and sufficient optimality conditions for this problem. Finally, we apply the

pre-established results to an interesting linear-quadratic control problem.

Our work is considered an extension of the approaches of Buckdahn et al. in [12, 13] and Zähle

in [62, 63] and the risk neutral stochastic maximum principle established by Yong in [61] to backward

stochastic differential equations driven by fractional Brownian motions.

Keywords. Stochastic maximum principle, fractional Brownian motion, Malliavin derivative, risk-

sensitive, variational equality, Doss-Sussmann transformation.
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Résumé

Dans cette thèse, on utilise le calcul de Malliavin pour ètablir le principe de maximum stochastique

de Pontryagin, sous la forme de conditions nécessaires et suffisantes d’optimalité. On la commence par

un chapitre introductif 1, où on construit la machinerie qu’on utilise dans les chapitres suivants. On

introduit les outils nécessaires du calcul de Malliavin, l’intégrale de Russo et Vallois, et on applique la

transformation de Doss-Sussmann au notre système, qui est gouverné par une EDSDR dirigée par des

mouvements Browniens standard et fractionnaire. Dans le chapitre 2, on dérive le principe de maximum

stochastique pour un système dirigé par une EDSR gouvernée par un mouvement Brownien standard.

On établit une égalité variationnelle et des conditions nécessaires d’optimalité. A la fin de ce chapitre,

on présente quelques théorèmes de Girsanov pour les mouvements Browniens fractionnaires et un autre

résultat sur l’existence et l’unicité des solutions. A la fin de cette thèse, en chapitre 3, En utilisant le

calcul de Malliavin, on résout un problème d’optimisation stochastique pour une classe des équations

différentielles stochastiques rétrogrades gouvernées par des mouvements Browniens fractionnaires. On

minimise la fonction de coût, qui est à la forme risk-sensible, par rapport aux contrôles addmissibles.

De plus, on introduit les conditions nécessaires et suffisantes d’optimalité et on applique la théorie qu’on

a déjà construit à un problème de contrôle stochastique de type linéaire quadratique.

Notre travail est une extension des approches de Buckdahn et al. [12, 13] et Zähle [62, 63] et le

principe de maximum avec probabilité risk-neutre établi par Yong en [61] aux équations stochastiques

rétrogrades dirigées par des mouvements Browniens fractionnaires.

Mots clès. Principe de maximum stochastique, mouvement Brownien fractionnaire, la dérivée de

Malliavin, risque sensible, égalité variationnelle, transformation de Doss-Sussmann.
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Symbols and Abbreviations

The main abbreviations and symbols used in this thesis.

Abbreviations
FBM : fractional Brownian motion.

BSDE : Backward stochastic differential equation.

fBSDE : fractional backward stochastic differential equation.

BDSDE : Backward doubly stochastic differential equation.

FBDSDE : fractional backward doubly stochastic differential equation.

i.e. : Namely or that is.

a.s. : almost surely.

a.e. : almost everywhere.

càdlàg : continue à droite a limite à gauche.

SMP : Stochastic maximum principle.
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Symbols

R : The set of all real numbers.

C([0, T ],R) : The space of continuous functions assuming values in R.{
FX

t

}
0≤t≤T

: The filtration generated by the process X over the time span [0, T ].

(Ω,F ,P) : Probability space.

D : The Malliavin derivative.

inf g : The infinimum of the functional g.

L2(FT ,P) : The space of FT -measurable and P-square integrable functions.(
Ω,F ,P,

{
FX

t

}
0≤t≤T

)
: Firltered probability space.

‖ x ‖Ω : The norm of the process x in the space Ω.

<,>ρ : Endowed inner product or ρ-inner product.

P : Probability measure.

E[.] : Mathematical expectation with repect to the underlying

probability measure.

Ẽ[.] : Quasi-conditional expectation.

W : Standard Wiener motion.

BH : Fractional Brownian motion with Hurst parameter H

N : The totality of null sets with respect to some probability measure.

J(.) : Risk-neutral cost functional.

δij : Kronecker’s symbol :

 1 if i = j,

0 otherwise.

U : The set of all admissible controls.

: End of proof.

P � Q : The probability measure P is absolutely continuous with respect

to the measure Q.

P|FT
: The ristriction of the measure P to the Filrtation FT .

H : The risk neutral Hamiltoniaion.

Hθ : The risk sensitive Hamiltonian.
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Introduction

Historically, one may claim that the first rigorous appearance of optimization theory took

place when Lagrange tried to solve the ”brachistochrone1 problem” proposed by Newton in

1699. Lagrange published two papers [35, 36]. The first one: ”Essai d’une nouvelle methode

pour determiner les maxima et les minima des formules integrals indefinies,” and the second

one: ”Mécanique Analytique,” in 1762 and 1788, respectively. At this time, great math-

ematicians as Johann Bernoulli, his brother Jacob, Newton, Leibniz, and Euler acclaimed

the solution that Lagrange had produced. However, it was Euler, as officially documented,

who collaborated with Lagrange. Ever since, the couple Euler–Lagrange have been formally

considered godfathers2 of Variational Calculus. This theory, ever since, alongside with op-

timization and optimal control theory have been used to model a variety of sciences which

are related directly or indirectly to applied mathematics.

For instance, consider the rush hour in a megalopolis (New York, London or Paris.) It is

evident that the daily behaviour (flow) of the passengers on a principal road is unpredictable,

yet it is stochastic. However, without any previous study, one can tell that around the rush

hour, since every worker is returning back to home, a potential heavy congestion is produced

and almost every road is blocked. At this moment, governments should think of minimizing

the flow of passengers and regulate it in order to avoid such blocks or overflows. Another

interesting phenomena comes from finance. It is widely known that wages in public sectors

are regulated and employees tend to draw them on the same day of the month (since wages
1Greek: brachis= short, brachiston = the shortest, chrone = time.

2Godfather: who started or developed something such as a style of music as the godfather of that thing.
Oxford Learner’s Dictionary.
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Introduction

are available at a specific time and public sector employees are supposed free at a certain

time of the day.) In this case, the probability that a sudden crash would occur in the whole

country is likely high. Consequently, if some employees do not get their wages, they are likely

to go on a strike, and again the economy would be paralysed. Hence, governments should

think of a solution to this cash overflow, bankruptcy or even inflation (e.g. bank accounts

are empty or some people can not access or use their money).

In formal and rigorous mathematical framework, there exists mainly two major ap-

proaches to solve such problems of optimization (stochastic or deterministic): the program-

ming dynamic principle and the Pontryagin’s maximum principle.

The first approach consists of showing that the value functional associated to such prob-

lem satisfies a parabolic partial differential equation called: the Hamilton-Jacobi-Bellman

(HJB PDE) equation of the form:


∂V

∂t
+ inf

v∈U
{LuV (t, y) + l(t, y, u)} =

V (T, y) =

0,

g(x),

where Lu refers to the infinitesimal generator associated to the diffusion solution to the HJB

PDE. In our thesis, we are not concerned with this principle. Nevertheless, we can refer to

an interesting pioneering works on this principle as: [2, 3, 16, 32, 41].

In this thesis, we use the second approach: the Pontryagin’s3 stochastic maximum prin-

ciple to deal with an optimization problem called stochastic control problem for an Itô dy-

namics driven by both standard and fractional Brownian motions.

In [46, 47], Pardoux and Peng obtained their pivotal existence and uniqueness result for

solutions to Backward SDEs and Backward Doubly SDEs. The first appearance of stochastic

maximum principle theory was in the series of papers by: Bensoussan [4], Bismut in [7, 8],
3After the Soviet Mathematician: Lev Semenovich Pontryagin (03/09/1908–03/05/1988, Moscow, Soviet

Union), his autobiography can be found in Russian at: http://ega-math.narod.ru/LSP/book.htm.

2
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Introduction

Haussmann [24], and Kushner [34]. In [48], Peng introduced a result on backward stochastic

differential equations and applications to optimal control, then in [49], they obtained another

important result on the optimal control for forward backward SDEs when the control domain

is convex.

We use the Malliavin calculus to realise our objectives. In the first place, Paul Malliavin

had introduced a proof of the existence and regularity of the density function of random

vectors and the ellipticity of Hörmander operators in [38]. He used what became a corner-

stone in the calculus named after him: the integration by parts formula. Since then, various

extensions of this approach have taken place as: [9, 33, 58, 60].

Among these extensions, comes this thesis, where we use the Malliavin calculus to realize

two major objectives. The first one [10] is the Pontryagin’s stochastic maximum principle for

risk neutral cost functional for a backward doubly stochastic differential equation driven by

fractional Wiener and standard Brownian motions:

−dyt = f (t, yt, zt, vt) dt+ g (yt) dB
H
t − ztdWt. (1)

The second one [11], is the risk sensitive Pontryagin’s stochastic maximum principle for

backward stochastic differential equations driven by fractional Wiener motion:

−dyt = g (t, yt, zt, vt) dt− ztdB
H
t , (2)

in equations (1) and (2), vt = v(t, ω) is a stochastic process assuming values in a non-empty

Borel set U ⊂ R.

The main motivation for using the Malliavin calculus is the lack of the semi-martingale and

Markov properties of the fractional Brownian motion when the Hurst parameter is different

than one half. The problem that we treat in this thesis consists of making decision depending

on what has happened to the state process (yt, zt) up to the moment t, in order to choose a

suitable process ut = u(t, ω), such that

3



Introduction

J (u) = inf
v∈U

J (v) ,

for a cost (performance) functional J , that we define according to our objective: risk neutral

or risk sensitive performance. If the infinumum ut is attained, i.e. exists, we call it optimal

control. Since the stochastic term indicates the natural effect of the interference of a ran-

domness on the state process, then such a problem is yet regarded as generalization of the

deterministic case (i.e. where the state dynamics is an ordinary differential equation) and

it broadens the range of its applications, mainly to finance, energy and physics, among others.

This is a thesis for the degree of Doctorate in Applied Mathematics: Probability. It is

written upon two articles, and it is organized as follows:

In chapter 1, we introduce the main tools and build the general environment that we shall

work in all along this thesis. We define the Malliavin calculus with respect to standard and

fractional Brownian motions, in particular: the Malliavin derivative, the duality formula and

the integration by parts formula. We introduce a brief introduction to stochastic calculus

with respect to fractional Brownian motion, with Hurst parameter H ∈
(
1

2
, 1

)
, including

the Itô-Russo-Vallois stochastic integral with respect to fractional Brownian motion. We

finish this chapter by applying the Doss-Sussmann transformation to the underlying back-

ward dynamics and obtaining new backward stochastic differential equation driven only by

standard Brownian motion.

Chapter 2 presents the first main result of this thesis: The Malliavin calculus used to derive

Pontryagin’s stochastic maximum principle for a system driven by fractional Bownian and

standard Wiener motions. We derive a variational equality in the first section, then in the

second we derive necessary sufficient optimality conditions. At last, we present the Girsanov

measure changing theorems to cover fractional calculus and we introduce a pioneering exist-

ence and uniqueness result obtained by Hu and Peng in [29].

Chapter 3 presents the second main result of this thesis: Pontryagin’s Risk-Sensitive Stochastic

Maximum Principle for fractional Backward Stochastic Differential Equations Via Malliavin

Calculus. We optimize a risk-sensitive cost functional for a system driven by backward SDE

4
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governed by fractional Brownian motion. We use an auxiliary result of Young [61], and de-

rive the necessary and sufficient optimality conditions. At last, we apply the pre-introduced

theory to an interesting linear quadratic example.

5



Chapter 1

Introduction to Malliavin Calculus

In this auxiliary chapter, upon two major sections, we build the framework that we

work on all along this thesis. In the first section 1.1, we introduce the Malliavin calculus

for standard Wiener motions and define the Malliavin derivative. In the second one 1.2,

we introduce the fractional Brownian motion and extend the Malliavin theory from the first

section to cover fractional calculus. Finally, we define an Itô stochastic integral called the

Russo & Vallois integral, introduce the Doss-Sussmann transformation and give a uniqueness

and existence result for a backward stochastic dynamics. Among others, the main references

of this chapter are [6, 27, 42, 43, 44, 45].

6



Chapter 1. Introduction to Malliavin Calculus

Statement of the Problem

Let
(
Ω,F , (Ft)t≥0 ,P

)
:=
(
Ω1,FW ,

(
FW

t

)
t≥0

,P1

)
⊗
(
Ω2,FB,

(
FB

t

)
t≥0

,P2

)
be a filtered

probability space, satisfying the usual conditions. Ω1 := C0 ([0, T ] ,R) and Ω2 := C ([0, T ] ,R)

are two classical Wiener spaces endowed with the topology of uniform convergence, with

time horizon T > 0. On Ω1 we define one-dimensional standard Brownian motion W :=

{Ws(ω), t ≤ s ≤ T} , and on Ω2 we define a fractional Brownian motion BH :={
BH

s (ω), t ≤ s ≤ T
}

, with Hurst parameter H ∈
(
1
2
, 1
)
. We suppose that G(B,W )

t is the P-

augmentation of the natural sub-filtrations of W and BH defined for each t ∈ [0, T ] by


G(B,W )
t := FW

[t,T ] ∨ FBH

t ,

FW
[t,T ] := σ [W (T )−W (s) ; t ≤ s ≤ T ] ∨N ,

and FBH

t := σ
[
BH (s) ; 0 ≤ s ≤ t

]
∨N ,

respectively, where N denotes the totality of P-null sets and σ1 ∨ σ2 denotes the σ-fields

generated by σ1 ∪ σ2. Note that the collection
{
G(B,W )
t

}
is neither increasing nor decreasing

and it does not constitute a classical filtration. Thus, we introduce the backward filtrations


H :=

(
Q(B,W )

t

)
t∈[0,T ]

,

where Q(B,W )
t := FW

[t,T ] ∨ FBH

T , for all t ∈ [0, T ] ,

and F :=
(
FW

[t,T ]

)
t∈[0,T ]

All along this thesis, we shall work in the following spaces.

1. C ([0, T ] ;R) := {Continuous and H-adapted processes ξ := {ξt(ω)} .}

2. M2 ([0, T ] ;R) :=
{
F-adapted processes ξ, such that E

[∫ T

0

|ξt|2 dt
]
<∞.

}
3. H∞

T (R) := { ξ : H-progressively measurable, such that there exists FBH

T -measurable

random variable ζ := ζ(ω) bounding ξ almost surely.}

4. H2
T (R) := { ξ : real valued H-progressively measurable processes, such that

E
[∫ T

0

|ξt|2 dt
∣∣∣∣FBH

T

]
<∞. P-a.s. }

7



Chapter 1. Introduction to Malliavin Calculus

1.1 Malliavin Calculus with Respect to W (.)

For more details on the Malliavin Calculus with respect to standard Brownian motion

W , may the reader consult [44, 45].

At the outset, we start by the Wiener-Itô chaos expansion. Such famous expansion is a pivotal

tool in stochastic analysis, in particular, the Malliavin calculus. In 1938, Wiener proved its

first version. Later in 1951, Itô showed that in the Wiener space setting the expansion could

be expressed in terms of iterated Itô integrals.

Theorem 1.1.1 (The Wiener-Itô Expansion) For all FT -measurable and square integ-

rable random variable G: G ∈ L2
(
F (W )

T ,P1

)
, we have the following decomposition

G =
∑
n≥0

In (gn) , (1.1.1)

for a unique sequence of symmetric deterministic functions gn ∈ L2 (λn) , where λ is the

Lebesgue measure on [0, T ] and

In (gn) = n!

∫ T

0

∫ tn

0

∫ tn−1

0

...

∫ t2

0

gn (t1, ..., tn) dW (t1) ...dW (tn) ,

is viewed as the n-times iterated integral of gn with respect to W (.) , for n = 1, 2, ... and

I0 (g0) = g0 is a constant. In addition, we have the following isometry

E
(
G2
)
= ‖G‖2L2(P1)

=
∑
n≥0

n! ‖gn‖2L2(λn) .

Proof. The proof of this theorem is based on the Itô representation theorem of an

FT -measurable and square integrable random variable, for the details we refer to [45].

Definition 1.1.1 (Malliavin Derivative) We define the subspace of all FT -measurable

and square integrable random variables satisfying

‖G‖2D(W )
1,2

:=
∑
n≥0

n.n! ‖gn‖2L2(λn) <∞, (1.1.2)

8



Chapter 1. Introduction to Malliavin Calculus

and we denote it D(W )
1,2 . For all G ∈ D(W )

1,2 and t ∈ [0, T ], we define the Malliavin derivative

DtG of G at point t with respect to W (.) by

DtG =
∑
n≥1

nIn−1 (gn (., t)) ,

where we keep the last variable tn = t and the notation In−1 (gn (., t)) stands for applying n-1

times iterated integral to the first n-1 variables t1, t2, ..., tn−1 of gn (t1, ..., tn) , and we have the

isometry

E
[∫ T

0

(DtG)
2 dt

]
=
∑
n≥1

n.n! ‖gn‖2L2(λn) = ‖G‖2D(W )
1,2

,

then the mapping (t, w) 7−→ DtG (w) belongs to L2 (λ⊗ P1) .

The next two theorems concern the Malliavin derivative Dt. They provide us with smooth

and fine properties that we use in the next chapters.

Theorem 1.1.2 (Chain Rule) Consider a sequence from D(W )
1,2 : ζ1, ζ2, ..., ζm and a real

valued functional with continuous and bounded partial derivatives Ψ : Rm → R, m ∈ N∗, then

Ψ(ζ1, ..., ζm) ∈ D(W )
1,2 and DtΨ(ζ1, ..., ζm) :=

m∑
i=1

∂Ψ

∂xi
(ζ1, ..., ζm)Dtζi. (1.1.3)

Proof. See [44].

Theorem 1.1.3 (Duality Formula) Let G be in D(W )
1,2 and y (t) be an F (W )

t -adapted process

with

E
[∫ T

0

y2 (t) dt

]
<∞.

Then

E
[
G

∫ T

0

y (t) dW (t)

]
= E

[∫ T

0

y (t)DtGdt

]
. (1.1.4)

Proof. See [44].

1.2 Malliavin Calculus with Respect to BH (.)

9



Chapter 1. Introduction to Malliavin Calculus

To the best of our knowledge, the most distinct references that the reader may use are

the books of Biagini et al. [6] and Hu [27].

The existence of the fractional Brownian motion (FBM in short) follows from the general

existence theorem of centered Gaussian processes with given covariance functions.

The FBM is divided into three different families corresponding to 0 < H < 1/2, H = 1/2,

and 1/2 < H < 1. This last case is of concern to us in our work. It was B. Mandelbrot that

named the parameter H of BH after the British hydrologist Harold Edwin Hurst, who made

a statistical study of yearly water run-offs of the Nile river. He considered the values δ1, ..., δn

of n successive yearly run-offs and their corresponding cumulative value ∆n =
∑n

i=1 δi over

the period from the year 662 until 1469. He discovered that the behavior of the normalized

values of the amplitude of the deviation from the empirical mean was approximately cnH ,

where H = 0.7. Moreover, the distribution of ∆n =
∑n

i=1 δi was approximately the same as

nHδ1, with H > 1/2. Hence, this phenomenon could not be modeled by using a process with

independent increments, but rather the δi could be thought as the increments of a FBM.

Because of this study, Mandelbrot introduced the name Hurst index (see [30, 50]).

Recently, there have been several approaches introducing integral representation for the frac-

tional Brownian motion. We believe that the most suitable one for our work is the one

introduced by Norros et al. in [42]. For more details on such approaches one can refer to

[17, 39, 43, 55, 56] and the references therein.

1.2.1 Fractional Calculus

By the approach of Norros et al. in [42], for a canonical Wiener process B0 defined on

Ω2, we have the integral representation

BH
t =

∫ t

0

κH (t, s) dB0
s ,

where κH is the kernel of BH defined as

κH (t, s) := αHs
( 1
2
−H)

∫ t

s

r(H− 1
2) (r − s)(H− 3

2) dr, with αH :=

√
H (2H − 1)

β
(
2− 2H,H − 1

2

) ,

10



Chapter 1. Introduction to Malliavin Calculus

and β is the beta function given by β (a, b) :=
∫ 1

0

ra−1 (1− r)b−1 dr, a, b ∈ [0, 1].

By definition, BH is a Gaussian process with zero mean and covariance function

for all s,t∈ [0, T ] : RH (t, s) := E
(
BH

t B
H
s

)
=

1

2

(
t2H + s2H − |t− s|2H

)
.

We define the Hilbert space

L2
ρ(R) :=

{
f : R → R/ ||f ||2ρ :=

∫ T

0

∫ T

0

f (u) f (v) ρ (u, v) dudv < +∞
}
,

endowed with the inner product

< f, g >ρ:=

∫ T

0

∫ T

0

f (u) g (v) ρ (u, v) dudv,

for all f, g ∈ L2
ρ(R), where for all (u, v) ∈ [0, T ]2, we have ρ (u, v) = H (2H − 1) |u− v|2H−2.

Definition 1.2.1 Let PT be the subspace of L2
ρ(R), namely the set of all functions Θ of the

form

Θ := f

(∫ T

0

γ1(t)dB
H
t ,

∫ T

0

γ2(t)dB
H
t , ...,

∫ T

0

γm(t)dB
H
t

)
, (1.2.1)

where f is polynomial of m variables and (γi)0≤i≤m is an orthogonal sequence of L2
ρ(R),

namely

< γi, γj >ρ= δij||γi||ρ||γj||ρ, for all i, j = 1,m.

The Malliavin derivative of such a random variable Θ ∈ PT is defined for all s ∈ [0, T ]

DH
s Θ :=

m∑
i=1

∂f

∂xi

(∫ T

0

γ1(t)dB
H
t ,

∫ T

0

γ2(t)dB
H
t , ...,

∫ T

0

γn(t)dB
H
t

)
γi (s) . (1.2.2)

Definition 1.2.2 Let D1,2 be the Banach space which is the completion of PT with respect

to the norm

||Θ||21,2 := E
(
||Θ||2ρ + ||DH

t Θ||2ρ
)
,

and we define the derivative of all Θ ∈ PT

DH
s Θ :=

∫ T

0

ρ (s, v)DH
v Θdv, s ∈ [0, T ]. (1.2.3)

11



Chapter 1. Introduction to Malliavin Calculus

Definition 1.2.3 (Fractional Conditional Expectation)

1. Let G =
∑

n≥0 I
B
n (ḡn) ∈ D(B)

1,2 . Then we define the fractional (or quasi-) conditional

expectation of G with respect to FB
t by

Ẽ
[
G|FB

t

]
:=

∞∑
n=0

IBn (ḡn(s)10≤s≤t) (1.2.4)

for t ∈ [0, T ] and a unique sequence of symmetric deterministic functions ḡn ∈ L2 (λn) ,

where λ is the Lebesgue measure on [0, T ] and

IBn (ḡn) = n!

∫ T

0

∫ tn

0

∫ tn−1

0

...

∫ t2

0

ḡn (t1, ..., tn) dB
H (t1) ...dB

H (tn) ,

is viewed as the n-times iterated integral of ḡn with respect to B (.) , for n = 1, 2, ...

2. We say that G is FB
t -measurable if Ẽ

[
G|FB

t

]
= G, t ≥ 0.

Remark 1.1 The fractional conditional expectation Ẽ is different from the ordinary expect-

ation.

Definition 1.2.4 (Quasi-Martingale) The process Yt is called an F-quasi-martingale if

there exists an F-martingale process {Y1(t, ω)} and a process {Y2(t, ω)} with a.e. path function

{Y2(., ω)} of bounded variations on [0, T ], such that P (A) = 1; where

A := {Y (t) = Y1(t) + Y2(t); t ∈ [0, T ]} ⊂ Ω,

given A is a measurable subset.

We introduce the following generalizations of the famous Itô and integration by parts formu-

las, respectively.

Theorem 1.2.1 Let π ∈ C1,2 ([0, T ]× R) and u, v : [0, T ] → R be two deterministic con-

tinuous functions such that u ∈ L2
ρ(R) and

∫ T

0

|v(s)|ds < +∞. We suppose that ‖u(t)‖2ρ is

continuously differentiable as a function of t ∈ [0, T ]. We denote

12



Chapter 1. Introduction to Malliavin Calculus

Ξt = Ξ0 +

∫ t

0

v(s)ds+

∫ t

0

u(s)dWH
s ,

where Ξ0 is a constant, then for all t ∈ [0, T ] we have

π(t,Ξt) = π(0,Ξ0) +

∫ t

0

∂π

∂s
(s,Ξs)ds

+

∫ t

0

∂π

∂x
(s,Ξs)dΞs +

1

2

∫ t

0

∂2π

∂x2
(s,Ξs)

d

ds
||u(s)||2ρds,

(1.2.5)

where
d

dt
||u(t)||2ρ := u(t)

∫ t

0

u(s)ρ(t, s)ds (1.2.6)

Proof. See [27].

Theorem 1.2.2 Let Φ(t) =
∫ t

0

ε(u)dWH
u . (ε(u), 0 ≤ u ≤ t) is a stochastic process such that

E
[
||ε||2ρ +

∫ T

0

∫ T

0

|DH
s ε(t)|2dsdt

]
< +∞,

and there exists α > 1−H such that

E|ε(u)− ε(v)|2 ≤ C|u− v|2α,

where |u− v| ≤ δ for δ > 0 and

lim
|u−v|→0
0≤u,v≤t

E|DH
u [ε(u)− ε(v)] |2 = 0,

DH
t is defined by (1.2.2) and DH

t by (1.2.3). Let h be in C1,2 ([0, T ]× R) with bounded

derivatives. Moreover, we suppose that

E
[∫ T

0

|ε(s)DH
s Φ(s)|ds+ ||∂h

∂x
(t,Φ(t))ε(t)||2ρ

+

∫ T

0

∫ T

0

|DH
s

[
∂h

∂x
(t,Φ(t))β(t)

]
|2dsdt

]
< +∞,

then for all 0 ≤ t ≤ T we have

13



Chapter 1. Introduction to Malliavin Calculus

h(t,Φ(t)) = h (0, 0) +

∫ t

0

∂h

∂s
(s,Φ(s)) ds+

∫ t

0

∂h

∂x
(s,Φ(s)) ε(s)dWH

s

+

∫ t

0

∂2h

∂x2
(s,Φ(s)) ε(s)DH

s Φ(s)ds .a.s.

Proof. See [27].

Theorem 1.2.3 Let χ2, η2 be in D1,2

||χ2||21,2 = E
(
||χ2||2ρ + ||DH

t χ2||2ρ
)
< +∞ and

||η2||21,2 = E
(
||η2||2ρ + ||DH

t η2||2ρ
)
< +∞,

and assume that DH
t χ2 (s) and DH

t η2 (s) are continuously differentiable in (s, t) ∈ [0, T ]2 for

P-almost all ω ∈ Ω. Suppose that

E
(∫ T

0

[
|DH

s χ2 (s) |2 + |DH
s η2 (s) |2

]
ds

)
< +∞,

in addition, for i = 1, 2,

E
(∫ T

0

[
|χi (s) |2 + |ηi (s) |2

]
ds

)
< +∞.

If we put

Z(t) =

∫ t

0

χ1(s)ds+

∫ t

0

χ2(s)dW
H
s and

G(t) =

∫ t

0

η1(s)ds+

∫ t

0

η2(s)dW
H
s .

Then we have

(ZG) (t) =

∫ t

0

Z(s)η1(s)ds+

∫ t

0

Z(s)η2(s)dW
H
s +

∫ t

0

G(s)χ1(s)ds (1.2.7)

+

∫ t

0

G(s)χ2(s)dW
H
s +

∫ t

0

[
χ2(s)DH

s Z(s) + χ2(s)DH
s G(s)

]
ds.

Or under differential notation

14



Chapter 1. Introduction to Malliavin Calculus

dZ(t) = f1(t)dt+ f2(s)dB
H
t and

dG(t) = g1(t)dt+ g2(t)dB
H
t .

Then

d (ZG) (t) = Z(t)dG(t) +G(t)dZ(t) +
[
η2(t)DH

t Z(t) + χ2(t)DH
t G(t)

]
dt. (1.2.8)

Proof. See [27].

1.2.2 The Russo & Vallois Integral

Since the FBM fails the semimartingale property unless H =
1

2
, the classical stochastic

Itô integration is no longer applicable to define a stochastic integral with respect to the FBM.

Meanwhile, several approaches to give a sense to an integration with respect to the FBM have

taken place in the literature, for instance [6, 27] and the references therein. Amongst these

approaches, the one so-called: the Russo-Vallois backward stochastic integration introduced

by Russo-Vallois in [51, 52], which we use in chapters 2 and 3.

Definition 1.2.5 Let ∇ = {∇ (t) , t ∈ [0, 1]} and ∆ = {∆(t) , t ∈ [0, 1]} be two continuous

stochastic processes at 0 and 1, we set

I− (ε,∇, d∆) =

∫ 1

0

∇ (t)
∆ [(t+ ε) ∧ 1]−∆(t)

ε
dt,

I+ (ε,∇, d∆) =

∫ 1

0

∇ (t)
∆ (t)−∆ [(t− ε) ∨ 0]

ε
dt,

and I0 = I− + I+

2
.

We define the limits, in probability

15
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lim
ε→0

I− (ε,∇, d∆) =

∫ 1

0

∇d−∆,

lim
ε→0

I+ (ε,∇, d∆) =

∫ 1

0

∇d+∆,

and lim
ε→0

I0 =
1

2
{
∫ 1

0

∇d−∆+

∫ 1

0

∇d+∆}.

These limits are called forward, backward and symmetric, integral of ∇ with respect to ∆,

respectively.

Remark 1.2 In chapter 2, we shall derive a stochastic maximum principle for a class of

backward doubly stochastic differential equations. However, due to the poor properties present

by the fractional Brownian motion, we need to proceed by an intermediate step called: Doss-

Sussmann transformation, which we explicit in the immediate next paragraph 1.2.3.

1.2.3 Doss-Sussmann Transformation of Fractional BDSDE

In chapter 2, we study a system governed by backward doubly stochastic differential

equation, driven by standard Wiener and fractional Brownian motions

 −dyt

yT

= f (t, yt, zt, vt) dt+ g (yt) dB
H
t − ztdWt,

= ξ, t ∈ [0, T ],
(1.2.3.1)

associated with the cost functional, with initial cost

J (v) = E
[∫ T

0

Π(t, yvt , z
v
t , vt) dt+Ψ(yv (0))

]
, (1.2.3.2)

which we want to minimize over U , namely, to find the control u such that

J (u) = inf
v∈U

J (v) . (1.2.3.3)

16



Chapter 1. Introduction to Malliavin Calculus

In (1.2.3.1), the integral with respect to the Brownian motion W is an Itô backward

integral, while the integral with respect to the FBM BH is in the Russo-Vallois sense, where

f : [0, T ]× R× R× U

Π : [0, T ]× R× R× U

and g,Ψ : R

→ R,

→ R,

→ R.

For the well-posedness of the control problem {(1.2.3.1),(1.2.3.2),(1.2.3.3)}, we assume

Assumptions 1.1

1. The function f is Lipshitz in (y, z) .

2. For all t ∈ [0, T ] : |f (t, 0, 0)| ≤ C uniformly.

3. The function g : R → R belongs to C3
b ([0, T ] ;R) .

We define a solution to the system (1.2.3.1).

Definition 1.6 We say that the couple of processes (ys, zs) is a solution of equation (1.2.3.1),

if for all s ∈ [0, T ], we have

1. (ys, zs) ∈ H∞
T (R)×H2

T

(
Rd
)
.

2. The Russo-Vallois integral
∫ .

0

g (yt) dB
H
t is well defined on [0, T ].

3. The equation (1.2.3.1) holds P-a.s.

Remark 1.3 Unfortunately, as we have mentioned in remark 1.2, because of the properties

of FBM BH , the classical methods to solve such problem lead to an unevitable dead-end.

However, Buckdahn and Ma introduced a new method to investigate this equation in [12, 13],

using the Doss-Sussmann transformation, (may the reader see [62, 63]).

1We define η : [0, T ]× R → R the unique solution of the stochastic flow as
1This paragraph is adapted from the paper of Zähle [63].
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η (t, x) := x+

∫ t

0

g (η (s, x)) dBH
s , t ∈ [0, T ], (1.2.3.4)

in (1.2.3.4), the integral is defined in the Russo-Vallois sense.

Via the Doss-Sussmann transformation, the solution of this equation can be written as

η (t, x) = ζ
(
x,BH

t

)
, where (x, z) 7−→ ζ (x, z) is the solution of the partial differential equation


∂ζ

dz
(x, z) = g (ζ (x, z)) , for z ∈ R,

ζ (x, 0) = x. (1.2.3.5)

By the classic theory of partial differential equations, we know that for all z ∈ R, the mapping

x 7−→ ζ (x, z) is a C2
b -diffeomorphism over R. Hence, we can define its x-inverse and denote

it by φ (x, z), that is, ζ (φ (x, z)) = x, for all (x, z) ∈ R2. By chain rule, It follows that


∂ζ

∂x
(φ (x, z) , z) .

∂φ

∂x
(x, z) = 1

∂ζ

∂z
(φ (x, z) , z) +

∂ζ

∂x
(φ (x, z) , z)

∂φ

∂z
(x, z) = 0.

(1.2.3.6)

Therefore


∂φ

∂z
(x, z) = −∂ζ

∂z
(φ (x, z) , z)

(
∂ζ

∂x
(φ (x, z) , z)

)−1

= −g (x) ∂φ
∂x

(x, z) ,

∂2φ

∂x2
(x, z) =

[
∂ζ

∂x
(x, z)

]−3
∂2ζ

∂x2
(x, z) .

(1.2.3.7)

Hence, the immediate consequence is that η (t, .) = ζ
(
., BH

t

)
: R 7−→ R is a C2

b -diffeomrphism,

and we can define

ϕ (t, x) := ζ (x, .)−1 (x) = φ
(
x,BH

t

)
, for all (t, x) ∈ [0, T ]× R,

by the generalized Itô formula (1.2.2), it comes that

ϕ (t, x) = x−
∫ t

0

g (x)
∂ϕ

∂x
(s, x) dBH

s , t ∈ [0, T ].
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We denote by Ω̄ :=

{
w ∈ Ω2 : sup

0≤s≤T

∣∣BH
s

∣∣ <∞
}

, then we have P2

(
Ω̄
)
= 1.

We define

yt = η(t, Yt) = ζ
(
Yt, B

H
)

then Yt = ϕ(t, yt) = φ
(
yt, B

H
)
. (1.2.3.8)

Applying the Itô generalized formula (1.2.2) to ϕ(t, yt) and using the identities (1.2.3.6) and

(1.2.3.7) yield to

dYt = dϕ(t, yt) = dyt − g (yt)
∂ϕ

∂y
(t, yt) dB

H
t

= f (t, yt, zt)
∂ϕ

∂y
(t, yt) dt+ g (yt)

∂ϕ

∂y
(t, yt) dB

H
t − zt

∂ϕ

∂y
(t, yt) dWt

− |zt|2

2

∂2ϕ

∂y2
(t, yt) dt− g (yt)

∂ϕ

∂y
(t, yt) dB

H
t

=

{
f (t, yt, zt)

∂ϕ

∂y
(t, yt)−

|zt|2

2

∂2ϕ

∂y2
(t, yt)

}
dt− zt

∂ϕ

∂y
(t, yt) dWt.

If we put zt = Zt
∂η

∂y
(t, Yt), then the couple (Y, Z) satisfies the backward stochastic differential

equation  −dYt

YT

= F (t, Yt, Zt, vt)dt− ZtdWt,

= ξ, t ∈ [0, T ],
(1.2.3.9)

where

F (t, Yt, Zt) =
1

∂η

∂y
(t, Yt)

{
f

(
t, η (t, Yt) ,

∂η

∂y
(t, Yt)Zt, vt

)
+

1

2
||Zt||2

∂2η

∂y2
(t, Yt)

}
. (1.2.3.10)

Remark 1.4 The BSDE (1.2.3.9) is driven only by the standard Brownian motion Wt (ω) for

all t ∈ [0, T ] . In [31], Kobylanski dealt with the class of functions as the generator F (., ., Z),

namely, functions with quadratic growth in the variable Z.

Existence & Uniqueness Result

In order to assure the existence and uniqueness of the solution to equation (1.2.3.9), the

following assumptions are presumed.
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Assumptions 1.2.2

1. For all (Y, Z) H-progressively measurable, the function

F : Ω× [0, T ]× R× R → R

is measurable and continuous in (t, Y, Z).

2. There exists a real valued and FBH

T -measurable random variable

K : Ω2 → R, such that |F (t, Y, Z)| ≤ K
(
1 + |Z|2

)
.

3. There exists some positive real valued FBH

T -measurable random variables C and ε, and

FBH

T ⊗ B ([0, T ])-measurable functions k, lε : Ω2 × [0, T ] → R, such that

∣∣∣∣∂F∂y (t, Y, Z)

∣∣∣∣ ≤ k (t) + C |Z| , for all (t, Y, Z) , P− a.s.,∣∣∣∣∂F∂z (t, Y, Z)

∣∣∣∣ ≤ lε (t) + ε |Z|2 , for all (t, Y, Z) , P− a.s.

Remarks 1.2.1

1. The main reason of using a space of a.s. conditionally square integrable processes

instead of the space of only square integrable processes is the fact that we may be

provided with a.s. bounded conditional expectation of
∫ T

0

|Zr|2 dr by an a.s. finite

process, as studied by Kobylanski in [31], since there does not exist a direct way to solve

the BDSDE (1.2.3.1).

2. Assumptions 1.2.2 impose a quadratic growth on the generator F in the variable Z, as

has been accentuated, such kind of BSDE was studied in [31], where an existence and

uniqueness result of the solution to equation (1.2.3.9) was established (see Theorem 2.3
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and Theorem 2.6). We do not detail this result in this thesis. Nevertheless, we shall

exaggerate the following assumptions.

Assumptions 1.2.3

1. f,Π and Ψ are continuously differentiable in (y, z, v).

2. The derivatives of f , g and h are bounded by C (1 + |y|+ |v|+ ||z||).

3. The function g belongs to C3
b (R).

4. The derivative of Ψ is bounded by C (1 + |y|).

Given assumptions 1.2.3, for all v ∈ U the equation (1.2.3.1) admits a unique strong solution.

The following theorem illustrates how we have transformed (1.2.3.1) into only BSDE (1.2.3.9)

using the Doss-Sussmann transformation.

Theorem 1.2.4 The process (yv, zv) ∈ H∞
T (R)×H2

T

(
Rd
)

is the unique solution of (1.2.3.1),

then if we put yvs = η (s, Y v
s ) and zvs =

∂η

∂y
(s, Y v

s )Z
v
s , where η is defined by 1.2.3.4, then

(Y v, Zv) ∈ H∞
T (R)×H2

T

(
Rd
)

is the unique solution of backward stochastic equation

 −dY v
t

Y v
T

= F (t, Y v
t , Z

v
t , vt) dt− Zv

t dWt,

= ξ, t ∈ [0, T ].
(1.2.3.11)

Where F (given by (1.2.3.10)) is a continuous function with quadratic growth in Z.

1.3 Girsanov Theorems and Existence and Uniqueness

Result for Systems Driven by Fractional Brownian

Motions
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We introduce Girsanov’s theorems and change of probability measures formulas. In

addition, we give an existence and uniqueness result for a class of backward stochastic dif-

ferential equations driven by fractional Brownian motion that serves our goal in chapter 3.

1.3.1 Change of Probability Measures and Girsanov Transforma-

tions

Definition 1.3.1 On
(
Ω2,F , (FH

t )0≤t≤T ,P2

)
, we say that the probability measures P2|FT

and

Q are equivalent probability measures on Ω2 if and only if

P2|FT
� Q and Q � P2|FT

, we write P2|FT
∼ Q,

namely, if P2|FT
and Q have the same zero sets on FT .

The following theorems are considered as extensions of the standard changing probability

theorems of I. W. Girsanov [22].

Theorem 1.3.1 (Fractional Girsanov Formula I) Let γ ∈ L2
ρ (R) ∩ C (R) and let

ψ ∈ L2
ρ (R). Define

γ̃(t) :=

∫
R
ρ(t, s)γ(s)ds,

ε(γ) := exp{
∫
R
γ(s)dBH

s − 1

2
||γ||2ρ}.

(1.3.1)

Then the map ω 7−→ ψ(ω + γ̃) belongs to L2
ρ(P2) and

∫
Ω2

ψ(ω + γ̃)dP2(ω) =

∫
Ω2

ψ(ω)ε(γ)dP2(ω),

Proof. See [5]

Corollary 1.3.1 Let g : R 7−→ R be bounded and ε as defined in (1.3.1), and γ ∈ L2
ρ(R) ∩

C(R). Then,

E
[
g(BH

t +

∫ t

0

γ̃(s)ds)

]
= E

[
g(BH

t ε(γ))
]
.
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Proof. See [5]

Theorem 1.3.2 (Fractional Girsanov Formula II) Let T ≥ 0 and let γ be a continuous

function with suppγ ⊂ [0, T ] . Let K be a function with suppK ⊂ [0, T ] and such that

< K, f >ρ=< γ, f >L2(R), for all f ∈ L2(R), suppf ⊂ [0, T ]

i.e. ∫
R
K(s)ρ(t, s)ds = γ(t); 0 ≤ t ≤ T.

On the σ-algebra FH
T generated by

{
BH

s : 0 ≤ s ≤ T
}
, define a probability measure PH,γ by

PH,γ

P2

:= exp

{
−
∫ t

0

K(s)dBH
s − 1

2
||K(t)||2ρ

}

Then B̂H(t) := BH
t +

∫ t

0

γ(s)ds, 0 ≤ t ≤ T , is a fractional Brownian motion under PH,γ.

Proof. See [5]

1.4 Uniqueness and Existence Result

This section is adapted from the pioneering paper of Hu and Peng [29]. Throughout this

section we let

ηt = η0 + bt +

∫ r

0

σsdB
H
s

unless otherwise stated, where η0 is a given constant, bt is a deterministic differentiable

function of t, and σs is a deterministic continuous function such that ||σ||t exists for all t and
d

dt
(||σ||t) exists and it is strictly positive. Set ξ = g(ηT ) where g is a continuous function.

We consider the following backward stochastic differential equation:

 dyt =

yT =

−f(t, ηt, yt, zt)dt− ztdB
H
t

ξ.
(1.4.1)
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A solution (pair) to (1.4.1) is given by two adapted processes ((yt, zt), ηt, 0 ≤ t ≤ T )


ηt = η0 + bt +

∫ r

0

σsdB
H
s ,

yt = ξ +

∫ T

t

f(s, ηt, ys, zs)ds+

∫ T

t

zsdB
H
s , 0 ≤ t ≤ T.

(1.4.2)

To find a pair of solutions we consider u(t, ηt). Denote σ̃t =
d

dt
(||σ||2t ). The Itô formula

(see Theorem 2.3 in [19] and [27]) yields to

dµ(t, ηt) =
∂µ

∂t
(t, ηt)dt+

∂µ

∂x
(t, ηt)

[
b
′
tdt+ σtdB

H
t

]
+

1

2
σ̃t
∂2µ

∂x2
(t, ηt)dt

=

[
∂µ

∂t
(t, ηt) + b

′
t

∂µ

∂x
(t, ηt) +

1

2
σ̃t
∂2µ

∂x2
(t, ηt)

]
dt+ σt

∂µ

∂x
(t, ηt)dB

H
t .

If µ satisfies the quasi-linear partial differential equation (1.4.1) then

dµ(t, ηt) = −f(t, ηt, µ(t, ηt),−σt
∂µ

∂x
(t, ηt))dt+ σt

∂µ

∂x
(t, ηt)dB

H
t . (1.4.3)

Thus we have the following theorem.

Theorem 1.4.1 Let µ(t, x) be the solution of the following PDE


∂µ

∂t
=

µ(T, x) =

−1

2

σ̃∂2µ

∂x2
− b′t

∂µ

∂x
− f(t, x, µ,−∂σ

∂t

∂µ

∂x
)

g(x).
(1.4.4)

µ(t, x) is continuously differentiable with respect to t and twice continuously differentiable with

respect to x. Then (yt, zt) := (µ(t, ηt),−σt ∂µ∂x (t, ηt)) satisfies the following backward stochastic

differential equation  dyt =

yT =

−f(t, ηt, yt, zt)dt− ztdB
H
t

g(ηT ).
(1.4.5)

The following lemma is important in dealing with the existence and uniqueness problem of

the backward stochastic differential equation (1.4.1).
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Lemma 1.4.1 Let b(s, x) and a(s, x), 0 ≤ s ≤ T, x ∈ R, be continuous with respect to s and

continuously differentiable with respect to x and let both of them be of polynomial growth. Let

σ be continuous and let ||σ||s be an increasing function of s. If

∫ t

0

b(s, ηs)ds+

∫ t

0

a(s, ηs)dB
H
s = 0, ∀t ∈ [0, T ] , (1.4.6)

then

b(s, x) = a(s, x) = 0, ∀s ∈ [0, T ] , x ∈ R. (1.4.7)

Proof. See [29].

Proposition 1.4.1 Let (1.4.1) have a solution of the forms (y = µ(t, ηt), z = ν(t, ηt)), where

µ(t, x) is continuously differentiable with respect to t and twice continuously differentiable

with respect with to x. Then −σt
∂µ

∂x
(t, x) = ν(t, x).

Proof. By the Itô formula, we have

dµ(t, ηt) =
∂µ

∂t
(t, ηt)dt+

∂µ

∂x
(t, ηt)

[
b′tdt+ σtdB

H
t

]
+

1

2
σ̃t
∂2µ

∂x2
(t, ηt)dt

=

[
∂µ

∂t
(t, ηt) + b′t

∂µ

∂x
(t, ηt) +

1

2
σ̃t
∂2µ

∂x2
(t, ηt)

]
dt− σt

∂µ

∂x
(t, ηt)dB

H
t .

(1.4.8)

Or we can write

µ(t, ηt) = ξ −
∫ T

t

[
∂µ

∂s
(s, ηs) + b′s

∂µ

∂x
(s, ηs) +

1

2
σ̃s
∂2µ

∂x2
(s, ηs)

]
ds−

∫ T

t

σs
∂µ

∂x
(s, ηs)dB

H
s .

(1.4.9)

So

−
∫ T

t

[
∂µ

∂s
(s, ηs) + b′s

∂µ

∂x
(s, ηs) +

1

2
σ̃s
∂2µ

∂x2
(s, ηs)

]
ds−

∫ T

t

σs
∂µ

∂x
(s, ηs)dB

H
s .

=

∫ T

t

f(s, ηs,
∂µ

∂s
(s, ηs), ν(s, ηs))ds+

∫ T

t

ν(s, ηs)dB
H
s .

This is also true for t = 0, namely,
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−
∫ T

0

[
∂µ

∂s
(s, ηs) + b′s

∂µ

∂x
(s, ηs) +

1

2
σ̃s
∂2µ

∂x2
(s, ηs)

]
ds−

∫ T

0

σs
∂µ

∂x
(s, ηs)dB

H
s .

=

∫ T

0

f(s, ηs,
∂µ

∂s
(s, ηs), ν(s, ηs))ds+

∫ T

0

ν(s, ηs)dB
H
s .

Substracting the two equations, we obtain

−
∫ t

0

[
∂µ

∂s
(s, ηs) + b′s

∂µ

∂x
(s, ηs) +

1

2
σ̃s
∂2µ

∂x2
(s, ηs)

]
ds−

∫ t

0

σs
∂µ

∂x
(s, ηs)dB

H
s .

=

∫ t

0

f(s, ηs,
∂µ

∂s
(s, ηs), ν(s, ηs))ds+

∫ t

0

ν(s, ηs)dB
H
s ,

for all 0 ≤ t ≤ T . From Lemma 1.4.1, we have

ν(t, x) = −σt
∂µ

∂x
(t, x); ∀t ∈ (0, T ) , x ∈ R. (1.4.10)

This proves the proposition.

Remark 1.4.1 From the above proof, we also see that if the nonlinear differential equation

∂µ

∂t
(t, x) + b

′

t

∂µ

∂x
(t, x) +

1

2
σ̃
∂2µ

∂x2
(t, x) + f(t, x, µ(t, x),−σt

∂µ

∂x
(t, x)) = 0 (1.4.11)

has a unique solution, then the backward stochastic differential equation (1.4.1) also has a

unique solution.

In chapter 3, we use the machinery that we have established in chapter 1 to derive

Pontryagin’s risk-sensitive stochastic maximum principle for a fractional backward stochastic

differential equation.
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Chapter 2

Pontryagin’s SMP for a System

Driven by Fractional Brownian and

Standard Wiener Motions via

Malliavin Calculus

This chapter presents the first main result of this thesis: The Malliavin calculus used to

derive an SMP for a system driven by fractional and standard Brownian motions. This result

is published in [10]. We are at the brink of solving some stochastic optimization problem for

a class of backward doubly stochastic differential equations. The following triplet forms our

problem: non linear backward doubly stochastic differential equation

 −dyt =

yT =

f (t, yt, zt, vt) dt+ g (yt) dB
H
t − ztdWt,

ξ, t ∈ [0, T ],
(2.1.1)

the cost functional, with initial cost

J (v) = E
[∫ T

0

Π(t, yvt , z
v
t , vt) dt+Ψ(yv (0))

]
, (2.1.2)

and we want to find an admissible control u ∈ U called optimal, that solves

27



Chapter 2. Pontryagin’s SMP for a System Driven by Fractional Brownian and
Standard Wiener Motions via Malliavin Calculus

J (u) = inf
v∈U

J (v) . (2.1.3)

In solving the stochastic control problem {(2.1.1),(2.1.2),(2.1.3)}, we establish necessary and

sufficient optimality conditions satisfied by some optimal control, in the form of Pontryagin’s

stochastic maximum principle. However, as has been accentuated in the previous chapter,

there does not exist an explicit method to study the BDSDE (2.1.1) using classical methods,

what makes us invite the Doss-Sussman transformation introduced in chapter 1, section 1.2.3

and apply it to the triplet {(2.1.1),(2.1.2),(2.1.3)}, what gives us the following new control

problem  −dY v
t =

Y v
T =

F (t, Y v
t , Z

v
t , vt) dt− Zv

t dWt,

ξ, t ∈ [0, T ].
(2.1.4)

where F is given by (1.2.3.10), and the cost functional becomes

J (v) = E
[∫ T

0

Π(t, Y v
t , Z

v
t , vt) dt+Ψ(Y v (0))

]
, (2.1.5)

which we aim to minimize over U , i.e. find the optimal control u ∈ U such that

J (u) = inf
v∈U

J (v) . (2.1.6)

Remarks 2.1.1

1. The transformed cost functional J defined in (2.1.5) results from injecting the trans-

formation (1.2.3.8) into the cost functional (1.2.3.2) as follows:

Π(t, Y v
t , Z

v
t , vt) := Π(t, ϕ(t, yvt ), zt

∂ϕ

∂y
(t, yvt ), vt) and Ψ(Y v (0)) := Ψ (ϕ(0, yv0))
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2. By a simple verification of the new diver F , we have :

|F (t, Y v
t , Z

v
t ) =

∂ϕ

∂y
(t, yt)

{
f(t, η(t, yt), Zt

∂η

∂y
(t, yt), vt) +

1

2
Z2∂

2η

∂y2
(t, yt), vt

}
|

≤
∣∣∣∣C∂ϕ∂y (t, yt)

{
1 + |η(t, yt)|+

∣∣∣∣Zt
∂η

∂y
(t, yt)

∣∣∣∣+ |vt|+
∣∣∣∣12Z2∂

2η

∂y2
(t, yt)

∣∣∣∣}∣∣∣∣ .
Then F satisfies assumptions 1.2.2.

2.2 Variational Equality

For more details on the Malliavin derivative of backward stochastic differential equations,

may the reader see the paper of El Karoui et al. [21]. In this section we shall derive

stochastic maximum principle for the control problem {(2.1.4),(2.1.5),(2.1.6)}. We intoduce

the following assumptions and definitions.

2.2.1 Assumptions and Definitions

Definition 2.2.1 Let U be a non-empty subset of R. An admissible control v is a Gt-adapted

process assuming values in U such that E
[
sup

0≤t≤T
|vt|2

]
< ∞.We denote by U the set of all

admissible controls.

Assumption 2.2.1 For all t, r ∈ [0, T ] , t ≤ r, and all bounded random variables θ = θ (ω) ,

the control

γθ (s) = θ (w)1[t,r] (s) , for all s ∈ [0, T ]

belongs to U .

Assumption 2.2.2 For all u, γ ∈ U , with γ bounded, there exists σ > 0, for all ε ∈ (−σ, σ) ,

the convex combination u+ εγ belongs to ∈ U .

Under assumptions 1.2.2 and 1.2.3, we have the following lemma.
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Lemma 2.2.1 For all u, γ ∈ U , with γ bounded, the process

Ỹ (t) := DγY (t) :=
d

dε
Y u+εγ (t)

∣∣
ε=0

exists and satisfies the equation


−dỸt =

[
Ỹt
∂F

∂y
(t, Y u

t , Z
u
t , ut) + Z̃t

∂F

∂z
(t, Y u

t , Z
u
t , ut)

+γ (t)
∂F

∂u
(t, Y u

t , Z
u
t , ut)

]
dt− Z̃u

t dWt,

Ỹ (T ) = 0, t ∈ [0, T ].

(2.2.1)

Proof. We know by a lemma (lemma 1.3.4) in [44] that an Itô integral is differentiable in

the Malliavin sense if and only if the integrand is so. Supposing assumptions 1.2.2 and 1.2.3

hold, by Lebesgue’s dominated convergence theorem and the chain rule 1.1.3, we get

d

dε

∫ T

t

F
(
s, Y u+εγ

s , Zu+εγ
s , us + εγ

)∣∣
ε=0

ds =

∫ T

t

{
Ỹs
∂F

∂y
(s) + Z̃s

∂F

∂z
(s) + γ (s)

∂F

∂u
(s)

}
ds,

and ∫ T

t

DγZsdWs =

∫ T

t

Z̃sdWs.

Therefore, it follows that the process (Yt, Zt) is differentiable in the Malliavin sense, where

DγZs = Z̃s, and its Malliavin derivative
(
Ỹt, Z̃t

)
satisfies (2.2.1).

Having applied the Doss-Sussmann transformation to the control problem {(2.1.1),(2.1.2),(2.1.3)}

and obtained the new control problem{(2.1.4),(2.1.5),(2.1.6)}, given assumptions 2.2.1 and

2.2.2 and proved lemma 2.2.1, we present the first main result of this chapter.

Theorem 2.2.1 [Variational Equality] We suppose that assumptions 2.2.1 and 2.2.2 and

lemma 2.2.1 are verified, and u is the optimal control of (2.1.6), then the following variational

equation holds
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0 = E
∫ T

0

L (t)

{
Ỹt
∂F

∂y
(t, Y u

t , Z
u
t , ut) + Z̃t

∂F

∂z
(t, Y u

t , Z
u
t , ut)

+γ (t)
∂F

∂u
(t, Y u

t , Z
u
t , ut)

}
dt− E

∫ T

0

Z̃tDtL (t) dt

+E
∫ T

0

Z̃t
∂Π

∂z
(t, Y u

t , Z
u
t , ut) dt+ E

∫ T

0

γ (t)
∂Π

∂u
(t, Y u

t , Z
u
t , ut) dt,

(2.2.2)

where

L (t) =
∂Ψ(Y u

0 )

∂y
+

∫ t

0

∂Π

∂y
(s, Y u

s , Z
u
s , us) ds. (2.2.3)

Notation 1 Before making the proof of theorem 2.2.1, for the sake of simplicity we introduce

the shorthand notations

A (t) = A (t, Y u
t , Z

u
t , ut), where A = F,

∂F

∂y
,
∂F

∂z
,
∂F

∂u
, Π,

∂Π

∂y
,
∂Π

∂z
or ∂Π

∂u
.

Proof. We suppose that assumptions 2.2.1 and 2.2.2 hold, lemma 2.2.1, and let u be an

optimal control. Then u is a critical point of the cost functional, in the sense

0 :=
d

dε
J (u+εγ)|ε=0 .

By the definition of J from (2.1.5), we get

0 =
d

dε
E
[∫ T

0

Π
(
t, Y u+εγ

t , Zu+εγ
t , u+εγ

)
dt+Ψ

(
Y u+εγ
0

)]∣∣∣∣
ε=0

=
d

dε
E
[∫ T

0

Π
(
t, Y u+εγ

t , Zu+εγ
t , u+εγ

)
dt

]∣∣∣∣
ε=0

+
d

dε
E
[
Ψ
(
Y u+εγ
0

)]∣∣
ε=0

.

(2.2.4)

We shall detail the proof upon the following two main arguments

d

dε
E
[∫ T

0

Π
(
t, Y u+εγ

t , Zu+εγ
t , u+εγ

)
dt

]∣∣∣∣
ε=0

and (2.2.5)

d

dε
E
[
Ψ
(
Y u+εγ
0

)]∣∣
ε=0

. (2.2.6)

In the first step we detail the first term (2.2.5).

Step 1: We start by permuting the derivative sign with the mathematical expectation and the

Lebesgue integral by Lebesgue bounded convergence theorem as
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d

dε
E
[∫ T

0

Π
(
t, Y u+εγ

t , Zu+εγ
t , u+εγ

)
dt

]∣∣∣∣
ε=0

= E
[∫ T

0

d

dε
Π
(
t, Y u+εγ

t , Zu+εγ
t , u+εγ

)∣∣
ε=0

dt

]
,

(2.2.7)

then, by the chain rule (1.1.3), we obtain

E
[∫ T

0

d

dε
Π
(
t, Y u+εγ

t , Zu+εγ
t , u+εγ

)∣∣
ε=0

dt

]
= E

(∫ T

0

[
Ỹt
∂Π

∂y
(t) + Z̃t

∂Π

∂z
(t) + γ (t)

∂Π

∂u
(t)

]
dt

)
= E

(∫ T

0

[
Ỹt
∂Π

∂y
(t)

]
dt

)
+ E

(∫ T

0

[
Z̃t
∂Π

∂z
(t) + γ (t)

∂Π

∂u
(t)

]
dt

)
.

(2.2.8)

In the first term of this last equation, we inject Ỹ (t) by its value from (2.2.1), we get

E
[∫ T

0

Ỹt
∂Π

∂y
(t) dt

]
=

E
∫ T

0

∂Π

∂y
(t)

{∫ T

t

[
Ỹs
∂F

∂y
(s) + Z̃s

∂F

∂z
(s) + γ (s)

∂F

∂u
(s)

]
ds

}
dt

−E
∫ T

0

∂Π

∂y
(t)

(∫ T

t

Z̃sdWs

)
dt.

(2.2.9)

In the last term of (2.2.9), by Fubini theorem, we permute the mathematical expectation

with the Lebesgue integral

E
∫ T

0

∂Π

∂y
(t)

(∫ T

t

Z̃sdWs

)
dt =

∫ T

0

E
[
∂Π

∂y
(t)

∫ T

t

Z̃sdWs

]
dt. (2.2.10)

Applying the duality formula (1.1.4) to (2.2.10), we get

∫ T

0

E
[
∂Π

∂y
(t)

∫ T

t

Z̃sdWs

]
dt =

∫ T

0

(
E
∫ T

t

Z̃sDs

[
∂Π

∂y
(t)

]
ds

)
dt.

We make a change of variable s to t : 0 ≤ s ≤ t ≤ T, and by Fubini theorem we

permute the integrals with respect to dt and ds, we get
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E
∫ T

0

∫ T

t

Z̃sDs

[
∂Π

∂y
(t)

]
dsdt = E

∫ T

0

∫ s

0

Z̃sDs

[
∂Π

∂y
(t)

]
dtds

= E
∫ T

0

Z̃s

∫ s

0

Ds

[
∂Π

∂y
(t)

]
dtds.

After applying Lebesgue’s theorem and the duality formula, (2.2.10) becomes:

E
[∫ T

0

Ỹt
∂Π

∂y
(t) dt

]
= E

∫ T

0

∂Π

∂y
(t)

{∫ T

t

[
Ỹs
∂F

∂y
(s) + Z̃s

∂F

∂z
(s) + γ (s)

∂F

∂u
(s)

]
ds

}
dt

− E
∫ T

0

Z̃s

∫ s

0

Ds

[
∂Π

∂y
(t)

]
dtds.

(2.2.11)

Hence, we inject the new expression (2.2.11) in the first term of (2.2.8), we get the

detailed form of (2.2.5) as

E
[∫ T

0

d

dε
Π
(
t, Y u+εγ

t , Zu+εγ
t , u+εγ

)∣∣
ε=0

dt

]
= E

(∫ T

0

[
Ỹt
∂Π

∂y
(t) + Z̃t

∂Π

∂z
(t) + γ (t)

∂Π

∂u
(t)

]
dt

)
= E

∫ T

0

∂Π

∂y
(t)

{∫ T

t

[
Ỹs
∂F

∂y
(s) + Z̃s

∂F

∂z
(s) + γ (s)

∂F

∂u
(s)

]
ds

}
dt

− E
∫ T

0

Z̃s

∫ s

0

Ds

[
∂Π

∂y
(t)

]
dtds+ E

(∫ T

0

[
Z̃t
∂Π

∂z
(t) + γ (t)

∂Π

∂u
(t)

]
dt

)
.

(2.2.12)

In the second step we detail the second term (2.2.6).

Step 2: To explicit (2.2.6), we use similar tools and steps. At first, by Lebesgue’s bounded

convergence theorem, we permute the derivative with the mathematical expectation

d

dε
E
[
Ψ
(
Y u+εγ
0

)]∣∣
ε=0

= E
(
d

dε

[
Ψ
(
Y u+εγ
0

)]∣∣
ε=0

)
. (2.2.13)

Applying the chain rule (1.1.3) to (2.2.13), we have

E
(
d

dε

[
Ψ
(
Y u+εγ
0

)]∣∣
ε=0

)
= E

[
Ỹ u
0

Ψ(Y u
0 )

∂y

]
. (2.2.14)

In (2.2.14), we replace Ỹ u
0 by its value from (2.2.1), we get
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E
[
Ỹ u
0

Ψ(Y u
0 )

∂y

]
= E

[
Ψ(Y u

0 )

∂y

∫ T

0

{
Ỹt
∂F

∂y
(t) + Z̃t

∂F

∂z
(t) + γ(t)

∂F

∂u
(t)

}
dt

−E
[
Ψ(Y u

0 )

∂y

∫ T

0

Z̃tdWt

]
.

(2.2.15)

We apply the duality formula (1.1.4) to the last term in the previous equation (2.2.15),

we obtain

E
[
Ψ(Y u

0 )

∂y

∫ T

0

Z̃tdWt

]
= E

[∫ T

0

Z̃tDt

[
Ψ(Y u

0 )

∂y

]
dt

]
. (2.2.16)

Inserting this simplified expression (2.2.16) in (2.2.15), (2.2.6) becomes

E
[
Ỹ u
0

Ψ(Y u
0 )

∂y

]
= E

[
Ψ(Y u

0 )

∂y

∫ T

0

{
Ỹt
∂F

∂y
(t) + Z̃t

∂F

∂z
(t) + γ(t)

∂F

∂u
(t)

}
dt

−E
[∫ T

0

Z̃tDt

[
Ψ(Y u

0 )

∂y

]
dt

]
.

(2.2.17)

Now, by virtue of the results of Steps 1 and 2, we gather the simplified expressions

of the terms (2.2.5) and (2.2.6) obtained in (2.2.12) and (2.2.17), respectively, in one

equation

0 = E
∫ T

0

(∫ t

0

∂Π

∂y
(s) ds

){
Ỹt
∂F

∂y
(t) + Z̃t

∂F

∂z
(t) + γ (t)

∂F

∂u
(t)

}
dt

− E
∫ T

0

Z̃t

(∫ t

0

Dt

[
∂Π

∂y
(s)

]
ds

)
dt

+ E
(∫ T

0

[
Z̃t
∂Π

∂z
(t) + γ (t)

∂Π

∂u
(t)

]
dt

)
+ E

[
∂Ψ(Y u

0 )

∂y

∫ T

0

{
Ỹt
∂F

∂y
(t) + Z̃t

∂F

∂z
(t) + γ(t)

∂F

∂u
(t)

}]
dt

− E
[∫ T

0

Z̃tDt

[
∂Ψ

∂y
(Y u

0 )

]
dt

]
,

(2.2.18)

that is
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0 = E
[(

∂Ψ(Y u
0 )

∂y
+

∫ t

0

∂Π

∂y
(s) ds

)∫ T

0

{
Ỹt
∂F

∂y
(t) + Z̃t

∂F

∂z
(t) + γ(t)

∂F

∂u
(t)

}]
dt

+ E
(∫ T

0

[
Z̃t
∂Π

∂z
(t) + γ (t)

∂Π

∂u
(t)

]
dt

)
− E

∫ T

0

Z̃t

(
Dt

[
∂Ψ

∂y
(Y u

0 )

]
+

∫ t

0

Dt

[
∂Π

∂y
(s)

]
ds

)
dt.

(2.2.19)

Taking into consideration L (t) is given by (2.2.3), then (2.2.19) becomes

0 = E
[
Ψ(Y u

0 )

∂y

∫ T

0

{
Ỹt
∂F

∂y
(t) + Z̃t

∂F

∂z
(t) + γ(t)

∂F

∂u
(t)

}
dt

]
− E

[∫ T

0

Z̃tDt [Ψ (Y u
0 )] dt

]
+ E

(∫ T

0

[
Ỹt
∂Π

∂y
(t) + Z̃t

∂Π

∂z
(t) + γ (t)

∂Π

∂u
(t)

]
dt

)
= E

[∫ T

0

Lt

{
Ỹt
∂F

∂y
(t) + Z̃t

∂F

∂z
(t) + γ(t)

∂F

∂u
(t)

}
dt

+ E
(∫ T

0

[
Z̃t

[
∂Π

∂z
(t)−DtLt

]
+ γ (t)

∂Π

∂u
(t)

]
dt

)
,

which ends the proof.

2.3 Necessary Optimality Conditions

In this section 2.3, we shall use the results and tools from section 2.2 to build an adjoint

process for our system and express necessary optimality condition in terms of this adjoint

process, as the second main result of chapter 2.

Theorem 2.3.1 (Necessary Optimality Condition) Let u be an optimal control minim-

izing the functional J over U and (Y u
t , Z

u
t ) denote the corresponding optimal trajectory given

by (2.1.4) . Then, in the sense of (2.2.2) , the following necessary optimality condition

E
[
∂

∂u
[Π (t, Y u

t , Z
u
t , ut) + p (t)F (t, Y u

t , Z
u
t , ut)]

∣∣∣∣Gt

]
= 0. (2.3.1)

holds, where the process L (t) is defined in (2.2.3), p (t) and M (t) are given
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p (t) = L (t) +

∫ t

0

M (t, s) ds,

M (t, s) =
∂N (s)

∂y
G (t, s) ,

N (s, Y, Z, u) = L (s)F (s) , and

G (t, s) = exp

(∫ t

s

(
∂F

∂y
(r)− 1

2

(
∂F

∂z
(r)

)2
)
dr +

∫ t

s

∂F

∂z
(r) dWr

)
.

Proof. We consider the variational equation from (2.2.2)

0 =
d

dε
J (u+ εγ)|ε=0 = E

∫ T

0

L (t)

[
Ỹt
∂F

∂y
(t) + Z̃t

∂F

∂z
(t)

]
dt

+ E
∫ T

0

γ (t)

[
L (t)

∂F

∂u
(t) +

∂Π

∂u
(t)

]
dt

+ E
∫ T

0

Z̃t

[
∂Π

∂z
(t)−DtL (t)

]
dt.

(2.3.2)

Let t, r be in [0, T ], such that 0 ≤ t − r ≤ t ≤ T , we pick a bounded and Gt-measurable

random variable γ:

γ (s) := γθ (s) := θ (ω)1[t−r,t] (s) ,

and inject it into equality (2.3.2), we obtain

0 = H1 +H2 +H3

= E
∫ t

0

L (s)

[
Ỹs
∂F

∂y
(t) + Z̃s

∂F

∂z
(s)

]
ds

+ E
∫ t

t−r

θ

[
L (s)

∂F

∂u
(s) +

∂Π

∂u
(s)

]
ds

+ E
∫ t

0

Z̃s

[
∂Π

∂z
(t) (s)−DsL (s)

]
ds,

where
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H1 = E
∫ t

0

L (s)

[
Ỹs
∂F

∂y
(s) + Z̃s

∂F

∂z
(s)

]
ds, (2.3.3)

H2 = E
∫ t

t−r

θ

[
L (s)

∂F

∂u
(s) +

∂Π

∂u
(s)

]
ds, and (2.3.4)

H3 = E
∫ t

0

Z̃s

[
∂Π

∂z
(s)−DsL (s)

]
ds. (2.3.5)

From (2.2.1), for t ≤ s ≤ T,

γθ (s) = 0 , then Ỹs = 0, hence Z̃s = 0.

Then, for t− r ≤ s ≤ t, equation (2.2.1) becomes

dỸs =

[
Ỹs+

∂F

∂y
(s) + Z̃s+

∂F

∂z
(s) + θ

∂F

∂u
(s)

]
ds− Z̃s+dWs, (2.3.6)

with terminal condition at time t given by Ỹt.

We shall make the proof upon three steps, as follows:

Step 1: Let be the geometric Brownian motion

G (t, s) = exp

(∫ t

s

(
∂F

∂y
(r)− 1

2

(
∂F

∂z
(r)

)2
)
dr +

∫ t

s

∂F

∂z
(r) dWr

)
,

by the Itô formula, we can simply show that

dG (t, s) = G (t, s)

[
∂F

∂y
(t) dt+

∂F

∂z
(t) dWt

]
;G (s, s) = 1, (2.3.7)

hence, using (2.3.6) and (2.3.7) to apply the stochastic integration by parts formula to

the product Ỹ G, we obtain

dỸsG (t, s) = ỸsdG (t, s) +G (t, s) dỸs + d < Ỹs, G (t, s) >t

= ỸsG (t, s)

[
∂F

∂y
(t) +

∂F

∂z
(t) dWt

]
− G (t, s)

[
Ỹs+

∂F

∂y
(s) + Z̃s+

∂F

∂z
(s) + θ

∂F

∂u
(s)

]
ds−G (t, s) Z̃s+dWs

+ G (t, s) Z̃s+
∂F

∂z
(t) dt.

37



Chapter 2. Pontryagin’s SMP for a System Driven by Fractional Brownian and
Standard Wiener Motions via Malliavin Calculus

Then

d
(
ỸsG (t, s)

)
= −θG (t, s)

∂F

∂u
(s) ds+G (t, s)

[
Z̃s+ − Ỹs+

∂F

∂y
(s)

]
dWs. (2.3.8)

We integrate (2.3.8) from s to t, we get the explicit solution of the dynamics (2.3.6):

Ỹ (s) = Ỹ (t)G (t, s) +

∫ t

s

θG (t, v)
∂F

∂u
(v) dv −

∫ t

s

G (t, v)

(
Z̃v − Ỹv

∂F

∂z
(v)

)
dWv,

(2.3.9)

for t− r ≤ s.

But at time t = t− r, the term including θ vanishes, and (2.3.9) becomes

Ỹ (s) = Ỹ (t− r)G (t− r, s)−
∫ t−r

s

G (t, v)

(
Z̃v − Ỹv

∂F

∂z
(v)

)
dWv. (2.3.10)

If we define

N (s, Y, Z, u) = L (s)F (s) , (2.3.11)

then replacing in (2.3.3), we obtain

H1 = E
∫ t

0

(
∂N (s)

∂y
Ỹ (s) +

∂N (s)

∂z
Z̃ (s)

)
ds.

At first, we differentiate (2.3.3) with respect to r at r = 0. We permute the expectation

with Lebesgue’s integral by Lebesgue’s bounded convergence theorem, and using the

fact that ∂N
∂y

and ∂N
∂z

are càglàd, we omit the following part from the derivative of (2.3.3)

d

dr
E
∫ t

t−r

(
∂N (s)

∂y
Ỹ (s) +

∂N (s)

∂z
Z̃ (s)

)
ds

∣∣∣∣
r=0

=

E
[
d

dr

∫ t

t−r

(
∂N (s)

∂y
Ỹ (s) +

∂N (s)

∂z
Z̃ (s)

)
ds

∣∣∣∣
r=0

]
= 0.

Without the part from t − r to t, the derivative of (2.3.3) with respect to r at r = 0

becomes
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dH1

dr

∣∣∣∣
r=0

=
d

dr
E
∫ t

0

(
∂N (s)

∂y
Ỹ (s) +

∂N (s)

∂z
Z̃ (s)

)
ds

∣∣∣∣
r=0

=
d

dr
E
∫ t−r

0

(
∂N (s)

∂y
Ỹ (s) +

∂N (s)

∂z
Z̃ (s)

)
ds

∣∣∣∣
r=0

. (2.3.12)

Hence, we inject the explicit solution (2.3.10) in (2.3) and using the fact that G is

independent from r, we obtain

dH1

dr

∣∣∣∣
r=0

=
d

dr

{
E
[∫ t

0

∂N (s)

∂y

(
Ỹ (t− r)G (t− r, s)

−
∫ t−r

s

G (t, v)

(
Z̃v − Ỹv

∂F

∂z
(v)

)
dWv

)
ds

]}∣∣∣∣
r=0

+
d

dr
E
∫ t

0

(
∂N (s)

∂z
Z̃ (s)

)
ds

∣∣∣∣
r=0

.

Removing again the part from t− r to t, that is

dH1

dr

∣∣∣∣
r=0

=
d

dr
E
∫ t−r

0

(
∂N (s)

∂y
G (t− r, s) Ỹ (t− r)

)
ds

∣∣∣∣
r=0

+
d

dr
E
∫ t−r

0

Z̃ (s)
∂N (s)

∂z
ds

∣∣∣∣
r=0

− d

dr
E
∫ t−r

0

∂N (s)

∂y

(∫ t−r

s

G (v, t)

(
Z̃s − Ỹs

∂F

∂z
(v)

)
dWv

)
ds

∣∣∣∣
r=0

= Λ1 + Λ2 − Λ3.

Step 2: By Lebesgue’s bounded convergence theorem, we perumute the derivative with the

integrals (the expectation and the Lebesgue’s integral) and by Fubini’s theorem, we

permute the expectation and the Lebesgue integral, as follows
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Λ1 =
d

dr
E
∫ t−r

0

[
∂N (s)

∂y
G (t− r, s) Ỹ (t− r)

]
ds

∣∣∣∣
r=0

(2.3.13)

=

∫ t

0

d

dr
E
[
∂N (s)

∂y
G (t− r, s) Ỹ (t− r)

]∣∣∣∣
=̊0

ds

=

∫ t

0

d

dr
E
[
∂N (s)

∂y
G (t, s) Ỹ (t− r)

]∣∣∣∣
r=0

ds,

Λ2 =
d

dr
E
∫ t−r

0

∂N (s)

∂y
Z̃ (s) ds

∣∣∣∣
r=0

, and (2.3.14)

Λ3 =
d

dr
E
∫ t−r

0

∂N (s)

∂y

[∫ t−r

s

G (v, t)

(
Z̃s − Ỹs

∂F

∂z
(v)

)
dWv

]
ds

∣∣∣∣
r=0

. (2.3.15)

By the definition of Ỹ (s) in (2.2.1), we have

Ỹ (t− r) =

∫ t

t−r

[
∂F

∂y
(v) Ỹv+ +

∂F

∂z
(v) Z̃v+ + θ

∂F

∂u
(v)

]
dv −

∫ t

t−r

Z̃v+dWv.

(2.3.16)

Therefore, replacing (2.3.16) in (2.3.13) and using Fubini’s and Lebesgue’s dominated

convergence theorems, we have

Λ1 =

∫ t

0

d

dr
E
(
∂N (s)

∂y
G (t, s) Ỹ (t− r)

)∣∣∣∣
r=0

ds

=

∫ t

0

d

dr
E
∂N (s)

∂y
G (t, s)

∫ t

t−r

∂F

∂y
(v) Ỹvdv

∣∣∣∣
r=0

ds

+

∫ t

0

d

dr
E
∂N (s)

∂y
G (t, s)

∫ t

t−r

∂F

∂z
(v) Z̃vdv

∣∣∣∣
r=0

ds

+

∫ t

0

d

dr
E
∂N (s)

∂y
G (t, s)

∫ t

t−r

θ
∂F

∂u
(v) dv

∣∣∣∣
r=0

ds

−
∫ t

0

d

dr
E
∂N (s)

∂y
G (t, s)

∫ t

t−r

Z̃vdWvdv

∣∣∣∣
r=0

ds. (2.3.17)

By applying the duality formula (1.1.4) to the term (2.3.17), we obtain
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Λ1 =

∫ t

0

d

dr

[
E
∂N (s)

∂y
G (t, s)

∫ t

t−r

∂F

∂y
(v) Ỹvdv

]∣∣∣∣
r=0

ds

+

∫ t

0

d

dr
E
[
∂N (s)

∂y
G (t, s)

∫ t

t−r

∂F

∂z
(v) Z̃vdv

]∣∣∣∣
r=0

ds

+

∫ t

0

d

dr
E
[
∂N (s)

∂y
G (t, s)

∫ t

t−r

θ
∂F

∂u
(v) dv

]
|r=0 ds

−
∫ t

0

d

dr
E
[∫ t

t−r

Z̃vDv

(
∂N (s)

∂y
G (t, s)

)
dv

]∣∣∣∣
r=0

ds.

By the fact Ỹv = 0 and Z̃v = 0, Lebesgue’s bounded convergence theorem and that ∂N
∂y

and ∂N
∂z

are càglàd, we get

Λ1 =

∫ t

0

d

dr
E
[
∂N (s)

∂y
G (t, s)

∫ t

t−r

θ
∂F

∂u
(v) dv

]∣∣∣∣
r=0

ds

=

∫ t

0

E
[
θ
∂N (s)

∂y
G (t, s)

∂F

∂u
(s)

]
ds

= E
∫ t

0

θM (t, s)
∂F

∂u
(s) ds,

where

M (t, s) =
∂N (s)

∂y
G (t, s) . (2.3.18)

Similarly, we have for s ≤ t − r, Ỹs = 0 then Z̃s = 0, and using the fact that ∂N
∂y

and
∂F
∂z

are càglàd, this yields to

Λ2 =
d

dr
E
∫ t−r

0

∂H0 (s)

∂y
Z̃ (s) ds

∣∣∣∣
r=0

=

Λ3 =
d

dr
E
∫ t−r

0

∂H0 (s)

∂y

(∫ t−r

s

G (v, t)

(
Z̃s + Ỹs

∂F

∂z
(v)

)
dWv

)
ds

∣∣∣∣
r=0

= 0.

Step 3: We have again

dH3

dr

∣∣∣∣
r=0

=
d

dr
E
∫ t

0

Z̃s

[
∂Π

∂z
(s)−DsL (s)

]
ds

∣∣∣∣
r=0

= 0.

Using the same arguments (Fubini and Lebesgue theorems), we have directly
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dΛ2

dr

∣∣∣∣
r=0

=
d

dr
E
∫ t

t−r

θ

[
L (s)

∂F

∂u
(s) +

∂Π

∂u
(s)

]
ds

∣∣∣∣
r=0

= E
[
d

dr

∫ t

t−r

θ

[
L (s)

∂F

∂u
(s) +

∂Π

∂u
(s)

]
ds

∣∣∣∣
r=0

]
= E

(
θ

[
L (t)

∂F

∂u
(t) +

∂Π

∂u
(t)

])
.

We sum up all of the above calculus, we get

0 =
dH1

dr

∣∣∣∣
r=0

+
dH2

dr

∣∣∣∣
r=0

= Λ1 + Eθ
(
L (s)

∂F (t)

∂u
+
∂Π(t)

∂u

)
= E

∫ t

0

θM (t, s)
∂F

∂u
(s) ds+ Eθ

(
L (s)

∂F (t)

∂u
+
∂Π(t)

∂u

)
= E

[
θ

((
L (s) +

∫ t

0

M (t, s) ds

)
∂F (t)

∂u
+
∂Π(t)

∂u

)]
.

If we define

p (t) = L (t) +

∫ t

0

M (t, s) ds. (2.3.19)

Since the last equation holds for all bounded random variable Gt-measurable θ, Then

we have

E
[
∂

∂u
[Π (t, Y u

t , Z
u
t , ut) + p (t)F (t, Y u

t , Z
u
t , ut)]

∣∣∣∣Gt

]
= 0, (2.3.20)

the proof is finished.

Remark 2.3.1 Due to major difficulties, it is not easy to transform the BSDE (2.1.4) back

to the BDSDE (2.1.1). For more details, we refer to [12, 13, 62, 63].
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Chapter 3

Malliavin Calculus Used to Derive

Pontryagin’s Risk-Sensitive SMP for

BSDEs Driven by Fractional

Brownian Motion

Chapter 3 presents the second main result of this thesis: Pontryagin’s risk-sensitive

stochastic maximum principle for fractional backward stochastic differential equations via

the Malliavin calculus. This result is published in [11]. We start by establishing the prob-

lem formulation and introducing the risk-sensitive cost functional, then we study stochastic

backward dynamics driven by fractional Brownian motion and derive risk neutral SMP. Next,

we transform the adjoint equation in order to illustrate the main result: necessary and suf-

ficient optimality conditions for risk-sensitive control problem under additional hypothesis.

We finish this chapter by an application to linear quadratic control problem.
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3.1 Risk-Sensitive Stochastic Maximum Problem

Let
(
Ω2,FB,

(
FB

t

)
t≥0

,P2

)
be a filtered probability space, satisfying the usual condi-

tions, namely, Ω2 := C ([0, T ] ,R) is a Wiener space endowed with the topology of uniform

convergence, with time horizon T > 0. Having established the main tools of our framework

in chapter 1 , we consider the following controlled fractional BSDE (FBSDE) dyvt = −g(t, η(t), yvt , zvt , vt)dt+ zvt dW
H
t ,

yvT = ξ; t ∈ [0, T ] ,
(3.1)

where g : [0, T ]× R× R× R× U → R. ξ is the terminal condition, an FB
T -measurable and

square-integrable random variable. v is an admissible control. We keep the notation U of

the set of all admissible controls, which we suppose convex. We define the criterion to be

minimized, with initial risk-sensitive cost, as follows

Jθ (v) = E
[
expθ

(
ψ [yv (0)] +

∫ T

0

f (t, η(t), yvt , z
v
t , vt) dt

)]
, (3.2)

where E [.] denotes the mathematical expectation under the probability measure P := P2, θ

is the risk-sensitive index,
ψ : R → R,

f : [0, T ]× R× R× R× U → R,

and η is to be defined in the very following assumptions (see H1 from assumptions 3.1), that

assure the well-posedness of the problem.

We intend to minimize the functional Jθ over the set U , that is, to find an admissible control

u ∈ U such that
Jθ (u) = inf

v∈U
Jθ (v) . (3.3)

The following assumptions on the driver g of the system (3.1) and the cost functional (3.2)

are essential for the well-posedness of the problem.

Assumptions 3.1

H1 : We assume that η is an Itô process of the form η(t) = η(0) +

∫ t

0

F (s)dWH
s , where

η(0) is a given constant, and F : R → R is a deterministic continuous function such

that F (t) 6= 0 for all t ∈ [0, T ].
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H2 : g, f : [0, T ] × R × R × R × U → R are continuous with respect to t and continu-

ously differentiable with respect to (η, y, z, u), and having (with all the derivatives) a

polynomial growth in all variables. Moreover, there exists C > 0, such that

∀y1, z1, y2, z2, x ∈ R : |g (t, x, y1, z1)− g (t, x, y2, z2)| ≤ C (|y1 − y2|+ |z1 − z2|) .

H3 : ξ = h(ηT ), such that h : R → R is differentiable function with polynomial growth.

H4 : ψ is continuously differentiable and there exists C > 0, such that

∀y ∈ R : |ψ (y)| ≤ C (1 + |y|) .

Given assumptions 3.1 (see H1 to H4), the cost functional is well defined from U to R. From

chapter 1.3, we have the existence and uniqueness result: for all admissible control v, the

system (3.1) admits a unique solution (y, z) = (ϕ1 (., η (.)) , ϕ2 (., η (.))) where ϕ1 and ϕ2 are

continuously differentiable and having polynomial growth with respect to t and three times

continuously differentiable with polynomial growth with respect to η.

An optimal control u is an admissible control solving the problem {(3.1) , (3.2) , (3.3)}. In

the sequel, we establish necessary and sufficient optimality conditions, satisfied by such a

control, under the form of stochastic maximum principle with risk-sensitive performance.

3.2 Risk-Sensitive Necessary Optimality Conditions

In order to solve our problem, we need to pass by an intermediate step, that is, we

introduce an auxiliary state process Υv
t that satisfies the following stochastic differential

equation  dΥv
t =

Υv (0) =

f (t, η(t), yvt , z
v
t , vt) dt,

0.

Then, the control problem {(3.1) , (3.2) , (3.3)} is equivalent to
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inf
v∈U

E [expθ (ψ [yv (0)] + ΥT )] = inf
v∈U

E[Λ (yv (0) ,ΥT ) ],

subject to

dΥv
t

= f (t, η(t), yvt , z
v
t , vt) dt,

−dyvt = g (t, η(t), yvt , z
v
t , vt) dt− zvt dW

H
t ,

Υv (0) = 0, yvT = ξ.

(3.2.1)

Define
ϖθ

T := expθ

(
ψ [yu (0)] +

∫ T

0

f (t, η(t), yut , z
u
t , ut) dt

)
and ΘT := ψ [yu (0)] +

∫ T

0

f (t, η(t), yut , z
u
t , ut) dt,

the risk-sensitive loss functional is given by (see Chala et al. [14] or Tembine et al. [59])

Θθ :=
1

θ
logE

[
exp

(
ψ [yu (0)] +

∫ T

0

f (t, η(t), yut , z
u
t , ut) dt

)]
:=

1

θ
logE (exp θΘT ) . (3.2.2)

Put θ in the neighbourhood of 0, the risk-neutral loss functional E (ΘT ) may be considered as

the limit of the risk-sensitive functional Θθ. Hence, by a Taylor expansion, the loss functional

Θθ is expandable to E (ΘT ) +
θ

2
V ar (ΘT ) +O

(
θ2
)
,

where V ar (ΘT ) denotes the variance of ΘT .

Notation 3.1 We proceed with following notations. For vt, ut ∈ U , ϕ =: H̃θ, g, f, ψ, or η

(defined in H1 in assumptions 3.1), we put

ϕu (t) = ϕ (t, η(t), yut , z
u
t , ut) ,

∂ϕ (t) = ϕ (t, η(t), yvt , z
v
t , vt)− ϕ (t, η(t), yut , z

u
t , ut) ,

ϕζ (t) =
δϕ

δζ
(t, η(t), yut , z

u
t , ut) , ζ ∈ {y, z, v} and

ϕθ (t) = ϕ
(
t, η(t), yu

θ

t , z
uθ

t , ut + θ
)
.

Suppose that assumptions H1–H4 in assumptions 3.1 hold, then applying stochastic

maximum principle for risk-neutral performance of forward-backward type control from [61]

to the augmented state dynamics (Υ, y, z), one can find the adjoint equation satisfied by a

unique FB-adapted pair of processes ((p1, q1) , (p2, q2)), that solves the following system of

forward-backward stochastic differential equations
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d−→p u (t) =

 dpu1 (t)

dpu2 (t)

 = −

 0 0

fy (t) gy (t)


 pu1 (t)

pu2 (t)

 dt

+

 qu1 (t)

−Hz (t)

 dWH
t ,

pu1 (T ) = −θϖθ
T ,

pu2 (0) = −θϖθ
Tψy [y

u (0)] ,

(3.2.3)

with 2∑
i=1

‖pui (t) ‖2β + ‖qu1 (t) ‖2β <∞.

We suppose here that H is the Hamiltonian associated with the optimal state dynamics

(Υu, yu, zu) and the pair of adjoint process (−→p u (t) ,−→q u (t)) given by

H (t, η(t), yut , z
u
t , ut,

−→p u (t) ,−→q u (t)) := pu1(t)f (t) + pu2(t)g (t) .

By some result of Yong [61], the stochastic maximum principle for risk-neutral performance

of forward-backward type control in stated in the next theorem.
Theorem 3.1 Suppose that assumptions H1 to H4 in assumptions 3.1 hold. If (Υ, yu, zu)

is an optimal solution to the risk-neutral control problem (3.2.1), then there exist pairs of

FB-adapted processes (pu1 , q
u
1 ) and (pu2 , q

u
2 ) that satisfy (3.2.3), such that

(vt − ut)Hv(t) ≥ 0, (3.2.4)

for all v ∈ U , almost every t ∈ [0, T ] and P2-a.s.

Proof. At first, by the definition of the Hamiltonian, we have

H (t, η(t), yut , z
u
t , ut,

−→p (t) ,−→q (t)) := pu1(t)f (t) + pu2(t)g (t) ,

then
dpu1(t) = Hx(t)dt+ qu1 (t)dW

H
t = qu1 (t)dW

H
t ,

and dpu2(t) = Hy(t)dt+Hz(t)dW
H
t

= (pu1(t)fy(t) + pu2(t)gy(t)) dt+ (pu1(t)fz(t) + pu2(t)gz(t)) dW
H
t ,

where
pu1(T ) = Λx (ΥT , y0) and pu2 (0) = Λy (ΥT , y0) .

Secondly, we shall derive the risk neutral stochastic maximum principle. We put

X = lim
θ↘0

Υ(t+ θ)−Υ(t)

θ
= (fy (t)Yt + fz (t)Zt) dt+

(
f θ (t)− fu (t)

)
dt,

and
Y = lim

θ↘0

y (t+ θ)− y (t)

θ
= (gy (t)Yt + gz (t)Zt) dt+

(
gθ (t)− gu (t)

)
dt.
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Then, we obtain

J (u) = E [Υu
T , y

u (0)] and J
(
uθ
)
= E

[
Λ
(
Υθ

T , y
θ (0)

)]
.

Now, given U is convex, let û ∈ U be optimal control. Then
1

θ

[
j
(
uθ
)
− j (û)

]
≥ 0.

Hence 1

θ

{
E
[
Λ
(
Υθ

T , y
θ (0)

)]
− E

[
Λ
(
Υ̂T , ŷ (0)

)]}
≥ 0.

By Taylor expansion of Λ at
(
Υθ

T , y
θ (0)

)
, we get

Λ
(
Υθ

T , y
θ (0)

)
= Λ

(
Υ̂T , ŷ (0)

)
+ Λx

(
Υ̂T , ŷ (0)

)(
Υθ

T − Υ̂T

)
+ Λy

(
Υ̂T , ŷ (0)

) (
yθ (0)− ŷ (0)

)
.

We put
x̃ =

Υ(t+ θ)−Υ(t)

θ
−X,

then Υ(t+ θ)−Υ(t)

θ
= X − x̃,

and
ỹ =

yθ0 − ŷ0
θ

− Y,

hence yθ0 − ŷ0
θ

= Y − ỹ.

Then

0 ≤ 1

θ

[
J
(
uθ
)
− J (û)

]
= E

[
Λx

(
Υ̂T , ŷ (0)

)(
Υθ

T − Υ̂T

)]
+ E

[
Λy

(
Υ̂T , ŷ (0)

) (
yθ (0)− ŷ (0)

)]
= E

[
Λx

(
Υ̂T , ŷ (0)

)
(X − x̃)

]
+ E

[
Λy

(
Υ̂T , ŷ (0)

)
(Y − ỹ)

]
.

By Making θ ↘ 0, it comes

E
[
Λx

(
Υ̂T , ŷ (0)

)
(x̃−X)

]
−→ E

[
Λx

(
Υ̂T , ŷ (0)

)
XT

]
E
[
Λy

(
Υ̂T , ŷ (0)

)
(ỹ − Y )

]
−→ E

[
Λy

(
Υ̂T , ŷ (0)

)
Y0

]
.

Hence, the following variational equality results

E
[
Λx

(
Υ̂T , ŷ (0)

)
XT + Λy

(
Υ̂T , ŷ (0)

)
Y0

]
≥ 0.

Thus
E
[
Λx

(
Υ̂T , ŷ (0)

)
XT

]
= E [pu1(T )XT ]

and
E
[
Λy

(
Υ̂T , ŷ (0)

)
Y0

]
= E [pu2(0)Y0] .

Applying the generalized integration by parts formula 1.2.3 to pu1(t)Xt, we get

d (pu1 (t)Xt) = Xtdp
u
1 (t) + pu1(t)dXt + d < pu1 , X >t

= Xtq
u
1 (t) dW

H
t + pu1 (t) (fy (t)Yt + fz (t)Zt) dt+ pu1 (t)

(
f θ (t)− f̂ (t)

)
.
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Then

E [pu1(T )XT ] = E
∫ T

0

pu1 (t)
(
fu
y (t)Yt + fu

z (t)Zt

)
dt+ E

∫ T

0

pu1 (t)
(
f θ (t)− fu (t)

)
dt.

On the other hand, by the generalized integration by parts formula 1.2.3 applied to pu2(0)Y0,

we get

d (pu2 (t)Yt) = Ytdp
u
2 (t) + pu2 (t) dYt + d < pu2 , Y >t

= Yt
(
pu1 (t) f

u
y (t) + pu2 (t) g

u
y (t)

)
dt+ Yt

(
pu1 (t) f

u
y (t) + pu2 (t) g

u
y (t)

)
dWH

t

+ pu2 (t)
(
Ytg

u
y (t) + Ztg

u
z (t)

)
dt+ pu2 (t)

(
gθ (t)− gu (t)

)
dt

+ pu2 (t)ZtdW
H
t + Zt (p

u
1 (t) f

u
z (t) + pu2 (t) g

u
z (t)) dt.

Then E [pu2(0)Y0] = −E
[∫ T

0

Yt (p
u
1fy (t) + pu2gy (t)) dt

]
− E

[∫ T

0

pu2 (t)
(
Ytg

u
y (t) + Ztgz (t)

)
dt

]
− E

[∫ T

0

pu2 (t)
(
gθ (t)− g (t)

)
dt

]
− E

[∫ T

0

Zt (p
u
1fz (t) + pu2fz (t)) dt

]
.

Then

0 ≤ E [pu1 (T )XT ] + E [pu2 (0)X0]

= E
[∫ T

0

pu1 (t)
(
f θ (t)− f (t)

)
dt

]
+ E

[∫ T

0

u

pu2 (t)
(
gθ (t)− g (t)

)
dt

]
.

Consequently
E
[∫ T

0

Hu

(
uθt − ût

)
dt

]
≥ 0,

which ends the proof.

3.3 Transformation of the Adjoint Equation

In order to derive our result, we use the approach of Djehiche et al. in [18] that allows us to

replace the first component of ((pu1 , qu1 ) , (pu2 , qu2 )) and make it transformed into another one

(p̃u2 , q̃
u
2 ) as the only appearing term when expressing the stochastic maximum principle with

risk sensitive performance. First of all, we remark that dpu1 (t) =

pu1 (T ) =

qu1 (t) dW
H
t

−θϖθ
T .

By remark 3.4 in [29], the explicit solution of this fractional BSDE is
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pu1 (t) = −θẼ
[
ϖθ

T | FB
t

]
= −θV θ (t) , (3.3.1)

where Ẽ [.] denotes the quasi-conditional expectation introduced by Hu et al. in [26] and

V θ (t) := Ẽ
[
ϖθ

T | FB
t

]
, 0 ≤ t ≤ T. (3.3.2)

Hence, we consider the transformation of (−→p u,−→q u) to (p̃u, q̃u) , where

p̃u1 (t) =
1

θV θ (t)
pu1 (t) = −1, namely,

p̃u (t) :=

 p̃u1 (t)

p̃u2 (t)

 :=
1

θV θ (t)
−→p u (t) , 0 ≤ t ≤ T. (3.3.3)

By using (3.2.3) and (3.3.3) , we have

p̃u1 (T ) = −1 and p̃u2 (0) = −ψy [y
u (0)] .

To explicit the properties of the process (p̃u (t) , q̃u (t)), we shall point out the following aspects

of the quasi-martingale V θ. Providing H2 & H4 in assumptions 3.1 (i.e. the bounds of f and

ψ by constant C > 0), we have

0 < exp{− (1 + T )Cθ} ≤ ϖθ
T ≤ exp{(1 + T )Cθ}. (3.3.4)

Then
0 < exp{− (1 + T )Cθ} ≤ V θ(t) ≤ exp{(1 + T )Cθ}. (3.3.5)

The following lemma 3.3.1 is an auxiliary result of this chapter, and it serves us in our main

objective in the next paragraphs.

Lemma 3.3.1 If we define for all t ∈ [0, T ]

V θ(t) = exp θ

[
Φt +

∫ T

0

f(s)ds

]
, (3.3.6)

then the process (Φ, l) satisfies the following quadratic fractional BSDE
dΦt = −θ

[
f(t) +

θ

2

d

dt
‖lt‖2ρ

]
dt+ θltdW

H
t ,

ΦT = ψ [yv(0)] ,

where d

dt
‖.‖2ρ is defined in (1.2.6) and V θ is a uniformly bounded quasi-martingale.

Proof. We proceed using a similar method to the proof of Lemma 3.2 in [15]. It is evident

(by definition) that ΦT = ψ [yv(0)]. Moreover, provided (3.3.5), we can consider the Logar-

ithmic transformation (generalized version) established by El-Karoui and Hamadéne in [20],

proposition 3.1, as follows
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V θ(t) = exp θ

[
Φt +

∫ T

0

f(s)ds

]
= Ẽ

[
ϖθ

T | FH
t

]
. (3.3.7)

Since V θ is bounded by two square integrable processes in (3.3.5), then it is also P2-square

integrable. Moreover, it is FB-adapted as a quasi conditional expectation), then we have by

the fractional Clark-Ocone formula (See the extension of this formulae made by Hu in [27],

page 106), there exists a unique FB
T -adapted square integrable process M such that

exp θ

[
Φt +

∫ T

0

f(s)ds

]
= E

(
ϖθ

T

)
+

∫ T

0

MsdW
H
s . (3.3.8)

Suppose that Φ has the dynamics dΦt = −ktdt+ ltdW
H
t , where k and l are two processes to

be identified. Then applying the fractional (generalized) Itô’s theorem 1.2.1 to both sides of

(3.3.8), we obtain

d

(
exp θ

[
Φt +

∫ T

0

f(s)ds

])
=MsdW

H
s

= exp θ

[
Φt +

∫ T

0

f(s)ds

] [
θf(t)dt+ θdΦt +

θ2

2

d

dt
‖lt‖2ρdt

]
.

Then MsdW
H
s = exp θ

[
Φt +

∫ T

0

f(s)ds

]([
θf(t) +

θ2

2

d

dt
‖lt‖2ρ − kt

]
dt

+θltdW
H
t

)
.

Hence the second side is an FH-quasimartingale, which yields to

exp

(
−θ
[
Φt +

∫ T

0

f(s)ds

])
MsdW

H
s =

[
θf(t) +

θ2

2

d

dt
‖lt‖2ρ − kt

]
dt

+θltdW
H
t .

Identifying terms, we take

kt = θ

[
f(t) +

θ

2

d

dt
‖lt‖2ρ

]
and

θlt =Ms exp

(
−θ
[
Φt +

∫ T

0

f(s)ds

])
,

which leads to the result.
Taking into consideration the previous lemma 3.3.1, we have in particular the following result.

Lemma 3.3.2 V θ satisfies the following fractional BSDE

dV θ (t) = θltV
θ (t) dWH

t , V
θ (T ) = ϖθ

T , (3.3.9)

and the process M defined on
(
Ω,F ,FB

t ,P2

)
by

Mt :=
Φt

Φ0

:= exp

(∫ T

0

θltdW
H
t − θ2

2
‖lt‖2ρ

)
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is an FB
T -quasimartingale.

Proof. A simple application of fractional Itô’s formula 1.2.1 to (3.3.7), gives

d

[
exp

(
θ

[
Φt +

∫ T

0

f(s)ds

])]
=

[
θf(t)dt+ θdΦt +

θ2

2

d

dt
‖lt‖2ρdt

]
exp θ

[
Φt +

∫ T

0

f(s)ds

]
= θV θ(t)

(
f(t)dt−

[
f(t) +

θ

2

d

dt
‖lt‖2ρ

]
dt+ ltdW

H
t +

θ

2

d

dt
‖lt‖2ρdt

)
= θV θ(t)ltdW

H
t ,

and the result follows immediately.

In the next, we state and prove the necessary and sufficient optimality conditions for a

dynamics driven by fractional backward SDE for a risk sensitive performance functional.

Lemma 3.3.3 The risk-sensitive dynamics for the adjoint equation satisfied by (p̃u2 , q̃
u
2 ) and(

V θ, l
)

becomes


dp̃u2 (t) = −H̃θ
y (t) dt− H̃θ

z (t) dW
H,θ
t ,

dV θ (t) = θltV
θ (t) dWH

t ,

V θ (T ) = ϖθ
T , and

p̃u2 (0) = −ψy [y
u (0)] .

(3.3.10)

The solution
(
p̃u, q̃u, V θ, l

)
of the system (3.3.10) is unique, such that

‖p̃u (t) ‖2β + ‖V θ (t) ‖2β + E
∫ T

0

(
|q̃u (t)|2 + |lt|2

)
dt <∞, (3.3.11)

where

H̃θ

t, γt, yt, zt,
 p̃u2(t)

q̃u2 (t)

 , V θ(t), lt

 = (g (t) + θztlt) p̃
u
2(t)− f (t) ,

(3.3.12)

and
dWH,θ

t = −2θltdt+ dWH
t .

Proof. We want to identify the processes α̃ and q̃u such that

dp̃u (t) = −α̃ (t) dt+ q̃u (t) dWH
t .

By applying the fractional integration by parts formula 1.2.3 to the process
−→p u (t) = θV θ (t) p̃u (t) , and using the expression of V θ in (3.3.9) , we obtain

d−→p u(t) = θd(V θ (t) p̃u(t))

= θ
[
V θ (t) dp̃u(t) + V θ (t) ltp̃

u(t)dWH
t + 2q̃u(t)V θ (t) ltdt

]
.

Then
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dp̃(t) =
1

θV θ (t)
d−→p (t)− 2q̃(t)θltdt− θltp̃(t)dW

H
t .

Using (3.2.3), we get

dp̃u (t) = − 1

θV θ (t)

 0 0

fy (t) gy (t)


 pu1 (t)

pu2 (t)

 dt− 2θltq̃
u (t) dt

+
1

θV θ (t)

 qu1 (t)

−Hz (t)

 dWH
t − θltp̃

u (t) dWH
t .

By identifying coefficients, we get the diffusion term

q̃u (t) =
1

θV θ (t)

 qu1 (t)

−Hz (t)

− θltp̃
u (t) ,

and the drift term of the process p̃u (t)

α̃ (t) =

 0 0

fy (t) gy (t)


 p̃u1 (t)

p̃u2 (t)

+ 2θltq̃
u (t) .

Using the relation p̃u (t) =
1

θV θ (t)
−→p u (t) , the coefficient q̃u (t) will be as

q̃u (t) =

 q̃u1 (t)

−Hz (t)

θV θ (t)

− θltp̃
u (t) .

We finally obtain

dp̃u (t) = −

 0 0

fy (t) gy (t)


 p̃u1 (t)

p̃u2 (t)

 dt− 2θltq̃
u (t) dt+ q̃u (t) dWH

t .

We can simply verify that

dp̃u1 (t) = q̃u1 (t)
[
−2θltdt+ dWH

t

]
, p̃u1 (T ) = −1.

Considering lemma 3.3.1, the fractional Girsanov’s theorem 1.3.2 allows us to write

dp̃u1 (t) = q̃u1 (t) dW
H,θ
t , p̃u1 (T ) = −1 Pθ − a.s.,

where
dWH,θ

t = −2θltdt+ dWH
t

is a Pθ-fractional Brownian motion, and
dPθ

dP2

∣∣∣∣
FT

:= exp

(∫ T

0

2θlsdW
H
s − 2θ2

d

dt
‖lt‖2ρdt

)
, 0 ≤ t ≤ T.

In view of (3.3.4) and (3.3.7) , the probability measures Pθ and P2 are equivalent. Hence,
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noting that p̃u1 (t) :=
1

θV θ (t)
pu1 (t) is square-integrable, we get that p̃u1 (t) = ẼPθ

[p̃u1 (T ) | Ft] =

−1. We can simply show that the process q̃u1 (t) is of finite quadratic variation, such that

E
∫ T

0

|q̃u1 (t)|
2 dt = 0. This implies that, for almost every 0 ≤ t ≤ T, q̃u1 (t) = 0. Pθ and P2-a.s.

dp̃u (t) = −

 0 0

fy (t) gy (t)


 p̃u1 (t)

p̃u2 (t)

 dt+ q̃u (t) dWH,θ
t .

By using the relation q̃u (t) =

 q̃u1 (t)

−Hz (t)

θV θ (t)

− θltp̃
u (t) , in the above equation, we obtain

dp̃u (t) = −

 0 0

fy (t) gy (t)


 p̃u1 (t)

p̃u2 (t)

 dt

+


 q̃u1 (t)

−fz (t) p̃u1 (t)− gz (t) p̃
u
2(t)

− θltp̃
u (t)

 dWH,θ
t .

(3.3.13)

The second component of p̃u2 is given by (3.3.13) , is

dp̃u2 (t) = − [fy (t) p̃
u
1 (t) + gy (t) p̃

u
2 (t)] dt

− [fz (t) p̃
u
1 (t) + gz (t) p̃

u
2 (t) + θltp̃

u
2 (t)] dW

H,θ
t .

The main risk-sensitive for the second adjoint equation satisfied by (p̃u2 , q̃
u
2 ) and

(
V θ, l

)
be-comes 

dp̃u2 (t) = −H̃θ
y (t) dt− H̃θ

z (t) dW
H,θ
t ,

dV θ (t) = θltV
θ (t) dWH

t ,

V θ (T ) = Aθ
T , and

p̃u2 (0) = −ψy [y
u (0)] .

The solution
(
p̃u, q̃u, V θ, l

)
of the previous system (3.3.10) is unique, such that

‖p̃u (t) ‖2β + ‖V θ (t) ‖2β + E
∫ T

0

(
|q̃u (t)|2 + |lt|2

)
dt <∞, (3.3.14)

where
H̃θ

t, γt, yt, zt,
 p̃u2(t)

q̃u2 (t)

 , V θ(t), lt

 = −f (t) + (g (t) + θztlt) p̃
u
2(t).

The next theorem 3.1 summarizes the risk-sensitive fractional SMP.

Theorem 3.1 (Risk-Sensitive Fractional SMP) Suppose that H1 in assumptions 3.1 holds,

if (y, z, u) is an optimal solution to the risk-sensitive control problem {(3.1) , (3.2) , (3.3)},
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then there exist pairs of FB
T -adapted processes

(
V θ, l

)
and (pu, qu) that satisfy (3.3.10) and

(3.3.14) such that
(vt − ut)H̃θ

v (t) ≥ 0, (3.3.15)

for all v ∈ U , almost every 0 ≤ t ≤ T and P2-a.s., where

H̃θ (t, yut , z
u
t ,
−→p u,−→q u, ut) = θV θ(t)H

t,Υu
t , y

u
t , z

u
t ,

 p̃u2(t)

q̃u2 (t)

 , V θ(t), lt, ut

 .

3.4 Risk-Sensitive Sufficient Optimality Conditions

The following theorem presents the risk-sensitive sufficient optimality conditions.

Theorem 3.1 Suppose that ψ is convex in y and the Hamiltonian H is convexe in (y, u).

For all v ∈ U and FB
T -measurable random variable yvT = ξ, such that ‖ξ‖2β < +∞. Then

(y, z, u) is an optimal solution to the problem {(3.1) , (3.2) , (3.3)} if it satisfies (3.3.15), for

all v ∈ U , almost every 0 ≤ t ≤ T and P2-a.s., where the Hamiltonian H associated with

(3.2.1), given by

H (t, yut , z
u
t ,
−→p u(t),−→q u(t), ut) = pu1(t)f(t) + pu2(t)g(t).

Proof. Let v, u ∈ U (u candidate to be optimal), then

Jθ(v)− Jθ(u) = E [exp θ (ψ [yv(0)] + Υv
T )− exp θ (ψ [yu(0)] + Υu

T )] .

By a Taylor’s expansion of exp, we obtain

Jθ(v)− Jθ(u) = E (θ [∂ψ(y0) + ∂ΥT ] exp θ (ψ [yu(0)] + Υu
T )) ,

but the function ψ is convex in y, hence

∂ψ [y(0)] ≥ [yv(0)− yu(0)]ψy [y
u(0)] . (3.4.1)

Recall ϖθ
T := expθ (ψ [yu(0)] + Υu

T ) and by inequality (3.4.1) and from the dynamics (3.2.3)

we get
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Jθ(v)− Jθ(u) ≥ E
[
θϖθ

T ([yv(0)− yu(0)]ψy [y
u(0)] + Υv

T −Υu
T )
]

= E
[
ϖθ

T (Υv
T −Υu

T )
]
+ E

(
θϖθ

T [yv(0)− yu(0)]ψy [y
u(0)]

)
= E [pu1(T )∂ΥT ]− E (pu [yu(0)] [yv(0)− yu(0)]) .

On the one hand, from the dynamics (3.2.3), we have the following dynamics

pu1(t) = θϖθ
T −

∫ T

t

qu1 (s)dW
H
s ,

then the Malliavin derivative of pu1 is DH
0 p

u
1(ω) = qu1 (s, ω)1[0,T ](s). Moreover,

Υv
T −Υu

T =

∫ T

0

[f v(t)− fu(t)] dt,

and
Υv(0)−Υu(0) = 0.

Hence
DH

0 (Υv
T −Υu

T ) (ω) = 0. P.a.s.

By the fractional integration by part formula (1.2.3), we get

pu1(T ) (Υ
v
T −Υu

T ) = pu1(0) (Υ
v(0)−Υu(0)) +

∫ T

0

pu1(t) [f
v(t)− fu(t)] dt

−
∫ T

0

qu1 (t) (Υ
v
t −Υu

t ) dW
H
t +

∫ T

0

[0× qu1 (t) + qu1 (t)× 0] dt.

Taking the mathematical expectation, we obtain

E [pu1(T ) (Υ
v
T −Υu

T )] = E
∫ T

0

pu1(t) [f
v(t)− fu(t)] dt. (3.4.2)

On the other hand, we have

yv(0)− yu(0) =

∫ T

0

[gv(t)− gu(t)] dt−
∫ T

0

(zvt − zut ) dW
H
t ,

then
DH

0 (yvT − yuT ) (ω) = [zvt (ω)− zut (ω)]1[0,T ](t).

And again from the dynamics (3.2.3)

pu2(T ) = −θϖθ
Tψy [y

u(0)]−
∫ T

0

Hy(t)dt−
∫ T

0
Hz(t)dW

H
t ,

we have
DH

T p
u
2(t, ω) = −Hz(t, ω)1[0,T ](t).

Using the fractional integration by parts formula 1.2.3, we obtain
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pu2(T )(y
v
T − yuT ) = pu2(0) [y

v(0)− yu(0)] +

∫ T

0

pu2(t) [g
v(t)− gu(t)] dt

−
∫ T

0

pu2(t)(z
v
t − zut )dW

H
t −

∫ T

0

Hy(t)(y
v
t − yut )dt

−
∫ T

0

(yvt − yut )Hz(t)dW
H
t

+

∫ T

0

(−Hz(t) [−(zvt − zut )]− (zvt − zut )Hz(t)) dt = 0.

By taking the expectation, we get

−E (pu2(0) [y
v(0)− yu(0)]) = E

∫ T

0

(pu2(t) [g
v(t)− gu(t)]− (yvt − yut )Hy(t)) dt. (3.4.3)

By combining equations (3.4.2) and (3.4.3), it comes

Jθ(v)− Jθ(u) ≥ E
∫ T

0

(pu1(t) [f
v(t)− fu(t)]

+pu2(t) [g
v(t)− gu(t)]− (yvt − yut )Hy(t)) dt,

where ϕu (t) = ϕ (t, yut , z
u
t , ut) , for ϕ = f, g or H.

By the convexity of the Hamiltonian H in (y, u), we have the following inequality

Hv(t)−Hu(t) ≥ (yvt − yut )Hy(t) + (vt − ut)Hv(t).

Then
Hv(t)−Hu(t)− (yvt − yut )Hy(t) ≥ (vt − ut)Hv(t).

Finally we get
Jθ(v)− Jθ(u) ≥ E

∫ T

0

(vt − ut)Hv(t)dt, (3.4.4)

since we have from (3.2.4) : (vt − ut)Hv(t) ≥ 0, the result follows immediately from the

inequality (3.4.4), which proves the optimality of u.

3.5 Application

3.5.1 Linear Quadratic Risk-Sensitive Control Problem

Due to the advantages present by the FBM when modeling finance (i.e. long range

dependence property), we would think of it as a realistic tool to model the unpredicted
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behaviour of some elements in a financial market. What provides us with a financial market

called: fractional Black-Scholes Market with a wealth process V (V is independent on the

quasi-martingale defined in (3.3.6)) defined on the filtred probability space (Ω,F ,FH ,P),

such that FH
t = σ

(
WH

s , 0 ≤ s ≤ t
)

and WH is an FBM defined on (Ω,F ,P). We associate

the wealth process with the investing strategy process (α, β) (It is obvious that α and β do

not depend on any other notations in this thesis), which is FH-adapted such that

Vt = αSt + βBt. (3.5.1)

α : Signifies the amount of shares invested in stocks (risky assets) (St) with the dynamics

dSt = St

(
µdt− σdWH

t

)
, S0 > 0.

β : Signifies the amount of shares invested in bonds (riskless assets) (Bt) with the dynamics

dBt = rBtdt, B0 = 1.

The investing strategy is assumed self-financed, what provides us the following equality

dVt = αdSt + βdBt

= αSt

(
µdt− σdWH

t

)
+ βrBtdt.

From (3.5.1), we get

dVt =

[
rVt +

(
µ− r

σ

)
ασSt

]
dt− ασStdW

H
t . (3.5.2)

We denote
zt = ασSt and π =

µ− r

σ
.

π : Signifies the risk premium, µ and σ are the drift and the volatility of the process S.

The dynamics (3.5.2) becomes

dVt = (rVt + πzt) dt− ztdW
H
t , VT = ξ̄. (3.5.3)

ξ̄ : is supposed to be an adapted contingent claim, with strike date T. We associate the

FBSDE (3.5.3) with the following risk-sensitive cost functional
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Jθ(π) = E
(
exp θ

[
−1
2

∫ T

0
(π2 + V 2

t ) dt+
V 2
0

2

])
, (3.5.4)

which we aim to minimize over the set of all premium risks Π, that is, we seek an adapted

process π̂ ∈ Π, which satisfies the following equality

Jθ(π̂) = infπ∈Π J
θ(π). (3.5.5)

On the whole, our fractional risk-sensitive linear quadratic control problem consists of the

triplet {(3.5.3) , (3.5.4) , (3.5.5)}, which we solve in the sequel. Using the predefined formulas,

we have the Hamiltonian

H̃θ(t, Vt, zt, π, p̃2(t), lt) =
1

2
(π2 + V 2

t ) + p̃2(t) [rVt + zt (θlt + π)] .

Then, minimizing the Hamiltonian over Π leads to

H̃θ
π(t) = 0 ⇔ π̂ = −ẑtp̃2(t). (3.5.6)

Hence the optimal wealth process V̂ has the dynamics

dV̂t =
[
rV̂t − ẑ2t p̃2(t)

]
dt− ẑtdW

H
t , (3.5.7)

where there exists an FB-adapted process p̃2 satisfying the following fractional SDE dp̃2(t) = −Hθ
V (t)dt−Hθ

z(t)dW
θ,H
t

p̃2(0) = V̂0,
(3.5.8)

where

Hθ
V (t) = V̂t + rp̃2(t), Hθ

z(t) =
(
θl̂t + π̂

)
p̃2(t), and W θ,H

t = WH
t −

∫ t

0

2θl̂sds. (3.5.9)

It remains to prove that π̂ is optimal.

Theorem 3.1 We suppose that π̂ and p̃2, respectively, satisfy equations (3.5.6) and (3.5.8),

respectively. Then π̂ is the unique solution to the fractional risk-sensitive linear quadratic

control problem {(3.5.3) , (3.5.4) , (3.5.5)} .

Proof. First of all, we know that the mapping t 7→ t2 is convexe, hence the Hamiltonian and
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the function ψ(V0) =
V 2
0

2
, respectively, are convexe in (V, π) and π, respectively. Moreover,

let π ∈ Π be another control than π̂, then

(π − π̂)Hπ(t) = (π − π̂) [π + ztp̃2(t)] .

From equation (3.5.6), we have

(π − π̂)Hπ(t) = [π + ztp̃2(t)] [π + ztp̃2(t)]

= [π + ztp̃2(t)]
2 ≥ 0.

It results by theorem 3.1 that π̂ is indeed optimal. In fact, the system (3.5.7) and (3.5.8) is

fully coupled forward backawrd system, whose solution ((V, z), (p̃2, l) is difficult to express

explicitely. Therefore, we consider the following linear combination of V and p̃2 as follows

p̃2 = χV̂ + φ, (3.5.10)

where χ and φ are two diterministic differentiable functions. Then applying the gener-

alized integration by parts formula 1.2.3 to (3.5.10), we get

dp̃2(t) = d
(
χtV̂t + φt

)
= χ̇tV̂t + χtdV̂t + φ̇t

=
[
χ̇tV̂t + χt

(
rV̂t − ẑ2t p̃2(t)

)
+ φ̇t

]
dt− χtẑtdW

H
t

=
[
χ̇tV̂t + χt

(
rV̂t − ẑ2t

(
χtV̂t + φt

))
+ φ̇t

]
dt− χtẑtdW

H
t

=
(
χ̇tV̂t + rχtV̂t − V̂ ẑ2χ2

t − χtφẑ
2
t + χtφ̇ẑt

)
dt− χtẑtdW

H
t ,

by taking into consideration (3.5.10) and (3.5.9) , we get
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dp̃2(t) = −Hθ
V (t)dt−Hθ

z(t)dW
θ,H
t

= −
(
V̂t + rp̃2(t)

)
dt− p̃2(t)(θl̂t + π̂)

(
dWH

t − 2θl̂tdt
)

= −
[
V̂t + r

(
χtV̂t + φt

)]
dt−

(
χtV̂t + φt

)
(θl̂t + π̂)

(
dWH

t − 2θl̂tdt
)

= −
[
V̂t +

(
r + 2θl̂t

(
θl̂t + π̂

))(
χtV̂t + φt

)]
dt−

(
χtV̂t + φt

)(
θl̂t + π̂

)
dWH

t

= −
[
V̂t + χtV̂t

(
r + 2θ2l̂2t + 2θl̂tπ̂

)
+ φt

(
r + 2θ2l̂2t + 2θl̂tπ̂

)]
dt

−
(
χtV̂t + φt

)(
θl̂t + π̂

)
dWH

t .

Then (
χ̇tV̂t + rχtV̂t − V̂ ẑ2χ2

t − χtφẑ
2
t + χtφ̇ẑt

)
dt− χtẑtdW

H
t =

−
[
V̂t + χtV̂t

(
r + 2θ2l̂2t + 2θl̂tπ̂

)
+ φt

(
r + 2θ2l̂2t + 2θl̂tπ̂

)]
dt

−
(
χtV̂t + φt

)(
θl̂t + π̂

)
dWH

t ,

Identifying diffusion terms yields to

χtẑt =
(
θl̂t + π̂

)(
χtV̂t + φt

)
,

then
l̂t =

χtẑ − π̂
(
χV̂ + φ

)
θ
(
χtV̂t + φt

) . (3.5.11)

Similarly, identifying drift terms yields to the following Riccati and ordinary differential

equations,respectively, χ̇t + ẑ2t χ
2
t + 2χt

(
r + θ2l̂2t + θl̂tπ̂

)
+ 1 = 0

χ0 = 1,
(3.5.12)

and  χtẑtφ̇t + φt

(
r + 2θ2l̂2t + 2θl̂tπ̂ − χtẑ

2
t

)
= 0,

φ0 = 0.
(3.5.13)

Theorem 3.2 We suppose that χ and φ, respectively, are the unique solutions of (3.5.12)

and (3.5.13), respectively, then the optimal control has the following feed-back state

π̂ = χtẑtV̂t + ẑtφt.
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3.5.2 Explicit Solution of the Riccati Equation

This paragraph is dedicated to finding the explicit solution of the Riccati differential

equation (3.5.12), for simplicity we denote h(t) = 2
(
r + θ2l̂2t + θl̂tπ̂

)
, then (3.5.12) becomes

χ̇t + ẑ2t χ
2
t + χth(t) + 1 = 0.

By simple algebra, we can show that

−dt = dχt(
ẑχt +

h(t)

2ẑt

)2

−∇2(t)

, (3.5.1)

where ∇2(t) =
h2(t)

4ẑ2t
− 1. Now, we put ut = ẑtχt +

h(t)

2ẑt
, then (3.5.1) becomes

−ẑtdt =
dut

u2t −∇2(t)
,

that is,

−2∇(t)ẑtdt =
dut

ut −∇(t)
− dut
ut +∇(t)

.

Integrating from 0 to t, we get

2∇(t)ẑtt = log

(
us +∇(s)

us −∇(s)

)∣∣∣∣t
0

,

then

2∇(t)ẑtt = log

 ẑsχs +
h(s)

2ẑs
+∇(s)

ẑsχs +
h(s)

2ẑs
−∇(s)


∣∣∣∣∣∣∣∣
t

0

= log

 ẑtχt +
h(t)

2ẑt
+∇(t)

ẑtχt +
h(t)

2ẑt
−∇(t)

− log

 ẑ0 +
h(0)

2ẑ0
+∇(0)

ẑ0 +
h(0)

2ẑ0
−∇(0)

 .
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Put

C =
ẑ0 +

h(0)

2ẑ0
+∇(0)

ẑ0 +
h(0)

2ẑ0
−∇(0)

,

we get

Ce2t∇(t)ẑt =
ẑtχt +

h(t)

2ẑt
+∇(t)

ẑtχt +
h(t)

2ẑt
−∇(t)

,

which leads in the end to

χt =

h(t)

2ẑt

(
1− Ce2t∇(t)ẑt

)
+∇(t)

(
Ce2t∇(t)ẑt + 1

)
ẑt (Ce2t∇(t)ẑt − 1)

. (3.5.2)
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Conclusion

In this thesis, we use the Malliavin calculus to establish two main results. Attain-

ing Pontryagin’s stochastic maximum principle for a backward doubly stochastic differential

equation driven by Wiener process and fractional Brownian motion, with Hurst parameter

H ∈
(
1

2
, 1

)
, is the first one. This result was obtained after applying the Doss-Sussmann

transformation to the backward doubly dynamics (2.1.1). Lemma 2.2.1 and theorem 2.3.1

state our results. The second one is the risk sensitive necessary and sufficient optimality con-

ditions for a fractional backward SDE. A variety of advanced mathematical tools are used

such as: logarithmic transformation (see Lemma 3.3.1) as in [20], transforming the adjoint

equation 3.3.3, and the convexity of the Hamiltonian (3.3.12) and the initial cost functional.

The results are given in theorems 3.1 and 3.1, respectively.

• In our first result [10]: (chapter 2), we extend the Doss-Sussmann transformation intro-

duced in [12, 13] and apply it to fractional doubly BSDE.

• In our second result [11]: (chapter 3), we use similar approach of Djehich et al. [18].

• Our logarithmic transformation in Lemma 3.3.1 may be considered as generalization of

the one introduced by El Karoui an Hamadène in [20], from risk neutral to risk sensitive

logarithmic quasi-martingale.

• We proceed as Yong in [61], and our result may be considered as generalization from risk

neutral to risk sensitive stochastic maximum principle.
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